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Abstract—Neural networks and other machine-learning sys-
tems are used to create automatic financial forecasting and
trading systems. To aid comparison of such systems, there is
a need for reliable performance metrics. One such metric that
may be considered is the win rate. We show how in certain
circumstances the win-rate statistic can be very misleading, and
to counter this, we propose and define baseline win rates for
comparison. We develop empirical and closed-form models for
such baselines and validate them against financial data and a
neural forecaster.

Index Terms—Financial Forecasting, Win rate, Neural Net-
works, Algorithmic Trading

I. INTRODUCTION

Neural-network based automatic financial forecasting and
trading systems have been widely studied [1]–[11]. A common
way to assess their viability (along with that of other automatic
trading/forecasting systems) is through the use of “win rates”,
i. e. the fraction of forecasts that provide the correct sign. This
is also referred to as the “hit rate”, “profitability percentage”,
or the “accuracy” of the forecast, amongst many others varia-
tions of these names. If the win rate is high, it is then claimed
that the trading scheme is “working” and thus profitable, see
[12]–[14].

In this paper we demonstrate that relying on such win rates
does not imply having found a profitable strategy, nor does it
suffice for comparing one neural-forecasting system to another.
In particular, when a neural trading system is developed that
opens and closes trades based on the movement of market
prices, there is scope for win rates to be very misleading.
We demonstrate that fact in this paper by producing a simple
baseline method that is capable of achieving a win rate over
80%, yet without having any intelligence at all, and without
it being profitable.

Examples of when the timing of such strategies can skew
the win rates include some very common basic order types,
which are often included as sub-components of both human
and automatic trading systems. These basic order types include
stop-loss orders, where the position is closed if the price falls
below a certain level; take-profit orders, where the position is
closed if the price rises above a certain level; trailing stop-
loss orders, where the position is closed if the price falls
below a level determined from the maximum price reached

during the time the position is open; or trailing take-profit
orders proposed by [13], where the position is closed if the
price rises above a level determined from the minimum price
reached during the time the position is open. These variable
barriers also include more complex rules as found in many
fully automated trading systems where positions are opened
and closed according to trading indicators, or by decisions
taken by a neural network.

To illustrate the point of arbitrarily skewed win rates, this
paper focuses on trading systems that make use of basic stop-
loss and take-profit orders, and also on financial forecasting
systems which forecast over a fixed time horizon, leaving
the consideration of more complex trading systems for future
work.

It is well known by day traders that the win-rate alone is not
the sole objective for trading, but needs at least balancing by
the risk-reward ratio [15]. With [16] having shown empirically
that arbitrarily high win rates can be generated by using stop-
loss orders, we extend this result by deriving closed-form
solutions for such win rates and demonstrate that despite high
win rates no excess returns, beyond that of the market trend,
can be generated. This provides backing for the emphasis in
[17] that the actual profitability needs to be evaluated as not
only the fraction of winning trades are important, but also
the size of the profits made, balanced against the loss-making
trades. If the latter are far bigger, the overall strategy may not
be profitable, despite high win rates.

In a steadily rising or falling market, high win rates are
particularly easy to obtain by following the market trend,
without being able to outperform this trend; this has surely
contributed to the high win rate of 79% in [18]. In this
paper we will take into account the impact of rising or falling
markets on win rates to exclude such biases, and produce a
neural forecaster capable of an 78% win-rate due to market
trend.

There are many potential pit-falls when evaluating and
developing automated trading systems based on machine-
learning methods. [19] and [20] describe lists of common ways
that automated trading systems can fail. [21] describe ways
that using back-tested results to evaluate trading systems can
be extremely misleading, and [22] show how trading methods
can fail once their mechanism becomes public knowledge. It
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is the intention of our paper to highlight another potentially
misleading way to evaluate neural trading systems; that of
trusting quoted win rates without comparison baseline figures.

This paper derives closed-form solutions of the win rates
and expected returns arising from a pure forecasting system
in Section II, and for any trading system that uses stop-loss
orders in Section III. Empirical results for both situations are
included within those sections, tested on two different financial
assets. Section IV concludes our findings.

II. BASELINE WIN RATES AND RETURNS FOR FIXED
LOOK-AHEAD PURE-FORECASTING MODELS

Let us consider a time series of prices Pt, with t = 1, . . . , T .
The aim of a fixed look-ahead neural forecaster is to forecast
the price change from time t to time t + ∆t, where ∆t is a
constant. The actual “return” over this time period is defined
by Rt,∆t = Pt+∆t/Pt−1. We focus our attention here only on
the prediction of the sign of the price movement, i. e. whether
the price increases or decreases, and denote this forecast by
ŷt,∆t, which is +1 for an increase and −1 for a decrease of
the price. In this case the “win-rate” for our neural forecasting
model, over horizon ∆t, is given by

π̂∆t = Prob (Rt,∆tŷt,∆t > 0) , (1)

and its average return is

R̂∆t = E [Rt,∆tŷt,∆t] . (2)

where E [·] denotes expectation.
To form a simple benchmark to compare our neural fore-

caster against, assume that the benchmark system always
forecasts a constant sign, i.e. it always forecasts +1, or always
forecasts -1. To avoid potentially expensive false positives
when rating a neural forecaster1, we furthermore assume that
the overall trend of the time series is known to the benchmark
forecaster. In this case we get the baseline win-rate to be

π∆t = max (Prob (Rt,∆t > 0) , P rob (Rt,∆t < 0)) , (3)

and baseline return to be

R∆t = |E [Rt,∆t]| , (4)

where the max and modulus signs occurring in these two
equations have arisen out of our assumption that the baseline
has the benefit of knowing in advance the overall trend of the
time series.

These baselines (3) and (4) can be evaluated empirically
by sampling Rt,∆t at every point of the time series. Again
to avoid potentially expensive false positives, the baseline
should be calculated and quoted separately for the test set.
The performance of any neural forecasting system should be
explicitly compared against these two baselines (3) and (4); in
the same way that the base-rate of any classification system
should be stated for comparison.

1For example, if by pure chance the neural forecaster happens to have a
forecasting bias consistent with the actual market trend (as will be the case
for a proportion of neural models), then the neural forecaster would look
inappropriately effective.

A. Approximations using Geometric Brownian Motion
If we assume that prices follow Geometric Brownian Motion

(GBM), then it is possible to obtain closed-form expression for
π∆t and R∆t.

For a price P moving randomly under GBM in continuous
time, with constant drift rate µ, and constant volatility σ, the
GBM motion is defined as,

dP

P
= µdt+ σdz, (5)

where dz is a Wiener process [23]. From the properties of this
stochastic process, it is possible to derive that

Prob (Rt,∆t > 0) = 1− Φ

(
− µ̂
σ̂

)
, (6)

where µ̂ = eµ∆t − 1, σ̂2 = e2µ∆t
(
eσ

2∆t − 1
)

, and Φ (·)
denotes the cumulative standard normal distribution. µ and σ
are the mean and sample standard deviation of the step-wise
returns, Pt+1/Pt−1, calculated over the full range of the time
series being studied, t = 1, . . . , T − 1.

Hence the baseline win-rate (3) simplifies to

πGBM∆t = 1− Φ

(
−|µ̂|
σ̂

)
, (7)

making use of the symmetry properties of the normal distri-
bution, and the expected baseline return is

R
GBM

∆t = |µ̂|. (8)

B. Comparison of actual and theoretical outcomes
We have derived the actual and analytical baseline win-rates

for a neural fixed look-ahead forecaster. Here we compare
these results with those of an actual time series to give an
indication for the applicability of our results in assessing fore-
casting strategies. The asset chosen is the stock of Amazon,
sampled at 1 minute intervals from 2 January 2015 to 29
December 2017, consisting of 293550 data points (Fig. 1).
This dataset was obtained from Interactive Brokers [24]. The
dataset was chosen because the prices show a strong and very
persistent upwards trend, as confirmed by Table I. The data
was partitioned into two halves: The first half (up to 1 July
2016) being the “training set”, and the second half being the
“test set”.
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Fig. 1: Amazon prices

Using this setup we can now compare the results of our
financial asset with that predicted from theory, with all results
being calculated and quoted for the test set.



Mean (µ) Volatlity (σ) Skewness Kurtosis
EUR/USD 0.0541 52.7683 1.3136 255.8216
Amazon 0.4871 96.5738 45.0907 8513.4447

TABLE I: Descriptive statistics of the annualized returns of
the chosen assets

1) Results for fixed look-ahead baseline win rate and re-
turns: Fig. 2 shows the baseline win rates and returns for fixed
look-ahead forecasting of Amazon prices. These compare the
actual baseline win-rates and returns, given by (3) and (4)
respectively, with those approximated by the GBM model, (7)
and (8), respectively. The graphs show the GBM equations
make a close approximation to the empirically sampled values,
over the full range of look ahead durations considered, and
hence how the baseline values can be quickly worked out from
the readily available σ and µ dataset statistics.

The results also show that high win rates and returns are
possible if the benchmarking is on a sufficiently strongly
trending stock, and if the forecasting period ∆t is sufficiently
large.

This has enabled baseline win-rates for the trivial bench-
mark strategy to reach as high as nearly 77% for Amazon
forecasting, with ∆t = 32 days for the test set, and returns
that steadily increase with the increasing ∆t value.
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Fig. 2: Baseline fixed look-ahead win rates and returns, with
results for a neural-network fixed look-ahead forecaster, for
Amazon test set (Jul 2016-Dec 2017). One trade is opened
every minute, and closed at ∆t days later.

2) Neural forecasting results: To demonstrate the practi-
cality of the benchmark figures, we created a neural-network
forecaster. The neural network was a feed-forward, fully
connected multilayer-perceptron network, with 8 inputs, 1
hidden layer of 10 inputs, and 2 output nodes. All hidden nodes
used the tanh activation function, and the output layer used

a softmax probability function. The network was trained with
the cross-entropy loss function, with added L2 regularization
(weight decay) on all neural weights, to prevent overfitting.

The neural network received inputs of the most recent 8
daily returns of the asset’s end-of-day closing prices, and was
tasked to forecast the sign of the future ∆t-day price return,
for various different values of ∆t.

The network was trained using the training set, and results
are reported for the (out-of-sample) test set. Results are shown
as the black dotted curves in Fig. 2. The network achieved a
win-rate of 78%, when ∆t = 32 days, with significant positive
return (up to 5% growth per 40 days). Although these results
seem superficially impressive, the baseline win-rate for this
task given by (3) is 77% (from Fig 2), and the neural returns
are almost indistinguishable from the baseline figures. This
indicates the neural results are not significant, and most likely
that the neural network is not advising anything more profound
than “buy and hold”.

III. THEORETICAL WIN RATES OF A BENCHMARK
TRADING STRATEGY WITH STOP-LOSSES

The previous section described the win-rates for a pure
forecasting system, i.e. without any trades being actually
made, and in the advantageous situation of trying to forecast
in a strongly trending market. However many neural financial
systems go further by simulating the opening and closing of
trades, and when this happens, the closing strategy may involve
stop-loss orders or similarly related order types. In this case
it is possible to artificially skew the win rates even if the time
series is not trending strongly, and hence baseline win rates
are particularly important.

For the sake of generating a baseline trading strategy which
uses stop-losses, let us define an upper price barrier P and a
lower price barrier P such that with the current price Pt we
have 0 < P < Pt < P < +∞. Having bought the asset at
price Pt the simple trading strategy is to sell as soon as either
of the price barriers is breached, i. e. as soon as the latest price,
Pt′ , satisfies either Pt′ > P or Pt′ < P , for some t′ > t. Thus
the position would be liquidated at a loss if the lower barrier
is breached, and at a profit if the upper barrier is breached.
For the sake of simplicity of exposition, short positions in the
asset are not allowed.

Hence, the time it takes to breach the upper and lower
barrier respectively, can be defined as

τ = inf
{
t′ > t|Pt′ > P

}
− t,

τ = inf {t′ > t|Pt′ < P} − t,
(9)

and the time until either barrier is breached is

τ = min {τ , τ} . (10)

As our trading strategy is to buy the asset and then sell it
if one of these barriers is breached, then the win rate will the
fraction of trades that hit the upper barrier first,

πb = Prob (τ < τ) , (11)

where the b subscript is to indicate barriers are present.



Define for convenience ∆ and ∆ such that

∆ = P/Pt,

∆ = P/Pt,
(12)

with 0 < ∆ < 1 < ∆ ≤ +∞. Then, using the trading
strategy outlined above, and assuming that trades are opened
with zero intelligence (i.e. with completely random timings),
the expected ratio of closing to opening price is given by

E [Pt+τ/Pt] = πb∆ + (1− πb)∆, (13)

where Pt+τ is the price at which the position was closed.
Equation (13) is justified since the right-hand side evaluates

the expectation for the two possible outcomes: each position
must be closed with either a win (with probability πb; resulting
in Pt+τ/Pt = ∆) or a loss (with probability 1− πb; resulting
in Pt+τ/Pt = ∆).

Note that generally, the left-hand side of (13) will be a
property of the time-series being assessed or trained on, and
upon the choices of ∆ and ∆.2

Equation (13) can be rearranged to obtain an explicit
expression for the win rate:

πb =
E [Pt+τ/Pt]−∆

∆−∆
. (14)

This shows us that the win rate, πb, can be determined in
advance from the value of E [Pt+τ/Pt] and on the choices of
the values of the price barriers, ∆ and ∆. It also shows that
the win rate can be artificially changed, simply by choosing
∆ and ∆ carefully.

The average price return of this trading system is defined
by

Rb = E [Pt+τ/Pt]− 1. (15)

When considering high-frequency trading (which will arise
under this trading scenario whenever the barriers are placed
sufficiently close to the opening price), then τ will be small
and thus the time for the market trend to have any effect
is negligible, so that Rb ≈ 0. In this case (14) can be
approximated by

πb ≈
1−∆

∆−∆
. (16)

It may also be considered that in the absence of any further
knowledge about future market movements, then it could be
assumed that Rb ≈ 0, making (16) more appropriate than (14).

This approximation for the baseline win-rate, (16), shows
that we can get a win rate arbitrarily close to 1 by simply
setting ∆ close to 1, i.e. the upper barrier will be set close to
the current price, and ∆ close to zero, i.e. the lower barrier
far removed from the current price. In this case the lower
barrier is hardly ever reached, thus losses rarely realized,
even though any realization would be large, while the upper
barrier is frequently reached, resulting in a large number of

2For example, if the time series is strongly upwardly trending, and ∆ and
∆ are chosen such that the holding period τ is reasonably long, then it is
likely that E [Pt+τ/Pt] > 1.

profitable trades, although each individual profit will be small.
Furthermore, to compound this problem further in practical
trading situations when ∆ ≈ 1, the many tiny winning trades
would be dwarfed by their transaction costs of trading.

In all practical circumstances of training neural networks
on historical price data, the expression for E [Pt+τ/Pt] used
in (14) should be sampled from the entire set of data being
evaluated (i.e. usually just the test set), evaluating τ at each
time step via (10).

Again, for reasons of avoiding potentially expensive false
positives, if the market is down-trending, then the long-only
trading baseline system described in this section should be
flipped into a short-only trading system.

A. Approximation for win rate with barriers, using Geometric
Brownian Motion

To avoid the need to empirically sample E [Pt+τ/Pt] in
(14), if we again assume that prices follow GBM then it is
possible to obtain a closed-form expression for πb directly, as
follows. We know from [23, Ch. 3] that the probability of the
price in (5) reaching the upper barrier first, under the GBM
approximation, is given by

πGBMb =


1−∆ξ

∆
ξ−∆ξ

if µ 6= 1
2σ

2

ln ∆

ln ∆−ln ∆
if µ = 1

2σ
2
, (17)

where ξ = σ2−2µ
σ2 . This formula (17) is a GBM-alternative

to (14), giving a closed-form win rate in terms of µ and σ.
The constants µ and σ would be sampled from the step-wise
returns, specifically for the test set, as described in Section
II-A.

B. Empirical results for trading with barriers

We have derived the win rate when trading is conducted
such that the asset is sold as a fixed upper or lower barrier is
reached. Here we validate those baseline win rates.

In these experiment, we chose the exchange rate between
the EURO and US Dollar (EUR/USD), sampled in 1 minute
intervals from 4 January 2016 to 29 December 2017, consist-
ing of 725725 data points, obtained from Interactive Brokers
[24]. This dataset was chosen as an example of a dataset which
does not show such any particularly strong trend, in contrast
to the previous example. As can be seen from Fig. 3, this asset
exhibits very different properties from Amazon, and is much
less consistently trending during the time period in question.
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Fig. 3: EUR/USD Exchange Rate



We ran the baseline trading strategy from Section III for a
range of barriers, that are up to 2.5% away from the price
at which we open the position either side, on the whole
EUR/USD dataset. In the simulation, a new trade of fixed size
was made at every data point in the time series and closed
according to the strategy. Any positions that were not closed
at the end of our sample period were disregarded from the
analysis.

At the same time as running this trading simulation, we
numerically calculate the sample estimate of the win rate πb,
so that it can be compared to its theoretical approximate value
given by (16) and (17). The values of µ and σ, referred to in
(17) were calculated as described in Section III-A, using the
full date range and dataset shown in Fig. 3. These same values
are quoted in their annualised form in Table I.

We see from Fig. 4 that the actual win rates follow the
theoretical win rates closely, even though a small gap persists.
This arises from the non-normality of returns, in particular
due to the high kurtosis shown in Table I, which somewhat
violates the assumptions required for true GBM.

From the approximations for πb, i.e. (16) and (17), the
closest match for the asset arises with (16), where we assumed
a zero drift rate of the stochastic process. While this is clearly
not exactly true, the skewness and kurtosis of this asset will
compensate for this effect. While the match between our asset
and the theoretical results are not perfect, they show a clear
indication that using GBM is a valid approximation of actual
win rates as the observed patterns are identical.

Fig. 4: EUR/USD trading win rates, under varying price
barriers. One trade is opened every minute, and held open
for duration τ given by (10) and (9).

Another observation we can make is that the win rate can
be very high. In our parameter settings it can go well above
80%. This is achieved whenever the upper barrier is set close
to the value of the asset when opening a position and the
lower barrier is set far below this value. In this case the much
closer upper barrier will be breached much more frequently
than the further removed lower barrier and we thus observe a
large number of profitable trades. This high win rate has been
attained despite the asset not showing any consistent price
trend.

Even if we observe a large number of profitable trades,
these profits will be small given the closeness of the upper
barrier, while any losses from breaching the lower barrier will
be much larger. We further examined the returns generated
during the baseline strategy, but it did not turn out that any
of the parameters ∆ or ∆ considered in this experiment led
to a significantly profitable system; beyond the returns that
would have been generated by a buy-and-hold strategy. This
conclusion is consistent with what would be expected from
such a zero-intelligence baseline strategy.

IV. CONCLUSIONS

We have demonstrated that win rates for neural trading sys-
tems can become artificially high by appropriate positioning
of stop-loss orders. Similarly for pure-forecasting systems, the
win-rate can be misleadingly high when considering a test
dataset that is strongly trending. For both of these situations
we have defined baseline win rates which should be stated for
comparison in any published win rates. We have also defined
closed-form approximations for the baseline win rates, in terms
of µ and σ for the time-series’ step-wise returns, under the
assumption of Geometric Brownian Motion (GBM). We have
demonstrated the validity of the GBM approximations using
actual asset prices, and have demonstrated the purpose of the
baseline figures against a neural forecasting system.

Our empirical results achieved win rates approaching 80%
from zero-intelligence strategies. Hence we are sceptical about
the use of win rates to assess neural forecasting and trading
strategies with a high degree of accuracy (high win rates) as
the basis of a trading strategy. In particular, win rates cannot
be used to compare one neural forecasting system or trading
system against another.

We advise that any presentation of win rates would be
incomplete without publishing a baseline win rate alongside.
We have described how to empirically sample a baseline win
rate for pure fixed-look ahead forecasting models (3), and for
trading systems that use stop loss-orders (14). The closed-form
approximations for these win-rates are given by (7), (16) and
(17).

When stop-loss orders are used, it is very easy to obtain a
high win rate, regardless of any trend direction, as evidenced
here, by using an upper barrier close to the starting price
and a lower barrier further removed and selling the asset
when either is breached. The frequent but small profits at the
upper barrier are matched by less frequent but larger losses at
the lower barrier. Hence using any trading strategy involving
asymmetric barriers to close and/or open positions can easily
be manipulated to show high win rates.

Our results suggest that for a trading system with stop-
loss orders, the expected returns given by (13) are harder to
fake than the win-rates, and thus make a better metric for
comparing trading systems than win rates. Furthermore, any
forecast can also not be deemed accurate if the win rate does
not exceed the given baseline figure.

Also, we have advised that the sampling and calculation of
benchmark win rates is done separately for the testing set from



the training set; so as to make it as challenging as possible for
a neural system to beat the benchmark (so that the user is not
tricked into trusting false results). Similarly, we have argued
that the benchmark should be given the advantage of knowing
the overall market-trend direction.

The trading system considered in this paper has focussed
on fixed stop-loss barriers and fixed take-profit orders. We
could extend our work in numerous ways to include more
sophisticated orders, such as trailing stop losses, strategies
that involve positions of differing sizes depending on previous
outcomes, amongst many others. We are confident that the
fallacy of relying on win rates for the basis of a trading strategy
remains valid, but leave future research to provide evidence to
this effect.

REFERENCES

[1] D. S. P. Salazar, P. J. L. Adeodato, and A. L. Arnaud, “Continuous
dynamical combination of short and long-term forecasts for nonstation-
ary time series,” IEEE transactions on neural networks and learning
systems, vol. 25, no. 1, pp. 241–246, 2014.

[2] J. Moody and M. Saffell, “Learning to trade via direct reinforcement,”
IEEE transactions on neural Networks, vol. 12, no. 4, pp. 875–889,
2001.

[3] Y. Deng, F. Bao, Y. Kong, Z. Ren, and Q. Dai, “Deep direct rein-
forcement learning for financial signal representation and trading,” IEEE
transactions on neural networks and learning systems, vol. 28, no. 3,
pp. 653–664, 2017.

[4] Y. Cao, Y. Li, S. Coleman, A. Belatreche, and T. M. McGinnity,
“Detecting wash trade in financial market using digraphs and dynamic
programming,” IEEE transactions on neural networks and learning
systems, vol. 27, no. 11, pp. 2351–2363, 2016.

[5] S. Raudys, “Portfolio of automated trading systems: Complexity and
learning set size issues,” IEEE transactions on neural networks and
learning systems, vol. 24, no. 3, pp. 448–459, 2013.

[6] K. K. Ang and C. Quek, “Stock trading using RSPOP: A novel rough
set-based neuro-fuzzy approach,” IEEE Trans. Neural Networks, vol. 17,
no. 5, pp. 1301–1315, 2006.

[7] M. A. Dempster, T. W. Payne, Y. Romahi, and G. W. Thompson, “Com-
putational learning techniques for intraday FX trading using popular
technical indicators,” IEEE Transactions on neural networks, vol. 12,
no. 4, pp. 744–754, 2001.

[8] P. Tino, C. Schittenkopf, and G. Dorffner, “Financial volatility trading
using recurrent neural networks,” IEEE Transactions on Neural Net-
works, vol. 12, no. 4, pp. 865–874, 2001.

[9] J. Doering, M. Fairbank, and S. Markose, “Convolutional neural net-
works applied to high-frequency market microstructure forecasting,” in
Computer Science and Electronic Engineering (CEEC), 2017. IEEE,
2017, pp. 31–36.

[10] S. Kim and M. Kang, “Financial series prediction using attention lstm,”
arXiv preprint arXiv:1902.10877, 2019.

[11] R. M. I. Kusuma, T.-T. Ho, W.-C. Kao, Y.-Y. Ou, and K.-L. Hua, “Using
deep learning neural networks and candlestick chart representation to
predict stock market,” arXiv preprint arXiv:1903.12258, 2019.

[12] H. G. Zimmermann, L. Bertolini, R. Grothmann, A. M. Schäfer, and
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