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This paper presents an optimal NARX neural network identification model for a

magnetorheological (MR) damper with the force-distortion behavior. An intensive

experimental study is conducted for designing the NARX network architecture to enhance

modeling accuracy and availability, and the activation function selection, weights,

and biases of the selected network are optimized by differential evolution algorithm.

Different experimental training and validation samples are used for network training.

The prediction capability of the optimal NARX model is verified by new measured test

data. The test and comparative results show that the optimal NARX network model

can satisfactorily emulate the dynamic behavior of MR damper and effectively capture

its distortion behavior occurred with the increased current. The developed inverse

NARX network model can effectively estimate the required current and track desired

damping force. Moreover, the effects of different noise disturbance on the NARX network

model performance are analyzed, and the model error varies slightly with a small noise

disturbance. The accuracy of the results supports the use of this modeling technique for

identifying irregular non-linear models of MR damper and similar devices.

Keywords: magnetorheological damper, NARX neural network, dynamic model, differential evolution algorithm,

force distortion

INTRODUCTION

Magnetorheological (MR) damper has emerged as an effective semiactive control device used to
attenuate the undesired vibrations. The characteristics of a MR damper may vary between viscous
liquid and semisolid under different damping coefficients according to the applied strength of a
magnetic field controlled by a voltage or current (Metered et al., 2010). MR dampers offer several
advantages such as quick response time, easy design, low power consumption, and large dynamic
range, which are used in a wide range of applications such as vehicle suspension system (Oh
and Choi, 2019), seismic protection (Christie et al., 2019), and weapon shock resistance (Li and
Wang, 2012). As the dynamic characteristics of a MR damper are obtained in advance when it
is applied in semiactive vibration control, it is necessary to establish an accurate MR damper
model for identifying its dynamics to guarantee a relatively good vibration reduction effect. From
the measured hysteretic mechanical features of various MR dampers, it can be found that their
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dynamic forces exhibit a strong non-linear property due to the
viscoplastic behavior of MR fluids and uncertainty of external
magnetic field and excitation (Song et al., 2005; Tu et al.,
2019). Besides the accurate prediction of dynamic behaviors,
the relevant inverse dynamic model is also required to produce
reasonable current that can track the desired control force when
the MR damper applied in this situation (Hu et al., 2017).

Various mechanical models of MR dampers used for
mechanical analysis and vibration control can be classified
as parametric and non-parametric models. The parametric
model is commonly used for the forward dynamics of a
MR damper attributed to its simple physical structure. Its
mechanical behavior is physically modeled using a combination
of different damping, elasticity, and friction elements, which can
well-describe the constitutive physical features of the damper
(Sahin et al., 2010). These parametric models mainly include
the Bingham model, hysteretic biviscous model, Bouc–Wen
model, hyperbolic tangent model, and their corresponding
modified and improved types (Wang and Liao, 2011; Rossi
et al., 2018). Among them, the phenomenological model has
been widely adopted, which can accurately represent the non-
linear hysteresis of a typical MR damper over a wide range
of operating conditions. However, this method is required to
identify too many parameters, which increases model complexity
and is difficult to identify inverse model (Chang et al.,
2016).

An alternative non-parametric model can simulate the
dynamics of a MR damper by the non-linear fitting and training
methods with various intelligent algorithms. In this modeling
process, several input variables, such as the piston displacement,
velocity, current, and temperature of MR damper, are required
to be obtained for further training (Zapateiro and Luo, 2007).
Owing to its flexibility and self-learning ability, neural networks
can be combined with many training algorithms in MR damper
modeling to provide a desired identification performance. Du
et al. presented an approach to approximate the forward and
inverse dynamic behaviors of MR damper using evolving radial
basis function network (Du et al., 2006). Tudón-Martínez et al.
developed a feed forward artificial neural network to model
the two commercial MR dampers in detail, which was based
on experimental damping force, as well as different input
current, piston rod displacement, and velocity (Tudón-Martínez
et al., 2012). A recursive lazy learning method based on neural
networks was considered to describe the hysteretic characteristics
of MR damper (Boada et al., 2011). To determine the input
control current for vehicle suspension, Zong et al. established
an inverse MR damper model using adaptive neuro-fuzzy
inference system technique so as to gain the desired damping
force (Zong et al., 2012). Khalid et al. proposed a dynamic
recurrent neural network modeling approach to reproduce the
hysteretic non-linear behavior for a small-scale MR damper, and
the modified Bouc–Wen model was employed as the reference
model to provide the comprehensive training data (Khalid
et al., 2014). Although the above neural network models could
describe the full mechanical behaviors of MR damper, they
failed to consider the distorted hysteresis phenomenon caused
by fluid compressibility and vacuum. Moreover, the train and

test data sets of many network models were consistently derived
from the same operating excitation condition with the random
divide ratio, which reduced the generalization capability of
the model.

Recently, the optimal neural network models were successful
developed in MR dampers. Priyandoko et al. incorporated a
particle swarm optimization method for the non-parametric
modeling of MR dampers using adaptive neuro-fuzzy technique
(Priyandoko and Baharom, 2013). To enhance the forecast
capacity of the artificial neural network model, Yu et al. applied
the ant colony algorithm in model training to obtain the
optimal network model based on the data sampled from the
MR elastomer isolator (Yu et al., 2015). Xu et al. investigated
a back propagation (BP) neural network model with artificial
bee colony algorithm, which was used to obtain the required
voltage for semiactive control of MR damper simulated by
phenomenological model (Xu et al., 2017). It is found that
the neural network optimization used in these studies aims to
optimize the weights and biases.

The non-linear autoregressive network with exogenous inputs
(NARX) was widely used in various vibration damper modeling.
It is a very general and powerful black-box model due to its
capability of capturing a wide variety of non-linear dynamic
behavior. Alghafir et al. developed a computationally NARX-
type neural network model to characterize highly non-linear
frequency-dependent thermally sensitive hydraulic dampers
for use in the virtual tuning of passive suspension systems
(Alghafir and Dunne, 2012). Ni et al. used the NARX network
technique within a Bayesian inference framework to present
the forward and inverse dynamic modeling of a self-sensing
MR damper (Ni et al., 2015). Fu et al. designed a NARX
neural network with three-layer structure to approximate the
dynamics of MR elastomer isolator (Fu et al., 2016). Overall,
these previous studies indicated that the NARX network
model precisely captures the non-linear behavior of the target
vibration damper.

In this paper, the dynamic response characteristics of the MR
damper under different loading conditions (variable excitations
and applied currents) are obtained. Based on this, the NARX
network architectures are designed by the trial-and-error method
to guarantee the good modeling accuracy. The activation
functions, weights, and biases of selected network are optimized
by differential evolution algorithm (DEA). For better prediction,
new measured test data, which are not available in the training
process, are used to verify the prediction capability of the
optimal NARX model. The effect of noise disturbance on the
modeling error is also investigated. The rest of this paper is
organized as follows. In MR Damper and Test Environment,
the dynamic mechanical characteristic experiment of the shear-
valve mode MR damper is presented. NARX Neural Network
Identification Modeling of MR Damper describes the NARX
network employed for characterizing the non-linear dynamics
of a MR damper with a force-distortion behavior. Inverse
Tracking Identification of MR Damper deploys an optimal inverse
NARX network model to emulate the required current and
track desired damping force. Finally, a brief conclusion is given
in Conclusion.
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MR DAMPER AND TEST ENVIRONMENT

Figure 1 shows the mechanical test system used for this
investigation, which mainly consists of INSTRON tensile
machine, WYK-301 DC-regulated power supply, control
monitor, and MR damper with shear-valve mode. The structure
size of MR damper is mainly determined by 72mm in cylinder
inner diameter, 20mm in piston rod diameter, and 220mm in
cylinder height, and the damping gap is 1mm. The MR fluid
of the damper is mainly composed of carbonyl iron powder
(25%), synthetic hydrocarbon oil, and additives. The material
properties of MR fluid are given in Table S1. The lower end
of MR damper is fixed on the lower gripper of test bench,
which remains motionless. Meanwhile, the upper end of MR
damper is excited by simulated vibration. In the experiment, MR
damper is clamped on the gripper of INSTRON tensile machine
after connecting its coil lead wire to the power supply. The
tensile machine is then operated in a harmonic displacement
mode with various combinations of amplitude and frequency
by setting the stretching times, which provides a reciprocating
work motion for MR damper at different input currents. Finally,
the response damping force is detected by force sensor and
recorded in the control monitor. The piston velocity signal of
MR damper is derived by the finite differential procedure of the
measured displacement.

To make the identified model fully represent the dynamics of
MR damper, different amplitudes are selected for the tests under
various loading frequencies (0.5–1Hz). For each loading case,
different currents (0–2A) are used to examine the performance of
the MR damper under different magnetic fields. Figure S1 shows
measured force–displacement and force–velocity responses of
the MR damper working in a 15mm amplitude with a frequency
of 1Hz under different currents. It is observed that the damping
force of MR damper increases with the applied current, and
the obvious force-distortion behaviors are shown in the initial

compress and rebound stroke. As the current increases, the force
lag is more obvious. The major reason for this behavior is the
reciprocal compensation interference between the piston and
floating piston of MR damper. The floating piston performs
a volume compensation for the compression of the MR fluids
and trapped air in the compress and rebound stroke. When
the MR damper is subjected to the larger current at small
piston velocity range, the MR fluids will gradually change
from the viscous liquid to semisolid state in the damping
gap, which blocks the flow of MR fluids between the upper
and lower cylinder chambers. This results in the floating
piston unable to perform effective volume compensation and
further exhibiting the stroke distortion phenomenon before the
vacuum in the cylinder chamber is compensated. Such volume
compensation anomalies may be caused by various specific MR
damper structures, such as the poor sealing, low compensation
stiffness, and insufficient filling of MR fluids. In addition, the
clearance between the MR damper and grippers of the tensile
testing machine should be compensated by the displacement,
which also results in the damping force lag. Therefore, MR
damper with force distortion exhibits strong non-linear dynamic
characteristics in the measured force–displacement and force–
velocity responses.

NARX NEURAL NETWORK
IDENTIFICATION MODELING OF MR
DAMPER

The NARX neural network model can realize an overall
input/output black-box mapping by the multilayer perceptron
incorporating time delay unit and output feedback in the input
layer (Chan et al., 2015). As shown in Figure 2, the NARX
model is expressed in terms of the discrete-time input–output
equation as:

FIGURE 1 | Mechanical test system. (A) Tensile machine. (B) MR damper used for testing.
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FIGURE 2 | NARX neural network structure with s outputs.

ŷ (t) = f
[

u (t) , u (t − 1) , · · · , u (t − nu) , y (t − 1) , · · · ,

y
(

t − ny
)

]

+ e (t) (1)

where y(t) and ŷ(t) are the target and predicted output variables,
respectively; u(t) is the input variable of the network; nu and ny
are the time delays of input and output variable; and e(t) is the
model error between the target and prediction.

According to the input variable u(t), the hidden layer output
at time t is obtained as

Hi (t) = f1

[

nu
∑

r=0

wiru (t − r) +

ny
∑

l=1

wily
(

t − l
)

+ ai

]

(2)

where wir is the connection weight between the input neuron
u(t–r) and ith hidden neuron. wil is the connection weight
between the ith hidden neuron and output feedback neuron y(t–
l); ai is the bias of the ith hidden neuron; and f 1(·) is the hidden
layer activation function.

Combining the hidden layer output, the final prediction can
be given by

ŷj (t) = f2

[

nh
∑

i=1

wjiHi (t) + bj

]

(3)

wherewji is the connection weight between the ith hidden neuron
and jth predicted output nh; bj is the bias of the jth predicted
output; nh is the number of hidden neurons; and f 2(·) is the
output layer activation function.

Table 1 lists the training, validation, and test data sets used
for NARX network modeling from the measured experimental
dynamic damping force ofMR damper, which combines different
working excitations under various frequencies and amplitudes,
and the training samples are illustrated in Figure 3. The training
samples are used for the network learning process to update the
weights and biases in real time. The network model can realize a
more accurate stop iteration to prevent data overfitting by setting
validation samples, and its generalization performance is verified
by untrained test samples. The model prediction performance is

TABLE 1 | Training, validation, and test samples of NARX model.

Data set Displacement excitation Current (A)

Amplitude (mm) Frequency (Hz)

Train 7.5 0.5 0:0.5:2

15 1 0:0.5:2

7.5 1 0:1:2

15 0.5 0:1:2

Validation 7.5 0.5 1

15 1 1

7.5 1 0.5, 1.5

15 0.5 0.5, 1.5

Test 1 10 1 0:0.5:2

Test 2 12.5 0.75 0:0.5:2

Test 3 15 0.75 1:0.5:2

FIGURE 3 | Training samples.

evaluated by the root mean square error (RMSE) between the
measured and predicted damping force, which is given by

RMSE =

√

√

√

√

1

N

N
∑

i=1

[

F̂ (i) − F (i)
]2

(4)

where F(i) and F̂(i) are the measured and predicted damping
force; N is the total number of data.

NARX Neural Network Architecture
Generally, the piston displacement, piston velocity, current, and
past damping force are selected as input variables in the network
modeling of MR damper. In terms of Formula (1), the NARX
network model of MR damper can be expressed as

F̂ (t) = f
[

x (t) , · · · , x (t − nx) , v (t) , · · · , v (t − nv) ,

I (t) , · · · , I (t − nI) , F (t − 1) , · · · , F (t − nF)
]

(5)
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FIGURE 4 | The root mean square error (RMSE) under different input

combinations.

where x(t), v(t), and I(t) are the piston displacement, piston
velocity, and current of MR damper at time t, respectively; F(t)
and F̂(i) are the measured and predicted damping force at time
t, respectively; nx, nv, nI , and nF are the time delays of the piston
displacement, piston velocity, current, and past damping force.

To reduce model redundant and improve its accuracy in
real-time applications, it is necessary to select a simplified
network architecture with suitable hidden layer parameters, input
variables, and time delays. Figure 4 shows the modeling error
index RMSE under different time delays and input variables. In
this preliminary analysis, the number of hidden neuron is set
at 15 for each network configuration. When the network input
variable is (x, v, F), poor model performance is evident due
to the fact that damping force is current dependent. Similarly,
the model performance is also unsatisfactory when (x, v, I) is
considered as input variables. Hence, it is essential to consider
the current and past damping force into the network inputs. By
comparing the RMSE results from the input variables (x, I, F) and
(x, v, I, F), it is also necessary to make the piston velocity as an
input. Moreover, a comparison, as shown in the RMSE errors of
the input combinations (v, I, F) and (x, v, I, F), indicates that the
contribution of piston displacement for improving the prediction
performance is negligible, and even increases the model error
after the time delay increases to a certain range. In addition, the
model error is significantly reduced when the time delay increases
but has an increasing trend when the time delay is larger than
two. As a result, we select the piston velocity, current, and past
damping force (v, I, F) as the input variables of NARX network
model, and the time delay is chosen at two to obtain a better
prediction result.

Once the network inputs and time delays were defined,
different numbers of hidden neurons and layers are evaluated.

FIGURE 5 | The root mean square error (RMSE) under different hidden layer

parameters.

Figure 5 shows the modeling error index RMSE under different
hidden layer parameters. It can be seen that if the number of
hidden neurons and layers is increased in this structure, the
modeling performance is improved under a stronger learning
ability in the network. However, this will also result in a
complex training network toward the undesirable overfitting.
The modeling error RMSE of network model with a three-layer
hidden structure presents a unstable oscillation state when the
hidden neuron is beyond eight. However, there is no significant
difference after the hidden neuron reaches 14. Considering the
model simplicity and comparable accuracy, we choose a one-
hidden-layer network with 14 hidden neurons according to the
minimal dimensions criterion.

Optimal NARX Neural Network Modeling
In general, the weights and biases of NARX network are
randomly chosen, and the activation functions for hidden
and output layers are set by default to hyperbolic tangent
function (tansig) and linear function (purelin) in most network
training, respectively. As a result, the network is prone to the
local optimization, resulting in a poorly performing training
result. Therefore, the genetic algorithm and particle swarm
optimization, characterized by random global search capability,
are often used to optimize the connection weights and biases
of BP neural network, and obtain better model prediction
performance (Zhang et al., 2015; Liu et al., 2017). To further
improve the prediction performance of the selected NARX
network model, the DEA with stronger robustness is used
to simultaneously optimize the activation function selection,
weights, and biases. The corresponding parameters of the DEA
are set as follows: evolutionary iterations is 100, population size is
40, mutation weight is 0.6, crossover probability is 0.85, and five
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activation functions (logsig, purelin, tansig, satlins, and radbas)
are selected for the optimization process in this study. Figure 6
describes the optimization procedure of DEA for NARX network
model, which is mainly composed of the optimization algorithm
iteration and network update prediction. The detailed process is
given as follows.

Step 1. The above-obtained network architecture is first
established, and the initial population of the activation function,
weights, and biases are randomly generated within the set certain
range. In this operation, several parameters are configured,
including the population size, mutation weight, and crossover
probability. The population is randomly initialized by

xij = Umin + rand × (Umax − Umin) (6)

where xij is the initial individual, i = 1, 2,..., P, j = 1,
2,..., D; P and D are the population size and number of

FIGURE 6 | The optimization procedure of differential evolution algorithm

(DEA) for NARX network model.

the objective parameters, respectively; The rand is a random
number with a uniform probability distribution in [0, 1];
Umax and Umin are the upper and lower bounds of initial
population, respectively.

Step 2. To obtain the better generalization ability with small
training error in the network model, the RMSE calculated by all
samples is regarded as the fitness function. The objective fitness
function value corresponding to every reshaped population
is recorded.

Step 3. A differential variable is generated by subtracting
two different random objective individuals, and both
the mutation and crossover operations are conducted to
generate new experimental individuals in the search space
by updating the differential variables. For each objective
individual, the corresponding differential mutation is
expressed by

vG+1
i = xGr1 + ηr

(

xGr2 − xGr3
)

(7)

ηr = (1− η) × rand + η (8)

where vGi
+1 is the (G + 1)th generation mutation individual;

the individual serial numbers r1, r2, and r3 are different and
randomly generated. η is the mutation weight within the range
of [0, 2]; ηr is a robust mutation factor.

To enhance the diversity of the population, a crossover
operation is also performed as follows

uG+1
ij =

{

vG+1
ij , if rand ≤ CR or j = rd

xGij , otherwise
(9)

where uij is the new experimental individual; CR is the crossover
probability within the range of [0, 1]; and rd is a randomly
generated integral number in [1,2,..., D].

Step 4. The fitness of each individual in the updated population
is evaluated. The experimental individual is chosen as the
offspring when its fitness value is better than that of the objective
individual. Otherwise, the objective individual remain becomes
the offspring. The evolution process will repeat for a fixed
iteration or be ended when the search process converges with

FIGURE 7 | The iteration process of the fitness and activation function in the network model. (A) The fitness. (B) The activation function.
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a given accuracy. The best individual will be used to determine
the optimal network parameters. The selection method is given
as follows, where f is the fitness function.

xG+1
i =

{

uG+1
i , if f

(

uG+1
i

)

< f
(

xGi
)

xGi , otherwise
(10)

Step 5. The NARX network is trained with the optimal activation
function, weights, and biases. Then the predicted results are
output by updating these parameters.

Figure 7 presents the iteration process of the fitness and
activation function in the network model optimized by DEA. As
the evolutionary iteration increases, the population fitness RMSE
decreases gradually. The best and worst finesses are reduced
by 21.2 and 45.7%, respectively. After continuous iterative
optimization, the activation function of the hidden layer is
optimized from radbas to tansig, and the activation function of
the output layer is optimized from purein to tansig. According to
the above design issues, the NARX network identification model
of MR damper with 8 input neurons, 14 hidden neurons, and 1
output neuron is eventually established.

FIGURE 8 | Comparisons of the measured and predicted force–displacement and force–velocity results. (A) Test 1. (B) Test 2. (C) Test 3.
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Figure 8 illustrates the comparisons of the measured and
predicted results about the force–displacement and force–
velocity curves under different test conditions given in Table 1. It
can be observed that the force–displacement and force–velocity
hysteretic loops predicted by the optimal NARX network model
match the measured results and effectively capture the force-
distortion behavior of the damper. Therefore, the network model
has accurate prediction generalization ability for other untrained
samples. It is noted that there exist obvious error in peak
region of piston velocity in the force–velocity loops. This can
be explained that the sample points are rarely distributed, and
there are a jump behavior for loading the next set of data sample
in these regions. According to the prediction results, the error
distribution of the original and optimal network model at the

FIGURE 9 | Error distribution of the original and optimal network model.

limits is shown in Figure 9. The count shown in this distribution
is dependent on the bin size of 2N. Table S2 summarizes the
prediction errors (RMSE) of the original and optimal network
model under different test data sets. It is apparent that the error
distribution of the optimal network model is concentrated in
the vicinity of zero and less distributed in the range of larger
errors than that of the original network model. Furthermore,
the optimal network model obtains smaller prediction error than
the original model under each test set. These results suggest
that the optimal NARX network model with DEA is, in this
case, able to achieve a higher degree of model fidelity than the
original model.

To further elaborate the effectiveness of the proposed model
for identifying irregular non-linear behavior compared with
other models, a comparative analysis under the obtained

FIGURE 11 | The relative error boxplots for the proposed model and

contrasting models.

FIGURE 10 | Comparisons between the measured and predicted results for other two models. (A) Algebraic model. (B) Back propagation (BP) neural network model.
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FIGURE 12 | The iteration process of the fitness and activation function in the inverse model. (A) The fitness. (B) The activation function.

experimental data (15 mm−0.75Hz) is established with other
parametric and non-parametric models: algebraic model and BP
neural network model (Yu et al., 2015; Kanarachos et al., 2018).
The DEA is also used for model optimal identification under
the same parameter settings. Figure 10 gives the comparisons
between the measured and predicted results for other two
models. Owing to the limitation of the higher-degree non-
linear differential equations in the parametric model, the force-
distortion behavior cannot be well-described by the algebraic
model, which leads to its poor accuracy. The prediction result
of BP neural network model without internal memory appears
the unsteady fluctuation response. Figure 11 presents the relative
error distribution boxplots between the measured and predicted
results from the proposed model and contrasting models.
Clearly, the relative error distribution found in the proposed
model is much smaller than that of other models. Thus,
the effectiveness and superiority of the proposed model are
further illustrated.

It is clear that noise disturbance in the measured inputs
and output is unavoidable in a real system and generating
unfavorable effect on control performance. Therefore, it is
necessary to analyze the impact of noise disturbance on the
network model performance. Since the noise ranges existed
in the piston velocity, current and past damping force are
completely inconsistent; these inputs are uniformly normalized
before the noise analysis. It is assumed that the white noise is
loaded into the normalized inputs, and the effect of the added
disturbance with different signal-to-noise ratio on the model
error is shown in Figure S2, where the larger signal-to-noise ratio
reflects the less noise disturbance present in the inputs. Although
the small noise disturbance has little influence on the modeling
performance of NARX network, there is a rapidly increasing
model error as the noise disturbances continue to increase.
It is noted that each input has different effect on the model
error. Among them, the past damping force has the greatest
influence on themodeling performance than other inputs include
the current and piston velocity. Therefore, it is necessary to
strengthen the noise reduction of input signal to minimize the

disturbance effect on the accurate network model of MR damper
in practical systems.

INVERSE TRACKING IDENTIFICATION OF
MR DAMPER

To effectively estimate the required current for tracking the
desired damping force generated from some optimal control
algorithms, an inverse dynamic identification model for this
irregular MR damper is established using the NARX network.
This model can continuously adjust the control current to fully
utilize the intelligent damping characteristics of MR damper.
Based on the above forward model of MR damper, an inverse
NARX network dynamic model can be formulated as

Î (t) = f
[

x (t) , · · · , x (t − nx) , v (t) , · · · , v (t − nv) ,

F (t) , · · · , F (t − nF) , I (t − 1) , · · · , I (t − nI)
]

(11)

where Î(t) is the predicted current of MR damper.
Like the forward model, the network inputs of this inverse

dynamic model are selected as the piston velocity, damping
force, and past current with the time delay nv = nF =

nI = 2. Subsequently, the disorder test distribution data
sets under the different excitations and currents are used
for configuring the inverse model to assess its prediction
performance. Figure 12 shows the iteration process when DEA
is used to optimize the activation function selection, weights,
and biases of the inverse dynamic model. The prediction
error of the inverse dynamic model is also continuously
optimized. The best and worst finesses are reduced by 23.4
and 45.2%, respectively. The optimal activation functions for
the hidden and output layers are obtained as satlins and
purelin, respectively.

Figure 13 shows the predicted results from the inverse
dynamic model in comparison with the measured ones. It
can be concluded that the measured currents applied to the
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FIGURE 13 | The predicted results from the inverse dynamic model in comparison with the measured ones. (A) Predicted current. (B) Tracked damping force.

FIGURE 14 | Error distribution of the original and optimal inverse model.

MR damper are matched well with the predicted results.
The measured damping force can be tracked precisely when
the predicted currents of the inverse dynamic model applied

to the corresponding forward model. This means that the
input current is effectively evaluated by the optimal inverse
dynamic model. Figure 14 shows the error distribution of
the original and optimal inverse models at the limits, which
shows the significant smaller error concentration range in
the optimal inverse dynamic model. Table S3 shows the
modeling error RMSE for the predicted current and tracking
damping force compared with the measured ones. It is
apparent that the smaller prediction errors of the required
current and tracked damping force are simultaneously obtained
in the optimal inverse dynamic model. These verification
results demonstrate that the developed inverse dynamic model
accurately emulates the required current to track desired
damping force.

Considering the influence of noise disturbance on the inverse
dynamic model performance, the modeling error caused by
the noise disturbance of different signal-to-noise ratio in each
normalized input is given in Figure S3. The graph shows
that there is a slow increase under the relatively small noise
disturbance in the modeling error. Therefore, it can be concluded
that the proposed NARX network model can provide reliable
robustness. The damping force disturbance with noise still
has the most prominent influence on the model performance
compared with other inputs, which leads to more obvious
modeling error.
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CONCLUSION

In this paper, an optimal NARX neural network identification
model was developed for a MR damper with the force-distortion
behavior. The intensive train results showed that the selected
NARX network architecture with 8–14–1 neurons and 2 input
delays can obtain good prediction capability. In addition, the
activation function selection, weights, and biases of the selected
network were optimized by DEA. It is certified that the optimal
NARX network model could emulate the dynamic behavior of
the MR damper more satisfactorily than the original one and
other models by comparing the RMSE and error distribution and
also effectively captures the distortion behavior of MR damper.
Meanwhile, the developed inverse NARX network model was
able to effectively estimate the required current to track desired
damping force. Moreover, the effect of different noise disturbance
on the model performance was analyzed. The model error was
varied slightly with a small noise disturbance. It is noted that
the damping force with noise disturbance has a big influence on
the model predictive capability. A possible way to deal with this
problem is performing the enhanced filtering and noise reduction
on the acquired measurement data to reduce its adverse effect
on the real system. As a result, the optimal NARX network
modeling technique could be effective in formulating the non-
linear dynamics of MR dampers and adequate for the mechanical
analysis of MR damper and semiactive control system.
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