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ABSTRACT

The epimastigotes (insect stage) of Trypanosoma cruzl, are unable to synthesize 

de novo the diamines putrescine and its analogue cadaverine, from their amino acid 

precursors. Therefore the metabolic pathways to polyamines (aliphatic bases) in 

T.cruzi, clone X I0/6  epimastigotes, have been studied by in vitro radiolabelling using 

these diamine precursors. [3H]Putrescine was rapidly taken up from the medium and 

incorporated into the polyamines spermidine, spermine and the glutathione-polyamine 

conjugate N1J i 8-f>ir(glutathionyl)spermidine (trypanothione). Likewise [3H]cadaverine 

was rapidly taken up by T.cruzi and converted into the analogous polyamines 

aminopropylcadaverine and bti(aminopropyl)cadaverine and the glutathione-polyamine 

conjugates glutathionylaminopropylcadaverine and N1,N9bis(glutathionyl)- 

aminopropylcadaverine (homotrypanothione). Detailed analysis has revealed that 

T.cruzi epimastigotes (clone X10/6) transport exogenous [3H]putre seine and 

[3H]cadaverine by  a rapid, high affinity, temperature dependent, diamine transport 

system which exhibits saturable kinetics (putrescine Kg, -  2.0 pM , V ,^  -  3.3 nmol 

min*1 (108 cells)"1; cadaverine K,,, = 13.4 pM, Vm., ■ 3.9 nmol min*1 (108 cells)'1). 

Diamine transport requires the presence of a proton gradient and thiol groups, does not 

utilise an amino acid transporter and its activity is altered as die cells proceed through 

the growth cycle. This transporter shows high specificity for the diamines, putrescine 

and cadaverine, but low specificity for the polyamines, spermidine and spermine. 

Hence polyamine metabolism in T.cruzi epimastigotes differs from other 

trypanosomadds ('Trypanosoma brucei, Leishmania and Crithidia fascicuiata) in three 

ways. Firsdy T.cruzi lacks the ability to synthesize diamines de novo. Secondly both 

putrescine and cadaverine are rapidly taken up and can be converted into significant
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amounts of spermine and bû(aminopropyl)cadaverine respectively. Thirdly T.cruzi is 

able to synthesize homotrypanothione in addition to trypanothione. If the pattern of 

polyamine metabolism in the mammalian stages of T.cruzi is similar to that observed 

with the epimastigotes, these findings will have important implications with respect 

to future developmental strategies for the chemotherapy of Chagas’ disease.
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Table U  Prevalence of some human diseases caused by parasitic protozoa

Disease Distribution

(continents)

Incidence 
of infection1 

(millions)

People at risk 
o f infection 

(millions)

Deaths per annum 

(thousands)

References

Malaria South and Central 
America, Asia, 
Africa, Europe

120 500-2200 500-1200 (WHO, 1992) 
(WHO, 1993)

Leishmaniasis South and Central 
America, Asia, 
Africa, Europe

12 350 75 (Desjeux, 1992) 
(WHO, 1993)

Trypanosomiasis:

South American
(T-cruzi)

South and 
Central America

16-18 90 45 (Moocayo, 1992) 
(WHO, 1993)

African
(7Jtm cei group)

Africa 0.015-0.0202 50 ? (WHO, 1993) 
(Kuzoe, 1993)

1 Number of people infected with the parasite.
* Number of reported cases per annum. However the actual number of cases is more likely to be in the region of 200 000 to 300 000 per annum.



Intracellular Amastigotes
multiplication of transform to
amastigotes free trypomastigotes

Figure 1J The life cycle of Trypanosoma crud
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CHAPTER I ; INTRODUCTION

Chagas’ disease or South American trypanosomiasis is found only in the 

Americas. It is caused by the protozoan parasite Trypanosoma cruzi, which is a 

member of the Kinetoplastidia (Figure 1.1). According to the 1991-92 World Health 

Organization report, T. cruzi currently infects an estimated 16 to 18 million people in 

South and Central America with a further 90  million people (some 25% of the 

population) at risk of infection. The incidence of infection is probably close to one 

million new cases per year. Mortality due to  Chagas’ disease is difficult to estimate 

but is probably responsible for over 45,000 deaths per annum (WHO, 1993). It is a 

major public health problem in Latin America with the risk o f  infection being directly 

associated with socio-economic factors such as poor quality housing in rural areas and 

unplanned urban development (WHO, 1993), costing governments millions of dollars 

per annum in both health care costs and lost productivity (Kingman, 1991). In fact in 

many countries across large parts of Asia, Africa and South America, human diseases 

caused by parasitic protozoa (Table 1.1), continue to place an enormous burden on the 

health of the people and hamper development.

l.U  Lift reck of XaMUMM frwri
The life cycle of T.cruzi (Figure 1.2) involves the obligatory passage through 

both vertebrate (man and other animals) and invertebrate triatomine hosts, in a series 

of different developmental stages. Essentially then T,cruzi can be carried by a  wide 

variety of domestic and wiki animals, ‘reservoir hosts’, and is transmitted to humans



by the blood sucking triatomine o r ‘kissing’ bugs through faecal contamination of the 

bite site or mucous membranes and increasingly via the transfusion of infected blood 

(Van-Voorhis, 1990; Richman & Kerdel, 1989; Docampo etal. 1991; de Castro, 1993; 

Dusanic, 1991).
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About 1-3 weeks after infection with T.cruzi, acute symptoms are observed in 

about 3% of patients, particularly children. These can involve local inflammation, for 

example a Chagoma or unilateral conjunctivitis (RomaAa’s sign), and a flu-like illness 

associated with the initial parasitaemia. These manifestations, which persist for about 

1 to 3 months in the absence of treatment, are generally mild except in very young 

children where fatal myocarditis and meningoencephalitis can occur. Following a 

latent period which may last 10-40 years, about 10-30% of individuals go on to 

develop the clinical symptoms characteristic of chronic Chagas’ disease, namely 

cardiac (cardiomyopathy), digestive (megacolon and mega-oesophagus) and 

neurological disturbances. Patients with severe chronic symptoms become 

progressively sick and commonly die as a  result o f heart failure (Van-Voorhis, 1990; 

Richman f t  Kerdel, 1989; de Castro. 1993; WHO, 1993).

The present state of chemotherapy is highly unsatisfactory, as no cheap and 

safe drug exists for the cure o f  Chagas’ disease. Two drugs, the nitroheterocyclic 

compounds, nifurtimox (3-methyl-4-(5’-nitrofurfurylideneamino)tetrahydro-4//-l,4- 

thiazine-1,1-dioxide) sold under the name Lampit (Bayer company) and benznidazole



(V-benzyl-2-nitroimidazole acetamide) sold as Rochagan or Radinil (Roche company) 

were introduced in the m id 1970’s for the treatment of patients with Chagas’ disease 

(Van-Voorhis, 1990; de Castro, 1993). Both drugs are orally active (Gutteridge, 1987) 

making their administration easier. However long treatment regimes are required of 

up to 120 days, they are both extremely toxic and they are only of use in the control 

of acute symptoms (Van-Voorhis, 1990; de Castro, 1993; Gutteridge, 1987). No drugs 

are available for prophylaxis or the treatment of chronic patients. Furthermore, there 

is increasing evidence to  suggest that autoimmunity, induced by the parasitic infection,
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is involved in the pathophysiology of the chronic phase (Petty & Eisen, 1989). This 

makes the urgent need for the development of a cheap and safe chemotherapy for 

Chagas’ disease even more challenging.

In order to achieve the successful control of Chagas’ disease an integrated 

approach is required. Control of the insect vector by use of residual pyrethroid 

insecticides should be coupled with the testing of all blood prior to transfusion, 

education, housing improvements and the development of a  cheaper and more 

effective chemotherapy to cut the misery caused by the disease and eliminate the 

human reservoir of T.cruzi.

1.LS.I Transmission prevention:

i) Vector control T.cruzi is carried by triatomine bugs (Hemiptera, Reduviidae, 

Triatominae). The m ost important vectors are Triatoma Westerns, Panstrongylus 

megistus, Rodnius prolixus, Triatoma brasiliensis and Triatoma dimidiata. The



triatomine bugs have a much longer life cycle and slower rate of reproduction than 

most insects making them more amenable to control by insecticides (Schofield et at. 

1987). In the Northern Cone countries (those which lie North of the Amazon) 

transmission of T.cruzi is predominantly by the sylvatic (woodland) vectors R.prolixus 

and T  dimidiata making total eradication not feasible. In the Southern Cone countries 

(Argentina, Brazil, Bolivia, Chile, Paraguay and Uruguay) T.cruzi is mainly 

transmitted by the intra-domiciliary vector, T.infestans (with some transmission by 

sylvatic /  domestic vectors P.megistus and T.brasiliensis) (Schofield et al. 1987). 

Therefore apart from an area of Bolivia where it lives in the wild, T.infestans lives 

almost exclusively in people’s houses, making it an easy target for insecticides and 

total eradication a real possibility (Expanded Program on Immunisation, 1992; 

Kingman. 1991; WHO. 1993).

A joint initiative has been launched by the Southern Cone countries to 

eliminate Chagas’ disease as a public health problem from these countries by the year 

2000 (Expanded Program on Immunisation. 1992). This involves public health 

education, a massive house and outbuildings insecticide (synthetic pyrethroids) spray 

program with four yean of follow-up entomological surveillance and measures to 

prevent transmission by blood transfusion (Expanded Program on Immunisation, 1992; 

Kingman, 1991). It is hoped that sufficient money will be made available to finance 

the project and that all the countries will be fully committed to the program, otherwise 

reinfection by migration across borders o f  neighbouring countries could pose a serious 

threat to the overall success of the program.
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ih  Blood fninrfll<inn In endemic areas, infection via blood transfusions can be



prevented by prior treatment of potentially infected blood with Gentian violet 

(Van-Voorhis, 1990; Docampo et al. 1991). This therapy is not ideal as a  frequent 

blue discolouration o f the skin is observed after transfusion making it difficult to spot 

early signs of anoxia and the gentian violet itself may be mutagenic, carcinogenic or 

teratogenic (Van-Voorhis, 1990; Richman & Kerdel, 1989). Diagnostic kits are also 

under development to screen blood for the presence of T.cruxi parasites (WHO, 1993).

Hi) Placental transmission T.cruzi is known to be able^pass across the placenta from 

mother to child and may occasionally be transmitted through the mothers milk 

(Schofield et al. 1987).
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In 1991 a new steering committee on Integrated Chemotherapy for African 

trypanosomiasis, Chagas’ disease and Leishmaniasis (I-CHEM) was established. This 

resulted in the creation of a Drug Development Group whose aim is to expedite 

compound development and to identify possible new leads for the chemotherapy of 

the three diseases (WHO, 1993). The purine analogue allopurinol (Marr et al. 1978) 

and antifungal azoles which inhibit sterol biosynthesis are now undergoing clinical 

trials for use in treatment of Chagas’ disease (WHO, 1993).

Not surprisingly the pharmaceutical industry has little interest in this area as 

any research programme would be expensive, time consuming, speculative and 

unjustifiable on a  commercial basis (Gutteridge, 1987). Hence a well managed and 

efficiently run I-CHEM programme (or a similar type of scheme) may provide the 

only immediate hope for the development of new drugs to combat Chagas’ disease.
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Figure 1 3  Structure of naturally occurring diamine* and polyaminea.



Chapter 1 : Introduction 20

1 .1 3 3  Rational drug design

Rational drug design involves the identification of an essential enzyme or 

metabolite, that is present in the parasite, but either absent or sufficiently different in 

the human host to enable the design of inhibitors which will selectively block this 

parasitic target molecule. Ideally this will lead to the death of the parasite while at the 

same time not producing too many unwanted side-effects in the host. This has 

prompted investigations on the biosynthesis of polyamines in T.cruzi, as the polyamine 

spermidine is used in the production of trypanothione, a  novel metabolite of 

spermidine covalently linked to two glutathiones, which so far appears to be unique 

to the Kinetoplastidia (Fairlamb A  Cerami, 1992). In fact interference with polyamine 

metabolism has already been identified as a target for drugs in the chemotherapy of 

protozoal infections (Bacchi et al. 1980b; Schechter A  Sjoerdsma, 1986). This is 

discussed in section 1.4 after a general introduction to the topic of polyamines.

The polyamines are small, nitrogenous aliphatic molecules. The most common 

naturally occurring polyamines are putrescine, spermidine and spermine (strictly 

speaking putrescine is a  diamine but it is often placed under the general heading of 

‘polyamines’) (Tabor A  Tabor. 1984) (Figure 1.3). However many other polyamines 

and polyamine derivatives can also be formed within certain cells and polyamines are 

also present in some alkaloids, antibiotics and steroids (Yamakawa, 1986).

The polyamine, spermine (phosphate), was first observed as a constituent of 

seminal fluid over 300 years ago (Lewenhoeck, 1678), yet despite this and their



ubiquitous distribution among cells (Tabor Sc Tabor, 1984; Tabor & Tabor, 1983) 

relatively little is still known about their functions at the biochemical level. However 

through the design of specific inhibitors of polyamine biosynthesis and the use of 

polyamine deficient mutants there is general agreement that polyamines are essential 

for normal cell proliferation, differentiation and macromolecular synthesis in both 

prokaryotic and eukaryotic organisms (Tabor Sc Tabor, 1984; Pegg & McCann, 1988; 

Marton Sc Morns, 1987; Pegg, 1986; Tabor Sc Tabor, 1983). The effects they exert on 

the cell are influenced by the fact that at a  physiological pH the nitrogens of the 

primary and secondary amine groups are protonated, unlike the point charges of 

inorganic cations such as Ca2+ and Mg2+. Hence polyamines are essentially organic 

polycations and as such will interact with anionic components of the cell in particular 

ribonucleic acid (RNA), deoxyribonucleic acid (DNA), phospholipid and adenoW 

triphosphate (ATP), with most of the polyamines existing as a poly amine-RNA 

complex in the cells (Watanabe et al. 1991). Polyamines mainly associate with these 

macromolecules (generally in the order spermine > spermidine »  putrescine) through 

non-covalent electrostatic forces but other interactions (hydrogen bonding and Van der 

Waals forces) are important for the specificity of binding of polyamines to 

macromolecules such as transfer RNA (Marton Sc Morris, 1987; Fry dm an et al. 1992). 

The binding of polyamines to nucleic acid both stabilises their tertiary structure 

(Brunton et al. 1991) and has a general stimulatory effect on macromolecular (DNA, 

RNA and protein) synthesis (Tabor & Tabor, 1984; Brunton et al. 1991). In particular 

a specific biochemical role for spermidine in protein synthesis has been identified as 

the eukaryotic translation initiation factor 3A (eIF-5A) appears to require the amino 

acid hypusine, formed at a specific lysine residue on the protein through the
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Figure L4 A generalised diagram showing the polyamine biosynthetic and 
reiroconversion pathway. Adapted from Pegg and McCann 1988.



contribution of the 4-aminobutyl moiety of spermidine, for its translation initiation 

activity (Park et al. 1991; Park et al. 1993). Polyamines can also be

covalently cross-linked to proteins at glutamine residues by the action of 

transglutaminases (Greenberg et al. 1991; Folk, 1980). In addition, polyamines, 

especially spermine, decrease membrane deformability and stabilize the membrane 

skeleton (Balias et al. 1983), with the omission of polyamines from the growth media 

of a polyamine-deficient mutant of Chinese hamster ovary cells causing a loss of the 

actin filaments and microtubule components of the cells cytoskeleton (Pohjanpelto et 

al. 1981). In addition poly amines, in particular spermine, could possibly play a role 

in inter- and intra-cell communications, as they can modulate the activity of N-Methyl- 

D-Aspartate receptors (Williams, 1994) and appear to stimulate the GTPase activity 

of purified GTP-binding proteins (Bueb et al. 1992).

For most of the functions described here it appears that it is mainly the 

polyamines spermidine and spermine which are required with relatively little 

involvement from putiescine. However there are some specific roles for putreseine in 

bacteria (Munro et al. 1972) and mammalian cells (Poulin et al. 1991) where an 

expanded putre seine pool is required for adaption to growth under hypo-osmotic 

growth conditions.
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A general scheme is shown (Figure 1.4) depicting the polyamine biosynthetic 

and retroconversion pathway, together with the enzymes catalysing each reaction and
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the sites of action o f some inhibitors of the polyamine pathway. Not all organisms 

carry out all the steps in the pathway. Some common differences that exist are:

1) The reactions converting arginine to putreseine via agmatine (surrounded by a 

dashed line in Figure 1.4) only occur in plants, bacteria (Kallio et al. 1981) and 

possibly Tjcnui (Kierszenbaum et al. 1987a; Majumder et al. 1992; Yakubu et al. 

1992).

2) Eukaryotic protozoans such as Trypanosoma brucei and Crithidia fasciculata 

(Bacchi et al. 1977) and most bacteria (Tabor & Tabor, 1983), with the exception of 

the acetobacteria (Paulin et al. 1983), are unable to synthesize spermine under normal 

conditions.

3) The retroconversion pathway which converts spermine back to spermidine, and 

spermidine back to putre seine via the appropriate acetylated intermediates, is found 

mainly in vertebrates (Seiler, 1987a; Seiler, 1988; Bolkenius & Seiler, 1989; Mondovi 

et al. 1988) although it also occurs in some plants and microbial systems (Tabor & 

Tabor, 1985; Morgan, 1985; Smith, 1985). Members of the trypanosomatidae do not 

appear to contain a retroconversion pathway (Bacchi & McCann, 1987; Bacchi & 

Yarlett, 1993; Majumder & Kierszenbaum, 1993a).

The rest o f  this section will concentrate in more detail on the pathways to 

polyamines and their regulation in mammalian cells and the trypanosomatidae. I

I -3-2.1 An overview

A detailed analysis of each of the enzymes in the polyamine pathway is not 

dealt with here and readers are referred to several reviews which cover this area in





some detail (Tabor & Tabor, 1984; Pegg, 1986; Bolkenius & Seiler, 1989; Pegg & 

McCann, 1992; McCann & Pegg, 1992; Seiler, 1987b). The main aim here is to 

explore the way in which mammalian cells are able to regulate their polyamine 

content.

13.2.2 Regulation

The widely held view is that the polyamine content of mammalian cells is 

highly regulated. This appears to be largely achieved by alteration of the activity of 

three o f the enzymes involved in polyamine biosynthesis and retroconversion namely 

ornithine decarboxylase, 5-adenosylmethionine decarboxylase and spermidine/spermine 

N1-acetyltransferase which all have very short half-lives of less than 1 hour in many 

cells (Pegg & McCann, 1988). Polyamine uptake, excretion, derivatisation and 

interconversion also serve to adjust intracellular polyamine levels.

Stimulation o f cell growth by a wide variety of growth-promoting stimuli 

including hormones, growth factors and other drugs, leads to a rapid induction of 

ornithine decarboxylase (O D Q  (Bachrach, 1984) and S-adenosylmethionine 

decarboxylase (AdoMetDC) (Pegg, 1988) gene expression. This, combined with the 

fast turnover rates of these enzymes, provides the cell with the means of regulating 

its polyamine content. Polyamines also exert feedback control of their own synthesis 

at the transcriptional, translational and post-translational levels (Figure 1.5).

Specific regulation of ODC is thought to involve PEST sequences (regions 

which are rich in the amino acids proline (P), glutamic acid (E), serine (S) and 

threonine (T)). Pest sequences were originally identified by computer algorithms of 

proteins which exhibit short (<2h) half-lives (Rogers et at. 1986). The most C-terminal
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PEST region may in part account for the intracellular instability of mouse ODC as the 

trypanosomal ODC protein which lacks this PEST region is a much more stable 

protein (Ghoda et al. 1989; Ghoda et al. 1990). Another factor in the degradation of 

the ODC protein is the polyamine induced synthesis and release of a non-covalently 

bound 22 kDa ODC-inhibitory protein, named antizyme (Fong et al. 1976; Heller et 

al. 1976). Antizyme binds to the ODC protein in a region near the N-terminus (Li & 

Coffino, 1992) and causes a conformational change making the C-terminus more 

accessible to degradation (Li & Coffino, 1993) by the 26S proteosome (Murakami et 

al. 1992) or the 20S proteosome (Carrera et al. 1994). Furthermore distinct regions of 

the mouse ODC protein are required for constitutive degradation and polyamine- 

dependent regulation (Ghoda et al. 1992).

The AdoMetDC protein, which has a half life of under one hour in  mammalian 

cells (Pegg, 1988; Heby & Persson, 1990), also contains a PEST region, but it is 

unclear what role it plays in the rapid turnover of this protein (Pegg A  McCann, 

1992). However the degradation of AdoMetDC is influenced by polyamines (reviewed 

in (Pegg A  McCann. 1992; Pegg, 1986; Pegg. 1988; Heby A Persson. 1990)), with 

a  rise in the intracellular levels of spermidine and spermine leading to  an increase in 

its breakdown whilst putreseine has no effect and may even stabilize the protein. 

Conversely agents that cause a decrease in polyamines lead to an increase in the 

amount of active AdoMetDC protein (Pegg, 1984) through increases in  the cellular 

level of AdoMetDC mRNA, in its translation efficiency (ratio o f  polysomes to 

monoribosomes goes up) and in the half-life of the mature enzyme (Pegg, 1988; 

Autelli et al. 1991; Persson et al. 1989; Pajunen et al. 1988; White et al. 1990). 

Spermine primarily affects the translation where as spermidine affects the levels of
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AdoMetDC mRNA (Shantz et al. 1992). Finally putreseine accelerates the rate of 

cleavage of the pre-protein to the mature active enzyme (Kameji & Fegg, 1987) and 

also aliosterically stimulates the activity of the mature AdoMetDC protein (Pegg & 

McCann, 1992), suggesting that ODC is the dominant controlling factor of the whole 

pathway.

The levels of rat cytoplasmic acetyl -CoA: sperm idine/sperm ine Nl- 

acetyltransferase (c-SAT) are normally very low but can be induced by treatment of 

mammalian cells with the polyamines spermidine and spermine, hormones and drugs 

such as carbon tetrachloride, thioacetamide and methylglyoxal ¿ur(guanylhydrazone) 

(Persson & Pegg, 1984; Seiler, 1987b). The acetylated polyamines formed can then 

either be removed from the cells by transport and catabolism, or oxidised back to 

shorter chain diamines and polyamines (Seiler, 1987b).

During this discussion on the regulation of the cells polyamine content, an area 

which has thus far been totally neglected is the fact that the polyamines spermidine 

and spermine are the most cationic molecules in the cell (Igarashi et al. 1982) and 

hence most of the polyamines will be bound to (sequestered by) the cells anionic 

constituents (nucleic acids and phospholipids) (Watanabe et al. 1991). Therefore the 

possibility arises that the polyamine content characteristic of various cell types might 

largely reflect the constancy of the macromolecules that are titrated by these basic 

amines.

However, some control of polyamine synthesis is vital, as if the polyamine 

levels drop too low normal cell growth will be halted (Pohjanpelto et al. 1985a; 

Steglich & Scheffler, 1982) and conversely the presence of too high a levels of 

spermine is directly or indirectly toxic to the cell (Morris, 1991; Brunton et al. 1991).
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Table U  The polyamine content of selected tryp
Trypanosoma and CHthUMa)____________________

(Genus: Leishmania,

Organism Stage Polyamine content Reference
nmol (lO^cells)*'

PUT 'SPD SPN

Leishmania
L.mexicana P 82 20 2. (Aigranati et ai. 1989)
L.m.amazonensis P 9 19 3 (Keithly & Fairlamb, 1989)
Lmmexicana P 155 70 3T (Bachrach et al. 1979)

P *120 38 2 (Coombs & Sanderson, 1985)
A *13 23 *

L.braziliensis 
guy one sis

P 8 11 3 (Keithly & Fairlamb, 1989)

L.major P 14 16 3 (Keithly & Fairlamb, 1989)
L.tropica major P 50 70 T (Bachrach et al. 1979)

L.donovani P *35 37 - (Morrow et al. 1980)
A *2 19 4 (Balana-Fouce «  al. 1991)
P 6 13 - (Coons et al. 1990)

30 50 T (Bachrach et al. 1979)

L.infantum P 43 11 -

L.sp. P 40 190 T (Bachrach et al. 1979)

TnBamnema
T.cruzi E 1(3) 9 3 (Aigranati et al. 1989)

7(3) 13 18 (Schwarcz de Tarlovsky et al. 1993)

T.brucei BT *2 31 . (Bacchi et al. 1977)
*4 25 - (Bacchi et al. 1979)
3 12 - (Fairlamb et al. 1987)
4 17 - (Berger et al. 1993)

T.mega 5 8 - (Bacchi et al. 1977)

Crithidia
C fascicolata 59 47 - (Shim & Fairlamb. 1988)

29 22 - (Hunter et al. 1991)
*11 13 - (Bacchi et al. 1977)

Most cells were assayed in mid to late exponential phase of growth. PUT = p litre seine, SPD 
-  spermidine, SPN -  spermine, P=promastigote, A=amastigote, E=epimastieote, 
BT=bloodstream trypomastigote. ‘Polyamine content measured in nmol (mg protein)'1; ( ) 
cadaverine concentration in nmol (lO^eells)*1; 'free  spermidine concentration (not bound to 
glutathione); 2not detectable; 3spermine presen t but in trace amounts only._____________



In the case of ODC its regulation is both complex and unusual with a universal lack 

of allosteric (fast) feedback inhibition. Instead slower control mechanisms have been 

developed, which, with the appropriate modifications, are compatible with periods of 

rapid polyamine accumulation that may be necessary during growth, development or 

unusual environmental conditions (Davis et al. 1992). All this information highlights 

the complexity of the polyamine pathway and increases our need to understand how 

polyamines actually contribute to the growth and general well-being of a cell.

1 3 3  Polvamines in the Trypanosom atidae

133.1 Polyamlnc content

In most trypanosomatidae the major diamines and polyamines present are 

putreseine and spermidine respectively (Bacchi, 1981; Bacchi et al. 1977) (Table 1.2). 

Many of the Leishmania species studied also appear to contain trace amounts of 

spermine (Table 1.2). Som e of this could be taken up from the medium but 

radiolabelling from putrescine indicates that they are able to de novo synthesize small 

amounts of spermine (Bachrach et al. 1979). However only in T.cruzi epimastigotes 

does spermine account for a  substantial amount o f  their total intracellular polyamine 

content (19-44%) (Table 1.2). T.cruzi is also unusual as cadaverine (diaminopentane), 

is present at higher levels than putrescine at all stages of the epimastigote growth 

cycle (Algranati et al. 1989). Cadaverine is also found in certain bacteria, where it is 

synthesized from lysine v ia  a lysine decarboxylase (Fecker et al. 1986; Meng & 

Bennett, 1992; Yamamoto et al. 1991). In fact many microorganisms, for example 

Euglena (Villanueva et al. 1980), Ancanthamoeba (Kim et al. 1987) and the fast 

growing root nodule bacteria (Fujihara & Harada, 1989) contain functional polyamine
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Figure 1.7 The structure and some possible functions of trypanothione.



analogues of putreseine, spermidine and spermine. These either replace or supplement 

the usual polyamines.

1-3.3.2 Trvponothkm t

In addition to the common polyamines (and cadaverine in T.cruzi), members 

of the trypanosomatidae contain (N1 (glutathionyl)spermidine) commonly called 

trypanothione, consisting of two glutathione residues which are covalently linked via 

the carboxyl groups of the glycines to the terminal amino groups of a molecule of 

spermidine (Fairiamb et al. 1985; Fairlamb et al. 1986). Trypanothione is maintained 

in the reduced state by the action of the NADPH-dependent flavoprotein, 

trypanothione reductase (Shames et al. 1986). Together they preserve an intracellular 

reducing environment in the cell and act as a defence against damage by oxidants and 

heavy metals (Fairlamb & Cerami, 1992), replacing the functions of glutathione and 

glutathione reductase which are found in mammalian cells (Walsh et al. 1991; Zappia 

& Pegg, 1988; Fairlamb, 1991; Fairlamb, 1988) (Figures 1.6 and 1.7). Furthermore, 

several known trypanocidal drugs appear to inhibit various steps in die pathway (refer 

to section 1.4.3). Coupled with the fact that the trypanothione system is absent in 

human cells this makes it a  good potential target for rational drug design. However 

it still needs to be shown (for example by knocking out the trypanothione synthetase 

or reductase gene) that the trypanothione system is essential for the parasites survival.

13.3.3 Regulation

Trypanosomatid ODC and AdoMetDC which lack PEST sequences do not 

turnover rapidly (Wang, 1991). Generally the polyamine levels in the
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trypanosomatidae do not appear to be under such tight regulation as found in 

mammalian cells. For example, TJ>.brucei ODC unlike its mammalian counterpart is 

unresponsive to polyamine levels. This could be because it lacks a polyamine- 

dependent regulatory site found in mouse ODC (Ghoda et al. 1992). However the 

possibility arises in the trypanosomatidae that excess spermidine could be stored in the 

form of glutathionylspermidine, ready for conversion back to free spermidine when 

required by the cell, for example when the organism encounters favourable growth 

conditions. So far this has only been found to be the case in Cfasciculata (Shim & 

Fairlamb, 1988).
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As polyamines are required for cell growth, interference with polyamine 

metabolism has been identified as a potential anticancer (Pegg, 1988; Porter & Sufrin, 

1986) and antiprotozoal (Bacchi et al. 1980b; Schechter & Sjoerdsma, 1986) 

chemotherapeutic strategy. Over the past IS years a lot of effort has gone into the 

design of specific inhibitors of the polyamine pathway, initially as potential anticancer 

agents. This work has been summarized in several reviews and will not be dealt with 

in any detail here (Pegg, 1988; Porter & Sufrin, 1986; McCann & Pegg, 1992). 

Instead, in this review I will deal mainly with the effects of inhibitors of polyamine 

and trypanothione metabolism on the growth and polyamine content o f  the 

trypanosomatidae.
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Since ODC is seen as a key enzyme in polyamine biosynthesis, much effort 

has been focused on the design of specific inhibitors of this enzyme. The most 

successful and widely used is the irreversible enzyme-activated inhibitor DL-a- 

difluoromethylomithine (DFMO) (Bey et al. 1987). Clinically DFMO was initially 

tested against a wide variety of tumours, with generally very disappointing results 

(Porter A  Janne, 1987; McCann & Pegg, 1992). Subsequently it was found to be 

curative in the treatment of late stage, arsenical refractory, W est African 

trypanosomiasis (Gambian sleeping sickness) (Van Nieuwenhove et al. 1985). DFMO 

represents the first new drug licenced in over 40 years for the treatment of West 

African sleeping sickness, which is caused by infection with the trypanosome 

T.b.gambiense (Schechter A  Sjoerdsma, 1986; Schechter et al. 1987). In a  summary 

o f  711 cases treated with DFMO (to March 1991), the overall efficacy of the drug was 

85-90%, with a relapse rate of 5.3% and deaths in 7% of patients during treatment 

(Van Nieuwenhove, 1992).

The exact basis for DFMO’s selective toxicity towards Tb.gambiense is 

uncertain as DFMO affects many o f the same aspects of parasite and host 

metabolism including bringing about the inactivation o f ODC^a reduction in the levels 

o f  putreseine and spermidine , leading to an overall decrease in macromolecular 

synthesis (Bacchi A McCann, 1987; Bitonti et al. 1988). However many differences 

also exist in the influence DFMO exerts over host and parasite metabolism. Some
»>Vj h i, «{feefc*%.

rxAsor\s DFMO £ TJj.gambiense are:

1) The long half-life and slow turnover of African trypanosomal ODC compared to 

mammalian ODC (Ghoda et al. 1990).



2) A large increase in 5-adenosylmethionine and decarboxylated S-adenosy lmethionine 

concentrations, resulting in the potential for hyperméthylation (Bacchi A  McCann, 

1987; Fairlamb et al. 1987; Yarlett & Bacchi, 1987; Byers et al. 1991).

3) A reduction in the content of glutathionylspeimidine and trypanothione, which may 

compromise the parasites ability to cope with oxidative stress (Fairlamb et al. 1987).

4) In contrast to mammalian cells (Pegg, 1988), the African trypanosomes have a 

limited ability to transport putreseine and spermidine, a lack of spermine synthesis and 

an apparent absence of the retroconversion pathway (Bacchi A  McCann, 1987; Bacchi 

& Yarlett, 1993). This may contribute to DFMO’s selectivity, as the failure to deplete 

spermine in mammalian cells appears to be a major reason for the lack of success of 

DFMO in cancer chemotherapy (Pegg, 1988; Porter A  Sufrin, 1986; Janne et al. 

1991).

3) Leads to a general decrease in protein synthesis, including a concomitant reduction 

in the synthesis of variant-specific glycoprotein. This may then prevent the 

trypanosomes from undergoing antigenic variation, enabling the immune system to 

mount a better antibody response against the trypanosome, thus rendering DFMO more 

effective in clearing the infection (Bitonti et al. 1988).

6) Morphological changes also take place including the development o f  multinucleate 

or multikinetoplastic forms and the production of non-replicating stumpy forms 

(Bacchi A  McCann, 1987; Giffin A  McCann. 1989).

In contrast, DFMO monotherapy is not effective clinically against East African 

(Rhodesian) sleeping sickness caused by T.b.rhodiense (Van Nieuwenhove, 1992) and 

has shown only limited promise against some Leishmania species in in vivo model 

systems (Keithly A  Fairlamb, 1989). T.cnul is relatively insensiwe in vitro or in vivo
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to DFMO (Schwaicz de Tarlovsky et al. 1993; Hunter et al. 1994; Hanson et al. 

1982), but pre-treatment of macrophages with DFMO does impair their ability to 

ingest T.cruzi (Kierszenbaum et al. 1987b). However, inhibitors of arginine 

decarboxylase, for example DL-a-difluoromethylarginine (DFMA), at very high 

concentrations (12-50mM), appear to decrease the capacity of T.cruzi to infect and 

multiply within mammalian cells (Kierszenbaum et al. 1987a) but do not affect 

trypomastigote-amastigote transformation (Yakubu etal. 1992). DFMA also decreases 

the growth of T.cruzi epimastigotes (Schwarcz de Tariovsky et al. 1993). These effects 

can be overcome by the addition of exogenous agmatine or putreseine (refer to Figure

1.4 for pathway details). Although this strongly suggests the presence of ADC rather 

than ODC as a source of polyamines precursors in T.cruzi, initially neither ADC nor 

ODC activity could be detected in cell extacts containing up to 2.4 x 109 

trypanosomes (McCann e t al. 1988) and radiolabelling epimastigotes with 

[14C]omi thine or [ 14C]arginine also failed to demonstrate any putre seine formation 

(Algranati et al. 1989). Recently trace amounts of ADC activity (11.3 pmol C 0 2 mg 

protein'1 h '1) and slight (<0.1%) conversion of radiolabelled arginine to agmatine, 

putre seine and spermidine was observed in mixed trypomastigote /  amastigote 

preparations but this required high cell numbers, (0.3 x 109 ml*1 for radiolabelling and 

3 x 109 m l'1 for ADC activity), and long, 6-7h, incubation times (Majumder et al. 

1992). Thus ADC, which is normally only found in prokaryotic and plant cells (Tabor 

& Tabor, 1984), could represent a selective target for chemotherapy. However the 

millimolar concentrations of ADC inhibitors (DFMA) required to slow T.cruzi's 

growth, compared to the very low (lOnM-lOpM) concentrations of DFMA needed to 

completely inhibit bacterial ADC (Kallio et al. 1981), coupled with the enormous
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difficulty involved in detecting even trace amounts of ADC activity in T.cruzi cells, 

leads one to question the use of ADC as a target enzyme for the chemotherapy of 

T.cruzi infections. Furthermore it opens up the possibility that inhibition o f ADC may 

not be DFMA’s primary mode of action in T.cruzi.
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The trypanosomal AdoMetDC, which decarboxylates S-adcnosylmethionine 

(AdoMet) and so commits it to use in polyamine biosynthesis, differs from its 

mammalian counterpart in solubility, ionic properties, inability to cross react with 

human AdoMetDC antiserum and a different subunit structure (Tekwani et al. 1992)

making it a potential target for trypanocidal agents. In fact trypanosomal AdoMetDC 

is reversibly inhibited by the anti-leukaemic agent methylglyoxal ¿us(guanylhydrazone) 

(MGBG) and the trypanocidal agent pentamidine, and irreversibly by the trypanocide 

Berenil (Bitonti et al. 1986). However it has not yet been established to what extent 

the inhibition of AdoMetDC contributes to their antiparasitic actions since all three 

have been found to interfere with many other cell functions (Williams-Ashman & 

Seidenfeld, 1986; Newton A  Le Page, 1968; Bacchi et al. 1980a). The design of 

specific inhibitors o f  AdoMetDC has lagged behind that of ODC, but recently a group 

of AdoMet analogues have been synthesized which are enzyme-activated inhibitors of 

AdoMetDC (Casara et al. 1989). One of these agents, 5’-(l(Z)-4-amino-2- 

butenyl]methylamino)-5’-deoxyadenosine (MDL 73811) proved active at low doses 

against model T.b.brucei and T.b.rhodesiense infections (Bitonti et al. 1990; Bacchi 

et al. 1992) and also reduced the capacity of T.cruzi to infect and multiply within rat 

heart myoblasts (Yakubu et al. 1993). MDL 73811 blocked T b  brucei AdoMetDC



activity (Kj 1.5pM), leading to a reduction in spermidine (30%) and increase in 

putreseine levels (Bitonti et al. 1990). MDL 73811 also causes a 20-fold increase in 

AdoMet levels in T.b.brucei, after just lh of exposure in vivo, but produces less than 

a 2-fold rise in AdoMet levels in mammalian cells which have been cultured with the 

drug for 6h (Byers et al. 1991). This could be due to the fact that S- 

adenosylmethionine synthetase is much less sensitive to inhibition by the product 

(AdoMet) than its mammalian counterpart (Yarlett et al. 1993). Other trypanocidal 

agents such as DFMO, also bring about large increases in AdoMet levels (Byers et al. 

1991) and the addition of exogenous AdoMet in place of MDL 73811 also reduces the 

ability of T.cruzi to infect mammalian cells ( Yakubu et al. 1993). AdoMet, in addition 

to its use as an aminopropyl group donor in polyamine biosynthesis, is utilized as a 

methyl group donor in cellular méthylation reactions (Ueland, 1982; Yarlett & Bacchi, 

1987; Avila & Polegrc, 1993). These large increases in AdoMet, for example on 

DFMO treatment of T.bJ>rucei, lead to an increase in the cell’s méthylation index 

(ratio of AdoMet:S-Adenosylhomocysteine) (Yarlett & Bacchi, 1987) and an 

accompanying rise in protein méthylation (Yarlett et al. 1991; Bacchi et al. 1992; 

Bacchi et al. 1992) which in turn may lead to abherent méthylation reactions within 

the cell (Ueland, 1982). It is possible then that major changes in AdoMet levels, rather 

than changes in polyamine levels, are responsible for the antitrypanosomal effects of 

these drugs.
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The importance of the trypanothione system is underlined by the fact that a 

number of existing drugs interfere with trypanothione metabolism (Figure 1.6). In



addition to the inhibitors of polyamine biosynthesis outlined above (sections 1.4.1 and 

1.4.2) which disrupt spermidine and hence trypanothione formation, buthionine 

sulphoximine inhibits glutathione formation (Article et al. 1981), redox-cycling 

compounds such as nifurtimox probably swamp the parasite's ability to deal with 

oxidative stress (Henderson et al. 1988) and aromatic trivalent arsenicals sequester 

dihydrotrypanothione as the dithioarsane adduct MelT (Fairlamb et al. 1989b), which 

in turn is a competitive inhibitor of trypanothione reductase (Fairlamb et al. 1989b; 

Fairlamb et al. 1992). Thus the marked synergism seen between DFMO and trivalent 

arsenicals (Jennings, 1990) could result from their combined action in lowering 

trypanothione levels.
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N ,N '-D i-substitu ted  te traam in es  with the general form ula 

RNH(CH2)xNH(CH2)yNH(CH2)xNHR have been designed with the aim of interfering 

with the biosynthesis and function of natural polyamines whilst not substituting for 

their proliferative functions (Porter & Bergeron, 1988; Baumann et al. 1990). In the 

trypanosomatidae, ¿»«(benzyl)- and ¿»«(thiophene)- substituted polyamine analogues 

have been shown to have anti-T.cruzi activity (Majumder & Kierszenbaum, 1993b; 

Majumder & Kierszenbaum, 1993a) whilst the former exhibit anti-leishmanial activity 

(Baumann et al. 1990). Relatively little is known about the mode of action of these 

analogues but work in mammalian cells with the ¿»«(ethyl)-substituted poly amine 

analogues, suggests that not only polyamine depletion but also the accumulation of 

these polyamine analogues, leading to both structural and functional alterations in the 

mitochondrion, is involved in their ability to inhibit cell growth (Fukuchi et al. 1992;



Tafele U  Characteristics of the different polyamide uptake systems found in mammalian cell lines.

OU type Put Spd Spn Transporter dependence
‘Nt*

haracteristics 
*SH 3AA

Reference

Nonna!
Fibroblast (human) 1.1 4nd nd Single Yes nd nd No (Pohjanpelto, 1976)

(Swiss 3T3) 10-14 nd nd nd nd nd nd nd
(DiPasquale et al. 1978) 
(Bethell & Pegg, 1981)

Hepatocyte (mouse) 8-11 nd nd nd nd nd nd nd (Martin et al. 1990)
(iat) nd nd 20 nd Yes Yes nd nd (Auberger et al. 1983)

Mammary gland (mouse) nd 47.6 nd Single Yes nd nd No (Kuo & Oka, 1976)
Enterocyte (rat) 113 131 nd Multiple Yes No nd No (Kumagai et al. 1989)

Adrenocortical (bovine) 10 nd nd Multiple Yes Yes No No
(Kumagai & Johnson, 1988) 
(Feige & Chambaz, 1985)

Embryonic palate 8.8 nd nd Single Yes Yes Yes No (Gawd-Thompson & Greene, 1988
mesenchymal (mouse) 

Endothelial, aortic (pig) » 0.6 nd Multiple Yes Yes Yes No (Bogle etui. 1994)
Lymphocytes (bovine) 3.7 0.4 0 J Single Yes No Yes No (Kaldnums el al. 1988)
FjvWhHi»!, umbilical- 3.0 0.8 0i Multiple Yes Yes Yes nd (Rajanayagam et al. 1992)
vein (human) 3.0 0.7 1.0 Multiple Yes Yes Yes nd (Morgan, 1992)

Macrophage, pulmonary 11 02 nd Single Yes nd nd nd (Saunders et al. 1989)
alveolar (rabbiit) 

Pulmonary, epithelial Type II (rat) nd 03 nd Single Yes Yes nd No (Kameji et al. 1989)
nd 0.6 nd Multiple nd Yes nd nd (Rannels et al. 1989)

Perfused lung (rat) 14 nd nd nd nd nd nd nd (Wyatt el al. 1988)



Ovary (Chinese hamster) 6.2 6.3 1.0
Erythrocyte (human) 37 1.6 nd

(human) nd nd nd

Transformed
ADJ/PC6 Plasmacytoma (mouse) nd 0.3 nd
NB15 Neuroblastoma (mouse) 18 nd nd

AR4-2J Pancreatic acinar (rat) 3.1 0.4 nd
PC-3 Prostatic carcinoma (human) 33 nd nd
L1210 Leukemia (mouse) nd 1.6 0.7

(mouse) 83 12 1.6
(mouse) nd 15 nd

P388 Leukaemia (mouse) nd 0.9 nd
K562 Leukaemia (human) 6.9 8.0 nd

06 Glioma (mouse) od 1.2 nd
U251 Glioma (mouse) nd 1.0 nd
Balb/c 3T3 Normal embryonic 
(mouse)

nd 0.9 nd

SV40 Transformed Balh/C 3T3 
(mouse)

nd 16 nd

'Na*-dependent; Requires thiol groups for maximal activity;



Multiple Yes
nd Yes

Single Yes

nd nd
Single Yes

Multiple Yes
nd nd
nd nd

Single nd
Single nd
Single nd

nd nd
Single nd
Single nd
Single nd

Single nd

nd nd No
nd nd nd
Yes Yes No

nd nd nd
Yes Yes Yes

No nd No
nd nd nd
nd nd nd
nd nd nd
Yes No Yes
Yes Yes No
nd nd nd
Ye* Yet Yes
Yes Yes No
Yes Yes No

Yes Yes No

(Byers et al. 1987) 
(Moulinoux et al. 1984) 
(Khan et al. 1989a)

(Holley et al. 1992) 
(Rinehart & Chen, 1984) 
(Chen & Rinehart, 1981) 
(Nicolet étal. 1990) 
(Heston et al. 1987) 
(Kramer et al. 1993) 
(Porter et al. 1984) 
(Khan étal. 1990)
(Khan et al. 1990)
(Khan étal. 1994)
(Khan et al. 1990)
(Khan étal. 1990)
(Khan étal. 1990)

(Khan étal. 1990)

’interaction with amino acid transport systems; 4nd * not determined.



Table U  Characteristics of some polyamine uptake systems found in fungi, bacteria and kiaetoplastkls

Organism Put Spd Spn Transponer
Energy

dependence
Other

characteristics 
'Na* 5AA

Reference

Saccharomyces cerevisiae 
(vacuolar membrane)

2000 700 2000 Single Yes No 4od No (Kakinuma et al. 1992)

Aspergillus nidulans 
(mycelium)

1200 4000 1030 Múltiple Yes nd nd nd (Spathas et al. 1982)

Newospora crassa 
(mycelium)

600 240 70 Single Yes No
(inhibits)

nd Yes (Divis & Ristow, 1988)

Dictostelium discoideum 
(myxamoebae)

9.1 nd nd Múltiple Yes nd nd nd (Tumer a  al. 1979)

Esherichia coli 0.2 <0.8 >1 Múltiple Yes
(partially)

nd
No

nd nd (Tabor & Tabor, 1966) 
(Kashiwagi et al. 1986)

Leishmania infantum 
(promastigotes)

1.1 nd nd Múltiple Yes nd nd Yes (Balana-Fouce et al. 1989)

Leshmania mexicana 
mexicana (promastigotes)

10.7
(31)

nd nd nd Yes nd Yes nd (González et al. 1992) 
(González et al. 1993)

Crithidia fasciculata 66
(23)

nd nd nd Yes nd nd nd (González eral. 1992) 
(González a  al. 1993)

Trypanosoma cruzi 
(epimastigotes)

3.7
(6.1)

nd nd Múltiple Yes nd Yes Yes (González a  al. 1992) 
(González eral. 1993)

'Na'-dependent; Q u ires  thiol groups for maximal activity, ’interaction with amino acid transport systems; 4nd -  not determined.



He et al. 1994; Snyder e t al. 1994; Ghoda et al. 1992).
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One of the m ajor problems which has hampered the effectiveness o f  many 

inhibitors of polyamine biosynthesis is that many cells are able to get round the block 

by taking up polyamines they require for growth from their surrounding environment. 

In this respect African trypanosomes are somewhat of an exception as they are  unable 

to take up significant exogenous polyamines (Bacchi &  Yarlett, 1993) and  so this 

might in part explain why DFMO is so effective against them but much less useful 

against many other cell types including T.cruzi. The next section examines in some 

detail how polyamines are taken up into cells.

Polyamine uptake has been studied in numerous mammalian cell lines, both 

normal and transformed, and in a variety of other organisms. A summary is given of 

the main characteristics of polyamine uptake in mammalian cells (Table 1.3) some 

fungi, bacteria and trypanosomatids (Table 1.4). In most of the systems studied, 

polyamines can enter the cell via either single or multiple uptake systems which 

exhibit saturable, Michaelis-Menten-type kinetics with Michaelis constants (Km’s) 

ranging from 0.2 to 30  pM (Tables 1.3 and 1.4). Yeasts appear to be an exception 

with Km values in the high micromolar to millimolar range (Kakinuma e t al. 1992; 

Spathas et al. 1982). The word ‘transport’ has been avoided as many of the examples



detailed (Tables 1.3 and 1.4) have not considered the possibiMy o f  metabolism of the 

diamine or polyamine label once it is inside the cell. For example, with putrescine 

there was no appreciable metabolism (<5%) of die label taken up by fibroblasts 

(Pohjanpelto, 1976), adrenocortical cells (Feige & Chambaz, 1985) and lymphocytes 

(Kakinuma et al. 1988) whereas there was considerable metabolism (>30%) of the 

same label by A.nidulans (Spathas et al. 1982) and pancreatic acini (Alves et al. 1992) 

over the time course in which the measurements were made. Hence it might be more 

appropriate to talk about the ‘uptake’ of diamines and polyamines as this will 

encompass both the transport of these molecules into the cell and  any subsequent 

metabolism components. Hence in cases where there is significant metabolism of the 

radiolabel the K,,, values determined would not represent the true value for the 

transporter but also encompass the K ^ s  of the enzymes involved in the radiolabels 

subsequent metabolism. Some arguments concerning the transport versus metabolism 

of molecules in cultured cells are dealt with in some detail elsewhere (Wohlhueter & 

Plagemann, 1989) and will not be discussed any further here.

I«gtZ Emm tfnmutaiqr.
Polyamine uptake appears to be an energy-dependent process as judged by one 

of three criteria. First the rate of polyamine uptake is temperature dependent in a wide 

range o f organisms including various mammalian cell types (Pohjanpelto, 1976; 

Kumagai & Johnson, 1988; Bogle et al. 1994), yeast cells (Kakinuma et al. 1992), 

bacteria (Tabor & Tabor, 1966) and trypanosomes (González et al. 1993; 

Balana-Fouce et al. 1989). For example, in fibroblasts the rate o f  100 pM putrescine 

uptake is 30-fold higher at 37°C than at 5°C (Pohjanpelto, 1976). Killing of the cells
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by heating to 65°C or lysing them in water for 1 h prior to  incubation with putreseine, 

reduced the amount of putre seine associated with the cell remnants to only 1-2% of 

the untreated controls. Therefore there appears to be relatively little non-specific 

binding of putre seine to the cells. In red blood cells (erythrocytes) the initial velocity 

of spermidine uptake is 15 times greater at 37°C than a t 4°C (Khan el al. 1989a). In 

addition when erythrocytes are incubated at 37°C the polyamines are located mainly 

in the hemolysate with only about 5% associated with the stromata membranes, whilst 

at 4°C there is a greater than seven fold reduction in binding to the hemolysate with 

the amount bound to the stomata remaining constant. This suggests that it is the 

internalization process which is energy dependent rather than binding per se 

(Moulinoux et al. 1984).

Second polyamines appear to be concentrated several fold in trace llularly in a 

wide range of organisms. However caution must be exercised here because in many 

cases this could at least in part be due to their sequestration by anionic molecules such 

as nucleic acids within the cell (Braunlin et al. 1982). Treatment with butanol or 

toluene disrupts permeability barriers without causing cell lysis, releasing free ionised 

polyamines but leaving those bound to intracellular sites such as nucleic acids (Tabor 

& Tabor, 1966; Kaldnuma et al. 1988; Pohjanpelto, 1976). If one accepts that die 

quantity of polyamines released on butanol permeablisation is representative of the 

cells free polyamine content, then active transport is  occurring if this exceeds the 

exogenous polyamine content. This has been demonstrated for E.coli (Tabor & Tabor, 

1966), fibroblasts (Pohjanpelto, 1976), lymphocytes (Kakinuma et al. 1988) and 

N.crassa (Davis & Ristow, 1988). Another indication that active transport is occurring 

is that the incorporated polyamines are not effluxed (exchanged) on addition of a vast
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excess o f unlabelled polyamine, for example in human fibroblasts (DiPasquale et al. 

1978), bovine lymphocytes (Kakinuma e t al. 1988), mouse hépatocytes (Martin et al. 

1990) and B16 melanoma cells (Minchin et al. 1991).

Third, there is a reduction in the rate of diamine and polyamine uptake in 

response to metabolic inhibitors such as 2,4-dinitrophenol and KCN (González e t al. 

1992; Kano & Oka, 1976; Kumagai et al. 1989; Kumagai & Johnson, 1988; Tabor & 

Tabor, 1966; González et al. 1993; Balana-Fouce et al. 1989; Bogie et al. 1994; Alves 

et al. 1992; Morgan, 1990a; Davis & Ristow, 1988; Munro et al. 1974). These 

metabolic inhibitors affect oxidative phosphd^ation, leading to a reduction in cellular 

ATP which would in turn affect many cell processes, not just the transport of diamines 

and polyamines into the cell.

However the difficulty with these studies is that they do not indicate whether 

this energy dependence is exerted via a  direct or indirect action on the transporter and 

they may be further complicated by metabolism or intracellular sequestration of the 

radiolabel.

As can be seen from Table 1.3 many cell types appear to exhibit sodium- 

dependent (Na+-dependent) polyamine uptake. In these systems it is common for the 

uptake of putreseine and spermidine to be Na+-dcpendent whilst spermine transport 

is often Na+-independent (Feige & Chambaz, 1985; Rannels et al. 1989; Nuttall et al. 

1990; Morgan, 1992). Also many cellular systems have a non-saturable Na+- 

independent component to their polyamine transport (Feige & Chambaz, 1985; De 

Smedt et al. 1989; Auberger et al. 1983). However the criteria for Na+-dependent
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transport used in Table 1.3, which is only based on either the iso-osmotic replacement 

of sodium, Na*. with choline, Ch-*-, (or other monovalent cations such as lithium and 

N-methyl-D-glucamine) and /  or the use of ionophores (gramicidin (Na+/K+), monensin 

(Na+)) and the Na+/K+ pump inhibitor, ouabain (Rinehart & Chen, 1984; Khan et al. 

1990; Feige & Chambaz, 1985; Oawel-Thompson A  Greene, 1988; Kameji et al. 

1989; De Smedt et al. 1989; Nuttall et al. 1990), does not give the full picture. 

Replacement of Na+ with Ch+ o r  other monovalent cations results in a reduction in 

the uptake of putreseine and spermidine in rat enterocytes (Kumagai et al. 1989; 

Kumagai & Johnson, 1988) or o f  putre seine but not spermidine in pancreatic acini 

(Nicolet et al. 1990). Whereas i f  Na+ is replaced iso-osmotically with uncharged 

molecules such as mannitol or sucrose there is no reduction in the rate of polyamine 

uptake in either cell type. Furthermore, in E.coli putrescine, spermidine and spermine 

are readily taken up from a medium  containing no exogenous Ns* (Tabor & Tabor, 

1966). This suggests that in E.coli, rat enterocytes and pancreatic acini polyamine 

uptake is not a Na*-coupled process. Instead the inhibition of polyamine uptake in the 

presence of lithium or organic cations may be due to direct interaction of these cations 

with the carrier(s). However in Balb/c 3T3 cells spermidine is transported with Na+ 

in a 1:1 stoichiometric relationship, suggesting that the spermidine is directly coupled 

in a ternary complex, Na+-spermidine-carrier (Khan e t al. 1990).

In addition some ionophores such as gramicidin (Na'VK*), carbonylcyanide m- 

chlorophenylhydrazone (H*) and calcimycin (A23187, C a ^ M g 2*) can also disrupt the 

cell's membrane potential (Kakinuma et al. 1988). As only those ionophores which 

disrupt the membrane potential decrease putrescine uptake, this led to the conclusion 

that in bovine lymphocytes, S.cerevisiae (Kakinuma e t al. 1992) and E.coli (Kashiwagi
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et al. 1986) polyamine uptake is dependent on a membrane potential (Kakinuma et al. 

1988). For these reasons any sodium-dependency denoted in Table 1.3, must be 

viewed with extreme caution. Thus, the true picture may be more complex, with 

different uptake systems having different ion and membrane potential requirements.
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Many polyamine uptake systems appear to require the presence of sulphydryl 

(-SH) groups for maximal activity (see Tables 1.3 and 1.4). However caution must be 

exercised in the interpretation o f any inhibition of polyamine uptake by N- 

ethylmaleimide, as its rather permeable nature makes it difficult to distinguish its 

interactions with membrane components from its effects on cell metabolism 

(Rothstein, 1970). In  NB15 neuroblastoma cells the potent inhibition of putreseine 

uptake by the rather impermeable sulphydryl reagent p-chloromercuribenzenc 

sulphonate (Rothstein, 1970) is reversed on addition of dithiothreitol (Rinehart & 

Chen, 1984). This suggests that the sulphydryl groups o f certain membrane proteins.

possibly on the transporter itself or perhaps on any ion channels driving uptake, could

be involved in polyamine uptake.

As can be seen from tables 1.3 and 1.4, the vast majority of cell types do not 

take up polyamines on any of the amino acid transport systems. However polyamine 

uptake in NB15 neuroblastoma (Rinehart & Chen, 1984), embryonic palate 

mesenchymal (Gawel-Thompson & Greene, 1989), L1210 leukaemia and C6 glioma 

cells (Khan et al. 1990) can be stimulated by system A amino acids (asparagine or the



system A  amino acid analogue 2-aminoisobutyric acid). Whereas in aortic endothelial 

cells pre-incubation with L-arginine (system Ly+) has a slight stimulatory effect on 

spermidine uptake (Bogle et al. 1994). In contrast in the trypanosomatid L.infantum 

putrescine uptake can be partially inhibited by the amino acids lysine, arginine (system 

Ly*) an d  aspartic acid (system 0*) (Balana-Fouce et al. 1989).
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In order for the polyamine uptake systems to be of any physiological 

significance then polyamines must be available for uptake from the cell’s immediate 

surroundings. In mammalian cells this means polyamines must be present in the blood 

and tissue fluids. Whole blood contains <0.8 lpM  putrescine, 6-34pM spermidine and 

4-10iiM  spermine (Cooper et al. 1978; Claverie et al. 1987), whilst plasma and serum 

contain much lower levels of polyamines at 0.03-0.5iiM (Morgan, 1990b). This is due 

to the  cellular constituents of the blood containing micromolar levels of polyamines 

(Cooper et al. 1978) coupled with the fact that polyamines bind well to the negatively 

charged red blood cell membrane (Chun e t al. 1977) predominantly by electrostatic 

interactions in the order spermine > spermidine > putrescine (Braunlin et al. 1982). 

How ever as most polyamine transporters have affinities for polyamines in the 0.1- 

lOpM  range (see Tables 1.3 and 1.4) they should still be able to take them up.

Intracellular polyamine concentrations are normally in the mid-micromolar 

range with putrescine concentrations generally lower than those of spermidine and



spermine (Morgan, 1990b). Treatment of L1210 Leukemia cells with inhibitors which 

block polyamine biosynthesis such as DFMO and /  or S-(5’-deoxy-5’-adenosyl)- 

methylthioethylhydroxylamine leads to a reduction of intracellular polyamine pools 

and an increase in the V ,^  of the polyamine uptake system(s) (Kramer et al. 1993; 

Byers & Pegg, 1989). DFMO treatment also increases the rate of polyamine uptake 

in, for example, neuroblastoma cells (Rinehart & Chen, 1984), embryonic palate 

mesenchymal cells (Gawel-Thompson & Greene, 1989), prostate tumour cells (Heston 

et al. 1984), Chinese hamster ovary cells (Byers & Pegg, 1990; Byers & Pegg, 1989) 

and the trypanosomatids L.mexicana and Cfasciculata (González et al. 1993; 

González et al. 1992). However DFMO does not induce putreseine uptake in the 

trypanosomatid T.cruzi (González et al. 1993; González et al. 1992). This may be 

related to either the apparent lack (Hunter et al. 1994) or presence of only trace levels 

(Algranad et al. 1989) of ODC activity in this organism. In contrast, DFMO has no 

effect on putre seine uptake in cultured mouse hepatocytes, despite lowering ornithine 

decarboxylase activity by >90% and causing a drop in the intracellular polyamine 

concentration (Martin et al. 1990). Conversely, incubation o f the cells in exogenous 

polyamines or the polyamine analogue A/, ,N/2-Ms(ethyl)spennine (Kramer et al. 1993) 

leads to a reduction in polyamine uptake in most (Kramer et al. 1993; Rinehart & 

Chen, 1984; Gawel-Thompson & Greene, 1989) but not all cell types studied (Martin 

et al. 1990). This suggests that, in general, polyamine transport systems are responsive 

to modifica^ons in intracellular polyamine concentrations.
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1.5.6.3 Growth conditions

Polyamine uptake, like that of ODC (reviewed in (Bachrach,



1984)), can be stimulated by a wide variety of growth factors, hormones and other 

stimuli which provoke cell growth. In fibroblasts (Pohjanpelto, 1976; Bethell & Pegg, 

1981; Miyahira & Dvorak, 1994), baby hamster kidney cells (Wallace & Keir, 1981), 

melanoma and macrophages (DiPasquale et al. 1978) polyamine uptake is stimulated 

by the addition of fresh serum (to serum starved cells). More specifically the hormone 

insulin alone is able to promote putreseine uptake in fibroblasts (Pohjanpelto, 1976; 

DiPasquale et al. 1978) and pancreatic acimu^Stilber et al. 1993),or polyamine uptake 

in combination with prolactin in mammary glands (Kano St Oka, 1976). Epidermal 

growth factor (EGF) and or insulin-like growth factor (IGF) stimulates putre seine 

uptake in pancreatic acini (Stilber et al. 1993), fibroblasts (DiPasquale et al. 1978) and 

embryonic palate mesenchymal cells (Gawel-Thompson St Greene, 1989), whilst 

trypsin stimulates putrescine uptake in fibroblasts (DiPasquale et al. 1978) and 

Concanavalin A activates putrescine uptake in lymphocytes (Kakinuma et al. 1988).

An increase in cell density coupled with the onset of confluence or entry into 

stationary phase causes a decrease in the rate of polyamine uptake (Pohjanpelto, 1976; 

DiPasquale et al. 1978; Nicolet et al. 1991; Gawel-Thompson & Greene, 1989). Cell 

differentiation brought about by the differentiating agents retinoic acid and 

dimethylsulphoxide (DMSO) in hepatocytes (DiPasquale et al. 1978) and dibutyryl 

cAMP and 3-isobutyl-1-methyl xanthine in NB-15 neuroblastoma cells (Chen St 

Rinehart, 1981) likewise causes a  drop in the rate of putrescine uptake.

Alterations in the rate of polyamine uptake in response to growth stimuli are 

mainly associated with a 2-10 fold increase in the maximum rate of transport ( V ^ )  

whilst the affinity of the transporter (Kg,) remains essentially unaltered (Martin et al. 

1990; Bethell St Pegg, 1981; DiPasquale etal. 1978; Nicolet et al. 1991; Pohjanpelto,
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1976). An exception to this is NB-15 neuroblastoma cells in which undifferentiated 

cells have 10-fold lower K,,, than differentiated cells, with the remaining the 

same (Chen & Rinehart, 1981). This may simply be due to the fact that fully 

differentiated (non-dividing) cells have a lower requirement for polyamines. 

Furthermore, in contrast to normal Swiss 3T3 fibroblasts the Simian virus 40 

transformed cells show no regulation of V , ^  with growth state (Bethell & Pegg, 

1981). These changes in the kinetics of polyamine uptake, in response to alterations 

in the growth conditions, appear to be relatively specific. For example, EOF stimulated 

putrescine uptake does not alter the transport o f the amino acids leucine, ornithine and 

2-aminoisobutyric acid or the nucleoside thymidine into fibroblast and mesenchymal 

cells (DiPasquale et al. 1978; Gawel-Thompson & Greene, 1989). Similarly, serum 

stimulated putrescine uptake to a much greater extent than the addition of uridine, 

thymidine, deoxyglucose or leucine to fibroblast cells (Pohjanpelto, 1976). Increases 

in the Vm„  of the uptake system in response to a growth stimulus requires de novo 

protein and RNA synthesis in some (Bethell & Pegg, 1981; Kakinuma et al. 1988; 

Byers & Pegg, 1990) but by no means all cases (Kano & Oka, 1976; 

Gawel-Thompson A  Greene, 1989) with the carrier apparently having a fairly long 

half-life (Byers & Pegg, 1990). The increases in polyamine uptake observed can be 

reversed by the addition of exogenous polyamine (Kakinuma et al. 1988; Byers & 

Pegg, 1990). Finally, studies on cultured hepatocytes and B lymphocytes indicate that 

the induction of putrescine uptake occurs in G1 phase (Martin et al. 1991; 

DeBenedette et al. 1993) and is down regulated as the cells go from G1 to S phase 

(Martin et al. 1991).
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U L l  A role for l U n t

Antizyme was initially identified as a polyamine-induced labile protein which 

inhibited the ODC protein (Fong et al. 1976; Heller et al. 1976). Recent studies 

suggest that antizyme may also be responsible for mediating the rapid feedback 

inhibition of polyamine uptake observed when exogenous spermidine is added to 

cultured rat hepatoma or Chinese hamster ovary cells (Mitchell et al. 1992; Mitchell 

et al. 1994). In the simple eukaryote N.crassa polyamine uptake also seems to be 

regulated by a labile protein (Davis e t al. 1991). More studies are required in different 

cell types to find out whether this type of regulation of polyamine uptake is a 

widespread phenomenon.

In L1210 leukaemia cells protein kinase C activators such as the phorbol ester, 

phorbol myristic acid (PMA), increase spermidine, Na+ and Rb+ (a measure of the 

Na+-K+pump activity) uptake whereas inhibitors such as H-7 lower Na+ and Rb+ 

uptake (Khan et al. 1992). Likewise PMA stimulates putrescine uptake in pancreatic 

acini (Stliber et al. 1993). Trifluoroperazine, a calmodulin antagonist and an inhibitor 

of protein kinase C, also inhibits polyamine uptake (Khan et al. 1993; Khan et al. 

1989b). If the transport of polyamines is directly coupled to Na+ and Na+-K+ pump 

activity as in Balb/c 3T3 cells (Khan et al. 1990), then one possible model for the 

regulation of polyamine uptake involves phorbol esters activating the Na+-K+ pump 

perhaps via activation of protein kinase C, thereby stimulating the efflux of sodium 

from the cell and hence polyamine-Na+ coupled entry into the cell (Khan et al. 1989b;
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Khan et al. 1994). In addition an increase in free intracellular Ca2+, may cause the 

translocation of cytosolic protein kinase C to the plasma membrane where it activates 

the Na+-K+pump and the activation of calmodulin (by translocation to the plasma 

membrane). It is possible that this calmodulin may then influence the efflux of Ca2+ 

from the cell (via the Ca2'fATPase), which in turn might stimulate both the uptake of 

extracellular Ca2+ and the entry of polyamines in to cells (Khan et al. 1993; Khan et 

al. 1994). Although this provides us with an interesting model for the regulation of 

polyamine transport, the fact that some of the polyamine uptake systems studied do 

not appear to be either Na+-dependent (reviewed in section 1.5.3) or stimulated by 

phorbol esters (Morgan, 1992), casts doubt on how univer^lly applicable this model 

really is to the regulation of polyamine uptake systems.

1.5.8 Specificity of uptokt

Polyamine transporters are not specific for just putrescine and /  or spermidine 

and spermine. A wide range o f other diamines and triamines are also taken up by 

L1210 leukemia cells (Porter A  Bergeron. 1983; Porter et al. 1984). Generally the 

triamines of chain lengths similar to that of spermidine and spermine were taken up 

most effectively (i.e. were the best competitive inhibitors of polyamine uptake) with 

homospetmidine showing the greatest specificity for the transporter (Porter et al. 

1984). Most diamines were taken up with lower specificity than triamines. The highest 

affinity for the transporter was shown by the diamines whos chain lengths were 

similar to spermidine (1,7-diaminoheptane and 1,8-diaminooctane) and the least by 

those with chain lengths similar to putrescine (Porter & Bergeron, 1983; Porter et al. 

1984). This suggests that the transporter contains at least three negatively charged



groups with the distance between them corresponding to the positvely charged 

nitrogens o f spermidine. This is supported by work on B16 melanoma cells which 

indicates that an inter-nitrogen distance o f 0.6-0.7 nm or 1.0-1.1 nm is optimal for 

uptake, corresponding to the inter-nitrogen distance of putrescine and the bridge 

of spermidine (Minchin et al. 1989).

Following on from this, the terminal (primary) amino groups appear to be 

critical for uptake since N-alkyl substitutions at the terminal amino groups of 

putrescine (Heston et al. 1987; dSullivan et al. 1991) and spermidine (Porter & 

Sufrin, 1986; Khan et al. 1990) lower the ability of the analogue to compete for 

uptake. An increase in the W-methylation, for example, by methylating both rather than 

just one terminal amino group, or an increase in the size of the N-alkyl substituents 

in putrescine derivatives, further reduces their ability to inhibit putrescine uptake 

(Heston e t al. 1987; O'Sullivan et al. 1991). Substitution with one or two fluoro- 

(negatively charged) groups in the 2 position of putrescine also decreases its (Dezeure 

et al. 1988) and spermidine’s (Khan et al. 1990) uptake. Unsaturated derivatives of 

putrescine, l,4-diaminobut-2-ene (both the (£) and (Z) isomers) and l,4-diaminobut-2- 

yne, are poor inhibitors of putrescine uptake (Heston et al. 1984; dSullivan et al. 

1991). Conversely addition of an aziridine moiety to putrescine to form AH4- 

aminobutyl)aziridine (OSullivan et al. 1991; Heston et al. 1987) makes it «good 

substrate for the polyamine uptake system, whilst polypyridium quaternary salts 

(Minchin et al. 1989) are good inhibitors of putrescine uptake, although there is no 

evidence that they are substrates for uptake. However, other polyamine analogues, 

such as the ¿?u(benzyl)polyamines, are transported into the cell by an uptake 

mechanism which appears to be distinct from the polyamine transport system (Byers
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et al. 1990).

Two other compounds which structurally resemble polyamines, methylglyoxal- 

¿»«(guanylhydrazone) (MGBG, a potent inhibitor of S-adenosylmethionine 

decarboxylase (Williams-Ashman & Schenone, 1972) which has a structure that 

resembles that of spermidine), and the herbicide paraquat (N J f  -dimethy 1-4,4’- 

bipyridium, which has similarities to a six carbon chain a,o>-diamine (OSullivan et al. 

1991)), share (at least partially in the case of paraquat) the polyamine uptake system(s) 

of mammalian cells (Byers et al. 1987).

The genes for four polyamine transport systems have been identifcd in E.coll. 

This bacterium contains a spermidine-preferential uptake system which consists of 

potA, -B, -C, and -D proteins (Furuchi et al. 1991; Kashiwagi et al. 1993) and«, 

putrescine uptake system which consists of potF, -G, -H and I proteins (Pistocchi et 

al. 1993). The potA and -G proteins are membrane associated proteins which have a 

nucleotide-binding site which shows the greatest affinity for ATP. The potB and -C, 

and potH and -I proteins each consist of six transmembrane-spanning segments linked 

by hydrophilic segments of variable length. Whereas the potD and -F proteins are 

periplasmic spermidine /  putrescine (potD) and putrescine only (potF) binding proteins. 

E.coli also contains a putrecine-omithine antiporter which consists of a single 

membrane protein, potE, which has 12 transmembrane segments (Kashiwagi et al. 

1992) and a cadB membrane protein which acts as a lysine-cadaverinc antiporter 

(Meng & Bennett, 1992). It has been proposed that these antiporters (potE and cadB 

proteins) act to reduce the acidity of the cell’s external environment by taking up

l.El.
ifiM»



ornithine and lysine (with a  proton) from the medium, synthesizing putreseine and 

cadaverine respectively and then exporting these diamines from the cell (Meng & 

Bennett, 1992).

Our knowledge of mammalian polyamine uptake systems is much less 

advanced. However our understanding of the physiological importance of the 

polyamine uptake systems o f mammalian cells has been greatly enhanced by use of 

these mutant Chinese hamster ovary cells, CHOMG, which lack a functional 

polyamine uptake system (Heaton & Flintoff, 1988; Byers & Pegg, 1989). By 

comparison with normal Chinese hamster ovary cells it has been found that, if 

exogenous polyamines are present, the polyamine uptake system(s), can be used to 

maintain normal intracellular polyamine concentrations when de novo synthesis is 

blocked by DFMO, prevent the increase in ODC activity usually observed on 

addition of serum after a period of serum deprivation and minimise polyamine loss or 

excretion from the cell. It has also been used to show that the cytostatic 

¿>u(ethyl)polyamine analogues enter the cell via the polyamine uptake system where­

as the drug bleomycin does not (Byers & Pegg. 1989). These CHOMG cells have 

been used to express a human gene for polyamine uptake (Byers et al. 1989). 

Therefore, the use of polyamine uptake-deficient mutants could provide a u fill tool 

in the future for the isolation of polyamine transport genes.

1.3.10 Therapeutic approaches

As fast growing cells, for example tumor cells, have an active polyamine 

uptake system (see Table 1.3), one approach is to use polyamines as vector molecules 

for (molecules or) chemical moieties which have biological activity. A^-spermidine
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derivatives are good potential canditates as they are good substrates for the polyamine 

uptake system (Porter et al. 1982). Chloroambucil has been conjugated to the Ap­

position o f spermidine, leading to it being 4-fold more potent in vivo than 

chloroambucil alone in inhibiting ADJ/PC6 tumor growth in Balb/c mice (Holley et 

al. 1992). Unfortunately the therapeutic index was not increased. Nevertheless, this 

provides an interesting lead which could be followed up in parasitic protozoa such 

Trypanosoma cruzi which possess polyamine uptake systems (González et al. 1993; 

González e t al. 1992). As described previously, pretreatment with DFMO enhances 

polyamine uptake in mammalian cells and can be used to increase the amount of 

polyamine conjugate entering the cells (Holley et al. 1992). This could be potentially 

useful given that such polyamine conjugates were selectively toxic towards the 

parasitic protozoa.

As Trypanosoma cruzi is an intracellular parasite direct inhibition of polyamine 

uptake is unlikely to succeed because of the problems in attempting to design a 

compound which is a substrate for the mammalian system but an irrevcráble inhibitor 

for the parasite one. Hence I would favour pursuing the former option.
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CHAPTER 2 ; MATERIALS AND METHODS

2,1,1 CHI culture

Crithidia fasciculata celli (clone HS6). seeded at 1 a lO^celli m l 1, were 

grown at 28°C in a yeast tryptone broth as previously described (Pascal er at. 1983), 

only without shaking and subcultured every 2 days. Trypanosoma cruii epimastigotes, 

line MHOM/BR/78/Silvio (clone XHV6), were seeded a t  a final concentration of 1 a 

106cells m l'1 and maintained at 28°C by aerial passage (every 6 days) in an RPM1 

1640 baaed medium (Pereira & Hoff. 1986) using the modifications of Gibson and 

Miles (Gibson A  Miles, 1986). This was produced as follows: to 300 ml RPM1 1640 

(Life Technologies Ltd) was added 10 ml of 1 M H epea, 14 ml Trypticase (Becton 

Dickinson Microbiology Systems) at 0.173 g m l'1, 60 m l heat-inactivated (30 min at 

56°C) foetal calf serum (FCS) (Life Technologies L td). 6 ml penicillin/streptomycin 

(3000 units m l'1 /  5 mg m l'1) (Life Technologies Ltd) a n d  4ml haemin at 2.3 mg m l'1. 

This was designated RTH+FCS. In some specified instances the FCS was replaced by 

an equal volume of chicken serum (CS) (Life Technologies Ltd) and this medium was 

designated RTH-tCS.

2.1.1.1 ihHCadavtrlne

[3H]Cadaverine was prepared from the diacetyl derivative (kindly provided by 

Dr. M-H.Paik, National Institutes of Health. USA), by acid hydrolysis. This was 

carried out by the addition of 500 pi 6 M H Q  and  25 pi (0.5mCi) of the crude 

[3H]cadaverine diacetyl derivative to each of two 1 m l screw-capped reactivials. After
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sealing, the samples hydrolysed overnight a t 115 °C. The remaining HC1 was removed 

by rotary evaporation under reduced pressure (Heto vacuum rotator (VR-1) and freeze 

dryer connected to a Javac high vacuum pump). The solid left in each vial was 

resuspended in 10 ml water and adjusted to  pH 8 with 1 M NH4OH. These samples 

were pooled and purified by application to  a silica gel column ( 1 g activated gel 

(J.T.Baker B.V., Holland), transferred to a  2  ml plastic pipette) as described by Grettie 

(Grettie et al. 1972). Essentially the colum n was washed with water, then 0.002 M 

acetic acid (in both cases until radioactivity was <200 dpm /  0.1 ml) and the 

[3H]cadaverine eluted in 10 mM H Q  using  pressure from a 50 ml syringe (Becton 

Dickinson) attached to the top of the p ipette to force the liquid through the column. 

Fractions containing the purified [3H] cadaverine were pooled, freeze-dried and 

resuspended in 1 ml 10 mM HQ yielding 263 pCi [3H]cadaverine with a purity of 

>98% (26% recovery).

2.1.2.2 [14CISptrml<Unt «nd l'<ClSp*rm lin

The radiolabel was separated from  unwanted contaminants by HPLC method 

1 (section 2.1.6) with the post-column detection switched off. One minute fractions 

containing the pure radiolabel were pooled  and diluted with two volumes of water (to 

lower the propan- l-ol concentration). A Waters C18 Sep-Pak cartridge (Milliporc Ltd) 

was connected to a 5 ml plastic syringe and  the resin prepared by washing with 2 ml 

propan-1 -ol then 5 ml HPLC solvent A . The pooled sample was then added to the 

column, washed with 5 ml water, to rem ove the camphor sulphonate present in the 

HPLC solvents, and eluted in 5 ml propan-l-ol. The propan-1 -ol fraction was dried 

down by rotary evaporation under reduced pressure and resuspended in a small volume
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of 10 mM HQ.

2.1.3 RidroUbtlMm experiments

r In cell culture l

T.cruzi and Cfasciculaia  were set up at I x 10^ cells m l'1 and incubated to late 

log phase In RTH+FCS (6  days) or yeast/tryptone broth (2 days) respectively in the 

presence of 1 pCi m l'1 [1.4<n>-3H]putrescine.2HCl (11 a  m m ol1. Amersham 

International pic) or (1.5<ln>-3H]cadaverine.2HCl (1* a  mmol'1). T.cruzi cells were 

also cultured under identical conditions at 1 pCi ml*1 [tetnunethylene 1,4- 

,4C]spermidine.3HQ (10.3 mCi m m ol1. New England Nuclear) or (tetnunethylene 

l,4-u Clspentune.4HCl (13.4 mCi mmol'1. New England Nuclear) except that 

RTH+CS was used in p iece of RTH+FCS. At the end of this time cells were harvested 

by centrifugation (1300 x  g, 10 min. 4 °C) and washed twice by resuspending then 

pelleting the cells in PSG-BSA (70 mM sodium phosphate pH 7.4, 0.9% NaCl, 1% 

glucose, 1% bovine serum  albumin FractionV (BSA) and 2% penicillin/streptomycin

solution).

I fSC-PSA
Late log phase cells (1.3 x 10*) were pelleted by centrifugation (1300 x g, 10 

min, 4 °C), the supernatant discarded and then resuspended in 2 ml o f PSO-BSA 

containing 10 pCi of the  [JH]-diamines or 5 pC i of the (14C)-polyamines. The cells 

were incubated at 28 ° C  for 2 h, pelleted by centrifugation and then washed twice in 

PSG-BSA as detailed in  section 2.I.3.I.
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z.i.3.3 B c m m h n  <* <*» t»»n>cu

T h e  cell pellets (sections 2.1.3.1 & 2) were lysed in 0.25 ml distilled water and 

the protein precipitated with 0.25 ml 20% (m/v) trichloroacetic acid (TCA). 1,7- 

Diaminoheptane was added as an internal standard and the suspensions left on ice for 

30 min o r  frozen (-20 °C) awaiting analysis. The precipitated protein was removed by 

centrifugation in a Beckman microfuge E (15,800 x g, 2 min), the supernatants 

extracted five times with water-saturated ethyl acetate and then concentrated by rotary 

evaporation under reduced pressure. The residue which was left was resuspended in 

50 pi lO  mM H Q  and stored at -20 °C prior to analysis by HPLC method 1.

Performic acid oxidation was carried out by the method of Hirs (Hire, 1967) 

and acid  hydrolysis with propionic acid/HCl as described by Westhall and Hesser 

(Westhall &  Hesser, 1974) on selected cell extracts, prior to analysis by HPLC method 

1, using the modifications of Fairlamb et al. (Fairlamb et al. 1986).

T o  1 ml of medium was added an equal volume of 20% (w/v) TCA. The 

samples were then prepared as detailed in section 2.1.3.3. Analysis of these samples 

was carried  out using HPLC method 2.

1.1.5 Analysis of tilt polvim ine content of the « e r tto  of Rhoinlut proUxui «tier 

a  b lood  meal

Three adult R.prolixus bugs were fully fed through a  piece of Parafilm placed 

on m y right arm (takes about 15 min per bug). The excreta which they produced 

immediately after feeding and over the following 2 h was collected at regular intervals
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and placed in Eppendorf tubes kept at 4 °C until all the samples had been gathered. 

The protein was then precipitated with an equal volume of 20% (w/v) TCA and the 

samples were prepared as detailed in section 2.1.3.3. The polyamine content of the 

excreta was analysed using HPLC method 2.

All separations were carried out by reverse phase chromatography on a 

Beckman System Gold HPLC system (Beckman Instruments Ltd.) Samples were 

injected onto the system by a Beckman 507 (Method 1) or 506 (Method 2) 

autosampler and passed through an Brownlee ODS 7 pm guard column (Anachem) 

and onto a Beckman Ultrasphere Ion Pairing 5 pm Clg (ODS 2, 250 mm x 4.6 mm) 

column (method 1) or a Beckman Clg 5 pm  (ODS 1, 250 mm x 4.6 mm) column 

(method 2) at room temperature.

Method 1. Standards were detected with a Gilson 121 fluoromonitor following post­

column derivatisation with fluore sc amine (Fluram, Roche) (Weigele et al. 1973). The 

column was equilibrated with 100% Solvent A ( 0.25% (w/v) D-camphor sulphonate 

(Li salt, pH2, Aldrich)) for 40 min at a flow rate of 1 ml min'1. Then at time zero die 

sample was injected onto the column and eluted by application of linear gradients of 

Solvent B (25% (v/v) propan- l-ol and 0.25% (w/v) D-camphor sulphonate (Li salt.

pH2)), 0-20% over 60 m in and 20-75% over the subsequent 40 min.

In radiolabelling experiments 1 min fractions were collected in plastic 6 ml 

mini-vials (Beckman) using a 95 place Frac-100 fraction collector (Pharmacia Ltd). 

Radioactivity was determined by addition o f 5 ml Pico-Fluor 40 (Camberra Packard) 

and counting on a Beckman LS-6000LL series scintillation counter (Beckman
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Instruments Ltd).

Method 2. 50  pi of sample was derivatized with dansyl chloride and analysed by 

HPLC, using a  linear 10 mM phosphate /  acetonitrile gradient, as detailed by Kabra 

(Kabra et al. 1986) except that the post column derivatization clean up procedure was 

not used. Fluorescence was detected using a Perkin-Elmer series 3000 fluorometer 

with a  micro-flow cell. In radiolabelling experiments 0.25 min fractions were collected 

and the radioactivity determined as detailed in method 1.

Standards of dihydrotrypanothione, trypanothione disulphide, N1- 

glutathionylspermidine and N^glutathionylspermidine disulphide were prepared as 

described previously (Fairlamb et al. 1986). Dihydrohomotrypanothione and 

homotrypanothione disulphide standards were prepared in the same way as the 

equivalent trypanothione standards.

2.1.7 Polvamine oxidation,

2.1.7.1 Asaav far Pnlvamin* Q*ida»e.

Polyamine oxidising activity in serum was measured fluorometrically by the 

standard method of Snyder and Hendley (Snyder & Hendley, 1968). This is based on 

the formation of H2O2 as a  reaction product. The assay mixture contained 0.1 M 

potassium phosphate, pH 8, 0.04 mg horseradish peroxidase (175 U mg’1), 150 pi of 

serum under test, 0.25 mg homovanillic acid, 0-100 nmol polyamine substrate and ±1 

mM aminoguanidine bicarbonate (Aldrich) (added before pre-incubation) in a final 

volume o f 3ml. The only alteration to the procedure was to reduce the incubation time

from 1 h to  30 min.
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2,1,7,? Ctfitwr* gr T.tnui In Sircrmlflint or Sgtrmlnfr
Twelve well culture plates were prepared, containing 4x10^ T.cruzi cells and

0-500 pM spermidine or spermine in 2 ml of RTH+FCS or RTH+CS medium. 

Aminoguanidine (ImM) was added to half the RTH+FCS samples and they were all 

incubated for 6 days (to late log). Growth under each condition was estimated 

microscopically by cell counting using a haemocytometer.

followed using inulin [14C)carboxylic acid (11.9 mCi mmol*1. Amersham International 

pic) which had previously been dialysed against 0.9% (w/v) NaCl. This gave a cell 

volume for T.cruzi epimastigotes of 5.5 ±  0.4 p i (lO^cells)'1 (n -  4).

2.2 Transpor t  of polvamines

2.2.1 CHI culture

T.cruzi epimastigotes (clone X1Q/6) and C/ascicuIata were cultured as detailed 

in section 2.1.1 except that the C/asciculata was also grown in RTH+FCS. 

Leishmania donovani promastigotes line MHOM/ET/67/HU3 (LV9), were seeded at 

about 1 x 106 cells m l'1 into Graces insect medium (Kelly et al. 1992) or RTH+FCS, 

incubated at either 22 °C or 28 °C and subcultured every 5-6 days. An arsenical 

sensitive clone of Trypanosoma brucei brucei (S427 c l 18) procyclics were seeded at 

about 1 x 105 cells ml*1 into SDM79+FCS (Brun & Schonenberger, 1979), incubated

9f tlw ctll a l l  gf LsatL bv the inulin

n d w É fli mrthgti

A previously published method (Damper &  Patton, 1976) was



at 28 °C and subcultured every 5-6 days. When the cells were required for uptake or 

transport studies, they were all seeded initially at 1 x 106 ml*1 in the appropriate 

medium. T.bbrucei bloodstream form were obtained by Dr.E.Akuffo from the blood 

of adult Sprague-Dawley rats (200-440g) 3 days after infection with 107 organisms 

and then purified free of contaminating blood elements by chromatography on DE-52 

cellulose (Lanham, 1968).
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Transport was measured using a rapid sampling technique (Aronow et al. 1985; 

Carter & Fairlamb, 1993) involving centrifugation of the cells through silicone oil. All 

operations with T.cruzi and LAonovani were carried out in a Class II safety cabinet. 

Unless otherwise stated T.cruzi cells were always assayed on day 3 of their growth 

cycle for diamine and poly amine uptake/transport activity. Aliquots (0.1ml) of a basal 

salts solution [CBSS (Fairlamb et al. 1992) and 2% penicillin/streptomycin (5000 U 

ml*1 and 5 respectively) (CBSS+PS), 28 °C, 0.1 ml] containing [3H]putrescine, 

[3H]cadaverine or [terminal methylenes3H(N)-J spermidine.3HC1 (15.6Ci mmol'1. New 

England Nuclear) and unlabelled diamine /  polyamine at 2 times the final 

concentration were overlaid on silicone oil (0.1 ml OE F-50; viscosity 75 centistokes; 

specific gravity 1.05 g ml*1; Medford Silicones, New Jersey) in 1.5 ml Eppendorf 

tubes (Merck Ltd). These were then placed in the fixed angle rotor of an Eppendorf 

5415C centrifuge. Cells were washed twice by centrifugation (1500xg, 10 min, 4 °C) 

and then resuspended to 2 x 10* cells ml*1 in CBSS+PS and prewarmed to 28 °C. At 

intervals, aliquots (0.1 ml) were added to the radioisotope-containing medium by



rapidly pipetting down the side of each tube (to ensure adequate mixing) and the tubes 

capped. After addition of the last sample the cells were separated from the radiolabel 

by centrifugation (16,000 x  g, 1 min). Subsequently, the medium was aspirated, the 

region above the oil layer rinsed twice with phosphate buffered salts to remove any 

residual label before aspirating the silicone oil. The pellet was then extracted overnight 

with 0.1 ml 1 M NaOH before scintillation counting in 1ml Pico-fluor 40. The initial 

rates of uptake (Figures 4.3-4.6, 4.8, 4.10-4.12 and Tables 4.2-4.7) were determined 

by linear regression analysis on up to 5 time points spaced at 5 s intervals. All rates 

have a regression coefficient of r  > 0.95 and the K „ and values were determined 

using the Enzfitter software package (Elsevier Biosoft, Cambridge, UK).

2.2.3 A comiurfaow of rJm  put read nt  M id  l3H lfd«YC fliw  upUkt In the

Cells were grown for either 2 (Ç fasciculate) or 3 days (J.cruzi, L.donovani 

or T.bJyrucei procyclics). T.b.brucei bloodstream forms were isolated from Sprague- 

Dawley rats as detailed in section 2.2.1. Uptake was measured at intervals ranging 

from 10 s to 30 min using diamine concentrations of 1,10 and 100 pM by a technique 

involving the centrifugation of the cells through silicone oil as detailed in section 

2.2.2. For each cell type, a background count, which represents any non-specific 

binding of the label to the cells and tube, was obtained at each diamine concentration 

and then subtracted from each of the uptake measurements. This was achieved by 

adding the cells to the appropriate radiolabel at 4 °C and then centrifuging them 

immediately through the silicone oil.
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i over »0«

This was carried out essentially by the method of Damper and Patton (Damper 

& Patton, 1976). T.cruzi epimastigotes grown for 5 days in RTH+FCS were prepared 

as described in section 2.2.2 and then resuspended at 2 x 10s cells ml*1 in CBSS. The 

cells and label (both at 2x final concentration) were prewarmed to 28 °C for 10 min. 

At time zero an equal volume of cells were added to the label, mixed, and 

immediately lOOpl aliquots were withdrawn with an Eppendorf automatic pipette and 

layered on top of 0.1 ml o f  silicone oil which was overlaid on 100 ill o f 10% TCA 

containing 3.5 )iM 1,7 DAH in 0.4 ml polyethylene Eppendorf tubes (Merck Ltd). The 

tubes were capped and placed in the fixed horizontal rotor of a Beckman microfuge 

E. After 90 s the tubes were spun for 1 min (12,500 x g) to pellet the cells through 

the oil. Metabolism ceases immediately upon reaching the TCA, since the cells are 

lysed and denatured protein precipitated. The tubes were left overnight at 4°C for full 

extraction of the polyamines and then the TCA layer was withdrawn using a fine bore 

microlance needle (26G 1/2 L.B.0.45xl3B.L.; Bee ton Dickinson) attached to a 1ml 

syringe (Beeton Dickinson). Pooled 3[H]putreseine and 3[H]cadaverine fractions were 

acid hydrolysed and dansylated prior to HPLC analysis by method 2 as described 

previously in section 2.1.6. Fractions (0.25 min) were collected on a Frac-100 in 6 ml 

mini scintillation vials, 5 ml of Pico-Fluor 40 was added, the tubes capped, mixed and 

counted in a Beckman liquid scintillation counter. Results were expressed as the
tok+J-_

percentage^ l3HJputrescine or lJH)cadaverine label in putrescine or cadaverine 

equivalents respectively.
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rate of 2 uM

th* 6t6-»tQ pH rang

CBSS was made up to 80% of its final volume and then adjusted to the 

required pH with either 1 M NaOH in the pH range 6.8-7.0 or 1 M HC1 for the pH 

6.6 standard before making it up to the correct concentration. The transport of 2 pM 

putreseine into T.cruzi cells was measured as detailed in section 2.2.2.

pytrtyint Hi—Ml
Cycloheximide and Actinomycin D were made up as 30 times stock solutions 

in CBSS+PS and putre seine as a 100-400 times stock in 10 mM HC1, then filter 

sterilized through 0.22 pm hydrophilic syringe filters (Techmate Ltd). The experiment 

was initiated by the addition of these compounds, to cells in RTH+FCS medium, at 

a final concentration of 10 or 100 pM cycloheximide, 2 pM actinomycin D and 10 

or 100 pM putrescine. Putre seine transport was measured under saturating conditions 

(10 pM) at 4-48 h intervals as detailed in section 2.2.2.

yV-ethylmaleimide, paraquat, MGBG and the amino acids were added from a 

2 to 100 times stock solutions in CBSS+PS. All other compounds were made up as 

200 times stock solutions in various solvents and subsequently diluted in CBSS+PS. 

Oligomycin, ouabain and iodoacetic acid stock solutions were made up in 70% 

ethanol, gramicidin in absolute ethanol, valinomycin, carbonylcyanide m-chlorophenyl 

hydrazone and calcimycin in dimethyl sulphoxide (DMSO) and 2,4-dinitrophenol, p-

2.2* Effect of P 9f BÉM dM  m  It* pf

2.2.7 The effect of
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hydroxymercuribenzoate and p-chloromercuriphenyl sulphonate in 0.1 M NaOH.

When pre-incubation was required the reagent was added (at 2 times the final 

concentration) to the cells (8 x 10s cells) in a 1:1 ratio, the cells pie-incubated for the 

indicated time (10-20 min) and then added to the putreseine label as detailed in 

section 2.2.2. Controls were carried out in which cells were pre-incubatcd in the same 

final concentration (0.5%) of DMSO, ethanol or 0.1 M NaOH alone, to ensure the 

solvents themselves were not adversely affecting putre seine transport. These values 

together with one for pre-incubation of the cells with CBSS+PS were taken to 

represent a control transport rate of 100%. The amino acids, MGBG and paraquat 

were added directly (no pre-incubation with the cells) at 2 times their final 

concentration to the putre seine label. A final concentration of 2 pM putre seine was 

used in all these experiments.

2t?  P rrtf in  m m j

This was carried out with Sigma’s protein assay kit (procedure No. pS6S6) 

using Peterson’s modification o f the micro-Lowry method. This method utilizes 

sodium dodecylsulphate included in the Lowry reagent to facilitate the dissolution of 

relatively insoluble membrane lipoproteins (Lowry etal. 1951; Peterson, 1977). It was 

carried out on exponentially growing T.cruzi epimastigotes using the procedure 

involving protein precipitation with deoxycholate and TCA. From this method a 

protein content of 233 ±  19 pg (10® cells)'1 (n -  4) was determined for T.cruzi.

2.4 Statistical analysis

Kjj, and values (± the standard error of means, SEM) were calculated by



a matrix inversion method using the enzfitter program (Elsevier Biosoft, Cambridge, 

UK.). Where appropriate, all the other data points shown are the arithmetical means 

±  the standard deviation (SD). In Table 4.2 the data was analysed by student’s 

paired t-test Confidence levels were set at 99.9% (p > 0.001 was not considered 

significant).

2,5 Chemicals

Am inopropylcadaverine was kindly provided by Drs. P.P.McCann and 

AJ.Bitonti of the Marion-Merrell-Dow Research institute (Cincinnati, USA). 

£u(aminopropyl)cadaverine was generously provided by Dr.PJ.Rodrigues and 

Prof.M.Israel of the University of Tennessee College of Medicine, (USA). 

Trypanothione disulphide and N^glutathionylspermidine were purchased from, and 

homotrypanothione disulphide custom synthesised by Bachem Feinchemikalien AG 

(Switzerland). All other reagents were of the highest purity available and purchased 

from Sigma unless otherwise stated. All sterile tissue culture flasks and pipettes were 

puchased from Greiner Labortechnik.
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3.1 UnUke «nd mtUbollani of tritiattd diamine»

3.1.1 Lon« twin labelling

Since T.cruzi cpimastigotcs do not appear to make the diamines putrescine and 

cadaverine de novo (Hunter et al. 1994; Algranati et al. 1989), T.cruzi X10/6 cells 

were cultured in RTH+FCS medium to late log phase (6 days) in the presence of 

[3H]putrescine and [3H]cadaverine to determine the fate o f  each compound. As a 

control, similar labelling experiments were carried out in  the non-pathogenic 

trypanosomatid, C.fasciculata, except that the cells were cultured with the tridated 

diamines in a yeast/tryptone broth to late log phase (2 days). TCA soluble cell 

extracts were prepared and the radiolabelled metabolites w ere separated by HPLC. 

Peak assignments were made on the basis of their coelution from the reverse phase 

ion paired HPLC column with the authentic standards (Figure 3.1). Under these 

conditions the greater the hydrophobicity and basicity of th e  compound, the more 

tightly it will bind to the column and hence the longer it will take to be eluted from 

the column. Elution times varied according to the age of the column (shortening as the 

column aged) and the ambient temperature on the day of analysis.

3.1.1.1 f3HlPutreacine

These experiments showed that 73% of the total Gabel plus medium) 

exogenous putrescine (0.77 nmol ml'1) was taken up by T.cruzi. Following HPLC 

separation, only 7% of the radioactivity taken up was recovered as putrescine. The 

majority was incorporated into spermidine (14%), spermine (37%),
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dihydrotrypanothione (< 1%), trypanothione disulphide (9%) and four unidentified 

peaks, U1 (1% ). U2 (4%), U3 (13%) and U4 (9%) (Figure 3.2A). Performic acid 

oxidation and acid hydrolysis confirmed the sulphur and polyamine content of these 

compounds. Following performic acid oxidation, the radioactivity associated with 

dihydrotrypanothione, trypanothione disulphide and compounds U l-3 (27% of the total 

recovered) disappeared, with the corresponding formation of a number of radioactive 

peaks with retention times of less than 30 min (28% of the total recovered. Figure 

3.2B). Following acid hydrolysis there is an increase in the spermidine peak from 14 

to 23% of the recovered label, which correlates with the loss of the radioactivity 

associated with dihydrotrypanothione and trypanothione disulphide (9%). There is also 

an increase in the spermine peak from 37 to 64% of the recovered label, suggesting 

that some o f  the unknown compounds (including U1 and U3) may be conjugates of 

spermine with other cellular components (Figure 3.2C). Subsequently, U2 was found 

to coelute w ith the mixed disulphide of glutathione and glutathionylspermidine, 

prepared by mixing glutathione and glutathionylspermidine disulphide in a molar ratio 

of 1:3 at pH  7.4 (data not shown). Compound U4 is stable to both performic acid 

oxidation and  acid hydrolysis. Its chemical identity remains to be determined.

In comparison, 41% of the [3H]putrescine in the medium that was taken up by 

C/asciculata. Most of this radioactivity was recovered as putrescine (7%) spermidine 

(65%) and glutathionyl-spermidine conjugates (18%). No spermine or unidentified 

peaks were formed (Figure 3.3A). Performic acid oxidation (Figure 3.3C) and acid 

hydrolysis (Figure 3.3D) confirmed that putrescine was converted only into 

spermidine, glutathionylspermidine and trypanothione, in agreement with previous 

findings (Fairlamb et al. 1986).
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With [3H]cada venne, 79% of the total (label plus medium) exogenous diamine 

(1.06 nmoLml'1) was incorporated into T.cruzi. After separation by HPLC, only 6% 

o f the radioactivity taken up was recovered as cadaverine. The majority was converted 

to aminopropylcadavenne (24%) and four major unidentified peaks, U5 (40%), U6 

(11%), U7 (3%) and U8 (3%) (Figure 3.2D). Following performic acid oxidation, the 

radioactivity associated with peaks US and U6 disappeared (51% of the total 

recovered) and was associated with the appearance of two m^jor new peaks eluting 

at less than 20 min (peaks US*. Figure 3.2E). The sum of US* (fractions 2-20) 

represents 51% of the radioactivity recovered, suggesting that US and U6 were 

converted to US* products by performic acid oxidation. These suggest that US and U6 

are sulphur-containing metabolites. In contrast, die amount of radioactivity recovered 

as cadaverine and aminopropylcadaverine was essentially unchanged by this treatment 

(6 versus 6% for cadaverine and 24 versus 20% for aminopropylcadaverine, 

respectively). Following acid hydrolysis, peaks U5 and U6 disappeared (Figure 3.2F). 

The radioactivity associated with US and U6 (51%) could be accounted for by the 

increase in aminopropylcadaverine from 24 to 77%, suggesting that these metabolites 

contained aminopropylcadaverine. Compounds U7 and U8 were stable to both 

performic acid oxidation and acid hydrolysis. U7 was tentatively identified as 

b<5(aminopropyl)cadaverine based on the fact that it coeluted with the authentic 

standard (Figure 3.1); the identity of U8 remains to be determined.

In contrast, only 2% of the exogenous (3H]cadaverine was taken up by 

C fascicolata. A small amount of this was converted to aminopropylcadaverine (8%). 

No further metabolism was observed (Figure 3.31).



TIME (min)
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The above radiolabelling experiments suggest that T.cruzi cells grown in

exogenous cadaverine can conjugate aminopropylcadaverine to sulphur-containing 

molecules (US and U6). The chromatographic behaviour o f  these unidentified peaks 

suggests that US, which elutes just after the standard for trypanothione disulphide, 

could be the aminopropylcadaverine-containing equivalent N1,A/9-Wr(glutathionyl)- 

aminopropylcadaverine ("homotrypanothione") disulphide. Unsuccessful attempts were 

made to synthesize enough Nl ,/V9-bw(glutathionyl)amitiopropylcadaverine for formal 

identification, either enzymatically using glutathionylspermidine and trypanothione 

synthetases from C fasciculate or by extracting it directly from T.cruzi cells (Hunter 

e t al. 1994). Therefore based on the preceding evidence A^A^-Mrfglutathionyl)- 

am inopropylcadaverine disulphide was custom synthesized by Bachem 

Feinchemikalien AG. Using this compound, peak US was identified as 

homotrypanothione disulphide (Figure 3.4A). Furthermore peaks labelled U5* were 

found to coelute with homotrypanothione disulphide treated with performic acid under 

identical conditions (Figure 3.4B). Presumably two peaks are found in the 

radiolabelled cells, and a doublet and separate peak which coelute with these in the 

standard (Figure 3.4B), due to incomplete oxidation to  the Mr(sulphonate) form. On 

acid hydrolysis aminopropylcadaverine and the component amino acids are formed 

(Figure 3.4C ). The structure of homotrypanothione is depicted in Figure 3.5.

3.1.1.4 Possible identity of U6

The identity of U6 (Figure 3.2D) still needs to  be confirmed. It could be 

glutathionylaminopropylcadaverine, as it elutes within 1-2 min of the equivalent



Table 3.1 Comparison of the pattern o f  uptake and Incorporation of 
(*H]putreacine and  [^ lcad av e rin e  between T .en td  grown in RTH medium which 
has been supplemented with either 10% foetal calf (FCS) or chicken serum  (CS).

Radioactivity in acid extracts, % 

[3H)putrescine [3H]cadaverine
component
detected RTH+FCS RTH+CS RTH+FCS RTH+CS

putre sc ine 0.7 1.3 . .

spermidine 13.9 14.0 - -
spermine /  U31 49.9 61.5 - -
N x -acety lspermine nd2 2.9 - -
glutathionylspermidine3 3.8 6.8 - -
trypanothione 10.0 7.7 '

cadaverine . - 5.8 2.5
aminopropylcadaverine - - 24.5 32.1
òi'j(aminopropyl)cadaverine
glutathionyl-

" ■ 3.3 2.5

aminopropylcadaverine - - <0.5 <0.5
homotrypanothione " ■ 39.7 36.7

Unassigned peaks U1 1.3 
U3 12.9 
U4 9.1

U1 nd 
U3 ?%4 

U4 nd

U6 11.4 
U8 3.4

U6 10.4 
U8 nd

Label taken up
by the cells, % 75 59 79 81

Recovery of the label
from the column, % 46’ 89 583 113

Percentages represent the amount of the label in each fraction compared to the total 
recovered from the column. The polyamine content of: i) RTH+FCS was 0.7 pM 
putreseine, 1.0 pM cadaverine, 1.1 pM spermidine and 0.3 pM spermine; ii) RTH+CS 
was 2.3 pM  putre seine, 0.8 pM spermidine and 0.5 pM spermine, prior to the addition 
o f the radiolabel. Tentative assignments for some o f these unidentified compounds 
(U l-8) are suggested in the accompanying tex t lIn T.cruzi some o f the ‘spermine’ 
could be U3 which coelutes with it; m ot detectable; 3both the free form and the mixed 
disulphide of glutathionylspermidine and glutathione (U2 in Figure 3.2) are included 
in the percentages depicted here; 4amount of spermine /  U3 peak present as U3 not 
determined; 5the low recoveries in these experiments are discussed in section 3.1.1.6.



glutathionylspermidine standard. However, this is unlikely since homotrypanothione 

is found almost exclusively as the disulphide under these extraction conditions and 

thus glutathionylaminopropylcadaverine should also be present as its disulphide or as 

the mixed disuphide with glutathione. Furthermore, no peak which could correspond 

to glutathionylaminopropylcadaverine disulphide can be identified in these cell 

extracts. Instead, considering the large quantities of glutathione present in these T.cruzi 

cells (approximately 2 nmol.lO^cells*1) (Hunter et al. 1994) and the fact that U6 elutes 

close to the mixed disulphide of glutathione and glutathionylspermidine (U2, Figure 

3.2A), it is more likely that U6 is the equivalent mixed disulphide o f glutathione and 

glutathionylaminopropylcadaverine. Confirmation that U6 is the mixed disulphide of 

glutathione and glutathionylaminopropylcadaverine could be obtained by chemical 

synthesis of this compound (as detailed in section 3.1.1.1 for the mixed disulphide of 

glutathione and glutathionylspermidine) and then demonstrating that it coelutes with 

U6.

3-1.1 J  U *  of K TH  + 10» chicken wniin

When, in a parallel experiment, T.cruzi cells were incubated with 

[3H]putrescine and [3H]cadaverine to late log phase in RTH medium containing 10% 

chicken serum (CS), in place of the FCS a similar pattern of uptake and incorporation 

of each label was observed (Table 3.1) confirming the initial findings with RTH+FCS 

(Figure 3.2).
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3.1.1.« Recoveries

The generally low recoveries of tritiated putrescine and cadaverine from the



column, with a mean of 67% and 85% for the T.cruzi and Cfasciculata labelling 

studies respectively, could indicate that there are still radiolabelled compounds 

adhering to the column especially as U4 and U8 elute right at the end of the chosen 

gradient. However on extending the gradient from 70 to 100% solvent B, no additional 

compounds were eluted from the column. Although the possibility of radiolabelled 

compounds still being retained on the column under these conditions can not be ruled 

out, it is more probable that it was due to an injector error, as in other experiments 

we experienced problems at that time with low volumes of sample being injected onto 

the column by the autosampler. The fact that the recoveries from T.cruzi cells labelled 

with tritiated diamines in RTH+CS (Table 3.1), which was carried out when the 

autosampler was working properly, are in the region of 89-113% favours this 

conclusion.

3.1.2 Short term labelling

In this study T.cruzi and C.fasciculata were incubated in PSO-BSA for 2 h in 

order to give an estimate of the relative rates of putrescine and cadaverine uptake and 

incorporation between the two organisms. BSA (1%) was added to the PSG since it 

improved cell viability and represented a possible ‘polyamine-free ’ alternative to the 

RTH+FCS medium used in the long term labelling studies. Unfortunately, subsequent 

analysis revealed that the PSG-BSA contained 2.3pM putrescine and 0.2pM 

spermidine, so a direct comparison could not be made between rates of uptake of 

putrescine and cadaverine.
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Table 3.2 Radiolabelling of T.cruzi and Cfascicolata  with [3Hlputresdne and 
[3H  }cadaverine in PSG-BSA for 2 h._____________________________________ __

Radioactivity in acid extracts, %

[3H]putrescine [3Hlcadaverine
component
detected T.cruzi C  fascicolata T.cruzi C fascicolata

putrescine 1.3 92.3 - -
spermidine 34.5 4.1 - -
Ar-acetylspermidine 2.3?1 nd - -
spermine /  U32 16.8 nd.3 - -
glutathiony 1 sperm idine 3.8 nd - *
trypanothione 26.4 0.23? " ■

cadaverine - - 70.7 95.0
aminopropylcadaverine - - 14.4 1.2
b«(aminopropyl)cadaverine - * 0.4? nd
glutathionyl- 
am inopropy lcadaveri ne . . nd nd
homotrypanothione - - 4.0 nd

Unassigned peaks U1 3.8 
U4 1.8

0 U6 1.2 0

Label taken up
by the cells, % 97 77 5.2 nd

Percentages represent the amount of the label in each fraction compared to the total 
recovered from the column. Mean recovery of the label from the column was 91%. 
The polyamine content of the PSG-BSA was 2.3 »iM putrescine and 0.2 jiM 
spermidine. Am ative assignment only; 2In T.cruzi some o f the ‘spermine* could be 
U3 which coelutes with it; 3not detectable.
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In T.cruzi 69% of the total exogenous [3H]putrescine (2.8jaM) was taken up 

from the PSG-BSA over 2 h, and of this only 1% was found as putrescine, the 

remainder having been converted to other putrescine containing metabolites (Table 

3.2). In contrast, although a similar amount of exogenous [3H]putrescine (60%) was 

taken up by C fasciculate over the 2 h, 92% of this stayed as putrescine (Table 3.2). 

This suggests that T.cruzi is considerably faster than Cfasciculate in its ability to 

incorporate the [3H]putrescine taken up by the cells into polyamines and then 

conjugate these polyamines to glutathione.

3-1 I^ICutoverin«

With [3H]cadaverine (0.3pM), T.cruzi took up 80% of the label and of this 

30% was convened to other cadaverine containing metabolites. In comparison, 

C fasciculate only acquired 1% of the exogenous label and of this 95% remained as 

cadaverine (Table 3.2). As the initial concentration of cadaverine in the PSG-BSA was 

the same (0.3pM), this suggests that T.cruzi has a much greater ability than 

C fasciculate to both take up and metabolise cadaverine.

Initial attempts to label T.cruzi cells with 1 pCi.ml'1 [,4C]spermidine and 

lu C]spermine to late log phase (6 days) in RTH+FCS medium were unsuccessful as 

all the cells rounded up and in the case of spermine nearly half of them died. Others 

have reported that FCS contains the polyamine oxidising enzyme, serum amine 

oxidase (abundant in ruminant serum) capable of oxidising spermidine and spermine
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to toxic aminoaldehydes (Ferrantc et al. 1982; Ferrantc et al. 1984; Morgan et al. 

1986).

Assaying for a polyamine oxidase (Snyder & Hendley, 1968) revealed that heat 

inactivated FCS can slowly oxidise polyamines in the order spermine > spermidine »  

putreseine = cadaverine. This oxidation can be inhibited by >90% if the FCS is pre­

incubated with aminoguanidine, a known inhibitor of serum amine oxidase (data not 

shown). Furthermore T.cruzi can be grown in RTH supplemented with 10% chicken 

serum (RTH+CS) in place of the FCS (Ariyanayagam & Fairlamb, unpublished data). 

No polyamine oxidising activity was detected in the chicken serum when tested with 

up to 100  nmol /  assay of spermidine or spermine.

Additional tests in 12 well plates revealed that all the T.cruzi epimastigotes 

grown for 6  days in FCS containing £100 pM spermidine or spermine alone died. If 

ImM aminoguanidine was also added to the wells then the cells incubated in the 

presence of 100 pM spermidine grew normally whereas those in lOOpM spermine still 

grew to a lower density than the control cells. T.cruzi incubated for 6 days in 

RTH+CS ±  ImM aminoguanidine grew normally up to spermidine and spermine 

concentrations of 500 pM (data not shown).

As aminoguanidine is a weak inhibitor of AdoMetDC and so could interfere 

with normal polyamine metabolism (Williams-Ashman & Seidenfeld, 1986), cells were 

incubated with spermidine and spermine in RTH+CS. These results indicate that of 

the total polyamines, 30 % of the total exogenous spermidine (98 nmol m l'1) and 10% 

of the total spermine (75 nmol m l'1) was taken up by the cells (Figure 3.6). However 

the growth of cells labelled with spermidine and spermine was only 60 and 17% 

respectively, of the control where no radiolabel was added. When labelled for 2 h in
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T ab le  3 3  R adiolabelling o f  T.cruzi w ith  [,4C )sperm idine a n d  [14C )spern iine in 
PSG-BSA for 2 h . ____________

component
detected

Radioactivity

[14C]spermidine

in acid extracts, %

[‘4C]spermine

putrescine nd.1 nd
spermidine 85.7 0.7
spermine 4.5 92.4
N 1 -acetyl spermine 0.9 T2 1.47
glutathionylspermidine nd nd
trypanothione 3.7 nd

Unassigned peaks 0 U93 1.7

Label taken up
by the cells, % 12 17

Percentages represent the amount of the label in each fraction compared to the total 
recovered from the column. Mean recovery of the label from the column was 124%. 
The polyamine content of the PSG-BSA was 2 3  putreseine and 0.2 pM
spermidine, ‘not detectable; Am ative assignment only; 3 for the position of U9 refer 
to Figure 3.6.
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PSG-BSA, 12% of the total exogenous spermidine (243 nmol ml"1) and 17% o f the 

spermine (187 nmol m l'1) was taken up by the cells (Table 3.3). However, the 

l 14C]spermidine and [ 14C]spermine have an approximately 1000-fold lower specific 

activity than the tritiated putreseine and cadaverine labels, and so are present (even 

when taking into consideration the diamines found in the RTH+CS medium or PSG- 

BSA) at about a 100-fold greater concentration in the medium or PSG-BSA than the 

diamines. Hence the cells actually take up considerable quantities of these polyamines. 

For example, when labelled for 2 h in PSG-BSA this represents a very sizeable uptake 

of 39 nmol, spermidine (1 (Cecils) '1 and 42 nmol, spermine (li^cells)'1. If these 

polyamines are toxic to the cell at high concentrations as other results indicate 

(Morris, 1991; Brunton et al. 1991), or if the CS still possesses a serum amine oxidase 

activity (which is below the detection limits of the assay), then this might in part 

explain the retarded growth rates observed in the long term (RTH+CS) labelling 

studies. In both the long and short term labelling with these [14C]polyamines very 

little interconversion is observed with >86% of the spermidine and >92% o f the 

spermine remaining as the parent compound (Figure 3.6 & Table 3.3). A small 

quantity of acetylated polyamines may be present (Figures 3.1 and Table 3.3) but less 

than 2 % of the spermine was found as spermidine.

3.3 Determination of the cell volume of T.cruzi

Using the inulin exclusion method (Damper & Patton, 1976) the cell volume 

of T.cruzi epimastigotes was determined to be 5.5 ±  0.4 pi (1 (Cecils)'1 (n -  4), while 

the previously published value of 10.5 ± 0.6 pi (1 (Cecils) '1 was used for Cfasciculata  

(Fairlamb et al. 1986). From this it can be seen that over a 2 h labelling period in



Table 3.4 Amounts of the radiolabel led diamines and polyamines taken up by
T.cruzi and CJasciculata over 2 h from 
concentration that this represents.

the PSG-BSA and the intracellular

Organism Radiolabel
Amount 

taken up by 
cells (nmol 
(lO'celta)-')

Cell Internal concentration 
volume o f  radiolabel and its 

Oil (10*0611s)*1)  metabolites (mM)

T.cruzi putrescine 2.57 5.510.4 0.47

cadaverine 0.32 0.06

spermidine 38.91 7.08

spermine 42.39 7.71

C fasciculata putrescine 2.24 10.510.6 0.21

cadaverine 0.004 0.004

The total amount of each of the diamines and polyamines (radiolabelled and those 
present in the PSG-BSA) available for uptake from the PSG-BSA by a total of 1.5 x 
108 cells was: 5.6 nmol putreseine, 0.6 nmol cadaverine, 486 nmol spermidine and 
374 nmol spermine.
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Figure 3.7 HPLC chromatogram depicting the polyamine content of Rhodnius
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Table 3.5 Possible identity o f  the unknown peak found at 12 min on the HPLC 
trace of the excreta produced by Rhodniut proUxtu immediately after a blood 
meal. ____________________________ __

Compounds tested Unknown compound General comments

Nitrogenous excretion

Uric acid No Main route for nitrogenous excretion 
in R.prolixus

Allantoin/Allantoic acid No Breakdown products of uric acid
Creatine No

Xanthine No Precursors to uric acid - possible
Hypoxanthine No excretory products

Urea No From the blood meal

Pigments

Biliverdin No Derived from the breakdown of 
haemoglobin in the blood meal

3-hydroxykynurenine No Rprolixus contains the ommochrome 
rhodnitin, a fluorescing sulphuric ester 
(-SO3NH4) of 3-hydroxykynurenine



PSG-BSA T.cruzi accumulated micromolar concentrations of the tri dated diamines and 

their metabolites and millimolar concentrations of the 14C-polyamines and their 

metabolites within the cell (Table 3.4). C.fasciculata has twice the intracellular volume 

o f  T.cruzi but the total extracellular concentration of diamines available for uptake 

from  the PSG-BSA is the same for both organisms. Therefore in Cfasciculata there 

is a  2- and 150-fold lower intracellular accumulation of tritiated putre seine and 

cadaverine (and their metabolites) respectively than that observed for T.cruzi over the 

same 2 h time period (Table 3.4).

3 .4  Poivamine content of the excreta from Rhodniui prolixin after a blood mtal

As the present work uses the epimastigote form of T.cruzi, which normally 

resides in the mid- and hind-gut of the blood-sucking triatomine bugs, we thought that 

it would be interesting to measure the polyamine content of their excreta immediately 

after a blood meal (mine!). Using Rhodnius proiixus, one of the common vectors of 

Chagas’ disease, it was found that their excreta contained 4.5 pM putrescine, 1.1 pM 

cadaverine, 0.9 pM spermidine and 0.5 pM spermine (Figure 3.7). A large 

unidentified peak eluted about 15 seconds after cadaverine on the DNS-CL HPLC 

system. This compound is probably amine positive and /  or fluoresces at similar 

wavelengths to dansylated compounds. A number of different possible compounds 

were tried but none of these gave a peak which coeluted with the unknown peak at 

12.0 min (Table 3.5) and so its identity still remains a mystery.

3.5 Summary

The results obtained so far indicate that diamine and polyamine uptake in
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T.cruzi epimastigotes is quantitatively more important than de novo synthesis. 

Therefore the kinetics, specificity and regulation of diamine uptake in T.cruzi is 

investigated in Chapter 4.
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DIAMINE UPTAKE IN T.CRUZl
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CHAPTER 4 ; RESULTS 

PART 2 ; DIAMINE UPTAKE IN T.CRUZI

The time course of uptake of 1, 10 and 100 pM [3H]putrescine and 

[3H]cadaverine was measured at 28°C in exponentially growing T.cruzi epimastigotes, 

Cfasciculata, L.donovani promastigotes and T.bJ>rucei procyclics (Figure 4.1A-F). 

Over the 30 min time course putreseine uptake was extremely fast in T.cruzi. At a 

concentration o f 1 pM over 83% of the putre seine had been accumulated by the 

T.cruzi cells after just 1 min (Figure 4.1 A). The uptake of putrescine was substantially 

slower in all the other trypanosomatids. Even after 30 min incubation of the cells at 

each putrescine concentration, 4- to 8-fold less putrescine was accumulated by 

Cfasciculata and in the case of T.bJ>rucei and Lxlonovani putrescine uptake was at 

least 40-fold lower than that seen in T.cruzi (Figure 4.1A.C and E).

Cadaverine was also rapidly taken up by T.cruzi. At low (1 pM) concentrations 

the rate of cadaverine uptake was slower than with putrescine, requiring 20  min for 

over 95% of the cadaverine to be accumulated by the cells (Figure 4.IB). However 

at 10 and 100 pM concentrations uptake rates in T.cruzi for both putrescine and 

cadaverine were similar (Figure 4.1C-F), suggesting that cadaverine is accumulated 

at the same maximum rate by the cells only with a lower affinity than putrescine. The 

other trypanosomatids have an even lower ability to take up cadaverine than 

putrescine. After 30 min at least 40-fold more cadaverine has been incorporated into 

T.cruzi than in any of the other three trypanosomatids.

In T.cruzi saturable putrescine and cadaverine uptake was observed in the 1- 

100 pM range with a maximum velocity of 2-3 nmol min' 1 (lO^cells)’ 1 (Figure 4.2A-



B). Putreseine uptake in C/asciculata also appears to be saturable in this concentration 

range with a maximum velocity of about 0.15 nmol min*1 (lO^cells)*1. In contrast, 

over this concentration range, cadaverine uptake in C Jasciculata, and both putre seine 

and cadaverine uptake in L.donovani and T.b.brucei  appear to be non-saturable and 

of low velocity, <0.03 nmol min*1 (lO^cells)'1.

Putre seine and cadaverine uptake was also measured in freshly isolated 

bloodstream TJy.brucei and found to be of a similar low level to that seen in the 

procyclics (symbols not added to Figure 4.1, since they overlap the procyclic ones). 

L.donovani promastígotes (Figure 4.1) were grown at 28°C in Grace’s insect medium 

prior to measurements of their diamine uptake in CBSS. It is worth noting that 1 pM 

putre seine uptake in L.donovani grown at 28°C in RTH+FCS medium (34 pmol 5 

min*1) or at 22°C in Grace’s insect medium (29 pmol 5min '*), is similar to the 1 pM 

putre seine uptake values observed for cells grown at 28°C in the Grace’s insect 

medium (22 pmol 5 min*1. Figure 4.1). However if the cells are grown at 22°C in 

RTH+FCS medium, prior to assay, then the uptake rates over 5 min for both 1 pM 

putrescine and l pM cadaverine become comparable to those shown in Figure 4.1 for 

T.cruzi (putrescine, 1005 versus 899 pmol 5 min*1; cadaverine, 213 versus 605 pmol 

5 min*1; for L.donovani and T.cruzi respectively). L.donovani promastígotes grow 

better in both the media when incubated at 22 rather than 28°C. This suggests that 

L.donovani diamine uptake is either activated by something in the RTH+FCS medium 

or conversely that them is a molecule in the Grace’s insect medium which inhibits 

diamine uptake. As this was not followed up, it is not possible to say here which is 

the more likely scenario.
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Table 4.1 Intracellular fate of (3H]Putreadne and (3H(Cadaverine after a 90 s 
exposure o f Txrun  epimastigotes to each label

Diamine /  Polyamine [3H]Pu tre scine 
equivalents1 

(%)

[3H]Cadaverine
equivalents2

<%)

Putrescine 98 -

Spermidine 2 •

Spermine nd5 -

Cadaverine - 100

Aminopropylcadaverine - nd

fii5(aminopropyl)cadaverine - nd

T.cruzi cells were incubated with the appropriate radiolabel for 90 s and then 
centrifuged through silicone oil into acid. The acid extracts were then prepared for 
separation of the radiolabelled products by HPLC using method 2. Full details in 
section 2.2.4 of the methods. T.cruzi cells took up 80% of the lpM  I3H]putrescine and 
10% of the lpM  [^cad av erin e  over the 90 s. Recovery o f the labels from the 
column is 93% for l3H] putrescine and 104% for [3H]cadaverine. 1 % of the label 
coeluting with putrescine, spermidine and spermine; 2 % of the label coeluting with 
cadaverine, aminopropylcadaverine and btr(aminopropyl)cadavenne; 3 nd -  not 
detectable (<0.5%).



All the kinetic studies which are detailed below have been carried out on the 

epimastigote form of T.cruzi. This is an insect stage of the parasite which can be 

readily grown in axenic culture to quantities amenable for the biochemical 

characterisation o f putreseine and cadaverine uptake. Before a more detailed kinetic 

analysis could be attempted the following basic parameters were established:

1) In order to obtain linear initial rates, putrescine and cadaverine uptake was 

determined by linear regression analysis on up to 5 time points spaced at 5 s intervals. 

All rates have a regression coefficient of r  > 0.95. Over this time period < 10% of the 

radiolabelled diamine was taken up, except with exponential (day 3) T.cruzi cells 

incubated in 0.25 to 8 pM [3H]putreseine concentrations where as much as 13% (8 

pM) to 45% (0.25 pM) of the label was taken up by the cells.

2) A high cell concentration of approximately 1 x 10s cells ml' 1 was 

maintained so that the cells would spin properly through the oil layer (84% have spun 

through the oil after 10 s and 98.5% after 1 min).

3) A temperature of 28°C was chosen to measure diamine uptake (unless 

otherwise stated) as the T.cruzi epimastigotes are cultured at this temperature.

4) Essentially there was no change in putrescine uptake rates in CBSS buffer 

in the pH 6.6 to 8.0 range. All the following diamine uptake studies were carried out 

in CBSS at pH 7.4.

5) Of the two diamine radiolabels which were taken up by the cells over the 

first 90 s there was <1.5% conversion of the putrescine label to spermidine and no 

metabolism of the cadaverine label (Table 4.1). As diamine uptake was only measured
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over the first 20 to 25 s, it is concluded that we are solely measuring ‘transport’ and 

not ‘uptake’ comprising a mixture of transport and further metabolic conversion into 

other polyamines. However on a cautionary note, it is possible that in  its present 

context the term ‘transport’ could encompass not only the entry of these diamines into 

the cell but also their subsequent sequestration within the cell by anionic compounds.
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» of putrescin? %

The initial velocity of putreseine and cadaverine transport was measured in 

exponentially growing T.cruzi cells (day 3) over a range of putrescine (0 .25  to 10 pM) 

and cadaverine (5 to 100 pM) concentrations (Figure 4.3).

By use of the Michaelis-Menten equation:

v -  I S l ^ V ^
Km + lS]

(where v is the initial velocity of the reaction (transport); is th e  maximum 
velocity; [S] is the substrate (putrescine or cadaverine) concentration a n d  Kg, 
is equivalent to the substrate concentration which yields half-maximal velocity)

which describes the curve obtained for a simple unireactant system w hen  the initial 

velocity is plotted against substrate concentration, rectangular hyperbolic curves were 

obtained for putrescine and cadaverine jrom and Kg,. (Figure 4.3).

Hence the transport of both putrescine and cadaverine in exponentially growing T.cruzi 

cells exhibited saturable Michaelis-Menten type kinetics. Putrescine w a s  transported 

by a rapid high-affinity saturable carrier with a Kg, ■ 2.0 ±  0.7 pM an d  a  ■ 3.3 

±  0.3 nmol min*1 (108 cells)'1 (which is equivalent to 14.1 nmol min*1 (m g  protein)*1. 

Figure 4.3A). Cadaverine was transported by a rapid 6-to 7-fold low er affinity



7

p h a se : m id  log la te  logTim e in c u ltu r e  ( d a y s  ) s ta tio n a ry
Figure 4.4 Changes in the maximum rate of putriscine and cadaverine transport 
with growth cycle phase. Tenui cells w oe diluted into fresh RTH media at 1 x 10  ̂cells ml'1 
and assayed over days 3 to 7 of their growth cycle for maximal diamine transport rates. app., at 
10pM putrescine (•) and lOOpM cadaverine (a). For putrescine and cadaverine each point represents 
the mean value 1 the standard deviation of 3 determinations. The cell density (v) represents the mean 
of 2 determinations. Full details in section 2.2.2 of the methods.
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Table 42  Alterations in K .  and values

Tune in Cell Density1

culture
(days) (1 * 107cells ml'1)

putrescine and cadaverine transport with

Putrescine Transport2

(pM) (nmol min' 1

(lO^ceds)*1)

3 132 1.9910.67 31910.34 13.413.9 3.8610.32

5 6J3 2.06 ± 0.65 0.61 ± 0.06* 45.0 ±19.3 1.01 ± 0.2 1*

7 5.89 2.69 ± 0.63 0.1710.01* nd3 nd

1 Cell density is the mean value of 2 determinations; 2 1 ^  and VM, values were determined using the Enzfitter software package (± SEM); 
3 nd -  not determinable; ^Values differ significantly (p<0.001) as compared with 3 day cells, n=7 (the number of points used in Enzfit for the 
calculation of K,,, and values).
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saturable carrier with a Kj^ =13.4 ±  3.8 pM and a Vma. = 3.9 ± 0.3 nmol min' 1 (108 

cells) '1 or 16.6 nmol min' 1 (mg protein) '1 (Figure 4.3B).

growth cycle

Whilst measuring the kinetics of diamine transport in T.cruzi it was observed 

that cells assayed in late log or stationary phase (days 3-7) appeared to exhibit a 

similar K,,, but lower Vm. T for both diamines than exponentially growing cells (day 

3). When the kinetic parameters (K^, and V ^ )  were measured on the same batch of 

exponential (day 3), late log (day 5 ) and stationary (day 7) phase cells, it was found 

that the V , ^  decreased 20  fold as the  cells went from exponential to stationary phase 

(Figure 4.4). However the K,,, for putreseine remains essentially unchanged (Table 

4.2), suggesting a loss of active transporters.

It should be noted here that most of the following work has been carried out 

solely on the tritiated diamine putrescine as it is a better substrate (lower Kg,) and 

more readily available for characterisation of this transporter than cadaverine. 

Furthermore for Figure 4.4 and m uch of the subsequent work 10 pM putrescine (or 

100 pM cadaverine for Figure 4 .4 ) has been taken as a  good estimate of the actual 

Vm„  for putrescine (cadaverine) transport, as can be seen from a comparison of 

Figures 4.4 and Table 4.2. Putrescine or cadaverine transport measured at 10 or 100 

pM respectively has thus been term ed the apparent maximum velocity (V ^ a p p .) .

In order to determine whether this up- and down-regulation of diamine
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Figure 44  Effect of cydoheximide on maximal putresdne transport in T.cruzi 
After 24 h ihe remaining control cells from Figure 4.5 were divided into two and incubated for a further 
24 h ± 100 |iM cydoheximide. The velocity of puoeacine trmsporv epp.. was measured at 24. 

VI Md 4* In n . ooint rrwtsenunfl the mean ± the standard deviation of 3 determinations.
a half life of 18 hours was
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transport during the growth phase required new protein and RNA synthesis, stationary 

phase cells were diluted, into fresh RTH+FCS medium supplemented with the protein 

synthesis inhibitor cycloheximide, or the RNA synthesis inhibitor actinomycin D and 

their maximum rate (V^ . app.) o f putreseine transport measured over the next 24 h 

(Figure 4.5). In control cells, after an initial lag period lasting approximately 8 h, there 

was a progressive increase in the Vmaxapp. of putrescine transport to a maximum after 

24 h. No such corresponding increase in the V ^ a p p .  of putrescine transport was seen 

in the cells treated with cycloheximide or actinomycin D, suggesting that both protein 

and RNA synthesis are required for the up-regulation of putrescine transport upon 

dilution into fresh RTH+FCS medium.

At 24 h some of the control and cycloheximide treated cells were washed once 

in CBSS, resuspended at 1 x 107 cells ml*1, in fresh RTH+FCS medium and incubated 

for a further 48 h (Figure 4.5). The recovery of putrescine transport activity in the 

cycloheximide treated cells to control levels indicates that the cycloheximide is having 

a specific and reversible effect on the synthesis of the transporter.

When, after 24 h in fresh RTH+FCS medium, cycloheximide was added to half 

the remaining control cells (Figure 4.5), then only in the cycloheximide treated cells 

was there a steady reduction in the of putrescine transport over the next 24 h 

(Figure 4.6). From these data, it can be calculated that the putrescine transporter in 

T.cruzi turns over with a half-life of approximately 18 h (insert in Figure 4.6).

When T.cruzi cells exhibiting maximal putrescine transport velocities (24 h 

point on Figure 4.5) are incubated with 10 pM putrescine, 100 pM cycloheximide or 

2 pM actinomycin D for 24 h then assayed for remaining [3H]putrescine transport 

activity only 82, 38 or 42% respectively of the control cells activity (48 h point on



Table 4 3  Effect on maximal putrescine transport velocities of pre-incubation of 
T.crun cells with cydoheximide, actinomycin D or putrescine

Additions v ™  *p p 1
(nmol min*1 
(lO^cells)*1)

V™ x*PP' 
(% of control)

Control (no additions) 5.70 ±  0.69 100

10 pM Putrescine 4.65 ±  0.52 82

100 pM Cycloheximide 2.18 ±  0.32 38

2 pM Actinomycin D 2.46 ±  0.08 43

Day 7 (stationary phase) cells were diluted at 1 x 107 cells ml' 1 into fresh RTH+FCS 
medium, grown for 24 hours in order to achieve maximal putrescine transport velocity, 
then washed once in CBSS and grown for a further 24 hours in fresh RTH+FCS 
medium containing the additions indicated above. 1 Measured at 10 pM  putrescine ± 
the standard deviation of 3 determinations.



Table 4.4 Effect on maximal putrescine transport velocities of pre-incubation of 
T x ru d  cells in RTH+FCS supplemented with 100 pM  exogenous putrescine or 
pre-conditioned for 4-7 days with T xru ti  cells (day 4 o r  7 supernatant)

Addition v ™  *p p -' Vmax >PP '

(nmol min' 1 
(liArells)'1)

(% of fresh 
medium control)

Day 7 cells 0.26 ±  0.03 6

24 hour, after dilution into: 
Fresh media 
No additions 4.24 ±  0.35 100

+100pM Putrescine 0.49 ±  0.05 12

D«y 4 lupematam 
No additions 1.48 ±  0.09 35

(Day 4 cell, 2 2.10 ± 0 .27 49)

D ay 7 lupcm aiam  
No additions 0.99 ±  0.05 23

+100pM Putrescine 0.05 ±  0.03
‘

Day 7 (stationary phase) T.cruzi cells were washed in CBSS then diluted at 1 x 107 
ml' 1 into either fresh RTH+FCS medium or day 4 or 7 supernatant (RTH+FCS 
medium which had been incubated with T.cruzi cells, seeded at 1 x 106 ml'1, for 4 or 
7 days respectively and then had the cells removed by centrifugation prior to use). 
lOOpM putrescine was added at the start to half the cells incubated in fresh medium 
or day 7 supernatant. The app. of putrescine transport was then measured 24 h 
later. 1 Measured at 10 pM putrescine ± standard deviation of 3 determinations; 
^T.cruzi cells seeded at 1 x 106 cells ml*1 into fresh RTH+FCS medium and grown 
for 4 days prior to measurement of putrescine transport.



Figure 4.6) was left (Table 4.3). Taken together these findings suggests both a  loss of 

transporter protein molecules (cycloheximide) and the ribosomal message itself 

(acdnomycin D) for this transporter. Over 24 h 10 pM  exogenous unlabelled 

putrescine exerts a small negative feedback response on its own transport of about 

20%, indicating only a weak regulatory response at this concentration.

Conversely addition of 100 pM putrescine for 24 h when stationary phase cells 

(day 7) were diluted into fresh RTH+FCS medium, prevented the normal increase in 

the velocity of putrescine transport which is observed in the control cells. Likewise 

when stationary phase cells were diluted into day 7 supernatant supplemented with or 

without 100 pM putrescine, the velocity of putrescine transport was lowered in the 

putrescine treated cells with respect to the untreated controls (Table 4.4). This 

demonstrates that addition of 100 pM  exogenous putrescine causes negative feedback 

inhibition of the putrescine transporter, by preventing its up-regulation on dilution into 

fresh medium. Likewise incubation o f stationary phase cells in day 4 supernatant 

caused the cells to attain a putrescine transport velocity which was intermediary to 

cells incubated in fresh RTH+FCS medium or day 7 supernatant. This suggests a 

number of possibilities including:

1) a component of the fresh RTH+FCS medium, which is used up as the cells 

proceed through the growth cycle, may be required to attain maximum putrescine 

transport velocity.

2) the cells release an inhibitor molecule into the medium as they proceed 

through the growth cycle, which then shuts off the putrescine transport system.

3) since polyamines are required for cell growth, then it is possible, if the 

putrescine supply is limiting, that the transporter is one of a number of cellular
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systems which is switched on (up-regulated) when cell growth is initiated and 

conversely shut off (down-regulated) when the cells reach quiescence. However if the 

putreseine supply is not limiting, then there may be no need for the cells to up- 

regulate their diamine transport during cell growth.
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Unless otherwise stated further characterisation of the diamine transport system 

was carried out on exponentially growing (day 3) T.cruzi cells.

Initial results on late log phase cells seemed to indicate that both putre seine

and cadaverine transport was highly temperature-dependent (Figure 4.7).

A more detailed analysis of the temperature dependence of putrescine transport 

was carried out over the temperature range of 12-28°C, using 10 pM putrescine to 

obtain the V m ax ^ . at 12, 16, 20, 24 and 28°C. Using this information the energy of 

activation for putrescine transport can be obtained from the Arrhenius equation:

k - * *****

where k is the rate constant for the reaction which is V ^ a p p . in this case; A is the 
constant this reaction; Ea is the activation energy; R is the ideal gas constant ( 8.31
J.K^mol' 1 ) and T is the temperature in Kelvin.

The activation energy is most conveniently calculated from the Arrhenius equation by

conversion into a logarithmic form:

log (Vmajlapp.) -  J L  . J  ♦  logA 
2.3R T

Plotting Log V j^app. against the reciprocal of temperature, measured in Kelvin gives



0.6

-------------1------------- 1------------ 1________ i________ i________
3 .2 5  3 .3 0  3 .3 5  3 .40  3 .45  3 .5 0  3 .5 5

1 /T  ( K_1 )

Figure 4.8 Arrhenius plot for putrescine transport. From the slope of the graph ( -E, /  
2.3R ) an activation energy, E,, of 14.3 kcal/mol was obtained for putrescine transport. The Q,0 value
which represents the increase in V__ app. observed when the temperature is raised by 10 degrees was
found to be 2.4. The points shown here are mean values from 2 observations. They fit a straight line 
if the 24°C point is excluded. Therefore the 24°C point was omitted in the determination of the E. «id 
Q,0 values.
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Figure 4.9 Pattern o f putrescine efflux. T.cruzi cells taken on day 5 of their growth cycle, 
were preloaded with 1 pM pHlputrescine. at a concentration of 1 x 10* cells ml'1, for 3 minutes 20 
». «•»<« the cells were pelleted, the supernatant removed and an equal volume of 1 pM unlabelled 
putreacine added. Cells were assayed at about 3 min intervals over the next 33 min. to estimate how 
much (3H)putrescine waa left in the cells at each time point A background, in which cells woe added 
to the appropriate radiolabel at 4°C and then spun down immediately, was subtracted from each uptake
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an activation energy, E,, of 14.3kcal mol' 1 and an increase in the Vm, Tapp. over a lO9 

elevation of the temperature, Q 10, of 2.4 for the diamine transporter in the 12-28°C 

range (Hgure 4.8). These values strongly suggest that diamine transport in T.cruzi 

epimastigotes is an active energy-dependent process.

4.6 Efflux of outresdne

In a preliminary experiment, late log phase T.cruzi cells were preloaded with

1 |aM [3H]putrescine, transferred to 1 p.M unlabelled putreseine and assayed over the 

next 33 min to estimate how much [3H]putrescine remained inside the cells (Hgure 

4.9). This suggested that about a quarter of the [3H]putrescine taken up by the cells 

is free to exchange with the exogenous unlabelled putre seine, whilst the rest is 

presumably sequestered by the cells. As this work was not taken any further even this 

conclusion must be viewed with some caution. Furthermore, as the efflux of 

[3H]putrescine was measured over minutes as opposed to seconds, a substantial 

amount of metabolism of the putre seine label is likely to have occured, since in 

section 3.1.2.1 it was found that 99% of the putrescine label was metabolised over a

2 h time period. These metabolites could then be affecting the observed pattern of 

‘putrescine’ efflux from the cell.

4t7 E f f« l9 f f r

The effect of these reagents on T.cruzi putrescine transport is summarized

in Table 4.5. O f the ionophores and metabolic inhibitors only the mitochondrial proton 

gradient uncoupler, carbonylcyanide m-chlorophenyl hydrazone (CCCP) (Heytler, 

1963) and 2,4 dinitrophenol, which uncouples electron transport from ATP formation



Table 4.5 Effect of ionophores, metabolic inhibitors and thiol reagents on 
putrescine transport _______________________________________________

Inhibitor Transport1 
(% Inhibition)

Ionotjhorcs:2

20nM Gramicidin4 (NaVK*) 13

2pM Valinomycin (K*) 28

lOpM Carbonylcyanide m-chlorophenyl hydrazone (H* uncoupler) 90

2»lM Calcimycin - A23187 (CaJ+) 29

Metabolic inhibitors:3

lpg/ml Oligomycin (Mitochondrial ATPases) -3

ImM Ouabain ( Na+/K+ pump) 7

ImM 2,4 Dinitrophenol (uncoupler o f  electron transport) 67

ImM Iodoacetate (glycolysis) 37

Thiol reagents:3

ImM Af-Ethylmaleimide >99

200pM p-Hydroxym ere uri benzoate >99

200pM p-Chloromercuriphenyl sulphonate 99

1 Control 2 pM Putrescine Velocity — 3.0 nmol min'1(108cells)'1 and represents zero 
percent inhibition. 2 20 minute pre-incubation with the cells. 3 10 minute pre- 
incubation with the cells. The results expressed here are the mean values of 2 
observations. 4The gramicidin is used at such a low concentration because it is a 
channel former and so approximately 1000 fold more efficient than the other 
ionophores which are all mobile ion carriers (Pressman 1976).



(Slater, 1967), were able to bring about greater than 30% inhibition of putreseine 

transport, causing 90 and 67% inhibition respectively. This suggests that putre seine 

transport in T.cruzi could be linked to a proton gradient like many other processes in 

micro-organisms (Henderson, 1990). Furthermore, the slight inhibitory effect (<30%) 

of the ionophores Gramicidin D, Valinomycin (in the presence of KC1) and A23187 

and the strong inhibitory effect of CCCP (90%) on putrescine transport could all be 

linked, at least in part, to the fact that as well as dissipating the various ion gradients 

indicated (Table 4.3) they also disrupt the cells membrane potential (Kakinuma e t al. 

1988).

Three different thiol (sulphydryl) reagents of contrasting membrane 

permeabilities were used in order to probe the possible requirement for sulphydryl 

groups in the putrescine transport process. A 10 minute pre-incubation with any o f  the 

three reagents, at the concentrations indicated caused a 99% or greater inhibition of 

putrescine transport. The order of membrane permeability is W-ethylmaleimide (readily 

permeates membranes) >  p-hydroxymercuri benzoate > p-chloromercuri benzene 

sulphonate (very membrane impermeable). As W-ethylmaleimide not only permeates 

the cells rapidly but is also highly toxic to the cells metabolism (Rothstein, 1970), 

causing reduced motility in T.cruzi cells after just 10 min incubation, it is difficult to 

separate its cytotoxic effects from that on external sulphydryl groups. However the 

fact that the relatively membrane impermeable reagents p-hydroxymercuri benzoate and 

p-chloromercuribenzene sulphonate (which have no affect on the motility of T.cruzi) 

also inhibit putrescine transport to the same extent as N-ethylmaleimide suggests that 

sulphydryl groups on the transporter itself or on some regulating external protein are 

important for the putrescine transport process.
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Table 4.6 Effect of some amino acids and their derivatives on putresdne 
transport

AA System 
(side chain)

Amino acid 
(200pM)

Diamine
precursor1

Transport 
(% lf\hUnkiori)

A ( neutral ) Asparagine . -12
Serine - -13

L ( neutral ) Leucine • -16

Ly* ( basic ) Lysine Cadaverine 0
Arginine Putrescine (via 

ornithine or agmatine) ' '

ß+ ( acidic ) Aspartic acid - 7

• Ornithine Putrescine -8

- Agmatine Putrescine 24

1 Decarboxylation of these amino acids leads to the formation o f  putrescine or 
cadaverine, as indicated. Agmatine, the decarboxylated amino acid derivative of 
arginine, requires the removal of urea for putrescine formation. 2 Control 2 pM 
Putrescine Velocity ■ 2.5 nmol min'1(10®ceUs)‘* and represents zero percent 
inhibition. The results expressed here are the mean values of 2 observations.
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The effect of selected amino acids on putreseine transport from each o f the 

main amino acid transport systems found in cells (Christensen, 1979) together with the 

theoretical putre seine precursors ornithine and agmatine has been investigated (Table 

4.6). None of the amino acids from either the system A (neutral side chains), L 

(neutral side chains), Ly+ (basic side chains) or 0* (acidic side chains) transport 

systems show any marked inhibitory affect on putre seine transport at a 100 fold 

excess. If anything the converse is true of the system A  and L amino acids which 

actually appear to be stimulating putre seine transport by about 10-15%. Stimulation 

of polyamine uptake by system A amino acids is also observed in many mammalian 

cells (reviewed in section 1.5.5). Ornithine, the basic amino acid precursor to 

putre seine which is a homologue of lysine containing one less methylene group in its 

side chain does not influence putre seine transport. However agmatine, a 

decarboxylated analogue of arginine, is able to lower putre seine transport by 24% at 

a 100 fold excess. Commercial sources of agmatine are contaminated with putre seine 

(19% putre seine by peak area on HPLC analysis of Aldrich agmatine, 

M.R.Ariyanayagam and A.H.Fairlamb- unpublished observation) but this was removed 

prior to use in the transport assays by purification through a cation exchange column 

by M.R.Ariyanayagam of our laboratory. Hence agmatine seems to be a weak inhibitor 

of the putrescine transport system. Although agmatine is certainly taken up by T.cruii 

( M.R.Ariyanayagam and A.H.Fairlamb, unpublished observations ), this work is not 

able to distinguish the type of inhibition or indeed whether the agmatine is actually 

being taken up into the cells on the putrescine transporter.



Table 4.7 Effect of methylglyoxal ¿is(guanylhydrazone) and paraquat on 
putrescine transport

Inhibitor Transport 
(% Inhibition1)

50pM MGBG 14

500pM MGBG 20

50pM Paraquat 6

SOOpM Paraquat 17

Uptake measurements were carried out on T.cruzi cells which had been grown in 
RTH+FCS medium for 5 days. The ability o f  a  10- or 100-fold excess of MGBG or 
paraquat to inhibit 5 pM [3H]putreseine transport when added simultaneously was 
investigated. 1 Control 5 pM Putrescine Velocity -  1.6 nmol min'^lO^cells)*1 and 
represents zero percent inhibition. The results expressed here are the mean values of 
2 observations.
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These results indicate that putrescine is not taken up on any of the known 

amino acid uptake systems. It also suggests that it is the presence of a carboxyl group, 

attached to the a-carbon atom o f  an amino acid, which prevents recognition of the 

basic amino acids by the putrescine transporter. Thus steric factors or alteration of 

charge may be involved.

4,&2 Effect of MGBG. paraquat

Both MGBG and paraquat, which share structural similarities with the 

polyamines, are known to be at least partial inhibitors of many mammalian polyamine 

uptake systems (Byers et al. 1987; Rannels et al. 1989; Hyvonen et al. 1994; 

Balana-Fouce et al. 1989; Seiler A  Dezeure, 1990; Khan et al. 1991). At a 100-fold 

excess of either MGBG or paraquat there is only a slight approximately 20% 

inhibition of putrescine transport suggesting that they are both weakly recognised by 

the putrescine transporter (Table 4.7).

4 ,83 Effect of sodium ions

Many mammalian polyamine uptake systems appear to exhibit sodium 

dependency (reviewed in section 1.5.3). When the Na4- in CBSS was iso-osmotically 

replaced with Ch4 and 1 pM putrescine transport activity measured, it was found that 

putrescine transport activity was 2.9-fold higher in T.cruzi cells incubated in the Na+ 

free CBSS than in control cells assayed in the ordinary Na4 containing CBSS. This 

suggests that Na4 is actually exerting an inhibitory affect on putrescine transport 

activity in T.cruzi like that observed in the filamentous fungus N.crassa, where both 

putrescine and spermidine transport are inhibited by monovalent cations (Na4, NH44
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Figure 4.10 Inhibition of putrescine tran sp o rt by diamines and polyamines. Cells 
were put into fresh RTH+FCS medium at 1 x 106 ml*1 and grown far 5 days. The ability of a 10- or 
100-fold excess of the appropriate unlabelled diamine or polyamine to inhibit S pM [3H]putrescine 
transport when added simultaneously was investigated. The values given here are the means of two 
observations. A) A 10-fold excess; control 5 pM putrescine velocity -  1.9 nmol min'1 lO'cells'1. B) 
A 100-fold excess; control 5 |iM putrescine velocity ■ 1.3 nmol min'110*ceUs'1.



Veloci
ty (nm

ol min
 ^lO^

ells) 
*)

S p e r m id in e  (/xM)
Figure 4.11 Kinetics of spermidine transport in T .c n u i epimastigotes. Hie curve is 
fined and the and V_.„ values calculated using the Enfitter software package. Insert: Hanes-Woolf 
plot, a linear S/V versus [S] transformation of the data.



and K*) (Davis & Ristow, 1988). In addition as the Na+/K+ ionophore Gramicidin has 

only a small inhibitory affect this further suggests that putrescine transport is not I n ­

dependent (Table 4.5) especially when it is taken into account that Gramicidin D, 

along with the other ionophores tested in Table 4.5, also disrupt the membrane 

potential of the cells (Kakinuma et al. 1988).
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4A 4  Effect aLs

Inhibition of 5 pM putrescine transport was carried out by using a 10- or 100- 

fold excess of diamines (of the general formula where n-3-10) or the

polyamines spermidine and spermine (Figure 4.10A and B). This indicates that 

putrescine has the highest affinity for the transporter followed by cadaverine, with the 

other diamines and polyamines showing a lower specificity for the transporter.

4 M  Evidence for th t  «

In order to try and establish whether there is either a single common or 

separate carriers) for the transport of diamines and polyamines, it was first necessary 

to establish the kinetics of polyamine transport. This was carried out by measuring 

[3H]spermidine transport into T.cruzi. (Spermine kinetics were not established as no 

tritiated label was available and the [14C]spermine was of too low a specific activity 

to get reliable measurements). [3H]spermidine was transported into exponentially 

growing cells (day 3) with saturable Michaelis-Menten-type kinetics (Figure 4.11). 

Like putrescine, spermidine was transported with a similar high affinity, K,,, = 0.81 

± 0.22 pM but with a ■ 1.34 nmol min’1 (1 (Cecils)'1 which was 3-4 fold lower

than that observed for putrescine.



I n h ib ito r  (/zM)
Figure 4.12 Inhibition of 2 ¿iM 13 H] put read  ne or [3H)cadaverine transport into 
T.crud epimastigotes by unlabelled putrescine, cadaverine, spermidine or 
spermine. The pattern of inhibition of 2  p M  (3HJputrescine or [, H]spennidine transport was 
examined on concurrent addition of 2 -1 0 0 0  p M  concentrations unlabelled putrescine, cadaverine, 
spermidine and spermine. The points represent single observations. A )  2  p M  [3H)putrescine; control 
2 p M  putrescine velocity -  3 .1  nmol min1 lO'cells'1. B ) 2  p M  (3H)spemudine, control 2  p M  
spermidine velocity ■ 1 .6  nmol min'1 lO'cells1.
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This was followed up by studies by using 2-1000 pM concentrations of the 

unlabelled diamines, putte seine and cadaverine and the polyamines, spermidine and 

spermine to inhibit the transport of 2 pM [3H]putrescine or [3H]spermidine (Figure 

4.12A and B). Inhibition of [3H]putrescine transport by unlabelled putrescine gives the 

expected pattern of inhibition with equimolar concentrations of unlabelled and labelled 

substrate reducing putrescine transport by 50% and a 10 fold excess of unlabelled 

putrescine reducing [3H]putreseine transport by 90% (Figure 4.12A). At a 500 fold 

excess cadaverine caused >95% inhibition of [3H]putreseine transport, whereas even 

at a 500 fold excess spermidine and spermine gave <30% inhibition (Figure 4.12A). 

Likewise inhibition of [3H] spermidine by unlabelled spermidine (Figure 4.12B) gave 

the same pattern o f  inhibition as observed for [3H]putrescine by unlabelled putrescine 

(Figure 4.12A). Inhibition of [3H]spermidine transport by spermine (Figure 4.12B) 

follows a similar pattern to that observed with inhibition of [3H]putrescine transport 

by cadaverine (Figure 4.12A). However the inhibition of [3H] spermidine transport by 

the diamines putrescine and cadaverine (Figure 4.12B) is quite different from the 

inhibition pattern observed for [3H)putrescine transport by the polyamines spermidine 

and spermine (Figure 4.10A), as at a 50 fold excess putrescine and cadaverine inhibit 

[3H]spermidine transport by about 60 and 90% respectively whereas spermidine and 

spermine at a 50 fold excess only inhibit [3H]putrescine transport by about 10%.

The Kjq values of putrescine and spermidine transport are 1.34 ± 0.41 pM and 

0.81 ±  0.22 pM respectively when measured at a similar time on exponentially 

growing cells. Therefore as the affinities for putrescine and spermidine transport are 

comparable this would suggest that in order for both compounds to be transported on 

a common transporter equimolar concentrations of each compound should inhibit the



others transport by about 30%. As this is not the case, the simplest interpretation of 

this data suggests the existence of at least two carrier systems for the transport of 

diamines and polyamines into T.cruzi. The first would be a diamine transporter with 

high specificity for the diamines, putrescine and cadaverine, and low specificity for 

the polyamines spermidine and spermine, which we have termed Poll. The second 

would probably be a more general diamine and polyamine transporter, with the highest 

specificity being for spermidine and the lowest for putrescine, which we have called 

Pot2. In the light of dûs evidence it is possible that MGBO and paraquat ( see section

4.8.2 ), which only inhibit putrescine transport by approximately 20% even at a  100 

fold excess, may also go up predominantly on this putative general diamine and 

polyamine transporter.

4 t9  Û K fclÉ IM
T.cruzi contains specific high affinity saturable carriers for the transport of 

diamines and polyamines. A fairly selective diamine transporter has been characterised 

here, which exhibits a high affinity for putrescine, a moderate affinity for cadaverine 

and a low affinity for spermidine and spermine. This diamine transporter does not 

transport amino acids, is temperature dependent, appears to require sulphydryl groups 

and a proton gradient for maximal transport and its activity is altered as the cells 

proceed through the growth cycle. If the mammalian stages o f  T.cruzi, namely the 

bloodstream trypomastigotes and intracellular amastigotcs possess similar rapid, high 

affinity transporters for diamines and polyamines to those found in the epimastigotes, 

then it will be important to take this into account when planning future 

chemotherapeutic strategies involving interference with T.cruzi polyamine metabolism.
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CHAPTER 5 : DISCUSSION

Previous to this study there have been very few reports on polyamine 

metabolism in T.cruzi (Schwarcz de Tarlovsky et al. 1993; Algranad et al. 1989), 

other than to indicate that the epimastigote form contains putreseine, cadaverine, 

spermidine and spermine. A minimum level of these diamines and polyamines are 

required by all cells for them to function normally (Tabor & Tabor, 1984; Pegg & 

McCann, 1988; Marton & Morris, 1987; Pegg, 1986; Tabor & Tabor, 1985). However, 

how T.cruzi acquires its putre seine (de novo synthesis versus uptake) is a subject open 

to much controversy.

Initial studies indicated that DFMO, which irreversibly inhibits ODC and so 

prevents the de novo synthesis of putre seine from ornithine. kills African 

trypanosomes (Bacchi et al. 1980b; Schechter & Sjoerdsma, 1986) but has no effect 

even at high concentrations against T.cruzi model infections (Hanson et al. 1982). 

DFMO treatment did not exert a marked inhibitory effect on the growth of T.cruzi 

epimastigotes (Tabor & Dobbs, 1970; Schwarcz de Tarlovsky et al. 1993) nor did it 

alter the ability of the trypomastigote stage to infect macrophages or myoblasts at 

concentrations up to 100 mM (Kierszenbaum et al. 1987b). As anticipated from these 

findings no more than trace amounts o f  ODC activity could be detected in these 

parasites (Algranati et al. 1989). Conversely DFMA, an irreversible inhibitor o f ADC 

which prevents the de novo synthesis o f  putre seine from arginine, appeared at high 

concentrations to decrease the ability of T.cruzi to invade and multiply within 

mammalian cells (Kierszenbaum et al. 1987a). After much effort ADC activity was 

detected in T.cruzi trypomastigote /  amastigote mixtures (Majumder et al. 1992) but 

at levels some 100,000 times lower than the ADC activity found in E.coli (Kallio et



al. 1981) and 1000-fold lower than the ODC activity found in Tb.brucei bloodstream 

trypomastigotes (Philips et al. 1987). In the epimastigote form there was no detectable 

conversion of ornithine, arginine or lysine into polyamines (Hunter et al. 1994). In 

addition T.cruzi epimastigotes preferentially take up the polyamines putreseine and 

spermidine from the medium in comparison with the basic amino acids lysine, 

ornithine and arginine (Algranati et al. 1989). All this evidence suggests that the 

amino acid decarboxylases play a negligible role in the production of polyamines in 

these parasites. Instead, this work demonstrates that T.cruzi epimastigotes are able to 

scavenge trace amounts o f  diamines and polyamines from the medium on inducible, 

high affinity saturable transport systems supporting the notion that T.cruzi 

epimastigotes take up rather than synthesize de novo the putrescine and cadaverine 

found in their cells.
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Firstly from the uptake studies in the trypanosomatids it can be seen that 

T.bbrucei (procycUci and bloodstream forms) which contain an active ODC, appear 

incapable o f  taking up any more than trace amounts of the diamines putrescine and 

cadaverine (Figure 4.1). Given their extracellular location (in tissues and later in the 

central nervous system) this may help to explain why DFMO is effective against these 

parasites. Conversely DFMO is ineffective against Txruzi epimastigotes which do not 

appear to contain ODC but do rapidly accumulate putrescine and cadaverine from their 

surroundings (Figure 4.1). DFMO is not particularly effective against either 

C/asciculata or L.donovani promastigotes, unless they are grown in a polyamine free 

medium (Hunter et al. 1991; Kaur et al. 1986, González et al. 1991) as both of them



under the appropriate conditions can overcome the block by taking up diamines (in 

particular putreseine) from the medium.

The fact that for putrescine and cadaverine in T.cruzi epimastigotes is in 

the micromolar range may be of physiological significance, since following a blood 

meal the excreta of one T.cruzi vector, R.prolixus, contains micromolar quantities of 

the diamines putrescine and cadaverine. Furthermore the T.cruzi diamine transporter 

appears to be induced in response to favourable growth conditions, for example on 

dilution into fresh growth medium containing FCS (section 4.4). A similar type of 

induction of both polyamine uptake (reviewed in section 1.5.6.3) and ODC activity 

(reviewed in (Bachrach, 1984)) can be observed in mammalian cells in response to 

various growth stimuli. Conversely, in T.cruzi epimastigotes the presence of large 

amounts of putrescine in the medium (100 p.M) seems to inhibit this induction (section 

4.4). The transport of diamines into T.cruzi seems to be an active temperature- 

dependent process requiring the presence of extracellular thiol groups. Transport can 

be strongly inhibited upon pre-incubation of the cells with the protonophore 

carbonylcyanide m-chlorophenyl hydrazone, suggesting that a  membrane potential is 

involved. However, it is not possible to say whether diamine transport in T.cruzi is 

coupled to a proton gradient like those found in many bacterial metabolite-transport 

systems (Henderson, 1990). Both polyamine uptake systems in E.coli have nucleotide 

binding sites (Furuchi et al. 1991; Pistocchi et ai. 1993). Furthermore it has been 

shown that the spermidine preferential uptake system in E.coli has an absolute 

requirement for ATP (Kashiwagi et al. 1993) and that a membrane potential is also 

involved (Kashiwagi et al. 1986; Kashiwagi et al. 1993). Hence it is possible that this 

could also be the case in T.cruzi although there is no direct evidence to support this
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hypothesis at the moment. Both proton-motive force driven active transporters and 

facilitated diffusion systems have been described for the transport of nutrients in the 

trypanosomatids (reviewed in Zilbertsein, 1993). However the ‘active’ nature o f  some 

of these transport systems has since been questioned due to the difficulty of separating 

transport across the plasma membrane from either the subsequent rapid metabolism 

of molecules such as glucose and proline or their sequestration into intracellular 

organelles such as the glycosome for glucose (ter Kuile, 1993). Hence the apparent 

‘active* transport of diamines into T.cruzi observed here must be viewed with extreme 

caution.

The results indicate the presence of at least two diamine /  polyamine transport 

systems in T.cruzi epimastigotes, one of which has high specificity for the diamines 

and low specificity for polyamines and the other is a more general diamine and 

polyamine transporter. Mammalian diamine /  polyamine transporters usually seem to 

exhibit a higher affinity for polyamines than diamines (Table 1.3), with those diamines 

(1,7-diaminoheptane and 1,8-diaminooctane) of a similar chain length to spermidine 

being the best inhibitors of putrescinc (Rajanayagam er al. 1992; Porter et al. 1984), 

spermidine (Porter & Bergeron, 1983; Porter et al. 1984) and spermine (Porter et al. 

1984) uptake. This suggests that the diamine and polyamine transport systems of 

T.cruzi are more like those found in E.coli, which contains both putrescinc specific 

and spermidine (spermine) preferential uptake systems (Furuchi et al. 1991; Pistocchi 

et al. 1993). Putreseine can then be excreted from E.coli cells through the potE protein 

(Kashiwagi et al. 1991) which is a putrescine-omithine antiporter (Kashiwagi et al. 

1992). It is not known whether a similar such system is present in T.cruzi. E ither way, 

if T.cruzi epimastigotes truly are dependent on uptake for all their diamines with no
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de novo synthesis, then it is not altogether surprising that they contain more than one 

uptake system for diamines and polyamines as a kind o f  insurance policy against one 

being lost. As polyamines are required for growth (Heby, 1981) and both dividing 

forms of T.cruzi (the epimastigote in the insect gut and the amastigote in host cells) 

are going to be bathed in micromolar levels of diamines and polyamines, it could be 

argued that these stages do not require a capacity for de novo  synthesis when they can 

simply take them up from their surroundings. Perhaps then the activity o f these 

transporters might play a  central role in the overall control of T.crtui’s  intracellular 

polyamine levels in a similar fashion to that observed with mammalian ODC, the 

dominant controlling factor of their entire polyamine pathway (McCann & Pegg, 

1992). Alternatively a lack of tight regulation, similar to  that observed with T.b.brucei 

O D C (Wang, 1991; Ghoda et al. 1992) potentially could  be the downfall o f T.cruzi.

However it first has to be established that diam ine /  polyamine transporters) 

are present in the mammalian forms of T.cruzi. If present, further characterization of 

this transporters) will then be required. Initially solubilization of the diamine 

transporter from the plasma membrane, followed by reconstitution into 

proteoliposomes could be attempted inorder to partially purify it and enable the 

properties of the transporter to be characterized in m ore detail. This has previously 

been carried out on the T.b.brucei D-glucose transporter (Seyfang & Duszenko 1993). 

Cloning, sequencing and expression of this transporter should then throw more light 

on both the nature and regulation of diamine transport in  T.cruzi.

5.2 Metabolism

The labelling studies described here with putreseine and cadaverine show that
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both compounds, in particular cadaverine, are much more avidly taken up and 

incorporated into other polyamines and thiols by T.cruzi epimastigotes than the non- 

pathogenic insect trypanosomatid C.fasciculata (section 3.1.1. and 3.1.2). The 

incorporation of putreseine into high levels of spermine (11.7 nmoles/108 cells) was 

unexpected as many trypanosomatids including C fasciculata (section 3.1.1 and 3.1.2, 

(Fairlamb et al. 1986)) and TJj.brucei (Bacchi et al. 1977) do not appear to synthesize 

their own spermine. Although spermine has previously been detected in small amounts 

(<5 nmoles (K^cells)'1) in T.cruzi epimastigotes (Algranati et al. 1989; Schwarcz de 

Tarlovsky et al. 1993) and trypomastigotes (Kierszenbaum et al. 1987a) this is the 

first report that the cells are able to synthesize it themselves under normal conditions 

as opposed to simply taking it up from the medium. The related trypanosomatid 

Leishmania appears to contain a small quantity of spermine (Table 1.2), which may 

be synthesized de novo (Bachrach e t al. 1979). So what is the function of such high 

levels of spermine in T.cruzH Radiolabelling studies with putre seine (Figure 3.2) 

indicate that the cells may be able to  conjugate some of it to glutathione or other 

cellular components (U1 and U3), due to  the increase in the spemtine peak observed 

when the extract is acid hydrolysed. However spermine and the other polyamines do 

not appear to bind covalently to protein to any extent as there is very little 

radioactivity (<2%) found associated with the TCA precipit- able material.

Labelling with spermidine and spermine shows these compounds are also 

readily taken up by T.cruzi. There is a  trace amount of conversion of spermine to 

spermidine but this figure is <2% o f  the total label taken up by the cells. No 

putre seine is detected in either case, although it is possible that a small amount of 

conversion to N-acetylated polyamines occurs. This suggests that T.cruzi are unable
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to oxidatively degrade (interconvert) spermine and spermidine to any great extent, 

unlike mammalian cells (Seiler, 1988).

While previous reports have detected cadaverine in T.cruzi epimastigotes 

(Algranati et al. 1989; Schwarcz de Tarlovsky et al. 1993), this work shows for the 

first time that these cells are able to convert cadaverine to aminopropylcadaverine and 

then through to homotrypanothione and ¿>«(aminopropyl)cadaverine. In contrast, 

Cfasciculata can only convert cadaverine to aminopropylcadaverine. T.b.brucei 

bloodstream forms (at 2 x 1 (Cecils per injection onto the HPLC) do not under normal 

circumstances synthesize homotrypanothione (A.H.Fairlamb, unpublished 

observations), neither do Lxlonovani promastigotes even when grown on RTH+FCS 

supplemented with 5 pM cadaverine-confum this. Furthermore, in various yeast and 

mammalian cells treated w ith DFMO, the addition of exogenous cadaverine in the 

absence of putrescine can lead to the production of aminopropylcadaverine and 

¿><5(aminopropyl)cadaverine (Hamana et al. 1989; Pohjanpelto et al. 1985b). However, 

this is the first report of a  trypanosomatid being able to use cadaverine in place of 

putrescine for the synthesis o f  the trypanothione analogue homotrypanothione. As 

homotrypanothione is not formed in Cfasciculata and L.donovani, it is certainly not 

a process which is universal to trypanosomatids and so far appears to be unique to 

T.cruzi. Further confirmation of this is provided by the observation that the curative 

effect of DFMO in T.b.brucei treated mice can be antagonised by concurrent 

administration of putrescine, spermidine or spermine but not when treated similarly 

with cadaverine and 1,3-diaminopropane (Nathan et al. 1981).

These findings lead us to speculate whether T.cruzi has separate enzymes 

catalysing the synthesis o f  homotrypanothione and trypanothione from cadaverine and
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putrescine respectively or whether there is just one set of enzymes present with a 

broader substrate specificity, enabling them to synthesize these analogues of the 

natural polyamines. The fact that conversion of cadaverine to aminopropylcadaverine 

appears to be slow er than the equivalent putrescine to speoniJine step (as judged by 

the 2 h labelling studies in PSG-BSA) perhaps suggests die latter hypothesis, 

especially as cadaverine only differs from putrescine by the presence of a single extra 

methylene group. However in order to answer these questions the polyamine 

synthase(s) from T.cruzi must first be purified then characterized. Only then can the 

specificity of the  T.cruzi polyamine synthases be compared directly with those in 

mammalian cells.

An important question which arises from these studies is why do T.cruzi 

epimastigotes, w hich are normally resident in the mid- and hind-gut o f the triatom ine 

insect vector, take up and utilise cadaverine. In answer to this question analysis of the 

polyamine content o f  the excreta of a Chagas’ disease vector, R.prolixus, immediately 

after a blood m eal showed it to contain 4.5 pM putrescine, 1.1 pM cadaverine, 0.9 pM 

spermidine and 0 .5  pM spermine. It is likely that the cadaverine is produced by a 

genus of eubacteria, Actinomyces, which reside in the insect gut and are required for 

the successful development of the insect nymphs into the mature adult bugs (Brecher 

& Wigglesworth, 1944; Ham ana & Matsuzaki, 1987). Hence from a physiological 

perspective, the epimastigote stage of the parasite could have adapted to metabolise 

cadaverine as w ell as putrescine for the production of polyamines and polyamine- 

glutathione conjugates. Whether a similar pattern of metabolism occurs in the 

mammalian host still needs to be determined although it has recently been established 

that the enzyme trypanothione reductase is present in the trypomastigote and
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amastigote (mammalian stages) of the parasites life cycle (Moreno et al. 1994). 

However it is unclear whether there would be enough cadaverine present in 

mammalian cells to enable them to synthesize homotrypanothione under normal 

growth conditions. Mammalian cells do not contain a lysine decarboxylase, but their 

ODC can catalyse the decarboxylation of lysine to from cadaverine with a Kg, that is 

about 100 times higher than for ornithine (McCann & Pegg, 1992). Thus this reaction 

may be of little physiological significance, occurring only when large amounts of 

ODC enzyme or a high lysine to ornithine ratio is present. This suggests that under 

normal physiological conditions there is probably relatively little cadaverine 

synthesized in mammalian cells. However it is worth noting that the intracellular 

amastigote stage of T.cruzi resides in the cytoplasm o f the host’s cells, and so will be 

bathed in micromolar levels of putreseine, spermidine and spermine (Morgan, 1990b) 

and therefore might not require the amino acid decarboxylases for the synthesis of 

putrescine (or cadaverine) at any stage of its life cycle involving growth and division.

Using homogenous recombinant T.cruzi trypanothione reductase it has been 

shown that the kinetic parameters for the reduction of homotrypanothione disulphide 

were similar to those o f trypanothione disulphide giving rise to a kca/Kg, ratios of 4.1 

and 5.5 x lO^M*1 s’* respectively (Hunter et al. 1994). Thus the kinetic properties of 

trypanothione reductase indicate that homotrypanothione is a physiological substrate 

o f this enzyme, which is an important mediator in the cellular response to chemical 

oxidative stress by diamide and other agents (Fairlamb & Cerami, 1992; Kelly et al. 

1993).

5 3  Prospects for chemotherapy
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Provided the findings presented in this study are applicable to the amastigote
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stage then the results presented here are important with respect to the design of any 

prospective chemotherapeutic strategy which aims to interfere with polyamine 

biosynthesis. To help put all this in perspective a summary of diamine transport and 

metabolism in Txruzi epimastigotes is provided (Figure 5.1). Firstly, inhibitors of the 

amino acid decarboxylases, for example DFMO and DFMA, have little effect on 

T.cruzi, due to the absence of these enzymes in the epimastigote, the detection of only 

trace levels o f  enzyme activity in the mammalian forms, and the ability of the parasite 

to overcome this block by taking up diamines from the environment. Secondly, it 

appears that T.cruzi epimastigotes can utilise a putreseine analogue, cadaverine. as a 

source of functional polyamines and polyamine-glutathione conjugates, unlike itV 

human host. It is essential that this work be repeated in the mammalian forms of the 

parasite to establish whether they can utilise cadaverine in the same way as the 

epimastigotes. If they can, this apparent lack of specificity might be exploited in 

chemotherapy by producing compounds which could be metabolised by the less 

discerning enzymes of the parasite, but not recognised by the host. Thirdly, the 

presence of high affinity diamine and polyamine transport systems means that if they 

are also present in the mammalian stages, it may be possible to target toxic 

compounds, into the cell using these transporters. This o f  course presumes that they 

will not down-regulate the transporters in amastigoies stage, which is itself bathed in 

micromolar levels of the host cell’s polyamines.

One o f the main problems of drug design which has not been addressed thus 

far is the problem of getting the drug into the parasite. This is more complicated for 

T.cruzi than TJt.brucei as the former is an intracellular and the latter an extracellular 

parasite. Hence when considering drug design, ideally one would like them to be given 

orally as opposed to intravenously as this will cut both the cost of therapy and negate
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the problems associated with having to be hospitalised during treatment. Therefore in 

order to exert its effect any drug designed would have to first be absorbed across the 

wall of the gut into the bloodstream, then be taken up by the mammalian cell and 

finally enter the parasite itself before exerting its activity. All this of course supposes 

that it doesn’t get degraded before reaching the parasite itself! When coupled with 

the problem that once the disease enters its chronic phase autoimmunity may be 

involved (Petry & Eisen, 1989), this makes die process of drug design against T.cruzi 

an even greater challenge.

Therefore future strategies for the chemotherapy of Chagas’ disease, instead 

of trying to inhibit the amino acid decarboxylases, might be more profitable if they 

concentrated on using the polyamine transport system of T.cruzi to target inhibitors 

of its aminopropyltransferases and the polyamine-glutathione synthetases into the cell.
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