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Abstract: Energy storage devices provide services in the capacity market (CM). Li-ion batteries are 11 

a popular type of energy storage devices used in CM. Battery lifetime is a key factor in determining 12 
the economic viability of Li-ion batteries and current approaches to estimating this are limited.  13 
This paper explores the potential of a lithium-ion battery to provide CM services with four de-rating 14 
factors (0.5h,1h,2h and 4h). During the CM contract, the battery experiences both calendar and cycle 15 
degradation which reduces the overall profit. Physics-based battery and degradation models are 16 
used to quantify degradation cost for the battery in the CM to enhance earlier research results. The 17 
degradation model quantifies capacity losses related to solid-electrolyte interphase (SEI) layer, 18 
active material loss and SEI crack growth. Results show that the physics-based degradation model 19 
can accurately predict degradation cost at different operating conditions thus can substantiate the 20 
business case of the battery in the CM. The simulated CM profit can be higher by 60% and 75% at 21 
5C and 25 respectively compared to empirical and semi-empirical degradation models. A 22 
sensitivity analysis for a range of parameters are given to show their effects on batteries’ overall 23 
profit.  24 

Keywords: Capacity market, degradation cost, physics-based modelling, de-rating factors 25 

 26 

1. Introduction 27 

The threat of climate change due to global warming has encouraged many countries to adopt 28 
policies to increase  reliance on renewable energy sources (RES) in their electricity networks. The 29 
EU policies require European countries to increase the energy produced by RES by 20% by 2020 and 30 
27% by 2030 [1]. The total world renewable energy generation capacity increased by 14.5% in 2019 31 
[2]. The intermittent nature of RES [3] along with fast energy demand growth [4] raises considerable 32 
energy security concerns [5,6]. Driven by such concerns, several multi-dimensional approaches have 33 
been used to ensure adequate and cost-efficient power systems. These include enabling innovative 34 
technologies such as energy storage [7-9], improving market design [10,11], and enhancing system 35 
operation [12].  36 

The introduction of the capacity markets (CMs) to improve the electricity market design is seen 37 
as an effective solution to enabling the integration of RES in electricity networks. As such, CMs have 38 
been implemented in many countries including the US [13], Latin America [14], and Europe [15]. The 39 
aim of which, is to adequately remunerate new electrical generators, to reduce investment risks and 40 
avoid electricity blackouts. Many of the new generators participating in the CM are using Lithium-41 
Ion batteries (LIBs) due to their high energy density and life cycle [16]. Earlier work has illustrated 42 
that batteries can enhance new generators business case by providing capacity services ranging from 43 
40% to 100% of their nameplate capacity, thus reducing the number of shortage events (SE) in the 44 
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CM [17,18]. Other studies have found that the revenue from energy storage devices can be triplied  45 
if they are utilised to provide energy reserve services in the electricity markets [19]. Further work has  46 
found that batteries participating in the CM can secure substantial upfront revenue while only 47 
marginally reducing profits from other markets [20]. 48 

LIB degradation is the main factor in determining its operational cost [21]. As such, accounting 49 
for it is essential to assess the economic viability of LIBs in the CM. Once a battery wins a CM contract, 50 
it must remain ready to discharge during electricity SEs leaving the battery at 100% charge status for 51 
a long period, thus increasing its degradation cost [22]. The failure to deliver the contracted CM 52 
capacity when needed may result in penalties [23]. However, many previous studies that aim to 53 
evaluate the viability of LIBs in different grid applications either did not account for the degradation 54 
cost or there is no clear or accurate degradation model used. Earlier research in [24-26] studied how 55 
different batteries can provide ancillary services to the grid- such as short time operating reserve or 56 
capacity reserve- but this work did not include consideration of battery degradation. Other research 57 
in [20,27-29] evaluated the applicability of LIBs to provide different services such as spinning reserve, 58 
frequency response and peaking capacity, however once again these works did not include a clear 59 
battery degradation models. Many other studies accounted for degradation cost by including an 60 
empirical LIB degradation model [30-34]. These models are based on mathematical functions that 61 
provide good fitting for the experimental data used. While empirical and semi-empirical models are 62 
computationally efficient, they are usually based on limited battery operating conditions, thus 63 
making the extrapolation beyond the dataset used inaccurate [35,36].  64 

Other empirical degradation models used often ignore important degradation details. For 65 
instance, earlier research in [37] presents a nonlinear degradation model to account for the 66 
degradation cost in the day ahead market while ignoring calendar degradation. However, in an 67 
actual island grid-connected battery operating for three years, it is found that the battery was in 68 
idling position for 20% of the total operating time [38] thus ignoring calendar may lead to erroneous 69 
results. Several other works either not considering temperature effects on battery degradation [39,40], 70 
overlooking State of Charge (SoC) effects during calendar degradation [41], or accounting for the 71 
impact of depth of discharge (DoD) only [42].  72 

Other works consider the effects of degradation cost using advanced physics-based LIB models. 73 
The authors in [43] present a modelling framework for grid-connected batteries using physics-based 74 
single particle model (SPM) that consider capacity fade due to solid electrolyte interphase (SEI) layer 75 
mechanism. Similarly, the work in [44] presents a physics based SEI layer degradation assessment 76 
for LIBs in grid connected PV system using SPM. Recent research [45] uses different LIB models, 77 
including SPM, to optimise the battery to provide energy arbitrage service to the grid and concluded 78 
that the expected revenue could be substantially improved using more accurate battery degradation 79 
models. However, all the aforementioned works either do not consider the CM, or consider it without 80 
de-rating factors or quantifying one degradation mechanism (SEI layer only) for economic analysis 81 
while overlooking the impacts of other possible degradation effects such as active material loss and 82 
crack growth [46].  83 

This paper improves on the previous economic studies by quantifying the degradation cost for 84 
three degradation mechanisms for LIB cells in the CM using physics-based degradation model 85 
coupled with a pseudo 2-dimensional LIB cell model. These three degradation mechanisms are SEI 86 
layer growth, active material (AM) loss and SEI layer fracture. Furthermore, this work considers 87 
several CM de-rating factors which is seen as essential in improving the business case for energy 88 
storage in the CM [47]. Ultimately, this work mitigates the limitation mentioned in a recent study 89 
[48] which concluded that empirical and semi-empirical degradation models are unable to capture 90 
battery degradation effects at lower temperatures such as 5ºC. 91 

2. Capacity Market Fundamentals  92 

The reliability of liberalised electricity markets is questioned due to increasing energy demand, 93 
the decommissioning of conventional power plants (i.e. coal) and the steady growth of RES. In 94 
particular, many policymakers argue that the current energy-only markets may not ensure resource 95 
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adequacy [49]. One issue being that the energy-only market neglects the energy adequacy problem 96 
because it assumes that the energy demand and supply always balanced (quantity supplied=quantity 97 
demanded). Thus, when for instance, the supply side becomes scarce, there must be a load reduction 98 
from the demand side to ensure market clearance. However, due to the inelastic nature of the 99 
demand side and rational customer response, electricity markets do not guarantee a demand 100 
response or market clearance. [50]. 101 

Another reason for energy-only market failure is its inefficiency during electricity blackouts [51]. 102 
If there is a blackout similar to the one that happened in the UK in 2019 which affected over 1 million 103 
customers [52], then there is at least one supplier which does not have the power to sell at any price 104 
as illustrated in Figure 1a. Despite the scarce capacity and the peak demand, generators do not earn 105 
money in the blackout events[48].  106 

Nevertheless, even if there are no generation adequacy issues, a ‘missing money’ problem exists 107 
in both normal operating conditions and scarcity periods. In normal operating conditions where the 108 
demand quantity is below the peak available capacity as shown in Figure 1b and the market is 109 
competitive, some generators such as the Peakers ( plants operate only at high demand) cannot earn 110 
sufficient revenue beyond the operating cost [49]. Therefore, they may not cover their capital 111 
investment cost. In scarcity periods as shown in Figure1c, all generators may earn high scarcity prices 112 
(red dot) which, in real cases, can be ‘367’ times higher than the average price [53]. However, market 113 
power can be exercised in scarcity periods even by small generators (see [54]), therefore triggering 114 
regulatory intervention. Regulators usually set the scarcity prices low to mitigate market power 115 
abuse thus creating the missing money problem depicted in Figure 1c.  Since the investment in new 116 
capacity to increase the reliability of the supply side depends on the scarcity prices, energy-only 117 
markets therefore do not provide the incentives needed to build new capacity.    118 

 119 

 120 

Figure 1. Energy price and demand for different generators during: (a) blackout; (b) normal 121 
operation; (c) period of scarcity  122 
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A well-designed CM can mitigate the issues of market power and missing money by 123 
determining the adequate level of supply capacity needed. This can be done by designing a capacity 124 
auction for generators to determine the scarcity price needed to secure the adequate level of capacity 125 
as set by the regulator to reduce the number of shortage hours. The auction is open to new and 126 
existing generators to consider the investment level needed in the new generators. The result is that 127 
the auction discovers the true value of the scarcity price corresponding to the optimal level of 128 
capacity while the regulatory intervention has been limited only to control the level of the capacity 129 
needed.  130 

For several reasons, energy storage devices may have limited discharge capacity (for example, 131 
degradation). Therefore, CMs (in the UK, Germany, France, Italy, Ireland, and Denmark) have 132 
introduced de-rating methodologies to account for the percentage of firm capacity they can supply 133 
at shortage periods [55]. Fraunholz et al. [56] found that the choice of a suitable de-rating factor is 134 
challenging and may affect batteries’ market competitiveness. Figure 2 shows the number of batteries 135 
participating in the current UK’s CM with different de-rating factors. It can be seen that there is an 136 
increased interest in obtaining higher de-rating factors such as 3h or 4h. This study considers a real-137 
life scenario in which the LIB is utilised to get  0.5h,1h,2h, and 4h de-rating factors.  138 

 139 

 140 

Figure 2. The number of batteries in the UK's capacity market from T-1 2018 to T-4 2022 for 141 
different de-rating factors. 142 

3. Methods 143 

3.1. Problem Setup  144 

This study models battery degradation for LIB used to provide a CM service to the UK grid 145 
operator over a one year contract using a physics based model. During the contract’s period, many 146 
simultaneous degradation mechanisms affect the battery performance which results in a degradation 147 
cost. As illustrated in Figure 3, when the CM’s contract begins, the battery should provide reserve 148 
services to the grid and be ready to respond at electricity SEs. Therefore, in the absence of SEs, the 149 
calendar battery degradation can be quantified. During SEs and depending on its duration, the 150 
obligation capacity will be calculated for each de-rated battery. The duration of the event and the 151 
obligation capacity amount is updated at each settlement period (30 minutes). Then, a physics-based 152 
battery model is used to discharge the required capacity. The operating conditions of the battery such 153 
as the temperature are then fed to the degradation model to quantify cycle degradation and update 154 
the initial capacity in the model. Afterwards, depending on the amount of generated power, the 155 
penalties and overpayment can be quantified to obtain the overall revenue. The battery capacity and 156 
the de-rating factors used in this study are shown in Table.1 which are in line with the current 157 
batteries participating in the CM [57]. The CM parameters used in this study are given in earlier 158 
study [48]. 159 

 160 
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 162 
Figure 3. Revenue and degradation cost flow chart process in the capacity market  163 

Table 1. The battery capacity and the de-rating factors used in this study 164 

Battery Capacity             

(MWh) 

Generated Power 

(MW) 

De-rating 

(h) 

2 

2 

2 

2 

2 

2 

1 

0.5 

0.5 

1 

2 

4 

 165 
The total revenue of the battery 𝑅  represents the revenue from CM contract in addition to 166 

overpayments 𝑅𝑜𝑣 minus potential penalties 𝑝 as given in (1) where 𝐶𝑑𝑒 is the de-rated capacity, 167 
𝑘𝑑𝑒 is the de-rating factor, 𝜆𝑐𝑙  is the CM auction clearing price, and 𝑓 is a factor used to reward 168 
slightly more payment in peak demand months. 169 

 170 

𝑅 = 𝐶𝑑𝑒 × 𝜆𝑐𝑙 × 𝑓 + 𝑅𝑜𝑣 −  𝑝 

 

(1) 

The de-rated capacity 𝐶𝑑𝑒  depends on the battery’s output power as in (2) where 𝐼𝑏(𝑡) is the 171 
battery current, 𝑉𝑏(𝑡) is the battery voltage, and 𝑁 is the total number of battery cells. 172 

  173 

𝐶𝑑𝑒 = 𝐼𝑏(𝑡) × 𝑉𝑏(𝑡) × 𝑁 × 𝑘𝑑𝑒 

 

(2) 

The capacity obligation 𝐶𝑜 is calculated at each settlement period (i) as in (3)-(4) where 𝐷𝑝 is 174 

the peak electricity demand during the SE 𝐷𝑝
𝑠𝑒  divided by the total CM contracted capacity through 175 

the CM auction 𝐶𝑎𝑢𝑐, and 𝐶𝑏 is the capacity offered by the battery to other grid services. 176 
 177 
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𝐶𝑜(𝑖) = ∑(𝐶𝑑𝑒 × 𝐷𝑝(𝑖)) − 𝐶𝑏(𝑖)    

𝑛

𝑖=1

 

 

(3) 

𝐷𝑝(𝑖) =
𝐷𝑝(𝑖)

𝑠𝑒

𝐶𝑎𝑢𝑐

 

 

The penalties and the overpayments are obtained by calculating the amount of 

undelivered/over delivered capacity over the CM contract at each settlement period as 

in (5)-(6) 

(4) 

𝑝 =  ∑ 𝐶𝑢𝑛(𝑖) ×

𝑡

𝑖=1

𝜆𝑐𝑙  

 

(5) 

𝑅𝑜𝑣 = ∑ 𝐶𝑜𝑣(𝑖) ×

𝑡

𝑖=1

𝜆𝑐𝑙 

 

By multiplying the lost battery capacity 𝐶𝑙𝑜𝑠𝑡(𝑡) that is obtained from the battery 

degradation model by a degradation price 𝜆𝑑𝑒𝑔𝑟 , the total energy degradation cost 𝐸𝑙𝑜𝑠𝑡 

can be roughly estimated as in (7). 

 

(6) 

𝐸𝑙𝑜𝑠𝑡 = 𝐶𝑙𝑜𝑠𝑡(𝑡) × 𝜆𝑑𝑒𝑔𝑟 × 𝑁  

 

(7) 

3.2. Battery Cycling Profile 178 

The battery cycles in the CM are calculated according to the SEs’ period. The expected number 179 
of these SEs is based on the loss of lead expectation (LOLE) reliability metric [58]. Since accurately 180 
predicting LOLE is difficult as it is a function of complex processes such as generator availability, 181 
blackouts, and environmental factors, thus many studies deem LOLE not reliable [59,60]. In the 182 
presence of high share of RESs, it is found that LOLE can reach 62 hour per year [61]. Another study 183 
found that LOLE can reach 83h per year considering the current CM scarcity prices [62]. Therefore, 184 
by considering the difficulty in estimating realistic LOLE and the previous studies, this work assumes 185 
that the total number of different duration SEs is 20 in the first year of the CM’s contract while rising 186 
to 90 in another year (from month 13-24) as shown in Figure 4. This distribution of SEs considers the 187 
electricity peak demand periods in most parts of Europe [63]. Furthermore, the distribution reflects 188 
the probability of the duration of SEs, for instance, 1h and 2h are more probable that 4h events [64].  189 

 190 

 191 

Figure 4. Battery cycling profile according to the number of expected shortage events in the 192 
capacity market 193 
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3.3. Battery and Degradation Models 195 

3.3.1 Battery Model 196 

The battery electrochemical cell model is shown in Figure 1 and based on the seminal work by 197 
Newman et al. [65]. The input to the model is the load current, material properties, geometry design 198 
parameters and the operating temperature. The output is the cell voltage and the SoC. The model 199 
parameters values used in this study are given in Appendix A. The five model states are; the lithium 200 
concentration in the solid (𝑐𝑠) and electrolyte phase(𝑐𝑒), the electric potential in the solid (𝜙𝑠) and 201 
electrolyte (𝜙𝑒) along with the rate of lithium movement between the phases  (𝑗𝐿𝑖)  [66]. These 202 
variables can be found by solving five coupled differential equations along with their boundary 203 
conditions as described below. 204 

The mass conservation of lithium (assuming the concentration of lithium within the particles is 205 
spherically symmetric) in the solid phase can be described using Fick’s second law in (8) where (𝐷𝑠) 206 
is the solid phase diffusion constant and (𝑟) is the radial (pseudo) dimension. The first boundary 207 
condition of (8) is given by (9) indicating that there is no diffusion in the centre of the particle. The 208 
second boundary condition is given by (10) indicating that the transfer of charges occur at the outer 209 
boundary of the particle where ( 𝑎𝑠)  is the specific interfacial area between the solid and the 210 
electrolyte, (𝑅𝑝) is the particle radius and (𝐹) is Faraday’s constant . 211 

 212 

𝜕𝑐𝑠

𝜕𝑡
=

𝐷𝑠

𝑟2
 

𝜕

𝜕𝑟
(𝑟2

𝜕𝑐𝑠

𝜕𝑟
) 

(8) 

𝜕𝑐𝑠

𝜕𝑟
|

𝑟=0
= 0 

(9) 

−𝐷𝑠

𝜕𝑐𝑠

𝜕𝑟
|

𝑟=𝑅𝑝

=
𝑗𝐿𝑖

𝑎𝑠 𝐹
 

(10) 

Lithium’s concentration in the electrolyte phase is the result of diffusion (first term) and due to 213 
charge transfer between the solid and the electrolyte (second term) as in (11) where (𝜀𝑒) is the 214 
porosity and (𝑡0

+) is the transference number of the cation with respect to the solvent. Since there 215 
must be no electrolyte flux at the cell boundaries, the boundary conditions of (11) is given in (12).  216 

𝜕(𝜀𝑒𝑐𝑒)

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷𝑒

𝑒𝑓𝑓 𝜕

𝜕𝑥
𝑐𝑒) + 

1 − 𝑡0
+

𝐹
 𝑗𝐿𝑖 

 

(11) 

𝜕𝑐𝑒

𝜕𝑥
|

𝑥=𝐿𝑛

=  
𝜕𝑐𝑒

𝜕𝑥
|

𝑥=𝐿𝑝

= 0 
(12) 

 217 
The solid phase charge conservation follows Ohm’s law since (𝜙𝑠) depends on the current 218 

passing through the solid as in (13) where (𝜎𝑒𝑓𝑓) is the effective conductivity. The current only flows 219 
at the collector/solid interface as in the boundary conditions in (14) where (𝐴) is the electrode area. 220 

𝜕

𝜕𝑥
(𝜎𝑒𝑓𝑓

𝜕

𝜕𝑥
𝜙𝑠) = 𝑗𝐿𝑖 

 

(13) 

−𝜎𝑒𝑓𝑓 𝜕𝜙𝑠

𝜕𝑥
|

𝑥=0
=  −𝜎𝑒𝑓𝑓 𝜕𝜙𝑠

𝜕𝑥
|

𝑥=𝐿𝑇

=
𝐼

𝐴
 

−𝜎𝑒𝑓𝑓 𝜕𝜙𝑠

𝜕𝑥
|

𝑥=𝐿𝑛

=   −𝜎𝑒𝑓𝑓 𝜕𝜙𝑠

𝜕𝑥
|

𝑥=𝐿𝑝

= 0 

 

(14) 

The electrolyte phase charge conservation follows Ohm’s law in a liquid electrolyte (first term) 221 
and the local concentration of lithium (second term) as in (15) where (𝜅𝑒𝑓𝑓)  is the effective 222 
conductivity of the electrolyte. At the boundary of the electrode/current collector interphase, the ionic 223 
current must be zero as in (16) where: 224 
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𝜕

𝜕𝑥
(𝜅𝑒𝑓𝑓

𝜕

𝜕𝑥
𝜙𝑒) +  

𝜕

𝜕𝑥
(𝜅𝐷

𝑒𝑓𝑓 𝜕

𝜕𝑥
ln 𝑐𝑒) = 𝑗𝐿𝑖  

(15) 

𝜕𝜙𝑒

𝜕𝑥
|

𝑥=0
=

𝜕𝜙𝑒

𝜕𝑥
|

𝑥=𝐿𝑇

= 0 
(16) 

The equations (8) -(16) are coupled through the Butler-Volmer equation in (17) where (𝑖𝑜) is the 225 
exchange current density, (𝑅) is the universal gas constant, (𝑇) is the temperature, (𝛼𝑎, 𝛼𝑐) are 226 
anode/cathode symmetry factor respectively, and (𝜂) is the reaction overpotential.  227 

𝑗𝐿𝑖 = 𝑎𝑠𝑖𝑜 {𝑒𝑥𝑝 (
𝛼𝑎  𝐹

𝑅𝑇
𝜂) − 𝑒𝑥𝑝 (−

𝛼𝑐  𝐹

𝑅𝑇
𝜂)} 

(17) 

After solving the above equations, the cell voltage and SoC are given in (18) -(19): 228 

𝑉𝑏(𝑡) =  𝜙𝑠(𝐿𝑇 , 𝑡) − 𝜙𝑠(0, 𝑡) (18) 

𝑥 = 𝑆𝑜𝐶 
𝑐𝑠,𝑎𝑣𝑔

𝑝𝑜𝑠

𝑐𝑠,𝑚𝑎𝑥
𝑝𝑜𝑠  , 𝑦 =

𝑐𝑠,𝑎𝑣𝑔
𝑛𝑒𝑔

𝑐𝑠,𝑚𝑎𝑥
𝑛𝑒𝑔  

 

 

(19) 

3.3.2 Degradation Model 229 

Several degradation mechanisms for LIBs are presented in the literature and various models are 230 
reported to describe these mechanisms with often more than one model to describe a single 231 
mechanism [36]. Here, three dominant aging mechanisms are included and shown in Figure 1: SEI 232 
layer growth, active material (AM) loss, and SEI layer fracture. For a complete derivation of these 233 
models please refer to [67-69]. The degradation model used in this work is dependent on the P2D 234 
battery model described in [70].   235 

The total degradation equation that represents all the three mechanisms are given in (20). The 236 

SEI layer growth (𝑄𝑆𝐸𝐼) is directly proportional with the side reaction current density 𝑖𝑠 and the 237 

governing equations related to it are given in (21)-(24). During charge/discharge process, the 238 

mechanical stress generated inside the active material could results in particle fracture which in turns 239 
may isolate the active material. As such, the lithium’s amount is reduced leading to capacity loss 240 

(𝑄𝐴𝑀) as given in (25) . SEI fracture is observed in [71] where the SEI layer experiences tensile stress 241 

as the active material expands. This results in SEI layer stretch and cracking (𝑄𝑆𝐸𝐼,𝑐𝑟𝑎𝑐𝑘)  which 242 
exacerbate the battery cell’s harmful side reaction. The governing equations of (𝑄𝑆𝐸𝐼,𝑐𝑟𝑎𝑐𝑘) are given 243 
in (26)-(27). All the parameters used in this degradation model are given in Appendix B.  244 

𝐶𝑙𝑜𝑠𝑡 (𝑡) = 𝑄𝑆𝐸𝐼 + 𝑄𝐴𝑀 + 𝑄𝑆𝐸𝐼,𝑐𝑟𝑎𝑐𝑘 (20) 

𝑄𝑆𝐸𝐼 = ∫ 𝑖𝑠(𝑡) 𝑑𝑡 =  ∫
𝑘𝑆𝐸𝐼  exp (

−𝐸𝑆𝐸𝐼
𝑅𝑇

)

2(1 + 𝜆𝜃)√𝑡

𝑡

0

 
𝑡

0

 

 

(21) 

𝜃 = exp [
𝐹

𝑅𝑇
(𝜂𝑘 + 𝑈𝑛

𝑂𝐶𝑃 − 𝑈𝑠
𝑂𝐶𝑃)] 

(22) 

𝜂𝑘 =
2𝑅𝑇

𝐹
ln (𝜉 + √𝜉2 + 1) 

(23) 

𝜉 =
𝑅𝑝 I𝑏(t)

6𝜀𝐴𝑀,0 𝑖0𝑉
 

(24) 

𝑄𝐴𝑀 = ∫ 𝑆𝑜𝐶 𝑑𝜀𝐴𝑀 =  ∫ 𝑘𝐴𝑀 exp (
−𝐸𝐴𝑀

𝑅𝑇
) 𝑆𝑜𝐶 |𝐼𝑏(𝑡)| 𝑑𝑡

𝑡

0

 
𝑡

0

 
(25) 

𝑄𝑆𝐸𝐼,𝑐𝑟𝑎𝑐𝑘 = ∑ 𝑄𝑆𝐸𝐼,𝑐𝑟𝑎𝑐𝑘

𝑁𝑐

𝑘=1

= 𝑘𝑆𝐸𝐼,𝑐𝑟𝑎𝑐𝑘  ∑ 𝑛𝑘(𝜎𝑘) (
𝜎𝑘

𝜎𝑌𝑖𝑒𝑙𝑑
)1/𝑚 

 

(26) 
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4. Results  245 

4.1 Accuracy of Battery and Degradation Models  246 

The output voltage against the battery capacity is shown in Figure 5a and 5b for different current 247 
rates and temperatures during discharge. The model results are in good agreement with the 248 
experimental data presented in [72] for the same 53Ah NMC cell. In Figure 5a, as expected, the higher 249 
the current rating, the lower is the battery capacity which is a common feature for many other LIB 250 
chemistries [73]. The battery capacity at 4C rate, for instance, is 49.7Ah in the first cycles meaning its 251 
coulombic efficiency is at 93.7% or lower compared to 56Ah at 0.25C rate.  252 

Figure 5b shows the battery capacity and voltage for different temperatures at 1C rate plotted 253 
against their experimental data. It can be seen that at lower temperatures such as 5C, the battery 254 
capacity predicted by the model is 48Ah compared to 47.5Ah obtained experimentally. This suggests 255 
that without any degradation, this LIB cell state of health is 89.6 % at 5C because of the increased 256 
battery resistance at lower temperatures [74]. The model’s average root mean square error is 1.1%.  257 

      258 
(a)                                                          (b)  259 

Figure 5. Battery model results (lines) with their experimental data (markers) during discharge based 260 
on [72] (a): for different C-rates and T=15C; (b) for different temperatures at 1C rate 261 

The LIB cell degradation as predicted by equation (20) along with the corresponding 262 
experimental data are presented in Figure 6a for calendar degradation and Figure 6b for cycle 263 
degradation. The calendar experimental data are from [75] and the cycle experimental data are 264 
from[76]. The model results show good agreement with experiment data except for the results at 265 
temperature of 45C at 100%SoC. In Figure 6a, high capacity loss is evident at higher temperatures 266 
and SoCs and vice-versa. For instance, at 5C calendar, the LIB’s state of health is over 96% after 500 267 
days indicating that there is minimal capacity loss.  268 

Figure 6b shows the cycling results for different C-rates at the same temperature 35C except 269 
one at 5C. The results indicated that the higher is the DoD, the higher the expected capacity loss at 270 
the same C-rate. Moreover, it can be seen that the cycling results at 5C is as expected based on the 271 
battery model results obtained in Figure 5b in which the battery’s state of health is 89% without any 272 
cycling then reaches 85% by the 2000 cycle. This mitigate the limitation of other models in which they 273 
are unable to capture that calendar degradation is minimum at lower temperatures while it can be 274 
maximum when cycling at the same lower temperatures [48]. This is important in applications where 275 
calendar and cycle degradation quantification are needed such as in the CM. In Figure 6c, a zoomed 276 
version of the 1C (100%DoD) is depicted to relate it to the three degradation mechanisms predicted 277 
by (21),(25) and (26). It can be seen that at higher DoD, the 𝑄𝑆𝐸𝐼,𝑐𝑟𝑎𝑐𝑘  can be high in agreement with 278 

[70]. 279 
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 282 
 (c) 283 

Figure 6. Battery degradation model results (lines) with their experimental data (markers) (a): 284 
calendar aging results with different temperatures and state of charges with experimental data 285 
from[75]; (b) cycle aging results with different depth of discharges  ranges and C-rates at T=35C 286 
with experimental data from [76] except the l data for 1C, 5C (90-10) is from [75] ; (c) detailed version 287 
for 1C(100-0) degradation based on the physics based degradation model mechanisms.  288 

4.2. Revenue and degradation cost in the capacity market 289 

The collected revenue over a 12 months CM contract along with any incurred degradation cost 290 
is depicted in Figure 7 and Figure 8 for the four de-rated batteries for different conditions. In Figure7, 291 
the batteries were kept at a room temperature 25C and the SoC is varied to account for a real case 292 
scenario whereby the battery can be at different SoC level in a thermally controlled environment until 293 
it is ready to respond to SEs. First, it can be seen that the 1h de-rated battery has the highest revenue 294 
compared to the others due to the relatively high 𝑘𝑑𝑒 compared to its 𝐶𝑜. The modelling result is 295 
confirmed with a battery asset owners opting for a 1h de-rating factors in the most recent CM auction 296 
[77]. Second, the degradation cost is lower at low SoCs as the calendar degradation is generally low. 297 
Third, compared with the same cases presented in [48], the physics based degradation model predicts 298 
lower capacity losses at the same conditions hence offers the opportunity to get more overpayment 299 
represented by equation (6) as well as lowering the exposure to penalties (equation (5)) for the 4h de-300 
rated battery. As such, the total collected revenues per CM contract is higher compared to the results 301 
presented in [48]. 302 

In Figure 8, the impact of the temperature change on the revenue is huge which necessities a 303 
battery thermal management system to keep the temperature controlled at lower temperatures. 304 
However, when discharge during SEs, it is necessary to lift the batter’s temperature to respond 305 
effectively and avoid penalties. Since the cycling here is low during the first 12 months CM contract 306 
as shown in Figure 4, the average revenues stay the same with the 1h de-rated battery has the highest 307 
revenue. 308 
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Figure 7. Revenue and degradation cost for four de-rated batteries (0.5h-4h) for one-year capacity 311 
market contract at different state of charges and T=25C. 312 

313 

      314 

Figure 8. Revenue and degradation cost for four de-rated batteries (0.5h-4h) for one-year capacity 315 
market contract at different temperatures at 100% state of charge. 316 
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Table 2 summarises different degradation models accuracy which have been used in the same 317 
CM application to predict the degradation cost. These are an empirical and semi-empirical models 318 
reported in earlier study [48] and the physics based degradation model used in this study. The 319 
physics-based degradation model is more accurate than the other two to predict calendar and cycle 320 
degradation under different operating conditions.  This is due to the feedback mechanism exists by 321 
using an accurate p2d battery cell model in which most of the parameters used account for 322 
temperature/C rate change as given in Appendix A. Also, although empirical and semi-empirical 323 
modes that are tied to equivalent circuit models can be useful and computationally fast, the process 324 
of dirtying the parameter values in these models uses empirical system identification. Therefore,  325 
changing the operating conditions necessitating a different fitting which is time-consuming and 326 
unreliable.  327 

Table 2. Calendar and cycle degradation model accuracy comparison for different temperature 328 

Temperatures Degradation Model Type 

Empirical Semi-Empirical Physics 

calendar cycle calendar cycle calendar cycle 

Low temperatures  

(5C onwards) 

A U O A A A 

Medium 

temperatures (25C 

onwards) 

A A A A A A 

High temperatures 

(45C onwards) 

A E A A A A 

A:Accurate,U:underestimate degradation, O:overestimate degradation, E:Extrapolation by Arrhenius equation 329 

In Table 3, the profit (revenue – degradation cost) for the 1h de-rated battery is calculated using 330 
the three different degradation model approaches (empirical, semi-empirical, and physics). By using 331 
a physics-based degradation model when accounting for the degradation cost, the profit can be 332 
higher by 59.6% and 75.5% for 5C and 25C if compared to both empirical and semi-empirical 333 
models. This is due to the lower degradation cost predicted which allows more overpayment to be 334 
collected. At higher temperatures such as 45C, the physics model predicts higher losses compared 335 
to the other two. 336 

Table 3. Profit at the end of 1-year capacity market contract for 1h de-rating factor battery when using 337 
several degradation models 338 

Temperatures Profit in (£) when degradation cost is calculated using below models 

Empirical Semi-Empirical Physics 

5C 18862 -16962 31608 

25C 4716 12409 16417 

45C -52580 -22054 -56284 

4.3. Sensitivity Analysis 339 

This section investigates the effects of changing important parameters on the profitability of the 340 
batteries participating in the CM. This include changes to CM clearance price, battery degradation 341 
cost, de-rating factors and increased SEs as a result of a predicted increase in energy demand. It 342 
should be noted that all the sensitivity analysis results are according to a standard temperature of 343 
25C except in 4.3.4 where the temperature was set to 5C to study the effects of CM penalties.  344 



Energies 2020, 13, x FOR PEER REVIEW 13 of 22 

 

4.3.1. Capacity Market Price Change Effects  345 

CM clearing price 𝜆𝑐𝑙  is an important parameter that can be changed with different CM auction 346 
results. As such, 𝜆𝑐𝑙  has been changed twice to reflect the maximum and minimum auction price 347 
obtained in the UK’s CM auctions from the start of the CM till now. The original 𝜆𝑐𝑙 =348 
£19.4/kW/year has been changed to 𝜆𝑐𝑙 = £27.5/kW/year and 𝜆𝑐𝑙 = £6/kW/year [78,79]. Then, the 349 
profit (revenue – degradation cost)  along one-year CM contract is depicted in Figure 9 and Figure 350 
10 respectively for the four de-rated batteries. In Figure 9 and 10, it can be seen that 𝜆𝑐𝑙  can hugely 351 
affect the batteries’ profitability. In Figure 9, nearly all the four batteries are profitable at the end of 352 
the CM contract represented by an average increase of 167% compared to normal case. In Figure 10, 353 
all the four batteries incurred a huge loss due to low clearing price and high degradation cost 354 
represented by a decrease of 170% compared to normal case. 355 

 356 

Figure 9. Profitability of the four de-rated batteries over 1-year when 𝜆𝑐𝑙 = £27.5/kW/year  357 

 358 

Figure 10. Profitability of the four de-rated batteries over 1-year when 𝜆𝑐𝑙 = £6/kW/year  359 

4.3.2. Degradation Cost Effects 360 

The degradation cost is changed from 176$/kWh or (0.5£/Ah) to an optimistic 100$/kWh 361 
(0.29£/Ah) which is regarded as the ultimate goal for battery pack cost reduction in the future [80]. It 362 
can be seen in Figure 11 that all the batteries are profitable with an increase of nearly 50% in the 363 
standard case.  364 

 365 

Figure 11. Profitability of the four de-rated batteries over 1-year when 𝜆𝑑𝑒𝑔𝑟 = $100/kWh  366 
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4.3.3. De-rating Factors Effects 367 

The presumed de-rating factors for all the four batteries (0.5h to 4h) is projected to decrease in 368 
the future to allow for new generation entries in the CM as in [64]. Therefore, the de-rating factors 369 
have been changed accordingly to 17.80% for 0.5h battery, 36.44% for 1h battery, 64.79% for 2h battery 370 
and 96.11% for 4h battery. As shown in Figure 12, the overall profitability has been decreased with 371 
the 0.5h and 4h batteries are no longer profitable.  372 

 373 

Figure 12. Profitability of the four de-rated batteries over 1-year when the de-rating factors changed  374 

4.3.4. Increased Shortage Events in the CM 375 

In case of expected increase in energy demand, the batteries in the CM are required to cycle 376 
more per year as shown in Figure 4 from month 13 to 24. In Figure 13, it can be seen that the 4h 377 
battery is totally unprofitable due to the incurred penalties when cycling because of the high amount 378 
of capacity obligation needed in which the battery cannot meet.   379 

 380 

Figure 13. Profitability of the four de-rated batteries over 1-year when the shortage events increases  381 

5.  Conclusion and Future Work 382 

This paper presented physics-based battery and degradation models that are used to inform 383 
degradation cost analysis for lithium-ion batteries in the CM. The degradation model considers the 384 
SEI layer growth, active material loss and SEI crack growth. The battery is utilised to obtain  385 
0.5h,1h,2h and 4h CM de-rating factors. During a one-year CM contract, the battery experienced cycle 386 
and calendar degradation,  which resulted in a degradation cost. At the same time, and depending 387 
on the batteries’ capacity obligation, the de-rated batteries receive revenues, overpayment and 388 
penalties.  389 

The results illustrate that the 1h de-rated battery can get the highest profit in the current CM 390 
design in all the simulated scenarios. The results also show that batteries providing CM services 391 
should be stored at low temperatures such as 5C. However, during shortage periods when the 392 
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battery is delivering power, temperature should be lifted to 25C to avoid penalties. Moreover, the 393 
physics-based degradation model accurately  predicted calendar and cycle degradation for a wide 394 
range of temperature conditions compared to empirical and semi-empirical models. Due to lower 395 
predicted battery capacity loss, the batteries received more capacity overpayment thus increased the 396 
overall revenue. As such, the profit for the 1h de-rated battery was higher by 59.6% and 75.5% for 397 
5C and 25C if compared to both empirical and semi-empirical models. 398 

A sensitivity analysis for a range of parameters used in this study revealed that the CM profit 399 
can be affected in  several ways. First, the profit for batteries is highly sensitive to CM auction price. 400 
For instance, increasing the CM auction price by 30% can increase the profit by nearly 170% for the 401 
1h de-rated battery. Second, decreasing the degradation cost to optimal battery pack price of 402 
$100/kWh can increase the profit by 50% for the 1h de-rated battery. Third, decreasing the de-rating 403 
reduced the profitability for the 0.5h and 4h de-rated batteries. Fourth, increased cycling in the case 404 
of high SEs hugely decreased the profitability of the 4h de-rated battery. Future work includes 405 
investigating how degradation can affect the overall CM design considering different regions and 406 
energy storage technologies.  407 
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Appendix A: P2D battery model parameters 415 

Parameters  Domain  Reference 

Positive 

electrode 

Separator Negative 

Electrode 

Bruggeman coefficient  1.5    

Faraday constant, F 96485    

Gas constant, R 8.314    

Thickness, L 41.16 17 74.83 [72] 

Active material volume fraction, 𝜀𝑠 0.43  0.55 [81] 

Electrolyte volume fraction, 𝜀𝑒 0.33 0.54 0.332 [81] 

Particle size, 𝑟 (µm) 11.3  27.2 a 

Max. lithium concentration in the solid, 

𝐶𝑠,𝑚𝑎𝑥  

88102  29934 a 

Electrolyte initial lithium concentration  1200  [81] 

Transference number, 𝑡+
0  0.363 0.363 0.363 [66] 

Activity dependence, 𝑓± 1 1 1 [72] 

Charge transfer coefficient, 𝛼𝑎, 𝛼𝑏 0.5  0.5  

Stoichiometry at 100% SoC, 𝑥1, 𝑦1 0.35  0.77 a 

Stoichiometry at 0% SoC, 𝑥0, 𝑦0 0.92  0.02 a 

Reference temperature, 𝑇𝑟𝑒𝑓  298.15    

Electrical conductivity, 𝜎 100  100  

Active material area, A 204mm  208mm [72] 
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*184mm *188mm 

Open circuit potential for positive electrode,  −10.72𝑥4 + 23.88𝑥3 − 16.77𝑥2 + 2.595𝑥 + 4.563 [82] 

Open circuit potential for negative electrode 2.126𝑦4 − 5.511𝑦3 + 5.084𝑦2 − 2.036𝑦 + 0.4968  

Electrolyte ionic conductivity, 𝜅 15.8𝐶𝑒 × exp (−13472𝐶𝑒
1.4) × exp (

−20000

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓
))2 [72] 

Lithium diffusion in the electrolyte, 𝐷𝑒  
3.8037 × 10−10 × exp (−0.792𝐶𝑒) × exp (

−10000

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓
)) [72] 

Lithium diffusion in the positive electrode 

𝐷𝑠,𝑝𝑜𝑠 
3 × 10−14 ×  exp (

−35000

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓
))

2

 [72] 

Lithium diffusion in the negative electrode 

𝐷𝑠,𝑛𝑒𝑔 
3 × 10−14 ×  exp (

−35000

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓
))

2

  [72] 

Reaction rate in the positive electrode, 𝑘𝑝𝑜𝑠 
𝑘0,𝑝𝑜𝑠

𝑑𝑖𝑠 × exp (−5𝑥) ×  exp (
−20000

𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
))

2

 

𝑘0,𝑝𝑜𝑠
𝑐ℎ ×  exp (

−20000

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓
))

2
 [72] 

Reaction rate in the negative electrode, 𝑘𝑛𝑒𝑔 
𝑘0,𝑛𝑒𝑔

𝑑𝑖𝑠 ×  exp (
−20000

𝑅
(

1

𝑇
−

1

𝑇𝑟𝑒𝑓
))

2
 [72] 

𝑘0,𝑛𝑒𝑔
𝑐ℎ × exp (−5𝑦) × exp (

−20000

𝑅
(
1

𝑇
−

1

𝑇𝑟𝑒𝑓
))

2

 

a:parameters estimation  416 

Appendix B: Degradation model parameters  417 

Parameter  Value  

𝑘𝑆𝐸𝐼 5.223 × 105 

𝑘𝐴𝑀 7.88 × 10−3 

𝑘𝑆𝐸𝐼,𝑐𝑟𝑎𝑐𝑘 2.22 × 10−7 

𝐸𝑆𝐸𝐼  61276 

𝐸𝐴𝑀 39600 

𝜆 0.0148 

V 1.2 × 10−5 

𝑅𝑝 9 × 10−6  [68] 

𝑅𝑠 9.2 × 10−6 [68] 

𝜀𝐴𝑀,0 0.54 

𝑖0 0.05 

𝜎𝑌𝑖𝑒𝑙𝑑 8 [70]  

m 0.5 

𝐸𝑌,𝑠 0.42 

𝐸𝑌,𝑝 14.3 

𝑣𝑠 0.2 [70] 

𝑣𝑝 0.3[70] 
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𝜎𝑘 𝜎𝑚𝑎𝑥,𝑘 − 𝜎𝑚𝑖𝑛,𝑘

2
 

𝜎𝑚𝑎𝑥,𝑘 𝐸𝑌,𝑠

(1 − 2𝑣𝑠)
𝑏1 +

𝐸𝑌,𝑠

𝑅𝑝
3(1 + 𝑣𝑠)

𝑏2 

𝜎𝑚𝑖𝑛,𝑘 𝐸𝑌,𝑠

(1 − 2𝑣𝑠)
𝑏1 +

𝐸𝑌,𝑠

𝑅𝑠
3(1 + 𝑣𝑠)

𝑏2 

𝑏1 −2𝐸𝑌,𝑝(2𝑣𝑠−1) ∫ Ω𝑝(𝑐𝐿𝐼(𝑟,𝑡)−𝑐𝐿𝐼(𝑟,0)
𝑅𝑝

0 )𝑟2 𝑑𝑟

𝐸𝑌,𝑝(2𝑅𝑝
3+𝑅𝑠

3−4𝑅𝑝
3𝑣𝑠+𝑅𝑠

3𝑣𝑠)+𝐸𝑌,𝑠(2𝑅𝑠
3−2𝑅𝑝

3+4𝑅𝑝
3𝑣𝑝−4𝑅𝑠

3𝑣𝑠)
 [70] 

𝑏2 𝐸𝑌,𝑝𝑅𝑠
3(𝑣𝑠+1) ∫ Ω𝑝(𝑐𝐿𝐼(𝑟,𝑡)−𝑐𝐿𝐼(𝑟,0)

𝑅𝑝
0 )𝑟2 𝑑𝑟

𝐸𝑌,𝑝(2𝑅𝑝
3+𝑅𝑠

3−4𝑅𝑝
3𝑣𝑠+𝑅𝑠

3𝑣𝑠)+𝐸𝑌,𝑠(2𝑅𝑠
3−2𝑅𝑝

3+4𝑅𝑝
3𝑣𝑝−4𝑅𝑠

3𝑣𝑠)
 [70] 

 418 
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