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Abstract

We propose new real-time monitoring procedures for the emergence of end-of-sample pre-
dictive regimes using sequential implementations of standard (heteroskedasticity-robust)
regression t-statistics for predictability applied over relatively short time periods. The
procedures we develop can also be used for detecting historical regimes of temporary pre-
dictability. Our proposed methods are robust to both the degree of persistence and endo-
geneity of the regressors in the predictive regression and to certain forms of heteroskedas-
ticity in the shocks. We discuss how the monitoring procedures can be designed such that
their false positive rate can be set by the practitioner at the start of the monitoring period
using detection rules based on information obtained from the data in a training period. We
use these new monitoring procedures to investigate the presence of regime changes in the
predictability of the U.S. equity premium at the one-month horizon by traditional macroe-
conomic and financial variables, and by binary technical analysis indicators. Our results
suggest that the one-month ahead equity premium has temporarily been predictable, dis-
playing so-called ‘pockets of predictability’, and that these episodes of predictability could
have been detected in real-time by practitioners using our proposed methodology.

Keywords: Predictive regression; persistence; temporary predictability; subsampling; U.S.
equity premium.

JEL Classification: C12, C32.

1 Introduction

A large body of empirical research has been undertaken investigating stock return predictability,

with a wide array of financial and macroeconomic variables considered as putative predictors
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acknowledges financial support provided by the Economic and Social Research Council of the United Kingdom
under research grant ES/R00496X/1. Correspondence to: Robert Taylor, Essex Business School, University of
Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom. Email: rtaylor@essex.ac.uk.
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for returns. These include valuation ratios such as the dividend-price ratio, earnings-price ra-

tio, book-to-market ratio, various interest rates and interest rate spreads, and macroeconomic

variables including inflation and industrial production; see, for example, Fama (1981), Keim and

Stambaugh (1986), Campbell (1987), Campbell and Shiller (1988a,1988b), Fama and French

(1988,1989) and Fama (1990). Focusing on the in-sample predictability of U.S. stock index re-

turns these studies find relatively weak statistical evidence on predictability over short horizons,

but as the forecasting horizon increases the evidence on predictability strengthens, and for longer

horizons is strongly statistically significant. Finding that stock returns are predictable using fi-

nancial ratios and macroeconomic variables does not necessarily mean that stock markets are

inefficient. From a linearisation of the standard present value model, if the dividend-price ratio

for a stock varies over time then it must forecast either the dividend growth rate or returns, to

some extent; see, inter alia, Campbell and Shiller (1988a,1988b) and Cochrane (2008). More

generally, if a stock market is efficient then the expected excess return for the relevant stocks

might be predictable using a variety of financial and macroeconomic variables if investors’ risk

premia are time-varying and correlated with the business cycle.

Although consistent with orthodox financial theory, it has been argued there are statistical

reasons to suspect that the strong support for predictability obtained in earlier studies could be

spurious. Nelson and Kim (1993) and Stambaugh (1999) show that high persistence predictors

lead to biased coefficients in predictive regressions if the innovations driving the predictors are

correlated with returns, as is known to be the case for many of the popular macroeconomic

and financial predictors used. Goyal and Welch (2003) show that the persistence of dividend-

based valuation ratios increased significantly over the typical sample periods used in empirical

studies of predictability, and argue that as a consequence out-of-sample predictions using these

variables are no better than those from a no-change strategy. When estimation and inference

techniques are used that take account of the high degree of persistence of the typical financial and

macroeconomic predictors used, the statistical evidence of short- and long-horizon predictability

is considerably weaker and in some cases disappears completely; see, inter alia, Ang and Bekaert

(2007), Boudoukh, et al. (2007), Welch and Goyal (2008) and Breitung and Demetrescu (2015).

The vast majority of empirical studies of stock market predictability are based on the assump-

tion of a constant parameter predictive regression model. However, there are several reasons to

suspect that if stock returns are predictable, then it is likely to be a time-varying phenomenon;

for example, significant changes in monetary policy and financial regulations could lead to shifts

in the relationship between macroeconomic variables and the fundamental value of stocks, via

the impact of these changes on economic growth and the growth rates of earnings and dividends.

A growing body of empirical evidence is also supportive of this view. For example, Henkel et al.

(2011) find that return predictability in the stock market appears to be closely linked to eco-

nomic recessions with dividend yield and term structure variables displaying predictive power

only during recessions. Timmermann (2008) argues that for most time periods stock returns
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are not predictable but that there are ‘pockets in time’ where evidence of local predictability is

seen. In particular, if predictability exists as a result of market inefficiency rather than because

of time-varying risk premia, then rational investors will attempt to exploit its presence to earn

abnormal profits. Assuming that a large enough proportion of the total number of investors are

rational, this behaviour will eventually cause the predictive power of the relevant predictor to

be eliminated. If a variable begins to have predictive power for stock returns then a short win-

dow of predictability might exist before investors learn about the new relationship between that

variable and returns, but it will eventually disappear; see, in particular, Paye and Timmermann

(2006) and Timmermann (2008). It therefore seems reasonable to consider the possibility that

the predictive relationship might change over time, so that over a long span of data one may

observe some, possibly relatively short, windows of time during which predictability occurs. In

such cases, standard predictability tests based on the full sample of available data will have very

low power to detect these short-lived predictive episodes.

Several empirical studies find evidence suggesting that parameter instability is a feature of

return prediction models. Lettau and Ludvigsson (2001) find instability in the predictive ability

of the dividend and earnings yield in the second half of the 1990s. Goyal and Welch (2003)

and Ang and Bekaert (2007) find instability in prediction models for U.S. stock returns based

on the dividend yield in the 1990s. Paye and Timmermann (2006) undertake a comprehensive

analysis of prediction model instability for international stock market indices using the Bai and

Perron (1998,2003) structural change tests. They find evidence of structural breaks for many

of the countries considered, arguing that “Empirical evidence of predictability is not uniform

over time and is concentrated in certain periods.” op.cit. p.312. They find some evidence of a

common break for the U.S. and U.K. in 1974-1975, and for European stock markets linked to the

introduction of the European Monetary System in 1979. However, it is important to stress that

conventional parameter instability tests such as Chow tests and Bai-Perron tests are not valid

for use with highly persistent, endogenous predictors. Indeed, Paye and Timmermann (2006) use

Monte Carlo simulations to show that in such cases this can cause substantial size inflation in

the Bai-Perron tests coupled with a lack of power because of the large amount of noise typically

present in predictive regression models. Moreover, traditional regression t-tests for predictability

and structural break tests are an ex post tool for detecting the statistical significance of regressors

and structural breaks in a historical sample of data. They are less useful in monitoring for change

in real time because their repeated application in prediction models can lead to size distortions

(with the probability of at least one of the tests rejecting tending to unity as the number of

tests in the sequence increases) and, as a consequence, spurious evidence of in-sample predictive

ability; see Inoue and Rossi (2005) for a detailed discussion of this problem in relation to t-tests.

Motivated by this, we develop new statistical monitoring techniques, specifically designed to

avoid the spurious detection problems discussed in Inoue and Rossi (2005). We use these meth-

ods to monitor the stability of predictive regression models for the U.S. equity premium. As
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putative predictors we consider various commonly used traditional macroeconomic and financial

variables as well as a range of technical analysis rules where only price or volume data is used

to predict returns. In an early paper in this direction, Brock et al. (1992) study the ability

of moving average and trading range break trading rules to predict the Dow Jones Industrial

Average (DJIA) index using daily data from 1897 through to 1986, finding strongly significant

evidence that the trading strategies generated abnormal returns that cannot be explained by

serial correlation or conditional heteroskedasticity in the returns. Sullivan et al. (1999) analyse

a longer data sample on the DJIA, and find that the rules employed by Brock et al. (1992) were

unable to identify profitable trading strategies for the period 1987-1996, although there was some

evidence that they managed to do so prior to this period. Hudson et al. (1996) undertake a

similar analysis to Brock et al. (1992) for UK stock index returns and find that although the

rules examined do have predictive power, their use would not enable investors to make abnormal

returns once trading transaction costs are accounted for. More recently Neely et al. (2014) have

investigated the in-sample and out-of-sample predictive power of binary technical analysis indi-

cators in a predictive regression-based context. Indicators are constructed from moving-average

rules, momentum rules, and on-balance volume rules. They find the indicators have predictive

power that emulates that of the traditional financial and macroeconomic variables. They also

show that combining information from technical analysis indicators and macroeconomic variables

significantly improves equity risk premium forecasts versus using either type in isolation.

The real-time monitoring procedures we propose are designed with the aim of detecting, as

soon as possible after their inception, relatively short windows of predictability arising from

shifts in the parameter on the predictor variable in the predictive regression. The presence of

short pockets of predictability amongst long periods of no predictability in U.S. stock returns has

recently been documented by Farmer et al. (2019), using nonparametric methods and employing

an R2-type statistic to measure predictability strength. Our analysis is also related to work by

Dangl and Halling (2012) who use Bayesian methods to investigate gradual changes in return

predictability. Although our procedures are designed to detect short regimes of predictability

when the regime change is discrete, they can also be used to detect predictive regimes when

the regime change is gradual and we investigate this issue with Monte Carlo simulations. Our

focus is on the real-time detection of such regimes, but the methods we use can also be used for

an historical analysis of the stability of predictive regression models. Our detection procedures

are based around the sequential application of simple heteroskedasticity-robust regression t-

statistics for the significance of the predictor variable calculated over a subsample of fixed length

m. When used as simple one-shot tests these statistics can be compared with estimated critical

values obtained from a training period using the subsampling-like method of Andrews (2003)

and Andrews and Kim (2006). It is important to notice that these resulting one-shot tests will be

able to detect general structural change in the slope parameter on the predictor variable (in that

particular subsample, relative to the rest of the sample) not just a change to predictability within
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the given subsample. This is because a rejection will occur where the estimated slope coefficient

on the predictor differs significantly between the subsample over which the one-shot test is based

and the subsamples used in the critical value generation. Based on the arguments above and

the work of, among others, Paye and Timmermann (2006) and Timmermann (2008), it seems

reasonable to focus attention on the null model of no predictive relationship, such that structural

change where it should occur is between no predictability and a short window of predictability.

It is this interpretation that we will focus on in motivating and outlining our procedure. In our

application to U.S. equity data we first apply standard predictability tests to the full data sets

(and indeed the training periods used to obtain the estimated critical value) to check for any

evidence of sustained predictability in those samples.

Our approach is based on the sequential application of these one-shot subsample test statistics

commencing from a given start date. Because this is based on a sequence of subsample statistics,

we need to avoid the issue of spurious detections highlighted by Inoue and Rossi (2005) by

allowing the practitioner to control the overall false positive detection rate for the resulting

procedure. To this end, we suggest two possible detection procedures, both of which are based

on information obtained from the data in the training period. Applied using end-of-sample forms

of the subsample predictability tests, both of these approaches can be used to provide a real-

time monitoring procedure for the emergence of a regime of predictive ability of a regressor for

returns data. The first procedure involves comparing the sequence of statistics in the monitoring

period with the extremal value of the statistic (either the most negative, most positive or largest

in absolute value, as appropriate to the alternative hypothesis being tested) within the training

period. A predictability regime is signalled if one obtains an outcome of the predictability statistic

which exceeds this extreme value from the training period. Under the second procedure we

discuss, a predictability regime is deemed to have occurred if and when the number of consecutive

rejections (at a given marginal significance level using a critical value estimated by subsampling

from the training period) by the one-shot tests observed in the monitoring period exceeds the

longest run of such rejections in the training period. Both procedures can also be used to form

estimates of the locations of the signalled predictive regimes.

The remainder of the paper is organised as follows. Section 2 outlines the time-varying

predictive regression model forming the basis for our analysis. Section 3 details our proposed

approach to detecting windows of predictability and for dating any predictive regimes signalled,

showing how to implement real-time detection procedures whose false positive detection rates

can be controlled in practical applications. Section 4 reports the results from Monte Carlo

simulations to investigate the finite sample behaviour of our proposed procedures. Section 5

presents an applied investigation into the predictability of the one month-ahead equity premium

on the S&P Composite index. Section 6 concludes. A supplementary appendix contains a proof

of Proposition 1 as well as additional Monte Carlo results (these results are summarised in section

4.2) and additional material relating to the empirical application discussed in section 5.
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2 The Predictive Regime Model

We assume a relationship between the equity premium, yt, and a single predictor variable1 xt

that can be described by the following data generation process (DGP),

yt = µy +
n

∑

j=1

βjdt(ej,mj)xt−1 + ǫy,t, t = 1, ..., T (1)

where the (putative) predictor is generated by

xt = µx + sx,t, t = 0, ..., T (2)

sx,t = ρsx,t−1 + ǫx,t, t = 1, ..., T (3)

with sx,0 = 0 and where dt(ej,mj) is a dummy variable defined such that dt(ej,mj) takes the value

1 for mj > 0 consecutive values of t, ending with t = ej. The innovation vector ǫt := [ǫy,t, ǫx,t]
′,

where the notation “x := y” denotes that x is defined by y, is assumed to be a strictly stationary

and uncorrelated mean zero process with unconditional covariance matrix given by

E(ǫtǫ
′
t) =

[

σ2
y rxyσyσx

rxyσyσx σ2
x

]

where rxy, |rxy| < 1, is the correlation between ǫy,t and ǫx,t. Notice that our assumption on ǫt

allows for the presence of conditional heteroskedasticity, such as GARCH or stationary autore-

gressive stochastic volatility, in both ǫy,t and ǫx,t.

In the context of (1), if βj 6= 0, then we have a predictive regime of yt by xt−1 of length

mj observations running from t = ej − mj + 1 through to t = ej. The model in (1) allows for

n ≥ 0 such predictive regimes. Consistent with the discussion in the introduction and Paye and

Timmermann (2006) and Timmermann (2008), we have in mind scenarios where such regimes

are relatively scarce and short-lived so that both the number of predictive regimes, n, and their

durations, mj, j = 1, ..., n, are taken to be small relative to the sample size, T . We assume

ej < ej+1 −mj+1 such that the regimes where predictability holds are ordered (i.e. dt(e1,m1) is

the earliest regime) and non-overlapping. Our proposed predictive regime detection procedure

will consider the quantities ej and mj which delimit the start and end dates of the predictive

regimes, and the number of regimes, n, to be unknown to the practitioner. Outside of these n

1For lucidity, we outline our procedure for the case of a single predictor. Our approach can be extended to
the case where multiple predictors feature in (1). Here individual subsample t-statistics, of the form discussed
in section 3.1, associated with each of the predictor variables could be considered along with multi-parameter
heteroskedasticity-robust regression F -statistics. Consideration would need to be given to the appropriate statis-
tics and decision rules to adopt, and to the usual issues surrounding multiple (significance) testing. Moreover,
although we focus on the case where a constant term is included in both (1) and (2), our approach is also valid for
a more general deterministic component, such as a polynomial deterministic trend, appearing in both components
provided it is included in the test regression in (4) and the t-statistic, τe,m, in (5) is commensurately redefined.
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predictive regimes the slope parameter in (1) is zero and the DGP is such that yt = µy + ǫy,t

and, hence, yt is unpredictable (in mean) due to the ǫy,t being serially uncorrelated (a standard

assumption in this literature). Where n = 0 in (1), yt is unpredictable at all time periods.

As is standard in this literature, we have adopted an AR(1) specification for sx,t, and hence for

xt, in (3). As we will discuss in section 3, the predictive regime detection procedures we propose

in this paper can be applied regardless of whether the autoregressive root, ρ, in (3) is such that

ρ = 1 (a unit root predictor) or |ρ| < 1 (a stationary predictor). Moreover, ρ is also allowed to

be T -dependent such as occurs, for example, in cases where the predictor is strongly persistent

displaying either local or moderate deviations from a unit root; for full sample predictability

tests directed at the latter, see Kostakis et al. (2015). The AR(1) specification in (3) is not

critical for our analysis, and it could be generalised to allow ǫx,t to be a weakly autocorrelated

process without affecting the validity of our proposed procedures; see Remark 3 in section 3.2.1.

In what follows, to facilitate our later analysis of real-time monitoring for the emergence of

predictive regimes, we make a distinction between the end of the monitoring period, which we

denote by t = E, and the notional future end of the DGP for yt, that is t = T , such that E ≤ T .

3 Predictive Regime Detection

3.1 Subsample Regression t-statistics

We are interested in detecting the presence of a predictive regime for yt in real time and propose

a way of doing this using subsample regression t-statistics. To that end, consider first selecting

a subsample of m observations running from t = e −m + 1 to t = e, where m is a fixed value

(independent of the sample size, T ) chosen by the user, and run the (generic) ordinary least

squares regression,

yt = a+ bxt−1 + ut, t = e−m+ 1, ..., e. (4)

We then calculate the regression t-statistic, based around a heteroskedasticity-robust variance

estimate (see White, 1982), for the significance of xt−1 in (4); that is,

τe,m := b̂/(V̂ (b̂))1/2 (5)

where

b̂ :=

∑e
t=e−m+1(xt−1 − x̄−1)(yt − ȳ)
∑e

t=e−m+1(xt−1 − x̄−1)2
, V̂ (b̂) :=

∑e
t=e−m+1(xt−1 − x̄−1)

2û2
t

{
∑e

t=e−m+1(xt−1 − x̄−1)2}2
(6)

ût := (yt − ȳ)− b̂(xt−1 − x̄−1) (7)

ȳ := m−1

e
∑

t=e−m+1

yt, x̄−1 := m−1

e
∑

t=e−m+1

xt−1.
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Detection of a predictive regime holding between yt and xt−1 for the given subsample t =

e−m+1, ..., e can be based on τe,m. As a particular example, suppose we have data available for

t = 1, ..., T ∗+m ≤ T ; a test for the presence of a predictive regime in the last m available sample

observations would therefore be based on the statistic τT ∗+m,m. Standard regime detection tests,

such as those outlined in Paye and Timmermann (2006) use asymptotic (in the sample size T )

distribution theory to approximate the test’s critical value, but this approximation is based on

the assumption that the sample window m used in constructing the statistic is a positive fraction

of T . This assumption is clearly not consistent with our aim of detecting predictive regimes of

short duration. Moreover, even if we were to assume m to be a function of T , the limiting

distribution of τe,m will depend on nuisance parameters in the DGP in (1)-(3); specifically, the

degree of persistence of the predictor variable, xt, and the correlation, rxy, between ǫy,t and ǫx,t.

Without knowledge of these, valid asymptotic critical values could not be obtained.

An alternative approach, which we will consider further in the context of the detection pro-

cedure proposed in section 3.2.2, robust to the degree of persistence and endogeneity of the

predictor can be based on the subsampling approach of Andrews (2003) and Andrews and Kim

(2006). In the end-of-sample example above, suppose we have a sample of size T ∗ +m and we

form the predictability statistic τT ∗+m,m. To obtain a critical value, one uses the training period

t = 1, ..., T ∗, to compute the T ∗ − m − 1 analogous statistics {τe,m}, e = m + 1, ..., T ∗. The

(1 − π) sample quantile of these statistics is the estimated significance level-π critical value for

the end-of-sample predictability test. By construction, the resulting test is (asymptotically in

T ) robust to nuisance parameters in (1)-(3) because the training period statistics have the same

functional dependence on those nuisance parameters as τT ∗+m,m. This test will have non-trivial

power whenever there is predictability in the last m observations, but not in the training period.

Crucially though, the discussion above relates to a one-shot predictability test. However, our

goal in this paper is to develop real-time monitoring procedures for the emergence of an end-

of-sample predictive regime. To that end, we will construct a sequence of τe,m statistics, of the

form given in (5), calculated for each possible end-of-subsample date e = T ∗+m, ..., E, recalling

that E denotes the end of the monitoring period, a parameter set by the practitioner. The

predictive regime detection procedures we propose below are based on comparing the behaviour

of this sequence of statistics with corresponding sequences within the training period and will be

designed such that the theoretical (i.e. large sample) false positive rate [FPR] of the procedures

is known and can be properly controlled, where the FPR represents the probability of incorrectly

signifying the presence of at least one predictive regime in the monitoring period.

3.2 The Detection Procedures

We now detail our predictive regime detection approaches. For transparency, these are presented

in the context of upper tail testing (i.e. for predictability regimes where βj > 0), but can be
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adapted to lower tailed or two tailed testing in an obvious way. We will discuss two procedures,

each of which forms a decision rule for rejecting the null of no predictability in the monitoring

period based on specific properties of the sequence of τe,m statistics within the given training

period. The first procedure we consider will based on the largest of the τe,m statistics observed

in the training period, and the second will be based on the longest run of outcomes of the τe,m

statistics in the training period that exceed a given (critical) value.

For both of the procedures which follow, we define the training period as t = 1, ..., T ∗. We

assume that no predictive regime occurs within the training period; that is, T ∗ < e1 −m1 + 1;

further discussion relating to where this assumption might be violated is given in section 3.4. In

what follows we assume that T ∗ and E are such that T ∗ := ⌊λ1T ⌋, and E := ⌊λ2T ⌋, ⌊·⌋ denoting

the integer part of its argument, and where 0 < λ1 < λ2 ≤ 1.

3.2.1 The MAX Procedure

The first detection procedure we propose, which we will denote as MAX, is based on the maxi-

mum value of the sequence of τe,m statistics taken across the training and monitoring periods (cf.

Astill et al., 2018). More precisely, with {τe,m}
T ∗

e=m+1 and {τe,m}
E
e=T ∗+m constituting the statis-

tics obtained from the training and monitoring periods, respectively, we consider a detection

procedure whereby a predictive regime in the monitoring period is signalled if maxe∈[T ∗+m,E] τe,m

exceeds maxe∈[m+1,T ∗] τe,m; that is, the largest τe,m in the monitoring period exceeds the largest

τe,m in the training period.

We now establish the theoretical (as T → ∞) FPR of the MAX procedure when run out

to the end of monitoring date, E. This is done by evaluating the limiting probability that

maxe∈[T ∗+m,E] τe,m > maxe∈[m+1,T ∗] τe,m under the null hypothesis that no predictability is present

in the DGP. This result is now given in Proposition 1.

Proposition 1. Let (yt, xt) be generated according to (1)-(3) under the conditions stated in

section 2. Let the MAX decision rule be as given above. If n = 0, such that no predictability is

present in the DGP, then as T → ∞,

lim
T→∞

P

(

max
e∈[T ∗+m,E]

τe,m > max
e∈[m+1,T ∗]

τe,m

)

= α∗ (8)

where α∗ := (λ2 − λ1)/λ2 = limT→∞ α where, for the stated choices of monitoring and training

periods,

α :=

(

E − T ∗ −m+ 1

E − 2m+ 1

)

. (9)

Remark 1. The result in Proposition 1 provides an expression for the theoretical FPR of the

MAX decision rule; that is, the limiting probability that the maximum of the τe,m statistics in

the monitoring period exceeds the maximum of the τe,m statistics in the training period in the

case where no predictability occurs. This is seen to be simply the limiting value of the ratio
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formed by dividing the total number of τe,m statistics computed in the monitoring period (here

E − T ∗ −m+ 1) by the total number of τe,m statistics calculated in the training and monitoring

periods combined (here (E − T ∗ − m + 1) + (T ∗ − m) = E − 2m + 1). This result holds more

generally when comparing the maxima of the sequences of τe,m statistics obtained from any two

disjoint subintervals of the data whose lengths are both functions of T .

Remark 2. The result in Proposition 1 holds regardless of the degrees of persistence and endo-

geneity of the regressors in the predictive regression and holds for all conditionally heteroskedastic

innovations which satisfy the condition of strict stationarity. In particular, the result in Proposi-

tion 1 holds regardless of whether the putative predictor xt in (3) is: weakly dependent (|ρ| < 1);

strongly persistent (ρ = 1 − c/T with the constant c ≥ 0, where c = 0 yields the pure unit root

case, while c > 0 corresponds to the local-to-unity case); or moderately persistent (ρ = 1− cT−θ

with c > 0 and θ ∈ (0, 1), the moderate deviations from unity case of Kostakis et al., 2015).

Remark 3. As demonstrated in the proof of Proposition 1, the stated result follows using an

application of Theorem 2.1 of Ferreira and Scotto (2002,p.478), with r = s = 1 in their notation,

which applies to strictly stationary sequences of mixing random variables. To do so we establish

that under the conditions given in section 2, {τe,m} forms a strictly stationary and (m− 1) de-

pendent sequence, the latter therefore satisfying the required mixing condition stated in Ferreira

and Scotto (2002,p.476). We have assumed for simplicity that ǫt is serially uncorrelated which

yields the (m − 1) dependence result. Weakening this assumption to allow for stationary serial

correlation in ǫx,t would not alter this result. It is standard in this literature to assume that ǫy,t

is serially uncorrelated. However, this could be weakened to allow finite MA(k), 0 ≤ k < ∞,

behaviour in ǫy,t in which case {τe,m} would be a (k +m− 1) dependent sequence but would still

satisfy the required mixing condition. We cannot formally allow for unconditional heteroskedas-

ticity in ǫt because {τe,m} would not then form a strictly stationary sequence and so we could not

appeal to Theorem 2.1 of Ferreira and Scotto (2002). However, we have still based our approach

on heteroskedasticity-robust t-statistics because although not exact invariant to any unconditional

heteroskedasticity present (which is what would be needed as m is finite) we expect them to be

considerably more robust than the corresponding t-statistics based on OLS standard errors. In

section 4 we will investigate the impact of unconditional heteroskedasticity in ǫt on the finite

sample FPRs of the procedures discussed in this section.

For given values of T ∗ and m, we can use (9) to approximate the empirical FPR that would

be obtained in practice for any monitoring horizon E. We observe that α is a monotonically

increasing function of E as ∂α
∂E

= T ∗−m
(E−2m+1)2

> 0. Hence, other things being equal, the longer

the monitoring period, the greater the likelihood of spuriously finding a predictive regime. To

illustrate, Figure 1 graphs this approximation for the case of T ∗ = 400 and m = 30. So, for

example, reading from Figure 1, if we wish to monitor out to E = 680, then the FPR will be

about 0.40.
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Figure 1. FPR as a function of E

We can also rearrange (9) as

E =
T ∗ +m− 1− α(2m− 1)

1− α
(10)

which is useful if we wish to know the maximum monitoring horizon E such that the FPR for

the MAX procedure is (approximately) controlled at α. For the current illustration, (10) shows

that E should be chosen to be no more than about 520 for a choice of α = 0.20 (which is also

apparent from Figure 1).

3.2.2 The SEQ Procedure

Our second detection procedure, which we denote as SEQ, is based on comparing the length of

the longest contiguous sequence of exceedances of some value pre-set by the practitioner by the

statistics τe,m in the monitoring period, with the corresponding measure taken over the training

period. An obvious choice for this threshold value, which we will adopt in what follows, would be

to use a relevant marginal critical value for some significance level π for the one-shot τe,m test.2

In doing so we will follow the subsampling approach of Andrews (2003) and Andrews and Kim

(2006) and calculate an empirical critical value, denoted cvπ in what follows, from the training

period. Recalling that the sequence of τe,m statistics that make use of data within the training

period is given by τe,m for e = m+ 1, ..., T ∗, then cvπ is defined such that cvπ := τ(⌊(1−π)(T ∗−m)⌋)

where τ(j), j = 1, ..., T ∗ −m are the ascending order statistics of τe,m, e = m+ 1, ..., T ∗ (that is,

2Any sensible threshold value could in principle be used. A benefit of using such a critical value is that
where the training period contains no predictive regimes each individual test in our monitoring sequence can
be interpreted marginally as a test for predictability in that particular subsample. As such, it makes sense in
practice to set π to a conventional significance level, e.g. π = 0.05 or π = 0.10.
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τ(j+1) > τ(j) for j = 1, ..., T ∗−m− 1). Under the conditions on the DGP considered by Andrews

and Kim (2006), cvπ is a consistent (as T → ∞) estimate for the true π significance level critical

value. However, it should be stressed that the SEQ procedure we propose does not rely on this

consistency property holding on cvπ.

Based on cvπ we then consider the maximum number of contiguous values of τe,m within the

training period that exceed cvπ. To this end, define Rπ,e := 1(τe,m > cvπ), where 1(·) denotes

the indicator function, and consider the following measure over e = L to e = U with U ≥ L

Rπ(L,U) := (U − L+ 1)
U
∏

e=L

Rπ,e

Here, when Rπ(L,U) is non-zero, its value, U − L + 1, represents the length of a sequence of

contiguous exceedances. The maximum length of contiguous exceedances in the training period

is then given by maxL,U∈[m+1,T ∗] Rπ(L,U). The corresponding measure for the monitoring period

is given by maxL,U∈[T ∗+m,E] Rπ(L,U). Our proposed SEQ procedure is then to signal a predictive

regime in the monitoring period if maxL,U∈[T ∗+m,E] Rπ(L,U) > maxL,U∈[m+1,T ∗] Rπ(L,U). Paral-

leling the result in Proposition 1, when there is no predictability in the training or monitoring

periods we conjecture that

lim
T→∞

Pr

(

max
L,U∈[T ∗+m,E]

Rπ(L,U) > max
L,U∈[m+1,T ∗]

Rπ(L,U)

)

≤ α∗ (11)

where α∗ is as defined in Proposition 1. Notice here that, in contrast to the result for the

MAX monitoring procedure where the large sample FPR when monitored up to E is exactly

α∗, the corresponding quantity for the SEQ procedure is bounded by α∗. This arises because

maxR(L,U) can only assume integer values, so there is a non-zero probability of a tied value

in the training and monitoring periods, even asymptotically. Hence the strict equality obtained

for the MAX procedure from Proposition 1 is replaced by the weak inequality in (11). The

(approximate) relationship in (10) can also still be considered to hold, but interpreted to be the

maximum monitoring horizon E such that the FPR for the SEQ procedure is bounded by α.3

It will be convenient to denote the training period maximum length of contiguous exceedances,

maxL,U∈[m+1,T ∗] Rπ(L,U), as lπ. Notice that the first time period at which it would be possible

for SEQ to signal a predictive regime is t = T ∗ + m + lπ, because this is the first occasion

where Rπ(L,U) in the monitoring period can exceed lπ. In contrast, it is possible for the MAX

3We are unable to provide a formal proof of the result of (11), hence our conjecture on the basis of extant,
but much more limited theoretical results. A formal proof would be extremely involved, if even tractable, given
the complexity of the arguments needed in Ferreira and Scotto (2002) to establish theoretical results relating
to the much simpler case of subsample maxima. However, this conjecture is not without foundation. We have
also conducted extensive Monte Carlo simulation experiments that appear to support it. Furthermore, these
simulation results reveal that the empirical FPR of the SEQ procedure is always below but very close to α,
implying that the probability of tied values in the training and monitoring periods is very small.
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procedure to signal a predictive regime as early as t = T ∗+m. However, we can control lπ via the

choice of π. The larger is π then the smaller is cvπ so we would naturally expect the larger is lπ.

This relationship is important as choosing a large value of π might lead to what is considered an

unacceptable delay before being able to detect a predictive regime. This is not a consideration

with MAX, however. In fact, MAX can be thought of as an extreme case of SEQ where we

choose cvπ = maxe∈[m+1,T ∗] τe,m (the smallest value of cvπ such that π = 0) and hence lπ = 0.

3.3 Dating of Predictive Regimes

In a real-time monitoring context, if the procedure signalled the presence of a predictive episode

at time E∗ ≤ E then the monitoring procedure would of course terminate at that point given that

the procedure would have signalled the presence of a predictive regime at that time. However,

one could also consider continuing the monitoring procedure up until E. It is therefore possible

for both of our proposed MAX and SEQ procedures to detect more than one predictive regime

before the notional end-of-monitoring date, E.

Although our focus on this paper is on real-time detection we can, where at least one predictive

regime has been signalled by one of our procedures when run out until the end of the monitoring

period, E, provide approximate dates for the location of these predictive regime(s). This should

be viewed more as a historical dating exercise rather than something that would be done in the

context of a real-time monitoring procedure. Detailing this first in the context of the MAX

procedure, for e = T ∗ +m, ..., E define R0,e := 1(τe,m > maxs∈[m+1,T ∗] τs,m). Next, let D denote

an E × 1 vector of zeros, and set De = 1 whenever R0,e = 1. Now suppose that D has h

consecutive 1s in positions e = j, ..., j + h − 1 where j is the earliest date for which R0,j = 1.

Here R0,j is based on data over the period j−m+1, ..., j, so we might therefore consider j−m+1

to represent a feasible start date for the first predictive regime. With R0,j+h−1 representing the

final exceedance in D, and this being based on data over the period j −m+ h, ..., j + h− 1, we

might similarly consider j + h− 1 to represent a feasible end date for this predictive regime. By

this categorisation, then, the predictive regime covers the contiguous set of dates j −m + 1, ...,

j+h−1. In some sense, this set of dates is liberal, or weak, in that it is possible that the predictive

regime started after j −m+1 and ended before j + h− 1; for example, only the later data used

in R0,j may be responsible for triggering that exceedance, and only the earlier data used in

R0,j+h−1 responsible for triggering that exceedance. We might therefore consider an alternative

dating approach where the predictive regime is characterised by the subset of dates for which

every time that date is present in the subsample of data being tested, an exceedance is obtained.

This subset, which we will refer to as strong, is the contiguous set of dates j, ..., j − m + h;

notice that if h ≤ m − 1, the strong set will be empty. A second predictive regime is deemed

to exist if R0,j+h = 0 but R0,j+h+s = 1 for some s ≥ 1, and weak/strong dates for the second

regime can be determined in the same manner as for the first regime. This extends to more
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than two regimes in an obvious way. In situations where more than one predictive regime has

been detected, it is possible that weak dates associated with consecutive regimes can overlap,

although this possibility cannot arise with the strong dates.

For the SEQ procedure, the dating method follows the same process as for the MAX pro-

cedure, but with the non-zero elements of the D vector defined according to the following: for

e = T ∗ +m+ lπ, ..., E, if
∏e

k=e−lπ
Rπ,k = 1, set De−lπ , ..., De to 1. That is, for all end-of-window

dates e that form part of a contiguous run of at least lπ + 1 exceedances Rπ,e, we set the eth

element of D to one. The weak and strong dates can then be categorised in exactly the same

way as for the MAX, based on the Rπ,e exceedances involved in the D vector.

3.4 Additional Discussion

We conclude this section with some observations, which apply in equal part to the MAX and

SEQ procedures.

1. Suppose now that, in contradistinction to our maintained assumption so far, one or more

predictive regimes in (1) are present within the chosen training period. Provided such

regimes are of finite length and finite in number, then the asymptotic (in T and T ∗) prop-

erties of the MAX and SEQ procedures are unaffected by this. For a finite length training

period, if predictability regimes existed within it, we would expect both maxe∈[m+1,T ∗] τe,m

and lπ to be increased relative to the case where no predictability is present in the training

period, other things being equal. We might therefore anticipate some reduction in the

ability of our procedures to detect genuine predictive regimes present in the monitoring

period. We will explore the impact on our proposed procedures of a predictive regime

holding in the training period as part of our Monte Carlo simulation study in section 4.

2. Although not consistent with the interpretation we are placing on the DGP in (1), as

discussed in the introduction it is possible in practice that the training period could po-

tentially exhibit predictability throughout its duration, or a large part of its duration. In

this case, an upper tail rejection arising from MAX or SEQ in the monitoring period

should be taken to indicate a statistically significant increase in the magnitude of the slope

parameter on xt−1 (and, hence, in the strength of the predictability of yt by xt−1) vis-à-vis

its value in the training period. In practical applications, we therefore recommend prior

application of standard full-sample predictability tests to the training period to investigate

whether the assumption of no predictability holds in the training period, and this will be

done in the empirical data analysis undertaken in section 5.

3. Our discussion thus far has implicitly assumed that the training period runs from the

earliest available time period in the dataset to the point immediately before the desired

start of monitoring. This essentially makes the training period as large as possible, which
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ensures that, through the role of T ∗ in (9) and (10), the FPR is as small as possible for

a given E, or, equivalently, E is as large as possible for a given FPR. In cases where a

very long history of data is available, it may be prudent to use only relatively recent data,

to avoid including historical predictive regimes in the training period. In practice, such

regimes might be detected by prior pre-testing, an approach we adopt in the empirical

application in section 5. Furthermore, we have so far focused, for simplicity, on the case

where there is no separation between the data period used for the training period and the

data used for monitoring, with the former spanning t = 1, ..., T ∗ and the latter starting

at t = T ∗ + 1. More generally, the last time period included in the training period could

be T ∗ − k for some k > 0, allowing for a separation between the training period and the

start of the monitoring period. This might be relevant in cases where a predictive regime

was thought to have occurred towards the end of the training period, so that the training

period could be redefined to exclude this regime. As noted in Remark 1, an analogous

result to Proposition 1 also holds here and the expressions for α and E in (9) and (10) in

this case become, respectively,

α =
E − T ∗ −m+ 1

E − 2m+ 1− k
and E =

T ∗ +m− 1− α(2m− 1 + k)

1− α
.

4 Finite Sample Properties of the Monitoring Procedures

We now report the results from four Monte Carlo simulation experiments designed to study

the finite sample properties of our MAX and SEQ procedures. These investigate the FPRs

of the two procedures and their power to detect a predictive regime of given length. Extensive

additional simulations were also undertaken to study the detection power of MAX and SEQ as

a function of m1 (the length of the predictive regime in the DGP), and to study the robustness

of our procedures to different error term assumptions, patterns of heteroskedasticity, to higher-

order autocorrelation in the predictor, and to gradual regime change. We present these additional

results in an on-line supplementary appendix and briefly discuss the key findings in section 4.2.4.

In all of the experiments we generated the simulation data according to the DGP given by

(1)-(3) and set µy = µx = 0 (without loss of generality) using negatively correlated error terms

with rx,y = −0.90.5 For the four sets of experiments reported in the main text we generate

ǫy,t ∼ N(0, 1), ǫx,t ∼ N(0, 1). All of the simulation experiments and the empirical application

in section 5 employ the upper-tailed version of our procedure.6 In each simulation experiment

4The on-line supplementary appendix is available from www.sites.google.com/view/pr-supplementary,
which also contains the data and MATLAB code used for the paper.

5In predictive regression models for the equity premium employing valuation ratios as predictors (e.g. the
dividend-price ratio, earnings-price ratio) the relevant error terms are strongly negatively correlated, hence our
choice of rx,y = −0.90.

6For the majority of the macroeconomic and financial variables and for all of the technical analysis indicators
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the sample period when monitoring starts (T ∗ +m) is the same as in the empirical application,

T ∗ +m = 302, and for the main experiments, m = 30.7 All of the experiments are undertaken

using MATLAB, employing the Mersenne Twister random number generator function and 10,000

replications.

The first set of experiments studies the power of MAX and SEQ to detect a single predictive

regime as a function of β1 = {0.05, 0.10, ..., 0.45, 0.50} for ρ = {0.965, 0.995}, setting π = 0.10.8

When β1 = 0 (so that n = 0 and, hence, there are no predictive regimes in the data) the detection

frequency obtained from the simulations is equivalent to an empirical FPR and we also report

simulation results for this case. In this first set of experiments we assume a short monitoring

period that ends at E = 327, which, given the values used for T ∗ and m, is consistent with

α = 0.10 (this can be verified using (9)). Therefore when β1 = 0, the empirical FPR obtained

for each procedure should be approximately equal to 0.10. If a predictive regime does occur

during the monitoring period, then the power of our procedures to detect its presence will

depend not only on how long the relevant predictive regime continues for (m1) and its strength

(measured by the magnitude of β1), but also on when the predictive regime occurs relative to

the start of monitoring. To investigate this issue in more detail, separate results are computed

for five different predictive regime start dates: (a) t = 287 (15 observations before the start of

monitoring), (b) t = 297 (5 observations before the start of monitoring), (c) t = 302 (at the same

time as the start of monitoring), (d) t = 307 (5 observations after the start of monitoring), (e)

t = 317 (15 observations after the start of monitoring). In each case the length of the predictive

regime in the DGP is set to m1 = 30.9

In empirical applications, whilst there might be a particular reason for favouring a short

monitoring period, for predictive regimes that start towards the end of a short monitoring pe-

riod the power of our procedure to detect their presence could be significantly improved if we

monitor for a longer period of time. To investigate this issue in more detail, in the second set

of experiments we repeat the first set of experiments employing the same simulation DGP and

predictive regime dates, but extending the monitoring period to E = 361 which is consistent with

α = 0.20. Hence the empirical FPR obtained from the simulations in this case (when β1 = 0)

should be approximately equal to 0.20.

used in the empirical application in section 5 financial theory suggests a positive relationship with the equity
premium. For those of the macroeconomic and financial variables where financial theory suggests a negative
relationship with the equity premium (e.g. interest rates) we use −xt−1 rather than xt−1 when testing for a
predictive regime so that an upper-tailed test is applicable. This is consistent with recent research on detecting
equity premium predictability using orthodox t-tests (e.g. Campbell and Thompson, 2008; Neely et al., 2014).

7The data sample used for the equity premium application below is monthly covering the period December
1974 to December 2015 (T = 493). In the application we monitor from January 2000 (hence T ∗ +m = 302). In
addition to m = 30, in the empirical application results are also computed for m = 15 and m = 60.

8This range of values for ρ and β1 was chosen following a preliminary analysis of the data used for the empirical
application in section 5. Typically when AR(1) models are estimated for the traditional predictors used in section
6 (e.g. the valuation ratios), the AR(1) coefficient estimates lie in the range 0.965-0.998.

9Therefore in these experiments m = m1. In the additional simulation experiments discussed in section 4.2,
we investigate the performance of our monitoring procedure when the values of m and m1 differ.
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The first two sets of experiments assume no predictability in the training period. As discussed

in section 3.4, our procedure can still be used for detecting predictive regimes during the moni-

toring period if predictability exists during the training period, although the FPR and power of

the procedure could be affected. If our procedure is applied to data where a regime of positive

predictability exists in the DGP during the training period, both the largest value of τe,m over

the training period, and the longest contiguous sequence of right-tailed τe,m exceedances over the

training period, are likely to be larger than the values obtained if the DGP had contained no

predictability over the training period but was otherwise identical. It follows straightforwardly

in this case that the power of our procedures to detect a predictive regime over the monitoring

period (and also the empirical FPRs) will be reduced relative to the case of no predictability

over the training period.

The third and fourth sets of experiments investigate this issue in more detail. In these

experiments we repeat the first two sets of experiments again using the DGP given by (1)-(3),

but in addition to the original predictive regime at locations (a)-(e), an earlier predictive regime

is imposed in the DGP during the relevant training periods. Specifically, the full DGP for each

set of experiments contains two predictive regimes (i.e. we set n = 2 in (1)), where the first

predictive regime is set to occur during the training period at t = ⌊T ∗/2⌋ + 1, and we set

m1 = 15 and β1 = 0.25 (hence the associated predictive regime in the training period continues

for 15 observations). The second predictive regime mirrors the original predictive regime in the

first two sets of experiments. The length of this second regime, m2, and the strength of the

predictability, β2, are set to the same values as the relevant parameters in the first two sets of

experiments (m1 and β1, respectively). Note that in the third and fourth sets of experiments the

predictive regime in the training period is relatively short (being half the length of the predictive

regime in the monitoring period for first two sets of experiments). It is particularly important to

assess the finite sample performance of our procedures when there is a short predictive regime

in the training period, since short predictive regimes are more difficult to identify than long

predictive regimes. If a long predictive regime exists over the initial training period chosen by a

researcher using our procedures, then it is more likely that the researcher would be aware of its

presence (e.g. via a preliminary analysis of the data).

4.1 Main Results

The results from the first set of experiments are given in Figure 2 which, as with Figures 3-5,

graphs the empirical frequencies with which at least one predictive regime is signalled by our

monitoring procedures MAX (solid and dotted red lines) and SEQ (solid and dotted blue lines)

when run across the whole monitoring period under consideration. Recall that the end of the

monitoring period for the set of experiments relating to Figure 2 is chosen using (9) to be such

that α = 0.10. Therefore, when β1 = 0 we would expect the simulated predictive regime detection
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(a) 15 observations before the start of monitoring
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(b) 5 observations before the start of monitoring
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(c) At the same time as the start of monitoring
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(d) 5 observations after the start of monitoring
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(e) 15 observations after the start of monitoring

Figure 2. Predictive regime detection frequency as a function of β1 for different values of ρ: T ∗+m = 302, E = 327, m1 = 30,
m = 30; MAX, ρ = 0.965, ; MAX, ρ = 0.995, ; SEQ, ρ = 0.965, ; SEQ, ρ = 0.995,
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(a) 15 observations before the start of monitoring
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(b) 5 observations before the start of monitoring
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(c) At the same time as the start of monitoring
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(d) 5 observations after the start of monitoring
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(e) 15 observations after the start of monitoring

Figure 3. Predictive regime detection frequency as a function of β1 for different values of ρ: T ∗+m = 302, E = 361, m1 = 30,
m = 30; MAX, ρ = 0.965, ; MAX, ρ = 0.995, ; SEQ, ρ = 0.965, ; SEQ, ρ = 0.995,
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(a) 15 observations before the start of monitoring

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) 5 observations before the start of monitoring
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(c) At the same time as the start of monitoring
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(d) 5 observations after the start of monitoring
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(e) 15 observations after the start of monitoring

Figure 4. Detection frequency for a second predictive regime when a predictive regime with β1 = 0.25 also exists in the
training period, as a function of β2 for different values of ρ: T ∗ +m = 302, E = 327, m1 = 15, m2 = 30, m = 30; MAX,
ρ = 0.965, ; MAX, ρ = 0.995, ; SEQ, ρ = 0.965, ; SEQ, ρ = 0.995,
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(a) 15 observations before the start of monitoring
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(b) 5 observations before the start of monitoring
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(c) At the same time as the start of monitoring
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(d) 5 observations after the start of monitoring
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(e) 15 observations after the start of monitoring

Figure 5. Detection frequency for a second predictive regime when a predictive regime with β1 = 0.25 also exists in the
training period, as a function of β2 for different values of ρ: T ∗ +m = 302, E = 361, m1 = 15, m2 = 30, m = 30; MAX,
ρ = 0.965, ; MAX, ρ = 0.995, ; SEQ, ρ = 0.965, ; SEQ, ρ = 0.995,

21



frequencies of our procedures to be close to 0.10. It can be seen that each of the curves reported

in Figure 2 indeed starts from approximately 0.10. For both the MAX and SEQ procedures,

when the predictive regime starts before or at the same time as the start of monitoring (cases (a)-

(c)), power rises rapidly with β1. When the predictive regime starts after the start of monitoring

(cases (d)-(e)), a higher proportion of the subsamples used when computing τe,m will be data

from the period of the DGP when no predictability exists. Furthermore, in these two cases

monitoring ends shortly after the predictive regime starts (e.g. for case (e), monitoring ends

11 observations after the predictive regime starts). Therefore, as expected, for both procedures

power rises with β1 at a lower rate than for cases (a)-(c) and ultimately flattens out at a lower

value.

Interestingly, these experiments show that the relative finite sample performance of theMAX

and SEQ procedures is sensitive to the strength of the predictability (as measured by the mag-

nitude of β1), the location of the predictability regime relative to the monitoring period, and

the persistence of the predictor (as measured by the value of ρ). For case (a), when predictabil-

ity starts 15 observations before the start of monitoring, and for ρ = 0.965, SEQ has more

power than MAX, but the difference in power declines as the strength of the predictability

increases. Eventually, the power curve for MAX moves above the curve for SEQ (at approxi-

mately β1 = 0.35). For case (a) with ρ = 0.995, the crossing point of the power curves occurs

earlier (at approximately β1 = 0.23). For case (b) the results have a similar pattern to case

(a), although MAX has even more power than SEQ when the predictability is strong compared

with case (a). Similar results are found for case (c), although power is noticeably lower for all

values of β1. This is to be expected because in this case the predictability regime starts at the

same time as the monitoring, and therefore the initial subsamples used to compute τe,m con-

tain very few observations from the predictability regime (by definition, the subsamples used to

compute τe,m contain more observations from the period when there is no predictability until

half way through the monitoring period). For case (d), and ρ = 0.965, MAX and SEQ have

very similar power when the predictability is weak, although as the predictability strengthens

the power curve for MAX moves above the curve for SEQ. The same general pattern exists

for ρ = 0.995, although the power of both procedures when the predictability is weak is higher

than for ρ = 0.965. For case (e), MAX has more power than SEQ for all values of β1, and the

difference in power increases as the predictability strengthens.

The results from the second set of experiments are given in Figure 3. As expected, when

the monitoring period is extended from E = 327 to E = 361 the predictive regime detection

frequency as a function of β1 increases for both MAX and SEQ. Indeed the detection frequency

and relative finite sample performance of MAX and SEQ are now virtually identical for each of

the predictive regime start dates considered here. This reflects the fact that because of the longer

monitoring period, each set of sequential τe,m statistics now includes a run of statistics computed

using subsamples where a high proportion of each subsample is data from when predictability
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exists in the DGP. When β1 = 0 the empirical FPRs of MAX and SEQ both increase to

approximately 0.20, again as expected. A further interesting feature of our monitoring procedures

can be seen by comparing Figures 2a and 3a relating to the case where the predictive regime

starts 15 observations before monitoring begins (of the cases considered, the one where detection

power is least dependent on the start date of the predictive regime). Although, as discussed

above, the FPR in Figure 3a is roughly double that in Figure 2a for each procedure, very little

differences (for a given value of ρ) are seen between the two different cases in terms of the efficacy

of MAX and SEQ to detect a predictive regime, except where β1 is close to zero. Equation (9)

shows that, other things being equal, the longer is the length of the training period relative to the

monitoring period, the smaller is the theoretical FPR of the procedure. But as these simulation

results highlight, a lower FPR from a longer training period does not entail a decrease in the

efficacy of the procedures to detect a true predictive regime in the monitoring period.

The results for the third and fourth sets of experiments are given in Figures 4 and 5. We find

that, as expected, due to the presence of a predictive regime during the training period, in each

of the individual experiments both maxe∈[m+1,T ∗] τe,m and lπ are increased relative to the case

where no predictability is present in the training period, and as a result, the power curves are

generally lower in these experiments than the corresponding curves in Figures 2 and 3. For both

MAX and SEQ, when β2 = 0 and E = 327 (consistent with α = 0.10), the detection frequency

in Figure 4 is approximately 0.05. When β2 = 0 and E = 361 (consistent with α = 0.20), the

detection frequency for both procedures in Figure 5 is approximately 0.10. Similarly, it can be

seen in Figures 4 and 5 that for β2 > 0, the curves are approximately 0.05-0.10 lower than the

corresponding curves in Figures 2 and 3. The curves in Figure 4 for E = 327 are sensitive to

where the second predictive regime is located. However it can be seen in Figure 5 that, as in

Figure 3, extending the monitoring period to E = 361 reduces the sensitivity of the curves to

the exact location of the predictive regime.

4.2 Additional Simulations

The first set of additional simulations studies the detection power of the MAX and SEQ pro-

cedures as a function of m1 (the length of the predictability regime in the DGP), employing the

same DGP used in the main experiments and assuming the other parameters are fixed at their

original values. The results are graphed in Figure S1 for E = 327 and in Figure S2 for E = 361.

Increases in m1 from a low value initially lead to an increase in detection power. For larger

values of m1 the power curves flatten out. This occurs because as m1 increases, eventually the

end of the predictability regime in the DGP lies beyond the end of the monitoring period, which

in these experiments is assumed to be fixed. When monitoring ends at E = 327 the point at

which the power curves flatten out occurs earlier as we move from start dates (a) to (e), because

the value of m1 such that the end of the predictive regime lies beyond the end of the monitoring
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period E gets smaller. For the longer monitoring period E = 361 there is very little difference

in detection power for the different start dates.

We also carried out an extensive set of robustness checks for MAX and SEQ. The first

checks concern the error terms in the DGP. An attractive feature of our monitoring procedure,

as Proposition 1 shows, is that for sufficiently large T , in addition to being robust to any degree

of contemporaneous correlation of the error terms in the DGP, it is also robust to conditional

heteroskedasticity and non-Gaussianity in the errors. To investigate how well these robust-

ness properties hold in finite samples, we repeated the first set of main simulation experiments

discussed above using the same DGPs but for a range of error distributions and heteroskedastic-

ity patterns for ǫy,t in (1): (i) t(10) error terms; (ii) t(5) error terms; (iii) normally distributed

GARCH(1,1) error terms with conditional variance σ2
y,t = α0+α1ǫ

2
y,t−1+β1σ

2
y,t−1 where α0 = 0.10,

α1 = 0.10 and β1 = 0.80, and (iv) t(5) GARCH(1,1) error terms with the same GARCH param-

eters. Although not formally allowed under the conditions of Proposition 1, we also considered:

(v) t(5) error terms with an unconditional volatility shift from σy = 1 to σy = 2 halfway through

the monitoring period (at t = T ∗ +m+ ⌊(E − T ∗ −m)/2⌋+1). Reassuringly, the results, which

are graphed in Figures S3-S7, are very similar to the first set of main simulation results reported

in Figure 2. As discussed in Remark 3, the AR(1) specification for the predictor in (1)-(3) is

not critical for our analysis, and for large T , both the MAX and SEQ procedures remain valid

for higher order autoregressive predictors. To investigate this issue in finite samples we report

the results from repeating the first set of main simulation experiments given in Figure 2, but

using an AR(2) predictor rather than an AR(1); that is replacing the AR(1) process in (3) by

sx,t = ρ1sx,t−1 + ρ2sx,t−2 + ǫx,t, t = 1, ..., T , setting ρ1 = 0.595, and allowing ρ2 = {0.30, 0.40}.

The results are given in Figure S8 and again they are very similar to the main simulation results

reported in Figure 2.

As a final robustness check, we investigated the detection power of MAX and SEQ when

the regime change in (1)-(3) is gradual rather than discrete. Specifically, we used the DGP for

the first set of main simulation experiments but redefined the dummy variable dt(e1,m1) to be

the exponential function dt(e1,m1) := exp(−γ(t − s)2), which allows for smooth regime change

centered around s, where γ controls the speed of the change. We set s = e1 − 0.50m1 + 1 and

γ = 0.01 so that the main part of the regime change for cases (a)-(e) starts at approximately the

same point as in Figure 2 and lasts for approximately 30 observations. The results are given in

Figure S9 and show that as β1 increases, both MAX and SEQ have good detection power for

this form of regime change. Generally the rate of increase in power with increases in β1 is slower

than in Figure 2 and the curves are slower to flatten out, which occurs because increases in β1

are effectively being weighted by a factor less than one for most of the predictability regime;

hence, the β1 that maximises power (assuming the other parameters in the DGP are fixed) is

higher than for the results in Figure 2.
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5 Empirical Application

5.1 Data and Preliminary Analysis

The dataset used for the empirical application of our monitoring procedure consists of monthly

observations on the equity premium for the S&P Composite index calculated using CRSP’s

month-end values and on 20 different predictors for the period 1974:12-2015:12 (T = 493). We

define the equity premium as in Goyal and Welch (2008) and Neely et al. (2014) as the log

return on the value-weighted CRSP stock market index minus the log return on the risk-free

Treasury bill: yt = log(1 + Rm,t) − log(1 + Rf,t) where Rm,t is the CRSP return and Rf,t is

the Treasury bill return. Ten of the predictors are traditional macroeconomic and financial

variables (MFVs) and ten are binary technical analysis indicators (TAIs) also used by Neely

et al. (2014) in their analysis of equity premium predictability. The traditional MFVs are in

log form (as in Goyal and Welch, 2008; Neely et al., 2014) and each of the predictors is lagged

one period. We consider the log dividend yield (dyt−1), the log dividend-price ratio (dpt−1), log

earnings-price ratio (ept−1), book-to-market ratio (bmt−1), short term yield (stt−1), long-term

yield (ltt−1), long-term - short-term yield spread (spt−1 = ltt−1 − stt−1), BAA-AAA corporate

bond yield spread (dspt−1), net equity expansion (ntist−1), and inflation (inft−1). The TAIs

used are four moving average indicators (MAIs), two momentum indicators (MOIs), and four

on-balance volume (OBV) indicators. The four moving-average rule indicators (MAIs,l,t) are

defined such that MAIs,l,t := 1 if MAs,t ≥ MAl,t, indicating a buy signal, and are defined to be

zero otherwise, where MAj,t := (1/j)
∑j−1

i=0 Pt−i for j = {s, l} and s = {1, 2}, l = {9, 12} and

where Pt is the level of the S&P Composite index. The two l-period momentum rule indicators

(MOIl,t) are defined such that MOIl,t := 1 if Pt ≥ Pt−l, indicating a buy signal, and are defined

to be zero otherwise, where l = {9, 12}. The four on-balance volume rule indicators (OBVs,l,t)

are defined such that OBVs,l,t := 1 if MAOBV
s,t ≥ MAOBV

l,t , indicating a buy signal, and are

defined to be zero otherwise, where MAOBV
j,t := (1/j)

∑j−1
i=0 obvt−i for j = {s, l} and s = {1, 2},

l = {9, 12}, and, obvt :=
∑t

k=1 V OLkDk, where V OLk is trading volume for the S&P Composite

index in period k and Dk is a binary variable such that Dt := 1 if Pt ≥ Pt−1 and Dt := −1

otherwise.

The data used to construct the equity premium and the predictors are taken from the updated

monthly data set on Amit Goyal’s website (www.hec.unil.ch/agoyal/) which is an extended

version of the data set used by Welch and Goyal (2008). A full list of the predictors is given in

Table S1 of the supplementary appendix.

We begin with a preliminary analysis using some popular orthodox methods for detecting

predictability. Table S2 in the supplementary appendix reports, for each predictor variable

considered, the estimated slope parameter (β̂), a right-tailed Newey-West t-test of significance

(tNW ) and the standard and adjusted R2 values for orthodox bivariate regression models applied

to the full sample of data using OLS for parameter estimation. For both the MFVs and the
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TAIs, consistent with many of the previous empirical studies discussed in section 1 very little

evidence of predictability is provided by the tNW tests run at conventional significance levels

and in all cases the R2 values are under 1%. It is important to recognize that although popular

in studies of equity premium predictability, orthodox t-tests (including tNW ) can be misleading

in this case because of the highly persistent lagged regressors used (see again the discussion in

section 1), therefore also reported in Table S2 is the IVcomb test of Breitung and Demetrescu

(2015). This statistic has a standard normal asymptotic null distribution, such that the test

is valid, irrespective of the persistence of the predictor and any heteroskedasticity present in

the errors. As discussed in Remark 4 of Breitung and Demetrescu (2015,p.364), the IVcomb test

can only be validly implemented as a two-tailed test. For the MVFs there is no statistically

significant evidence of predictability from IVcomb at conventional significance levels, and only a

single rejection at the 0.10 significance level for the TAIs.10

Recall that in outlining our monitoring procedure in section 3 we assumed in generating

the empirical critical value, cvπ, that there was no predictability over the training periods.

To assess how this assumption sits with our data sets we apply the same methods used for

obtaining the full sample results in Table S2 to the training periods employed in the monitoring

application below. Although we present the results for all of the methods used in Table 2, to

assess the presence of predictability in these training periods we focus on the IVcomb test. For the

monitoring application below, our initial choice of training periods is 12/74-10/98 (for m = 15),

12/74-07/97 (for m = 30), and 12/74-01/95 (for m = 60). These are the implied training periods

given by T ∗ = 302 − m, where observation t = 302 is the date at which monitoring starts in

the application below, 01/00. If there is statistically significant evidence of predictability for

an initial choice of training period, but this is thought to be due to a period of predictability

towards the end of that training period, then we recommend ending the training period at an

earlier date so as to reduce the likelihood it contains predictability. Thus, the final training

periods employed when monitoring could finish earlier than the initial choice of training period;

see the discussion in subsection 3.4.11

Our preliminary analysis of the data over the implied training periods reveals that for the two

interest rate series stt−1 and ltt−1, and for the bond yield spread dspt−1, there is statistically sig-

nificant evidence of predictability at conventional significance levels from IVcomb for one or more

values of m. Furthermore, the rejections obtained do not appear to be driven by predictability

at the end of these implied samples. Therefore, in the monitoring application below we continue

10Financial theory suggests negative predictive power for stt−1, ltt−1, ntist−1 and inft−1. We therefore multiply
each of these predictors by −1 so that a right-sided test (excepting the IVcomb test which, as discussed above, is
implemented as a two-tailed test) is appropriate for detecting predictability. See footnote 5 for further details.

11If predictability is present during the training period, as the simulations in section 4 demonstrate, our
procedure can still be useful for detecting positive predictability over the monitoring period. Note that if negative
predictability exists over the training period and a predictability regime change is detected using the upper-tailed
version of our procedure, we cannot conclude that the change is to a period of positive predictability without
further analysis, because it could be due to a change to a period of no, or less negative, predictability.
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to use the implied training periods for these three predictors despite the rejections from IVcomb.

Statistically significant evidence of predictability from IVcomb is also obtained for ntist−1, for all

values of m. In this case, we find that predictability is concentrated in the data from 01/92

through to the end of the training periods. Hence, for this predictor and for all values of m, we

end the relevant training periods at 12/91 in the monitoring application below. For all of the

other MFV and TAI predictors no statistically significant evidence of predictability is found from

IVcomb using the implied training periods. The full set of results from the preliminary analysis

of the data over the training periods (using the adjusted training period for ntist−1) are given

in Tables S3 and S4 in the supplementary appendix for the MFVs and TAIs respectively.

5.2 Monitoring Results

We assume that a practitioner applies our MAX and SEQ procedures to monitor for the emer-

gence of predictive regimes from 01/00 (so in all cases T ∗ + m = 302). Results are presented

assuming that monitoring continues through to the final data observation, 12/15. In real-world

applications it is not envisaged that our procedures would be used for continuous monitoring

over anything like such a long period, but it is helpful to present the results through to 12/15

to illustrate the relationship between the length of the monitoring period and the FPR. Results

are computed for m = {15, 30, 60}. For the SEQ procedure we have computed results for both

0.10 and 0.05 level estimated critical values, i.e. cvπ for π = {0.10, 0.05}, but we concentrate

here on the results for π = 0.10. The results for π = 0.05 are given in Table S5 and Table S6 of

the supplementary appendix.

Table 1 reports the number of predictive regimes detected byMAX and SEQ (with π = 0.10)

respectively. For each predictor where one or more predictive regimes are detected, Table 2

reports the date at which the first regime is detected and the associated empirical FPR for

both MAX and SEQ (using cv0.10). Notice that the TAI predictors are 0-1 dummy variables

that will often take the same value for several consecutive observations, and consequently the

subsample τe,m values can be undefined when the TAI does not change over the subsample. If

τe,m is undefined during the monitoring period it simply means that at the relevant observation

when this occurs the test statistic is uninformative about the presence of predictability, but

the τe,m values that are defined can still be used for monitoring. However, a large number

of undefined test statistics in the training period could have a detrimental impact on the finite

sample performance of the procedure. For completeness, the results form = {15, 30} are reported

in these tables, although for some of the TAIs undefined test statistics occur quite frequently

over the training period with these values of m. In practice, we recommend using m ≥ 60

when using our procedure with these particular TAIs to minimize the number of undefined test

statistics over the training period. Alternatively, for a given value of m, reducing the value of l

when constructing the TAIs will result in fewer undefined test statistics. In the application here

27



we report results for l = {9, 12} to be consistent with the regression-based analysis of TAIs in

Neely et al. (2014), even though for some of the MOIs and OBV indicators with m = 60 and

these values of l, τe,m is occasionally undefined over the training and/or monitoring period. For

the MAIs with l = {9, 12} and m = 60 there are no undefined test statistics.

Table 1. Number of predictive regimes detected by MAX and SEQ

MAX SEQ, π = 0.10
m = 15 m = 30 m = 60 m = 15 m = 30 m = 60

MFVs
dyt−1 0 2 1 1 0 2
dpt−1 0 1 1 1 0 3
ept−1 1 2 1 2 3 1
bmt−1 1 0 2 1 0 1
stt−1 0 1 1 0 0 0
ltt−1 0 3 1 3 1 2
spt−1 0 0 0 0 0 0
dspt−1 1 2 1 1 0 0
ntist−1 0 1 0 0 0 0
inft−1 0 0 0 2 0 0

TAIs
MAI1,9,t−1 0 3 3 0 1 2
MAI1,12,t−1 2 1 3 0 2 3
MAI2,9,t−1 1 3 2 0 1 2
MAI2,12,t−1 1 1 3 0 2 3
MOI9,t−1 0 0 3 0 3 2
MOI12,t−1 0 3 3 0 2 2
OBV1,9,t−1 0 2 0 0 1 1
OBV1,12,t−1 1 0 2 1 2 1
OBV2,9,t−1 1 0 1 0 0 2
OBV2,12,t−1 0 0 3 1 1 3

It can be seen from Table 1 that, in total, employing the three sub-sample sizes m =

{15, 30, 60} leads to one or more predictive regimes being detected by MAX for eight of the

ten MFVs. MAX finds no evidence of predictability for spt−1 and inft−1. Notice that the total

number of MFVs found to have predictive power is lower for m = 15 than for the larger values

of m considered. In total, one or more predictive regimes are detected for all ten of the TAIs

considered and the number of TAIs found to have predictive power increases with m; from five

for m = 15, to six for m = 30, and nine for m = 60.

Consider now the results from using the SEQ procedure, also given in Table 1. In total,

employing the three sub-sample sizes m = {15, 30, 60}, one or more predictive regimes are

detected by SEQ for seven of the ten MFVs, and for all of the TAIs. Notice that in contrast

to MAX, the total number of MFVs found to have predictive power is largest for m = 15:
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Table 2. First month where a predictive regime is detected by MAX and SEQ

MAX SEQ, π = 0.10
m = 15 m = 30 m = 60 m = 15 m = 30 m = 60

MAX FPRMAX MAX FPRMAX MAX FPRMAX SEQ FPRSEQ SEQ FPRSEQ SEQ FPRSEQ

MFVs
dyt−1 N/A N/A 02/01 0.055 02/14 0.483 09/07 0.255 N/A N/A 02/02 0.125
dpt−1 N/A N/A 02/01 0.055 02/14 0.483 05/15 0.405 N/A N/A 01/02 0.121
ept−1 07/11 0.338 01/08 0.286 01/09 0.375 09/03 0.142 01/04 0.168 12/04 0.248
bmt−1 07/00 0.025 N/A N/A 07/01 0.095 10/00 0.035 N/A N/A 02/02 0.125
stt−1 N/A N/A 03/11 0.358 10/12 0.458 N/A N/A N/A N/A N/A N/A
ltt−1 N/A N/A 04/03 0.142 03/05 0.257 10/03 0.145 08/04 0.188 08/05 0.272
spt−1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A
dspt−1 07/12 0.357 08/11 0.366 02/14 0.483 05/12 0.354 N/A N/A N/A N/A
ntist−1 N/A N/A 08/11 0.444 N/A N/A N/A N/A N/A N/A N/A N/A
inft−1 N/A N/A N/A N/A N/A N/A 06/04 0.166 N/A N/A N/A N/A

TAIs
MAI1,9,t−1 N/A N/A 12/07 0.284 10/08 0.368 N/A N/A 11/09 0.330 06/04 0.229
MAI1,12,t−1 11/00 0.039 01/08 0.286 09/02 0.153 N/A N/A 01/04 0.168 09/02 0.153
MAI2,9,t−1 01/08 0.263 11/08 0.307 10/08 0.368 N/A N/A 07/10 0.344 10/05 0.278
MAI2,12,t−1 01/08 0.263 01/08 0.286 09/01 0.103 N/A N/A 02/04 0.171 04/02 0.133
MOI9,t−1 N/A N/A N/A N/A 10/00 0.052 N/A N/A 10/03 0.160 02/02 0.125
MOI12,t−1 N/A N/A 08/03 0.154 12/00 0.062 N/A N/A 06/04 0.182 12/01 0.117
OBV1,9,t−1 N/A N/A 11/08 0.307 N/A N/A N/A N/A 06/09 0.320 05/10 0.407
OBV1,12,t−1 01/08 0.263 N/A N/A 02/09 0.377 11/09 0.304 06/04 0.182 12/09 0.397
OBV2,9,t−1 01/08 0.263 N/A N/A 02/09 0.377 N/A N/A N/A N/A 06/10 0.409
OBV2,12,t−1 N/A N/A N/A N/A 11/08 0.370 11/09 0.304 03/10 0.337 10/01 0.108
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predictive regimes are detected for seven MFVs when m = 15, two when m = 30, and five when

m = 60. The total number of TAIs found to have predictive power increases with m, from two

for m = 15, to nine for m = 30, and ten for m = 60. Our results from both MAX and SEQ

are, in general, consistent with the findings in Neely et al. (2014), that stronger evidence of

predictability is found for the TAIs than for the MFVs.

It can be seen in Table 2 that for many of the MFV and TAI predictors, a predictive regime

is first detected around the time of the dot-com bubble/crash in the late-1990s/early 2000s, or

the global financial crisis in 2008-2009. Table 2 also shows that, as might be expected, for some

of the predictors our procedures detect a predictability regime around the same date, and in

some cases, in the same month. Consider for example the results using MAX with m = 30. For

both dyt−1 and dpt−1, predictability is first detected in 02/01. For dspt−1 and ntist−1, in both

cases predictability is first detected in 08/11.

The dating procedures discussed in sub-section 3.3 also provide useful information on the

location of the regimes. As an example, Figure 6 graphs τe,m along with the weak set of dates

obtained using MAX with m = 30 for the dividend-price ratio dpt−1 as a predictor (note that

the strong set of dates is empty in this case). Figures 7 and 8 graph the MAX results with

m = 30 for the short-term and long-term interest rates, stt−1 and ltt−1. A selection of graphical

results for the other predictors for which at least one predictive regime is signalled for either the

MAX or SEQ procedures are provided in the supplementary appendix in Figures S10-S13. For

presentational purposes, in these graphs we do not display τe,m over the entire training period

and instead start the horizontal axis five years before the end of each training period. Also

indicated on these graphs are the end of the training period T ∗, the date when monitoring starts

T ∗+m, the largest τe,m in the training period (maxe∈[m+1,T ∗] τe,m), the date of the first significant

rejection for the i-th predictive regime ji (for the MAX procedure, this is the date at which the

i-th predictive regime is detected), and the FPR, based on (9), as a function of E.

Figure 6 shows that for dpt−1, the MAX procedure with m = 30 detects a single predictive

regime in 02/01 and the weak set of dates covers the period 09/98-03/01. Thus our results

suggest that dpt−1 had predictive power for equity returns during the latter years of the dot-com

bubble period. Notice that the weak set of dates starts before the monitoring period, which

can happen for early rejections because the rejection itself is indexed on the end date of the

sub-sample window. For stt−1, the MAX procedure with m = 30 detects one predictive regime

and Figure 7 shows that the weak set of dates cover the period 10/08-03/11. However, for ltt−1

the MAX procedure with m = 30 detects three predictive regimes. Figure 8 shows that in this

case, the weak set of dates covers the periods 11/00-11/04, 03/11-08/13, 05/11-11/13. Therefore,

the weak set of dates associated with the second and third regimes overlap - suggesting a single

period of predictability that begins in 03/11 and ends in 11/13. Figure 8 shows that the first

regime detected by MAX for ltt−1 in 04/03 follows a gradual increase in τe,m that began after the

dot-com crash and continued through to late-2004. Over this period U.S. interest rates gradually
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rejection), (second rejection), (third rejection), (weak set of dates), (false positive rate), (NBER
indicator)

fell and equity markets recovered after the dot-com crash and 2001 recession. Our results suggest

that the long-term interest rate had predictive power over this period but the short-term interest

rate did not. The second and third regimes for ltt−1 are shorter in duration than the first and

are largely driven by a rapid and short-lived increase in τe,m during 2013.

Neely et al. (2014) investigate differences in predictability between macroeconomic recession

and expansion periods by computing separate R2 statistics for predictive regression models using

the NBER indicator of recessions and expansions to partition the relevant data. They find that

for both the MFVs and TAIs predictability is substantially higher over recessions than over

expansions. In the light of these findings it is interesting to compare the subsample τe,m values

over the monitoring period with the NBER indicator to see if our procedure finds a similar pattern

of support for predictability over the business cycle. Hence, the NBER indicator is also plotted

in Figures 6-8. There are two US recessions over the monitoring period 01/00-12/15: one short

recession in early 2001 (March 2001-November 2001), and one major recession associated with the

global financial crisis (December 2007-June 2009). Figure 6 shows that for dpt−1, predictability

peaks at the start of the 2001 recession but declines during the course of the recession; for stt−1

and ltt−1 the predictive regimes detected do not appear to be correlated with the business cycle.

As shown in the supplementary appendix, for the other predictors, whilst there is some evidence

suggesting that, consistent with the findings in Neely et al. (2014), predictability is stronger
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during recessions than during expansions, it is not a pattern obtained for all of the predictors.12

It is interesting to relate our results to recent research by Farmer et al. (2019), who also focus on

detecting short pockets of in-sample predictability in U.S. equity returns. While the sample sizes

and the number of predictors they analyse differ from ours, there are some similarities between

their results and ours. For example, for the dividend yield, Farmer et al. (2019) find evidence

of pockets of predictability in the early-2000s and the early/mid-2010s; and for the Treasury bill

rate in the late-2000s and the early/mid-2010s. These dates are similar to the predictive regime

dates obtained for these predictors using our MAX procedure.

The predictive regimes in Figures 6-8 often end quite shortly after each regime is first detected

(e.g. in Figure 7, the weak set of dates ends immediately after the regime is detected). Indeed,

this general pattern was observed for all of the MFVs and for the majority of the TAIs. Hence,

the strong set of dates for most of the predictors is empty. This suggests that although investors

using our procedure in real time would have been able to detect predictability in these cases, there

may have been very little time after the point of detection to exploit the predictability before

it no longer existed. To investigate this point using traditional forecasting methods, for each

MFV predictor where one or more predictive regimes are detected by MAX and/or SEQ with

m = 30 we computed out-of-sample forecasts exploiting the information from the monitoring

procedures. Specifically, for each of these predictors we move forward through the monitoring

period one month at a time computing MAX and SEQ at each month along with one step-

ahead forecasts. To compute the forecasts we use a fixed mean benchmark model estimated using

an expanding sample of data that starts at the first observation, until the relevant monitoring

procedure detects a first predictive regime. When this occurs we use the relevant regression

model to compute the forecast for the next month, estimated using an expanding sample of data

that starts at the weak start date for the relevant predictive regime. When the first predictive

regime ends, we stop forecasting. We compared the forecasts computed in this way with the

forecasts obtained using the fixed mean benchmark model for the whole forecasting period. The

mean squared forecast error (MSFE) for each procedure, along with the Diebold and Mariano

(1995) test of equal forecasting accuracy (employing the Harvey et al., 1997, bias-correction and

Student’s t-critical values), and the out-of-sampleR2 value for the procedure are reported in Table

S7 in the supplementary appendix. As expected, because the predictive regimes end so quickly

after they are discovered, for the majority of predictors there is very little difference between

the MSFE obtained exploiting our MAX and SEQ procedures in this way and the MSFE for

the benchmark model. In some cases the MSFE using our test in this way is lower than the

benchmark model, but the differences are not statistically significant. Paye and Timmermann

(2006) and Timmermann (2008) argue that if predictability reflects market inefficiencies then it

12We note that Neely et al. (2014) study a longer sample of the data than the sample used here that ends
earlier (12/50-12/11) and their empirical work is fundamentally different to ours, being an ex post analysis of
predictability (in-sample and out-of-sample) rather than a real-time monitoring application.
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is only ever likely to be a short-lived phenomenon because when it exists, investors will quickly

allocate capital to exploit its presence. Our finding of short pockets of predictability that end

quickly after being detected is entirely consistent with this view.

6 Conclusions

We have developed new real-time monitoring procedures for detecting the emergence of pre-

dictive regimes. Our detection procedures are based on the sequential application of standard

heteroskedasticity-robust (predictive) regression t-statistics for predictability to end-of-sample

data. We have suggested two possible detection rules, both of which are designed to be robust to

both the degree of persistence and endogeneity of the regressors in the predictive regression and

are such that their false positive rates can be controlled, for a given monitoring period length,

by using information obtained from data in a training period. We have applied our proposed

monitoring procedures to investigate for the presence of regime changes in the predictability of

the U.S. equity premium at the one-month horizon by traditional macroeconomic and financial

variables, and by binary technical analysis indicators. Our results suggest that the one-month

ahead equity premium has displayed episodes of temporary predictability and that these episodes

could have been detected in real-time by practitioners using our proposed methodology.
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Supplementary Appendix

Proof of Proposition 1

The stated result in Proposition 1 follows using an application of Theorem 2.1 of Ferreira and

Scotto (2002,p.478) provided {τe,m} forms a strictly stationary sequence of mixing random vari-

ables; the precise mixing conditions required are detailed on page 476 of Ferreira and Scotto

(2002). The result in Theorem 2.1 of Ferreira and Scotto (2002) gives the limiting probability

that the rth (r ≥ 1) largest value in any one of two disjoint subintervals of the sample data

exceeds the sth (s ≥ 1) largest value in the other subinterval. We therefore now establish that

these two conditions hold on {τe,m} under the conditions of Proposition 1.

(i) {τe,m} is a strictly stationary sequence. This arises from the strict stationarity of ǫt and

because we can write xt−1 − x̄−1 in (6) and (7), for t = e−m+ 1, ..., t = e, as

xt−1 − x̄−1 = xt−1 −m−1

e
∑

t=e−m+1

xt−1

= (xt−1 − xe−m−1)−m−1

e
∑

t=e−m+1

(xt−1 − xe−m−1)

= (sx,t−1 − sx,e−m−1)−m−1

e
∑

t=e−m+1

(sx,t−1 − sx,e−m−1)

and

sx,t−1 − sx,e−m−1 =
t−1
∑

j=e−m

ρt−1−jǫx,j + (ρt−(e−m) − 1)sx,e−m−1. (S.1)

Here, for |ρ| < 1, sx,e−m−1 is strictly stationary and so therefore is sx,t−1 − sx,e−m−1 since its

summation term involves a only finite number of ǫx,j. Strict stationarity of xt−1 − x̄−1 then

follows, as does that of τe,m. On setting ρ = 1 in (S.1),

sx,t−1 − sx,e−m−1 =
t−1
∑

j=e−m

ǫx,j

so that xt−1− x̄−1 does not now depend on the unit root process sx,e−m−1 and is therefore strictly

stationary, along with τe,m. In fact, we can extend our results to cases where ρ is allowed to be

T -dependent such as occurs, for example, when the predictor is strongly persistent displaying

either local or moderate deviations from a unit root. To this end, suppose that

ρ = 1− cT−θ

for constants c > 0 and θ ∈ (0, 1]. Here θ = 1 corresponds to the local deviation case; θ < 1 to
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the moderate deviation case. Then, expanding the term ρt−(e−m) − 1 of (S.1) in powers of T−θ,

we can write

ρt−(e−m) − 1 = −{t− (e−m)}cT−θ + o(T−θ)

such that, for large T , we have approximately,

sx,t−1 − sx,e−m−1 =
t−1
∑

j=e−m

ρt−1−jǫx,j − {t− (e−m)}cT−θsx,e−m−1.

Then, since sx,e−m−1 = Op(T
θ/2), we find

sx,t−1 − sx,e−m−1 =
t−1
∑

j=e−m

ρt−1−jǫx,j +Op(T
−θ/2)

such that, asymptotically, sx,t−1 − sx,e−m−1 and xt−1 − x̄−1 do not depend on sx,e−m−1. Strict

stationarity of τe,m (for large T ) then follows.

(ii) {τe,m} is an m−1 dependent sequence. This follows from the uncorrelatedness of ǫy,t and

becomes evident on examining the numerator term of b̂ in (6) which can be written as

e
∑

t=e−m+1

(xt−1 − x̄−1)(yt − ȳ) =
e

∑

t=e−m+1

(xt−1 − x̄−1)ǫy,t

from which we find that τe,m and τe−k,m are independent for |k| > m− 1.

Property (i) (strict stationarity) and property (ii) (finite order dependence, which is equiv-

alent to infinitely fast mixing) taken together are sufficient for us to be able to apply the result

from Theorem 2.1 of Ferreira and Scotto (2002,p.478). Setting r = s = 1 in their notation gives

the limiting probability that the maximum of one disjoint subinterval exceeds the maximum of

another as equal to the limiting ratio of the length of the former subinterval to the total length

of the two subintervals. This result can then be used to establish (8) in Proposition 1.
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Table S1. List of predictors used

Macroeconomic and financial variables (MFVs)
1. log dividend yield (dyt−1)
2. log dividend-price ratio (dpt−1)
3. log earnings-price ratio (ept−1)
4. book-to-market ratio (bmt−1)
5. short term yield (stt−1)
6. long-term yield (ltt−1)
7. long-term - short-term yield spread (spt−1 = ltt−1 − stt−1)
8. BAA-AAA corporate bond yield spread (dspt−1)
9. net equity expansion (ntist−1)
10. inflation (inft−1)

Technical analysis indicators (TAIs)
1. 1-9 moving average rule (MAI1,9,t−1)
2. 1-12 moving average rule indicator (MAI1,12,t−1)
3. 2-9 moving average rule (MAI2,9,t−1)
4. 2-12 moving average rule (MAI2,12,t−1)
5. 9 period momentum rule (MOI9,t−1)
6. 12 period momentum rule (MOI12,t−1)
7. 1-9 on balance volume rule (OBV1,9,t−1)
8. 1-12 on balance volume rule (OBV1,12,t−1)
9. 2-9 on balance volume rule (OBV2,9,t−1)
10. 2-12 on balance volume rule (OBV2,12,t−1)
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Table S2. Preliminary results for the full sample, 12/74-12/15

β̂ tNW IVcomb R2(%) R̄2(%)
MFVs

dyt−1 0.615 1.358* 0.840 0.395 0.191
dpt−1 0.576 1.272 0.606 0.345 0.141
ept−1 0.424 0.721 1.072 0.225 0.022
bmt−1 0.497 0.659 0.544 0.106 -0.098
stt−1 0.042 0.723 0.350 0.116 -0.087
ltt−1 0.036 0.501 0.398 0.056 -0.148
spt−1 0.108 0.804 -0.025 0.129 -0.075
dspt−1 0.135 0.214 0.064 0.021 -0.183
ntist−1 -0.005 -0.030 0.883 0.000 -0.204
inft−1 0.517 0.768 0.656 0.148 -0.056

TAIs
MAI1,9,t−1 0.430 0.827 0.513 0.200 -0.004
MAI1,12,t−1 0.647 1.103 1.142 0.415 0.211
MAI2,9,t−1 0.453 0.855 1.126 0.215 0.012
MAI2,12,t−1 0.802 1.465* 1.766* 0.648 0.445
MOI9,t−1 0.370 0.621 0.209 0.136 -0.067
MOI12,t−1 0.350 0.553 0.623 0.116 -0.088
OBV1,9,t−1 0.491 0.994 0.045 0.269 0.065
OBV1,12,t−1 0.679 1.265 0.150 0.488 0.285
OBV2,9,t−1 0.759 1.483* 0.478 0.637 0.434
OBV2,12,t−1 0.776 1.441* 0.761 0.642 0.439

Note. * denotes statistical significance at the 0.10 level. The critical value used for tNW is 1.282.
The critical value used for IVcomb is ± 1.645.
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Table S3. MFVs: preliminary results for each training period used when monitoring with
m = {15, 30, 60}

β̂ tNW IVcomb R2(%) R̄2(%)
m = 15

dyt−1 -0.010 -0.013 0.466 0.000 -0.352
dpt−1 0.006 0.008 0.344 0.000 -0.352
ept−1 0.135 0.210 0.096 0.014 -0.338
bmt−1 -0.142 -0.164 -0.183 0.010 -0.343
stt−1 0.142 2.075* 2.384* 0.832 0.483
ltt−1 0.165 1.467* 2.346* 0.634 0.284
spt−1 0.173 1.178 1.129 0.351 0.000
dspt−1 0.452 0.763 1.286 0.250 -0.101
ntist−1 0.362 2.748* 1.434 1.926 1.441
inft−1 1.307 1.913* 1.431 0.842 0.493

m = 30
dyt−1 -0.100 -0.096 0.347 0.004 -0.367
dpt−1 -0.125 -0.128 0.175 0.007 -0.365
ept−1 0.084 0.122 0.008 0.005 -0.367
bmt−1 -0.189 -0.203 -0.135 0.016 -0.355
stt−1 0.146 2.112* 2.466* 0.943 0.574
ltt−1 0.181 1.548* 2.442* 0.747 0.378
spt−1 0.186 1.271 1.144 0.436 0.066
dspt−1 0.477 0.773 1.409 0.283 -0.087
ntist−1 0.362 2.748* 1.434 1.926 1.441
inft−1 1.283 1.828* 1.332 0.854 0.485

m = 60
dyt−1 1.729 1.238 1.214 0.834 0.419
dpt−1 1.721 1.328* 1.035 0.823 0.408
ept−1 0.569 0.794 0.632 0.226 -0.191
bmt−1 0.854 0.800 0.675 0.272 -0.145
stt−1 0.112 1.607* 2.405* 0.569 0.153
ltt−1 0.108 0.837 2.200* 0.241 -0.177
spt−1 0.212 1.501* 1.027 0.602 0.186
dspt−1 1.085 1.714* 2.197* 1.316 0.903
ntist−1 0.362 2.748* 1.434 1.926 1.441
inft−1 0.928 1.298* 0.929 0.446 0.029

Note. * denotes statistical significance at the 0.10 level. The critical value used for tNW is 1.282.
The critical value used for IVcomb is ± 1.645. The training periods are 12/74-10/98 (for m = 15),
12/74-07/97 (for m = 30), and 12/74-01/95 (for m = 60) for all predictors other than ntist−1.
For ntist−1 the training periods are 12/74-12/91 for all values of m.
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Table S4. TAIs: preliminary results for each training period used when monitoring with
m = {15, 30, 60}

β̂ tNW IVcomb R2(%) R̄2(%)
m = 15

MAI1,9,t−1 -0.718 -1.175 -0.969 0.537 0.187
MAI1,12,t−1 -0.289 -0.473 -0.116 0.079 -0.273
MAI2,9,t−1 -0.299 -0.524 -0.100 0.090 -0.262
MAI2,12,t−1 0.061 0.113 0.520 0.003 -0.349
MOI9,t−1 -0.249 -0.415 0.258 0.058 -0.294
MOI12,t−1 -0.464 -0.715 0.256 0.184 -0.167
OBV1,9,t−1 0.264 0.472 0.659 0.072 -0.280
OBV1,12,t−1 0.200 0.301 0.362 0.037 -0.315
OBV2,9,t−1 0.380 0.600 0.648 0.141 -0.210
OBV2,12,t−1 0.209 0.309 0.700 0.041 -0.311

m = 30
MAI1,9,t−1 -0.528 -0.893 -0.693 0.309 -0.062
MAI1,12,t−1 -0.060 -0.104 0.236 0.004 -0.368
MAI2,9,t−1 -0.085 -0.158 0.218 0.008 -0.364
MAI2,12,t−1 0.201 0.379 0.819 0.040 -0.331
MOI9,t−1 -0.250 -0.415 0.249 0.064 -0.308
MOI12,t−1 -0.468 -0.715 0.248 0.204 -0.167
OBV1,9,t−1 0.367 0.660 0.729 0.150 -0.222
OBV1,12,t−1 0.206 0.308 0.360 0.043 -0.329
OBV2,9,t−1 0.522 0.830 0.934 0.286 -0.084
OBV2,12,t−1 0.215 0.316 0.707 0.048 -0.324

m = 60
MAI1,9,t−1 -0.792 -1.316 -1.089 0.703 0.288
MAI1,12,t−1 -0.302 -0.513 -0.101 0.094 -0.324
MAI2,9,t−1 -0.251 -0.458 0.016 0.068 -0.350
MAI2,12,t−1 -0.030 -0.056 0.562 0.001 -0.417
MOI9,t−1 -0.502 -0.829 -0.039 0.265 -0.153
MOI12,t−1 -0.659 -0.980 -0.049 0.414 -0.003
OBV1,9,t−1 0.130 0.233 0.460 0.019 -0.399
OBV1,12,t−1 -0.026 -0.039 0.033 0.001 -0.418
OBV2,9,t−1 0.299 0.467 0.643 0.096 -0.322
OBV2,12,t−1 -0.019 -0.028 0.402 0.000 -0.418

Note. * denotes statistical significance at the 0.01 level. The critical value used for tNW is 1.282.
The critical value used for IVcomb is ± 1.645. The training periods are 12/74-10/98 (for m = 15),
12/74-07/97 (for m = 30), and 12/74-01/95 (for m = 60).
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Table S5. Number of predictive regimes detected by SEQ with π = 0.05

m = 15 m = 30 m = 60
MFVs

dyt−1 1 0 2
dpt−1 1 1 2
ept−1 1 0 0
bmt−1 1 0 1
stt−1 0 0 0
ltt−1 3 1 1
spt−1 0 0 0
dspt−1 1 0 0
ntist−1 0 0 0
inft−1 0 0 0

TAIs
MAI1,9,t−1 0 1 1
MAI1,12,t−1 0 2 2
MAI2,9,t−1 0 0 2
MAI2,12,t−1 0 1 3
MOI9,t−1 1 3 3
MOI12,t−1 0 3 2
OBV1,9,t−1 0 1 1
OBV1,12,t−1 0 2 3
OBV2,9,t−1 0 0 0
OBV2,12,t−1 0 1 3

S.7



Table S6. First month where a predictive regime is detected by SEQ with π = 0.05

m = 15 m = 30 m = 60
SEQ FPRSEQ SEQ FPRSEQ SEQ FPRSEQ

MFVs
dyt−1 07/07 0.251 N/A N/A 04/02 0.133
dpt−1 05/15 0.405 05/01 0.066 10/01 0.108
ept−1 10/14 0.396 N/A N/A N/A N/A
bmt−1 10/00 0.035 N/A N/A 10/01 0.108
stt−1 N/A N/A N/A N/A N/A N/A
ltt−1 08/03 0.139 08/03 0.154 06/05 0.266
spt−1 N/A N/A N/A N/A N/A N/A
dspt−1 06/12 0.355 N/A N/A N/A N/A
ntist−1 N/A N/A N/A N/A N/A N/A
inft−1 N/A N/A N/A N/A N/A N/A

TAIs
MAI1,9,t−1 N/A N/A 04/10 0.339 03/09 0.379
MAI1,12,t−1 N/A N/A 09/03 0.157 04/04 0.222
MAI2,9,t−1 N/A N/A N/A N/A 12/08 0.372
MAI2,12,t−1 N/A N/A 04/09 0.316 10/02 0.157
MOI9,t−1 07/03 0.137 09/03 0.157 08/01 0.099
MOI12,t−1 N/A N/A 02/04 0.171 08/01 0.099
OBV1,9,t−1 N/A N/A 04/10 0.339 02/10 0.401
OBV1,12,t−1 N/A N/A 01/09 0.311 04/10 0.405
OBV2,9,t−1 N/A N/A N/A N/A N/A N/A
OBV2,12,t−1 N/A N/A 01/09 0.311 04/05 0.260
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Table S7. Out-of-sample forecasting results for MFVs with m = 30

MSFEB MSFEPR p-value OS-R2(%)
MAX

dyt−1 32.790 31.058 0.260 5.282
dpt−1 32.790 31.223 0.807 1.730
ept−1 16.495 16.421 0.684 0.447
bmt−1 N/A N/A N/A N/A
stt−1 22.785 22.748 0.321 0.166
ltt−1 23.310 23.650 0.505 -1.460
spt−1 N/A N/A N/A N/A
dspt−1 22.760 22.782 0.321 -0.096
ntist−1 23.294 23.338 0.179 -0.187
inft−1 N/A N/A N/A N/A

SEQ
dyt−1 N/A N/A N/A N/A
dpt−1 N/A N/A N/A N/A
ept−1 26.248 27.003 0.129 -2.878
bmt−1 N/A N/A N/A N/A
stt−1 N/A N/A N/A N/A
ltt−1 23.088 23.091 0.985 -0.016
spt−1 N/A N/A N/A N/A
dspt−1 N/A N/A N/A N/A
ntist−1 N/A N/A N/A N/A
inft−1 N/A N/A N/A N/A

Note. MSFEB is the mean squared forecast error for a fixed mean benchmark model; MSFEPR

is the mean squared forecast error allowing for a single predictability regime detected using
MAX; p-value is the statistical significance of the Diebold and Mariano (1995) test for equal
forcasting accuracy (employing the Harvey et al., 1997; bias-correction and Student’s t-critical
values), OS-R2(%) is the out-of-sample R2 value.
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(c) At the same time as the start of monitoring
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(e) 15 observations after the start of monitoring

Figure S1. Predictive regime detection frequency as a function of m1 for different values of β1: T ∗ + m = 302, E = 327,
ρ = 0.965, m = 30; MAX, β1 = 0.25, ; MAX, β1 = 0.50, ; SEQ, β1 = 0.25, ; SEQ, β1 = 0.50,
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(a) 15 observations before the start of monitoring
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(c) At the same time as the start of monitoring
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Figure S2. Predictive regime detection frequency as a function of m1 for different values of β1: T ∗ + m = 302, E = 361,
ρ = 0.965, m = 30; MAX, β1 = 0.25, ; MAX, β1 = 0.50, ; SEQ, β1 = 0.25, ; SEQ, β1 = 0.50,
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Figure S3. Predictive regime detection frequency as a function of β1 for different values of ρ and t(10) error terms: T ∗+m =
302, E = 327, m1 = 30, m = 30; MAX, ρ = 0.965, ; MAX, ρ = 0.995, ; SEQ, ρ = 0.965, ; SEQ, ρ = 0.995,
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(c) At the same time as the start of monitoring
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Figure S4. Predictive regime detection frequency as a function of β1 for different values of ρ and t(5) error terms: T ∗ +m =
302, E = 327, m1 = 30, m = 30; MAX, ρ = 0.965, ; MAX, ρ = 0.995, ; SEQ, ρ = 0.965, ; SEQ, ρ = 0.995,
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(c) At the same time as the start of monitoring
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Figure S5. Predictive regime detection frequency as a function of β1 for different values of ρ and normally distributed
GARCH error terms: T ∗ + m = 302, E = 327, m1 = 30, m = 30; MAX, ρ = 0.965, ; MAX, ρ = 0.995, ; SEQ,
ρ = 0.965, ; SEQ, ρ = 0.995,
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Figure S6. Predictive regime detection frequency as a function of β1 for different values of ρ and t(5)-GARCH error terms:
T ∗ + m = 302, E = 327, m1 = 30, m = 30; MAX, ρ = 0.965, ; MAX, ρ = 0.995, ; SEQ, ρ = 0.965, ; SEQ,
ρ = 0.995,
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Figure S7. Predictive regime detection frequency as a function of β1 for different values of ρ and t(5) errors with an
unconditional volatility shift at t = 315 from σy = 1 to σy = 2: T ∗+m = 302, E = 327, m1 = 30, m = 30; MAX, ρ = 0.965,

; MAX, ρ = 0.995, ; SEQ, ρ = 0.965, ; SEQ, ρ = 0.995,
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Figure S8. Predictive regime detection frequency as a function of β1 with an AR(2) predictor and AR parameters ρ1 = 0.595,
ρ2 = {0.30, 0.40}: T ∗+m = 302, E = 327, m1 = 30, m = 30; MAX, ρ2 = 0.30, ; MAX, ρ2 = 0.40, ; SEQ, ρ2 = 0.30,

; SEQ, ρ2 = 0.40,

S.17



0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) 15 observations before the start of monitoring

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) 5 observations before the start of monitoring

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(c) At the same time as the start of monitoring
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Figure S9. Predictive regime detection frequency as a function of β1 for different values of ρ and smooth regime change:
T ∗ +m = 302, E = 327, m = 30; MAX, ρ = 0.965, ; MAX, ρ = 0.995, ; SEQ, ρ = 0.965, ; SEQ, ρ = 0.995,
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Figure S10. MAX procedure, m = 30: (τe,m), (maxe∈[m+1,T∗] τe,m), (T ∗), (T ∗ + m), (first rejection),
(second rejection), (third rejection), (weak set of dates), (false positive rate), (NBER indicator)
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Figure S10 Continued. MAX procedure, m = 30: (τe,m), (maxe∈[m+1,T∗] τe,m), (T ∗), (T ∗ + m), (first
rejection), (second rejection), (third rejection), (weak set of dates), (false positive rate), (NBER indicator)
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Figure S11. SEQ procedure,m = 30: (τe,m), (cv0.10), (T ∗), (T ∗+m), (first rejection), (second rejection),
(third rejection), (weak set of dates), (false positive rate), (NBER indicator)
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Figure S12. MAX procedure, m = 60: (τe,m), (maxe∈[m+1,T∗] τe,m), (T ∗), (T ∗ + m), (first rejection),
(second rejection), (third rejection), (weak set of dates), (strong set of dates), (false positive rate), (NBER

indicator)

S.21



90 95 00 05 10 15
-5

0

5

10

 
e

,m

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 F
P

R
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Figure S12 Continued. MAX procedure, m = 60: (τe,m), (maxe∈[m+1,T∗] τe,m), (T ∗), (T ∗ + m), (first
rejection), (second rejection), (third rejection), (weak set of dates), (strong set of dates), (false positive
rate), (NBER indicator)
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Figure S13. SEQ procedure,m = 60: (τe,m), (cv0.10), (T ∗), (T ∗+m), (first rejection), (second rejection),
(third rejection), (weak set of dates), (strong set of dates), (false positive rate), (NBER indicator)
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Figure S13 Continued. SEQ procedure,m = 60: (τe,m), (cv0.10), (T ∗), (T ∗+m), (first rejection), (second
rejection), (third rejection), (weak set of dates), (strong set of dates), (false positive rate), (NBER indicator)
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