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Abstract 

Although there are many algorithms that can solve the multi-objective optimization problems (MOPs) 

efficiently, each algorithm has its own disadvantages. The emergence of new algorithms is beneficial 

to make up the deficiencies of existing algorithms. Inspired by the organic matter transport process and 

the branch update theory of the banyan, this work proposed a new bio-inspired algorithm, named the 

multi-objective artificial tree (MOAT) algorithm to solve the MOPs. In MOAT, an improved crossover 

operator and an improved self-evolution operator are introduced to update solutions, a adaptive grid 

method is applied to manage the non-dominated solutions, and the strategy of variable number of 

branches in population is adopted to enhance the accuracy of this algorithm. Many typical test 

functions and seven well-known multi-objective algorithms, including MOEAD, NSGAII, MOPSO, 

GDE3, εMOEA, IBEA and MPSO/D, are applied to study the accuracy and efficiency of MOAT. 

Experimental tests show that the results of MOAT are better than those of the seven algorithms, and the 

performance of MOAT is demonstrated. In addition, this new algorithm is also applied to solve the 

MOPs of two-dimensional acoustic metamaterials (AMs). The key parameters of AMs are optimized 

by MOAT to mitigate impact load and reduce structural mass, and the performance of these AMs is 

significantly improved.  

Key words: multi-objective optimization problems; bio-inspired algorithm; multi-objective artificial 
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1 Introduction 

Multi-objective optimization problems (MOPs) 
[1-4]

 are common in engineering design, and 

their objectives always conflict with each other. Regarding MOPs, the improvement of one goal will 

impede the others. The optimum solutions of these MOPs are a set of solutions called Pareto solution 

set, and the graph consisting of these Pareto solutions is called Pareto front. Many theories have been 

proposed to solve the MOPs, and one of the most important branches is the bio-inspired optimization 

algorithm. In 1985, based on the standard genetic algorithm (GA), Schaffer 
[5]

 proposed the first 

multi-objective evolutionary algorithm. Since this algorithm was proposed, many efficient 

bio-inspired multi-objective algorithms have been proposed by researchers, such as improved 

strength Pareto evolutionary algorithm (SPEA2) 
[6]

 and non-dominated sorting genetic algorithm II 

(NSGA-II) 
[7]

.  

In addition to these typical bio-inspired multi-objective algorithms, many efficient new 

algorithms have also been proposed to improve their ability to solve the MOPs. Some of the latest 

studies are listed as follows. Sun et al. 
[8]

 presented an adaptive multi-objective evolutionary 

algorithm (AMEA). Clustering approach and advanced sampling strategy are applied to adaptively 

learn the manifold structure of Pareto solution set and produce promising offspring. For the uneven 

distribution problem of individuals in the design space, Qiao et al. 
[9]

 proposed an adaptive hybrid 

evolutionary immune algorithm (AUDHEIA). A hyperplane which is associated with the target space 

is generated, and these individuals in population are mapped into the hyperplane to increase the 

diversity of these solutions. In addition, the mapped hyperplane is uniformly divided to improve the 

distribution of these solutions. Facing multi-objective and many-objective problems, Luo et al. 
[10]

 

studied an indicator-based multi-objective artificial bee colony optimization method (ε-MOABC). 

An external archive is built in this algorithm based on Pareto dominance and preference indicators to 

preserve non-dominated solutions generated by each generation. Ou et al. 
[11]

 proposed a 

Pareto-based evolutionary algorithm to solve the dynamic MOPs. Three new strategies which are 

environment selection technique, mating selection strategy and dynamic response mechanism are 

introduced to enhance the diversity and convergence of solutions. Lin et al. 
[12]

 studied a dynamic 

control strategy of population size, and this strategy is introduced to the multi-objective immune 

algorithm (MOIA-DPS). The state of external archive is used to determine whether the size of 
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population will increase or decrease. A TDE operator which has two search models is alternately 

exchanged according to the probability to improve the robustness of MOIA-DPS.  

It is obvious that the theories of bio-inspired multi-objective algorithms have been making 

progress, and these new algorithms show great effectiveness and competitiveness. However, these 

algorithms still have deficiencies in solving some of the MOPs 
[13]

. For example, multi-objective 

particle swarm optimization (MOPSO) does not solve some MOPs well (such as ZDT4) 
[13]

. Many 

multi-objective evolutionary methods, such as SPEA2 
[6]

 and NSGA-II 
[7]

, are inspired by Darwin’s 

theory of natural selection, which emphasizes natural selection while neglecting cooperation between 

species 
[14]

. The ε-domination 
[10]

 does not effectively maintain solutions in the areas where the 

distribution of Pareto front is close to horizontal or vertical, resulting in a large loss of them. 

All of these prove the No Free Lunch Theorem 
[15]

. Although an algorithm has excellent effects 

in solving some problems, it may fail to solve other problems. For this reason, new optimization 

algorithms are always interested by researchers. Many scholars have done a lot of endeavours on the 

study of new theories, and the proposal of new algorithms can make up the deficiencies of existing 

algorithms. In this paper, aiming at enhancing the optimization accuracy and efficiency for MOPs, a 

new algorithm named the multi-objective artificial tree (MOAT) algorithm is proposed. MOAT is 

inspired by the growth law of banyan which is a multi-objective version of the artificial tree (AT) 

algorithm 
[16]

.  

The main challenges of this work include how to extend the basic AT algorithm to a 

multi-objective algorithm that can solve the MOPs and how to guarantee the accuracy and efficiency 

of this new algorithm. In order to transform AT from a single-objective version to a multi-objective 

algorithm, bio-inspired model of this algorithm is transformed from a general tree to a banyan. In AT, 

branches stand for solutions, and the thickest tree trunk is the best solution. For the MOPs, many 

branches and multiple tree trunks are required to represent solutions and non-dominated solutions, 

respectively. Fig. 1 shows a banyan model, and it is obvious that the banyan model has many 

branches and tree trunks. Therefore, the banyan model meets the requirements. In AT 
[16]

, two 

operators, namely the crossover operator and the self-evolution operator, are applied to update the 

branches. However, the basic AT algorithm does not consider the information interaction between 

branches sufficiently 
[17, 18]

. In this work, an improved crossover operator and an improved 

self-evolution operator are introduced to consider the information interaction between branches 
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comprehensively. In addition, an adaptive grid method is introduced to manage the solutions in 

archive to ensure their diversity and convergence. 

The main contributions of this proposed algorithm are summarized below. First, it is well 

known that AT is an efficient single-objective algorithm, and this work is a pioneer which transforms 

the basic AT algorithm into a multi-objective algorithm. Second, to improve the performance of 

MOAT, some efficient theories are introduced. The innovations of the proposed algorithm are listed 

below: (1) Compared to AT, an improved crossover operator and an improved self-evolution operator 

are introduced in MOAT to update the branches. (2) An adaptive grid method is proposed to manage 

the non-dominated solutions and guarantee the diversity and convergence of solutions. (3) A variable 

branch number strategy is proposed to make full use of the non-dominated solutions to improve the 

accuracy of MOAT.  

Multiple 

tree trunks

Branches

 

Fig. 1. A banyan with many branches and tree trunks. 

In addition to the study of MOAT algorithm, another goal of this work is to apply this new 

proposed algorithm to design the two-dimensional AMs to maximize its attenuation effects 
[19-21]

 and 

minimize its structural mass. Previous scholars had made some attempts to use the bio-inspired 

algorithms to design AMs. Li et al. 
[19]

 applied AT to optimize the resonant structures inside an 

sandwich panel to reduce structural deformation under impact load. Some key parameters were 

considered in the optimization process, and numerical results showed the great improvement of 

structural responses. Bacigalupo et al. 
[22]

 optimized an anti-tetrachiral AM to enlarge its band gaps, 

and some nonlinear optimization problems and inequality constraints were introduced in their work.  

In this work, the bio-inspired model and the flow of MOAT are firstly studied. Some typical test 
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functions are applied to study the efficiency and accuracy of MOAT. In order to further test the 

performance of MOAT, numerical results calculated by MOAT are compared with seven well-known 

multi-objective algorithms, including MOEA/D 
[23]

, NSGAII 
[7]

, MOPSO 
[24]

, GDE3 
[25]

, εMOEA 
[26]

, 

IBEA 
[27]

 and MPSO/D 
[28]

. Experimental results show that the performance of MOAT is better than 

that of the seven algorithms. This proves that MOAT is an effective algorithm, and this new proposed 

theory provides us a new choice for solving the MOPs. Then, MOAT is applied to optimize the 

two-dimensional AMs to improve their impact responses. Finally, the optimum responses of these 

AMs with lightweight structure and small impact load are obtained.  

This paper is organized as follows: the theory of MOAT algorithm is presented in Section 2. 

Section 3 compares the optimization results of MOAT and seven well-known multi-objective 

algorithms for ten typical test problems. Section 4 shows the optimization process of the 

two-dimensional AMs with MOAT. Finally, Section 5 makes the conclusions of this paper. 

2 The theory of MOAT  

In MOAT, the whole optimization process consists of the transportation of organic matters from 

leaves to multiple tree trunks and the update of branches. The branches themselves stand for the 

solutions, the positions of branches represent the design variables, and a thicker branch always 

dominates a thinner branch. The transfer process of organic matters depends on the renewal of tree 

branches. Therefore, the update theories of branches are the key to determine the whole optimization 

process of MOAT. In basic AT, there are two branch update theories, namely the crossover operator 

and the self-evolution operator. These two operators are applied to update the branches and the 

solutions.  

Fig. 2 shows the bio-inspired model of the banyan, and this model consists of many branches 

and multiple tree trunks. In Fig. 2, the blue arrows represent the propagation of organic matters, the 

red circles mean the improved crossover operator, and the yellow boxes denote the improved 

self-evolution operator. Organic matters are first produced in the leaves and then transmitted to the 

tree branches with the renewal of branches. The improved crossover operator and the improved 

single-evolution operator are exhibited to update the branches, and the updated branches are always 

thicker than the original ones. Meanwhile, these multiple tree trunks denote the Pareto solution set. 

When the organic matters are transmitted to the multiple tree trunks, meaning the branches are 

updated to the thickest trunks that cannot be dominated by other branches, the optimization process 
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is over. 

…
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Fig. 2. The branches renewal process and the organic matters transfer process of the banyan model. 

The execution process of MOAT algorithm is summarized as follows.  

First, a number of branches are randomly generated in the design space as the initial population. 

These branches are compared with each other, and the relatively thicker branches are selected as the 

non-dominated solutions. An archive is defined to store these non-dominated solutions.  

Second, all these branches in population are renewed by update operators. A pareto dominance 

analysis is performed with these new branches, and some non-dominated solutions are generated. 

Then, these newly acquired non-dominated solutions are combined with the non-dominated solutions 

in archive, and a new pareto dominance analysis is carried out with this combined solution set to 

obtain the new non-dominated solution set of current cycle.  

Third, the new non-dominated solution set replaces the old non-dominated solution set in 

archive. The adaptive grid method is applied to manage the branches in archive to remove these 

excessive branches and maintain the diversity of non-dominated solutions.  

Fourth, the branch population is updated by the variable branch number strategy. 

Fifth, continue to perform the second, third and fourth steps until the Pareto optimum solution 

set is obtained. The detailed execution process of MOAT is shown as follows. 
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2.1 Initialize the branch population 

Before the branch population is initialized, it is necessary to determine the number of branches 

in population and the dimension of each branch, that is, the dimension of problems to be solved. In 

this work, population size and branch dimension are defined as Bn and D, respectively. Then, some 

design points which are initial branches are randomly generated in design space. The positions of 

these branches are X = (x1, x2, ..., xBn). The location of i-th branch is xi = (xi1, xi2, ..., xiD). The 

positions of these initial branches are randomly generated by Eq. (1) below.  

min max min
(0,1) ( )ij j j jx x rand x x     (1) 

where xij is the j-th variable of the i-th branch, rand(0,1) is a random number between 0 and 1, max

jx  

and min

jx  are the upper and lower bounds for the j-th variable of branches. Then, the solutions of 

initial branch population are calculated, and the initial non-dominated solution set can be acquired 

through the analysis of Pareto dominance. Then, the initial non-dominated solution set is stored in 

the archive. The following pseudo code is the process of initializing branch population. 

Algorithm 1 Initialize branch population 

   For i = 1 to Bn 

For j= 1 to D 

Calculate min max min
(0,1) ( )ij j j jx x rand x x     

      End For 

Calculate the solution of branch i 

End For 

Perform the pareto dominance analysis 

   Acquire the initial non-dominated solution set 

   Acquire the initial archive 

2.2 Improved crossover operator and improved self-evolution operator 

The renewal of branches depends on the update operators of branches. In AT 
[16]

, there are two 

operators, crossover operator and self-evolution operator. Therefore, the branch update operator 

should be selected before the branch is renewed. However, the basic crossover and self-evolution 

operators do not consider the information interaction between branches sufficiently 
[17]

. When a 

branch is updated by the crossover operator, it has no information exchange with other branches. 

When a branch is updated by the self-evolution operator, it only considers its own information and 

the information of the best branch currently found. In this work, these two branch update operators 
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are improved to fully consider the information interaction between branches to enhance the 

performance of MOAT. The following is how a operator is selected and how this selected operator is 

carried out.  

A parameter r and a random number rand(0,1) are used to determine which branch update 

operator is applied. The value of r is between 0 and 1 which is defined in advance. If rand(0,1) ≤ r, 

the improved crossover operator is applied to renew the branch. Otherwise, the improved 

self-evolution operator is carried out. Therefore, the value of r significantly affects the execution 

probability of these two operators. If 0.5r  , the execution probability of the improved crossover 

operator is higher than that of the improved self-evolution operator. The process of the improved 

crossover operator is summarized as follows.  

First, a branch in archive is selected randomly as a leader branch, and its position is the leader 

branch position xleader. Then, one branch location xj which is different from current branch position xi 

is randomly selected from the branch population. Next, two branch positions are acquired based on 

the new selected branch position xj, the current branch position xi and the leader branch position 

xleader. The mathematical models are shown as Eqs. (2) and (3), where c1 and c2 are the coefficients to 

correct the newly generated branches. If the values of c1 and c2 are too large, the newly created 

branch positions xL and xR tend to be far from the original branch position xi, which may cause 

non-convergence of the optimization process. Conversely, if the values of c1 and c2 are too small, the 

optimization process may be inefficient. Therefore, the values of c1 and c2 should be appropriate, and 

they are recommended to range from 0 to 1 in this work. Finally, based on these two obtained 

branches, a new branch is produced by Eq. (4).  

L leader 1(0,1) ( )i jrand c    x x x x  (2) 

R leader 2(0,1) ( )i irand c    x x x x  (3) 

new L R(0,1) (0,1)rand rand   x x x  (4) 

where xL and xR denote two generated branch positions based on xj, xi and xleader, xnew denotes the new 

branch position.  

In MOAT, the new branch generated by the improved crossover operator should dominate the 

original branch. If the new branch is thicker than the original one, the new one replaces the original 

one. Otherwise, the new branch should be discarded and another new branch is searched by the 
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improved crossover operator. Then, a second comparison between the new branch and the original 

branch is carried out. If the new branch is still thinner than the original branch, a third comparison is 

made. Continue this comparison until a thicker branch is found or the number of comparisons 

reaches the maximum try number (Tn) 
[16]

. Tn is a predefined parameter that is used to control the 

generation of new branches, and the value of Tn should be chosen appropriately. Excessive value of 

Tn will cause waste of computing resources, while too small Tn will reduce optimization efficiency. 

If the number of comparisons reaches Tn, it means that this branch position cannot produce a thicker 

branch by the improved crossover operator. Next, another operation is performed to update the 

branch and branch position. Here, a parameter h and a random number rand(0,1) are applied to 

decide the next operation. h is a predefined parameter, and its value is between 0 and 1. If rand(0,1) 

≤ h, the current branch, whose position is xnew, will replace the original one for the next round of 

optimization. Otherwise, the current branch is discarded, and a new branch randomly generated by 

Eq. (1) in design space replaces the original one. If h takes a relatively large value, it tends to retain 

the currently generated new branch. A relatively high retention probability of xnew facilitates the 

convergence of optimization. However, a excessive value of h tends to cause the optimization 

problem to converge to local optimum. Therefore, the value of h is recommended between 0.5 and 

0.9. The following pseudo code is the process of the improved crossover operator to update the 

branch position xi. 

Algorithm 2 Improved crossover operator 

   Set the trial number as 1 

   While the trial number ≤ Tn 

      Select the leader branch position xleader 

      Select the branch position xj (i ≠ j) in the branch population 

      Calculate the branch position 
L leader 1(0,1) ( )i jrand c    x x x x  

      Calculate the branch position 
R leader 2(0,1) ( )i irand c    x x x x  

      Calculate the new branch position 
new L R(0,1) (0,1)rand rand   x x x  

Calculate the solution of the new branch whose position is xnew 

      Perform the Pareto dominance analysis between the new branch (xnew) and the original branch (xi) 

      If the new branch (xnew) dominates the original one (xi) 

         Replace the original branch (xi) with the new branch (xnew) 

         break 

      else 
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         Increment its trial by 1 

      End If 

   End While 

   If current branch is not updated 

      If rand(0,1) ≤ h  

         Replace the original branch (xi) with the last generated new branch (xnew) 

      else 

         Replace the original branch (xi) with the randomly generated branch in the design space 

       End If 

End If 

Regarding the improved self-evolution operator, the update of branch position is also based on 

the new selected branch position xj, the current branch position xi and the leader branch position 

xleader. The values of c1 and c2 in the improved self-evolution operator are the same as their values in 

the improved crossover operator. The mathematical formula of this operator is written as Eq. (5). 

new leader 1 leader 2(0,1) ( ) (0,1) ( )i j irand c rand c        x x x x x x  (5) 

Similar to the improved crossover operator, the new branch generated by the improved self-evolution 

operator is also required to dominate the original one. Then, a same branch update process as the 

improved crossover operator is executed for the improved self-evolution operator. The following 

pseudo code illustrates the process of the improved self-evolution operator to update the branch 

position xi. 

Algorithm 3 Improved self-evolution operator 

   Set the trial number as 1 

   While the trial number ≤ Tn 

      Select the leader branch position xleader 

      Select the branch location xj in the branch population 

      Calculate the new branch position 
new leader 1

leader 2

(0,1) ( )

(0,1) ( )

i j

i

rand c

rand c

     

  

x x x x

x x
 

Calculate the solution of the new branch whose position is xnew 

      Perform the Pareto dominance analysis between the new branch (xnew) and the original branch (xi) 

      If the new branch (xnew) dominates the original one (xi) 

        Replace the original branch (xi) with the new branch (xnew) 

        break 

      else 

         Increment its trial by 1 

      End If 

End While 

   If current branch is not updated 

      If rand(0,1) ≤ h 
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         Replace the original branch (xi) with the last generated new branch (xnew) 

      else 

         Replace the original branch (xi) with the randomly generated branch in the design space 

      End If 

End If 

2.3 Update archive 

For each round of cycle, Pareto dominance analysis is applied in branch population to obtain 

branches that are not dominated by other branches. Then, these obtained non-dominated solutions are 

merged with previous non-dominated solutions, and a new Pareto dominance analysis is carried out 

with this merged solution set to acquire a new non-dominated solutions of current cycle. Next, these 

new non-dominated solutions replace the original non-dominated solutions in archive. 

The maximum number of branch stored in archive is defined as nBn. In the optimization process, 

the number of branches in archive needs to be evaluated to avoid excessive branches. After the 

update of the non-dominated solutions, an assessment is carried out to judge whether the number of 

branches in archive (NBA) exceeds nBn. If NBA > nBn, these excess branches should be removed 

one by one. The concepts of grids, S-values and P-values of these branches in archive are defined to 

help determine which branch should be removed. 

An adaptive grid method is introduced to manage these non-dominated solutions in archive and 

keep the diversity and convergence of these solutions. This theory draws on the idea of grids and 

individual management in adaptive grid approach 
[29]

, but differs in the method of removing excess 

branches. This new proposed method is conducive to maintaining the diversity and convergence of 

the non-dominated solutions. The detailed process of the adaptive grid method is shown as follows. 

In each round of optimization, when the branches within the archive are updated, the grids 

corresponding to the branches are also updated. The boundary of solutions in archive is obtained 

based on the max max max max

1( , ..., , ..., )k ny y yY  and min min min min

1( , ..., , ..., )k ny y yY , where max

ky  and min

ky  denote 

the maximum and minimum values of k-th objective of these non-dominated solutions, and n is the 

number of objectives. A parameter N is defined here to describe the number of grids for each 

objective, which means that the space of each objective can be divided into N parts. The grid size of 

k-th objective is max min- k ky y N（ ） , and a total of N
n
 grids is produced for the non-dominated solution set. 

A reasonable value of N is important. On the one hand, a large N can manage the branches more 
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finely. On the other hand, an excessive N value increases computational cost. Then, based on the 

objective values of these non-dominated solutions as well as the upper and lower boundaries of these 

grids, it is possible to determine which grids these non-dominated solutions fall into. These grids 

containing non-dominated solutions can be acquired. In addition, each branch in archive has n grids, 

which is equal to the number of objectives. The serial number of n grids of each branch can be 

obtained. 

Based on the grid number of these non-dominated solutions, each branch in archive has a S 

value, and the S value is calculated by the following Eq. (6). 

1 2
+ + +...+

i i ij iniS s s s s  (6) 

where ijs  is a serial number of grid of j-th objective of i-th branch, Si is the sum of the serial 

number of all grids of i-th branch. Therefore, the S values of all branches in archive can be written as 

S = (S1, S2, ..., SMn), where Mn is the number of branches in archive currently. In archive, the 

probability that the branches are selected is P = (P1, P2, ... , PMn), and the mathematical model of the 

probability can be written as Eq. (7). 

1

Mn

i i ip S S   (7) 

where Pi is the probability that the i-th branch is selected, Mn is the number of branches in archive 

currently, and a smaller Si corresponds to a smaller Pi. 

After the renewal of the archive, a judgment needs to be performed to evaluate whether the 

number of branches in archive exceeds nBn. If NBA > nBn, the excess branches should be deleted 

one by one. The process of this operation is summarized as follows.  

First, the non-dominated solutions in the same grid should be removed first to ensure the 

uniformity of the Pareto front. All the grids are checked to find these grids which contain more than 

one branch, and the branches in these grids are combined as a new set. The values of S and P of the 

new set are calculated.  

Second, a roulette wheel selection is applied with the probability P to select one branch from 

the new set, and this selected branch will be removed from the archive. 

Third, a new evaluation is applied to judge whether all the branches are in different grids or 

NBA = nBn. If NBA = nBn which means that the number of branches in archive is not excess nBn, 

and the process of deleting non-dominated solutions ends. If all the branches are in different grids 
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and NBA > nBn, end this operation and proceed to the fourth step. Otherwise, repeat the first, second 

and third steps.  

Fourth, the values of S and P of all branches in archive are calculated, and the roulette wheel 

selection is directly carried out with P of all solutions to remove one branch from the archive. If 

NBA = nBn, the process of deleting non-dominated solutions ends. Otherwise, continue this fourth 

step until NBA = nBn. The following pseudo code shows how to update the archive. 

Algorithm 4 Update archive 

   Perform the Pareto dominance analysis of current branch population 

   Obtain the non-dominated solution set 

   Combine the currently obtained non-dominated solution set with the non-dominated solution set in the archive 

   Perform the Pareto dominance analysis of the combined non-dominated solution set 

   Obtain the new non-dominated solution set  

   Replace the original non-dominated solution set in the archive with the new non-dominated solution set 

   Define the grids of the archive 

   While NBA > nBn 

      If there are grids which contains more than one branch  

         Combine the branches in these grids which contains more than one branch as a new set 

         Calculate the values of S and P of the new set 

         Perform the roulette wheel selection with the probability P to select one branch 

         Remove the selected branch from the archive 

else 

Calculate the values of S and P of all branches in the archive 

Perform the roulette wheel selection with the probability P to select one branch 

         Remove the selected branch from the archive 

       End If 

End While 

2.4 Update the branch population 

In MOAT, the initial branch number in population is Bn, and the branch number in population 

varies with the optimization process. The strategy of variable number of branches is applied to 

improve the efficiency of MOAT. The update process of the branch population is summarized as 

follows.  

First, an evaluation is carried out to judge whether the branch number in population (BNP) 

exceeds Bn. If BNP > Bn, these branches in population which is also in the archive should be 

removed from the population.  

Second, if the branch number in current population is still greater than Bn, these excessive 

branches should also be deleted. Then, the grids of the branch population are produced, and the 
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values of S of these branches are calculated based on Eq. (6). Bn branches with less S values are 

retained and the other branches are removed.  

Third, the branch population and the non-dominated solutions in archive are merged together to 

be the new branch population for the next cycle of optimization. The following pseudo code shows 

the update process of the branch population. 

Algorithm 5 Update the branch population 

   If BNP > Bn 

      Remove the duplicate branches both in the population and archive from the population 

      If BNP > Bn 

         Calculate the values of S of all branches in the population 

         Keep Bn branches with smaller S values in the population 

      End If 

End If 

   Combine current branch population and the branches in the archive as the new population 

3 Numerical experiments 

3.1 Ten typical test problems and seven compared algorithms 

Numerical analyses are conducted to study the performance of MOAT fully, and computational 

results of MOAT are compared with NSGAII 
[7]

, MOEA/D 
[23]

, MOPSO 
[24]

, GDE3 
[25]

, εMOEA 
[26]

, 

IBEA 
[27]

 and MPSO/D 
[28]

. These algorithms are described as follows: 

MOEA/D: This is a widely used decomposition-based multi-objective algorithm. A MOP is 

decomposed into a scale of sub-problems, and these sub-problems can be optimized simultaneously. 

Computational complexity of MOEA/D per generation is lower than NSGA-II and MOGLS. 

Experimental results show that MOEA/D is better than or similar with NSGA-II and MOGLS in 

typical MOPs. It has been demonstrated that MOEA/D can handle the MOPs effectively. 

NSGAII: This algorithm was proposed by Deb at al. in 2002 which can overcome the main defects 

of NSGA. NSGA-II introduced a fast non-dominated sorting method with low computation 

complexity. In addition, a mating pool which is combined by parent and offspring populations is 

applied, and a selection operator is applied to choose the best solutions. Computational results on 

several typical test functions show that NSGA-II can find better solutions than other Pareto based 

algorithms.  

MOPSO: This is an expanded algorithm of particle swarm optimization (PSO), which can be used to 

solve MOPs. The strategy of Pareto advantage is applied by MOPSO to decide the direction of flight 
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of particles. Previously discovered non-dominant vectors are kept in a repository, and these vectors 

will be applied by other particles to direct their own movements later. The efficiency of MOPSO is 

proved by the calculative results of some typical test functions. 

GDE3: GDE3 is an improved version of generalized differential evolution (GDE) that can be used to 

solve the optimization problems with any number of constraints and objectives. For case without 

constraint and only one objective, GDE3 degenerates into DE. Compared with the early version of 

GDE, GDE3 can obtain the better distributed solutions.  

εMOEA: εMOEA is an improved multi-objective evolutionary method based on ε-dominance 

strategy. In εMOEA, the archive is applied to store the non-dominated solutions. The space of the 

archive of each objective is divided into a series of grids, and the size of one grid of i-th objective is 

εi. The ε-dominant strategy does not allow two solutions to be in the same grid, which guarantees the 

diversity of solutions. Computational results acquired by εMOEA are compared with NSGA-II, 

C-NSGA-II, PESA and SPEA2 in terms of many typical test problems, and its high performance in 

solve the MOPs is demonstrated. 

IBEA: This is an indicator-based multi-objective evolutionary algorithm proposed by Zitzler and 

Künzli. This algorithm integrates the preference information into a multi-objective algorithm to solve 

the MOPs. An optimization goal based on a binary indicator is first defined, and an indicator is then 

applied into the selection process. Compared to existing algorithms, IBEA can be adjusted according 

to user’s preferences without using any additional diversity retention strategies. In terms of different 

indicators, IBEA can significantly improve the results calculated by NSGA-II and SPEA2 on several 

benchmarking functions. 

MPSO/D: This is a new decomposition-based multi-objective algorithm. In MPSO/D, a direction 

vector is used to decompose the objective space of the MOPs into many sub-areas, and each sub-area 

contains one solution to keep the diversity. Then, a strategy of crowding distance is applied to 

compute the fitness value of saving solutions to select the better solutions, and the particle position 

of global best historical is determined by the neighboring particles of current particle. Experimental 

results show that MPSO/D performs better than NSGAII, MOEA/D and NNIA in terms of some 

typical test problems. 

In MOAT, parameters Bn, nBn, N, Tn, c1, c2, r and h are set as 100, 100, 50, 5, 0.382, 0.618, 0.7 

and 0.7, and parameters of other multi-objective algorithms are from references 
[7, 23-28]

. Problems of 
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UF1 - UF4, UF7 
[10, 14]

 and ZDT1 - ZDT6 
[9]

 are applied to test the performances of these algorithms. 

Maximum number of function evaluation for ZDT and UF problems are set as 30,000 and 100,000, 

respectively. Thirty independent calculations are carried out on all questions with different random 

seeds. Means and standard deviations (SDs) of different metrics results are acquired. In order to 

increase the legibility of the results, the best and second best metric values are marked as dark gray 

and light gray colors. Furthermore, t-test is also carried out based on these metrics results to reduce 

familywise errors. 

3.2 The performance metric 

W is a set of points which are evenly distributed on the real Pareto front, and A is a set of points 

calculated by the multi-objective algorithm. Whether point set A is successful can be assessed by 

metrics. In this work, metrics SPREAD 
[14]

, IGD 
[14, 28]

 and HV 
[14, 28]

 are applied to evaluate the 

non-dominated solutions. Furthermore, in order to better assess the results, number of points in W set 

is defined as 100 for the two objective problems.  

3.2.1. SPREAD 

SPREAD shows the extent of spread of solution set A, and a small value of SPREAD indicates 

the fit of A and W is great. The SPREAD indicator is written as follows.  

1

1

( , ) | ( , ) |
SPREAD

( , ) | |

m

ii X A

m

ii

d s A d X A d

d s A A d

 



 




 


 (8) 

where s1, …, sm are m uniformly distributed points in W, m is the number of objectives, ( , )id s A  is 

the Euclidean distance between the set A and si, 
2

,
( , )= min

Y A Y X
d X A X Y

 
  and 

1
= ( , )

| | X A

d d X A
A 

 . 

3.2.2. Inverted generational distance (IGD) 

IGD indicator is a widespread metric to quantitatively evaluate the calculative results of 

multi-objective algorithms. The value of IGD is the average distance from A to W, and a smaller IGD 

indicates that the calculated solutions are closer to the true Pareto front. Therefore, a smaller IGD is 

better. The IGD indicator is written as follows. 

( , )
IGD( , )

| |

W
d A

A W
W





  (9) 

where d(ν, A) is the minimum Euclidian distance between ν and A, and IGD(A, W) can effectively 

measure the diversity and convergence of solution set A. In order to obtain a small value of IGD(A, 
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W), the solution set A must be very close to W and cannot lose any part of the whole Pareto front. 

3.2.3. Hypervolume (HV)  

HV indicator represents the volume of a hypercube enclosed by the individuals in solution set A 

and the reference points in target space. HV indicator can evaluate the convergence, uniformity and 

extensive of solutions simultaneously, and give a comprehensive evaluation result. The value of HV 

can be calculated by Eq. (10). 

 1 1 2 2HV [ ( ), ] [ ( ), ] ... [ ( ), ]n n

X A

Volume f X r f X r f X r


 
    

 
 (10) 

where 
1 1 2 2[ (X), ] [ (X), ] ... [ (X), ]n nf r f r f r    represents a hypercube surrounded by all points that 

are dominated by X and not dominated by reference point Ref, the reference point is defined as 

1 2( , ,..., )nRef r r r  and n is the number of objective of MOP. In this paper, the reference point is 

defined as  max 1.1i ir W  , 1, 2, ...,i n , for all test problems. 

3.3 Numerical results of these MOPs obtained by MOAT and seven comparison algorithms 

Numerical results of these test functions are shown as follows. Table 1 is the IGD metric results 

obtained by MOAT and seven algorithms. Tables 2 and 3 show the SPREAD and HV metrics results, 

respectively. From Table 1, it is obvious that MOAT obtains the satisfactory IGD results on these 

benchmark functions compared with these well-known algorithms. MOAT yields better IGD values 

than the other algorithms for functions ZDT3 and ZDT4, and MPSO/D and NSGAII perform the 

second best for ZDT3 and ZDT4. MOAT performs the second best for functions ZDT1 and ZDT2, 

and MPSO/D and NSGAII obtain the best results of ZDT3 and ZDT4 in terms of the mean and SD 

values, respectively. Regarding function ZDT6, GDE3 and MPSO/D obtain the first and second 

ranks of IGD values among these algorithms, respectively. For functions UF3 and UF4, MOAT hits 

the first rank, and GDE3 and NSGAII obtain the second best results of these two problems. 

Regarding the problems UF1 and UF7, MOAT acquires the second satisfactory IGD values, and 

GDE3 obtains the best results of IGD metric. Finally, MOAT obtains the third satisfactory IGD 

values for UF2. In addition, the t-test for the IGD results of these functions at a 0.05 significance is 

performed, and symbolic results are also shown in Table 1. It is obvious that t-test results of MOAT 

are significantly better than those of the compared algorithms for questions ZDT3, ZDT4, UF3 and 
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UF4. Regarding functions ZDT1, ZDT2, UF1 and UF7, MOAT obtains 6 “+” among these 7 

compared algorithms, which means the t-test results of MOAT on these four problems are 

significantly better than those of 6 algorithms. On functions ZDT6 and UF2, MOAT acquires 5 “+”. 

In short, the number of best solutions obtained by MOAT is more than the other seven comparison 

algorithms obviously in terms of IGD metric. Therefore, the performance of MOAT is superior to 

other algorithms in current state. It proves the role of MOAT in solving MOPs.  

Table 1. The IGD metric values of these typical MOPs obtained by eight algorithms. 

  
MOEAD NSGAII MOPSO GDE3 εMOEA IBEA MPSO/D MOAT 

ZDT1 

Mean 0.011544 0.004642 36.113 10.219 0.042972 0.004538 0.003833 0.004143 

SD 0.00864 0.000156 7.97 2.15 0.0211 0.000135 0.000014 0.000842 

t-test + + + + + + - 
 

ZDT2 

Mean 0.053961 0.004741 43.405 14.974 0.098908 0.009483 0.007063 0.006672 

SD 0.0738 0.000168 11 4.08 0.065 0.00103 0.00861 0.002793 

t-test + - + + + + + 
 

ZDT3 

Mean 0.036232 0.050827 38.036 12.65 0.22224 0.096403 0.010273 0.002284 

SD 0.032 0.0623 8.61 3.77 0.11 0.0336 0.000439 0.000423 

t-test + + + + + + + 
 

ZDT4 

Mean 0.020878 0.0055 18.459 21.613 0.041074 0.098339 22.417 0.004251 

SD 0.0142 0.000732 6.83 3.81 0.0324 0.127 4.77 0.001236 

t-test + + + + + + + 
 

ZDT6 

Mean 0.007028 0.003739 0.47578 0.003107 0.029163 0.005061 0.003086 0.003126 

SD 0.00109 0.000107 2.09 0.000019 0.0018 0.000182 0.000004 0.000914 

t-test + + + - + + -   

UF1 

Mean 0.23881 0.11899 0.56451 0.03826 0.13820 0.12012 0.05932 0.0504024 

SD 0.09040 0.03910 0.12700 0.00472 0.03000 0.03750 0.01410 0.074184 

t-test + + + - + + + 
 

UF2 

Mean 0.18788 0.04999 0.11617 0.02933 0.09057 0.05375 0.01898 0.0305294 

SD 0.05460 0.02720 0.00823 0.00370 0.01960 0.01850 0.00318 0.005768 

t-test + + + - + + - 
 

UF3 

Mean 0.31841 0.23476 0.55044 0.07539 0.27498 0.28417 0.12454 0.0151431 

SD 0.03210 0.05270 0.02040 0.02210 0.05170 0.04170 0.01510 0.003502 

t-test + + + + + + + 
 

UF4 

Mean 0.12608 0.07475 0.11394 0.08174 0.10329 0.07582 0.08425 0.031064 

SD 0.00578 0.00367 0.01520 0.00697 0.00506 0.00380 0.00423 0.009686 

t-test + + + + + + + 
 

UF7 

Mean 0.33412 0.15200 0.65441 0.01755 0.24000 0.12422 0.03779 0.0371684 

SD 0.20000 0.14600 0.12000 0.00130 0.14200 0.12700 0.06820 0.026581 

t-test + + + - + + +   

Note: “+” and “-” mean the t-test result of MOAT is significantly better than and worse than that of the 

corresponding algorithm. 

The SPREAD metric results from Table 2 further confirm the high performance of MOAT. 
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From this table, it can be seen that MOAT performs superior to other algorithms on problems ZDT3 

and ZDT4. These indicate that solutions obtained by MOAT are closer to the real Pareto frontier than 

the compared algorithms. MOAT gets the second best SPREAD values for ZDT1 and ZDT6, and its 

results are only slightly worse than those of MPSO/D. In addition, MOAT also hits the second ranks 

compared with the other algorithms for problems UF3 and UF4. On problems ZDT2 and UF7, the 

third best SPREAD values are achieved by MOAT. Besides these numerical results, seven pairs of 

t-test at a significant level of 0.05 are carried out for the SPREAD results. Symbolic results are 

shown in Table 2. From Table 2, MOAT obtains 7 “+” for problems ZDT3 and ZDT4, which means 

the t-test results of MOAT are significantly better than those of other compared algorithms for these 

two problems. Regarding functions ZDT1, ZDT6, UF3 and UF4, MOAT obtains the symbol “+” for 

6 times among these 7 algorithms. Furthermore, MOAT obtains 5 “+” for problem UF7 and 4 “+” for 

function UF1. Therefore, based on these numerical and symbolic results, MOAT can find the 

satisfactory SPREAD results on these problems. In addition, the number of top solutions of SPREAD 

metric obtained by MOAT is significantly more than the other algorithms. This proves the 

performance of MOAT. 

Table 2. The SPREAD metric results acquired by all the algorithms. 

  
MOEAD NSGAII MOPSO GDE3 εMOEA IBEA MPSO/D MOAT 

ZDT1 

Mean 0.45478 0.43379 NaN 0.94325 0.62634 0.36663 0.30945 0.327734 

SD 0.166 0.0437  NaN 0.0308 0.283 0.0389 0.0117 0.0357808 

t-test + + + + + + - 
 

ZDT2 

Mean 0.79831 0.44945 NaN NaN 0.66391 0.38685 0.23368 0.394276 

SD 0.418 0.0525  NaN  NaN 0.343 0.0462 0.17 0.022266 

t-test + + + + + - - 
 

ZDT3 

Mean 0.71789 0.59851 NaN 0.96087 0.99317 0.76407 0.63676 0.521499 

SD 0.079 0.108  NaN 0.0242 0.203 0.0144 0.0294 0.059418 

t-test + + + + + + + 
 

ZDT4 

Mean 0.61373 0.42543 NaN 1.0384 1.4622 1.2262 NaN  0.402516 

SD 0.289 0.0521  NaN 0.0953 0.65 0.0832 NaN  0.0267498 

t-test + + + + + + + 
 

ZDT6 

Mean 0.16215 0.41357 1.208 0.80066 0.89074 0.41003 0.14932 0.1552 

SD 0.0272 0.0418 0.321 0.757 0.602 0.128 0.0035 0.019087 

t-test + + + + + + -   

UF1 

Mean 1.0024 0.85976 0.79714 0.23525 1.2657 1.036 1.03602 0.9392696 

SD 0.0413 0.166 0.0651 0.0479 0.307 0.0408 0.0692 0.097094 

t-test + - - - + + + 
 

UF2 Mean 0.59899 0.5502 0.78695 0.2044 0.59641 1.0519 0.43134 1.0079474 
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SD 0.0696 0.0643 0.0414 0.0336 0.154 0.0552 0.0431 0.133458 

t-test - - - - - + - 

 

UF3 

Mean 1.0003 1.0465 0.90031 0.2705 NaN 1.012 0.79576 0.3999989 

SD 0.00328 0.0767 0.0541 0.0566 NaN 0.0528 0.0934 0.03556 

t-test + + + - + + + 

 

UF4 

Mean 0.46722 0.45009 0.82735 0.23608 0.47898 1.2324 0.50114 0.4450333 

SD 0.0702 0.0572 0.0571 0.02 0.0754 0.126 0.0474 0.130324 

t-test + + + - + + + 

 

UF7 

Mean 0.87755 0.74835 0.82653 0.18972 0.75444 1.1095 0.37331 0.7155088 

SD 0.271 0.204 0.0607 0.0327 0.305 0.124 0.182 0.197991 

t-test + + + - + + -   

Note: “+” and “-” mean the t-test result of MOAT is significantly better than and worse than that of the 

corresponding algorithm. 

Table 3 shows the numerical results of HV metric. From Table 3, it is clear that MOAT obtains 

better HV results on functions ZDT3, UF3 and UF4 compared with the other algorithms, and 

MPSO/D, GDE3 and NSGAII acquire the second best results for these problems, respectively. On 

problems ZDT2, ZDT4, ZDT6 and UF1, MOAT performs the second best. NSGAII hits the optimum 

solutions of problems ZDT2 and ZDT4, and the maximum HV values of functions ZDT6 and UF1 

are achieved by GDE3. In addition, MOAT also achieves the third best HV values for functions 

ZDT1 and UF7. Table 3 also shows the t-test results of HV metric at a 0.05 significance level. From 

Table 3, MOAT acquires 7 “+” among these 7 algorithms for functions ZDT3, UF3 and UF4. 

Regarding problems ZDT2, ZDT4, ZDT6 and UF1, MOAT acquires 6 “+”. Finally, on functions 

ZDT1 and UF7, MOAT acquires 5 “+”. The calculative results of these algorithms show that MOAT 

can achieve a satisfied HV values on these test problems. Based on the number of top solutions of 

HV metric acquired by each algorithm, a better performance of MOAT than the other seven 

algorithms in current state is proved. MOAT is demonstrated to be a much efficient algorithm for 

solving the MOPs.  

Table 3. The HV metric results obtained by MOAT and seven comparison algorithms. 

  
MOEAD NSGAII MOPSO GDE3 εMOEA IBEA MPSO/D MOAT 

ZDT1 

Mean 0.86084 0.86049 0.00000 0.00000 0.81224 0.87111 0.87088 0.8693054 

SD 0.00798 0.00020 0.00000 0.00000 0.01930 0.00013 0.00007 0.0029704 

t-test + + + + + - - 
 

ZDT2 

Mean 0.46671 0.53737 0.00000 0.00000 0.40947 0.53601 0.53381 0.5364726 

SD 0.08120 0.00021 0.00000 0.00000 0.07210 0.00269 0.01060 0.1071984 

t-test + - + + + + + 
 

ZDT3 
Mean 0.97748 0.96758 0.00000 0.00000 0.77030 0.91544 1.01910 1.0227411 

SD 0.04140 0.07960 0.00000 0.00000 0.13900 0.04750 0.00052 0.0223882 
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t-test + + + + + + + 
 

ZDT4 

Mean 0.84144 0.86746 0.00000 0.00000 0.80795 0.79440 0.00000 0.8639084 

SD 0.01600 0.00189 0.00000 0.00000 0.04430 0.09150 0.00000 0.0019281 

t-test + - + + + + + 
 

ZDT6 

Mean 0.42519 0.43226 0.40390 0.43342 0.39886 0.43135 0.43237 0.4325559 

SD 0.00186 0.00035 0.09530 0.00005 0.00361 0.00027 0.00001 0.0003616 

t-test + + + - + + + 
 

UF1 

Mean 0.57232 0.70091 0.17444 0.80983 0.67169 0.71560 0.76212 0.76370 

SD 0.08420 0.05640 0.10300 0.00899 0.03670 0.03540 0.02610 0.02062 

t-test + + + - + + + 
 

UF2 

Mean 0.73370 0.81686 0.70968 0.83179 0.74481 0.81453 0.84659 0.78240 

SD 0.03710 0.01710 0.01050 0.00424 0.01760 0.01380 0.00387 0.01545 

t-test + - + - + - - 

 

UF3 

Mean 0.45611 0.54515 0.16164 0.75211 0.49231 0.53222 0.69552 0.85960 

SD 0.05440 -0.05890 -0.01990 0.03370 -0.05640 0.04570 0.01670 0.01118 

t-test + + + + + + + 

 

UF4 

Mean 0.32694 0.41567 0.34948 0.40046 0.35909 0.41129 0.39624 0.49370 

SD 0.00849 0.00676 0.02280 0.01130 0.00938 0.00509 0.00722 0.00430 

t-test + + + + + + + 

 

UF7 

Mean 0.38788 0.54326 0.04926 0.67680 0.44990 0.56834 0.65444 0.62180 

SD 0.15700 0.12500 0.04850 0.00270 0.10100 0.10900 0.06340 0.01060 

t-test + + + - + + - 
 

Note: “+” and “-” mean the t-test result of MOAT is significantly better than and worse than that of the 

corresponding algorithm. 

In short, regarding these 10 benchmark functions, MOAT yields better numerical and t-test 

results of IGD metric than those of algorithms MOEAD, NSGAII, MOPSO, GDE3, εMOEA,IBEA 

and MPSO/D on problems 10, 9, 10, 6, 10, 10 and 7 respectively. The better rates of MOAT on these 

functions are 100%, 90%, 100%, 60%, 100%, 100% and 70%, respectively. Regarding SPREAD 

metric, the numerical and symbolic results of MOAT are better than those of the seven compared 

algorithms on problems 8, 8, 8, 5, 9, 9 and 5, respectively, and the better ratios of MOAT on these 

functions are 80%, 80%, 80%, 50%, 90%, 90% and 50%, respectively. In addition, the numbers of 

better HV metric results obtained by MOAT over algorithms MOEAD, NSGAII, MOPSO, GDE3, 

εMOEA, IBEA and MPSO/D are 10, 7, 10, 6, 10, 8 and 7, and the better ratios of MOAT on these 

functions are 100%, 70%, 100%, 60%, 100%, 80% and 70%, respectively. Based on the number of 

the best solutions (numerical and symbolic results) on IGD, SPREAD and HV metrics, the 

performance of MOAT is clearly proved. It can be concluded that MOAT exhibits stable and great 

performance for these test problems.  
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Fig. 3 shows the plots of the non-dominated solutions calculated by MOAT and the real Pareto 

fronts of these MOPs. It is obvious that these non-dominated solutions approximate the true Pareto 

fronts very closely. Especially for functions ZDT1 - ZDT6, the non-dominated solutions are almost 

the same as the ideal Pareto fronts with high density of solutions. On functions UF2, UF3, UF4 and 

UF7, MOAT obtains a number of continuous Pareto fronts which converge very closely to the ideal 

Pareto fronts. This shows that the solutions obtained by MOAT have great diversity and convergence. 

Based on the results of Fig. 3, the high performance of MOAT is proved again. 
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Fig. 3. Plots of the real Pareto fronts of these test functions and the non-dominated solutions 

obtained by MOAT. 

4. Optimize the two-dimensional AMs based on MOAT 

4.1 The description of the two-dimensional AM 

In this section, the attenuation effect of AMs on impact wave is studied. Fig. 4 (a) shows one 

two-dimensional AM model, and the AM is located between the red and green parts. The impact 



24 

 

wave is applied on the front end of the red component, and the end of the green part is constrained by 

its six degrees of freedom. Entire AM consists of three parts, which are external framework, coating 

and vibrators. As shown in Fig. 4 (a), the blue structure is the framework, the yellow circular 

structure is the vibrator and the pink structure is the coating. The detailed size of AM is illustrated in 

Fig. 4 (b). The thickness of coating (TC), the thickness of vibrator (TV) and the diameter of vibrator 

(DV) are 4.0mm, 4.0mm and 4.0mm, and the materials of vibrator and coating are copper and rubber. 

The impact analysis is carried out with commercial software LSDYNA. Constitutive models 

MAT_PIECEWISE_LINEAR_PLASTICITY and MAT_OGDEN_RUBBER in the material library 

of LSDYNA are applied to simulate the metal oscillators and rubber coatings. The detailed material 

information of AM is illustrated in Tables 4 and 5. 

Unit cell No. #1 #2 #3 #4 … #10

Impact wave

 

(a) 

D
C

T
V

T
C

 

(b) 

Fig. 4. (a) The impact model with the two-dimensional AM. (b) The detailed size of one unit cell. 

Table 4. Material parameters of the metal oscillators. 

Material E (Gpa) ν ρ (kg/m3) 

Lead 40.8 0.37 11600 

Steel 207.0 0.30 7784 

Copper 110.0 0.33 8900 

Table 5. Material parameters of rubber. 

Material E (Gpa) ν ρ (kg/m3) N NV SGL SW ST 

Rubber 0.0001175 0.496 1200 5 6 1 1 1 

4.2 Impact results of the AM and original models 

In order to better study the attenuation effect of AM, two indicators which are the mean impact 

force (MF) and the peak impact force (PF), are applied to measure the mechanical behavior of the 

structure. To calculate MF, the impulse (I) should be calculated first. The Impulse (I) is the integral 

of impact force with time, which can be written as follows. 
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0
( ) ( )

t

I t = F x dx  (11) 

where t stands for the time and F is the impact force. Then, MF can be calculated as follows. 

IMF=
t

 (12) 

The impact results of the original and AM models are shown in Fig. 5 and Table 6. From Fig. 5 

and Table 6, the metamaterial mass (MM) is 4.33 g, the values of PF of the original and AM models 

are 477.5 N and 348.2 N, and the values of MF of the original and AM models are 96.6 N and 90.6N. 

Therefore, the attenuation effect of impact stress waves achieved by the AM is clearly proved. 
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Fig. 5. Impact forces of the original and AM models. 

Table 6. Results of the original and AM models. 

 

PF (N) MF (N) MM (g) 

Original 477.5 96.6 —— 

AM 348.2 90.6 4.33 

4.3 Optimize the two-dimensional AMs with MOAT, response surface and Latin hypercube 

In order to speed up the optimization process, the third-order response surface methodology and 

the Latin hypercube method are applied. In addition, some polynomial terms with low significance 

are removed to improve the reliability of the approximation models and reduce the number of 

required design points. The total number of terms of the reduced three-order response surface model 

(RSM) is thirteen, and the function expression of the reduced RSM is written as follows. 

2 3

0

1 1( ) 1 1

( )
j NN N N

i i ij i j i i i i

i i i<j i i

F x  a b x c x x d x e x


   

         (13) 

where F(x) is the value of RSM, a0, bi, cij, di and eij are the adjustable coefficients which are used to 

reduce the error between analysis and surrogate model, and N is the number of design variables.  
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It is well known that a better attenuation effect requires a heavier structure. However, the 

excessive mass is also a key factor which restricts the application of AM. In this paper, we want to 

design the key parameters of AM to enhance its mitigation effect and reduce its structural mass. The 

geometric parameters TC, TV and DV as well as the vibrator materials of AMs are optimized in order 

to minimize PF, MF and MM. The candidate vibrator materials are copper, steel and lead. The 

detailed material properties of these candidate materials are shown in Table 4. The design spaces of 

TC, TV and DV are shown in Table 7.  

The mathematical models of the MOP that aims to minimize PF and MM as well as MF and 

MM are expressed in Eqs. (14) and (15). 

Min   ,   

  s.t.

0 9

0 10

1 10

PF MM

DC
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


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  


 

 (14) 

Min   ,   

  s.t.
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1 10

MF MM

DC

TV
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



 
  


 

 (15) 

Table 7. The design space of the variables. 

 

Low limit (mm) Upper limit (mm) 

TC 1 10 

TV 1 10 

DC 1 9 

A total of forty samples are obtained, and the RSMs of AMs with copper, steel and lead 

oscillators are established in this work, respectively. The RSMs of responses PF, MF and MM of 

copper AM are written as follows. 

2 2 2

1 1 2 3

3 3 3

1 1 1

2

2 3

3

2 3 2 3

473.970 13.350 10.699 53.627 4.267 1.642 4.580

1.004 0.272 0.951 0.279 0.011 0.095

PF  x x x x + x + x

x x x x x x

+

x x x

   

     
 (16) 

2 3

2 3

2 2 2

1 1 2 3

3 3 3

1 1 1 32 3 2

123.191 3.518 0.492 9.138 0.294 0.220 1.176

0.213 0.372 0.128 0.034 0.024 0.067

MF  x x x x x + x

x x x x x x x x x

     

     
 (17) 

2 2 2

1 1 2 32 3

2 3 2 3

3 3 3

1 1 1 2 3

2.095 1.338 0.395 0.593 0.099 0.213 0.117

0.609 0.043 0.032 0.031 0.013 0.006

MM  x x x x x + x

x x x x x x x x x

     

     
 (18) 
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Regarding the steel AM, its responses of PF, MF and MM are written as Eqs. (19) - (21). 

2 2 2

1 2 3

2

1 2 3

3 3 3

1 1 13 2 32 3

471.683 12.404 5.963 57.987 3.900 0.741 5.763

0.901 0.269 1.011 0.254 0.036 0.171

PF  x x x x + x + x

x x x x x x

+

x x x

   

     
 (19) 

2

2 2 2

1 1 23

2

3

3 3 3

1 1 1 23 2 3 3

127.782 4.402 0.477 12.817 0.037 0.447 1.882

0.220 0.412 0.113 0.004 0.039 0.107

MF  x x x x x + x

x x x x x x x x x

     

     
 (20) 

2 2 2

1 1 2 32 3

2 3 2 3

3 3 3

1 1 1 2 3

1.741 1.108 0.371 0.651 0.094 0.190 0.109

0.533 0.048 0.029 0.027 0.011 0.006

MM  x x x x x + x

x x x x x x x x x

     

     
 (21) 

The RSMs of the lead AM are illustrated as Eqs. (22) - (24). 

2 2 2

1 1 2 3

3 3 3

1 1 1

2

2 3

3

2 3 2 3

475.793 20.757 13.988 42.873 5.466 2.161 1.889

0.869 0.020 0.825 0.359 0.044 0.067

PF  x x x x + x + x

x x x x x x

+

x x x

   

     
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2 3

2 3

2 2 2

1 1 2 3

3 3 3

1 1 1 32 3 2

122.924 9.119 0.243 5.015 1.020 0.478 0.287

0.160 0.352 0.083 0.055 0.040 0.015

MF  x x x x x + x

x x x x x x x x x

     

     
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2 2 2

1 1 2 32 3

2 3 2 3

3 3 3

1 1 1 2 3

2.953 1.900 0.463 0.451 0.111 0.273 0.137

0.795 0.031 0.040 0.040 0.016 0.007

MM  x x x x x + x

x x x x x x x x x

     

     
 (24) 

It is worth noting that only the validated RSMs can ensure the accuracy of the metamodel-based 

optimization solutions. Therefore, a index R-square (R
2
) 

[30]
 is used to evaluate the fitting accuracy of 

RSM, and a larger R
2
 value means a better fitting between the predicted and true values. The formula 

of R
2
 is written as follows. 
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




 (25) 

where yi is the true value of the ith sample point, ˆ
iy  is the predicted value of the ith sample point 

obtained by the approximate model, 
iy  is the mean of yi, and n is the number of test points. 

For these three kinds of AMs, the verification of their RSMs is performed with 10 random 

samples in the design space. The results of R
2 
are shown in Table 8. From Table 8, the values of R

2 
of 

MM, PF and MF are 0.978, 0.925 and 0.921 for copper AM, 0.978, 0.930 and 0.914 for steel AM as 

well as 0.977, 0.942 and 0.911 for lead AM. Obviously, the values of R
2
 of these objectives are close 

to 1. Therefore, the accuracy of these RSMs meets the requirements, and they can be used for the 

further optimization design. 
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Table 8. Error analyses of these RSMs. 

 Copper Steel Lead 

M 0.978 0.978 0.977 

PF 0.925 0.930 0.942 

MF 0.921 0.914 0.911 

MOAT is employed to gain the optimum solutions to satisfy the maximum requirements of all 

objectives, which yields a set of Pareto-solutions. Fig. 6 shows the Pareto fronts PF - MM and MF - 

MM of the copper, steel and lead AMs. Regarding Pareto fronts PF - MM and MF - MM, the 

optimum values of PF and MM as well as MF and MM strongly conflict with each other. In other 

words, any improvement in one objective must sacrifice the other one. This suggests that MOAT 

successfully generates a widely distributed Pareto-optimum solutions, and the Pareto fronts can 

provide many effective choices and keep the balance between these objectives.  

Based on these Pareto fronts of the copper, steel and lead AMs in Fig. 6, some interesting 

conclusions are obtained. (1) With the increase of MM, the values of PF and MF of these three AMs 

are reduced quickly first and then their reduction rates decrease. Especially for the lead AM, its 

values of PF and MF are reduced more slowly than the copper and steel AMs in the high MM region. 

(2) When MM is less than 30 g, the performances of these three AMs are similar to each other 

regarding the responses of PF and MF. (3) The densities of oscillators have less influence on the 

performances of these AMs when MM is less than 30 g. (4) When MM is larger than 30 g, the 

attenuation effects of copper and steel AMs are better than those of lead AM. 
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Fig. 6. Pareto fronts of the responses (a) PF and MM, (b) MF and MM with these three kinds of AM 

models. 

Since different AMs have different non-dominated solutions, a uniform optimum solution 

selection criterion is needed. In this work, the minimum distance theory 
[31]

, which can balance the 

objectives to maximize revenue, is applied to obtain the optimum solutions of problems PF - MM 

and MF - MM. 

1

2 2

1

min( ( ))
( ( ) )

max( ( )) min( ( )))

n
ij i

i i i

f f x
D

f x f x





  (26) 

where D is the minimum distance between target point and reference point, and D should be as small 

as possible. n is the number of optimization objectives, fij is the j-th solution of the i-th objective, and 

min(fi(x)) and max(fi(x)) are the minimum and maximum solutions of the i-th objective. Based on Eq. 

(26), the best solutions of problems PF-M and MF-M for the copper, steel and lead AMs are shown 

in Tables 9 and 10.  

Regarding PF-MM, the optimum solutions of the copper, steel and lead AMs are 208.78 N - 

10.79 g, 209.42 N - 11.10 g and 200.97 N - 11.29 g, respectively. For MF-MM, the optimum 

solutions of these AMs are 60.04 N - 17.20 g, 64.31 N - 12.64 g and 60.90 N - 14.94 g, respectively. 

It is clear that the optimum solutions of these AMs are different from each other, which provides us a 

variety of options. Finally, through quantitative analyses of the structural mass and attenuation 

effects of AMs, the optimum solution of the copper AM is selected to attenuate PF, and the optimum 
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solution of lead AM is selected for the mitigation of MF. 

Table 9. The optimum solutions of PF-M for copper, steel and lead AMs. 

 
Copper Steel Lead 

M (g) 10.79 11.10 11.29 

PF(N) 208.78 209.42 200.97 

DV (mm) 1.972 1.732 1.940 

TV (mm) 6.081 7.291 6.773 

TC (mm) 7.912 8.769 7.916 

Table 10. The optimum solutions of MF-M for copper, steel and lead AMs. 

 
Copper Steel Lead 

M (g) 17.20 12.64 14.94 

MF(N) 60.04 64.31 60.90 

DV (mm) 3.079 1.662 2.199 

TV (mm) 8.554 10.000 8.671 

TC (mm) 10.000 10.000 10.000 

5 Conclusion 

The No Free Lunch Theorem reveals that no algorithm can solve all MOPs efficiently, and new 

optimization algorithms are always followed by scholars. In this work, a new algorithm named the 

multi-objective artificial tree (MOAT) algorithm is proposed. It is an improved version of the basic 

AT algorithm. In order to extend the basic AT algorithm to a multi-objective algorithm, the 

bio-inspired model of AT is changed from a general tree to a banyan. Two improved branch update 

operators, an adaptive grid method and a variable branch number strategy, are introduced to ensure 

the performance of MOAT.  

Many typical test problems are applied to test MOAT. Experimental results of MOAT are 

compared with MOEA/D, NSGAII, MOPSO, GDE3, εMOEA, IBEA and MPSO/D to prove its 

performance. The test results of IGD, SPREAD and HV performance metrics show that MOAT 

exhibits better performance than the other seven comparison algorithms. Therefore, it documents that 

MOAT is a bio-inspired multi-objective algorithm with strong competition. In addition, MOAT is 

also applied to optimize the two-dimensional acoustic metamaterials (AMs) to maximize their 

attenuation effects and minimize their structural masses. Finally, the non-dominated solutions 

obtained by MOAT provide us many effective choices, which can keep the balance between these 

optimization objectives, and the optimum solutions we chose improve the performances of AMs 

significantly.  

Although this work presents a new algorithm with high computational efficiency and accuracy, 
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and based on this new algorithm to solve the MOPs of AMs efficiently, this paper has some 

limitations in the study of new types of Pareto fronts. In future work, we plan to work on the 

diversity of non-dominated solutions and the diversity of Pareto fronts with MOAT. 
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