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ABSTRACT

Exposure to radiation attenuated cercariae of Schistosoma mansoni induces 

immunologically mediated protection against a challenge infection. One approach towards 
the selection of putative vaccine candidate molecules has therefore been the identification 

of ’vaccine dominant' antigens. Such molecules can be defined as those which are 

recognised by sera from animals vaccinated with irradiated parasites but not by sera raised 

in non-immune animals harbouring a single sex infection. This thesis describes the 

immunological and molecular characterisation of a 16 kDa vaccine dominant 

schistosomula surface antigen of S.mansoni and a 15 kDa antigen found on all stages of 

the parasite which also meets this criteria.

The 16 kDa antigen extracted from mechanically transformed schistosomula and 

subsequently purified by  immunoaffinity chromatography was shown to be a glycoprotein 
which incorporates both protein and carbohydrate epitopes. The latter, which include the 

target of a passively protective monoclonal antibody (Bickle et at., 1986), bind the lectins 

peanut and ricin agglutinin and are believed to incorporate the monosaccharide N- 

acetylgalactosamine O-linked to the peptide core. Attempts to determine the amino acid 

sequence of the antigen by gas phase NH2-terminal amino acid sequencing have also 

suggested that the protein moiety of the 16 kDa antigen is N-terminally blocked.
The immunoaffinity purified 16 kDa antigen was subsequently used to immunise 

groups of mice in conjunction with a number of different adjuvants. Significant, albeit 

low, levels of resistance were achieved following immunisation with the 16 kDa molecule 

plus the novasome adjuvant formulation.

Clones encoding the 15 kDa antigen were identified during the screening of a cDNA 
sporocyst library with sera specific for low molecular weight antigens. Sequence obtained 

for the antigen showed that it had some homology to members of a calcium binding 

protein superfamily, although the 15 kDa antigen itself was unable to bind calcium. The 
cDNA encoding this antigen was subsequently subcloned into a vector suitable for 

expression and the resulting fusion protein was used to immunise mice. Sera raised in 

these mice recognised the native 15 kDa antigen by Western blotting. However, the mice 

were not protected against a challenge infection.
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ADCC antibody dependent cytotoxicity

BAL broncho-alveolar lavage

hp base pairs

CaBP calcium binding protein

cDNA complementary DNA

CIS mouse chronic infection sera
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DTH delayed type hypersensitivity
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HRP horseradish peroxidase

IHS infected human sera

INFy interferon y
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I RatS infected rat sera

ISCOMs immunostiumulating complexes

kh kilobase

kDa kilodalton

LcH Lens culinaris (lentil) agglutinin
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Lotus Lotus tetragonolobus agglutinin

MAA Maackia umurensis agglutinin

man mannose

McAb monoclonal antibody

MEGA 10 decanoyl-N-methyl glucamide

MS mechanically transformed schistosomula

NRatS normal rat sera

NeuSAc sialic acid

PAGE polyacrylamide gel electrophoresis

PBS phosphate buffered saline

PCR polymerase chain reaction

PEG polyethylene glycol

pfu
PIPLC

plaque forming units
phosphatidylinositol-specific phospholipase C

PMN polymorphonuclear leukocytes

PNA Arachis hypogaea (peanut) agglutinin

PSB phage storage buffer

RCA Ricinus communis (ricin) agglutinin

SBA Glycine max (soybean) agglutinin

SD standard deviation

SDS sodium dodecyl sulphate

SDW sterile distilled water

SLN skin draining lymph nodes

SNA Sambucus nigra (elderberry) agglutinin

sss mouse single sex infection sera

TBS Tris buffered saline

TNFa tumour necrosis factor a

UEA I Ulex europaeus I agglutinin

VMS vaccinated mouse serum

VRabS vaccinated rabbit serum

VRatS vaccinated rat serum

WGA Triticum vulgare (wheatgerm) agglutinin
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1.1 GENERAL INTRODUCTION
Schistosomiasis is a major health problem in the developing world. It is responsible 

for an estimated 200,000 human deaths per year, whilst a further 200 million people 

suffer from the disease and 600 million live in areas where they are at risk from infection 

(WHO, 1993). The disease, which is endemic in 74 countries worldwide, is caused by 

trematode parasites of the species Schistosoma. Of the three major species which infect 

humans, S. mansoni and S. haematobium are endemic in many parts of Africa and the 

eastern Mediterranean, S, mansoni is also prevalent in South America and the Caribbean, 

S. japonicum is found mainly in south east Asia and the western Pacific. Of lesser 

importance are the African parasite S. intercalatum, S. mekongii which is found mainly 

in the western Pacific regions and a Malayan relative of S. mekongii, S. malayensis.
The life cycle of the schistosome parasite is complex and involves passage through 

an intermediate snail host (see below). S. mansoni and S. haematobium are transmitted 

by aquatic snails of the genus Biomphalaria and Bulinus respectively, whilst amphibious 

snails of the genus Oncomelania transmit S. japonicum. The natural habitats of these 

snails range from small streams to the great lakes, the only requirement being that the 

water source is static or reasonably slow moving. Generally these habitats are widely 
dispersed, however under ideal conditions localised foci of high transmission can occur 

and on a number of occasions the development of new water bodies or the damming of 

existing ones has been responsible for the onset or spread of schistosomiasis. The risk of 
disease in these areas is also compounded by uncontrolled immigration and the movement 

of refugees. Thus, despite the success of a number of schistosomiasis control 
programmes, the global estimate of the number of people infected with schistosomes has 

not decreased within the last decade.

1.2 THE LIFE CYCLE OF SCHISTOSOMA MANSONI
The life cycle of S. mansoni is initiated when the free living cercarial stages of the 

parasite are shed from the intermediate snail host. These locate a mammalian host, attach 
themselves to the skin and penetrate the epidermis by the cytolytic action of enzymes 

secreted from the cephalic glands. On passing through the skin the cercariae shed their 

tails to become the larval or schistosomula stages of the parasite which quickly lose their 

glycocalyx covered tegument and develop a heptalaminate, double plasma membrane. The 

schistosomula pass into the peripheral lymphatic vessels or the hUx>d venules and are
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carried via the lungs to the liver. Here the worms couple before migrating to the 

mesenteric veins. Egg production begins approximately six weeks post infection and the 

worms, which may live for a number of years, remain in copulo with the female laying 

approximately 300 eggs per day in the fine venules around the gut (in Whitfield, 1982). 
About 50% of these eggs pass through the tissues of the gut wall and into the gut lumen 

from where they are shed from the body in the faeces. The eggs hatch in a light, 
freshwater environment to produce the miracidia larvae which infect the snail intermediate 

host. Within the snail each miracidia forms a mother sporocyst which then divides to 

produce daughter sporocysts. These migrate to the digestive glands of the snail and divide 
again to produce thousands of cercariae. The latter finally move to the pseudobranch from 

where they are shed periodically to continue the life cycle (in Smyth, 1976). The 

remainder of the eggs are not shed by the mammalian host and become trapped upon 
passage through the gut wall or are swept back by the blood flow into the liver, the lungs 

and other organs, where they become lodged. It is the immune response of the host 
towards these tissue eggs which is largely responsible for the pathology observed during 

schistosomiasis.

1.3 1MMUNOPATHOLOGY

Antigens secreted by the miracidia developing inside tissue eggs are released through 

microscopic pores within the rigid egg shell and induce the formation of granulomas 
consisting of lymphocytes, macrophages, eosinophils and fibroblasts. These granulomas 

together with subsequent fibrosis are the major cause of schistosome related pathology. 

During an infection with S. mansoni the formation within the liver and intestine of 

granulomas considerably larger than the egg itself, can impede hepatic blood flow and 

lead to the development of hypertension and hepatosplenomegaly. This may be further 

complicated by the development of irreversible Symmers clay pipe - stem fibrosis around 
branches of the portal veins and in severe cases by the formation of ’shunts’ and bleeding 

oesophageal varices. The latter enable blood to by-pass the fibrotic liver and hence 

facilitate the carriage of eggs to other organs such as the lungs, kidneys or CNS where 
granulomas may also form.

The formation of granulomas during chronic schistosomiasis has been shown to be 

dependent upon T cell mediated immunity (Phillips et al., 1977, Cheever et at., 1985a, 
Hassounah and Doenhoff, 1993). Moreover, the studies of Mathew and Boros (1986)
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demonstrated that depletion of murine CD4+ T cells abolished the formation of 

granulomas, whereas depletion of CD8+ cells had no effect. In mice the involvement of 

CD4+ cells in pathology has been further defined as a requirement for the production of 
cytokines by cells which are mainly of the T helper 2 (Th2) subclass. A number of studies 

have demonstrated that during a chronic infection a down-regulation in the production of 
T helper 1 (Thl) type cytokines such as IFNy and IL-2, and an up-regulation in Th2 

cytokines such as IL-4, IL-5 and IL-10, occurs at the onset o f  egg production (Pearce et 

al., 1991a, Sher et al., 1991, Grzych et al., 1991). This contrasts with the situation 

observed in mice vaccinated once with irradiated cercariae o r  those supporting a single 

sex infection, in which a Thl type response is maintained throughout. That this switch 
to a Th2 type response is vital to the induction of egg induced pathology in mice has been 

demonstrated via abolishment of hepatic collagen deposition with an anti-IL-4 monoclonal 

antibody (McAb) (Cheever, et al., 1994, Eltoum, et al., 1995). As yet the existence of 

two subclasses of CD4+ cells has not been demonstrated in humans. However, elevated 
IgE and eosinophilia are hallmarks of a patent human schistosome infection thus indicating 

the production of IL-4 and IL-5 which may be of importance to the development of 
pathology as well as to the onset of antibody mediated immunity (section 1.6).

An increase in the levels of tumour necrosis factor a  (TN Fa), a cytokine released by 

T cells and macrophages, has also been observed during schistosome infection (Chensue 

et al., 1989). This cytokine is known to induce an inflammatory response and has been 
shown to have a role in immunopathology as severe combined immunodeficient (SCID) 

mice which lack T and B cells, failed to develop granulomas unless reconstituted with 

TNFa producing spleen cells or recombinant TNFa (Amiri e t al., 1992). It has therefore 

been suggested that during a patent infection, antigens released by schistosome eggs may 
prime endothelial cells to express leucocyte adhesion molecules which induce antigen 

sensitised T cells to release TNFa and stimulate the production of other granuloma 
mediators such as chemotactic and colony stimulating factors. Amplification of this 

response could then occur through the release of more T N Fa by macrophages recruited 

to the granuloma (Amiri et al., 1992). It is also of interest to  note that TNFa stimulated 

an increase in the number of eggs produced by the female worm (Amiri et al., 1992).

The role of B cell dependent immunity in immunopathology has not yet been 
clarified. B cell depleted mice have been shown to develop normal granulomas (Cheever 

et al., 1985b) and although the transfer of immune lymphocytes to S. mansoni infected
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thymectomised mice is able to reconstitute granuloma formation, the transfer of immune 

serum has little effect (Hassounah and Doenhoff, 1993). However, immune complexes 

have been located within the granuloma (Abdul-Aal and Attalah, 1987) and a role for 
immune sera in reducing circulating transaminase levels and hence preventing hepatocyte 

damage has been demonstrated (Hassounah and Doenhoff, 1993).
Finally, it has been shown that the immune response towards egg antigens is also 

responsible for the down-regulation of granuloma formation which is observed in mice 

and which may ameliorate pathology in humans. Cytokines secreted by Thl cells are 

believed to have a role in this down-regulation and various studies in mice (Oswald et al. , 

1994, Wynn et al., 1994) have demonstrated that the abolition of interferon gamma 

(IFNy) and IL-12, in addition to the depletion of natural killer (NK) cells, increases the 

size of the egg induced granulomas observed. Further studies have suggested that egg 

antigen stimulates an IL-12 independent release of IFNy from NK cells which results in 
the expression of the IL-12 gene and subsequent release of this cytokine from 

macrophages. This in turn may stimulate the production of more IFNy by Thl type cells 
and both of these cytokines may then be involved in decreasing the production of 1L-4 by 

Th2 cells and hence granuloma development. This hypothesis is supported in part by the 

observation that mice sensitised with eggs in combination with recombinant IL-12, 
developed only minimal granulomas upon subsequent egg challenge. It has also been 

demonstrated that suppressor T cells (Ts) and serum from chronically infected mice (CIS) 

are able to reduce granuloma formation upon passive transfer. Moreover, factors released 
by the parasite itself may be involved in the down-regulation of the immune response 

(reviewed by Phillips and Lammie, 1986).

1 .4  THB CONTROL OF SCHISTOSOMIASIS
Health education, the provision of safe water and sanitation, snail control and most 

importantly chemotherapy all play a part in the control of schistosomiasis. However, in 

many developing countries the use of these methods and their integration within suitable 

control programmes is limited by economic constraints.

With regard to snail control, the application of one molluscicide, namely niclosamide, 

is the only method used to any extent. This can be applied either to small water bodies 
by spraying, or to large stretches of water via drip feeds upstream of the area to be 

treated. In some cases natural water sources have also been drained or eliminated to
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decrease possible snail habitats and more consideration is now given to the possible spread 

of schistosomiasis during the design o f new irrigation projects. However, in many cases 

the bodies of water which provide schistosomiasis transmission sites are immense and in 
spite of efforts to control the snail population, transmission in many areas remains high. 

Chemotherapy therefore remains the mainstay of schistosomiasis control.

Although oxamniquine is still used in some areas for the treatment o f  S. mansoni and 

metrifonate for the treatment of S. haematobium, Praziquantel (PZQ) is the preferred drug 
and is able to eliminate all species of schistosomes. It is a heterocyclic pyrazine- 

isoquinoline which acts by causing contraction of the adult worms, which lose their grip 

on the blood vessels, die and eventually disintegrate. It is generally effective when given 
as a single dose and has a cure rate of 60 - 90%, with egg reductions of 90 - 95% 

occurring in those who are not fully cured. The main problem encountered within control 

programmes which rely upon chemotherapy is therefore the cost. Although PZQ is a 
comparatively cheap drug, in areas of high transmission reinfection can occur very 

quickly and re-treatment is often required at least once a year (Cherfas, 1991). This can 
be targeted to particularly susceptible groups of individuals such as school children or 

those in a high risk occupation, (Butterworth, 1990) however, the cost o f the drug and 

regular administration are still prohibitive in many areas where intervention is most 

required. Added to this is the growing concern regarding the possible development of 

drug resistance. Strains of schistosomes which are resistant to oxamniquine have already 

been reported in South America (Coles et al., 1986) and although these infections were 

successfully treated with PZQ, laboratory evidence to suggest that S. mansoni in 

experimental mice can develop resistance to the latter has recently been published (Fallon 
and Doenhoff, 1994). One of the strains shown in this study to be less sensitive to PZQ 

treatment was from Senegal, a country in which a massive epidemic of human 
schistosomiasis has proved difficult to treat (Gryseels, 1994).

Thus in summary, schistosomiasis is at present controlled by a combination of snail 

elimination and more importantly chemotherapy. However, due to the requirement for 
constant re-application control programmes which rely upon the use of these strategies are 

both difficult and expensive to maintain. Hence it is widely accepted that new methods 

are required to control the onset and spread of schistosomiasis and the development o f a 
suitable vaccine is now the ultimate goal of much of the work carried out within the field 

of schistosome research. In general vaccines are highly cost effective as compared to other
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intervention procedures (World Bank, 1993). Moreover, newly developed vaccines could 

be incorporated within the operational WHO extended programme for childhood diseases, 

which already reaches 70 - 80% of the world’s children. That effective vaccination against 

schistosomiasis infection is possible is supported by the demonstration of immunity in 

experimental animals (see below) and an increasing body of evidence which indicates that 
immunity to schistosomiasis develops, albeit slowly, in naturally infected humans (section 

1.6) .

1.5 IMMUNITY IN EXPERIMENTAL ANIMALS
Experimental hosts of S. mansoni include rodents, such as mice and rats and to a 

lesser extent primates, such as the rhesus monkey and the baboon. The baboon and the 

mouse are, like humans, permissive hosts which tolerate the development o f the adult 
worm and the onset of egg production 4 - 5  weeks post infection (Smithers and Doenhoff, 
1982). In contrast, the rat is a non-permissive host in which the majority of the worms 

are expelled between days 28 and 37 post infection whilst the rest remain stunted and 

unable to produce viable eggs (Cioli el a l.. 1978). In the rhesus monkey, the situation is 

variable and has been shown to he dependent upon the size of the infection.

In all of these hosts resistance to reinfection can be induced by a normal unattenuated 
infection (concomitant immunity); by exposure to parasites attenuated with radiation or 

schistosomicides (vaccine immunity); or by immunisation with crude, purified or 

recombinant schistosome antigen preparations.

1.5.1 CONCOMITANT IMMUNITY
(a) The rhesus monkey

In the rhesus monkey resistance to reinfection develops within 12 weeks of a single 

exposure to unattenuated parasites (Smithers and Terry, 1965a). This resistance is 

assumed to he immunologically mediated and effective against the larvae of an incoming 

infection whilst the adult worms of the primary infection remain unaffected, hence the 

term concomitant immunity. The adults worms are known to be immunogenic as 
resistance to reinfection is observed following the direct transfer of mature worms into 

naive recipients (Smithers and Terry, 1967). However, they are able to protect themselves 
against the immune response stimulated by a variety of methods. These include rapid 

membrane turnover (Perez and Terry, 1973, Wilson and Barnes, 1974); the loss of
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antigens which are expressed on the surface of the schistosomula (Samuelson et al., 1980, 

Simpson et al., 1984); the surface acquisition of host molecules i.e. blood group 

components (Clegg et al., 1971) and histocompatibility antigens (Sher et al., 1978), the 
expression o f host like antigens and by increasing the intrinsic resistance of the parasite 

surface to host effector mechanisms (Tavares et al., 1980, Moser et al., 1980, Bickle and 

Ford, 1982). Furthermore, the adult worms secrete immunosuppressive factors and 

soluble antigens which form immune complexes and induce both suppression and 
tolerance in the host (Capron et al., 1980a & b).

(b) Rats

As a non-permissive host, the infected rat expels a large proportion of the primary 

worm burden. Hence the resistance which develops approximately 4 weeks post-infection, 

persists in the presence of a low number of sterile, stunted worms (Smithers and Terry, 
1965b). The resistance seen is believed to be immunologically mediated as the transfer 

of cells and serum (IRatS) from infected rats is able to confer immunity to naive 

recipients (Phillips et al., 1975, Phillips et al., 1978, Ford et al., 1984a). Furthermore, 

the transfer of live worms into the liver has again demonstrated that the adult stages of 
the parasite possess the antigens required for the stimulation of concomitant immunity 

(Knopf and Cioli, 1980).

(c) Baboons
Rather less is known about the development of resistance following an unattenuated 

infection in the baboon. Early experiments involving the immunisation of baboons with 

S. mansoni cercariae (Sturrock et al., 1978) indicated that the overall levels of resistance 

obtained were low although a small number of animals did demonstrate levels of 

resistance which were greater than 50%. Similarly, intrahepatic transfer studies have had 

varying degrees of success. Damian et al., (1972) reported that infection with S. mansoni 
adult worms did not stimulate resistance to reinfection, however Webbe et al., (1976) 

demonstrated the development of a low but significant level of resistance following the 

intra-hepatic transfer of S. haematobium adult worms.

(d) Mice

In mice resistance to a percutaneous challenge arises within 8 weeks of a single
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unattenuated infection (Dean, 1983). However, it has become apparent that the resistance 

seen in this model is not immunologically specific but is associated with the pathological 

response of the host to parasite eggs deposited within the tissues (Wilson et al., 1980, 

1983, McHugh et al., 1987). This claim is substantiated by the observations that B cell 

depletion has no effect on the resistance seen in infected mice (Maddison et al., 1981) and 

that parabiosis, the transfer of sera and the transfer of T cells from the spleen or the 
lymph nodes of infected mice fails to protect naive animals (Dean et al., 1981a, Harrison 

et al., 1982). Moreover, resistance to a challenge infection does not develop until the 

primary infection reaches patency (Long et al., 1978, 1980) nor is it seen during a single 

sex infection (Dean et al., 1978, Bickle et al., 1979a, Harrison et al., 1982, Bickle et 

al., 1983) or in mice in which the primary infection has been cured by chemotherapy 

(Doenhoff et al., 1980). An inverse relationship has also been observed between the 

length of time that mice survive following a primary infection and their capacity to resist 

reinfection (Bickle et al., 1980). Furthermore, resistance can not be induced by intra- 

hepatic transplantation of worms of a single sex (Boyer and Kalfayan, 1978) whereas the 
transfer of worms of both sexes confers resistance which develops following the onset of 

egg production (Peresan and C ioli, 1980). More specifically, the studies of Harrison et 
al. (1982) have demonstrated a positive correlation between the tissue egg count and 

resistance, whereas no correlation was seen between the latter and the adult worm burden.

The correlation between resistance and the presence of eggs within the tissues of the 

murine host is believed to a be a consequence of a pathology induced alteration in the 

ability of the liver to sequester challenge parasites. Studies hy Wilson et al., (1983) have 

demonstrated that almost immediately following the onset of egg production there is an 
increase in the number of challenge parasites which escape from the liver and die in other 

tissues. As these schistosomula do  not contribute to the estimated adult worm burden, the 
host could be considered to be resistant even though the missing larvae have not been 

killed via immune mechanisms. This situation is exacerbated at a later time point by the 

development of major porta-cava anastomoses which allow the migrating larvae to travel 

from the liver back to the lung.
In spite of the obvious importance of egg related pathology to the resistance seen in 

infected mice, the injection of eggs alone has largely been unable to generate resistance 
(Moore et a l., 1963, von Lichtenberg, et al., 1963, Doenhoff et al., 1980, Harrison et
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al., 1982). It has been suggested that this is due to the failure of externally administered 
eggs to reach, and hence cause pathology, within areas of tissue which form part of the 

migratory route of the challenge parasites (Harrison et al., 1982).

The aforementioned studies have demonstrated that both the rat and the mouse 

develop resistance to a challenge infection following exposure to unattenuated parasites. 

However, neither animal provides an ideal model for studies aimed at the development 
o f a vaccine suitable for use in humans as the rat, unlike the human employs spontaneous 

expulsion of the primary worm burden and in the permissive mouse host the resistance 

observed is dependent upon egg related immunopathology. As a result, the work of 
several groups, including that at the London School of Hygiene and Tropical Medicine 

(LSHTM), has focused instead upon studying the development of immunity following a 

radiation attenuated infection. Here spontaneous expulsion, the release o f adult and egg 
antigens and most importantly egg induced pathology are avoided by the death of the 

parasite in the larval stages.

1.5.2 VACCINE INDUCED IMMUNITY
The successful use of radiation attenuated parasites as a vaccine against parasitic 

bronchitis in cattle stimulated an interest in the use of such "live" vaccines for other 

parasitic diseases. Thus, following early studies with S. japonicum in primates (Hsu et 

al, 1962), Taylor et al., (1976) demonstrated that sheep could be protected against 

infection with S. mattheei by immunisation with homologous irradiated schistosomula and 

that both sheep and cattle could be protected against S. bovis under laboratory conditions 

(Taylor et al., 1979). These studies were subsequently extended into a field trial which 

demonstrated that immunisation with irradiated S. bovis schistosomula reduced worm and 

egg burdens as well as egg associated pathology (Majid et al., 1980). Irradiated cercariae 

of S. japonicum have also been used successfully to immunise cattle in the laboratory 

(Hsii et al., 1983) and the field (Hsu et al., 1984). Thus the irradiated vaccine has been 
shown to stimulate protection against a schistosome infection occurring in a natural host 

animal. However, in order to characterise more specifically the nature of the immune 

response to radiation attenuated parasites it was necessary to focus instead upon the more 
easily studied mouse and rat laboratory models.
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1.5.2.1 The induction of immunity in laboratory hosts

(a) Mice

Vaccination o f mice with y-irradiated schistosome larvae has been shown consistently 
to induce species specific and long lasting (>  24 weeks) protection against a challenge 

infection (Minard et al., 1978, Bickle et al., 1979b, Bickle et al., 1985). The studies of 

Bickle et al., (1979b) clearly demonstrated that cercariae induced better resistance than 

schistosomula and that a single vaccination with 500 parasites was sufficient to induce 
significant levels of resistance by 3 weeks post vaccination. However, there has been 

some debate as to the dose of radiation which is required for the induction of optimal 

immunity. Initially, it was reported that maximum immunity was observed following the 
immunisation of mice with cercariae exposed to a low dose of irradiation. This prevented 

the production o f eggs but allowed the development of some sterile worms within the 

liver (Villella et al., 1961, Radke and Sadun, 1963). However, subsequent studies 

(Minard etal., 1978, Bickle et al., 1979b, Reynolds and Ham, 1992) demonstrated that 

better levels of immunity were stimulated by immunisation with parasites irradiated with 
a more moderate dose (i.e. 58, 20 or 15 krad respectively) although highly irradiated 

cercariae were poorly protective. Experiments employing parasite recovery techniques 

(Bickle et al., 1979c) revealed that, unlike highly irradiated parasites which die in the 
skin, the majority of parasites attenuated with a moderate dose leave the skin and show 

a delayed migration to the lung, peaking on day 7 post infection i.e. one to two days later 

than the more pronounced peak observed following infection with unattenuated parasites. 
Only a very small fraction (1 %) of these then migrate to the liver, thus suggesting that 

optimal immunity is induced by the death of moderately irradiated larvae in the lungs, or 

on route to the liver. Histological studies (Mastin et al., 1983) and autoradiographic- 

tracking techniques (Mangold and Dean, 1984, Elsaghier and McLaren, 1989), have since 
confirmed that the majority of moderately krad radiation attenuated parasites do die in the 

lungs. Moreover, although discrepancies have arisen regarding the specific dose which 

is required for the stimulation of optimal immunity, i.e. 50 krad (Minard et al., 1978), 

20 krad (Bickle et al., 1979b), it has been shown that the optimal dose of radiation in 
each study produced immunising infections which behaved similarly with regard to their 

survival, migration and death in the lung. Six day old irradiated lung worms transplanted 

directly into the pulmonary vasculature have also been shown to confer levels of 
resistance almost equal to those seen following vaccination with irradiated cercariae (Dean
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et a l., 1981b).

The induction of optimal immunity following the death of the 20 krad irradiated 

larvae in the lung could indicate that the stimulation of maximum resistance requires the 

release / expression of specific antigens which occurs upon the death of this particular 

stage of the parasite. Alternatively, the death of the parasite in this particular organ may 

be necessary or parasites may simply be required to survive for a particular length of time 
in the vaccinated host. In order to investigate the importance of these different parameters 

in the induction of optimal immunity, studies employing the schistosomicide Ro 11-3128 

to attenuate infections were performed (Bickle and Andrews, 1985). In contrast to the 
situation seen with irradiated parasites whereby optimal immunity was stimulated by drug 

termination of the larvae on day 6 post infection, optimal immunity was stimulated by 

drug termination of an unirradiated infection on days 2-3 post infection. The former 
confirmed the importance of the death of the lung stage irradiated parasite in the 

generation of optimal immunity. However, the attainment of optimal immunity upon 
killing of the unirradiated parasites at a time when they would still be in the skin indicated 

that neither the site of death nor the persistence of the infection for a substantial length 

of time were important. It was therefore suggested that stimulation of optimal vaccine 
immunity is dependent upon the release / exposure of particular antigens on the death of 

the early larval stages and that the requirement for the killing of the irradiated lung stage 

as opposed to the normal skin stage is a consequence of a radiation induced decrease in 
protein synthesis which results in the delayed expression of such antigens by the irradiated 

larvae. Furthermore, the attenuation of parasites with high radiation doses could further 
delay or inhibit the expression of protective antigens and hence account for their poor 

ability to induce resistance. In the light of these results Bickle et al., (1990) compared the 

pattern of larval surface antigen recognition by sera generated upon termination of an 

unirradiated infection with Ro 11-3128 at various intervals post infection (Ro 1 IS), with 
that of mice vaccinated with 20 krad irradiated parasites (VMS) or exposed to a chronic 

infection (CIS). This demonstrated that Ro 1 IS from 2 - 3  day terminations and VMS, 

preferentially recognised antigens of 32, 23, 16 and 15 kDa and that Ro 11S had the 
highest overall titre. Why termination of an infection with Ro 11-3128 stimulates such 

high levels of antibody is uncertain. However, skin stage schistosomula treated with Ro 

11-3128 in vitro have been shown to produce an exudate and to develop vesicles termed 

"blebs" upon their surface (Bickle et al., 1990). The latter represent released fractions of
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particulate antigen and are believed to originate from the inner membrane leaflet of the 

lipid bilayer. More recent studies (Smith et al., 1994) have demonstrated that following 

incubation with drug treated MS antigen presenting cells (APC) were better able to 

present antigen and hence stimulate the proliferation of sensitised T cells. Fractionation 
of the soluble antigens and isolated "blebs" demonstrated that this enhanced proliferation 

occurred largely in response to the latter, which also contained the majority of the 

proteinaceous material. Thus, it has been suggested (Bickle et al., 1990) that if such 

"blebs" were formed following drug treatment in vivo the presentation o f antigen to APC 
in the form of membranous vesicles may well be responsible for the development of the 

enhanced antibody response.

An alternative explanation for the enhanced immunogenicity of both the 20 krad 
irradiated parasites and Ro 11-3128 early terminated infections has been proposed by 

Mountford et al., (1988, 1989). They suggested that the development of optimal 
protection in these two systems was a direct consequence of the persistence of antigenic 

material within the skin draining lymph nodes (SLN). It has been demonstrated by 
radiolahelling that 20 krad irradiated parasites on route to the lungs persist for much 

longer in the SLN than do unattenuated parasites. In addition, parasites attenuated by drug 
treatment on days 2 - 3 post infection showed a delayed migration through these nodes. 

The latter contrasted with the situation observed following drug termination of an 

irradiated infection at a similar point in time, as these parasites failed to reach the SLN 
and stimulated poor immunity. In addition, Coulson and Mountford, 1989 obtained poor 

levels of protection following the direct transfer of irradiated lung schistosomula into the 

pulmonary vasculature and it has been suggested (Wilson and Coulson 1989) that this may 
be a consequence of the absence of sensitisation by prior migration through the SLN. It 

is of course possible that both o f the features described above are of importance, thus the 
generation of optimal immunity may require a protracted and enhanced release of specific 

antigens to occur within the SLN.

(b) Rats
Two vaccinations with 1000 y irradiated cercariae have been shown to stimulate high 

levels of protective immunity in rats (Smithers and Terry, 1965b, Phillips et al., 1978, 
Ford et al., 1984b). Although optimal resistance was seen following immunisation with 

parasites treated with a radiation dose of 0 - 2 0  krad (Ford et al., 1984b), a proportion
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of the unattenuated larvae or those irradiated at a very low dose did develop into adults 

and hence immunity associated with spontaneous elimination or the remaining stunted 

worms could contribute to the resistance seen. In contrast, 20 krad irradiated parasites 

stimulated optimal resistance in the absence of adult worms as they showed a delayed 

migration to the lung where they died 2 - 3  weeks post infection (Ford et al., 1984b). 

Direct transfer of the irradiated lung stage into the pulmonary vasculature of naive rats 
also stimulated resistance equal to that observed following administration of irradiated 

cercariae (Ford et al., 1984b).

1 .5 .2 .2  The site of challenge parasite elimination
(a) Mice

It is widely accepted that in the vaccinated mouse some of the challenge parasites are 

killed in the skin and some in the lungs. However, the question as to where the majority 
of elimination occurs has provoked much debate. Similar parasite recovery techniques, 

histopathological studies and autoradiographic tracking of 75Se labelled parasites have all 
been used in studies which concluded that the majority of parasites died either in the skin 

during the first 2 or 3 days post infection (Hsu et al., 1979, Miller and Smithers, 1980, 

1982, Hsu et al., 1983, Ward and McLaren, 1988, Elsaghier and McLaren, 1989, 

Kamiya et a l., 1987) or in the lungs during the second or third week post infection (Stek 

et a l., 1981, Mastin et a l., 1983, von Lichtenberg et al., 1984, Dean et al., 1984, 

Wilson et al., 1986). These two contradictory theories have also been supported by the 

transplantation o f lung worms directly into the pulmonary vasculature of vaccinated mice. 

Thus, a reduction in the challenge worm burden of only 15% was seen following the 
direct transfer o f  5 day old larvae into the lungs of mice in which the skin was considered 

to he the major site of attrition (Miller et al., 1981, Smithers, 1982, McLaren et al., 
1985). In contrast, resistance almost equal to that seen following a percutaneous challenge 

(32 - 44%) was observed following the transfer of larvae into the lungs of a model system 
in which the majority of killing had been shown to occur in the lung (Dean et al., 

1981b). The passive transfer of sera from multiply vaccinated to naive mice (see below) 

has also been reported to confer optimal protection if carried out in accordance with the 
model used, i.e. at the time of challenge, when the parasites are killed in the skin (in 

Kamiya et al., 1987) or on day 5 post infection if the larvae are killed in the lung 

(Mangold and Dean, 1986). The reasons for the differences between these two vaccinated
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mouse models are as yet largely unresolved. The site of challenge elimination is not 

dependent upon the strain of mouse vaccinated nor is it affected by the site of vaccination 

or challenge administration (Elsaghier and McLaren, 1989). It has been suggested 
(Elsaghier and McLaren, 1989) that subtle variations in the parasite isolate used for 

vaccination may have a profound effect upon the site at which the challenge parasites are 
killed. However, on examining the elimination of a strain of parasite which had been 

shown by others to be killed in the skin, Dean et al., (1995) demonstrated that in their 

hands the majority of the schistosomula were killed at some point after migration to the 

lungs.

(b) Rats
In the vaccinated rat, parasite recovery and histology techniques have clearly 

demonstrated that the majority of challenge parasites are killed in the lungs. Moreover, 
high levels of protection are consistently achieved upon transplantation of lung stage 

larvae into the pulmonary vasculature (Ford et a l., 1984b) and serum transfer at the time 
of challenge parasite migration through the lungs is able to passively protect naive animals 

(Ford et al., 1984a, Ford et al., 1987a, McLaren and Smithers, 1985).

1.5.3 MECHANISMS QF IMMUNITY
In contrast to the immunopathology related resistance seen in mice harbouring a 

chronic infection, the protection seen following a normal infection in the rat or 

vaccination of rats or mice with radiation attenuated cercariae is believed to be due to the 
generation of a specific immune response against the schistosome larvae. This proposal 

is supported by the species specific nature of the resistance induced (Bickle et a l., 1985) 

and also by the longevity of protection which demonstrates that the killing o f the 
challenge parasite is independent of the inflammatory response observed in the lung 

following the death of the immunising infection (von Lichtenberg et al., 1984). Studies 

using athymic and /¿-chain depleted rats and mice (Ford et al., 1987b, Sher et a l . , 1982) 

have indicated the involvement of both T and B cells in the development of protective 

immunity. However, the role of these lymphocytes is believed to differ in these two 
rodent species. Thus, studies with infected or vaccinated rats have indicated that T cells 

are required only to provide help for the production of protective antibody (Ford et al., 
1987a, section 1.5.3.2). In contrast, experiments using immunodeficient P strain mice
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which, despite the production of antibodies capable of mediating macrophage killing in 

vitro develop poor resistance following vaccination with irradiated cercariae, suggested 
that T cell functions other than those required for B cell help are involved in the 

immunity seen in once vaccinated mice (James et al, 1984). The known deficiency of P 

strain mice in cell mediated immunity also provided the first evidence regarding the 

critical role of delayed type hypersensitivity (DTH) mechanisms in singly vaccinated 

mice. This is discussed in the following section.

1.5.3.1 T cell mediated effector mechanisms
Studies by Aitken et a l., (1988) demonstrated that following a single vaccination of 

mice with irradiated cercariae there was a sustained and significant increase in the number 

of leucocytes present within the broncho-alveolar lavage (BAL) cell population. This 
infiltration began on day 7 post vaccination and peaked on day 21. As compared to the 

cell populations seen in naive mice it represented a five fold increase in the numbers of 

monocytes and polymorphonuclear leucocytes (PMN) present and more importantly a 

fifteen fold increase in the number of lymphocytes, all of which persisted for at least 10 

weeks post vaccination. The extent of this lymphocyte influx was also shown to correlate 

with the degree of protection subsequently obtained. Thus, the maximum numbers of cells 

were seen in the lavage following the vaccination of mice with 20 krad attenuated 

parasites. As T cell proliferation has been shown to be stimulated to the same degree by 
unirradiated and irradiated larvae (James, 1985) it was unclear as to how this enhanced 

pulmonary response was mediated. However, studies by Mountford et al., (1992) have 

demonstrated a positive correlation between the size and T cell content of the lymph 

nodes draining the skin (SLN) and the resistance generated following vaccination with 
parasites attenuated with varying doses of radiation. Moreover, removal of SLN prior to 

or immediately following vaccination results in a substantial decrease in the immunity 
generated. It has therefore been proposed that the radiation induced delay in parasite 

migration through SLN (section 1.5.2.1, Mountford et al., 1988, 1989) elicits a 

population of sensitised T cells which appear in the circulation following vaccination, 

infiltrate the lung parenchyma and airways upon arrival of the irradiated parasite in the 
pulmonary arterioles and "arm" the lung against a challenge infection. Examination of the 

expanded lymphocyte populations of the pulmonary lavage revealed that both CD4+ and 

CD8+ cells were represented. This suggested a possible role for both helper (Th) and
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cytotoxic (Tc) cells in vaccine induced immunity. However, the studies o f  Vignali et al 
(1989a) demonstrated that the depletion of Tc cells with an anti-CD8 + McAb resulted 

in a slight increase in the resistance observed, thus indicating that CD8+ cells do not play 

a role in the killing of the challenge parasite. The latter is consistent with in vitro 

observations which demonstrated that although CD8 + cells were able to bind to both skin 

and lung stage schistosomula via the recognition of absorbed host antigens, they were 

unable to kill (Butterworth et al., 1979). In contrast, the depletion o f Th cells by 

administration of an anti-CD4+ McAb resulted in the complete abrogation of both 

vaccine and drug attenuated immunity (Vignali et al., 1989a). This suggested a vital role 
for CD4 + cells in the development of resistance and thus attempts were made to further 

characterise the subset of Th cells involved. Examination of cytokine profiles (reviewed 

by Smythies et al., 1992) revealed that the majority of T cells removed from the lungs 

of vaccinated mice secreted IFNy and IL-3 in response to antigenic stimulation. This 
indicated that Thl cells were the main constituent of the enhanced pulmonary infiltrate. 

How the balance of T cells in favour of Thl is attained is not fully understood. However, 

it has been proposed (Mountford et al., 1994, Wynn et al., 1995) that IL-12 secreted by 

NK cells, macrophages and B cells may play a role. This cytokine is known to be a potent 
stimulator of IFNy production by CD4 + , CD8+ and NK cells. Moreover, IL-12 

stimulates the expansion of Thl cells but suppresses the differentiation of Th2. It has 

therefore been suggested (Wynn et al., 1995) that IL-12 released following vaccination 
with irradiated cercariae promotes a Thl type response and hence the development of 

protective immunity. This hypothesis is supported by the demonstration that a small but 

significant increase in the levels of mRNA encoding a subunit of IL-12 occurred 

following vaccination with irradiated parasites (Wynn et al., 1995). Furthermore, the 

administration of rIL-12 during vaccination with radiation attenuated parasites (Wynn et 

al., 1995) or soluble lung stage antigens (Mountford et al., 1994) increased the levels of 
resistance obtained beyond those normally seen following vaccination with these 
preparations.

It is largely accepted that the death of the irradiated parasite in the lungs is a 

prerequisite for the stimulation of optimal vaccine induced immunity. This is irrespective 
of whether the elimination of the challenge parasites occurs in the skin o r in the lungs. 

Thus, the above describes the mechanisms which may be involved in the induction of



resistance in both of these models. However, it is believed that the mechanisms and cell 

population involved in the killing of the challenge parasites in these two sites differ 

considerably.

Thus.irdng vaccinated mice in which the major phase of challenge elimination occurs 

in the lungs, Aitken el al., (1988) demonstrated that on the arrival of the challenge 

parasite in the lungs a second influx of T lymphcxytes was observed. This was 
accompanied by an increase in the levels of IFNy and IL-3, which peaked more rapidly 

after challenge than after vaccination and suggested that an anamnestic Thl type response 

had occurred (reviewed by, Wilson el al., 1992, Smythies et al., 1993). The timing of 

IFNy production was also coincident with phases of pulmonary macrophage activation. 
The latter which indicated the importance of both IFNy and macrophage activation in the 

immunity induced in vaccinated mice is in accordance with the results of the original 

studies of James et a l., (1984). These demonstrated that P/N or P/J (P) strain mice, 

which failed to respond to the irradiated vaccine, gave a poor delayed type 
hypersensitivity (DTH) response to skin challenge with soluble worm antigens (SWAP). 

Further analysis revealed this to be due to an inability of T cells isolated from P strain 

mice to produce significant levels of INFy, coupled with a deficiency of P strain 

macrophages to respond to this cytokine (James et al., 1984). The importance of 

macrophage activation in the mouse model of vaccine immunity has also been indicated 

by the experiments o f  Lewis et al., (1987) which demonstrated that the ability of 

macrophages taken from mice immunised with live irradiated and cryopreserved larvae 

to kill schistosomula in vitro correlated with the ability o f these mice to resist a challenge 

infection. Moreover, the experiments of Vignali et a l., ( 1989a) showed that macrophages 

taken from mice immunised with 20 krad attenuated larvae had an increased ability to kill 

skin stage schistosomula in vitro. The upregulation of surface molecules (e.g. MHC Class 

II) on alveolar macrophages also demonstrated that activation of these cells occurred upon 

administration of the irradiated vaccine and increased following a challenge infection 
(Menson and Wilson, 1990). That the development o f  resistance is dependent upon the 

release of IFNy has also been confirmed by the use o f a McAb against this cytokine 

which abolished the development of vaccine immunity (Smythies et al., 1992). However, 

subsequent studies (Williams et al., 1995) have also indicated that a low level of TGrPB, 
a cytokine which inhibits macrophage activation, is also required.

Despite this wide body of evidence the importance of T cell mediated macrophage
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activation in vaccine immunity was questioned by the studies of Aitken et al., (1987). 
These demonstrated that despite the abolition of DTH to a model antigen (beg) the killing 

of the parasites in the lung persisted following whole body irradiation of the mouse host. 

However, further studies (Aitken et al., 1987) revealed that although radiation reduced 

the numbers of peripheral leucocytes, the recirculation of T cells and hence DTH, vaccine 
sensitised T cells, resident in the pulmonary airways, were unaffected and were therefore 

able to activate macrophages in response to the arrival of the challenge parasite in the 
lungs. The radioresistant nature of the mechanisms involved in the killing of the parasite 

in the lungs also suggests that radiosensitive effector cells such as eosinophils, neutrophils 

and mast cells are not involved (Aitken et al., 1987, Vignali et al., 1988a). This was 

substantiated by the observation that mast cell deficient mice develop good levels of 

resistance following vaccination (Sher et al., 1983) and that abolition of the eosinophil 
response by treatment with an anti-IL-5 McAb similarly has no effect upon the killing of 
parasites in the lungs (Sher et al., 1990). Moreover, upon administration of an anti-IFNy 

McAb the number of eosinophils and PMN in the lungs actually increased whilst 

immunity was abolished.

Rather less is known regarding the killing of challenge parasites in the skin. 
However, whole body irradiation has been shown to abolish skin phase immunity in mice 

(Delgado and McLaren, 1989) and the migration of neutrophils and at a later time point 

eosinophils, into the site of challenge has been observed (Ward and McLaren, 1988). In 
addition, agents which block macrophage function have no effect upon the development 

o f skin phase immunity (Delgado and McLaren, 1989). This evidence therefore suggests 

that the mechanisms involved in the elimination of the challenge parasites from the skin 
differ from those employed in the lungs.

How the challenge schistosomula are killed following the generation of an immune 

response is as yet unclear. The secretion of IFNy by memory T cells which follows the 

arrival of the challenge parasite in the lungs is believed to activate macrophages and 
induce an inflammatory response which results in the development of tight foci around 

the schistosomula by day 17 post challenge (Wilson, 1992). Similar foci are seen during 

the killing of the parasite in the skin although these contain radiosensitive leucocytes in 
addition to monocytes and T cells (Piper and McLaren, 1993, McLaren and Smithers,
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1988). TNFa which is released hy sensitised T cells and is known to upregulate the 

expression of vascular endothelial cells may be involved in the development of these foci, 

although ablation of this cytokine by anti-TNFa failed to affect the development of 
immunity (Smythies et al., 1993). A similar role has also been suggested for IFNy which 

has been seen to upregulate the expression o f ligand receptor pairs (e.g. LFA / ICAM) 

and hence may determine the density of the inflammatory foci generated. The trapping 
of parasites in these inflammatory foci may be aided by eosinophil cationic proteins which 

have been seen to paralyse lung worms in vitro (McLaren et al., 1984) and by 

macrophages which can traumatize the musculature of cultured larvae (McLaren and 

James 1985). Alternatively, the slow movement of the migrating parasites through the 
narrow vessels of the lung capillary beds may be sufficient to enable them to become 

targets of an anamnestic inflammatory response. Once trapped in inflammatory foci larvae 

may then be killed by toxic cell products or by the effects of antibody (McLaren, 1989). 
Nitric oxide (NO) is released by activated macrophages and has been shown to kill freshly 

transformed schistosomula in vitro. However, lung stage larvae are refractory to this type 

of killing (Pearce and James, 1986) and the role of NO in vivo is doubted as inhibition 

of NO production by N-monomethyl-L-arginine (L-NMMA) fails to deplete vaccine 

immunity (Smythies, et al., 1993). Alternatively, the larvae may die simply as a result 
of their failure to migrate. This hypothesis is substantiated by the observation that 

schistosomula trapped within foci in the skin subsequently transform into lung stage 

parasites (Ward and McLaren, 1989). Moreover, parasites removed from either skin or 
lung foci are able to continue their migration if transplanted into a naive host (Coulson 

and Wilson, 1988). Finally it has been proposed that the development of foci around each 

parasite may result in a blockage of the migratory route of the challenge infection and 
result in a greater number of these parasites being shunted into the alveoli from where 

they cannot return (Coulson and Wilson, 1988).

1.5.3.2 Antibody mediated effector mechanisms
(a) In vitro

Antibodies generated in response to a schistosome infection have been shown to kill 

newly transformed schistosomula in vitro. Initial experiments carried out using sera from 
infected rhesus monkeys, humans, rabbits and rats demonstrated that this cytotoxicity 

could be achieved via the action of antibodies known as lethal antibody in conjunction
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with complement alone (reviewed in Capron et al., 1982). However, subsequent studies 

(Butterworth et a l., 1974) which showed that phagocytic leucocytes were able to adhere 
to and kill schistosomula in the presence of heat inactivated sera suggested that antibody 

dependent cytotoxicity (ADCC) may be o f greater importance.
Macrophages were the first leucocyte population to be shown to be involved in this 

process (Capron et al., 1975). Cells incubated with IRatS and freshly transformed 

schistosomula were able to kill schistosome larvae within 16 hours (Capron et al., 1977). 

Moreover, heating of the sera, treatment with anti-lgE and prior incubation of the 

macrophages with unrelated IgE were shown to prevent killing, as did the absorption of 

infection sera with schistosomula antigens. This indicated that the binding of macrophages 

to the larval surface occurred via interactions between low affinity FceRIIb receptors and 

IgE bound to schistosomula surface. Further studies then revealed that monomeric IgE 
was unable to promote the adherence of macrophages to schistosomula and led to the 
suggestion that immune complexes of circulating schistosome antigens and an excess of 

IgE were required for opsonisation (Capron et al., 1977). How schistosomula are then 

killed is not clear. However, it has been shown that human alveolar macrophages 
specifically release lysosomal 6-glucoronidase, neutral proteases and superoxide anion 

following the cross linking of their IgE receptors (Joseph et al., 1980).

The killing o f  schistosomula by eosinophils from uninfected rats has also been 
achieved following the incubation of larvae with infected human sera (IHS) or rat sera 

(Capron et al., 1978, Butterworth et al., 1979). Initial experiments using sera taken from 

rats 4 weeks post infection demonstrated that the depletion of IgE had little effect upon 

eosinophil cytotoxicity whereas absorption of the sera with anti-IgG2a, or prior incubation 
of eosinophils with aggregated antibodies of this subclass abolished the killing of the 

schistosomula (Capron et al., 1978). Further studies then demonstrated that although sera 

removed from rats infected 4 weeks previously was cytotoxic despite IgE depletion, the 

cytotoxicity of sera taken 8 weeks following infection was depleted by removal of IgE but 
not IgG2a (Capron et al., 1981). This suggested a requirement for IgG2a in early 

immunity which was superseded by a requirement for IgE.

Complement alone has also been shown to mediate the killing of schistosomula by 
eosinophils. Schistosomula are known to activate complement via the alternative pathway 

and to acquire C3 upon their surface. Hence, the demonstration that normal rat sera 

(NRatS) stimulates the killing of schistosomula by eosinophils from uninfected animals
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indicates that eosinophils are able to bind via complement receptors to the C3 on the 

surface of the newly transformed larvae (Ramalho-Pinto et al., 1978). Moreover, NRatS 

was better able to stimulate the adherence of eosinophils to schistosomula than heat 

inactivated IRatS and it has been suggested that complement coated larvae form better 
targets for eosinophils then those opsonised with antibody as a result of the chemotactic 

properties of other components generated upon activation o f the complement cascade (i.e. 

C3b, C5, C567).

Once adhered to the surface of the schistosomula, eosinophils have been seen by 

electron microscopy to degranulate and release their toxic products in close proximity to 

the larval surface (McLaren et al., 1981). Eosinophil major basic protein (MBP) makes 
up approximately 50% of these granular products and it is this together with eosinophil 

peroxidase which are believed to be the mediators of the killing observed (Butterworth 

et al., 1978, Jong et al., 1981).
In addition to eosinophils and macrophages, mast cells have been shown to play a 

role in the antibody dependent killing of schistosomula in vitro. Although unable to kill 

the parasite themselves, the depletion of mast cells greatly reduces the level of eosinophil 

mediated killing observed (Capron et al., 1980b). Cytotoxicity is restored if mast cells 

are replaced with mast cell granular products, in particular eosinophil chemotactic factor 
A (ECF-A), and it has thus been suggested that during infection IgG2a and / or IgE 

activated mast cells release ECF-A, leukotriene B, PAF, IL-5, TNF, integrins and 

selectins, all of which are known to increase the migration of eosinophils and the 

expression of Fc and C3 receptors upon their surface (in Hagan et al., 1991, Capron and 
(.'apron, 1994).

Neutrophils have also been seen to adhere to the schistosomula surface following 

incubation with sera from infected animals. Some studies have reported that complement 
is then required to bring about subsequent killing (Incani and McLaren, 1981). However, 

others have suggested that neutrophils are as cytotoxic as eosinophils in the presence of 

antibody alone (Anwar et al., 1979).
Finally, platelets have been shown to adhere to and kill schistosomula in the presence 

of normal sera, although improved cytotoxicity is seen in the presence of sera from 

infected animals (Joseph et al., 1983). This indicates that platelets are able to bind to the 

surface of the schistosomula via both complement and antibody, which has been shown 
to be of the IgE isotype in rats.
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Although a number o f antibody dependent immune mechanisms effectively mediate 

the killing of newly transformed schistosomula in vitro, it has been demonstrated that 

larvae become refractory to  ADCC 24 hours after transformation (Ramalho-Pinto et al., 

1978, Bickle and Ford, 1982, Incani and McLaren, 1989). This can be attributed to the 

immune evasion tactics o f the developing parasite (see section 1.5.1) and has led to 
questions regarding the role of antibody mediated mechanisms in vivo where the lung 

stage parasite is believed to  be the target of the immune response.

(b) The role of antibody mediated mechanisms in vivo
Mice and rats which are B cell deficient are unable to develop resistance to 

reinfection (Mangold and Knopf, 1981, Sher et al., 1982). Moreover, experiments 

involving the passive transfer of sera and McAbs have suggested that antibody has a role 

to play in the generation o f  protective immunity. The importance of antibody mediated 
mechanisms is however, believed to differ between the species of animal involved. Thus, 

the levels of immunity attained following the passive transfer of antibody from vaccinated 

mice are inconsistent, often poor, and rely upon the donor having received multiple 
vaccinations (Bickle et a l., 1985, Mangold and Dean, 1986). These observations are 

consistent with the demonstration that other T cell mediated mechanisms are of primary 

importance in once vaccinated mice (section 1.5.3). However, they also suggest that 
although there is no apparent increase in the immunity of the donor mouse following 

multiple vaccinations, an increase in the effectiveness of antibody mediated mechanisms 

does occur. This is substantiated by the demonstration that the depletion of CD4+ cells 
at the time of challenge abolishes the resistance observed in once immunised mice, yet 

has no effect on the resistance generated following multiple vaccinations (Kelly and 

Colley, 1988). Furthermore, the studies of Caulada-Benedetti et a l., (1991) have indicated 

that this change may be initiated by an alteration in the production of T cell cytokines. 

Thus the initial, predominantly Thl type response, which results in the release of 

macrophage activating factors such as IFNy and IL-2 in response to schistosomula 
antigens, was seen to switch upon multiple vaccination to a Th2 type response with the 

production of IL-4, IL-5 and hence IgG l. Some experiments using fractionated sera have 

indicated that the IgG fraction (Mangold and Dean, 1986) or more specifically IgGl, 
(Delgado and McLaren, 1990) is wholly responsible for the protective capacity of VMS. 

However, the studies of Jw o and LoVerde (1989) suggested that the non-IgG fraction
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which contains mainly IgM and IgA, is also able to confer some protection. IgE has not 

been identified within VMS, and studies employing IgE deficient mice have demonstrated 

that this antibody isotype is not involved in the generation of immunity in multiply 
vaccinated mice (Sher et al., 1983).

The levels of resistance seen upon the transfer of IRatS or sera from twice vaccinated 
rats (VRatS) to homologous recipients (25 - 60% and 60 - 70% respectively) are 

consistently higher than those observed following the passive transfer of VMS (Ford et 

al., 1984a). Moreover, the importance of antibodies to the effector arm o f  rat immunity 

has been demonstrated by the observation that athymic recipients were protected by the 

transfer of VRatS (Ford et al., 1987b). The isotype of antibodies which are required for 

the passive transfer of immunity differs according to the method used for the 
immunisation of the donors. Thus, the transfer of optimal immunity from infected rats 

relied upon the transfer of both IgG2a and IgE and hence confirmed the in vivo role of 

these two isotypes which is suggested by studies in vitro. In contrast, the transfer of 

vaccine immunity has been shown to rely totally upon the transfer of IgG2a. Indeed no 

specific IgE has been demonstrated in sera taken from rats immunised with radiation 
attenuated parasites (Ford et al., 1987a).

How antibody kills schistosomes in vivo is not as yet fully understood. The lung stage 

schistosomula which form the targets of immunity in vivo, have been shown to be 

refractory to the antibody dependent mechanisms which kill freshly transformed 

schistosomula in vitro. However, complement depletion has been shown to reduce the 
immunity seen in both vaccinated and infected rats although in the vaccinated mouse the 

depletion of C3 had no effect (Vignali et at., 1988b, Sher et al., 1982). Moreover, the 

demonstration of immunity following the passive transfer of macrophages, platelets or 

eosinophils from infected rats (reviewed by Capron and Capron, 1994) has suggested that 
these cells armed with antibody / antigen complexes do have a role in the killing of the 

schistosomula in vivo. Following the challenge of passively immunised animals cellular 

reactions have been seen surrounding the dying parasites. These are similar in site and in 

composition to the foci seen following challenge of the donor animals. Thus, in rats 
passively immunised by the transfer of VRatS, the challenge parasites died in the lungs 

surrounded by inflammatory foci consisting mainly of radioresistant T cells and
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macrophages (Vignali et al., 1989b). In contrast, mice protected by the passive transfer 
of VMS from donors which eliminate the challenge infection in the skin, trapped the 

challenge larvae in the skin within radiosensitive foci of T cells, macrophages and 

eosinophils (Delgado and McLaren, 1989). Several suggestions have therefore been put 
forward regarding the role of antibody in the killing of parasites in vivo. Firstly, immune 

complexes which incorporate IgGl, IgG2a o r  IgE and circulating antigens could activate 

macrophages to release lysosomal proteins or trigger complement. The anaphylotoxins 
produced in this way would then attract more macrophages and eosinophils in addition 

to enhancing the expression of surface receptors on the latter. Products of both eosinophils 

and macrophages are known to damage the musculature of schistosomula, hence parasite 
migration could be delayed and an inflammatory response induced which traps the parasite 

and prevents further migration (McLaren and Smithers, 1988). Alternatively, antibodies 

may bind to the lung stage larvae hence hindering their migration through capillary beds 
and enabling them to become good targets for an antibody mediated inflammatory 

response (Dean et al., 1987). Studies have demonstrated that, although the lung stage 

parasite is refractory to antibody mediated killing in vitro, VMS (Bickle and Ford, 1982), 

VRatS (Ford et al., 1984a) and IRatS (Mangold, 1980) are able to bind to the surface of 

the lung stage schistosomula. The induction of killing by the prevention of migration 

could obviously not be reproduced in vitro and could therefore account for the antibody 
dependent elimination of the lung stage parasite despite its observed insusceptibility to 

ADCC mechanisms in vitro. Finally, it is feasible that the lung stage schistosomula is 

susceptible to in vivo antibody dependent immune mechanisms which are non functional 

in vitro.

1-6 IMMUNITY IN HUMANS

1.6.1 IN  VITRO. .KILLING BY HUMAN LEUCOCYTES
Studies performed in vitro have demonstrated that human effector cells are able to kill 

freshly transformed schistosomula in the presence of complement and / or antibody 

(Butterworth et al., 1974, Anwar et al., 1979, Hagan et al., 1985). With regard to the 

latter, both the IgG (Anwar et al., 1979) and IgE (Capron et al., 1984) fractions of 
human infection sera have been shown to be capable of opsonising the schistosomula for 

killing. Moreover, although eosinophils are believed to be the major cytotoxic cells, a role 

for neutrophils and macrophages has also been proposed (Anwar et al., 1979).
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1.6.2 EVIDENCE FOR THE DEVELOPMENT OF IMMUNITY IN VIVO
In endemic areas the prevalence and intensity of schistosomiasis is seen to rise to a 

peak during the second decade of life and then decline slowly during adulthood (reviewed 

by Butterworth et al., 1982). It was initially proposed that this decline was a consequence 

of the spontaneous death of the resident worms coupled with an age related decrease in 
water contact which prevents reinfection (Warren, 1973). However, studies in which the 

rates of reinfection following chemotherapy have been examined, have enabled the overall 

uansmission rate and the water contact of individuals to be monitored during the period 
of reinfection and thus incorporated into the analysis of the data used to determine 

resistance. Such studies on S. mansoni in Kenya (Butterworth et al., 1984, 1985), 

identified a group of children deemed to be resistant by virtue of their high water contact 

and low rates of reinfection and a group of susceptible children who became heavily 
reinfected following treatment. Comparison of the data for these two cohorts demonstrated 

that the average age of the resistant group was 13 and that of the susceptible group 11 and 
hence suggested the existence of age dependent factors that prevent reinfection despite 

high water contact. Longitudinal studies on S. haematobium in the Gambia (Wilkins et al., 

1984), have also demonstrated that individuals in a younger age group are more 

susceptible to reinfection after cure despite a level of water contact similar to that seen 
in older children.

Although it has largely been accepted that an age related increase in resistance to 

schistosome infection does occur, there is still much debate as to the factors involved in 
its development. It has been suggested that resistance takes the form of a slowly acquired 

immunity which is dependent upon previous exposure. Alternatively, the onset of 
resistance may be dependent upon age related physiological or immunological alterations. 

In most endemic areas age and exposure are intricately related and it is impossible to 

separate history of exposure from other age related effects. However, this is possible in 
areas where, due to immigration or recent establishment of transmission, entire 

communities have been exposed for a relatively short and identical period of time. Thus, 

the early studies of Kloetzel and Da Silva (1967), which examined the prevalence and 
intensity of infections in adult immigrants to an endemic area, demonstrated that the 

general pattern of intensity was similar to that seen in a stable endemic population. A 
peak in intensity occurred approximately 20 years following primary exposure, hence 

suggesting that age related resistance was dependent upon a long history of prior
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infection. In contrast, more recent and perhaps more thorough studies (reviewed by 

Gryseels, 1994) have suggested that the age dependent increase in resistance is in fact 

independent o f the extent of previous exposure. For example, studies amongst populations 
of recent immigrants into endemic regions in Burundi, have demonstrated that both 

prevalence and intensity show a peak in children of 10 - 15 years, being lower in 
similarly exposed adults. Studies in an area of Senegal, in which transmission was 

recently established following the building of an irrigation system, also gave similar 

results (Gryseels, 1994). Thus, these studies suggested that age related changes which 
occur around the time of sexual maturation, stimulate a strengthening of physical barriers 

or a shifting in the immune response, which protect against infection with schistosomes.

Although the extent to which the development of resistance is dependent upon age 

or upon previous exposure is not clear, alterations in the immune response o f the host are 

likely to be involved. The following section details some of the studies carried out with 
the aim of examining the relationship between the expression o f resistance and the 

presence of potentially protective immune responses.

1 -6.3.THE DEVELOPMENT OF HUMAN IMMUNITY

1.6.3.1 The balance o f antibody isotypes
Using blood samples taken from children deemed either resistant or susceptible to 

reinfection (as above), Butterworth et a l., (1985) examined the antibody response to the 

schistosomula, adult and egg stages o f the parasite and measured the levels of 

eosinophilia. The results obtained demonstrated that, although a difference in the activity 
of the eosinophils taken from the two groups could not be discounted, no positive 

correlation between resistance and the levels of antibody or number of eosinophils was 

detected. In contrast, negative correlations were observed between the levels of antibody 

directed against the egg stages and resistance to reinfection (Butterworth et al., 1987). 
Thus, it is now believed that the slow development of human immunity may be a 

consequence of the need to down regulate the production of anti-egg antibodies (i.e. 

blocking antibodies) which are produced early in infection and prevent the cytotoxic 
action of other antibodies.

Blocking antibodies were initially described by Grzych et al., (1982, 1984) who 

showed that the in vitro cytotoxicity and the ability to passively transfer immunity with 

a rat IgG2a Me Ah (IPLSml), was blocked by a second McAb of the IgG2c subclass
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(IPLSm3). Both McAbs recognised a 38 kDa schistosomula surface antigen (section 

1.9.2.1(a)), although the latter also bound to a 20 kDa molecule suggesting that the two 

antibodies recognised overlapping rather than identical epitopes. McAbs of the IgM 
isotype which are able to block in vitro killing of schistosomula by IHS and eosinophils 

have also been described (Dunne et al., 1987). These were shown to recognise the major 

egg polysaccharide antigen K3, in addition to periodate sensitive epitopes of the 38 and 

20 kDa schistosomular antigens (Bickle and Andrews, 1988). It has therefore been 
suggested that antibodies raised against polysaccharide antigens secreted in large quantities 

by the schistosome egg block the recognition of cross reactive epitopes present within 

glycoproteins or other glycoconjugates exposed upon the surface of the schistosomula. 
Evidence that blocking antibodies are raised during a natural infection in humans has been 

provided by Khalife et al., (1986) who demonstrated that the in vitro killing of 

schistosomula by the IgG fraction of sera taken from infected individuals was abolished 
by prior incubation of the larvae with the IgM fraction. Further analysis of the binding 
patterns of the sera revealed that both fractions recognised the previously described 38 

kDa schistosomula surface antigen. Moreover, the levels of IgM against the 38 kDa 
antigen were shown to be greater in sera taken from children susceptible to reinfection 

than in those which were resistant.

The levels o f lgG2 in human sera have also been shown to correlate negatively with 

resistance to reinfection (Dunne et al., 1987, Demeure et al., 1993). As IgG2, like IgM, 
is raised in response to carbohydrate epitopes, it has been suggested that antibodies of this 

subclass stimulated by carbohydrate epitopes on the egg also contribute to the lack of 

immunity seen in the young by preventing the binding of effector antibodies of a different 
IgG subclass to cross reactive epitopes upon the surface of the schistosomula.

In contrast to the killing mediated by IgG, that mediated by eosinophils and IgE was 

not affected by prior incubation of schistosomula with IgM (Khalife et al., 1986). This 
suggests that IgE antibodies recognise different epitopes to those recognised by blocking 

antibodies of the IgM isotype. Moreover, it has been shown in studies with S. 

haematobium (Hagan et al., 1991) and S. mansoni (Rihet et al., 1991, Dunne et al., 
1992, Demeure et al., 1993) that the levels of IgE directed against larval (Rihet et al., 
1991, Demeure et al., 1993) and adult (Hagan et al., 1991, Dunne et al., 1992) 

schistosome antigens are higher in older, i.e. resistant individuals than in those which 
remain susceptible to reinfection. However, in addition to the elevated levels of IgE seen
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in schistosomiasis, levels of lgG4 are also raised (Bocter and Peter, 1990). These are 

higher in younger susceptible children than in the older resistant age group. Thus, it has 

been suggested that for immunity to develop a high IgE response must be coupled with 
a lower IgG4. How this balance is derived is not obvious as the production of both IgE 

and IgG4 are controlled by the release of IL-4. Nevertheless it has been shown that the 
levels of IFNy which are necessary to inhibit the IL-4 dependent production of IgE are 

lower than those required to inhibit the generation of IgG4. It has therefore been proposed 

that the onset of immunity may represent an immunoglobulin class switch which is a 

consequence of varying levels of different T cell cytokines (Hagan etal., 1991). Like the 
IgM and IgG2 isotypes which block the IgG cytotoxic killing of the schistosomula, IgG4 

is believed to be directed against egg antigens which cross react with larval antigens and 

hence prevents the binding of IgE effector antibodies. However, unlike the former 

isotypes, IgG4 is raised predominantly in response to periodate insensitive epitopes of a 
peptide nature (Dunne et al., 1988).

1.6.3.2 Differential recognition o f schistosome antigens
In addition to examining the nature of the overall antibody response to schistosome 

infection, attempts have been made to identify responses to individual antigens which 

correlate with the development of immunity.

The negative correlation between resistance to reinfection and the level of blocking 

antibodies raised against the 38 kDa schistosomula surface antigen (described above) 
suggests that a switch to an effective antibody response against this molecule may be 

involved in the onset of immunity and is consistent with the ability of McAbs against this 

antigen to passively transfer resistance (Grzych et al., 1982, Kelly et al., 1986).
A schistosomula surface antigen which is recognised preferentially by IgG antibodies 

within the sera of subjects with a high level of resistance to reinfection has also been 

described. This 37 kDa antigen is recognised by sera from 80 - 90% of resistant 
individuals and only 14 - 33% of sera from patients susceptible to reinfection (Dessein, 

et al., 1988). The molecule is thus considered to be a of interest as a vaccine candidate 

antigen, and the corresponding gene has been cloned, sequenced and shown to encode the 

homologue of human and mouse glyceraldehyde-3P-dehydrogenase (Goudot-Crozel et a l., 
1989).

Schistosome paramyosin (James et al., 1985) has also been reported to be recognised
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preferentially by sera from individuals living in an endemic area who fail to secrete eggs 

(Correa-Oliveira et al., 1989). Moreover, following chemotherapy, the levels of antibody 
against this molecule remain high only in those individuals which are cured and remain 

stool negative. It has therefore been suggested that an active infection may suppress the 
levels of anti-paramyosin antibodies and that a response to paramyosin may play a role 
in the onset of age dependent immunity.

An increase in the IgA response to the 28 kDa schistosome equivalent of mammalian 

glutathione-S-transferase (Sm28 GST) has also been demonstrated to correlate positively 

with age and hence with an increase in resistance to schistosome infection (Grzych et al., 

1993). Furthermore, the IgA fraction of sera raised against this antigen has been shown 
to have a direct negative effect upon the fecundity of the female worm (section 1.9.2.2 

(*))•
Finally, age dependent resistance to reinfection has been positively correlated with 

an increased IgE response to adult worm antigens of 22 and 15 kDa (Dunne et al., 1992). 

Both of these antigens have been purified and a clone encoding the former (Sm22) 

identified. Sequencing of this clone revealed the antigen to be identical to that previously 
described by Stein and David (1986) which is present within the tegument of the 5 day 

old schistosomula and the adult worm but is not exposed upon the surface. It is not yet 

known whether Sm22 represents a true target of immune attack or whether it is simply 
a marker of immunity (reviewed by Butterworth, 1994).

1-7 MONOCLONAL ANTIBODIES
In an attempt to identify molecules of particular interest as vaccine candidate 

antigens, a large number of McAbs have been produced. As it is believed that the larval 
stages of the schistosome are important targets of immunity, a significant proportion of 

those selected for further studies recognise antigens upon the surface of the schistosomula 

(see Table 1.1). On some occasions, the production of such McAbs was enhanced by the 

use of restricted antigen preparations e.g. detergent extracts of schistosomula (Ham et al., 
1985, Bickle et al., 1986), to immunise the donors of the spleen cells which were 
subsequently used for fusions. On other occasions, whole unattenuated parasites (Grzych 

et al., 1982, Zodda and Phillips, 1982, Hazdai, et al., 1985), irradiated cercariae (Taylor 

and Butterworth, 1982, Gregoire et al., 1987) or even egg homogenates have been 

employed (Ham et al., 1984). Many of the McAbs which recognise the surface of the
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TABLE 1.1 Monoclonal antibodies reacting with the surface of 5. m ansoni schistosomula

McAb Target antigens (kDa) Isotype Passive protection Immunising preparation’ Reference
IPL Smlr 38*\ > 150“ IgG2a 53 - 62% Unattenuated cercariae Grzych et a l ., 1982 

Dissous et a l., 1982
3AF12 - D6 >20a, 38\20*, IT  

W ,  W
IgGl 40 - 50% Unattenuated cercariae Zodda & Phillips, 1982 

Kelly et cd., 1986
2CH12-HI >200* IgG3 38% Unattenuated cercariae Kelly e ta l . , 1986
129A3/1/3 200*, 160", 155", 43" - N.A. Purified cercarial 

glycoproteins
Strand era/., 1982

MSM1.37 24‘ IgGl N.A. Unattenuated cercariae Taylor & Butterworth, 1982
MSM1.29 24* IgM N.A. Unattenuated cercariae Taylor & Butterworth, 1982

El 16C. 130*, >200“, 200', 111* IgG2b 21-41% Egg homogenate Ham e ta l . , 1984
IPL Sm3 38*, 2(f IgG2c Blocks killing by 

IPL Sml
Unattenuated cercariae Grzych e ta l . , 1984

WP66.4 155— IgM 32 - 43% Unattenuated cercariae Smith e ta l . , 1982 
Smith & Clegg, 1985

9B 200- IgGl 35% Unattenuated cercariae Hazdai e ta l . , 1985



TABLE 1.1 cont:-

1C 200" IgGl 38% Unattenuated cercariae Hazdai é ta l . , 1985
Ml 28”* IgGl 41 - 50% Detergent extract of 

schistosomula
Ham et a l., 1985a 
Ham et a l., 1992

M2 23'"* IgGl 35% Detergent extract of 
schistosomula

Ham é ta l . , 1985b 
Ham et a l., 1987b

M7B3A 16‘** IgG3 33 - 70% Detergent extract of 
schistosomula

Bickle et a l., 1986

M22H12C 32"“ IgG2a 27 - 58% Irradiated cercariae Bickle et a l . , 1986
2CH12-H1 >200 IgG3 38% Unattenuated cercariae Kelly et a l., 1986

1.G1 85-130, 97** IgM 38% Irradiated cercariae Grégoire et a l., 1987

4.4B 85-130,97" IgM 51% Irradiated cercariae Grégoire et a l., 1987

204-3E4 68*-" IgG2a N.A. Freeze / thaw schistosomula Weist et a l., 1991

(*) Antigen preparation used for the immunisation of mice from which spleen cells were taken for fusion.
(r) Rat McAb.
(s) Mr of schistosomular antigen recognised by McAb

(c) Mr of cercarial antigen recognised by McAb
(aw) Mr of adult worm antigen recognised by McAb 
(e) Mr of egg antigen recognised by McAb
(nr) Mr on antigen under non reducing conditions, antigens of 30 and 45 kDa seen under reducing conditions 
(wb) Seen on Western blots only



larvae as judged by immunofluorescence, have been further tested for their protective 

potential via in vitro cytotoxicity assays and in vivo passive transfer experiments. The 

antigens recognised by those which were protective could then be identified and in some 

cases have been purified by immunoaffinity chromatography.

The ability of McAbs to protect mice and rats from a challenge infection confirmed 

a role for antibody mediated mechanisms in both of these species. Furthermore, despite 
the observed importance of particular antibody isotypes in infected rats (IgE/IgG2a), 

vaccinated rats (IgG2a) and in vaccinated mice (IgGl), studies using McAbs have 

demonstrated that antibodies of various isotypes, which recognise carbohydrate or peptide 
epitopes, can confer protection. Obtaining high levels of protection following the 

administration of antibody against a single antigenic moiety also indicates that vaccination 

with defined antigen preparations could be successful.

Table 1.1 describes some of the more prominent McAbs produced to date. Further 
details regarding those which target vaccine candidate molecules are also given in the 
following sections.

1 8 CHARACTERISATION OF ANTIGENS AT THE SCHISTOSOME SURFACE 
1-8.1 SCHISTOSOMULA MEMBRANE ANTIGENS

The larval stages of the schistosome parasite are considered to be good targets for a 

vaccine against schistosomiasis. Unlike older parasites, the schistosomula are susceptible 
to killing in vitro by a variety of antibody dependent mechanisms. Moreover, studies 

using radiation attenuated schistosomula have demonstrated that the death of the larval 

stage alone stimulates good, immunologically specific protection. Amongst the antigens 
expressed by the schistosomula, those present within the surface membrane are of 

particular interest as vaccine candidate antigens. The membrane represents the barrier 

between the parasite and the host and as such may contain molecules involved in ion and 
molecular transport, signal transduction and other physiological or metabolic functions 

which are vital to parasite survival. Furthermore, it seems probable that changes in the 

expression of surface membrane antigens are involved in the increased resistance of the 
later stages of the parasite to immune mechanisms (Pearce et al., 1986). Attempts have 

therefore been made to characterise the molecules present within the schistosomula 

membrane and to examine their recognition by a variety of sera.
Two dimensional (2D) electrophoresis of '” 1 (IODOGEN) labelled schistosomula
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surface components revealed about twenty heavily labelled molecules of which a 

significant proportion were judged to be antigenic following immunoprécipitation 

experiments (Kelly et al., 1985). Thus, for parasites residing in an immunologically 

hostile environment, schistosomula express a surprisingly large repertoire of surface 
antigens. This may reflect the importance of the surface membrane in the uptake of 

nutrients etc. from the host. The schistosomula surface antigens precipitated by various 
immune sera covered a broad range of molecular weights, although the majority of the 

heavily labelled molecules ranged from 10 - 20 kDa with the exception of an acidic 32 - 

38 kDa antigen complex. The latter, which was originally described by Dissous et al., 

(1981), has been labelled by the lODOGEN method (Simpson et al., 1984, Payares et 

al., 1985a, Orner Ali et al., 1986) and by lactoperoxidase catalysed iodination (Dissous 

et al., 1981, Simpson et al., 1983a) and is recognised by CIS, VMS, IHS and a rabbit 

sera raised against purified membranes of the adult worm (Rabam). Further analysis of 
this antigenic complex revealed that it consisted of a number o f antigens which include 

the 38 kDa antigen described by Grzych et al., (1982, 1984) as the target of both a 

protective and a blocking McAb (Dissous et al., 1982, section 1.6.3.1) and a 32 kDa 

antigen recognised by a passively protective McAb described by Bickle and Andrews 

(1986). The precipitation of the 38 and the 32 kDa molecules by different McAbs 
demonstrates that these are two distinct antigens. However, the 38, the 32 and a 20 kDa 

antigen which is also recognised amongst surface membrane molecules, have been shown 

to be differently glycosylated versions of the same peptide backbone (Payares et al., 
1985b).

In addition to the 32 - 38 kDa complex, antigens of 200, 94, 68, 45, and 17 kDa 

have been precipitated from labelled surface antigens with CIS. Similar antigens were also 
recognised by IHS and by VMS although the latter failed to  precipitate the 17 kDa 

antigen and recognised an additional antigen of 15 kDa. With the exception of the 68 and 

the 45 kDa molecules, all of these antigens failed to precipitate following prior incubation 
of CIS / VMS with living schistosomula (Simpson et al., 1983a) thus indicating that they 

are exposed upon the surface of the membrane. With regard to the 68 and 45 kDa 

antigens, it is possible that these are present within the surface membrane although their 
immunogenic moieties remain unexposed. Alternatively, some permeation of the '”1 label 

into the parasite surface could have occurred (Simpson et a l., 1983a). An 18 kDa 

molecule has also been recognised amongst surface membrane molecules by sera from
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rabbits vaccinated with irradiated cercariae (VRabS) (Liberti et al., 1986, Cioli et al., 
1987). This molecule is not recognised by CIS, IRatS nor IHS and as such has similar 

properties to  the 16 kDa antigen identified by Bickle et al., (1986), which is the focus of 

much of the work carried out here. The 16 kDa antigen is not however, readily 

radiolabelled, although it is recognised amongst a detergent extract of schistosomula 
following Western blotting and is present upon the surface of the schistosomula as 

demonstrated by McAb immunofluorescence.

During parasite maturation alterations occur in the expression of larval surface 

antigens. Thus, after culturing of young schistosomula for 24 hours in vitro the 17 and 

200 kDa antigens are lost from the surface, whilst following incubation for 48 hours, the 
38 kDa antigen is lost and the 32 kDa molecule becomes the major antigen precipitated 

by CIS, VMS and Rabam (Simpson et al., 1984, Payares et al., 1985a). The 32 - 38 

kDa complex can be radiolabelled in the cercarial stages and precipitated with VMS, CIS 

(Payares et al., 1985a) or a McAb raised against the 38 kDa antigen (Dissous et al., 

1985). It has therefore been suggested that the 38 kDa antigen and other antigens seen 
upon the surface of the freshly transformed schistosomula may represent the remnants of 

the cercarial glycocalyx which upon the completion of transformation are lost and 
replaced by a dominant 32 kDa glycoprotein present within the new heptalaminate 

membrane. Alternatively, the loss of some o f these antigens could be a consequence of 

their release from the newly formed heptalaminate membrane. As the 38 and 200 kDa 
antigens have been shown to be held within the membrane via a 

glycosylphosphatidylinositol (GPI) anchor rather than a transmembrane domain, it has 

been suggested that their release could be facilitated by the cleavage of this anchor with 
endogenous or host phosphatidylinositol-specific phospholipase C (PIPLC), or by the 

absence of a cytoplasmic domain (Pearce and Sher, 1989, Sauma and Strand, 1990). 

However, Simpson et al., (1984) have demonstrated that the 17 and 38 kDa antigens are 
not present within the culture fluid, thus the incorporation of molecules into the lipid 

bilayer offers an alternative explanation for the disappearance of some antigens from the 

parasite surface. Newly exposed antigens of 8 and 15 kDa are also recognised by Rabam 

upon the surface of the larvae following 24 hour in vitro culture (Simpson et al., 1984). 
This 15 kDa molecule is believed to be a different antigen to that of 15 kDa labelled with 

J,l upon the surface of the freshly transformed schistosomula (see above) as the latter is
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not recognised by Rabam. Moreover, the precipitation of the former is ablated following 

prior incubation of VMS with whole worm homogenate whilst the latter is still observed.

Lung stage worms removed from the host continue to express the newly exposed 8 

and 15 kDa antigens and the 32, 20 and 15 kDa antigens originally observed upon the 
surface of younger larvae. In addition, major antigens of 25 and 97 kDa are seen by 

Rabam and a 65 kDa antigen by antisera raised against the 32 kDa molecule partially 

purified from adult worm membranes (Payares et al., 1985a). The 25 kDa antigen is o f  

interest as a vaccine candidate molecule (section 1.9.2.1 (c)) and the 65 kDa molecule has 
been shown to represent schistosome alkaline phosphatase. The latter may be expressed 

particularly upon the surface of older parasites to meet the increased nutritional and / o r 

physiological requirements of the developing parasite. Further membrane alterations then 
occur as the parasite matures from the lung stage larvae into the adult worm.

1.8.2 ADULT MEMBRANE ANTIGENS
Using the IODOGEN method, Payares et al., (1985a, 1985c) were able to radiolabel 

a wide range of molecules on the surface of 3 week old juvenile worms. These included 

the 32 and 20 kDa antigens originally recognised on the young schistosomula by VMS, 
CIS and Rabam, in addition to the major antigens of 25, 97 and 65 kDa which were 

initially precipitated by Rabam from the molecules of the lung stage larvae. In contrast, 

the labelling of 6 week old worms has proved problematic (Hayunga et al., 1979). Some 

authors have observed the labelling of a small number of proteins only after a particularly 
long exposure (Snary et al., 1980) whilst others have been unable to label any proteins 

at all (Payares et al., 1985a). It is believed that this inability to label proteins upon the 

surface of the adults is a consequence of the sequestration of parasite antigens (Payares 

et al., 1985a) and / or the masking of proteins by other surface molecules. With regard 

to the latter, the surface of the adult worm has been shown to be rich in lipid molecules 
which are able to bind the radiolabel, and glycolipids and glycoproteins of host origin are 

also absorbed (Clegg et a l., 1971, Sher et al., 1978). The removal of lipid with organic 

solvents (Hayunga et a l., 1979) or the stimulation of membrane turnover in vitro (Roberts 

et al., 1983) has also been shown to increase the binding of radiolabel to the surface o f  

the adult worm.

As an alternative to labelling the surface of the intact adult parasites, the tegument
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of the mature worm has been isolated by a variety of methods and subjected to 

radioiodination (Payares et a l., 1985a, Simpson et al., 1989, 1990). This has 

demonstrated that the previously described antigens o f 32 and 20 kDa are still present 

with the membrane, as are those o f 8, 15, 25 and 97 kDa, which were initially recognised 
upon the older schistosomula. A 13 kDa antigen and another antigen of 15 kDa which 

failed to radiolabel have also been shown to be major antigens recognised by Rabam on 

Western blots of isolated adult membranes (Smithers et al., 1990). The absence of a 
signal following prior absorption of Rabam with living schistosomula demonstrated that 

the majority of these antigens shared epitopes with antigens present upon the surface of 

the newly transformed larvae. Thus, it has been concluded that the adult worm tegument 
contains many proteins which are identical to, or cross reactive with, those of the 

schistosomula. However, these are not accessible to IODOGEN catalysed iodination and 

are unavailable for antibody binding in vivo, thus enabling the adult worms to evade the 
immune mechanisms of the host.

1.9 VACCINATION

1.9.1. CRUDE ANTIGEN PREPARATIONS
As described in previous sections immunisation with live or radiation attenuated 

parasites has stimulated good levels of protective immunity in a number of animal models. 
Immunisation with dead material has however, proved less effective and despite 

stimulating the production of significant levels of cytotoxic antibody, initial attempts to 

immunise animals with various worm, cercarial and egg preparations in conjunction with 
a number of different adjuvants, failed to provide good levels of protection (Murrell et 

al., 1975, reviewed by Clegg and Smith, 1978 and by Dean, 1983). Thus the 

immunisation of mice with ground worms in conjunction with Corynebacterium patrvum 

(Maddison et al., 1978) or with whole worm homogenate plus a saponin adjuvant 

(Smithers et al., 1989) has been reported to stimulate significant levels of resistance. 

However, the observed reductions in the worm burdens were poor (29% and 19 - 37%) 

and in the experiments of Maddison et al., (1978) particularly large doses of bacterial 

adjuvant were required. Similarly, isolated adult worm teguments have been used with 

FCA and C. parvum to immunise rabbits (Tendler et al., 1986). Here, 81% and 61% 

reductions in worm burdens were observed. However, immunisation with FCA and C. 
parvum, gave 52% and 32% protection when administered alone.
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More promising results have been obtained following immunisation with the larval 

stages of the parasite or with their released products. Thus, frozen and thawed 

schistosomula have been seen to stimulate significant levels of immunity when 
administered to mice in conjunction with BCG (35% - 54%) (James, 1985, Keisari, et a l., 
1993). The studies of James (1985) demonstrated that this was dependent upon intra- 

dermal administration of the vaccine and in both studies the development of protection 
appeared to correlate with T cell proliferation and macrophage activation. In contrast, the 

studies of Horowitz et al., (1982) and Auriault et al., (1984) suggested a link between 

the development o f protection and the titre of specific IgE raised following vaccination 

with cercarial antigens. With regard to the former studies, sonicated cercarial antigens 
were used to immunise mice together with alum, an adjuvant known to stimulate 

particularly high levels of IgE. Analysis of the data obtained demonstrated that the highest 

levels of protection (34% - 91 %) were observed in those mice with the highest titre of 
IgE. The studies o f Auriault et al., (1984, 1985) used the material released into the media 

following 16 hour in vitro culture of schistosomula (SRP-A) to immunise rats in the 

absence of adjuvant. Again high titre IgE was seen and it was demonstrated that this was 

capable of killing schistosomula in concert with macrophages, eosinophils and platelets 
from rats, monkeys and humans. Moreover, protective immunity was generated in rats 

following immunisation with SRP-A (46 - 83%) or passive transfer of anti-SRP-A 

antibodies (32 - 83%) (Auriault et al., 1985, Damonneville et al., 1986). In view of the 

observations made regarding the role of IgE and ADCC in both infected and vaccinated 
rats (section 1.5.3.2) the association of this antibody isotype with the high levels of 

immunity observed in the studies of Auriault et al., (1985) is not surprising. However, 

the aforementioned findings of Horowitz et al. (1982) are somewhat unexpected as a role 

for IgE has not been proposed in the development of immunity in the mouse. In addition, 

it has been demonstrated that mice depleted of IL-4, IL-5 and IgE are able to develop 
good levels of immunity in response to the irradiated vaccine (Sher et al., 1983, 1990).

Finally, it has recently been demonstrated that immunisation of mice with the 

antigens released during in vitro culture of lung stage schistosomula plus recombinant IL- 

12, stimulates significant levels of protection (53%). This is consistent with the role of 
IL-12 in the development of murine vaccine immunity (section 1.5.3.1) and further 

studies regarding the use of this cytokine as an adjuvant are being performed (Mountford 
et al., 1994).



1.9.2 DEFINED ANTIGEN VACCINES
Although the immunisation of laboratory animals with radiation attenuated parasites 

has been shown to produce good, immunologically mediated resistance, the use of the 
irradiated vaccine in humans is not ethically acceptable nor is it practically viable due to 

the large amounts of parasite material which would be required. The latter point also 
applies to the use of the few crude antigen preparations which have been shown to 

stimulate significant levels of immunity and thus recent work has concentrated on attempts 

to define the protective antigens which are responsible for the immunity generated in 
resistant laboratory animals. Many different strategies have been employed with the aim 

of defining such antigens. These include the identification of immunogenic molecules 

within crude parasite extracts, the isolation of the target antigens of passively protective 
McAbs and the selection of antigens or recombinant clones which are recognised 

predominantly by protective sera. It is hoped that protective antigens or epitopes identified 
may ultimately form the basis of a defined antigen vaccine which can be produced by 

recombinant technology or chemical synthesis. In addition to abolishing the requirement 

for large amounts of parasite material the production of such a vaccine would have the 
added advantage of enabling components which are toxic, autoimmunogenic or 

unnecessary for the development of resistance, to be omitted.

Thus far a number of vaccine candidate molecules have been defined. The most 
prominent of these are discussed in further detail below.

1.9.2.1 Surface membrane antigens

Following the demonstration that rat antibodies of the subclass IgG2a were involved 

in the killing of schistosomula in vitro (section 1.5.3.2), Grzych et al., (1982) produced 
hybridomas secreting antibodies of this isotype which were able to induce eosinophil 

mediated ADCC. One of these antibodies, IPLSm l, which was seen to kill up to 85% of 

young schistosomula was also able to transfer passive protection to naive rats (27% - 
58%). Subsequent studies (Dissous et al., 1982) demonstrated that IPLSml recognised 

a 38 kDa molecule which formed part of the 32 - 38 kDa antigenic complex initially 

described by Dissous et al., (1981) as the major antigens precipitated following probing 

of radiolabelled schistosomula surface antigens with VMS, CIS or IHS. The 38 kDa 
antigen itself is present only upon the cercariae and the young schistosomula (section

50



1.8.1) . However, IPLSml together with a host of other anti-38 kDa protective McAbs 

have been shown to recognise an additional antigen of >  200kDa on the surface of the 

schistosomula, a range of other differently sized antigens upon the miracidia, cercariae, 
adult and egg stages of the parasite (see Table 1.1) and perhaps, most surprisingly, an 

antigen present in the tissues of the intermediate snail host (Zodda & Phillips, 1982, Ham 

et al, 1984, 1987a, Kelly et al., 1986, Dissous et al., 1986). The latter was 
serendipitously shown to be a consequence of cross-reaction between the 38 kDa antigen 

and keyhole limpet haemocyanin (KLH) (Dissous et al., 1986). It has therefore been 

concluded that the 38 kDa antigen is a glycoprotein containing immunodominant 

carbohydrate epitopes which are also present upon other molecule of parasite and snail 
origin.

In addition to being the target of a range of protective McAbs, the carbohydrate 

epitopes present on the 38 kDa and / or other cross reactive antigens stimulate the 
production of blocking antibodies experimentally (e.g. IPLSm3) and in vivo (see section

1.6.3.1) . It is this, coupled with an inability to produce carbohydrate epitopes using 

recombinant technology, which makes the use of the 38 kDa vaccine candidate 

glycoprotein particularly problematic. Grzych et al., (1985) attempted to overcome these 
problems by raising rat anti-idiotype McAbs to IPLSml. One of these McAbs (JM8-36) 

which was able to inhibit the binding of IPLSml to the 38 kDa antigen, was then used 

to immunise rats. Analysis of the results obtained demonstrated that anti-anti-idiotype 
antibodies were raised in response to JM8-36. These resembled the original McAb 

IPLSml with regard to their ability to passively transfer immunity in vivo and to mediate 

eosinophil cytotoxicity in vitro. Moreover, a significantly reduced worm burden (50% - 

80%) was observed following a challenge infection of JM8-36 immunised rats.

Finally, as a consequence of the difficulties faced in obtaining substantial amounts 
of the 38 kDa glycoprotein for immunisation, attempts have been made to immunise 

animals with KLH. This molecule, which is often used as a carrier protein in 
immunisation protocols, can be obtained in large amounts commercially and has been 

shown to stimulate significant levels of immunity in rats (Grzych et al., 1987). KLH is 

at present being used to vaccinate cattle and sheep against natural infections of both S. 
bovis and S. japonicum (Taylor et al., 1994). Initial studies have demonstrated that 

following the immunisation of cattle with KLH, a decrease in the fecundity of the female 

S. bovis worm is observed although the overall worm burden is not affected (Bushara et
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al., 1993).

(b) The 23 kDa antigen (Sm23)
Sm23 is an integral membrane protein which was first described by Ham et al., 

(1985b) as the target of a McAb (M2) raised from animals immunised with a membrane 
enriched schistosomula preparation. The McAb was initially selected on account of its 

ability to bind to the surface of both cercariae and freshly transformed schistosomula. 
However, subsequent immunofluorescence studies revealed that Sm23 was also retained 

upon the surface of the schistosomula following 96 hours in culture, was seen upon the 

surface of the lung stage larvae following the removal o f host antigen and was precipitated 
from a radiolabelled extract of adult worms. As the lung stage larvae are believed to be 

the target of the immune response in vivo, the binding of M2 to lung worms suggested 

that Sm23 was o f particular interest as a possible vaccine candidate antigen. This was 
substantiated by the demonstration that Sm23 was one o f the major schistosomula antigens 
precipitated by VMS (Oligno et al., 1988, Bickle et a l . , 1990) and by sera raised in mice 

optimally immunised by infection plus treatment with Ro 11-3128 whilst the parasites 

were still in the skin (section 1.5.2.1, Bickle et al., 1990). The passive transfer of M2 

has also been shown to stimulate a 35% decrease in the observed worm burden of naive 

recipients (Ham et al., 1987b). Furthermore, active immunisation with Sm23 purified by 
McAb immunoafflnity chromatography and subsequent electroelution, induced significant 

albeit low levels o f protection (11 - 27%) (Ham et a l., 1987b).

Further information regarding the structure of Sm23 has been obtained following the 

cloning experiments of Wright et al., (1990) and Dalton et al., (1987a). With regard to 

the former, sera eluted from the 23 - 25 kDa region of a Western blot of integral 
membrane molecules was used to screen an adult cDNA library. The isolated clones were 

shown to encode a 23 kDa antigen which was subsequently realised to be identical to the 

molecule described by Harn et al., (1985b) (i.e. Sm23). Analysis of the sequence 

obtained for this antigen revealed the presence o f three N-terminal transmembrane 
regions, a large hydroph Lie domain which contained putative sites for N-glycosylation 

and a fourth C-terminal hydrophobic domain. However, despite the obvious presence of 
domains suitable for the anchoring of Sm23 within the parasite membrane, recent studies 

have demonstrated that during post-translational processing the C terminal hydrophobic 

domain is replaced by a GPI anchor. Further experiments subsequently revealed that
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cleavage of this anchor with phosphatidylinositol-specific phospholipase C (PIPLC) failed 
to release Sm23 from the membrane. Hence this molecule is unusual in that it appears to 

use both transmembrane domains and a GPI group for its anchorage within the membrane 
(Koster and Strand, 1994). Comparison of the sequence for Sm23 with others in the 

database has also revealed that this antigen is homologous (84%) to a 23 kDa molecule 

of S. japonicum (Sj23) and to various members of a superfamily of molecules expressed 
upon the surface of mammalian cells. The latter include the tumour associated antigen 

ME491 (see below).

With regard to the studies of Dalton et al., (1987a), an 18 kDa antigen was selected 

from radiolabelled schistosomula surface antigens using a McAb produced in mice 
vaccinated with irradiated cercariae. This antigen which was also recognised by CIS and 

more predominantly by VMS, was precipitated from the metabolically labelled products 

of both schistosomula and adult worms. Sera raised against this molecule weft used to 
screen a cDNA library and a clone isolated. Subsequent sequencing of this clone and 

comparison with the sequence obtained by Wright et al, (1990) revealed that this clone 
also encoded Sm23 (Wright et al., 1991a).

More recently studies aimed at identifying the immunogenic regions of Sm23 have 
been performed. Thus, synthetic peptides representing particular regions of the molecule, 

have been probed with a variety of sera and used to stimulate T cells (Reynolds et al.,

1992) . Not surprisingly both B and T cell epitopes were located within the hydrophilic, 

region of the molecule which is presumed to be extracellular and is also the region which 
shows the least homology to other Sm23 related surface molecules. Treatment of the 

synthetic peptides and the whole antigen expressed as a recombinant protein revealed that 

the majority of these epitopes were also susceptible to denaturing with reducing agents 
and hence conformational. Despite the latter a multiple antigenic peptide (MAP) 

incorporating linearly synthesised B and T cell epitopes, has lieen shown to stimulate 
approximately 70% protection in mice when administered with alum (Ham and Reynolds,
1993) .

Finally, several suggestions regarding the function of Sm23 have been put forward. 
Its homology to the tumour associated antigen ME491 and other molecules which may 

represent receptors for growth cell factors (e.g. CD37, TAPA-1), has suggested a role 

for Sm23 in cellular proliferation and parasite growth (Wright et al., 1991a). 

Alternatively, members of this family of related proteins and hence Sm23 could have a
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role in adhesion or as vehicles of cell motility (in Reynolds et al., 1992). Furthermore, 
as many of these mammalian antigens have been seen to be exposed upon the surface of 

haemapoietic cells, it has been suggested that the expression of Sm23 by the blood 

dwelling schistosome parasite may act as a decoy and / or cause a down-regulation of the 
immune response. In this regard, it has been reported that the response to a peptide 

incorporating both B and T cell epitopes of Sm23 is decreased following multiple 

exposures to cercariae (Reynolds et al., 1992).

(c) The 25 kDa antigen (Sm25)
The development of immunity following the intrahepatic transfer of adult worms has 

demonstrated that antigens present within this stage are able to stimulate an immune 

response which protects against reinfection. Thus, Knight et al., (1989) attempted to 

identity the antigens responsible for this protective immunity by screening an adult cDNA 

library with sera raised in rabbits immunised with purified adult worm teguments. A 
recombinant clone was isolated and shown to encode the 25 kDa antigen (Sm25) 

previously described by Payares et al., (1985a) as the dominant antigen precipitated by 

Rabam.
Sm25 is believed to be of importance in the development of protective immunity as 

following the immunisation of mice with adult tegumental antigens the levels of protection 

obtained were observed to correlate with the titre of the antibody raised against this 

antigen (Smithers et al., 1989). Furthermore, Sm25 is recognised by protective sera 

raised in Fischer rats but not by non-protective sera raised in rats o f the Wistar-Furth 

strain (El-Sherbieni et al., 1990). Recognition of Sm25 also correlated with the 

inheritance of resistance in crosses between resistant WEHI 129/J mice and mice of the 

susceptible Balb/c strain (Wright et al., 1988).

Sm25 is not seen upon the surface of the cercariae or schistosomula stages. It is, 
however, present within the lung stage larvae (Payares et al., 1985a) and it has been 

suggested that the antigen is associated with the cytoplasmic face o f the adult surface 

membrane (Payares et al., 1985c). Extraction of Sm25 with the detergent TX-114 has 

indicated that the antigen has an integral membrane nature (Karcz et al., 1988, Omer Ali 

et al., 1991) and the probing of adult sections with sera raised against a recombinant 

protein expressed by the partial length clone isolated by Knight et al., (1989) has shown 

that the antigen is restricted to the tegument and the cytons underlying the muscle layer.
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The partial length clone isolated by Knight et al., (1989) was also used to obtain a 

full length clone encoding Sm25 (Omer Ali et al., 1991). Analysis of the sequence data 
obtained from this clone revealed a stretch of hydrophobic amino acids at the C-terminus 

of the predicated sequence (Omer Ali et al., 1991). This domain appeared to be too short 

to span the membrane and also contained a number of polar residues. However, it has 

subsequently been demonstrated (Pearce et al., 1991b) that the attachment of a palmitic 

acid to a cysteine residue within this domain is involved in the stabilising of this region 
and the anchoring of Sm25 within the surface membrane.

1.9.2.2 Soluble antigens
Description of the surface molecules of schistosomes has largely focused upon those 

which are intrinsic to the surface membrane. However, a number of vaccine candidate 
molecules have been described which are soluble proteins only peripherally and often 

transiently associated with the schistosome surface. Of these a number appear to be 

parasite enzymes whilst one is a muscle component.

(a) 28 kDa schistosome glutathione-S-transferase (Sm28 GST)
The schistosome GSTs are a group of molecules which are homologous to 

mammalian glutathione-S-transferases. These enzymes are involved in the maintenance 

of reduced glutathione (GSH) and in catalysing the detoxification of a variety of 
xenobiotics by conjugation with GSH. Two major GST isoenzymes have been 

characterised in both S. mansoni and S. japonicum. These have molecular weights of 28 

kDa (Sm28 GST and Sj28 GST) and 26 kDa (Sm26 GST and Sj26 GST). A third, little 

characterised 28 kDa isoenzyme has also been described in S. mansoni (Tiu et a l., 1988, 

Wright et a l., 1991b).

With regard to S. mansoni, work has largely centred upon the characterisation of 

Sm28 GST. interest in this molecule was stimulated when Balloul et a l., (1985) 

demonstrated that rat sera, raised against a 28 kDa band of electrophoretically separated 
adult worm molecules precipitated an antigen expressed upon the surface of the 

susceptible schistosomula stage of the parasite. Subsequently, the 28 kDa molecule was 
purified from SDS PAGE gels and used to immunise rats and mice. The sera obtained 

from immunised rats was able to passively transfer protection to naive recipients and to 

act in concert with eosinophils to kill schistosomula in vitro. Moreover, both rats and
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mice immunised with the electroeluted antigen demonstrated a significantly reduced worm 

burden (50% - 70% and 39% - 43% respectively) (Ballou) et al., 1987a). Sera raised in 

animals vaccinated with the eluted protein uere^then used to screen an adult worm cDNA 

library and clones encoding the 28 kDa antigen were isolated (Balloul et al., 1987b). 

Sequencing of these clones revealed that the 28 kDa molecule represented a schistosome 
equivalent of mammalian GST. A recombinant form of Sm28 GST (rSm28 GST) was 

then produced and used to extend the protection experiments to primates (Balloul et a l., 

1987c, Boulanger et al., 1991). In baboons the protection afforded by immunisation with 

rSm28 GST in terms of worm reduction was somewhat erratic (0% - 80%) and was 
dependent upon the amount of protein used, the number of doses given and the adjuvant 

employed. However, in addition to causing a reduction in worm burden, Sm28 GST was 

also shown to have an anti-fecundity effect. Thus, Boulanger et al., (1991) demonstrated 

that in some baboons vaccinated twice with rSm28 GST, the number of eggs produced 
per female worm was significantly reduced. Sera from these animals was also shown to 

inhibit egg production in vitro and the viability of the eggs laid was also decreased. More 

recently the native forms of both 28 and 26 kDa S. bovis GST have been purified from 

S. bovis adult worms and used to immunise cattle against a natural homologous challenge. 

The results obtained were similar to those observed following immunisation with rSm28 

GST in batxxms as immunisation with S. bovis GST gave variable reductions in worm 

burdens but a consistent and significant decrease in worm fecundity.
The way in which GST exerts its protective effect is not as yet fully understood. The 

antigen has been shown to he present within the tegument of the schistosomula and the 

tegument, parenchyma and excretory cells of the adult worm (Taylor et al., 1988). 
However, it does not have the characteristics of an integral membrane or membrane 

associated protein and its presence at the larval surface is thought to be as an excretory 

/ secretory product which is expressed transiently and released as part of a group o f 

highly immunogenic molecules (in Capron et al., 1987). This transient expression may 
however be sufficient to mediate immune attack, as demonstrated by the ability o f 

antibodies raised in vivo following immunisation with Sm28 GST to kill schistosomula in 

an ADCC type reaction in vitro (Balloul et al, 1987a). Heating of the sera raised in these 

rats was shown to deplete this cytotoxicity ability (Balloul et al., 1987a) thus suggesting 

a role for IgE in the development of protective immunity in this model, in addition, a role 

for anti-GST IgA has been indicated. It has been demonstrated using sera from infected
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humans that the titre of this isotype increased following drug treatment and showed a 

positive correlation with age and hence resistance to reinfection (Grzych et al., 1993). 

Moreover, the IgA fraction of human sera was shown to block the enzymatic activity of 

Sm28 GST in vitro and to decrease the fecundity of the female worm (Grzych et al.,
1993) . A causal relationship between decreased fecundity and inhibition of GST activity 
has also been suggested by the experiments of Xu et al., (1991) as the passive transfer 

of an anti-GST McAb (S I3) which blocks the enzyme binding site, was shown to result 

in a decrease in both worm fecundity and egg viability. In contrast, passive transfer of 
a second McAb (H12) which does not affect enzymatic activity, failed to reduce either. 

Transfer of this McAb did however mediate a significant reduction in the worm burden 

of both rats and mice, thus suggesting that the reduction of the worm burden and the 
reduction in fecundity are mediated by the binding of antibodies to different epitopes upon 

Sm28 GST.
Immunisation with both native and recombinant Sm28 GST has also been shown to 

stimulate a protective T cell response. T cells removed from the spleen of GST 

immunised rats and mice have been shown to proliferate in response to Sm28 GST and 

various crude antigen preparations (Wolowczuk et al., 1989). Moreover, when transferred 

to naive animals these lymphocytes were able to confer protective immunity (Auriault et 
al., 1987, Wolowczuk et al., 1989). It has been suggested that the latter may be a 
consequence of the production of IFNy and other cytokines (e.g. TNFa) by Thl and / 

or Tc cells as the supernatants removed from stimulated anti-Sm28 GST T cell cultures 

were able to activate macrophages and platelets to kill schistosomula in vitro (Wolowczuk 

et al., 1989). Mice immunised with Sm28 GST and the recipients of T cells from such 

animals, have also been shown to have reduced egg related pathology. Thus, a reduction 
in the number of granulomas and a decrease in the collagen content of the liver were 

observed. Both CD4 t and CD8+ cells have a role in this mechanism and it is believed 

that IFNy, which is known to down-regulate collagen production, is again involved. The 
latter is substantiated by the observation that prior treatment o f mice with anti-IFNy 

antibodies abolishes the anti-pathology effects of Sm28 GST immunisation (Pancre et al.,
1994) .

Finally it should be noted that synthetic constructs of particular regions of the Sm28 

GST molecule have been produced and shown to stimulate immunity. Perhaps the most 

successful of these is an octameric construct which has been shown to incorporate both
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B and T cell epitopes. Immunisation of rats, mice and baboons with this peptide has been 

seen to stimulate a good antibody and T cell response. Moreover, immunisation of rats 

resulted in a 40% - 50% reduction in worm burden (Wolowczuk et al., 1991).

(b) Schistosome triose-phosphate isomerase (TPI)

In an attempt to characterise larval surface antigens Ham et a l., (1985a) produced 

a number of McAbs. One of these (Ml) bound uniformly to the surface of the cercarial 
and schistosomula stages and was shown to precipitate an antigen of 28 kDa. Further 

analysis of the binding pattern of M1 demonstrated that this antigen was lost from the 

surface of the larvae following 24 hours in vitro culture, however it was present amongst 

the metabolic products of miracidia, lung worms, adults and eggs. It has therefore been 
suggested that the 28 kDa antigen represents a molecule expressed upon the surface of the 

early larval stages which is covered upon the completion of the new heptalaminate 
membrane. Immunofluorescence has shown that the target of Ml is expressed by the 
majority of the cells within the adult worm. These include the lining of the gut, muscles 
and the tegument (Ham et al., 1992).

Ml was used in passive transfer experiments and shown to mediate a 41% - 49% 

reduction in the worm burden of naive mice (Ham et al., 1987b, 1992). Moreover, 
immunisation of mice with the 28 kDa antigen purified by McAh immunoaffinity 

chromatography, was shown to stimulate a significant level of protection (39%) (Ham et 
al., 1987h). This suggested that the 28 kDa antigen was indeed a good vaccine candidate 

and further characterisation studies were therefore carried out. Attempts to obtain 

sequence data via N-terminal amino acid sequencing of the whole molecule demonstrated 
that it was N-terminally blocked. However, following tryptic digestion sequence data for 

three distinct peptides was obtained and used to scan the database for homology to other 

molecules. This revealed that the 28 kDa antigen was homologous to the mammalian 
glycolytic and gluconeogenic enzyme triose phosphate isomerase (TPI) (Harn et al., 
1992). The antigen was then shown to be enzymatically active by catalysing the 

production of glyceraldehyde 3-phosphate. This activity was blocked by prior incubation 
of the antigen with M 1. The latter result gives rise to the possibility that the McAh 

antibody may kill the parasite via inhibition of the catalytic activity o f TPI. Furthermore, 

compounds which mimic the antigen binding site of M1 could be considered for specific 
pharmacological control of the schistosome parasite.
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Following the demonstration that the 28 kDa antigen represented schistosome TPI 

(sTPI), a human TPI cDNA was used to screen a cercarial cDNA library and isolate a full 

length clone. The insert from this clone was then expressed in a suitable vector and the 
recombinant protein obtained was demonstrated to be enzymatically active and to bind the 

McAb, M l. Preliminary studies with this recombinant antigen have suggested that sTPI 
is capable of inducing levels of protection similar to those obtained upon immunisation 

with the native molecule (Shoemaker et al., 1992).

The status of sTPI as a vaccine candidate has also generated interest in the possibility 

of producing MAPs which incorporate B and T cell epitopes of this molecule. The use 
of MAPs is of particular interest with regard to this antigen, as it should enable those 

regions which show the most homology to human TPI to be omitted from the construct 

and hence decrease the likelihood of stimulating an auto-immune response. The 
production o f a MAP incorporating B and T cell epitopes from a non-conserved region 

of sTPI has been described (Reynolds et al., 1994) and immunisation with this construct 

has been shown to stimulate Thl cells which proliferate in response to both the MAP and 
sTPI itself. The stimulation of a predominantly Thl type response appears to be a 

particular feature of sTPI (Richter et a l., 1993) and suggests that this antigen may be a 

particularly good vaccine candidate as Thl cells are believed to be responsible for the 

development of irradiated vaccine induced immunity (Smythies et al., 1992) and the 

down-regulation of immunopathology in the mouse model. This is substantiated by the 
observation that immunisation of mice with the sTPI MAP results in levels of protection 

which range form 38% to 82% (Ham and Reynolds, 1993).

(c) Schistosome paramvosin tSm97l

The results of various experimental studies in mice vaccinated with irradiated 

cercariae led James et al., (1985) to conclude that the development of immunity in this 
model was dependent upon the stimulation o f T cell mediated mechanisms. Thus, they 

immunised mice intradermally (i.d.) with the soluble components of schistosomula 

(SCHLAP) or adult worms (SWAP), in conjunction with BCG, an adjuvant known to 
preferentially stimulate cell mediated immunity. The immunised mice had a significantly 

reduced worm burden (48% (SCHLAP), 70% (SWAP)) and although it was believed that 

the resistance observed was a consequence of T cell mediated mechanisms, Pearce et al., 
(1986) examined the antibody response generated in an attempt to identify the major
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immunogens. Surprisingly, on probing Western blots of SWAP with sera raised in SWAP 

/ SCHLAP immunised mice only one major schistosome protein, an antigen of 97 kDa 

(Sm97) was recognised. Moreover, if various size separated fractions of SWAP were used 
for immunisation, only that fraction containing molecules of a high molecular weight 

induced protection (Sher et al., 1986). These results therefore indicated that high 

molecular weight antigens and in particular Sm97, may be responsible for the protection 
observed in mice immunised i.d. with SWAP plus BCG. Thus McAbs were generated 

following i.d. immunisation of mice with this high Mr fraction (Pearce et al., 1986) and 

used to purify the 97 kDa antigen from SWAP. Mice given two 20 ng injections of 

purified Sm97 developed protection equal to that observed following two 1 mg injections 

of SWAP (39%) (Pearce et al., 1988). The purified 97 kDa antigen was then used to 
immunise rabbits and the sera raised utilised as a probe for screening an adult cDNA 
library. Sequencing of one of the partial length clones isolated suggested that Sm97 

represented schistosome paramyosin, a previously uncloned a  helical coiled protein which 
forms the core of the myosin filaments in invertebrate muscle (Lanar et al., 1986). This 

molecule is important in the "catch mechanism" of invertebrates and it has been suggested 

that Sm97 may play a role in the attachment of the schistosomes to host blood vessels, 
thereby enabling the parasite to avoid dislodgement by the blood flow. Subsequent 

examination of the recombinant protein (rSm97) expressed by the isolated clone 

demonstrated that a 52 kDa portion of Sm97 was encoded. However, as this portion 
incorporated the epitope recognised by one of the McAb raised against Sm97, 

immunoaftinity purification was carried out and the purified recombinant antigen used in 

further protection studies (Pearce et al., 1988). Rats immunised with rSm97 had a 

significantly reduced worm burden (26%) although the reduction was not as large as that 
observed following immunisation with native Sm97. This suggested that the 52 kDa 

fragment of Sm97 which was represented by rSm97 lacked a number of antigenic 
moieties. This was substantiated by the failure of Sm97 to bind to all of the anti-Sm97 

McAbs.

Despite the development of a monospecific antibody response in animals protected 
by immunisation with Sm97, it has been demonstrated that the mechanisms involved in 

the generation of resistance are T rather than B cell mediated. Thus, although i.d. 

immunisation with SWAP can protect B cell deficient mice, nude mice are not protected 
by vaccination in this manner. Further experiments (in James et al., 1987) have also
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demonstrated that immediate hypersensitivity, NK activity and complement activation are 

not involved in the development of immunity in this model. However, the failure of P 

strain mice to respond to vaccination with Sm97 or SWAP (James et al., 1988) has 

demonstrated the importance of a DTH type response (see section 1.5.3.1). This 
hypothesis is substantiated by the observation that in vitro cultures of T lymphocytes from 

SWAP or Sm97 immunised mice proliferated in response to Sm97 (Pearce et al., 1986) 

and released IFNy which activated macrophages to kill newly transformed schistosomula 

in vitro (James et al., 1986). Moreover, mice immunised with SWAP gave a positive skin 

response when sensitised with Sm97 (Pearce et al., 1986).

Sm97 is present in both the adult and schistosomula stages of the parasite (James et 

al., 1985). However, as would be expected of a protein associated with muscle filament, 

it is not expressed upon the parasite surface. Thus, it is difficult to envisage how 
immunisation with Sm97 stimulates an immune response which is capable of killing the 

intact parasites of a challenge infection. Two hypotheses have been suggested. Firstly, it 

is possible that Sm97 is released as an excretory / secretory product of intact parasites 

which is then able to stimulate T cells sensitised by vaccination and so generate a DTH 

response directed specifically at the living parasite. Sm97 has indeed been detected in the 

media surrounding adult worms cultured in vitro and the antigen has been shown to exist 

predominantly within the tegument just below the parasite surface (Pearce et al., 1986, 

Matsumoto et al., 1988). Alternatively, it has been proposed that sensitised T cells, 

stimulated by the release of Sm97 from spontaneously dying parasites, induce a non­
specific inflammatory reaction which traps this and other "bystander” parasites and thus 

halts migration and further development.

Finally, attempts have been made to characterise the antibody response to Sm97 in 

humans living in an area endemic for schistosomiasis (Correa-Oliveira et al., 1989). Anti- 

Sm97 antibody levels were shown to be significantly higher in resistant individuals than 

in those who are susceptible to reinfection (section 1.6.3.2).

1.9.2.3 Vaccine dominant antigens
As described above, animals vaccinated with radiation attenuated cercariae develop 

good immunologically specific resistance which protects against a challenge infection. In 

contrast, mice harbouring a single sex infection are not protected and in chronically 

infected mice the resistance observed is believed to he dependent upon egg induced
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pathology. Thus, a number of studies have been performed with the aim of identifying 

"vaccine dominant" antigens, i.e. those molecules preferentially or uniquely recognised 

by VMS. A number of antigens meeting this criteria have been identified and are 
considered to be vaccine candidate molecules. Two of these, which are also schistosome 

surface antigens, are described below.

(a) The 200 kDa antigen (schistosome myosin)
The vaccine dominant nature of the 200 kDa antigen was initially described by Dalton 

and Strand (1987) following the probing of Western blots of Con A binding schistosome 

glycoproteins with CIS and sera from mice vaccinated once or twice with radiation 

attenuated parasites. The 200 kDa molecule together with a number of other antigens were 

recognised only by VMS within both the adult and schistosomula stages of the parasite. 

Immunoaffinity columns of VMS or CIS bound to Protein A Sepharose were then 
produced and sera specific for vaccine dominant glycoproteins (anti-irradiated Vaccine, 

anti-IrV) was raised by immunisation of a rabbit with those molecules which bound to the 

former column but not the latter. This sera was shown to precipitate all those 

glycoproteins initially described as vaccine dominant from adult and larval metabolic 

products. Moreover, anti-IrV bound to the surface of both freshly transformed and lung 

stage schistosomula. Thus, this antisera recognised antigens seen upon the surface of the 
stages known to form the target of immune attack in vivo (Tom et al., 1987).

An adult cDNA library was screened with anti-IrV and a strongly positive clone (IrV- 

5) was isolated. Serum raised against the B-gal recombinant protein expressed by this 

clone was seen to immunoprecipitate the 200 kDa and a 38 kDa antigen from 

radiolabelled schistosomula surface molecules (Tom et al., 1987). These antigens were 

seen to correspond to those previously reported to be the targets of numerous passively 

protective McAbs (section 1.9.2.1 (a)). Moreover, Kelly et al., (1986) has suggested that 

the recognition of the 200 kDa antigen by these McAbs correlated with their ability to 
transfer resistance. In addition the cDNA insert of clone lrV-5 was sequenced and shown 

to have 50% homology with the human ft myosin chain. Thus, the 200 kDa antigen 

expressed upon the surface of the schistosomula is presumed to he schistosome myosin.
The B-gal recombinant protein expressed by clone lrV-5 was isolated by electroelution 

and used to immunise mice (Soisson et al., 1992). The levels of protection obtained 

(31%) were promising but not statistically significant, hence further immunisation
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experiments were carried out using the schistosome part (62 kDa) o f the recombinant 

protein expressed in pGEX, from which GST had been cleaved with thrombin (rIrV-5). 

The removal of this vector component was seen to enhance the antigenicity of the 
expressed protein and protection levels of up to 75 % were observed in mice immunised 

three times with 10 f ig  of rIrV-5 incorporated into proteosomes containing the outer 

membrane protein of meningococcus (OMP). As proteosomes which represent large (700 

kDa) conglomerates of the antigen to be used for immunisation, are believed to enhance 

immunogenicity via enabling the antigen to be folded in such a way as to expose the 
hydrophi tic regions of the molecule, immunisation experiments were then attempted using 

IrV-5 proteosomes lacking the OMP adjuvant. A statistically significant reduction in 

worm burden of 62% was seen. Subsequent experiments using rIrV-5 have also 

demonstrated that the antigen is immunogenic in rats and in outbred baboons. With regard 

to the former, a reduction in worm burden of 94% was seen following three 
immunisations with 25 ng rIrV-5 in the form of micelles (Soisson and Strand, 1993). 

With regard to the latter, five immunisations with 50 /zg of rIrV-5 in micelles or OMP 

containing proteosomes stimulated a significant anti-rIrV-5 antibody titre. However, the 

baboons showed variable (0% - 53%) levels of protection. Further analysis of the sera 

obtained from the immunised baboons demonstrated that the titre of antibodies raised 

against IrV-5 correlated positively with the level of resistance observed. Moreover, there 
was a similar striking correlation between the titre of anti-rIrV-5 antibodies raised and the 

protection observed in baboons vaccinated with irradiated cercariae. Animals immunised 
with rirV-5 also had a reduced number of egg related granulomas although neither the 

severity of these lesions nor the fecundity of the worm were affected. At present, 

different immunisation protocols are being explored in the hope of devising one which 

stimulates the production of antibodies in a large majority of the immunised animals 

(Soisson et al., 1993).

(b) The 16 kDa antigen

With regard to the theory that it is the surface of the schistosomula which forms the 

target of immune attack in vivo, Bickle el al., (1986) derived a number o f McAbs from 

fusions of spleen cells of mice immunised with a detergent extract o f  mechanically 
transformed schistosomula (MS). One o f  these McAbs, M7B3A (B3A) which was selected 

upon the basis of its ability to bind to the surface of MS, was subsequently shown to bind
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with increasing intensity to skin stage schistosomula recovered up to 48 hours post 

infection. However, when tested against larvae removed from the host 72 hours post 

infection, the fluorescence observed was notably weaker. The McAb also failed to bind 

to the surface of 5 day old lung schistosomula, 10 day old liver worms and the cercarial 

stages of the parasite. The probing of frozen sections of the mature worm has also 
indicated that the target of this antibody is not present within the internal organs of the 

adult parasite (Dr.Q. Bickle, personal communication). The passive transfer of B3A to 

naive mice was shown to stimulate levels of resistance (30% - 70%) which compared 
favourably to those observed following the transfer of other McAbs (Table 1.1). 

Moreover, significant levels of immunity were only seen following the administration of 

B3A at the time of challenge (Andrews, 1986). This was consistent with the restricted 
binding o f the McAb to the early larval stages of the parasite.

Despite the binding of B3A to the surface of the schistosomula, attempts to identify 
the target o f  this protective McAb amongst IODOGEN labelled larval surface antigens 

failed to produce results. The target antigen also failed to label with the Bolton and 

Hunter reagent which suggests a paucity of tyrosine residues. Western blotting of a 
detergent extract of MS was, however, more successful and the target of the McAb was 

identified as a low molecular weight antigen of 16 kDa. Subsequent studies demonstrated 

that this molecule was also vaccine dominant. Moreover, the failure of the antigen to bind 

sera from mice vaccinated with irradiated cercariae of S. japonicum demonstrated that the 

16 kDa antigen was species specific, as is the resistance induced by the irradiated vaccine 

(Bickle et a l., 1985). The 16 kDa antigen is also recognised preferentially by sera from 

mice protected by exposure to Ro 11-3128 abbreviated infections (Bickle et al., 1990).

Finally, B3A has been shown to stimulate previously inactivated macrophages to kill 

schistosomula in vitro (54%). The level of killing observed with this IgG3 McAb was 

significantly higher than that induced by a similar titre of CIS or VMS. Other surface 

binding McAbs of the same isotype also failed to stimulate significant levels of killing. 

Further analysis revealed that the killing of schistosomula by B3A was blocked by McAbs 

against the a  chain of the macrophage adhesion molecule, Mac-1. Thus, it was suggested 

that Mac-1 may share a functional relationship with the molecule responsible for the 

binding o f IgG3 antibodies to the macrophage. Alternatively, Mac-1 itself may bind this 
particular antibody subclass and hence play a critical role in the B3A mediated killing of 

the schistosomula, at least in vitro (Vignali et al., 1990).
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l . i o  PROJECT AIMS
The 16 kDa antigen described above has a number o f features which suggest that it 

may be of interest as a putative vaccine candidate antigen. The molecule is expressed 
upon the surface of the schistosomula which is believed to be both an inducer and a target 

of immune attack. It is the target of a passively protective McAb (B3A), and it is 
recognised preferentially by immune sera raised in mice vaccinated with radiation 

attenuated parasites. Thus, the main aim of the research described here was to characterise 

the biochemical and molecular nature of this antigen and to explore its potential for 
vaccination.

During the course of these studies a second low molecular weight antigen was 

identified. This molecule was shown to be vaccine dominant and attempts were therefore 
made to characterise this molecule using molecular biological techniques in particular.

The specific aims of the work detailed in each chapter were as follows:-

Chapter 3 Experiments were performed with the aim of optimising the strategies used 

for the extraction of the 16 kDa antigen from the larval stages of S. 

mansoni and for its purification in preparation for immunisation studies.

Chapter 4 Studies aimed at investigating the biochemical and molecular nature of the 

16 kDa antigen were performed. Particular emphasis was placed upon the 

characterisation of the epitopes recognised by the McAb and polyclonal sera 

raised in mice immunised with irradiated parasites.

Chapter 5 Antigen purified as described in Chapter 3 was used to immunise mice in 

conjunction with a variety of adjuvants. This was done primarily to assess 

the protective ability of the 16 kDa antigen although the nature of the 

immune response generated was also of interest.

Chapter 6 In an attempt to identify clones encoding the 16 kDa antigen a sporocyst 

cDNA library was screened with affinity purified antibodies and the 

isolated clones characterised by a variety of techniques. This work was 
carried out in collaboration with my supervisor Dr. Q.D. Bickle.
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Chapter 7 During the screening of the cDNA library with affinity purified antibodies, 

clones encoding a 15 kDa antigen were isolated. The recombinant protein 

expressed by these clones was shown to be vaccine dominant and thus 
further studies were carried out with the aim of characterising this second 

vaccine dominant molecule.
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2.1 STRAIN OF PARASITE AND HOSTS
2.1.1 Maintenance o f the life cycle

Throughout this research the parasite used was a Puerto Rican strain of S. mansoni 
maintained in Biomphalaria glabrata and TO outbred mice (A. Tuck & Son Ltd., 

Battesbridge, Essex) as described by Andrews (1987).

2.1.2 Experimental hosts
Male C57B1/10 mice were obtained from The National Institute for Medical Research 

(Mill Hill, London), female CBA and C57/B110 mice from Charles River UK Ltd., 

(Margate, Kent) and female Balb/c mice from A. Tuck & Son Ltd., (Battesbridge, 
Essex). Fischer rats were also obtained from Charles River UK Ltd (Margate, Kent) and 

New Zealand white rabbits and a half lop rabbit from Rosemead Rabbits (Waltham 

Abbey, Essex).

2.2 IRRADIATION OF CERCARIAE
MS were irradiated as described by Bickle et al., (1979(b)). Briefly, cercariae were 

concentrated to approximately 500/ml using a Millipore apparatus with a filter of 8 ^m 

pore size. These were then irradiated in a 'Gammabeam 60 ' cobalt source at a dose rate 

of 12 - 13 krad/minute. The cercariae were then concentrated and transformed as below.

2.3 MECHANICAL TRANSFORMATION OF SCH1STOSOMULA

Cercariae were mechanically transformed as described by James and Taylor (1976). 
Briefly cercariae were concentrated using a Millipore concentration apparatus and 8 ^m 

filters to a volume of approximately 10 ml in water. The water was then replaced by 

ELAC media (Earls media plus lactalbumin hydrolysate supplemented with 100 U/ml 

penicillin, streptomycin and genomycin, (Gibco)) and re-concentrated to a volume of 5 

ml. To disrupt the cercarial heads from tails the parasites were then passed through a 21 
G needle (Beckton Dickinson) attached to a Luer Lok syringe. Mechanically transformed 

schistosomula (MS) were then checked under a light microscope to ensure that the 

separation of heads from tails was complete.
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2.4  PRODUCTION OF ANTISERA
2.4.1 Vaccinated rabbit sera

Vaccinated rabbit sera (VRabS) vert raised in New Zealand white rabbits given five, 
monthly exposures to 5,000 S. mansoni cercariae irradiated with 20 krad y radiation.

2.4 .2  Vaccinated mouse sera
Vaccinated mouse sera (VMS)wtre raised in C57/B110 or CBA mice given four, 

monthly exposures to 600 S. mansoni cercariae irradiated with 20 krad y radiation.

2.4 .3  Vaccinated rat sera
Vaccinated rat sera (VRatS)*ie.re.raised in Fischer rats given three, monthly exposures 

to 1000 S. mansoni cercariae irradiated with 20 krad y radiation.

2.4 .4  Chronic infection sera
Chronic infection sera (CIS) were obtained from CBA mice infected with 25 

unattenuated cercariae and bled between 15 and 30 weeks following infection.

2.4 .5  Single sex infection sera

Single sex infection sera (SSS) were, raised in mice infected with 100 male cercariae 

obtained tforn individual snails infected with a single miracidia. The mice were bled 
between 15 and 20 weeks following infection.

2.4 .6  The monoclonal antibody, M7B3A
Production as ascites fluid of the anti-16 kDa McAb, M7B3A (B3A) was as described 

by Bickle et al., (1986).

2.5 ETHANOL PRECIPITATION OF PROTEINS
The sample to be precipitated was diluted with 9 volumes of ice cold ethanol and 

incubated overnight at -20°C. The precipitated protein was pelleted by centrifugation at
6,000 x g for 10 minutes at 4°C, the ethanol removed and the pellet dried under vacuum.

2.6 SDS POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS PAGE)
Unless otherwise stated SDS PAGE was carried out according to the method of
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Laemmli et al., (1970) using a discontinuous gel system and Biorad mini gel apparatus. 

A 30% acrylamide : N N’, methylene bisacrylamide (ratio =  39.5 : 1) stock solution was 

made and used at an appropriate dilution to make both resolving and stacking gels. In all 

cases a 15% or an 8% resolving gel (15%/8% acrylamide : bisacrylamide solution, 375 
mM Tris/HCl (pH 8.8), 0.1% SDS, 0.05% ammonium persulphate, 0.05% N N N ’ N’ 

tetramethylenediamine (TEMED)) was used with a 5% stacking gel (5% acrylamide : 
bisacrylamide solution, 125 mM Tris/HCl (pH 6.8), 0.1% SDS, 0.1% ammonium 

persulphate, 0.125% TEMED). Prior to setting, the resolving gel was overlaid with water 

saturated butanol which was removed prior to the pouring o f the stacker. Samples were 

prepared for electrophoresis by boiling for 3 minutes in an appropriate volume of either 

2 or 4 times concentrated SDS PAGE sample buffer (final concentration:- 625 mM 

Tris/HCl (pH 6.8), 2.3% SDS, 10% glycerol, 5% (v/v) B mercaptoethanol, 0.001% 
bromophenol blue) and were electrophoresed alongside 5 - 10 (il of low or high molecular 

weight markers (Remazol). The size of the markers were as follows:-

Low molecular weight (Da) High molecular weight (Da)

94.000 205,000

67.000 116,000

43.000 97,000

30.000 66,000

20.000 45,000

14.000 29,000

Mini gels were run for 1 hour at a constant voltage of 180 V in SDS PAGE running 

buffer (25 mM Tris, 192 mM glycine, 0.1% SDS).

2.7 STAINING O t POLYACRYLAMIDE GELS
2.7.1 Staining with Coomassie blue

Following electrophoresis gels to be stained were normally placed in Coomassie blue 
stain (0.1% Coomassie blue, 45% methanol, 10% acetic acid) for 20 minutes and then 

in destain (5% methanol, 7% acetic acid) for as long as was necessary to remove excess 
colour. However, if the antigen was to be excised and used for immunisation it was
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necessary to minimise the occurrence of acid hydrolysis and staining and destaining were 

done in the minimum time required for visualisation of the antigen hand.

2.7.2 Staining with silver nitrate

Following electrophoresis, gels were fixed for 30 minutes (30% ethanol, 10% acetic- 
acid), incubated for 30 minutes in 30% ethanol including 0.5 M sodium acetate, 0.5% 

gluteraldehyde and 0.2% sodium thiosulphate, and rinsed three times for ten minutes in 

sterile distilled water (SDW). Staining (0.1% silver nitrate, 0.02% formaldehyde) was 
then carried out for 45 minutes in the dark at room temperature. Following staining the 

gel was rinsed briefly in SDW and the developing solution (2.5% sodium carbonate, 

0.01 % formaldehyde) was added. The substrate solution was changed every 30 seconds 
until the gel was fully developed. The reaction was then stopped by the addition of EDTA 

to a final concentration of 50 mM.

2.8 WESTERN BLOTTING
Western blotting was carried out according to the method of Towbin et al., (1979) 

using the Biorad Mini Trans-Blot Electrophoretic Transfer Cell. Unless otherwise stated 

0.45 /xm nitrocellulose paper (Hybond C, Amersham) was used and both the nitrocellulose 

paper and the gel were soaked briefly in transfer buffer (25 mM Tris, 192 mM glycine, 

20% methanol) prior to blotting. The transfer was carried out for 1 hour at a constant 350 
raA in transfer buffer.

2.9 VISUALISATION OF SIGNALS ON WESTERN BLOTS
2.9.1 Probing of Western blots with antisera

(a) Following transfer Western blots were incubated for 20 minutes at nxim temperature 
in 5% dried milk powder (Marvel) in PBS (see appendix) in order to block the remaining 

protein binding sites. The blots were then incubated overnight at 4°C in antisera diluted 

in 5% milk solution. Dilutions were made according to the sera used and are given in the 
appropriate section. Following incubation in antisera the blots were washed 3 times for 

10 minutes in washing buffer (PBS, 0.05% Tween 20) prior to addition of the horseradish 
peroxidase (HRP) labelled conjugate. Conjugates were used at a dilution of 1 in 3,000 

(Biorad goat anti-mouse / rabbit / rat IgG) or 1 in 1,000 (Serotec rabbit anti- mouse IgG 

subclass specific conjugates) in washing buffer and the blots were incubated for at least
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30 minutes. Blots were then washed as above and developed with substrate solution 

(0.625 mg/ml diaminobenzadine, 0.004% cobalt chloride, 0.01% hydrogen peroxide in 

PBS). The reaction was stopped by rinsing the blot in water.

(b) Western blots were probed with primary and secondary antibodies as described above. 

The blots were then developed using radioiodinated Protein A as described by Burnett et 
al., (1981). Briefly, Western blots were incubated for 1 hour in radioiodinated Protein 

A (a gift from Dr. Q.Bickle), washed 3 times for 10 minutes in washing buffer, attached 

to appropriately sized pieces of filter paper (Whatman) and covered with Saranwrap. The 

blots were then used to expose scientific imaging film (Kodak XAR-5).

2.9.2 Probing o f Western blots with biotinylated lectins

Following transfer Western blots were blocked by incubation in 2.5% bovine serum 
albumin (BSA) for 1 hour at 37°C, or overnight at 4°C. The blots were then washed 

twice for 10 minutes in TBS (50 mM Tris/HCl (pH 7.5), 0. 15 M NaCl) and once for 
10 minutes in TBS including metal ions (1 mM MgCl2, 1 mM MnCl2, 1 mM CaCl2). The 

blots were incubated for one hour at room temperature in a variety o f  biotinylated lectins 

(EY Laboratories) at a concentration o f 10 /zg/ml in TBS, including metal ions as above. 

In experiments carried out to examine the specificity of lectin binding a competing sugar 

was added at a final concentration o f 0.2 M. Following incubation with lectin the blots 

were washed 3 times for 10 minutes in TBS and incubated for 1 hour with a 1 in 50 
dilution of avidin complexed with HRP (ABComplex, Dako). The blots were finally 

washed 3 times for 10 minutes in TBS plus 0.1% Tween 20 and developed with 

diaminobenzadine as above.

2.9.3 Staining of Western blots with amido black
Following transfer Western blots were incubated in amido black stain (0.1 % amido 

black, 45% methanol, 10% acetic acid) for 2 minutes and destained (5% methanol, 7% 

acetic acid) until all excess colour was removed.

2.10 DETERGENT EXTRACTION OF MS
2.10.1 Extraction o f MS with the detergent Triton X-l 14 (T X -114)

Pellets of approximately 230,000 MS or cercariae were resuspended by vortexing in
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1 ml of 0.5% pre-condensed TX-114 in PBS and the suspension incubated on ice for 30 

minutes. The preparation was then centrifuged at 6,000 x g for 5 minutes at 4°C and the 

supernatant (supernatant 1) removed and placed on ice. The remaining pellet was 
resuspended in 1 ml PBS by sonicating three times for 30 seconds at a frequency of 14 

microns peak to peak and 50 /xl o f pre-condensed TX-114 were added (final concentration 

approximately 0.5%). Incubation and centrifugation were carried out as above and the 

supernatant (supernatant 2) removed. Both supernatants were then separated into detergent 

and aqueous phases using a procedure adapted from that of Bordier (1981):- A 5 ml 

cushion o f  6% sucrose, 0.06% TX-114 in PBS was placed at the bottom of a centrifuge 

tube and the supernatants overlaid. The tube was then incubated for 5 minutes at 37°C 

and centrifuged at 600 x g for 5 minutes at room temperature. Following centrifugation 
the aqueous phase was removed from above the sucrose cushion whilst the detergent phase 

remained as an oily droplet at the bottom of the tube. In order to ensure a complete 
separation of the two phases a further 50 /xl TX-114 were added to the aqueous phase 

which was then overlaid on a second sucrose cushion and warmed and centrifuged as 

above. The aqueous phases and detergent phases following each separation were then 

combined to give a single aqueous and detergent phase for each supernatant. The 

detergent phases were made up to a volume of 1 ml by the addition of PBS and the final 

insoluble pellet resuspended in 500 /¿I PBS. 100 /xl of each aqueous and detergent phase 
were ethanol precipitated overnight at -20°C and the resulting pellets resuspended in 50 

/xl of PBS. The detergent and aqueous phase antigen plus 50 /xl of the insoluble pellet 
were then diluted with an equal volume of 2 x SDS PAGE sample buffer and 10 /xl of 

each sample were run on a gel which was stained with Coomassie blue. Samples 

containing equivalent amounts of protein were then separated by SDS PAGE and analysed 
by Western blotting.

2.10.2 Sequential extraction o f  MS with TX-114 and a variety of other detergents
A pellet of approximately 400,000 MS was disrupted in 1 ml of 50 mM Tris/HCl 

(pH 8.0) by sonicating 3 times for 30 seconds at a frequency of 14 microns peak to peak. 
Pre-condensed TX-114 (11.4%) was added to give a final concentration of 1% and the 

tube incubated on ice for 30 minutes. The preparation was then centrifuged at 6,000 x g 

for 5 minutes at 4 C and the supernatant removed. The supernatant was warmed at 37°C 
for 5 minutes and the aqueous and detergent phases separated as described. The detergent
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phase was then made up to 250 /xl with Tris/HCl (50 mM, pH 8.0) and pellets insoluble 

in TX-114 were resuspended in 100 /xl of Tris/HCl (50 mM, pH 8.0) using a sonicating 

water bath. An equal amount of either Triton X-100 (TX-100), sodium deoxycholate 
(DOC),3-|3-cholamidopropyl)-dimethylammonia|-l-propane-sulfonate(CHAPS),octyl-B- 

D thio glucopyranoside (OTG) or deconyl-n-methylglucamide (MEGA 10) were added 
to a final concentration of 1.5%. The tubes were incubated at room temperature for one 

hour with occasional mixing then centrifuged at 6,000 x g for 10 minutes at 4°C and the 

supernatant collected. The remaining pellets were resuspended in 125 /xl of Tris/HCl (50 
mM, pH 8.0).

2.10.3 Extraction o f  MS with OTG alone
MS at a concentration of 400,000/ml in 50 mM Tris/HCl (pH 7.4), were disrupted 

by sonication at 14 microns peak to peak (3 x 30 seconds), centrifuged for 1 hour at 
100,000g, 4°C and the aqueous phase removed. The remaining pellet was resuspended 

by sonication in 500 /xl/400,000 MS of 50 mM Tris/HCl (pH 7.4) and an equal volume 

of OTG at a concentration of 3% in 50 mM Tris/HCl (pH 7.4) was added. The 

preparation was incubated at room temperature for 1 hour with occasional mixing, 

centrifuged as above, and the detergent fraction removed. The remaining pellets were 

resuspended in 125 /xl of Tris/HCl (50 mM, pH 7.4).

2.11 PREPARATION QF ADULT WORM ANTIGEN
10 mg of freeze dried S. mansoni adult worms were homogenised in 2 ml of PBS and 

the detergent Nonidet P-40 (NP-40) added to a final concentration of 0.1%. The 

preparation was then centrifuged at 6,000 x g for 20 minutes at 4°C and the supernatant 

removed and stored at -20°C.

2.12 PURIFICATION QF THE 16 KPA ANTIGEN FROM MS
2.12.1 Immunoaffinity chromatography
(a) Preparation of the immunoaffinity column

The McAb, B3A was purified by passing clarified ascites fluid slowly through a 5 
ml column of Protein A Sepharose beads, washing the column extensively with 100 ml 

TBS (50 mM Tris/HCl (pH 8.6), 0.15 M NaCl) and eluting the bound antibody with a 

buffer of pH 4.3 (50 mM sodium acetate, 0.15 M NaCl). 20 fractions (1 ml) were
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collected and assessed for antibody content by SDS PAGE and Coomassie blue staining. 

Fractions containing the purified antibody were then dialysed extensively against TBS and 

rotated overnight with Protein A Sepharose heads at a concentration of approximately 18 

mg of immunoglobulin (as assessed by Coomassie blue staining) per 250 mg of beads. 

The unbound material was then removed and the Protein A Sepharose beads washed 3 
times for 10 minutes with borate buffer (pH 8.0, see appendix). Cross-linking of the 

McAh to the beads was then achieved hy incubation for 1 hour at room temperature in 

10 ml borate buffer (pH 8.0) plus 50 mg o f freshly prepared dimethylpimelimidate 

(Sigma). The beads were washed once with borate buffer (pH 9.0) and then incubated for 

10 minutes in borate buffer (pH 9.0) plus 20 mM ethanolamine. The beads were 

transferred to a 10 ml Poly Prep chromatography column (Biorad) and stored in borate 
buffer (pH 9.0) plus 0.02% sodium azide at 4°C.

(b) Purification of the 16 kDa antigen using the immunoaffinity column

The immunoaffinity column prepared as above was pre-eluted by the addition of 5 

ml diethylamine (DEA) (pH 11.5) and the pH restored with Tris/HCl (10 mM pH 7.4) 
prior to use. OTG extracted material was then prepared as above and circulated through 

the immunoaffinity column a minimum of three times at a flow rate of approximately 1 

ml/9 minutes. The column was washed extensively with 100 ml of 50 mM Tris/HCl (pH 

7.4), 0.15 M NaCl, 1 mM EDTA, 0.1% OTG followed by 10 ml of 10 mM Tris/HCl 

(pH 7.4), 0.1 % OTG. Bound material was eluted with 10 ml of 50 mM DEA (pH 11.5) 
including 0 . 1 %  OTG. 500 /¿I fractions were collected and neutralised by the addition of 

50 /d 0.5 M NaH2P04.

2.12.2 Ion exchange chromatography
4 ml columns of the anion exchange gel, Diethyl-aminoethyl (DEAE) Bio-Gel A and 

the cation exchange gel, carboxymethyl (CM) Bio-Gel A were used. Extraction of 

antigens from MS was as above with the exception that sonication and OTG extraction 
were done in a buffer suitable fo r use with each column i.e. for the DEAE column 25 

mM Tris/HCl (pH 8.0), 1 mM EDTA, 1.5% OTG was used and for the CM column a 
pH 6.0 phosphate buffer (89% 25 mM NaH2P 0 4, 11% 25 mM Na,HP04 1 mM EDTA, 

1.5% OTG). Following equilibration of the column with 4 bed volumes of suitable buffer 

the detergent extracts were passed through the columns which were then washed with 10 
ml of the appropriate buffer. Bound material was eluted either by the addition of a step
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or continuously increasing salt gradient (0 to 0.5 M KC1) using a Biorad Model 385 

Gradient Former for the latter. In all cases 1.5 ml eluates were collected and ethanol 

precipitated to remove excess salt prior to SDS PAGE.

2.12.3 Hydrophobic interaction chromatography
An OTG extract prepared as above was diluted to a final concentration of 25% 

ammonium sulphate ((NH4)2S 0 4) and applied to a 2 ml column of Phenyl Sepharose CL- 

4B (Pharmacia) previously equilibrated with 25% ammonium sulphate. The column was 
then washed with 25% ammonium sulphate and eluted with a decreasing salt gradient 

(25% ammonium sulphate (3 ml), 10% ammonium sulphate (3 ml) and Tris/HCl (50 mM, 

pH 7.5,) (3 ml)). 1 ml of ethylene glycol was then applied as a final elution step. Prior 

to running on a gel all the fractions and the starting material were dialysed and ethanol 

precipitated to remove excess salt.

2.12.4 Lectin affinity chromatography

OTG extracted material or immunoaffinity purified antigen were rotated for at least 
one hour with agarose beads coated with peanut agglutinin (PNA) (Sigma). The beads 

were allowed to settle, the unbound fraction was removed and the beads were washed 3 

times for 30 minutes with 50 mM Tris/HCl (pH 7.4), 0.15 M NaCl, 1 mM EDTA, 0.1 % 
OTG. The beads were then eluted with increasing concentrations (0.1 M - 0.5 M) of 

galactose and / or lactose. Borate buffer (0.45 M, pH 6.0) was used as a final elution 

step.

2.12.5 The Biorad 491 Prep cell
Immunoaffinity column eluates were centrifuged through a Centricon 10 

microconcentrator (Amicon, molecular weight cut off of 10 kDa) and the antigen which 

collected on the membrane resuspended in 250 /¿I 0.2 M ammonium acetate buffer. The 
volatile buffer was then removed by breeze drying under vacuum overnight and the 

precipitate was resuspended in 20 /il of sterile PBS in preparation for electrophoresis. The 
Biorad 491 Prep cell apparatus was assembled and the gel poured in accordance with the 

protocol supplied. As with SDS PAGE a 15% acrylamide resolving gel and a 5% stacking 

gel were used. Prior to loading the concentrated sample was denatured by boiling in SDS 
PAGE sample buffer. The gel was run at a constant 40 mA and 20, 2.5 ml fractions were
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collected immediately following the elution of the dye front.

2 .12.6  Staining o f purified antigen on ProBlott membrane
Several eluates containing partially purified 16 kDa antigen eluted from the McAb 

affinity column were concentrated into a volume o f 250 jd 0.2 M ammonium acetate 
buffer (pH 7.5) using a Centricon 10 microconcentrator and freeze dried overnight. The 

precipitate was then resuspended in 20 ¡i\ of sterile PBS, separated by SDS PAGE and 

transferred onto ProBlott membrane (Perkin-Elmar Ltd) using the Biorad Mini Trans-Blot 
Electrophoretic Transfer Cell. Prior to transfer the ProBlott membrane was soaked for a 

few seconds in methanol and then both the membrane and the gel were soaked for 5 

minutes in electroblotting buffer (10 mM cyclohexylamino-l-propanesulphonic acid 

(CAPS), pH to 11.0 with 0.2 M NaOH, 10% methanol). Transfer was carried out at a 

constant 50 V at room temperature for 30 minutes in the above buffer. Following transfer 
the ProBlott was saturated in 100% methanol for a few seconds and then stained for 1 

minute in Coomassie blue R-250 (40% methanol, 1 % acetic acid, 0.1 % Coomassie blue 

R-250). The ProBlott was destained to remove excess colour (50% methanol) and the 
region of the blot corresponding to the 16 kDa antigen excised.

2.13 GAS PHASE NH, TERMINAL AMINO ACID SEQUENCING
Gas phase NH2-terminal amino acid sequencing was very kindly performed by Dr. 

Alan Harris in the Laboratory of Protein Structure at the National Institute for Medical 

Research, Mill Hill, London.

2.14 TWO DIMENSIONAL ELECTROPHORESIS
500 pi of OTG extracted MS antigen was ethanol precipitated and resuspended in 125 

pi of 2D sample buffer plus 125 pi of SDW. 25 p i of sample was then loaded per tube 

gel and 2D electrophoresis was carried out for 3.5 hours at 750 V according to the 
protocol supplied with the Biorad Mini Protean II Tube Cell apparatus, with the following 

exceptions:-

a) Sample overlay buffer made up as specified in the protocol proved to be Ux> dense and 

passed through the loaded sample. It was thus diluted 1 part buffer to 2 parts SDW prior
to use.
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b) The acid (bottom) end of the tubes were marked by spotting with Coomassie blue 

powder before placing them in SDS sample buffer for storage at -20°C. This was done 

so that the basic and acidic ends of the first dimension gels could be readily differentiated.

2.15 TREATMENT OF THE 16 KPA ANTIGEN WITH A VARIETY OF 

PROTEASES
A pellet of MS were boiled in SDS PAGE sample buffer without mercaptoethanol 

and centrifuged for 15 minutes at 14,000 g at room temperature. The preparation was 
then diluted to 0.1 % SDS with 50 mM Tris/HCl (pH 8.0), 5 mM CaCl2 and treated for 

1 hour with either protease K (Boehringer Mannheim), chymotrypsin, trypsin, or protease 

XIV (Sigma). Pronase E (Sigma) was predigested for 2 hours at 37 C in 10 mM 
Tris/HCl (pH 7.8), 10 mM EDTA, 0.5% SDS and the antigen digested in the same 

buffer. Papain digestion was carried out in 100 mM Tris/HCl (pH 7.4). All proteases 
were used at final concentrations of 20 and 200 /¿g/ml.

2.16 TREATMENT OF WESTERN BLOTS WITH SODIUM META PERIODATE
Vicinal hydroxyl groups were oxidized using sodium meta periodate according to the 

method o f Woodward et al., (1985):- Following transfer Western blots were incubated 

for 20 minutes in 5% milk solution or for 1 hour in 2.5% BSA, washed for 10 minutes 

in washing buffer (PBS, 0.05% Tween 20) and cut into strips. Strips were then treated 
with 20 mM sodium periodate in 50 mM sodium acetate buffer (pH 4.5) for either one 

or four hours in the dark at room temperature. Control strips were incubated for four 

hours in the acidic buffer alone. Following treatment strips were washed for 30 minutes 

in 50 mM sodium borohydride and rinsed for 10 minutes in washing buffer. The blots 

were then probed with antibody or lectin as described above (section 2.9).

2.17 NEURAMINIDASE TREATMENT OF WESTERN BLOTS
Following transfer Western blots were blocked for 1 hour in 2.5% BSA at 37°C and 

washed twice for 10 minutes in TBS (50 mM Tris/HCl (pH 7.5), 0.15 M NaCl). The 

blots were then cut into strips and each strip treated for 1 hour at room temperature with 

500 ¡i\ of neuraminidase (Sigma) at a concentration of 6 mU/ml in 0.2 M sodium acetate 

buffer (pH 5.5). Negative control strips were incubated for 1 hour in the acetate buffer 

alone. Following treatment the blots were then washed for 10 minutes in TBS plus metal
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ions (1 mM MgCl2, 1 mM MnCI2, 1 mM CaCI2) and probed with lectin as above (section 

2.9.2). As a positive control 200 /zg o f fetuin were treated with neuraminidase and probed 

with PNA.

2.18 CLEAVAGE OF O LINKED CARBOHYDRATES WITH THE ENZYME O 

OLYCANASE
2.18.1 Treatment o f the 16 kDa antigen with O-glycanase

30 /zl of an OTG extract of MS (400,000 MS/ml) was added to each of four 
microcentrituge tubes. The antigen was then ethanol precipitated overnight at -20°C. This 

step was included in order to remove parasite material and detergent which may affect the 

activity of the O-glycanase enzyme (Adrian Grey, Oxford Glycosystems, personal 
communication). Following precipitation the antigen in one tube was resuspended in S /d 

incubation buffer (0.1 M sodium citrate (pH 6.0), BSA (100 /zg/ml), 0.02% sodium 
azide) and as a positive control 25 /zl of asialofetuin (10 mg/ml, Sigma) was added to the 

resuspended antigen along with 5 /zl (1.5 mU) of the enzyme Endo-a-N- 

acetylgalactosaminidase (O-glycanase, Oxford Glycosystems). The amount of enzyme used 

was that recommended for cleavage of 250 /zg of asialofetuin (Adrian Grey, Oxford 

Glycosystems). The antigen in a further two tubes was then resuspended in I /zl or 6 /zl 

of incubation buffer and an equal volume (0.3 mU / 1.8 mU) of O-glycanase enzyme 
added. The samples were then made up to a total of 7 /zl or 42 /zl respectively with SDW. 

This was done to ensure that the concentration of the enzyme and the components of the 
incubation buffer in the two experimental samples were equal to those used in the positive 

control. The antigen in the final tube was resuspended in 6 /zl of incubation buffer and 

36 /zl of SDW added. I'his tube was used as a no enzyme negative control. All the tubes 
were then incubated for 20 hours at 37°C. Following incubation appropriate amounts of 

2 x SDS PAGE sample buffer were added to the experimental reactions and negative 

control. This stopped the reactions and the samples were then run on SDS PAGE gels. 
Western blotted and probed with antibodies or lectin. The positive control reaction was 

stopped by the addition of 10 /zl of boric acid (0.8 M, pH 9.1) and the activity of the 
enzyme assessed using the Elson-Morgan assay (see below).

2.18.2 Assessment of O-glycanase activity
O-glycanase activity was assessed by measuring the disaccharide. Gal-ft (1-3)
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GalNAc, liberated from the enzyme treated asialofetuin using an adapted version of the 

Elson-Morgan assay (Reissig et al., 1955):- Following the addition of the boric acid the 

preparation was boiled for exactly 3 minutes and then incubated on ice for 5 minutes. 225 

/d of p-dimethylaminobezaldehyde (DMAB) solution was added (0 .15 M DMAB, 
98.75% acetic acid, 1.1% HC1) and the preparation incubated for a further 20 minutes 

at 37°C. The OD of the solution was then read at 585 nm.

2.19 IMMUNOSTIMULATING COMPLEXES flSCOMs)
2.19.1 Preparation o f ISCOMs incorporating the 16 kDa antigen

ISCOMs were made according to the method of Lovgren et al., (1987):- An OTG 
extract of approximately 8 million MS was passed down an immunoaffinity column which 

was washed and eluted as above (section 2. U . 1). Comparison of the silver stained eki&ies 

with ovalbumin standards demonstrated that the best two eluates combined contained 
approximately 0.5 - 1 mg/ml o f partially purified antigen. Thus, these fractions were used 

for the formation of ISCOMs incorporating the 16 kDa molecule whilst 1 ml of the 
immunoaffinity column elution buffer (50 mM DEA, 50 mM NaH2P 0 4, 0. 1% OTG) was 

used for the formation of protein free ISCOMs. 19 mg of MEGA 10 was added to each 

sample to give a final detergent concentration of 2% and the solutions were warmed at 
37 C for 3 minutes to enable the MEGA 10 to dissolve. 1 mg of the adjuvant Spikoside 

(Iscotec, AB) was then added to each tube followed by 50 /d o f lipid mix (50 mg 

phosphatidylcholine plus 50 mg cholesterol dissolved in 1 ml chloroform and added to 10 
ml 20% MEGA 10). The preparations were sonicated at room temperature for 15 minutes 

to disrupt any protein aggregates which may have formed, left to stand for 1 hour and 
then transferred to pre-boiled dialysis tubing with a molecular weight cut off of 14 kDa. 

Dialysis was carried out against 5 L of 50 mM Tris/HCl (pH 8.5), 0.001 % sodium azide 

at room temperature for 8 hours or until the dialysates became slightly cloudy, an 
indication of the formation of ISCOMs. The buffer was then exchanged for 5 L PBS and 

dialysis continued for a further 20 hours at 4°C. On completion of dialysis the samples 

were removed from the dialysis tubing and the ISCOMs concentrated by centrifugation 
through a sucrose gradient (see below).

2.19.2 Purification o f ISCOMs by density gradient centrifugation
2.25 ml of 40% sucrose in 50 mM Tris/HCl (pH 8.5) were placed in the bottom of

80



an ultraclear centrifuge tube (Beckman) with care being taken to ensure that droplets o f 

sucrose did not adhere to the sides of the tube. Using a 1 ml syringe 2.25 ml of 10% 

sucrose in 50 mM Tris/HCl (pH 8.5) were overlaid onto the 40% sucrose. The control 
and antigen containing dialysates were then overlaid onto the sucrose gradients (500 /xl 

/ gradient) and centrifuged for 9 hours at 60,000 x g (27,000 rpm in a Beckman SW 55 
swinging bucket rotor) at 20°C. The rotor was allowed to coast to a stop with the brake, 

off. 250 /xl fractions were then removed from the top of the tube using a 1 ml syringe. 

The fractions containing the ISCOMs, which form a visible band at the interface between 

the two sucrose concentrations, were noted. 22.5 /xl of all the fractions taken from the 

gradients used to purify the ISCOMs containing the 16 kDa antigen were then separated 

by SDS PAGE, transferred by Western blotting and the blots probed with antibody in 

order to identify those fractions containing antigen. If the fraction corresponding to the 

position of the ISCOMs within the gradient was shown to contain a substantial amount 
of antigen, this fraction together with those removed from immediately above and below 

were dialysed against 5 L PBS plus 0.001 % Na azide at 45°C for 12 hours to remove 

sucrose. Corresponding fractions removed from the sucrose gradients on which the control 

samples were separated were treated in a similar manner. The presence of ISCOMs within 

all these fractions was then verified by electron microscopy (see below).

2.19.3 Electron microscopy

The dialysed samples were checked for the formation of ISCOMs using negative 
staining:- 50 /xl of each fraction was applied to a carbon coated grid and stained using 2% 

ammonium molybdate as the contrasting agent. The grids were then examined using a Jeol 

1200 EX transmission electron microscope at an accelerating voltage of 60 / 70 kV.

2.20 IMMUNISATION STUDIES IN MICE USING THE PURIFIED 16 KDA 
ANTIGEN

By comparing the levels of Coomassie blue or silver staining observed following the 

electrophoresis of particular column eluates and samples of a known protein 

concentration, it was possible to demonstrate that approximately 500 /xg of 16 kDa antigen 

were present in the first two fractions (total 1 ml) eluted from the immunoaffinity column 

following purification of the antigen from 8 million parasites. This figure has 
subsequently been used to estimate the total amounts of 16 kDa antigen used in
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conjunction with Ribi or novasome adjuvant to immunise mice (see below). However, it 

should be noted that these are very approximate figures as the glycanic nature of the 16 

kDa molecule effects the efficiency with which it is stained and hence ensures that it is 
difficult to estimate accurately the amounts o f antigen present in the column eluates. 

Attempts to estimate the amount o f 16 kDa antigen incorporated into ISCOMs have not 
been made as the 16 kDa antigen was not visible in the ISCOM preparation following 

Coomassie blue or silver staining (see Chapter 5).

2.20.1 Immunisation of mice with the immunoaffinity purified 16 kDa antigen 

plus Ribi adjuvant

Fractions eluted from the immunoaffinity column (as above) were prepared for 
immunisation by dialysing to remove DEA using Spectra/Por dialysis membrane (3.5 kDa 

cut off). Dialysis was carried out against 3 x 1 L PBS for 90 minutes at room temperature 
and then overnight at 4°C. Ribi adjuvant (Ribi Immunochem Research Incorporation) was 

then incubated at 42 "C for 5 to 10 minutes and reconstituted by the addition of 2 ml 

sterile saline. A group of eight male C57B1/10 mice were immunised with approximately 

150 /ig of 16 kDa antigen per mouse plus Ribi adjuvant. The antigen was given over the 

course of 12 weeks with immunisations on days 0, 14, 49 and 84. In all cases the total 

volume of the immunising preparation was 100 /d per mouse. For the first three 
immunisations this incorporated 56 /d of antigen preparation plus 44 /d o f Ribi and was 

given in each of two sub-cutaneous (s.c) sites. For the final immunisation 78 /d of antigen 
and 22 /d of Ribi were used and administered both s.c (50 /d) and ¡ntraperitonea.il y (i.p) 

(50 pi). A second group of 8 male C57B1/10 mice were used as control animals and 

immunised in conjunction with the experimental group, the 16 kDa antigen being replaced 
with an equivalent amount of sterile saline. In all cases the immunisation preparation was 

vortexed for 2 to 3 minutes prior to injection in order to form an emulsion. Both groups 

of mice were challenged with 200 cercariae on day 112, killed and perfused on day 142 
and the worm burden counted.

2.20.2 Immunisation of mice with the 16 kDa antigen plus novasomes
7 female CBA mice were immunised with approximately 165 fig of partially purified 

16 kDa antigen per mouse plus novasomes which were a kind gift from Dr. C. Wright 
(Novavax Inc.). The antigen was given over the course o f three immunisations with
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injections on days 0, 15 and 33. On each occasion 90 /¿I of antigen preparation was 

combined with 10 ¡x\ of novasomes and administered in each of two • p sites. A group of 

five female CBA mice were included as control animals and immunised in conjunction 
with the experimental animals, the 16 kDa antigen being replaced with a solution of 50 

mM DEA (pH 11.5), 50 mM NaH2P04, 0 . 1 %  OTG. In all cases the antigen / DEA / 

adjuvant preparation was vortexed briefly prior to injection. It was not necessary to form 

an emulsion. All of the mice were challenged with 200 cercariae on day 99 and killed and 

perfused 35 days later.

2.20.3 Immunisation of mice with the 16 kDa antigen incorporated into ISCOMs

7 female CBA mice were immunised with the 16 kDa antigen incorporated into 
ISCOMs as described (section 2.19). Prior to immunisation ISCOMs were dialysed 

against 5 L of PBS overnight at 4°C using dialysis tubing with a molecular weight cut off 
of 14 kDa (Medicell International Ltd). This was done in order to remove sodium azide 

which might otherwise have been toxic on immunisation. For each immunisation 70 /d 

of ISCOMs per mouse was used from a total of 3 ml prepared using 16 kDa antigen 

purified from 18 million MS (approximately 1.5 mg). A control group of 5 female CBA 

mice were also immunised, the 16 kDa ISCOMs being replaced by 35 jtl of ISCOMs 

formed without the incorporation of protein plus 35 /il sterile saline. As Spikoside, the 
adjuvant used in the formation of ISCOMs, is toxic if given in large amounts it was 

necessary to check the safety of the preparation prior to each of the immunisations. Thus, 

a single mouse from each group was immunised 48 hours earlier than the rest. The mice 

were immunised subcutaneously in each of two sites on days 0, 15, 33 , 64, 85 and 

challenged with 200 cercariae on day 99. The mice were then perfused on day 134 and 
the worm burden estimated.

2.21 INDIRECT IMMUNOFLUORESCENCE
This was performed in 6 x 50 mm cytology tubes (Sterilin Ltd) as described by 

Bickle et a l., 1986. Briefly, following a 3 hour incubation in medium, approximately 50 

MS in a volume of 10 /¿I were placed in each tube. The sera to be tested was then diluted 
in cold PBS to give a total volume of 200 /¿I and the MS were incubated in the sera for 

20 - 30 minutes at 4°C. Following incubation the MS were washed 3 times in cold PBS, 

the final wash leaving the MS resuspended in 50 ¡i\ PBS. The parasites were then
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incubated in fluorescein-conjugated rabbit anti-mouse antibody (Nordic) diluted 1 in 5 in 

PBS for 20 - 30 minutes at 4°C. Washing was repeated as before and the MS were then 

examined using a Leutz Diaplan ultraviolet microscope and the degree of fluorescence 
rated from negative (-) to very bright (+  + +). Normal mouse sera and a McAb known 

to bind to the surface of the schistosomula were used in all cases as negative and positive 

controls respectively.

2.22 ”1 RAPIOLABELL1NG OF SCH1STQSOMULAR SURFACE ANTIGENS
Newly transformed schistosomula were radiolabelled according to the method of 

Fracker and Speck (1979) as described by Andrews (1987). 200 /xg of Iodogen (1,3,4,6- 

tetrachloro-3-a-6-a diphenylglycoluril, Pierce) was dissolved in chloroform and pipetted 

into a 5 ml scintillation tube. The chloroform was allowed to evaporate and 100,000 MS 

in 195 /xl of media were added. The radiolahelling reaction was then performed by the 
addition of 5 /xl of Na'2’I (0.5 mCi) and incubating at room temperature for 8 minutes 

with shaking every minute. Following labelling the MS were transferred to a clean 

microcentrifuge tube and washed 6 times with PBS to remove unbound radioactive label. 

300 n 1 of 1 % TX-100 in PBS was then added to the tube and the intact MS incubated for 

45 minutes at 4°C. The MS were homogenised, incubated for a further 45 minutes at 4°C 

and the TX-100 extract removed. The parasites were then resuspended in 300 /xl of 1.5% 
OTG, incubated for 45 minutes at 4°C and the OTG extract removed. The final parasite 

pellet was incubated overnight at 4°C in a further 300 /xl of 1.5% OTG.

2.23 IMMUNOPRECIPITATION OF RADIOLABELLEP SCHISTOSQMULA 

SURFACE ANTIGENS
10 /xl (1 - 2 x 106 counts/minute) aliquots o f the TX-100 and the initial OTG 

extracted material were transferred to microcentrifuge tubes and 50 /xl of 

immunoprécipitation buffer (50 mM Tris/HCl (pH 8.0), 150 mM NaCl, 10 mM EDTA, 

0.05% TX 100) added. Each sera to be tested (5 /xl neat or 10 /xl in 50% glycerol) was 

added to one each of the TX-100 and OTG extracted aliquots and the preparations 
incubated overnight at 4°C. Protein A sepharose (Sigma) was then prepared by swelling 

in immunoprécipitation buffer (250 mg for 1 ml of beads) and 40 /xl of a 50% suspension 

was added to each of the reactions which were incubated for 1 hour at room temperature 
with occasional mixing. Following incubation the beads were sedimented by a pulse spin.
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washed three times with 1 ml of immunoprécipitation buffer and resuspended in 25 /¿I 2 

x SDS PAGE sample buffer. The samples were electrophoresed and the gels stained with 

Coomassie blue. This enables the proteins to be fixed prior to drying of the gel and also 
the presence of antibody in each reaction to be observed. The gels were dried using a 

Biorad Model 583 gel drier for 1 hour at 80 °C and then placed in a cassette next to 
scientific imaging film (Kodak XAR-5) and incubated at -70°C for at least 24 hours.

2.24 THE cPNA EXPRESSION LIBRARY
The library used was made by Phillipa Francis using RNA extracted from the 

hepatopancreas of S. mansoni infected B. glabrata snails, an Amersham cDNA synthesis 

kit and A.gtl 1 arms (Francis, 1989). The unamplified library consisted of approximately 

106 recombinants. However, a proportion of this had been amplified after construction to 

a titre of 3 x 109 plaque forming units (pfu)/ml and this was used in the following studies.

2.25 SCREENING OF THEcPNA EXPRESSION LIBRARY USING ANTIBODY 

PROBES
2.25.1 Preparation o f  sera for screening

(a) immunisation of a rabbit with the purified 16 kPa antigen
A 500 /il fraction o f immunoaffinity purified 16 kDa antigen was run on an SDS 

PAGE gel. The gel was stained with fresh Coomassie blue for 2 minutes, destained 

quickly and the band corresponding to the 16 kDa antigen excised. The gel slice was then 

snap frozen on dry ice and ground into a fine powder using a mortar and pestle. This was 

stored at -70°C until required. Immediately prior to injection Ribi adjuvant (Ribi 

Immunochem Research Incorporation) was incubated at 42 °C for 5 to 10 minutes then 

reconstituted by the addition of 2 ml sterile saline. The powdered antigen was resuspended 
in 500 /d of sterile saline, added to 250 /d of the adjuvant and the preparation vortexed 

for 2 to 3 minutes. The resulting emulsion was then injected directly into one of the 

popliteal lymph nodes of a half lop rabbit at Imperial College of Science and Technology. 
The rabbit was bled approximately every ten days and given boost injections 2 and 4 

weeks after the first. The first boost was given in multiple sites and the second directly 
into the other popliteal lymph node.
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(b) Elution of antibodies from the 16 kDa region of Western blots
Elution of antibodies from Western blots was based on the method of Beall and 

Mitchell (1986). MS were extracted with TX-114 (as described in section 2.10.1). The 
insoluble pellets were then boiled in SDS PAGE sample buffer and the antigen separated 

by SDS PAGE using 6 large gels (40,000 MS/gel). The antigen was transferred by 
Western blotting and the blots blocked by incubation in 5% milk solution. Vertical strips 

cut from both ends of each blot were probed with VRabS and B3A to indicate the position 

of the 16 kDa antigen and the area of nitrocellulose to which the 16 kDa antigen was 

bound was then excised from each blot. The strips were re-blocked, treated with 20 mM 

sodium periodate in 50 mM sodium acetate buffer (pH 4.5) for 1 hour in the dark and 

incubated overnight at 4°C with 20 ml VRabS at a dilution of 1 in 20. Following removal 
of the antibody, the strips were washed 5 times for 30 minutes in 50 mM Tris/HCI (pH

8.0) , 0.15 M NaCl, 0.02% Tween 20, once for 30 minutes in 0.1 M borate buffer (pH
8.0) , 0.15 M NaCl, once for 30 minutes in PBS and finally for 30 minutes in 10 mM 

Tris/HCI (pH 8.0). This final wash was carried out in low molarity Tris to ensure that 

buffer remaining prior to elution of antibody from the strips had a low buffering capacity 
and was therefore unable to cause an increase in the pH of the elution buffer. Antibody 

was then eluted by addition of 9 ml 0.1 M glycine/HCl (pH 2.5), to the strips in a petri 

dish previously blocked with 1 % BSA in the acidic buffer to prevent absorption o f  eluted 
antibody onto the plastic surface. The eluted antibodies were removed after 5 minutes, 

neutralised by the addition of 700 ¡i\ 1 M Tris/HCI (pH 8.0) and BSA added to  a final 
concentration of 1%. The strips were then washed for 10 minutes in PBS followed by 

Tris/HCI (10 mM, pH 8.0) and the elution steps repeated. Both aliquots o f  eluted 

antibody were stored at -20°C prior to use. It was subsequently demonstrated that the 

strips of antigen could be used repeatedly for the elution of antibodies.

2.25.2 Preparation o f competent E. coli Y1090 for screening
A glycerol stock of Y1090 was used to streak a fresh YT agar plate (1.5%, see 

appendix) supplemented with ampicillin (50 /¿g/ml) (YT amp50) which was then 

incubated overnight at 37°C. A single colony of Y1090 was used to inoculate 10 ml of 

YT medium supplemented with 10 mM MgSO«, 0.2% maltose and 50 /tg/ml ampicillin. 
The culture was grown overnight at 37°C in a shaking incubator. Bacterial cells were then 

pelleted by centrifugation at 500 x g for 10 minutes at room temperature and resuspended
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in 5 ml of sterile 10 mM MgSO«.

2.25.3 Primary screening of the cDNA library
For each agar plate used in screening, approximately 1.5 x 104 A.gtl 1 pfu were used 

to infect 600 p\ of competent Y1090 (prepared as above) by incubation for 15 minutes 
at 37°C. The cells were then added to 9 ml of soft agar (0.8%) containing 10 mM MgSO» 

at 50°C and plated onto fresh 140 mm YT amp 50 plates and grown at 42°C until plaques 

were visible ( 3 - 4  hours). Nitrocellulose filters (130 mm, 45 ^m, Millipore) were soaked 

in 10 mM isopropyl-6-D thiogalactopyranoside (IPTG) for 5 minutes and excess solution 

was blotted away such that the filters remained damp. The IPTG impregnated filters were 

then overlaid onto the plates and the expression of recombinant proteins induced by 
incubating the plates for a further 2 hours at 37°C. The filters were then orientated using 

a needle to puncture both the filter and the underlying agar and carefully removed. 
Following removal the filters were washed for 5 minutes in TBST (20 mM Tris/HCl (pH

8.0) , 0.15 M NaCI, 0.1 % Tween 20) to remove bacterial debris and blocked (see below). 

The filters were then probed overnight with undiluted sera eluted from the 16 kDa region 
of Western blots (as above). The plates were stored at 4°C.

2.25.4 Detection o f positive recombinants
Two systems employing different conjugates and substrates were used as follows:-

(a) Alkaline phosphatase labelled conjugate
Filters to be developed using this system were blocked in 0.1 % Tween 20, 1 % BSA 

in TBS for 45 minutes at room temperature and incubated overnight in sera diluted in 
TBS. Following removal o f  the antisera the filters were washed 4 times for 15 minutes 

in TBST and incubated for 1 'A hours in alkaline phosphatase labelled anti-rabbit conjugate 

(Biorad) diluted 1 in 7,500 in 0.1 M Tris/HCl (pH 9.5), 0.1 M NaCI, 5 mM MgCl2. The 
washing step was then repeated and the filters developed by the addition of substrate 

solution (375 jtg/ml naphthol phosphate (NBT, taken from a stock of 75 mg/ml in 70% 
dimethylformamide), 188 /xg/ml 5-bromo-4-chloro-3 indoly phosphate (BCIP, taken from 

a stock of 50 mg/ml in 100% dimethylformamide), 0.1 M Tris/HCl (pH 9.5), 0.1 M 

NaCI, 50 mM MgCl2). The reaction was stopped by the addition of 20 mM Tris/HCl (pH
8.0) , 5 mM EDTA.
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(h) HRP-labelled conjugate

Filters to he developed using this system were blocked in 5% milk solution and 

incubated overnight in sera diluted in the same. Following removal o f the antisera the 
filters were washed five times for 5 minutes with PBS / 0.1 % Tween 20 and incubated 

in biotinylated donkey anti-rabbit species specific conjugate diluted 1 in 200 in PBS. The 
washing step was repeated and the blots then incubated in streptavidin horseradish 

peroxidase complex (Amersham) diluted 1 in 400 in PBS. Following a final repeat of the 

washing step the bound antibody was then visualised by the addition of the substrate 
(0.625 mg/ml diaminobenzadine, 0.004% cobalt chloride, 0.01 % hydrogen peroxide in 

PBS). The reaction was stopped by rinsing the filters with water.

2.25.5 Secondary screening
Clones that were positive with the sera eluted from the 16 kDa region of Western 

blots were picked using the sharp end of a pasteur pipette into 100 /¿I of SM buffer (0.1 

M NaCl, 50 mM Tris/HCI (pH 7.5), 8 mM MgSO., 2% gelatine) containing 3 /d of 

chloroform. The tubes were incubated for at least 15 minutes at r<x>m temperature to 

enable the phage to elute from the agar plug. The phage stock was then diluted 

appropriately and plated at a density of 10* - 103 pfu per 90 mm plate. The phage were 

then grown and screened as described above using a 1 in 200 dilution of VRabS.

2.25.6 Purification o f positive recombinants

Plaques positive with VRabS were picked using the sharp end o f  a Pasteur pipette 
into 100 /d SM buffer. The phage were allowed to elute from the agar plug and then used 

in a tertiary array. 150 /¿I of Y1090 were plated out in 3 ml soft agar onto 90 mm YT 

amp50 plates and 5 0 - 1 0 0  pfu from each phage stock were spotted onto the surface in 
2 - 5 /d of SM buffer. The plates were incubated and recombinant proteins expressed and 

screened using a 1 in 200 dilution of VRabS. This procedure either confirmed the purity 
of the secondary phage stock or enabled a plaque to be selected for a tertiary stock.

2.25.7 Differential screening of tertiary arrays
Clones positive with VRabS on secondary screening were used in a tertiary array as 

described above (section 2.25.6) with the exception that following the removal of the first 

nitrocellulose filter a second IPTG impregnated filter was overlaid onto the plate. The
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plate was then incubated for a further 2 hours at 37°C and the second filter removed. 

Both filters were blocked and the first set incubated overnight in CIS diluted 1 in 50 in 

5% milk solution and the second in VRabS at a dilution of 1 in 200.

2.25.8  Amplification o f positive clones
Clones of interest were amplified and plate stocks made as follows:- Competent 

Y1088 were prepared as described for Y1090 (section 2.25.2) and infected with a high 

density of phage (5,000 pfus). The bacteria were then plated on fresh YT amp50 plates 
and grown overnight at 42°C in order to achieve confluent bacterial cell lysis. The plates 

were then overlaid with 5 ml of SM buffer and the phage eluted by gentle shaking for 2 

hours at 40°C. The SM buffer was removed and the bacterial cell debris pelleted by 
centrifugation at 2,000 x g for 10 minutes at room temperature. The supernatant was then 

aliquoted into 1 ml fractions and 15 /d of chloroform added per 1 ml. Phage stocks were 

stored at 4°C.

2.26 ANTIBODY SELECT
Plaque specific antibody purification (antibody select) was carried out using a 

modified version of the procedure described by Ozaki el al. , (1986):- Clones of interest 

were plated in duplicate at a density of 3 x 105 pfu per 90 mm YT amp50 plate. The 

plates were incubated at 42 °C until plaques were just visible ( 3 - 4  hours) then overlaid 
with filters impregnated with 10 mM 1PTG and incubated for 2 hours at 37 C. The filters 

were then turned over and the plates incubated for a further 2 hours to enable recombinant 
protein to bind to both sides of the filter. The filters were then removed, blocked in 5% 

milk solution for 2 hours and incubated overnight in a 1 in 40 dilution of VRabS at 4 C. 

Following removal of the antibody solution the filters were washed 5 times for 30 minutes 
(50 mM Tris/HCl (pH 8.0), 0.15 M NaCl, 0.02% Tween 20), once for 30 minutes (0.1 

M borate buffer (pH 8.0), 0.15 M NaCl), once for 30 minutes in PBS and finally for 30 

minutes in 10 mM Tris/HCl (pH 8.0). A petri dish was then blocked with 1 % BSA in 0.1 
M glycine/HCl (pH 2.7), and the filters incubated in the dish for 5 minutes in 4 ml of 0.1 

M glycine/HCl (pH 2.7) at room temperature. The eluted antibodies were removed and 
neutralised by the addition of 75 fil 2 M Tris/HCl (pH 8.0) and 400 n I 10% BSA were 

added. The antibodies were then used to probe Western blots as necessary.
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2.27 EXAMINATION OF THE RECOMBINANT PROTEINS EXPRESSED BY

Xgtll in Y 1090

Competent Y1090 were infected with 3 x Iff pfu and plated in 3 ml of soft agar 
supplemented with 2 mM IPTG onto fresh 90 mm YT amp50 plates. The plates were 

incubated at 37 C for 6 hours. The soft agar was then scraped away into 2 
microcentrifuge tubes and 1 ml of each scrape was boiled for 3 minutes with 333 ¡i\ of 

4 x SDS PAGE sample buffer. 2 - 10 1̂ of each sample was then loaded whilst molten 

onto an 8% polyacrylamide gel. Following electrophoresis, gels were initially stained with 
Coomassie blue to enable the amount of recombinant protein produced by individual 

clones to be assessed. Comparable amounts of recombinant protein were then loaded 

across a 7 cm slot, electrophoresed and transferred by Western blotting. The blot was then 
cut into strips and probed with various sera pre-absorbed by rolling overnight with 200 

fi\ of non-recombinant A.gtll lysate (see section 2.38.1).

2.28 EXTRACTION OF DNA WITH ORGANIC SOLVENTS
2.28.1 Phenol extraction

A volume of TE (see appendix) equilibrated phenol equal to half the volume of the 
sample was added and the tube was vortexed and incubated at room temperature for 5 - 

15 minutes. The sample was then centrifuged at 6,000 x g for 10 minutes at room 
temperature and the aqueous layer containing the DNA removed. To ensure that the 

maximum amount of DNA was obtained the remaining phenol was then overlaid with a 

suitable volume of SDW and vortexing, centrifugation and removal of the aqueous phase 

were repeated as above.

2.28.2 Chloroform extraction
Chloroform diluted 24 parts to 1 with isoamyl alcohol (CHC1,/IAA) was used to 

extract DNA using a procedure identical to that described for phenol extraction.

2.28.3 Phenol /  chloroform extraction
A 1 to 1 mixture of phenol and CHCI,/IAA was also used for purification of DNA. 

The procedure used was identical to that described above for phenol extraction.
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2.29 ETHANOL PRECIPITATION OF PNA
DNA was precipitated by the addition of 3 M Na acetate to a final concentration of 

300 mM plus 2 volumes of -20°C  absolute ethanol (Aristar grade, BDH) and incubation 
for 30 minutes at -70°C or overnight at -20°C. Following incubation the precipitated 

DNA was pelleted by centrifugation at 6,000 x g for 10 minutes at 4°C and the ethanol 

removed. The pellet was then washed with 70% -20 C ethanol, dried under vacuum and 

resuspended in an appropriate amount of SDW or TE.

2.30 LARGE SCALE PREPARATION OF keU I PNA
A single colony of Y1088 was used to inoculate 10 ml of YT media supplemented 

with ampicillin (50 ¿tg/ml) and 0.2% maltose. The culture was grown overnight in a 
shaking incubator at 37°C. The bacteria were then pelleted by centrifugation at 4,000 x 

g for 10 minutes at 4°C and resuspended in 10 ml 10 mM MgSO«, 3 ml of which was 
used along with 3 x 10s recombinant A.gtll phage to inoculate 75 ml JLB media (see 

appendix) supplemented with 2 mM MgS04. The culture was again grown overnight in 

a shaking incubator at 37°C, pelleted by centrifugation as above and the supernatant 

removed. Ribonuclease (RNAase, Sigma) at a final concentration of 40 /zg/ml and 

deoxyribonuclease (DNAase, Sigma) at a final concentration of 16 /xg/ml were then added 

to the supernatant which was incubated for 1 hour at 37 °C. The phage vx>ere- then 

precipitated by the addition of polyethylene glycol (PEG) 1000 and 2.5 M NaCl to a final 

concentration of 2.7% and 0 .3  M respectively, followed by incubation at 4°C for 2 

hours. The tubes were then centrifuged for 40 minutes at 14,000 x g and the pellets 

resuspended in 1 ml of TE plus 4 mM EDTA and incubated for 10 minutes at room 

temperature. The resuspended pV>â e >oe.«.then extracted once with phenol alone and 
repeatedly with phenol / chloroform until precipitated protein was no longer seen at the 

interface between the aqueous and organic phases. The contents o f the three tubes were 

then pooled and ethanol precipitated to concentrate the DNA. Following precipitation the 
remaining pellets were resuspended in 1 ml of TE, divided into two and phenol / 

chloroform extraction was repeated a further 5 times. The samples were then combined 
once more, ethanol precipitated as above and the pellet resuspended in an appropriate 

volume of TE.
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2.31 POLYMERASE CHAIN REACTION (PCR)
2.31.1 Amplification of DNA from Agtl 1 phage stocks

2 fjLI of phage stock was added to 18 /xl of SDW and boiled for 3 minutes. 4 /d of 

10 x PCR buffer (Bioline), 4 /xl dNTP’s (2 mM, Boehringer Mannheim), 0.6 /xl of each 

primer (20 /xM), a further 10.3 /xl of SDW and 0.5 /xl of Taq polymerase (5U//xl), 
Bioline) were then added to each sample. The sample was covered with a layer of sterile 

paraffin to prevent evaporation and the PCR reaction was carried out using 35 cycles as 

follows

Iienaturation 94 °C for 60 seconds

Annealing 55°C for 60 seconds
Extension 72 °C for 100 seconds

2 .31 .2  Amplification of DNA from cDNA libraries
PCR reactions were carried out using DNA from both adult and sporocyst cDNA 

libraries constructed in A.gtl 1 bacteriophage. 200 /xl of 2 M NaCl / 20% PEG were added 
to a 1 ml aliquot of the amplified library, the sample vortexed briefly and left at room 

temperature for 15 minutes. The preparation was then centrifuged at 6,000 x g for 5 

minutes at room temperature and the supernatant removed with care being taken to ensure 

that no PEG remained. The precipitated DNA was resuspended in 60 /xl of SDW and 7 

/xl of 10 x PCR buffer (Bioline), 7 /xl dNTP’s (2 mM, Boehringer Mannheim), 1 /xl of 
each primer (20 /xM) and 0.5 /xl Taq polymerase (5U//xl, Bioline) were added to 53.5 /xl 

of the DNA sample. The preparation was then overlaid with a layer of sterile paraffin and 

the PCR reaction carried out as follows

Cycle 1 Denaturation 94 °C for 5 minutes

Annealing
Extension

55 C for 60 seconds 
12°C for 60 seconds

Cycles 2 -31 Denaturation

Annealing

Extension

94 C for 60 seconds

55 C for 60 seconds

72 C for 60 seconds
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2.31.3 PCR primers
The following primers were used for PCR reactions.

Agtll forward primer:- 5d(GGTGGCGACGACTCCTGGAGCCCG)3'
Xgtll reverse primer:- 5'd(TTGACACCAGACCAACTGGTAATG)3'

2.1 primer:- 5'd(GCGCGA ATTCG A A AGTTTCTT ATTTGT)3'

2.32 DNA ELECTROPHORESIS
2.32.1 Agarose gel electrophoresis

An appropriate amount of 6 x concentrated agarose gel loading buffer (30% glycerol, 

0.25% xylene cyanol FF, 0.25% bromophenol blue) was added to the DNA to be 

separated by electrophoresis. The sample was then loaded onto a 1 % agarose gel (Biorad) 

made in TA£ (see appendix) and electrophoresed alongside high and / or low molecular 

weight DNA markers. The molecular weights o f the markers used were as follows:-

A Hind HI (bp) <6X Hae HI (bp)

23,130 1,353

9,416 1,078

6,557 872

4,361 603

2,322 310

2,027 281

564 271

125 234

194

118

72

1 /d of A. Hind III (USB) and / or 0.5 /d of <£X Hae III (Cambridge Bioscience) were run 
per agarose gel. The gel was electrophoresed at 80 V for 30 - 45 minutes using the Biorad 

mini sub DNA cell electrophoresis system.

2.32.2 Staining o f agarose gels
On all occasions DNA agarose gels were stained with ethidium bromide (Sigma) 

taken from a 10 mg/ml stock. If the DNA was not to be isolated from the agarose gel and
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used in subsequent procedures then 1 /xl of ethidium bromide was added to the molten 

agarose and incorporated into the gel prior to electrophoresis. If the DNA was to be used 

in subsequent procedures then the gel was stained following electrophoresis by incubation 
in a solution of ethidium bromide in TAE for as long as was necessary to visualise the 

DNA. DNA was visualised by examination of the gel on a UV light transilluminator and 
gels photographed under UV light using an orange filter.

2.33 PURIFICATION QF PNA FROM LOW MELTING POINT AQARQSE
DNA electrophoresis was performed as above with the exception that 1 % low melting 

point agarose (Biorad) was used and the gel was electrophoresed at 40 V for 1 to 1 '/i 

hours. The DNA was then visualised by staining as briefly as possible with ethidium 
bromide and the region of the gel containing the DNA was excised using a sterile scalpel 

blade and transferred to a microcentrifuge tube. A volume of SDW approximately equal 
to that of the gel was added together with 5 M NaCl to give a final concentration of 0.25 

M and the sample was placed at 65°C for 10 minutes or until the agarose was molten. 

DNA was extracted from the molten solution with phenol and then chloroform and 
ethanol precipitated overnight at -20° C.

2.34 DIGESTION OF DNA WITH RESTRICTION ENZYMES
Digestions were carried out in 10 p\ of the appropriate buffer at 37 C for 90 

minutes. The reaction was then stopped by freezing the sample or by phenol / chloroform 
extraction. The following restriction enzymes were used at a concentration of 5 - 10 units 

per 1 ng of DNA to be digested.

Enzyme Buffer

EcoR I (NBL) High

Pvu II (NBL) Medium (USB)

Kpn 1 / S a d  (NBL) Low

Buffers (1QX) NaCl Tris/HCl (pH 7.4) MgCl2 DTT

High 1 M 0.5 M 0.1 M 10 mM

Medium 0.5 M 0.1 M 0.1 M 10 mM
Low . 0.1 M 0.1 M 10 mM
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2.35 SIJBCEONING

2.35.1 Plasmid vectors

(a) M13 mp!8/mpl9
M13 vectors are often used to subclone DNA prior to sequencing as they enable 

single stranded DNA to be obtained. A further attraction of these vectors is that insertion 
of DNA into the cloning site inactivates the a  peptide thus preventing the synthesis of B- 

galactosidase and allowing bacteria harbouring recombinant phage to be selected on X-gal 

/ IPTG plates. Here the Kpn / Sac fragment of Agtl 1 clone 18.5 was subcloned into Kpn 

/ Sac cut M13 mpl9 using 10 ng of de-phosphorylated vector DNA and a 1 : 3 vector 

to insert ratio. EcoR I cut PCR products from clones 18.5 and 2.1 were similarly 

subcloned into EcoR 1 cut M13 mpl8.

(b) pGEM-T vector
The pGEM-T vector (Promega) is specially designed for the cloning of PCR 

products. It is prepared by digestion of the pGEM-5Zf vector (Promega) with the enzyme 
EcoR V followed by the addition of a single 3' thymidine residue to both strands. This 

creates T overhangs which increase the efficiency with which PCR products are cloned 

into the pGEM-T vector by forming base pairs with the single deoxyadenosine residue 

added to the 3' end of PCR products by many Taq polymerases. The pGEM-T vector also 

employs insertional inactivation o f the a  peptide allowing colour selection of 

recombinants. A PCR product of clone 2.1 was subcloned into the pGEM-T vector using 

25 ng of vector DNA and a 1 : 5 vector to insert ratio.

(c) TA vector
TA vector was kindly prepared and the ligation performed by Dr. Phillipa Francis 

at the Middlesex Hospital. The TA vector is prepared by digestion of the Bluescript SK 

+ /- vector with the enzyme EcoR V and the addition of 3' terminal thymidine to both 
strands. As with the pGEM-T vector the efficiency of ligation o f  PCR products into the 

TA vector is improved by the formation of T overhangs. Recombinant TA plasmids can 

also be identified by colour selection. A PCR product of clone 2.1 was suhcloned into the 
TA vector using 100 ng of vector DNA and a 1 : 2 vector to insert ratio.
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(d) pGEX vector

The pGEX vectors are versions of a plasmid (pSj5) (Smith and Johnson, 1988) which 

is able to direct the synthesis of the 26 kDa S. japonicum GST isoenzyme (Sj28 GST) in

E. coli under the control of an IPTG inducible promotor. The vectors are modified in 

such a way as to allow the expression of foreign peptides as a fusion with the C-terminal 

of Sj28 GST. Such recombinant proteins are easily purified using glutathione bound 

to agarose beads and the protease thrombin can then be used to remove Sj28 GST. One 

of the pGEX vectors, pGEX-2T, has a unique EcoR I site within its cloning region which 

is in frame with the EcoR I site of Agtl 1. Thus, following subcloning of the PCR product 

of clone 2.1 into the TA vector, the insert was excised by cutting with EcoR I and 
subcloned into pGEX-2T. For each ligation 25 ng of vector DNA was used and a 1 : 2 

vector to insert ratio.

2 .35 .2  DNA ligations

DNA ligations were carried out overnight at 16°C using 1 /d of T4 ligase and 1 ¿il 

10 X ligase buffer (NBL) in a 10 pA reaction.

2 .35 .3  Preparation of competent TG2s
All of the plasmids were used to transform the bacterial strain TG2 (supE hsda5 thi 

h(lac-pro\R) A(srl-recA)3O6::Tn/0(/ef) F ’ |/roD36 pro M i' loci' ZocZaM I5|):- A 
glycerol stock of TG2 was used to streak a minimal plate (see appendix) which was 

grown overnight at 37°C. A single colony of TG2 was then used to inoculate 10 ml of 

YT which was grown overnight at 37°C with shaking. 2 ml of the overnight culture was 

then used to inoculate a further 40 ml of YT and the culture grown until an ODm of 0.4 - 

0.6 was reached (approximately 2 hours). The bacteria were then pelleted in sterile tubes 
by centrifugation at 400 x g for 10 minutes at 4°C and the pellet resuspended in 20 ml 

ice cold 50 mM C'aCf. The cells were incubated on ice for 20 minutes and then 

centrifuged as above. The final pellet was resuspended in 4 ml of 50 mM CaCI2 and the 

bacteria stored at 4°C until needed. Competent cells were most efficient when used 

immediately although transformation of the cells was possible for up to 5 days following 
treatment.

2 .35 .4  Transformation of competent bacteria with plasmid DNA
The procedure used for the transformation of bacteria with the single stranded
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plasmids M13 mpl8/mpl9 is given in section 2.37.1. Bacterial cells were transformed 

with pGEM-T, TA or pGEX plasmids as below.

10 /xl of the ligation reaction containing recombinant plasmid DNA were added to 

200 /il of fresh competent cells. The preparation was incubated on ice for at least 30 

minutes to enable the DNA to bind to the surface of the bacteria and movement of the 
DNA into the cell was then induced by heat shocking in a water bath at 42 °C for 90 

seconds. The cells were transferred onto ice and the volume of the preparation made up 

to 5 ml by the addition of YT. The culture was then incubated at 37°C for 1 hour with 

gentle shaking. This enables the enzymes encoded by the plasmid which detoxify 

antibiotic to be produced within the bacteria prior to plating out on ampicillin plates. 

Following incubation the cells were pelleted by centrifugation at 600 x g for 10 minutes 
and the majority of the supernatant removed. The cells were plated out in the remaining 

media (approximately 100 /xl) on 90 mm YT plates supplemented as appropriate for the 
selection of recombinants and grown overnight at 37°C.

2.35.5 Selection o f recombinants
The procedure used for the selection of recombinants was determined by the 

phenotype of the plasmid.

(a) Selection on ampicillin plates
All the plasmids employed carry the ampicillin resistance gene. Thus, in all cases 

transformed cells were plated on ampicillin plates which allow only those bacteria 

harbouring plasmids to grow and form colonies. Cells transformed with the pGEM-T 

plasmid were grown on YT plates supplemented with ampicillin at a concentration of 100 
/xg/ml. For cells transformed with other plasmids ampicillin at a concentration of 50 

ftg/ml was used.

(b) Selection on 1PTG / X-gal plates

Bacterial cells transformed with the TA or pGEM-T plasmids were grown on YT 
plates supplemented with appropriate amounts of ampicillin and overlaid with IPTG and 

X-gal (5-bromo-4-chloro-3-indolyl-B-D-galactopyranoside):- 4 /¿I of IPTG (1 M) and 4 

n\ of X-gal (10%) in 100 /¿I YT were used per 90 mm plate and the plates were spread 
at least half an hour prior to plating of the bacteria. The plates were then dried and the
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bacteria plated. White colonies of cells harbouring recombinant plasmids could be 

distinguished from colonies of cells harbouring self ligated vector which are blue in 

colour.

2.36 PREPARATION OF DOUBLE STRANDED PLASMID DNA
The procedure used for the preparation of single stranded DNA from the M13 vector 

is given in section 2.37.1. The following methods were used for the preparation of TA 

and pGEM-T double stranded plasmid DNA.

2.36.1 Mini preparations

(a) Quick boiling method
This method was used for identifying recombinant clones by size differentiation. 

Putative recombinant clones were picked using a sterile bacterial loop and used to 
inoculate 3 ml o f YT plus ampicillin (50 - 100 /ig/ml). The cultures were incubated 

overnight at 37 °C with shaking. Bacteria from 1.5 ml of each overnight culture were then 

pelleted by centrifugation at 6,000 x g for 10 minutes at room temperature and the 

supernatant removed. The pellet was resuspended by vortexing in 100 /¿I STET (0.1 M 

NaCl, 10 mM Tris/HCl (pH 8.0), 1 mM EDTA, 5%  TX-100) and 8 fi\ of fresh lysozyme 

solution (a few crystals in 1 ml 10 mM Tris (pH 8.0)) was added. The tubes were 
incubated on ice for 5 minutes prior to boiling for 40 seconds. Chromosomal DNA was 

then sedimented by centrifugation for 10 minutes at 4°C and removed using a sterile 

pipette tip. 20 /d of the remaining supernatant was electrophoresed on a 1 % agarose gel 

alongside identically prepared DNA from a non-recombinant vector. An increase in the 

size of the plasmid was used as an indicator o f the insertion of foreign DNA.

(b) Alkaline lysis method
This method was used to prepare small amounts of recombinant DNA to a purity 

suitable for cutting with restriction enzymes and subcloning. A single colony of 

recombinant bacteria was used to inoculate 3 ml o f YT plus ampicillin (50 - 100 /¿g/ml) 

and the culture grown overnight at 37°C with shaking. 1.5 ml of the culture was then was 

centrifuged at 6,000 x g for 10 minutes at room temperature, the supernatant discarded 

and the pelleted bacteria resuspended in 100 /d o f  15% sucrose, 10 mM EDTA, 25 mM 
Tris/HCl (pH 8.0) plus a few crystals of lysozyme. The solution was incubated on ice for

98



5 minutes and chromosomal DNA then denatured by the addition of 200 n I 0.2 M NaOH 

/ 1 % SDS and incubation on ice for a further 5 minutes. The preparation was neutralised 

by the addition of 150 /tl 3 M potassium acetate, 12% acetic acid and the denatured 
chromosomal DNA sedimented by centrifugation at 6000 x g for 15 minutes at 4°C. The 

supernatant was removed, extracted with phenol / chloroform and the DNA precipitated 
with ethanol at -70°C for 30 minutes. Following precipitation the pellet was resuspended 

in 50 /xl TE and treated with RNAase (final concentration of 50 /xg/ml) for 90 minutes 

at 37°C. The preparation was re-extracted with phenol and phenol / chloroform until the 
DNA was free from contaminating protein and then ethanol precipitated overnight. The 

final pellet was resuspended in 10 /xl TE.

2.36.2 I^arge scale preparation o f DNA from recombinant plasmids

A single colony was used to inoculate 10 ml of YT plus ampicillin (50 /xg/ml) and 
the culture grown overnight in a shaking incubator at 37°C. 200 /¿I of this overnight 

culture was then used to inoculate a further 100 ml of YT which was grown overnight as 

above. Following incubation bacteria were pelleted by centrifugation at 400 x g and the 

supernatant removed. The pelleted bacteria were resuspended in 5 ml 15% sucrose, 10 

mM EDTA, 25 mM Tris/HCI (pH 8.0) plus a few crystals of lysozyme and the 

preparation incubated on ice for 5 minutes. 10 ml 0.2 M NaOH / 1% SDS were then 
added and the tube incubated for a further 5 minutes. The solution was neutralised by the 

addition of 7.5 ml 3 M potassium acetate, 12% acetic acid and incubated on ice for 30 - 
60 minutes. Denatured chromosomal DNA was then sedimented by centrifugation at

4,000 x g for 20 minutes at 4 °C. The supernatant was collected and extracted once with 

phenol / chloroform. The plasmid DNA was then precipitated by the addition of 1 volume 
of isopropanol and incubation on ice for at least 10 minutes. The DNA was pelleted by 

centrifugation at 400 x g for 10 minutes at 4°C, the isopropanol removed and the pelleted 

rinsed with 70% ethanol and dried under vacuum. Once free of ethanol the pellet was 
resuspended in 4 ml of TE and incubated with 50 /xg RNAase for 1 hour at 37°C. The 

reaction was stopped by phenol extraction followed by extraction with phenol / 
chloroform and the plasmid DNA was then concentrated by ethanol precipitation. 

Following precipitation the pellet was resuspended in 606 /xl of SDW and incubated with 

PEG / NaCI at a final concentration of 10% and 0.4 M respectively for 20 minutes on 
ice. The DNA was then |*.lltk 4 ly centrifugation at 6,000 x g for 15 minutes at 4°C,
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rinsed with 70% ethanol, dried under vacuum and resuspended in 50 fi\ of TE.

2.37 DNA SEQUENCING
2.37.1 Preparation o f M13 DNA for sequencing

A plaque containing recombinant M13 phage was resuspended in 1.5 ml of a 1 in 100 
dilution of an overnight culture of TG2. This was then grown for 5xh  hours at 37°C in 

a shaking incubator. The bacteria were pelleted by centrifugation at 6,000 x g for 10 

minutes at room temperature and a 20 /¿I aliquot of the supernatant was incubated at 65 C 
for 5 minutes with 1 fil 2% SDS. 5 /¿I of DNA sample buffer were then added and the 

sample was electrophoresed on a 1 % agarose gel alongside non-recombinant plasmid. An 

increase in size was used as conformation of the present o f  an insert and if observed 200 
/¿I of the remainder of the supernatant was precipitated with 20% PEG / 2M NaCl by 

incubation for 15 minutes at room temperature. The DNA was then pelleted by 
centrifugation at 6,000 x g for 5 minutes at room temperature and the supernatant 

removed. This procedure was repeated to ensure complete removal o f PEG. The pellet 

was then resuspended in 100 fi\ TE, subjected to repeated phenol / chloroform extraction 
until the DNA was free from contaminating protein and ethanol precipitated overnight. 

1 fi\ of the preparation was electrophoresed alongside a sample of M 13 of a known 

concentration to estimate the yield. 1 fig o f recombinant DNA was used per sequencing 

reaction.

2.37.2  Preparation o f double stranded DNA for sequencing
Double stranded plasmid DNA was isolated from bacterial cells as described (section 

2.36.2). For each sequencing reaction to be performed 2.5 fig of DNA was then 

denatured as follows:- The volume of the sample containing the DNA to be denatured was 

made up to 16 fi\ by the addition of SDW if necessary. 4 fi\ of 2 M NaOH, 1 mM EDTA 

were then added and the preparation was incubated for 5 minutes at room temperature. 
The solution was placed on ice, neutralised by the addition of 2 fi\ of 2 M ammonium 

acetate (pH 5.6) and the DNA precipitated by the immediate addition of 55 fi\ of ice cold 

95% ethanol. The sample was then incubated at -80°C for at least 10 minutes, the ethanol 

removed and the pellet washed twice with 1 ml of 70% -20°C ethanol. The final pellet 

was freeze dried under vacuum and resuspended in 7 fi\ o f SDW.
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2 .37 .3  Sequencing reactions
DNA sequencing was performed using a USB Sequenase kit according to the 

manufacturers instructions

(a) Annealing the sequencing primers
The primers to he employed were diluted to a concentration of 0.5 jiM and 1 /xl (0.5 

pM) was added to 7 /¿I of resuspended DNA plus 2 /xl of sequenase buffer (0.2 M 

Tris/HCl (pH 7.5), 0.25 M NaCl, 0.1 M MgCl2). The preparations were then warmed 
to  65°C for 2 minutes and cooled slowly until the temperature reached 30° C. The tubes 

were then placed on ice. The primers used for sequencing were as follows:-

Xgtl 1 forward primer:- 

Xgtl 1 reverse primer:- 
M13 (-40) primer:- 

T3 forward primer 

2.1 primer:-

5'd(GGTGGCGACGACTCCTGGAGCCCG)3' 

5'd(TTGAC ACCAGACCA ACTGGT A ATG)3' 
5'd(GTTTTCCCAGTCACGAC)3'

5'd(T A AT ACG ACTC ACT AT AGGGCG A )3' 

5'd(GCGCG A ATTCG A A AGTTTCTT ATTTGT)3'

(b) Labelling reactions

For standard reactions (reading up to 500 base pairs from the primer) the labelling 
mix (7.5 fiM dGTP, 7.5 /xM dCTP, 7.5 /xM dTTP) was diluted 1 in 5 with SDW and 2 

Ml of diluted labelling mix, 1 /xl of 0.1 M DTT, 0.5 /xl |a -”S|dATP (10 /xCi//xl, 600 

Ci/mM) and 2 /xl of sequenase diluted 1 in 8 in enzyme dilution buffer (10 mM Tris/HCl 

(pH 7.5), 5 mM DTT, 0.5 mg/ml BSA) were added. The reaction was then incubated at 

rtx>m temperature for 5 minutes.

(c) Termination reactions
Once the labelling reaction was complete 3.5 /xl of the reaction was transferred to 

each of 4 pre-warmed (37°C for 1 minute) tubes containing 2.5 /d of a termination mix 

(each termination mix contains 80 (xM dGTP, 80 fiM dATP, 80 /xM dCTP, 80 /xl dTTP, 
50 mM NaCl plus 8 ddGTP (ddGTP termination mix) or 8 /tM ddATP (ddATP) 

termination mix, 8 /xM ddCTP (ddCTP termination mix) or 8 /xM ddTTP (ddTTP 

termination mix)). The tubes were then incubated for 5 minutes at 37°C. Termination 

reactions were stopped by the addition of 4 /xl stop solution (95% formamide, 20 mM
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EDTA, 0.05% bromophenol blue, 0.05% xylene cyanol FF). The samples were then 

stored overnight at -20 °C.

(d) Alteration of reaction conditions
(a) Sequencing close to the primer:- For sequencing close to the primer (less than 200 

nucleotides). The labelling mix was diluted 1 in 20 in SDW and both the labelling and 

termination reactions were carried out for only 3 minutes.

(b) Extending sequences away from the primer:- To sequence up to 600 nucleotides 

away from the primer the termination reaction was altered by the replacement of 2.5 /d 

of termination mix with a mixture of 1.5 /d Sequence Extending Mix plus 1 /d of the 

appropriate termination mix.

2.37.4 Denaturing gel electrophoresis
40 cm by 33 cm glass plates were used with 0.4 mm spacers. Prior to pouring the 

gel the plates were thoroughly cleaned with NaOH / ethanol and treated with Repelsilane 

(small plate) (Hopkins & Williams) or 15 /il silane (large plate) (BDH), 165 /d 10% 

acetic acid in 5 ml methanol (large plate). A 40% acrylamide : N N \  methylene 

bisacrylamide (ratio 1 9 :1 )  stock solution was then used to make a 6% polyacrylamide 

sequencing gel (6% acrylamide : bisacrylamide solution, 50 mM Tris, 50 mM orthoboric 
acid, 1 mM EDTA, 7.6 M urea, 0.04% ammonium persulphate, 0.0005% TEMED). The 

gel was poured and allowed to set overnight at room temperature. Immediately prior to 
electrophoresis the samples to be loaded were heated to 75 C for 2 minutes and the gel 

was pre-run for 20 minutes at a constant 40 W in running buffer (0.1 M Tris, 0.1 M 

orthoboric acid, 2 mM EDTA). The wells were then cleared of urea released from the gel 
and the samples were loaded and electrophoresed at a constant 40 W. If sequence close 

to the primer alone was required potassium acetate was added to the lower buffer chamber 

to a final concentration of 1 M and the gel was electrophoresed until the highest dye line 

was approximately 22 cm from the bottom of the gel. If sequencing further from the 

primer was also required then potassium acetate was not used, electrophoresis was 
continued until the lower dye line reached 3 cm from the bottom of the gel and a second 

set of reactions were loaded and electrophoresed until the higher dye line was 22 cm from 

the bottom of the gel. Following electrophoresis the gel was soaked in 10% acetic acid 

for 10 minutes at room temperature, rinsed with water for 20 minutes and then dried for
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1 hour at 8 0 C . Dry gels were then put down on Kodak XAR-5 scientific imaging film.

2.38 PREPARATION OF Agtl 1 RECOMBINANT___PROTEINS___EQR

IMMUNISATION
2.38.1 Preparation of Agtl 1 lysogens

A glycerol stock of Y1089 was used to streak a fresh YT amp50 plate and the plate 

incubated at 37°C overnight. A single colony of Y1089 was then used to inoculate 10 ml 

of YT supplemented with 0.4% maltose and ampicillin (50 #xg/ml) and the culture grown 

overnight at 37°C in a shaking incubator. 1 ml of this overnight culture was used to 

inoculate 50 ml of pre-warmed YT supplemented as above and the culture incubated with 

shaking at 37°C until an OD„o of 0.5 was reached (approximately 3 hours). MgCI, was 

then added to the cell culture to give a final concentration of 10 mM and the cells 

aliquoted into volumes of 100 pi. Each 100 pi aliquot was then infected with 
approximately 1.25 x 10* pfu of the A gtl 1 18.5 phage stock and incubated for 20 minutes 

at 32°C. A 1 x 10* dilution of infected cells were plated out onto 90 mm YT amp50 

plates to give approximately 250 pfu per plate and grown overnight at 32°C. Following 
overnight incubation 12 colonies were picked using a sterile pipette tip and each colony 

streaked onto two separate YT amp50 plates. One plate was then incubated overnight at 

32°C and the other at 43 °C. Clones which contained lysogenic phage were able to grow 
at 32°C but not at 43°C. Such clones were picked and used to produce recombinant 

proteins.

2.38.2 Expression of the recombinant protein by lysogenic phage
A single colony of Y1089 harbouring lysogenic phage was used to inoculate 5 ml of 

YT plus ampicillin (50 pg/ml) and the culture was grown overnight at 32°C with shaking. 

This overnight culture was then used to inoculate a further 100 ml of YT supplemented 

with ampicillin (50 pg/ml) and the culture grown until an OD»» of 0.5 - 0.6 was reached 

(1 .5 -2  hours). The lytic cycle of the phage was then induced by incubating the culture 

at 42°C for 20 minutes with occasional mixing and IPTG was added to a final 
concentration of 10 mM to induce protein expression. The culture was then grown for a 

further 1.5 hours at 37°C. The bacteria were pelleted by spinning at 400 x g for 10 

minutes at room temperature, resuspended in 2 ml of PBS and stored at -20 C.
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2.38.3 Purification o f the recombinant protein on a sucrose cushion
A few crystals of lysozyme were added to lysogens prepared as above and the 

samples incubated on ice for 20 minutes. The detergent TX-100 was then added to a final 
concentration of 1 % and the preparation sonicated 3 times for 30 seconds. Sucrose 

cushions were prepared by pipetting 3.2 ml of 25% sucrose in PBS plus 0.05% TX-100 
into ultracentrifuge tubes (Ultraclear centrifuge tubes, Beckman). 1.8 ml of sonicated 

control or 18.5 lysogen was then overlaid onto the sucrose gradients and the tubes 

centrifuged at 60,000 x g (27,000 rpm in a Beckman SW 55 swinging bucket rotor) for 
30 minutes at 4°C. Following centrifugation the supernatant was removed followed by 

the sucrose itself. Both phases were placed on ice while the remaining pellet was washed 

with PBS plus 0.05% TX-100. The pellet was then resuspended in 1 ml PBS. 20 /d o f 

the control and 18.5 lysogen supernatant and pellet phases were separated by 

electrophoresis through 8% polyacrylamide gels. The gels were stained with Coomassie 
blue or transferred by Western blotting and probed with VRabS in order to determine the 

phase in which the recombinant protein (FP 18.5/B-gal) was present.

2.39 IMMUNISATION OF MICE WITH FP 18.5/B m l
2 female Balb/c mice and 2 female CBA mice were immunised with the supernatant 

phase obtained by separation on sucrose gradients of a lysate of bacteria harbouring the
18.5 recombinant phage (section 2.38). 2 control animals were immunised with the 

supernatant phase prepared from bacteria harbouring the wild type phage. The amount of 

FP 18.5/B-gal or B-gal alone present in this preparations was estimated to be 10 ¡xg / 50 

fi\ by comparison with protein standards following SDS PAGE and staining with 

Coomassie blue. Each mouse was immunised with a total of 150 pi (30 fig of protein) 
given over the course of three immunisations (days 0, 14 and 47). For the first of these 

immunisations the protein was given s.c in conjunction with FCA, whilst FIA was used 

for the latter two. All of the mice were challenged with 200 cercariae on day 59 and 

killed and perfused 55 days later.

2.40 PREPARATION___Qli__ GST___RECOMBINANT___PROTEINS___FOR
IMMUNISATION

2 .4 0 .1 Expression o f recombinant proteins in pGEX
Following the subcloning of the 2.1 insert into the pGEX expression vector a single
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colony of bacteria harbouring the recombinant plasmid was used to inoculate 5 ml of YT 

plus ampicillin (50 /tg/ml). The culture was incubated overnight at 37°C with shaking. 

500 pi of this overnight culture was then used to inoculate 4.5 ml of YT plus ampicillin 

(50 /xg/ml) and the culture grown for 2 hours as above. To induce the expression of the 

recombinant protein IPTG was added (1 mM final concentration) and the culture was 
grown for a further 2.5 hours. Bacteria were then pelleted by centrifugation at 500 x g 

for 10 minutes at room temperature, the supernatant removed and the cells disrupted by 

resuspension in 500 /xl of 1 % TX-100 in PBS and 3 freeze / thaw cycles. Centrifugation 

was then repeated as above and the supernatant containing the released recombinant 

protein removed. 40 pi of a 50% suspension of glutathione agarose beads (Sigma) in PBS 

were added to the supernatant which was rotated overnight at room temperature. The 
beads were then pelleted by centrifugation, the unbound fraction removed and the beads 

washed three times with 1 ml of 1% TX-100 in PBS. The beads were boiled for 5 
minutes in an equal volume of SDS PAGE sample buffer, sedimented by pulse 

centrifugation and the supernatant electrophoresed alongside proteins expressed by non- 

recombinant pGEX prepared in an identical manner.

2.40.2 Large scale preparation and purification o f  FP 2.1/GST

The above method was scaled up to provide a 1 L culture of bacteria harbouring the 

recombinant pGEX plasmid. The bacteria were then pelleted and antigen released from 

the pellet by resuspension in 20 ml of 1 % TX-100 in PBS and sonication three times for 
30 seconds. The bacterial debris was then pelleted by centrifugation as above and the 

supernatant passed through a 2 ml column of glutathione agarose beads (pre-eluted with 

5 mM reduced glutathione, 50 mM Tris/HCl (pH 8.0)). The column was washed with 25 
ml 1 % TX-100 in PBS followed by 25 ml PBS alone. Bound recombinant proteins were 

then eluted with 10 ml 5 mM reduced glutathione, 50 mM Tris/HCl (pH 8.0) and 1 ml 

fractions collected. The fractions containing recombinant protein were identified using 
SDS PAGE and Coomassie blue staining and stored at -20°C until required for 

immunisation.

2.40.3 Thrombin cleavage o f  FP 2.1/GST
10 ¡ig of purified recombinant protein in 33 ¿(1 of 5 mM glutathione, 50 mM 

Tris/HCl (pH 8.0), 100 mM NaCI, 1.5 mM CaCl2 was initially digested overnight at
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25°C with 8 /il (2.7 U) of thrombin (Sigma). This amount of thrombin was latter used 

to cleave 50 fig of recombinant protein.

2.41 PREPARATION OF GST FOR IMMUNISATION
GST alone was prepared from non-recombinant pGEX using a protocol identical to 

that used for the preparation o f recombinant proteins.

2.42 IMMUNISATION OF MICE WITH FP 2.1/GST
2.42.1 Investigating the antigenicity o f the recombinant protein

In a preliminary experiment a single female Balb/c and a single female CBA mouse 

were immunised with 10 fig of purified FP 2.1/GST. A single female CBA mouse was 

immunised with thrombin cleaved material from 30 fig of FP 2 .1/GST and a third female 

CBA mouse was immunised with 10 fig of GST alone. The FP 2.1/GST and GST used 
were prepared as described (section 2.40, 2.41) and the protein concentration of these 

samples estimated by comparison with protein standards following SDS PAGE and 

Coomassie blue staining. The volume of the sample was then adjusted by the addition of 
sterile saline to 50 - 75/xl prior to immunisation. In all cases the antigen was injected with 

FCA and divided between two s.c. sites. A boost immunisation was given after 14 days 

using the adjuvant FIA.

2.42.2 Investigating the immunising potential of FP 2.1/GST
Following the above preliminary experiment a group of 8 female Balb/c mice were 

immunised with 50 ¡i\ (10 fig) of FP 2 .1/GST plus 50^1 of FCA by s.c. injections in each 

of two sites (day 0). Two groups of 8 control animals were also immunised. In one group 
FP 2.1/GST was replaced by 10 fig of GST and in another by sterile saline. Repeated 

immunisations in which FCA was replaced by FIA were then given on days 23, 59, 162 

and 197. The mice were challenged with 200 cercariae per mouse on day 232 and 

perfused 7 weeks latter.

2.43 INVESTIGATING THE BINDING OF RADIOACTIVE CALCIUM TO THE 

15 KDA ANTIGEN
Equivalent amounts of FP 2.1/GST protein and a known calcium binding protein 

(recombinant S. japonicum calpain, a gift from Dr. M. Huggins of L.S.H.T.M.) were
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separated by SDS PAGE and transferred by Western blotting. Half of the blot was then 

stained with amido black. The other half was washed for a total of 1 hour in three 

changes of calcium binding buffer (60 mM KC1, 5 mM CaCl2, 10 mM imidazole) and 
incubated in 10 ml 4,CaCl, (1 mCi/L, Amersham) for 10 minutes at room temperature. 

Following incubation the latter blot was washed in SDW for 5 minutes at room 
temperature, rinsed briefly in 50% ethanol and air dried overnight. When completely dry 

the blot was used to expose scientific imaging film (Kodak XAR-5) for at least 24 hours.

2.44 CALCULATION OF RESISTANCE
Percentage resistance was calculated as follows:-

%R =  lOOx I 1 - mean worm recovery from experimental group 1 
mean worm recovery from control group

Statistical significance was assessed using Student’s ’f  test.
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3.1 INTRODUCTION
As described in Chapter 1, a 16 kDa antigen present on the surface of S. mansoni 

schistosomula has been shown to be of particular interest as a vaccine candidate molecule. 

As well as having a surface location, the antigen is the target o f a passively protective 
McAb and is recognised preferentially by sera taken from demonstrably immune animals 

vaccinated with irradiated parasites. Two of the main aims of this research have therefore 
been to characterise the biochemical nature of this molecule and to  examine the immune 

response generated on immunisation with the 16 kDa antigen alone. In order to be able 

to carry out such studies it was first necessary to devise suitable strategies for the 
extraction and purification of the antigen from the parasite. It is with this that the 

experiments detailed in this chapter are concerned.

Previous studies have demonstrated that the 16 kDa antigen separates into the 
detergent, rather than the aqueous phase, following extraction of MS with Triton X-l 14 

(TX-114) (Bickle et al., 1990). This indicates that the antigen is an integral membrane 

molecule and hence that the use o f  a detergent is essential for its extraction. The first 
section of this chapter describes studies aimed at assessing the efficiency of a number of 

detergent extraction protocols with regard to their ability to extract the 16 kDa antigen 

from the schistosomula and cercarial stages of the parasite.
Having achieved efficient extraction of the 16 kDa antigen, attempts were made to 

purity the molecule in preparation for immunisation and further characterisation studies. 

The use of immunoaffinity chromatography employing the McAb (B3A), a variety of 
other chromatography techniques, and the isolation of the 16 kDa antigen following SDS 

PAGE were investigated. In each case the purity of the antigen obtained was assessed by 
silver and Coomassie blue staining and by the probing of Western blots with both B3A 

and VRabS.

3.2 RESULTS

3.2.1 DETERGENT EXTRACTION OF THE 16 kDa ANTIGEN
3.2.1.1 Extraction of the 16 kDa antigen with the non-ionic detergent TX-114

Following extraction with TX -114, soluble and integral membrane molecules can be 

separated into the aqueous and detergent phases of the preparation respectively (Bordier, 
1981). One advantage of using this detergent for the large scale extraction of the 16 kDa 

integral membrane antigen may therefore be the attainment of an accompanying degree
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of purification via the removal of soluble molecules which partition into the aqueous 

phase. However, TX-114 is also a mild non-ionic detergent which is known to be 

relatively inefficient at solubilising membranes (Helenius, 1979). Thus, although it has 
been demonstrated that some 16 kDa antigen does separate into the detergent phase 

following extraction of MS with TX-114 (Bickle et al., 1990) it is possible that this 

represents only a small proportion of that antigen which is available. Before TX-114 could 
be used in large scale extraction procedures it was therefore deemed necessary to 

determine what proportion o f the antigen was efficiently extracted by this detergent. Both 

cercariae and MS were compared as possible sources of the molecule:- Equivalent 
numbers of intact cercariae and MS were incubated in 0.5% TX-114 for 30 minutes at 

4°C. The supernatant was then removed and separated into aqueous and detergent phases 

(Aql and Txl) whilst the remaining parasites were disrupted by sonication in PBS and 
the extraction and separation procedures repeated (Aq2 and Tx2). Comparable amounts 

of protein from both aqueous and detergent phases and the final insoluble pellet were then 
separated by SDS PAGE and transferred by Western blotting. Figure 3.1 demonstrates 

that a number o f aqueous (Aql) and detergent (Txl) phase antigens were extracted by 

incubation of intact parasites in TX-114. These included the 16 kDa antigen which was 
clearly observed following the probing of Western blots with VRabS (Figure 3.1(A)). 

However, only a very poor 16 kDa signal was seen following the probing of similar blots 

with B3A (Figure 3.1(B)) thus indicating that TX-114 fails to extract much 16 kDa 
antigen from the intact parasite. In contrast, TX-114 extraction of parasites disrupted by 

sonication was successful in removing significant amounts of 16 kDa antigen from both 
MS (S) and cercariae (C). As expected, the antigen partitioned into the detergent phase 

(Tx2) of the preparation where it was a major antigen recognised by VRabS and by B3A. 

Again numerous soluble antigens separated into the aqueous phase (Aq2). Thus, some 16 
kDa antigen was extracted from sonicated parasites using the detergent TX-114 and as 

hoped a degree of purification was obtained by the separation of this integral membrane 

molecule from the aqueous phase antigens. However, extraction of the remaining TX-114 
insoluble pellet by boiling in SDS PAGE sample buffer (SDS) then revealed that a far 

greater proportion of the 16 kDa antigen clearly remained insoluble. It was therefore 

concluded that extraction with TX-114 failed to remove a significant proportion of the 

available antigen and, on consideration of the difficulties involved in the production of 

large quantities of larval stage starting material, it was decided that despite the partial
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Figure 3,1 Extraction of the 16 kDa antigen with the detergent T X -1 14

230,000 intact cercariae (C) and MS (S) were incubated in 0.5% T X -114 in PBS at 4 C 
for 30 minutes. The preparation was then centrifuged and the supernatant removed, 
incubated at 37°C for 5 minutes and separated into aqueous (Aql) and detergent (Txl) 
phases by centrifugation through sucrose. Parasite bodies in the remaining pellet were 
then disrupted by high frequency sonication and the incubation and separation procedures 
repeated to give rise to a second aqueous (Aq2) and detergent (Tx2) phase. The final 
insoluble pellet (SDS) was resuspended in PBS. Samples containing comparable amounts 
of protein as judged by SDS PAGE and Coomassie blue staining were then boiled in SDS 
PAGE sample buffer, electrophoresed on 15% gels, transferred by Western blotting and 
probed with VRabS (A) and B3A (B) at dilutions of 1 in 200 and 1 in 20 respectively.
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purification achieved, TX-114 was not a suitable detergent for routine extraction of the 

16 kDa molecule.

The Western blotting studies described here also indicated that slightly larger amounts 
of the 16 kDa antigen were recovered from MS following incubation of intact parasites 

in TX-114 (Txl). However, this most probably represented an increase in the 
susceptibility of the antigen to detergent extraction following the removal of the 

glycocalyx upon mechanical transformation. This is substantiated by the observation that 

following removal of the glycocalyx from cercariae during the sonication procedure, 
slightly larger amounts of 16 kDa antigen are extracted from cercariae as compared to 

those recovered from MS (Tx2). Both these stages of the parasite therefore appear to 

contain similar quantities of the 16 kDa antigen, however MS were chosen for use in 
subsequent extraction procedures as they are comparatively easy to prepare.

3.2.1.2 Sequential extraction o f MS with T X -114 and a variety o f other detergents
As described above, incubation with TX-114 failed to remove a large proportion of 

the 16 kDa antigen from MS. Thus, in an attempt to optimise the extraction procedure, 

the insoluble pellet remaining after TX-114 extraction was resuspended and extracted with 

a range o f  other detergents. The detergents Triton X-100, sodium deoxycholate (DOC) 

and CHAPS proved inefficient at removal of the remaining 16 kDa antigen (data not 
shown). However, incubation o f the TX-114 insoluble pellet for 1 hour at room 

temperature with either 1.5% octyl-B-D thio glucopyranoside (OTG) or 1.5% deconyl-n- 

methylglucamide (MEGA-10) resulted in the extraction o f all of the remaining 16 kDa 
antigen. Figure 3.2 shows a Western blot of material removed from 400,000 sonicated 

MS by sequential extraction with TX-114 (Aq, TX), OTG (OG) and SDS PAGE sample 

buffer (P). Similar results were obtained when using MEGA-10 as a second detergent 
(data not shown). However, as difficulties were encountered on solubilising MEGA-10 

at room temperature, OTG was chosen for use in subsequent studies.

3.2.1.3 Extraction o f  the 16 kDa antigen with OTG alone
The non-ionic detergent OTG efficiently extracts the remaining 16 kDa antigen from 

MS previously treated with TX-114. However, if the TX-114 extraction step could be 

omitted without a reduction in the overall recovery of the 16 kDa antigen, this would 

result in a more simple pnx:edure in which all of the antigen was obtained in a single
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Figure 3.2 Sequential extraction o f MS with the  detergents TX-114 and OTG
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400,000 sonicated MS were incubated in 1 % TX -114 for 30 minutes at 4 C, centrifuged 
and the supernatant removed, warmed and separated into aqueous (Aq) and detergent 
(TX) phases. The TX-114 insoluble pellet was then resuspended by sonication and 
extracted for 1 hour at room temperature with 1.5% OTG, (OG). The final insoluble 
pellet (P) was resuspended in 50 mM Tris/HCI (pH 8.0). Aliquots of each fraction 
containing antigen equivalent to that extracted from approximately 5,000 MS was boiled 
in SDS PAGE buffer, electrophoresed and transferred by Western blotting. The blot was 
probed with VRabS at a dilution of 1 in 200.
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detergent phase. The presence of only OTG in the preparation containing all of the 16 

kDa antigen would enable the detergent to retain its predictable characteristics such as a 

high CMC, a small micelle size and hence the ability to be removed by dialysis. OTG 
was therefore used in an attempt to extract the 16 kDa antigen from MS without the 

preceding TX-114 incubation. In the hope of retaining the degree of purification obtained 
by removal of the TX-114 aqueous phase antigens in the initial protocol, MS were first 

sonicated in 50 mM Tris/HCl (pH 7.4), spun at 100,000 x g and the supernatant 

removed. Figure 3.3 (S) demonstrates that a number of soluble antigens were removed 
in this supernatant whilst the 16 kDa antigen integral membrane molecule remained in the 

Tris insoluble pellet. This pellet was then extracted with 1.5% OTG for 1 hour at room 

temperature. Figure 3.3 (OG, P) shows that such treatment resulted in the efficient 
extraction of almost all o f  the 16 kDa antigen in a single detergent phase. This procedure 

was therefore used to provide detergent extracts containing the 16 kDa antigen for all 
subsequent experiments. It should however be noted that despite the high efficiency of 

OTG extraction, no obvious silver or Coomassie blue staining band was observed in the 

16 kDa region following electrophoresis of the material extracted from as many as 10,000 
MS (data not shown). This indicates that although the 16 kDa molecule is highly 

antigenic, it is only present in very small amounts.

As the 16 kDa antigen is an integral membrane molecule, the presence of a detergent 

is a constant requirement if the molecule is to remain in solution. Thus, by dialysing 

against different concentrations of OTG it was also observed (data not shown) that 
following extraction, a detergent concentration as low as 0.1% was sufficient for this 

purpose. This concentration of OTG was therefore used in all solutions to contain the 16 

kDa antigen e.g. column elution buffers.

3.2.2 PURIFICATION OF THE 16 kDa ANTIGEN
3.2.2.1 Immunoafflnity chromatography

In order to obtain purified 16 kDa antigen for characterisation and immunisation 

studies, an OTG extract prepared as above was circulated through a pre-eluted column of 
B3A bound to Protein A Sepharose beads. The column was then washed extensively and 

the bound antigen eluted with diethylamine (pH 11.5). Figure 3.4(A) shows a Western 

blot of the column eluates and unbound fraction probed with VRabS and Figure 3.4(B) 
an equivalent blot probed with B3A. As can be seen, the 16 kDa molecule was the major
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Figure 3 .3  Extraction of MS with OTG alone

A pellet of approximately 400,000 MS was disrupted by sonication in Tris/HCI (50 mM, 
pH 7.4), centrifuged and the supernatant removed (S). The remaining pellet was then 
resuspended by sonication and incubated in 1.5% OTG for one hour at room temperature. 
The second supernatant was removed (OG) and the pellet resuspended in 50 mM Tris/HCI 
(pH 7.4) (P). Aliquots of each fraction containing the equivalent of antigen extracted from
4,000 MS was boiled in SDS PAGE buffer, electrophoresed and transferred by Western 
blotting. The blot was probed with VRahS at a dilution o f 1 in 200.
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Figure 3.3 Extraction of MS with OTG alone

A pellet of approximately 400,000 MS was disrupted hy sonication in Tris/HCl (50 mM, 
pH 7.4), centrifuged and the supernatant removed (S). The remaining pellet was then 
resuspended by sonication and incubated in 1.5% OTG for one hour at room temperature. 
The second supernatant was removed (OG) and the pellet resuspended in 50 mM Tris/HCl 
(pH 7.4) (P). Aliquots of each fraction containing the equivalent of antigen extracted from
4,000 MS was boiled in SDS PAGE buffer, electrophoresed and transferred by Western 
blotting. The blot was probed with VRabS at a dilution of 1 in 200.
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antigen present in the column eluates, although a signal of approximately 25 kDa was 

recognised on probing with VRabS or with B3A, whilst a 32 kDa molecule was seen only 

on probing with VRabS. Probing o f  Western blots with antibody also revealed that some 
of the 16 kDa antigen remained within the unbound fraction, thus indicating that the 

saturation point of the immunoaffinity column had been reached. Further aliquots of the 
first four fractions eluted from the column were then separated by SDS PAGE and stained 

with Coomassie blue (Figure 3.4(D)) or with silver nitrate (Figure 3.4(C)). On staining 

with Coomassie blue a hand corresponding to the 16 kDa molecule was clearly seen in 
a single eluted fraction. With the exception of a doublet of approximately 58 kDa no 

other contaminating molecules were visible in this eluate. As this 58 kDa doublet has also 

been seen in numerous unrelated samples following separation by SDS PAGE, it is 

believed to be a contaminant introduced in the SDS PAGE sample buffer. Thus, the 16 

kDa antigen is the only eluted molecule visible by staining with Coomassie blue. 
However, on staining with silver nitrate, which is a much more sensitive system, the 16 

kDa molecule was visible in three fractions (a total volume of approximately 1.5 ml) and 

a small number of contaminating molecules were also visible in these eluates. O f these, 

the band of approximately 32 kDa was seen in all three eluates containing the 16 kDa 

antigen whilst weaker signals of approximately 18-20  and 25 kDa were visible only in 

the fraction containing the majority of the 16 kDa molecule.
Although a reasonable degree of purification was achieved using immunoaffinity 

chromatography, a small number of contaminating molecules were present in those 

fractions containing the 16 kDa antigen and attempts were therefore made to improve the 

immunoaffinity purification technique. These included the incorporation of an additional 

wash using a buffer containing a low concentration of SDS (0.1%) and elution of the 
column with the low pH buffers 0.2 M ammonium acetate (pH 3.0) or 0.1 M sodium 

citrate (pH 2.5). In all cases a significantly lower recovery of the 16 kDa antigen was 

obtained and the purity of the eluted antigen was not improved. Passing the crude 
detergent extract down a column o f Protein A Sepharose prior to passage through the 

immunoaffinity column also failed to remove the contaminating material. As a result the 
original immunoaffinity protocol was reinstated and other methods of purification were 

investigated with regard to the possibility of using another technique in conjunction with, 

or as an alternative to, immunoaffinity chromatography.
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Figure 3.4 Immunoaffinity purification of the 16 kDa antigen

The 16 kDa antigen was purified by passage of material extracted from approximately 15 
million MS through the McAb immunoaffinity column. 10 /¿I of fractions 1 to 9 (lanes 
2 - 10) eluted by the application of 50 mM diethylamine (pH 11.5) and 10 /¿I of unbound 
material (lane 1) were then separated by SDS PAGE and transferred by Western blotting. 
The blots were probed with VRabS (A) or B3A (B) at a dilution of 1 in 200 and 1 in 20 
respectively.
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pigure 3.4 continued

(C )

(D )

10 ¡i\ aliquots of fractions 1 - 4  (C) or 1 - 3 (D) (lanes 2 - 4/5) eluted by the application 
of 50 mM diethylamine (pH 11.5) were electrophoresed alongside 10 jtl of column 
unbound material (lane 1) and the gel stained with silver nitrate (C) or with Coomassie 
blue (D).
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3.2 .2 .2  Ion exchange chromatography

At a particular pH a molecule which includes a protein moiety would be expected to 

be either positively or negatively charged. Ion exchange chromatography exploits this 
phenomenon by using columns of oppositely charged beads to bind the molecule. Initially 

both the anion exchange matrix, diethyl aminoethyl (DEAE) Bio-Gel A, and the cation 
exchange matrix carboxymethyl (CM) Bio-Gel A were used in an attempt to purify the 

16 kDa antigen. The DEAE column was equilibrated with a Tris buffer (25 mM Tris/HCl 

(pH 8.0), 1 mM EDTA, 1.5% OTG) and the CM column with a pH 6.0 phosphate buffer 
(89% 25 mM NaH2P04, 11% 25 mM Na2HP04 1 mM EDTA, 1.5% OTG) and OTG 

extracts of MS were then prepared as above with the exception that extraction was carried 

out in the buffer appropriate for use with each column. This was done to ensure that the 
pH of the pre-equilibrated column was not altered by the addition of the starting material. 

Following application of the sample, each column was washed extensively with the 
appropriate buffer and eluted with a continuously increasing potassium salt gradient. 

Starting material, unbound molecules and the eluted fractions following ethanol 

precipitation were then run on SDS PAGE gels and transferred by Western blotting. 
Probing of these blots with VRabS and B3A demonstrated that the CM column failed to 

bind any 16 kDa antigen (data not shown) and attempts to use this method for the 

purification of the 16 kDa antigen were therefore abandoned. In contrast, a small 
proportion of the 16 kDa antigen was seen to bind and subsequently elute from the DEAE 

column (data not shown). Reducing the conductivity of the starting material by diluting 
1 in 4 with 25 mM Tris/HCl (pH 8.0) prior to application, was then shown to result in 

the proportion of the 16 kDa antigen binding and eluting from the column being raised 

to almost 100% (Figure 3.5). However, other molecules were present in the eluates 
containing the 16 kDa antigen and silver staining of an SDS PAGE gel demonstrated that 

although there were some qualitative differences between the starting, unbound and eluted 

fractions, a distinct band at 16 kDa was not visible within the column eluates (Figure 
3.5(A)). Moreover, the probing of Western blots of the column eluates also demonstrated 

that the 16 kDa antigen eluted in fractions corresponding to 0.2 - 0.3 M KC1 which had 
a total volume of 6 ml (Figure 3.5(B)). If ion exchange chromatography were to be used 

as an initial purification step, buffer exchange would be required before fractions eluted 

from the DEAE column could be applied to the immunoaffinity column. This would 
inevitably involve some antigen loss. Thus it was decided that the benefits of attaining the
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Figure 3.5 Purification o f the 16 kDa antigen using ion exchange chromatography

An OTG extract of 200,000 MS was diluted 1 in 4 in Tris/HCl (25 mM, pH 8.0) and 
passed down a column of DEAE Biogel A. The fractions generated by elution with a 
continuously increasing salt gradient were then ethanol precipitated and the equivalent of 
125 ¿tl of the fractions eluted with approximately 0.25M were electrophoresed (lanes 3 - 
7) alongside 25 ¿¿1 of starting material and 25 /xl of unbound material (lane 2). The gel 

was then stained with silver nitrate (panel A) or transferred by Western blotting and 
probed with VRabS at a dilution of 1 in 200 (panel B).
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low level of purification observed on carrying out ion exchange chromatography did not 

outweigh the disadvantages of including buffer exchange. Furthermore, the large volume 

of high salt buffer in which the 16 kDa antigen was eluted from the DEAE column 
prohibits the use of ion exchange chromatography as a final purification procedure.

3.2.2.3 Hydrophobic interaction chromatography
Hydrophobic interaction chromatography employs a hydrophobic stationary phase to 

bind those molecules which have a hydrophobic moiety. As an integral membrane 
molecule the 16 kDa antigen is presumed to have a hydrophobic domain which should 

therefore enable it to interact with such a stationary phase. To test this an OTG extract 

of MS was circulated through a Phenyl Sepharose column. The column was then washed 
with 25% ammonium sulphate and eluted with a stepwise decreasing salt gradient of 25% 

and 10% ammonium sulphate, followed by ethylene glycol. Probing of Western blots of 
the starting material, unbound fraction and the column eluates demonstrated that the 

binding of the 16 kDa antigen to phenyl sepharose was irreversible. Matrices with weaker 

binding properties (amino-ethyl, propyl, butyl or pentyl agarose) were also tried, however 
these did not bind the 16 kDa antigen (data not shown).

3.2 .2 .4  Lectin affinity chromatography
It has been demonstrated (see Chapter 4) that the plant lectin Arachis hypogaea 

(peanut agglutinin, PNA) binds to the 16 kDa antigen on Western blots. Thus, lectin 

affinity chromatography was investigated as an additional method of purifying this 
molecule. An OTG extract containing the 16 kDa antigen was rotated for at least one hour 

with agarose beads coated with PNA. The beads were then washed and eluted with 

increasing concentrations of galactose, increasing concentrations of lactose, with borate 
buffer (0.45 M, pH 6.0) and finally by boiling in SDS PAGE sample buffer. Equivalent 

amounts of the unbound and eluted fractions were separated by SDS PAGE and 

transferred by Western blotting. Probing of the Western blot with VRabS (data not 
shown) demonstrated that a large proportion of the 16 kDa antigen failed to  bind to the 

PNA agarose and it was speculated that this may well be due to the presence of inhibitory 
substances within the crude detergent extract which was applied to the lectin column. 

Thus, lectin affinity chromatography would not be suitable for use as an initial step in the 

purification of the 16 kDa antigen from OTG extracts. As an alternative, partially purified
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antigen eluted from the immunoaffinity column was rotated with PNA agarose beads. The 

beads were washed and eluted as above and the unbound and eluted fractions again 

separated by SDS PAGE and Western blotted. The results obtained demonstrated that a 
large proportion of the partially purified 16 kDa antigen now bound to the PNA agarose 

beads. However, although this antigen could be eluted by boiling of the beads in SDS 
PAGE sample buffer, the binding was irreversible using techniques which would enable 

viable antigen to be obtained (data not shown). Thus, the use of lectin affinity 

chromatography as a final purification step is also infeasible.

For a variety of reasons, none of the purification techniques detailed above were 

suitable for use in conjunction with immunoaffmity chromatography. Thus, attempts were 

made to further purify the eluted 16 kDa antigen by recovery of the molecule following 
SDS PAGE.

3.2 .2 .5  The Biorad 491 Prep cell
A dozen eluates from the immunoaffinity column which contained enough 16 kDa 

antigen to give a signal on Western blots probed with B3A but not on gels stained with 
silver nitrate nor Coomassie blue, were combined and concentrated into a volume suitable 

for loading onto the Biorad 491 Prep cell (500 /d) using a Centricon 10 

microconcentrator. The preparation was then electrophoresed and 2.5 ml eluates collected. 
Probing of Western blots of 25 /d of each of these elutes with VRabS and B3A 

demonstrated that the 16 kDa antigen obtained appeared to be pure (data not shown), 
however the molecule eluted in a volume of 1% SDS which totalled more than 20 ml. 

This procedure is therefore inappropriate for use as a final purification step as 

concentration o f  the 16 kDa antigen into a volume of buffer suitable for use in further 
characterisation studies would by infeasible. Furthermore, the antigen losses which would 

be involved in the transfer o f material eluted from the Prep Cell into a buffer suitable for 

passage through the immunoaffmity column make the use of this technique as a 
preliminary purification step impractical.

3.2 .2 .6  Transfer to ProBlott membrane
Molecules separated by SDS PAGE and transferred by Western blotting to ProBlott 

membrane can be visualised by staining with Coomassie blue. Antigens o f interest can 
then be isolated by excision o f the appropriate region of the blot. As a consequence of the
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fixing and staining procedures, antigen obtained in this way is not suitable for use in 

immunisation experiments. However, attempts were made here to use this method to 

obtain pure 16 kDa antigen suitable for gas phase N terminal amino acid sequencing. To 
ensure that sufficient amounts of antigen were used for this purpose, six fractions eluted 

from the immunoaffinity column following purification of the 16 kDa antigen from 15 
million MS were selected and their antigen content investigated. Following electrophoresis 

of 25 /xl aliquots of each 0.5 ml fraction, the 16 kDa molecule could be visualised by 

Coomassie blue staining in four of the six fractions and by silver staining in all. These 
six antigen rich fractions were therefore combined, concentrated using a Centricon 10 

microconcentrator and loaded into a single well of a 15% polyacrylamide gel. Following 

SDS PAGE the antigen was transferred to ProBlott membrane which was stained with 
Coomassie blue. A strong but rather smeared signal was seen in the 16 kDa region of the 

blot. This was excised and sent to the National Institute for Medical Research at Mill Hill 
for N terminal amino acid sequencing (see Chapter 4).

3.3 DISCUSSION

A 16 kDa antigen of S. munsoni has been shown to be of interest as a putative 
vaccine candidate molecule. The aim of this chapter was therefore to extract and purify 

this antigen for use in subsequent immunisation and characterisation studies.

Indirect immunofluorescence using the protective McAb B3A has previously 
demonstrated that the 16 kDa antigen is present upon the surface of living schistosomula 

(Bickle et al., 1986). Further experiments involving the separation of the antigen into the 

detergent phase following TX-114 extraction of MS (Bickle et al., 1990 and this chapter) 

have since demonstrated that, as defined by Bordier (1981), the 16 kDa antigen is an 
integral membrane molecule as opposed to one which is only peripherally associated with 

the surface. Integral membrane molecules are firmly attached to plasma membranes via 

hydrophobic interactions between their own hydrophobic domain(s) and the core of the 
lipid bilayer. These domains often consist of a stretch of hydrophobic amino acid residues 

which occur within the peptide moiety of a molecule. However, acylation via the addition 

of either a complex GPI linkage, or a fatty acid linked directly to the peptide backbone 
can also he used as a means of anchoring a molecule within a membrane. Regardless of 

the nature of this hydrophobic domain(s), the strength of the interactions between an 
integral membrane antigen and the lipid bilayer are such that a detergent (or an organic
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solvent) will always be required for antigen extraction. During the course of such an 

extraction, detergent molecules replace most of the lipid moieties which contact the 

integral membrane molecule. This results in the formation of protein-detergent micelles 
which are held together by interactions between the aforementioned hydrophobic entities 

of the integral membrane molecule and those of the amphipathic detergent. Water soluble 
or hydrophilic molecules do not interact with detergent and hence do not form micelles. 

If the detergent used for extraction is one of the Triton X series, the integral membrane 

molecules can then be separated from soluble molecules, as on warming of the preparation 
to a particular temperature, the detergent-protein micelles form large aggregates which 

dissociate from the monomeric forms of the soluble molecules. This results in the 

formation of two distinct phases which can be easily separated. The temperature at which 
the formation of micellar aggregates occurs is known as the cloud point and varies 

according to the type of Triton used. For TX-114 the cloud point is about 20 C and this 
enables this detergent to be used for extraction and separation of soluble and integral 

membrane molecules at a temperature which does not induce protein degradation (Bordier, 

1981).
The possibility of obtaining a degree of purification by separation of the 16 kDa 

integral membrane antigen from soluble molecules, ensured that the detergent TX-114 was 

the first to be assessed with regard to its ability to extract the 16 kDa molecule from MS. 
However, it was demonstrated here that extraction of MS with TX-114 failed to remove 

a large proportion of the 16 kDa molecule. This coincides with the observation (Helenius, 
1979) that TX-114 is relatively inefficient at the solubilisation of membranes and hence 

the extraction of integral membrane molecules. The 16 kDa antigen remaining following 

extraction of MS with TX-114 could be solubilised by boiling in SDS PAGE sample 
buffer. However, at concentrations suitable for the solubilisation of membranes, ionic 

detergents such as SDS, often cause drastic conformational changes and hence a decrease 

in the biological activity and / or antigenicity of the extracted molecule (Helenius, 1979). 
This is because in addition to replacing lipid moieties within the bilayer, ionic detergent 

molecules bind to both the hydrophilic and the hydrophobic regions of the integral 
membrane molecule itself. Although antibody recognition of the 16 kDa antigen extracted 

by boiling in SDS PAGE sample buffer indicates that at least some epitopes are resistant 

to the denaturing effects of this detergent, it is possible that other structural features of 
the 16 kDa antigen are destroyed by such harsh treatment. Furthermore, problems can
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arise on attempting to purify molecules from ionic detergent extracts, as immunoaffinity 

columns may be destabilised by the deleterious effect of such detergents on antibody 

structure and the use of ion exchange chromatography is not possible as the charge of the 
native antigens is masked by the charge o f bound SDS. In general, non-ionic detergents 

are less harsh than ionic detergents. They bind only to the hydrophobic region of the 
integral membrane molecule and this rarely leads to conformational changes or loss of 

activity. Moreover, non-ionic detergents are suitable for the preparation of extracts to be 

used in subsequent purification procedures. Here, the non-ionic detergents OTG and 
MEGA-10 were shown to extract almost all of the 16 kDa antigen from MS. In addition, 

a degree of purification similar to that seen when using TX-114 was obtained by removal 

of molecules soluble in 50 mM Tris prior to detergent extraction. The more readily 
soluble OTG was therefore selected for subsequent extraction of the 16 kDa antigen from 

MS.
The existence of a large amount of 16 kDa antigen which is resistant to extraction 

with TX-114 (and TX-100, section 3.2.1.2) but sensitive to extraction with the high CMC 

detergents OTG and MEGA-10 is also of some interest in the light of studies carried out 
by Hooper and Turner (1988) and Hooper and Bashir (1991). These demonstrated that the 

detergent extraction profile of a number of mammalian integral membrane ectoenzymes 

reflected the manner in which the molecules were associated with the plasma membrane. 
Thus, a whole range of detergents were equally efficient at extracting antigens anchored 

within the membrane via a hydrophobic stretch of amino acids. In contrast, molecules 

possessing a GFI anchor were extracted efficiently by detergents with a high CMC (OTG, 

CHAPS and DOC) but were partially resistant to those with a low CMC (TX-100, TX- 

114 and Nonidet P-40). Thus, some aspects of the detergent extraction profile of the 16 
kDa antigen suggest the possibility of it being attached to the membrane via a GP1 

anchor. In contrast, other observations have been made which contradict this suggestion. 

Firstly, a large proportion of the 16 kDa antigen remaining following TX-114 extraction 
is not removed by the detergents CHAPS and DOC which have a CMC equal to that of 

MEGA-10 (section 3.2.1.2). Secondly, it has been demonstrated (Dr.Q. Bickle, personal 
communication) that the 16 kDa antigen is not released from the plasma membrane by 

treatment with PIPLC, an enzyme which specifically cleaves the GPI linkage. However, 

some GPI anchors are resistance to treatment with this enzyme and should further work 
be carried out with regard to the nature of the attachment of the 16 kDa antigen to the
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membrane it may be useful to attempt to release the 16 kDa molecule from the membrane 

with a second GPI specific enzyme, PIPLD.

Following detergent extraction of the 16 kDa antigen from MS it was necessary to 
purify the molecule in preparation for immunisation experiments and further 

characterisation studies. As one of the major problems when working with the 16 kDa 
antigen is its low abundance, it was hoped that a single step purification procedure could 

be devised. This would avoid encountering the antigen losses which invariably occur 

during the buffer exchange and / or concentration steps normally required when more than 
one purification technique is used. Immunoaffinity chromatography using a McAb cross 

linked to a matrix, is a highly specific procedure which has been used successfully to 

purify a single molecule from a crude extract of numerous organisms including 
schistosomes (Hazdai et al. , 1985, Oligno et al. , 1988, Ham et al. , 1992). This method 

was therefore the first choice when looking for a technique which could enable the 16 
kDa antigen to be purified in a single step. Here, the passively protective McAb, B3A 
was cross linked to Protein A Sepharose via its Fc receptor, a procedure designed to leave 

both Fab regions available for antigen binding. The column was then used to purify the 

16 kDa antigen from an OTG extract of MS. The results obtained demonstrated that the 
16 kDa antigen was the major molecule observed following Coomassie blue or silver 

staining o f the column eluates. It was also the major antigen recognised on probing 

Western blots with VRabS and B3A. However, small amounts of a number of other 
molecules were also present in the fractions containing the majority of the 16 kDa 

antigen. O f these, a 58 kDa doublet which is most probably introduced during SDS 
PAGE and therefore not present in the original column eluates, is the major contaminant, 

although smaller molecules of 32, 25 and 2 0 - 1 8  kDa are also seen. It seems most likely 

that the 25 kDa signal corresponds to antibody light chains which have leached from the 
immunoaffinity column upon application of the high pH elution buffer. This is suggested 

by the similarity in the estimated size of this molecule to that of light chains (24 kDa) and 

also by the observation that a signal of approximately 25 kDa is seen on Western blots 
of the column eluates probed with anti-mouse conjugate without exposure to a primary 

antibody (data not shown). The recognition of the 25 kDa antigen on blots probed with 
VRabS suggests that mouse McAb light chains are also recognised by the anti-rabbit 

conjugate used. The leaching of antibody from immunoaffinity columns has been 

described previously. For example, on using a McAb immunoaffinity column to purify
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a 22 kDa antigen from S. mansoni schistosomula membrane extracts, Oligno et al., 
(1988) reported the presence of what was presumed to be light and heavy antibody chains 

in the column eluates. With regard to the molecule which runs at 32 kDa, its size suggests 

the possibility of it representing dimers of the 16 kDa antigen. However, the recognition 
of this molecule following electrophoresis under reducing conditions deems this unlikely. 

Moreover, although recognised by VRabS, the 32 kDa molecule is not seen on probing 
Western blots of the column eluates with B3A. This latter point also indicates that the 32 

kDa molecule does not bind to the column via cross reactive epitopes which are 

recognised by the McAb and suggests that in addition to the silver staining molecule(s) 
of 18 - 20 kDa, the 32 kDa molecule binds non-specifically to the immunoaffinity 

column. It is possible that such molecules have a particular affinity for antibody or 

perhaps for protein in general. Despite the high specificity of antibody - antigen 
interactions, the non-specific binding of molecules to immunoaffinity columns is 

commonly encountered. Although, as stated above, several investigators have used affinity 
chromatography alone to obtain completely pure antigen, others have reported that the use 

of a second purification technique, either prior to or following immunoaffinity 

chromatography, was required to remove contaminating material (Carlsson 1993, Oligno 

el al., 1988). Various attempts were made here to devise useful additional purification 

procedures.
In accordance with its pi of 6.1 (see chapter 4) the 16 kDa antigen bound to the 

anion exchanger DEAE Bio Gel A at a pH of 8.0. The initially low levels of binding 
were increased by dilution of the OTG extract prior to application. This has the effect of 

decreasing the likelihood of a strongly charged antigen being surrounded by salt molecules 
of parasite origin which prevent its binding to the beads. Unfortunately, many other 

molecules also bound and eluted from the DEAE matrix and it was decided that the 

advantages gained by using ion exchange chromatography in conjunction with 
immunoaffinity chromatography, would be outweighed by the disadvantages of carrying 

out the processes required for buffer exchange.
Lectin affinity chromatography is a widely used technique which employs the specific 

binding o f a lectin immobilised on a solid matrix to a carbohydrate entity of a 

glycoprotein. In some cases this technique is used simply to identity the presence of 

particular sugar moieties. For example, Nyame el al., (1987, 1988a, 1988b, 1989) 
exploited the specific binding ability of a variety of lectins to demonstrate the presence
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of particular N- and O-linked sugars in adult schistosomes and in schistosomula. 

Alternatively, lectin affinity chromatography has been used to isolate groups of molecules 

which are of interest. Thus, Strand et al., (1982) used Con A chromatography to isolate 

schistosomula surface glycoproteins which are believed to be of importance in the 
development of the human immune response. Dalton and Strand (1987) have used a 

similar procedure as the first step in a protocol aimed at isolating glycoproteins recognised 

preferentially by sera from mice vaccinated with radiation attenuated cercariae. However, 

of more relevance to the studies carried out here, is the demonstration that lectin affinity 

chromatography can be used to purify individual glycoproteins. In general, this technique 
is used in the early stages of a purification scheme and is followed by other more highly 

specific purification techniques. For example, Kelly et al., (1987) isolated a subset of 

antigens from a preparation of schistosomula membrane molecules by affinity 

chromatography on lentil lectin Sepharose. The antigens of specific interest, a 32 and a 
20 kDa glycoprotein, were further purified by electroelution from 2D gels. However, the 

level of purification which can be obtained using lectin affinity chromatography obviously 
depends upon the sugar composition of the molecule to be isolated. Although lectins such 

as lentil lectin and Con A recognise the common sugars mannose and glucose and hence 

bind to a large number of glycoproteins, other lectins such as soybean agglutinin (SBA), 
which recognises the more unusual N-acetylgalactosamine (GalNAc), have been shown 

to bind very few schistosome glycoproteins and have therefore been used in single step 

procedures to purify antigens to a level suitable for further characterisation (Linder et a l., 

1991). Previous studies using lectins to probe radiolahelled antigens from adult 
schistosomes separated on SDS PAGE gels have demonstrated that PNA like SBA 

recognises very few schistosome antigens (McGregor et al., 1985). In addition, the 

studies described in Chapter 4 of this thesis demonstrate that biotinylated PNA binds to 
very few schistosomula antigens on Western blots. The 16 kDa antigen did, however, 

produce a strong signal with this biotinylated lectin and it was hoped that PNA lectin 

affinity chromatography would provide a useful additional step towards the purification 
of this molecule. It was therefore surprising that the majority of the 16 kDa antigen did 

not bind to PNA coated agarose beads on application of a detergent extract of MS. One 

explanation for this discrepancy, is the presence of inhibitors of binding such as the high 
concentration of detergent or material of parasite origin e.g. salts or enzymes, in the 

crude MS extract. Alternatively, it is possible that lectin binding entities are only exposed
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following boiling of the 16 kDa antigen in SDS PAGE sample buffer prior to Western 

blotting. Although crude detergent extracts have been used successfully in lectin affinity 

chromatography procedures (Hayunga and Sumner, 1986(a), 1986(b), Strand et al., 1982) 

the binding o f the immunoaffinily purified 16 kDa antigen to PNA agarose demonstrates 
that prior denaturation of the molecule is not required and suggests that inhibitory 

substances do indeed contribute to the initial lack of binding observed. This inhibition 
could be a characteristic of OTG in particular or perhaps the configuration of the 16 kDa 

antigen itself in the presence of a high concentration of detergent. Although the 16 kDa 

antigen present within an immunoaffinity column eluate hound to the PNA agarose beads, 
the molecule failed to elute on application of a saturated solution of galactose. Such a 

solution is often sufficient to elute PNA affinity columns, however galactose is known to 

be a comparatively inefficient inhibitor of PNA binding as in solution it undergoes 
mutarotation. This is a process whereby galactose continually inter-converts from the a  

to the B anomer through an open ring structure. As this open ring is unable to bind to 
PNA, at any particular point in time, a proportion of the molecules in a solution of 

galactose are unable to act as inhibitors. In contrast, lactose (B-D gal, 1,4, B-D glc) is an 

efficient inhibitor of PNA binding. Its disaccharidc nature ensures that it is unable to 
mutarotate and thus lactose molecules are always present in the pyranose form which is 

capable of inhibiting lectin binding. Despite this, incubation of PNA agarose beads with 

a saturated solution of lactose also failed to elute the 16 kl)a antigen, finally a solution 
of 0.45 M borate was used. This is often successful at removing glycoproteins which bind 

to lectin with a particularly high affinity, as borate forms complexes with the 4- and 6- 
hydroxyl groups of non-reducing pyranosides (Hayunga and Sumner, 1986a). Again the 

16 kDa antigen remained hound to the beads and the binding was thus deemed 

irreversible. The irreversible binding of glycoproteins to lectin agaroses is not unusual. 
For example, Hayunga and Sumner (1986a) using a variety o f lectin coated beads to 

isolate radiolahelled adult schistosome glycoproteins, reported that between 20% and 40% 

of labelled material hound irreversibly. The high affinity with which some glycoproteins 
bind to lectins is believed to be due to the formation of multivalent interactions between 

the sugar residues of the glycoprotein and the lectin molecules. The development of such 
interactions relies heavily upon the close proximity of the sugar residues to one another, 

a feature which is provided by the clustering of carbohydrate chains seen on many 

glycoproteins. Displacement of a glycoprotein from lectin agarose by the addition of an
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eluting sugar with a single lectin binding site is hence often inefficient (Goldstein and 

Hayes, 1978).
As none of the additional chromatography techniques investigated were considered 

suitable for enhancing the purity of the 16 kDa antigen obtained following immunoaffinity 

procedures, the use of SDS PAGE as a second purification step was examined. Use of the 
Biorad 491 Prep ('ell was shown to he a potentially powerful purification technique, 

however, the elution of a small amount o f antigen in an extremely large volume of SDS 

containing buffer posed insurmountable practical problems. The possibility of 
electroeluting the 16 kDa antigen following standard SDS PAGE of immunoaffinity 

purified antigen was also considered. However, this method was never attempted in view 

of the probability of encountering substantial losses of this small molecular weight antigen 
cither via its binding to the electroelution membrane or during subsequent concentration 

procedures. As an alternative, attempts to purify the 16 kDa molecule using SDS PAGE, 
Western blotting and Ciximassie blue staining of ProBlott membrane were made. This was 

done with the particular aim of obtaining pure antigen in a form suitable for N terminal 

amino acid sequencing. Significant Coomassie blue staining was observed in the 16 kl)a 
area of the blot and this enabled the appropriate region of the ProBlott membrane to be 

excised. More details regarding the purity of the 16 kDa molecule isolated in this way 

were obtained on sequencing and are given in Chapter 4
f  ollowing staining with Coomassie blue, the 16 kDa molecule excised from ProBlott 

membrane is unsuitable for use in immunisation studies. Thus, in view of the failure of 
other more suitable techniques to enhance the purity of the 16 kDa molecule obtained 

following immunoaffmity chromatography, it was decided to use the immunoaffinity 

column cluatcs without further purification in experiments aimed at establishing whether 
the 16 kDa molecule has an immunising potential. Although some contaminating 

molecules are present within these cluatcs, the 16 kl)a antigen is the only molecule 

visualised following Coomassie blue staining and corresponds to the most predominant 
signal seen with silver stain. Moreover, probing of Western blots of the column eluates 

with McAb and VRahS demonstrated that the 16 kDa molecule retains its strong 

antigenicity and is hence the major antigenic species present.
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4.1

This chapter describes experiments performed with the aim of investigating the 

physical and biochemical characteristics of the 16 kDa vaccine candidate antigen.
The diffuse nature of the 16 kDa signal seen following single dimension SDS PAGE 

and Western blotting suggests that the 16 kDa antigen may be a glycoprotein. Thus, 
whilst initial attempts were made to improve the resolution of the 16 kDa signal using two 

dimensional (2D) electrophoresis, experiments were also carried out with the aim of 

confirming the presence of both carbohydrate and peptide moieties.
With regard to confirming the presence of the latter, the 16 kDa antigen was treated 

with a variety of proteases and the effect of such treatment upon the size and the 

antigenicity of the molecule was investigated. Attempts were then made to obtain 
sequence data for the peptide moiety of the antigen in the hope of acquiring further 

information regarding the structure, and perhaps, the function of the molecule. Here 
experiments aimed at obtaining sequence data by gas phase N-terminal amino acid 

sequencing are described. Additional attempts to obtain this data via the cloning of the 

gene encoding the 16 kDa antigen are described in Chapter 6.
There are available several techniques which allow the presence of carbohydrate 

entities to be determined. One of the more frequently used of these is treatment with 

sodium meta periodate, a substance known to cleave between the vicinal hydroxyl groups 
of sugar rings. Oxidation with periodate results in the cleavage rather than the removal 

of sugar molecules and hence a change in the mobility of an oxidised antigen following 
SDS PAGE is not always apparent. The conformational changes associated with periodate 

cleavage do however often lead to a decrease in the antigenicity of a glycoprotein and 

hence the glycosylated nature of an antigen often becomes apparent on probing with 

antibodies. The use of this technique can also provide additional information regarding 

the biochemical nature of the epitopes recognised by a variety of sera. To investigate the 

possibility of the 16 kDa molecule being a glycoprotein, the antigen hound to Western 
blots was treated with sodium meta periodate and the effects of this treatment were 

examined by probing of the blot with both VRabS and the McAb specific for the 16 kDa 
antigen, B3A.

The carbohydrate entities of glycoproteins in general are important in the maintenance 

of conformational stability, protease resistance, charge and other important physiological 
properties of the molecule. With regard to antigenic glycoproteins in particular,
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carbohydrates often contribute towards epitopes and in many cases McAbs are directed 

towards the terminal sugars of carbohydrate chains (Woodward et al., 1985). Thus, 

having established that a molecule is glycosylated a variety of techniques can he used to 

obtain further details regarding the precise structure of the carbohydrate moiety. Plant 
lectins provide specific probes for a variety of sugar residues, and a range of glycosidase 

enzymes are available to investigate the way in which these sugars are linked to the 

peptide backbone. In the latter part o f this chapter efforts to characterise the carbohydrate 

moiety of the 16 kDa antigen using a wide range of biotinylated lectins and an 

endoglycosidase specific for an O-linkage are described.

4 .2  RESULTS
4.2 .1 . TWO DIMENSIONAL ELECTROPHORESIS

An OTG extract of 18,()00 MS was separated by 2D electrophoresis, transferred by 
Western blotting and probed with VRabS or B3A. Figure 4.1(A) demonstrates that 
probing with VRabS produced a number of signals of varying intensities. Of these, two 

signals of approximately 16 kDa were also visible on probing with B3A (Figure 4.1(B)). 

The dominant of these two 16 kDa signals shows a spread which covers a narrow range 
o f  pis and indicates that a number of 16 kDa isomorphs exist. These may represent 

differently glycosylated versions o f the same peptide. Comparison of these blots with two 

dimensional blots of carbonic anhydrase standards (not shown) demonstrated that the 
centre of this signal had a pi of 6.1. The position of the minor 16 kDa signal at the 

extreme edge of the second dimension gel suggested that it could represent antigen left 
behind at the origin of the first dimension gel. However, although many antigens are 

recognised on probing with VRabS, signals which align vertically with this 16 kDa signal 

were not present. This would be expected if a proportion of the molecules present within 
the OTG detergent extract had been left at the origin of the first dimension gel and then 

separated in the second. These results therefore suggest that the minor 16 kDa signal may 

represent a very basic isomorph o f the 16 kDa antigen. The markers used did not cover 
a broad enough range to enable the pi of this minor signal to be determined.
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Figure 4.1 Two dimensional electrophoresis

M r(x 1 0 ~ 3 )

t

An OTG extract of 18,000 MS was separated by 2D electrophoresis and transferred by 
Western blotting. The blots were then probed with VRabS (A) or B3A (B) at a dilution 
of 1 in 200 and 1 in 20 respectively. + and - correspond to the acidic and basic ends of 
the gel. The major 16 kDa signal is indicated by an arrow.
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4.2.2 CHARACTERISATION OF THE PEPTIDE MOIETY OF THE 16 kPa
ANTIGEN

4.2.2.1 Treatment o f  the 16 kDa antigen with a broad range o f proteases
An SDS extract o f  MS was treated with a broad range of non-specific proteases. The 

effects of this treatment upon the 16 kDa antigen were then monitored by separation of 

the extract using SDS PAGE, Western blotting and probing of the blots with VRabS. - 
Figure 4.2 demonstrates that the 16 kDa signal was completely lost following incubation 

of the extract for 1 hour with 20 /xg/ml of pronase, protease Type XIV (Sigma), papain 

or proteinase K. Treatment with 20 pg/ml of chymotrypsin or trypsin resulted in a 
decrease in the intensity of the 16 kDa signal which was completely ablated by increasing 

the concentration of the enzymes to 200 /ig/ml These results demonstrated that the 16 
kDa antigen has a peptide component.

4 .2 .2 .2  Gas phase N-terminal amino acid sequencing
To provide as much antigen as possible for sequencing, McAb immunoaftinity 

purified material extracted from 15 million MS was concentrated, subjected to SDS PAGE 

and transferred to ProBlott membrane as described in Chapter 3. The final amount of 
antigen transferred was equivalent to approximately 150 times as much as is required to 

see a 16 kDa signal following Coomassie blue staining of a polyacrylamide gel (Figure 

3.4(D)). Thus, on staining of the ProBlott membrane with Coomassie blue a strong, but 

smeared, signal was observed in the 16 kDa region o f the blot. The most intensely stained 

areas of this signal were excised and sent to The Laboratory of Protein Structure at Mill 
Hill where N-terminal amino acid sequencing was performed. The data obtained plus 

additional data from previous attempts to sequence the 16 kDa antigen using 

immunoaffinity purified antigen (Dr Q. Bickle) is shown in Table 4.1. Although a best 

consensus sequence of:-
H/S/V - H/S/V - P - ? - P - R - A - L - P - N. 

was suggested it was impossible to deduce, with any confidence, a sequence for the 16 

kDa antigen from these results. The level of staining of the excised ProBlott membrane 

indicated that micromoles of protein were available for sequencing. However, in each 
cycle only picomoles of amino acids were obtained. This together with the occurrence of 

numerous different amino acids in each cycle, suggested that the 16 kDa antigen, 

presumed to contribute the major Coomassie blue stained signal seen on the ProBlott, may
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Figure 4.2 The effect of protease treatment upon the 16 kDa antigen

D
I I

H

a
E

A Western blot of a detergent extract of MS was treated for 1 hour at 37 C with a range 
o f proteases. Panel A = pronase, panel B = protease Type XIV (Sigma), panel C = 
papain, panel D = proteinase K, panel E = chymotrypsin and panel F = trypsin. In each 
panel, lane 1 = untreated antigen, lane 2 = antigen treated with 20 /ig/ml of protease and 
lane 3 = antigen treated with protease at a concentration of 200 /xg/ml. The blot was 
developed with VRabS at a dilution of 1 in 200. The position of the 16 kDa antigen is 
indicated by an arrow.
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T A B L E  4.1 Data from  sequence analysis o f the  16 kDa antigen

CYCLE t 2 3 4 5 6 7 8 9 10

BAND 1 G E(2.0) P(2.0) P(2.0) K(l.O) Ml.O) G(l.O) N(l.O) R(0.5)

AMINO ACID (pg) S

BAND 2 G S(2.0) E(1.0) F(l.O) A(0.5)

AMINO ACID (pg) A(4.0) T(2.0) P(1.0) Y(I.O) S(0.5)

K(1.0) P(1.0)

BAND 3 D(2.7) 1(18) P(5.0) P(7.0) P(7.0) A(0.4) U0.4)

AMINO ACID (pg) A(2.5) E(1.3) R(2.0)

S(2.0) V(1.0)

H(1.8) P(1.0)
K(1.6) Q(1.0)

BAND 4 D(1.2) K(l.O) P(1.2) D(0.6) P(1.0) A(0.6) m.o) P(0.5)

AMINO ACID (pg) G(1.0) U0.8) M0.6) 0(0.4) E(0.3) D(0.6) V(O.l)

V(l.O) K(0.6) E(0.3) G(0.2)

0(0.8)
N(0.6)
E(0.4)



TABLE 4.1:- cont.

BAND 5 V(1.0) H(2.0) P(2.0) Y(0.5) P(1.8) R(I5) A(0.6) S(0.3) N(0.4) S(0.2)

AMINO ACID (pg) S(l.5) V(1.5) F(0.2) 0(0.3) K(0.50 K(1.2) F(0.2) 0(0.3) Y(0.2) F(0.1)

A(0.5) S<1.5) 0(0.5)

D(1.5) E(0.5)

0(0.5)

U0.5)

Antigen rich immunoaffinity column eluates were concentrated, electrophoresed. transferred to ProBlott membrane and stained with 
Coomassie blue. The 16 kDa region was then excised and used for N-terminal amino acid sequencing. The data obtained for three separate 
regions of the 16 kDa signal (bands 3. 4 and 5) is shown above. Also shown is data obtained previously by Dr. Q. Bickle, following N- 
terminal sequencing of the immunoaffinity purified 16 kDa antigen (bands 1 and 2).



itself he N-terminally blocked and that the amino acids seen are derived from trace 

contamination products. If the 16 kDa antigen is N-terminally blocked, sequencing from 

the N-terminus of the whole peptide cannot be performed.

4.2.3 CHARACTERISATION OF THE CARBOHYDRATE MOIETY OF THE 16 

kPa ANTIGEN
4.2.3.1 Treatment o f the 16 kDa antigen with sodium meta periodate

The diffuse 16 kDa signal observed following one or two dimensional electrophoresis 

suggests that the 16 kDa antigen may be a glycoprotein. Thus, attempts were made to 

determine whether the antigen incorporates carbohydrate by treating with sodium meta 

periodate. Western blots of a detergent extract of MS were treated with 20 mM sodium 
meta periodate in 50 mM sodium acetate buffer (pH 4.5) for 1 hour or for four hours in 

the dark at room temperature. Control samples were similarly treated with acetate buffer 
alone. The binding of B3A to the 16 kDa antigen was significantly depleted after 

treatment for 1 hour (Figure 4.3) whilst treatment for 4 hours completely ablated the 

signal (data not shown). This indicated that the 16 kDa antigen is indeed a glycoprotein 
and moreover that a carbohydrate epitope is the target of the passively protective McAb. 

In contrast, the binding of VRabS to the 16 kDa antigen was not noticeably affected by 

periodate treatment thus suggesting that the 16 kDa antigen also has some peptide 

epitopes.

4.2 .3 .2  The binding of lectins to the 16 kDa antigen
Having demonstrated that the 16 kDa antigen is glycosylated, analysis of the nature 

of the carbohydrate portion of the molecule was carried out by examining its lectin 
binding specificity. For this purpose. Western blots of a detergent extract of MS were 

incubated overnight with a wide range of biotinylated lectins. These covered all the major 

carbohydrate binding groups (see Table 4.2), yet only Arachis hypogaea (peanut 

agglutinin (PNA)) and Ricinus communis (ricin agglutinin (RCA)) were seen to bind to 

the 16 kDa molecule (Figure 4.4). Although unaffected by the presence of galactose this 
binding was shown to be abolished by inclusion o f the stronger inhibitor 0.2 M lactose 

(data not shown). This indicates that the binding o f the lectins to the antigen is specific 

and of high affinity.
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Figure 4 ,3  The effect of periodate treatment upon the 16 kDa antigen

A Western blot of an OTG extract of MS was cut into strips and incubated for one hour 
with 20 mM sodium meta periodate in 50 mM sodium acetate buffer (pH 4.5) (lanes 2 
and 4) or with acidic buffer alone (lanes 1 and 3). Lanes 1 and 2 were probed with 
VRahS at a dilution of 1 in 200 and lanes 3 and 4 with a 1 in 20 dilution of B3A.
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TABLE 4.2 Biotinylated lectins used for the probing of Western blots

Glucose / Mannose group

LECTIN SPECIFICITY BINDING

Canavalia emsforrm (Con A) aMan > otGlc > GlcNAc -

Lens culinaris (LcH) aMan > otGlc > GlcNAc -

N-Acetvlglucosamine group

LECTIN SPECIFICITY BINDING

Trincimi \vlgare (WGA)' GlcNAc(ßl,4GlcNAc),.2 > ßGlcNAc > Neu5Ac -

Ulex europaeus II (UEA II)* L-Fucal,2Galßl,4GlcNAc > GlcNAc(ßl,4,GlcNAc),.3 -

Griffonia simplicifolia II (GS II) a  and ßGlcNAc -

L-Fucose group

LECTIN SPECIFICITY BINDING

Lotus tetragonolobus (Lotus) aL-Fuc > L-Fucal,2Galßl,4GlcNAc > > L- 
Fucal ,2Galßl ,3,GlcNAc

-



TABLE 4 .2  cont.

N-Acetvlgalactosamine / galactose group

LECTIN SPECIFICITY BINDING

Dolichos biflorus (DBA)* GalNAcal,3GalNAc > > ocGalNAc -

Glycine max (SBA)* ctGalNAc > ßGalNAc > otGal > DGal -

Griffonia simplicifolia I (GS I)* aGalNAc and aGal -

Aracbis hypogaea (PNA)* Galßl ,3GalNAc > a  and ßGal and a  and ßGalNAc +

Erythrina crisiagalli (ECA)* Galßl,4GlcNAc > aGalNAc -

Ricinus communis (RCA)* ß and otGal > GalNAc +

Sambucus nigra (SNA) Neu5Aca2,6,Gal and Neu5Acot2,6,GalNAc > GalNAc -

Sialic acid group

LECTIN SPECIFICITY BINDING

Maadàa amurensis (MAA)‘ Neu5Acot2,3Gal -

* These lectins only bind to terminal structures,
tp These lectins have a preference for terminal sugars.
*/<p The binding of lectins in either of these groups may be increased by treatment of the target glycoprotein with neuraminidase.
Y The binding of these lectins may be decreased by treatment with neuraminidase.



Figure 4 .4  Binding o f lectins to the 16 kl)a antigen

A Western blot of an OTG extract of MS was cut into strips and probed with biotinylated 
ricin agglutinin (RCA), peanut agglutinin (PNA) and wheatgerm agglutinin (WCiA). The 
position of the 16 kOa antigen is marked with an arrow.
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4.2 .3 .3  The effect o f neuraminidase treatment on the binding of lectins to the 16 

kDa antigen
The binding ability of a number of the lectins used in the above experiment is 

decreased or abolished by the masking of their target carbohydrates with sialic acid 

residues. The binding of these lectins can therefore be induced or increased by treatment 
of glycoproteins with neuraminidase, an enzyme which removes sialic acid. As PNA does 

not bind to sugars masked by sialic acid it is already known that at least some sugars 

which do not incorporate this molecule are present within the 16 kDa antigen. However, 
if on treatment with neuraminidase, the binding of PNA or RCA were to be increased, 

or the binding of additional lectins (Glycine mux (SBA), Griffonia simplicifolia I (GS I), 

Ulex europaeus I, (UEA I) or Erythrina cristagalli (ECA)) induced, this would 

demonstrate the presence of sialic acid within the 16 kDa antigen and enable previously 

masked sugars to be identified. Strips of a Western blot of immunoaffinity purified 16 
kDa antigen were therefore treated with 10 mU of neuraminidase in 200 mM sodium 

acetate (pH 5.5) for 1 hour. As a positive control, 100 pg of fetuin bound to 
nitrocellulose was similarly treated and, as a negative control, strips were incubated in 

acidic buffer alone. The blots were then probed with biotinylated lectins as described 

above. Although treatment of ietuin with neuraminidase increased the binding of PNA, 
thus demonstrating the activity of the enzyme, treatment of Western blots of the 16 kDa 

antigen had no effect on the binding of any of the lectins used (data not shown). This 

indicates that sugars incorporating sialic acid are not present within the 16 kDa molecule, 
although, it is possible that sialated oligosaccharides are present which are not recognised 

by the lectins used either before or after treatment with neuraminidase. In view of the 

large number and wide range of lectins employed this seems unlikely.

4.2 .3 .4  Attempts to characterise the carbohydrate-peptide linkage using O- 
glycanasc

The carbohydrate chains of a glycoprotein can be linked to the peptide backbone via 

an N-link to an asparagine residue or via an O-link to a serine or threonine. Previous 
experiments (Francis, 1989) using the enzyme Glycopeptidase F, which specifically 

cleaves N-linked oligosaccharides from the peptide moiety of a molecule, have indicated 
that the carbohydrate epitope recognised by B3A is not an N-linked sugar and provide no 

evidence Ur suggest that the 16 kDa antigen possesses sugars of this kind. Thus, attempts
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were made here to determine whether the epitope recognised by B3A is an O-linked sugar 

using the enzyme O-glycanase (Oxford Glycosystems). This enzyme cleaves specifically 

between the disaccharide Gal B (1-3) GalNAc and a serine or threonine residue within the 
peptide core. Thus, although cleavage of a carbohydrate entity with this enzyme 

demonstrates unequivocally the presence o f this particular O-linkage, other types of O- 
linked sugars are not detected by this method. As enzymes with a more broad specificity 

are not available and the binding of PNA and RCA to the 16 kDa antigen indicates the 

presence of Gal and / or GalNAc, a detergent extract of MS was treated with O-glycanase 
in sodium citrate phosphate (pH 6.0) for 20 hours at 37 °C. A no enzyme negative control 

reaction was also used, and as a positive control for the activity of the enzyme, 250 fig 

of asialofetuin was treated with O-glycanase in a reaction also containing OTG extracted 
MS antigens. Following treatment the activity of the enzyme was confirmed by using the 

positive control in the Elson Morgan assay (Reissig et al., 1955). This assay enables the 

liberation of the Gal B (1-3) GalNAc disaccharide from asialofetuin to be measured 
following the generation o f a colour reaction with the DMAB substrate. The possible 

liberation of the disaccharide from the 16 kDa antigen could not however be assessed in 

this manner as the assay is not particularly sensitive and therefore even if significant 
release of the disaccharide occurred it would be necessary to treat unavailable amounts 

of the 16 kDa antigen for it to be detected in this way. The enzyme treated 16 kDa 

antigen and the negative control were therefore run on SDS PAGE gels, transferred by 
Western blotting and the blots probed with B3A, VRabS or PNA. Figure 4.5 shows that 

treatment of the 16 kDa antigen with O-glycanase did not affect the binding of the 
antibodies or the lectin, nor did it alter the size of the signal observed. This demonstrates 

that the epitope recognised by the McAb and / or the sugar recognised by PNA is not O- 

linked Gal B (1-3) GalNAc.

4.3 DISCUSSION
Experiments detailed in this chapter showed that, as judged by a loss in antigenicity, 

the 16 kDa molecule was susceptible to degradation by a wide range of non-specific 

proteases. This confirmed the presence of a peptide moiety. An alteration in the antibody 
binding pattern of the 16 kDa antigen was also used to demonstrate its susceptibility to 

treatment with sodium meta periodate. Although on rare occasions prolonged treatment 

with periodate has resulted in the degradation of protein molecules, the short oxidation
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Figure 4.5 Treatment o f the 16 kl)a antigen with the enzyme O-glycanase

30 fi\ aliquots of an OTG extract of MS (400,000 MS/ml) were treated with O-glycanase 
for 20 hours at 37°C. The enzyme was used at a concentration of 0.3 mU (lanes 2, 5 and 
8) or 1.8 mU (lanes 3, 6 and 9). Aliquots incubated in the absence of enzyme were also 
included as negative controls (lanes 1, 4 and 7). Following incubation antigens were 
separated by SDS PAGE and transferred by Western blotting. The blots were probed with 
VRahS at a dilution of I in 200 (panel A), biotinylated PNA (panel B) or B3A at a 
dilution of 1 in 20 (panel C). The position of the 16 kDa antigen is marked with an 
arrow.
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time and acidic conditions employed here should have allowed the denaturation of 

carbohydrates via the cleaving of vicinal hydroxyl groups to occur, without affecting the 

structure of the peptide entity (Clamp and Hough, 1965). Thus, the failure of B3A to bind 
to periodate treated 16 kDa antigen indicated that the molecule is indeed a glycoprotein 

and that a carbohydrate epitope is the target of the Me Ah. The continued binding of 
VRabS to the 16 kDa on periodate treated Western blots substantiated the claim that the 

peptide moiety is unaffected by the conditions used for periodate oxidation and indicated 

that the 16 kDa molecule also incorporates some peptide epitopes. Having identified the 
16 kDa antigen as a glycoprotein, studies were carried out with the aim of characterising 

both the peptide and carbohydrate moieties.
Attempts to obtain sequence data for the peptide moiety of the 16 kDa antigen by gas 

phase N-terminal amino acid sequencing were unsuccessful. Whereas the level of 

Coomassie blue staining of the ProBlott membrane suggested that micromoles of protein 
were available for sequencing only picomoles of a variety of amino acids were present in 

each sequencing cycle. The most plausible explanation for this discrepancy is that the 16 

kDa antigen which contributes the major Coomassie blue stained signal is N-terminally 
blocked and that the amino acid sequence data obtained represents that of minor 

contaminating molecules. The presence of the latter indicates that the 16 kDa antigen 

excised from the ProBlott membrane was not completely pure. However, had the 16 kDa 
antigen not been N-terminally blocked, the amino acids derived from the micromolar 

concentrations of antigen present would have far outweighed those derived from trace 
contamination products and the sequence of the 16 kDa molecule would have been 

discernible. With proteins not amenable to sequencing from the N-terminus, it is a 

common procedure to sequence internal peptides generated by cleavage of the molecule 
with enzymes (e.g. trypsin) or with cyanogen bromide and isolated by HPL.C. However, 

Coomassie blue stained antigen bound to ProBlott membrane is unsuitable for use in this 

protocol and in view of the small quantities and partial purity of the antigen present, it 
was considered impractical to attempt digestion of the 16 kDa molecule within the 

immunoaffinity column eluates. Further efforts to  obtain sequence data for the 16 kDa 
antigen were therefore focused on the screening of recombinant cDNA libraries (see 

chapter 6).
With regard to the characterisation of the carbohydrate entity of the 16 kDa antigen, 

the binding of B3A to the molecule following incubation with the enzyme Glycopeptidase
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F has suggested that an N-linked sugar is not the target of the McAb (Francis, 1989). 

Moreover, as no alteration in the size of the molecule was observed following this 

treatment, it seems unlikely that the 16 kDa antigen possesses any sugars of this kind. 
However, although Glycopeptidase F cleaves between the asparagine residue of the 

peptide component and the GlcNAc-GIcNAc-Man trisaccharide which forms the core of 
all N-linked oligosaccharides, chains in which a fucose is a  1-3 linked to the primary 

GIcNAc (Tretter et al., 1991) and chains which are N-linked to a terminal asparagine 

residue (Tarentino et a l., 1985) are resistant to cleavage. The former have been identified 

in schistosomes (Nyame et a l., 1988a) and suggest the possibility of Glycopeptidase F 

resistant N-linked sugars existing within the 16 kDa antigen. However, the lectin 

experiments carried out here also support the suggestion that the 16 kDa does not include 

N-linked oligosaccharides. Triticum vulgaris (wheatgerm agglutinin, WGA) which 
recognises the trisaccharide core of all N-linked sugars did not hind to the 16 kDa 

antigen, nor did Canavaliu enisformis, (ConA), tens culinans, (lentil) nor Griffonia 

simplicifolia II (GS II) which recognise GIcNAc. Although the 16 kDa antigen does not 

contain such sugars, other researchers have demonstrated that molecules containing high 

mannose and / or complex type N-linked oligosaccharides are present in both 

schistosomula (Nyame et al., 1988a) and the adult stage of the parasite (Nyame et al., 
1988b, 1989).

The assertion that the 16 kDa antigen does not contain any N-linked oligosaccharides 
leads to the suggestion that the carbohydrate(s) which bind the McAb and the lectins PNA 

and RCA, are attached to the peptide core via an O-linkage. Although O-glycosylation 

is one of the most common post translational modifications to occur, its function is still 

not fully understood. However, as a consequence of steric interactions between the 

carbohydrate and peptide moieties of a glycoprotein and the overpowering of the 

hydrophobic interactions normally involved in protein folding by the hydrophilic nature 
of the carbohydrate chains, secondary and tertiary structures which are typical of non- 

glycosylated peptides are completely altered by the addition of O-linked sugars. It has 

therefore been suggested that O-glycosylation is of paramount importance to the 

establishment of the overall structure of a glycoprotein (Jentoft, 1990). One of the 

predominant effects of glycosylation on the structure of a molecule is the extension of the 
glycosylated region to form a semi-flexible rod. This can lead to an increase in the length 

covered by a small number of amino acids and it has been proposed (Jentoft, 1990) that
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this may enable the extracellular portion o f some glycoproteins to stretch far above the 

plasma membrane (e.g. leucosialin, epiglycanin). A large number of such glycoproteins 

could then be used in the formation o f a protective layer over the cell surface. 
Alternatively, the extension resulting from glycosylation of a short peptide sequence 

between a membrane bound domain and a functional domain, may enable the latter to 
appear above the cell surface and the glycoprotein to act as a signalling molecule. O- 

linked sugars are also known to provide glycoproteins with charge and water binding 

properties and to protect regions of the peptide backbone from degradation by proteases 
(Paulson, 1989).

For most secreted and membrane glycoproteins, O-glycosylation initially involves the 

linkage of a GalNAc residue to the hydroxyl group of a serine or threonine residue within 
the peptide moiety (Piller and Piller, 1993). Several core structures can then be 

constructed around this basic linkage, although one of the most commonly occurring is 
formed by the addition of a galactose residue to give the structure Gal ft (1-3) GalNAc - 

Ser / Thr. As both PNA which has a high affinity for this disaccharide and RCA, which 

targets terminal galactose, bind to the 16 kDa antigen on Western blots, the enzyme O- 
glycanase was used to determine whether this core structure was present within the 16 

kDa glycoprotein. O-glycanase is specific for this particular linkage and cleaves the 

disaccharide from the peptide core only if it is unsubstituted (ie. no other sugar groups 
are attached). The continued binding of B3A to the 16 kDa antigen following treatment 

with O-glycanase demonstrates that Gal ft (1-3) GalNAc does not represent the target of 
the McAb. Moreover, the inability of this treatment to decrease the binding of PNA to 

the antigen suggests that this simple disaccharide is not present. The latter is somewhat 

surprising when considering the high affinity with which PNA binds to the 16 kDa 
antigen and the preference of PNA for this disaccharide. However, although PNA binds 

with greatest affinity to the Gal ft (1-3) GalNAc structure, it will also recognise sugars 

which incorporate terminal a  or B galactose and / or terminal a  or ft GalNAc. Similarly, 
although RCA has a preference for terminal ft galactose, it will bind to terminal a 

galactose or terminal a  or ft GalNAc. Thus, other possibilities for the structure of the 
lectin binding O-linked carbohydrate(s) present within the 16 kDa antigen, include 

complex oligosaccharides terminating in galactose or GalNAc and more simple structures 

involving these residues linked directly to the peptide core. Although unusual, the latter 

have already been shown to be present in schistosomes. Nyame el a l., (1987, 1988a)
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demonstrated that whilst the major O-linked sugar in both schistosomula and adult worms 

was found to be GlcNAc linked directly to the peptide backbone, a small amount of 
directly linked unsuhstituted GalNac was also seen. Furthermore, complex sugars 
including the disaccharide Gal B (1-3) GalNAc were not seen in the schistosomula stage. 

The results of Nyame et al., are therefore consistent with the suggestion made above that 

Gal B (1-3) Gal NAc is not present within the 16 kDa antigen and also indicate that 
complex oligosaccharides terminating in suitable residues do not represent the target of 

PNA, RCA or B3A. Thus, taking into account the conclusions of the studies of Nyame 

et al., (1988) in addition to those carried out here, the probable target of the lectins 

binding to the 16 kDa antigen is the monosaccharide GalNAc attached directly to the 

peptide core. The inability of Glycine max (SBA), which has a high affinity for a 
GalNAc, to hind to the 16 kDa antigen suggest that these residues are in the B 

configuration. In addition, the inability of the 16 kDa antigen to bind lectins which are 
specific for GlcNAc indicates that this residue is not present and hence suggests that the 

McAb, like the lectins, also targets B GalNAc residues attached directly to the peptide 

core. This is consistent with the observed periodate sensitivity of the epitope recognised 
by the McAb as GalNAc residues have vicinal hydroxyl groups and would therefore be 

destroyed by periodate. Furthermore, the binding of PNA to the 16 kDa antigen is 

abolished by periodate treatment (data not shown). The indication that the target of the 
McAb is a single monosaccharide attached to the peptide core is somewhat surprising, as 

the majority of previously described carbohydrate epitopes have a more complex structure 

(Hakomori and Kannagi, 1983). However, a number of McAbs have been described 
which recognise epitopes associated with O-linked monosaccharides found on 

glycoproteins o f  rat renal tissue (Holt et al., 1987, Park et al., 1987). The binding of 

these McAbs was shown to depend not only on the presence of unsubstituted GlcNAc 
residues hut also on the integrity of the peptide chain to which the sugars are attached. 

Similarly, the demonstration that the binding of B3A to the 16 kDa antigen is not blocked 

by the inclusion of lactose also suggests that this McAb does not bind in a lectin type 
fashion to a monosaccharide alone. Other possibilities for the nature of the epitopes to 

which these McAbs do bind include an epitope formed by the linkage between the 

carbohydrate and peptide entities which is reliant on the conformation of both. 
Alternatively, the antibodies may recognise peptide epitopes which are dependent on the 

attachment of sugar residues for their conformation. As suggested by Jentott (1990) (see
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above) glycosylation can drastically alter the conformation of a peptide structure. Thus, 

it seems possible that removal or cleavage of sugar residues may lead to a loss in the 

integrity of some peptide epitopes.
The study of lectin binding to antigens upon the schistosome surface is also of 

interest as several studies have indicated that major alterations in the binding pattern of 
lectins to the surface of the schistosome occur as the parasite becomes refractory to 

immune attack i.e. as the newly transformed schistosomula develop into lung stage larvae. 

It has therefore been proposed that the developing resistance of older schistosomula may 
be due, in part, to alterations in the nature of the glycoproteins present upon the surface 

membrane. Thus, further studies were carried out using lectins specific for a number of 

sugar groups to look in more detail at these changes. Studies using fluorescein labelled 
lectins have demonstrated that the surface of the newly transformed schistosomula has a 

large number of binding sites for Con A, WGA and Lotus tetragonolobus (Lotus) and a 

smaller number of binding sites for PN A and RCA (Murrell el ul., 1978, Simpson el u l., 

1983b). In contrast, five day old lung schistosomula have 70% - 75% less binding sites 
for Con A, RCA, WGA and PNA whilst the binding of Lotus lectin is absent (Simpson 

et al., 1983b). This observed decrease in the binding o f PNA may be of particular 

relevance to the studies described here as it has been demonstrated that the 16 kDa 

antigen is the major molecule recognised by PNA on probing of Western blots of a 
detergent extract of MS. Thus, it is proposed that a change in the expression of the 16 

kDa antigen could play a substantial part in the decreased level of PNA binding to the 

surface of the developing schistosomula and hence in the general reduction in the number 
of glycoproteins available upon the surface, a process which is thought to be involved in 

the evasion of host immunity. In this context it is also of interest to note that the pattern 

of binding of fluorescently labelled PNA reported by Simpson etui., (1983b) corresponds 
to that of B3A which also binds to the surface of newly transformed hut not lung stage 

schistosomula (Bickle et al., 1986).

How the loss of surface glycoproteins available for lectin binding occurs is not fully 

understood One possibility is that the addition of sialic acid residues to existing sugars 

masks the target sugars of some lectins. This is supported by the studies of Simpson et 
al., (1983b), which demonstrated that the binding of PNA to freshly transformed 
schistosomula was not increased by treatment with neuraminidase, whereas similar 

treatment of lung stage parasites increased the binding of PNA and also induced the
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binding of SBA. The former observation is in agreement with the results obtained here 

which show that the binding of PNA to Western blots of the 16 kDa schistosomula 

surface antigen was not increased by neuraminidase treatment. Moreover, although it is 
possible, that previously unexposed glycoproteins which incorporate PNA binding groups 

masked by sialic acid are newly exposed on the surface of the lung stage parasite, these 
results may also suggest that the 16 kDa antigen present in MS is modified by the addition 

of sialic acid in the lung stage schistosomula. This would account for the decrease in the 

binding of PNA and possibly the inability of B3A to hind to the lung stage larvae. 
Whether the sialic acid which masks glycoproteins in the lung stage larvae is of host or 

parasite origin is unknown. However, Nyame et al., (1987) failed to demonstrate the 

synthesis of sialic acid by schistosomula or by adult worms and it is well documented that 

schistosomes are capable of absorbing host antigens onto their surface. Once incorporated 
into the surface, sialic acid may play an important role in enabling the lung stage 
schistosomula to resist the host's immune response. In addition to masking the sugar 
groups of some glycoproteins, sialic acid has previously been shown to be capable of 

preventing complement activation (Fearon, 1978, Pangburn and Muller-Eberhard, 1978) 

and reducing the immunogenicity of certain cells (Currie and Bagshawe, 1969). 
Alternative explanations fo r the decrease in binding of lectins to the lung stage 

schistosomula surface are the occurrence of membrane turnover with the loss of major 

glycoproteins or, as previously mentioned, an alteration in the structure of the surface 
membrane which results in the exposure of diff erent membrane molecules which perhaps 

include some asialated glycoproteins (Hayunga and Sumner, 1986a).
Also of interest in the context of the work described in this chapter are studies which 

have employed labelled lectins to examine the effect of irradiation on the glycoproteins 

present upon the surface of the parasite. Wales et al., (1993) demonstrated that following 

UV irradiation the binding o f  Con A, WGA and PNA to cercariae was greatly increased 
as compared to that seen with normal parasites. Moreover, the binding of lectins to the 

surface of irradiated parasites was maximal when parasites were irradiated with doses 

shown to stimulate the greatest level of immunity in the UV irradiated vaccine model. 
This increased binding was lost once transformation of the cercariae had been completed. 

Thus, it has been proposed (Wales et a l., 1993) that irradiation causes a disruption of the 

glycocalyx which leads to an increase in the lectin binding ability and more importantly 
the immunogenicity of the parasites, by exposure of cryptic epitopes upon glycoproteins
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within the glycocalyx or within the membrane beneath. If the 16 kDa glycoprotein which 

is not normally recognised on the surface of cercariae were to be exposed in such a way, 
this may explain the increased binding of PNA seen following irradiation and the 
increased immunogenicity of the antigen which is seen in the irradiated vaccine model.

In addition to the 16 kDa molecule, a number of antigens expressed upon the surface 

of the schistosomula have been shown to be glycoproteins (Simpson et al., 1984, Oligno 

el al., 1988, Soisson el al., 1992). Of these, a proportion express surface exposed 
epitopes of a carbohydrate nature and in the case of the 38 kDa vaccine candidate antigen 

originally described by Dissous el al., (1985) (section 1.9.2.1) such epitopes have been 

seen to represent the targets of passively protective McAbs (Grzych el al., 1982, Kelly 

et a l., 1986). In accordance with the results obtained here which demonstrate that the 

target of the passively protective McAb, B3A is a carbohydrate epitope of the 16 kDa 

antigen, these observations indicate that the binding of antibodies to carbohydrate epitopes 
upon the surface of the schistosomula is able to mediate protection. However, although 

some glycoproteins may represent good vaccine candidates the glycanic nature of their 

epitopes limits their production by DNA recombinant technology. With regard to the 38 
kDa antigen this problem has been circumvented by the use of an anti-idiotype vaccine 

which was shown to confer significant protection in rats (Grzych et a l., 1985, section 

1.9.2.1). It is possible that similar techniques, or the use of mimeotopes could he 
employed to immunise against the carbohydrate epitope recognised by B3A upon the 16 

kDa antigen. However, it should be noted that the binding of VRabS to the 16 kDa 

antigen remains unaffected by periodate treatment, as this indicates that potentially 
clonable peptide epitopes are also present upon this molecule.

Thus, in summary the 16 kDa antigen has been characterised as a glycoprotein 

consisting of an N-terminally blocked peptide component which is most probably O- 
glycosylated by the attachment of a number of GalNAc residues directly to the peptide 

core. The latter either form the target of the passively protective McAb or are critical to 
its formation.
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5.1 INTRODUCTION
The purpose of the studies detailed in this chapter was to immunise mice with the 

partially purified 16 kDa antigen. This was done in order to raise a good immune 
response and thus investigate the ability of the molecule to protect against a challenge 

infection. However, immunising with the purified antigen might also result in the 
generation of monospecific sera which could be used as a probe with which to screen a 

cDNA expression library (see Chapter 6).

It is known that the development of a protective antibody response relies not only 
upon the titre of the antibody raised against the immunogen hut also upon the major 

antibody iso type, the antibody affinity and the specific nature of the antigenic 

determinants recognised. Prior to immunisation with the partially purified 16 kDa antigen, 
it was therefore deemed useful to carry out experiments aimed at characterising the 

antibody response generated against the 16 kDa antigen in immune mice multiply 
vaccinated with irradiated cercariae. As it is proposed that the anti-16 kDa response may 

be of importance to the development of the protection seen in this model, it was hoped 

that such studies would indicate the features of this response which might he necessary 
for the development of protective immunity and thus those which the injections with the 

purified antigen were intended to reproduce. The first section of this chapter describes the 

characterisation of VMS with regard to the titre and subclass of the antibody raised 
against the 16 kDa antigen and the nature of the epitopes recognised.

One of the major problems encountered when immunising with purified antigens is 
their poor antigenicity. This is believed to be due to the simple monomeric form in which 

molecules isolated from the parasite exist, and the problem is traditionally overcome by 

the use of immunopotentiating chemicals known as adjuvants (Alving et at., 1992). In 

addition to enhancing the immune response in general, adjuvants also have the ability to 
drive the response in a particular direction (Audibert and Lise, 1993). This is largely due 

to two factors. Firstly, adjuvanticity is linked to an ability to selectively stimulate one of 

the T cell subsets that control the immune response (Grun and Maurer, 1989). This 
dictates the type of cytokines produced and ultimately the isotype of the antibody response 

generated. Secondly, the type of adjuvant used may affect the way in which an antigen 
is presented. For example, micelle and vesicle type structures are particularly suited to 

the presentation of membrane antigens. Thus, in order to optimise the likelihtxxl of 

achieving protective immunity and to examine the effect of using different adjuvants upon
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the antibody response raised against the 16 kDa antigen, the immunoaffinity purified 
antigen was used in conjunction with the oil in water suspension Ribi, the novel adjuvant 

novasomes (Novavax Inc.) and the Quil A derivative, Spikoside, in the form of 
immunostimulating complexes (ISCOMs). Following immunisation, the features of the 

antibody response generated were investigated and compared to those of VMS. Protection 

data was also obtained.

5 .2  RESULTS
5.2.1 CHARACTERISATION OF THE ANTIBODIES RAISED AGAINST THE 

16 kDa ANTIGEN IN MICE VACCINATED WITH RADIATION

ATTENUATED CERCAR1AE
The 16 kDa molecule is a major antigen recognised by sera raised in mice multiply 

vaccinated with irradiated cercariae (VMS) (Bickle et al., 1986). VMS taken from four 

times immunised female CBA mice has been used in the following characterisation 

studies.

5.2.1.1 Antibody titre
Strips of a Western blot of an OTG extract of MS were incubated in increasing 

dilutions of VMS. Antibodies recognising the 16 kDa antigen had a titre of greater than 

1 in 5,000 by this method (data not shown).

5 .2 .1 .2  Antibody subclass
Strips of a Western blot of immunoaftinity purified antigen were incubated 

overnight in a 1 in 200 dilution o f VMS and developed with IgG subclass specific, 

peroxidase labelled, rabbit anti-mouse conjugates. Figure 5.1 demonstrates that the 
predominant subclass of the IgG antibodies recognising the 16 kDa antigen was lgG2a. 

No signal was seen with any of the other conjugates.

5.2 .1 .3  The biochemical nature o f the epitopes recognised
The recognition of periodate sensitive and insensitive moieties upon the 16 kDa 

molecule by B3A and VRahS respectively (see Chapter 4) has indicated that the antigen 

has both carbohydrate and peptide epitopes. In order to determine the nature of the 

epitopes recognised by VMS, strips of a Western blot of immunoaffinity purified antigen
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Figure 5,1 The subclass o f the anti-16 kDa antibodies within VMS

1 2  3 4

A Western blot of immunoaffinity purified 16 kDa antigen was cut into strips and 
incubated overnight with a l in 200 dilution of VMS. The strips were then probed using 
subclass specific conjugates, l-ane I = IgGI, lane 2 = lgG2a, lane 3 = IgG2b and lane 
4 = lgG3. The position of the 16 kDa antigen is marked with an arrow.
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were treated with sodium meta periodate for 1 hour and for 4 hours and probed with a 

1 in 50 dilution of sera. Figure 5.2 demonstrates that the 16 kDa signal was depleted by 

treatment with 20 mM sodium meta periodate for one hour. These results indicate that 
antibodies within VMS recognised predominantly carbohydrate epitopes.

5 .2 .2  IMMUNISATION OF MICE WITH 1MMUNQAFF1N1TY PURIFIED 16kDa 
ANTIGEN PLUS RIBI ADJUVANT

The experiments detailed in Chapter 3 demonstrated that the material eluted from the 
immunoaffinity column was very much enriched with regard to the 16 kDa antigen. 

Although these eluates also contain a small number of contaminating molecules, the 16 

kDa antigen was the only molecule seen by Coomassie blue staining, the most 
predominant molecule visible on silver staining and the major antigen recognised hy 

VRabS following SDS PAGE and Western blotting. Thus, in view of the failure of other 
techniques to enhance the purity of the immunoaffinity purified 16 kDa molecule, the 

most antigen rich eluates obtained following purification of the antigen from a total of 23 

million MS were dialysed to remove excess salt and diethylamine (DEA) and used for 
immunisation (section 2.20.1). A group of 8 male C57BI/10 mice were immunised 

subcutaneously with the partially purified antigen plus Rihi adjuvant. A similar control 

group were immunised with the adjuvant alone. Following a total of four injections both 
groups of mice were challenged, perfused after 6 weeks and the worm burdens counted. 

Table 5.1 demonstrates that no significant protection was obtained.

5 .2 .3  CHARACTERISATION OF THE ANTIBODY RESPONSE IN MICE 

IMMUNISED WITH THE 16 kPa ANTIGEN PLUS RIBI ADJUVANT
5 .2 .3 .1 . Recognition o f the 16 kDa antigen by Western blotting

A pool of the sera raised in mice immunised twice with the purified 16 kDa antigen 

plus Rihi, was shown to give a weak signal with the immunoaffinity purified molecule 
on Western blots (data not shown). The strength of this response was increased 

considerably following two further injections and as can be seen in Figure 5.3 the 16 kDa 
molecule was the major antigen recognised on probing of Western blots o f an OTG 

extract of MS antigens. The only other signal, which was only occasionally observed, was 

the doublet of approximately 58 kDa which has been described previously (see Chapter 
3) and is believed to represent a contaminant which is introduced during SDS PAGE.
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Figure 5.2 The recognition of periodate treated 16 kDa antigen by VMS

1 2 3

A Western hlot of immunoaffinity purified 16 kDa antigen was cut into strips and treated 
with 20 mM sodium meta periodate in 50 mM sodium acetate (pH 4.5) for 1 hour (lane 
2) or for 4 hours (lane 3). A control strip was incubated for 4 hours in the acidic buffer 
alone (lane 1). The strips were then probed with a 1 in 50 dilution of VMS. The position 
of the 16 kDa antigen is marked with an arrow.
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T A B L E  5.1 The im m unisation o f m ice with the im m unoaffin itv  purified 16 kDa antigen plus R ibi adjuvant

Number of mice per 

group

Immunisation

protocol

Worm burden

(+/-S.D.)

Reduction (%) Significance

7 Saline plus 

Ribi

74.3 +/- 9.8 “

7 Purified 16 kDa 

plus Ribi

69.7 +/- 10.6 6.2 N.S.

C57BI/10 mice were immunised s.c with immunoaffinity purified 16 kDa antigen plus Ribi adjuvant or with Ribi plus sterile saline. The mice 
were then challenged with 200 cercariae 4 weeks after the last immunisation and killed and perfused 30 days later. The average worm burden 
was obtained for both groups and % resistance calculated as described in Chapter 2. S.D. = standard deviation.



Thus, it appeared that, despite the lack of protection observed, a strong monospecific 

response had been generated against the 16 kDa antigen.

5.2.3.2 Recognition of the 16 kDa antigen by sera raised in individual mice 

The worm burdens seen in Table 5.1 represent the average values for the immunised
and the control groups. However, on observation of the worm burdens of individual mice 

it became apparent that within the immunised group a number of animals had worm 

burdens which differed substantially from the average. Sera taken from individual mice 
immunised four times with the immunoaffinity purified antigen was therefore used to 

probe Western blots of an OTG extract of MS (data not shown). The results obtained 

demonstrated that, although sera from all of the mice recognised the 16 kDa antigen to 
some extent, sera from some individuals gave a signal which was substantially stronger 

than that given by others. However, comparison of the blots with the protection data 
demonstrated that those mice which responded strongly to immunisation with the 16 kDa 

were not those with lower than average worm burdens. A pool of sera from mice 

immunised with the 16 kDa antigen plus Ribi adjuvant (Ribi(S)) was used for the 
following studies.

5.2.3.3 Antibody litre
The probing of Western blots of OTG extracted MS antigens with increasing dilutions 

of Rihi(S) demonstrated that the anti-16 kDa antibodies within this sera had a litre of at 
least 1 in 5,000 (data not shown). This was comparable to that of VMS.

5.2.3.4 Antibody subclass
Western blots of an OTG extract of MS were probed with a 1 in 500 dilution of 

Rihi(S) and developed with IgG subclass specific conjugates. As can be seen in Figure

5.3 the major subclass of the antibodies recognising the 16 kDa antigen was lgG2a. A 
much weaker signal was also visible following probing with the anti-lgG2h conjugate. 

However, no signal was seen with the IgGl or lgG3 specific conjugates.

5.2.3.5 The nature of the epitopes recognised 

(a) Treatment with sodium meta periodate
To determine the biochemical nature of the epitopes recognised by Ribi(S) on the 16
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Figure 5.3 The subclass o f the an ti-16 kDa antibodies within Kibi(S)

1 2  3 4
MH A M

A Western blot of an OTCj extract of MS was cut into strips and incubated with a I in 
.MX) dilution of Ribi(S). The strips were then developed using isotype specific conjugates. 
l.ane l = IgGl, lane 2 = lgG2a, lane 3 = lgG2b and lane 4 =  IgG3. The position of 
the 16 kDa antigen is marked with an arrow.
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Figure 5 .3 The subclass of the anti-16 kDa antibodies within Ribi(S)

1 2 3 4

A Western blot of an OTG extract of MS was cut into strips and incubated with a 1 in 
500 dilution of Ribi(S). The strips were then developed using isotype specific conjugates. 
Lane 1 =  IgGl, lane 2 = IgG2a, lane 3 = IgG2b and lane 4 = lgG3. The position of 
the 16 kDa antigen is marked with an arrow.
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kDa antigen, strips of a Western blot of immunoaffinity purified antigen were treated with 

sodium meta periodate for 1 or for 4 hours and then probed with a 1 in 50 dilution of 

sera. Figure 5.4 demonstrates that the recognition of the 16 kDa antigen by Ribi(S) was 
significantly diminished following treatment with periodate for 1 hour, although a residual 

signal was still observed following four hour treatment. These results indciate that the 
majority of antibodies within Ribi(S) recognise epitopes of a carbohydrate nature.

(b) The recognition of surface exposed gpitopes
Despite the recognition of carbohydrate epitopes on the 16 kDa antigen by antibodies 

of an equal titre and a similar IgG subclass to the anti-16 kDa antibodies within VMS, 

mice immunised with the 16 kDa molecule plus Ribi adjuvant were not protected against 
a challenge infection. One of many possible explanations for this observation is that 

Ribi(S) failed to recognise carbohydrate epitopes which were appropriate as targets o f a 
protective immune response. For example, it could well be important that surface exposed 

epitopes are recognised if the intact parasite of the challenge infection are to be killed 

effectively. To investigate whether surface exposed epitopes are recognised by antibodies 
within Rihi(S) living schistosomula were probed with this sera and a fluorescein labelled 

anti-mouse conjugate. Schistosomula similarly probed with B3A were used as a positive 

control. Figure 5.5 demonstrates that on probing with Rihi(S), fluorescence which was 
judged to be equal to that seen on probing with the Me Ah was observed. This suggested 

that Ribi(S) does indeed bind to epitopes exposed upon the surface of the schistosomula. 
However, it was noted that in addition to binding to the schistosomula heads, Ribi(S) 

hound to the cercarial tails still present in the MS preparation. This contrasted with the 

binding pattern observed for B3A which bound only to the former. The 16 kDa antigen 
is known to be present in cercarial tails and has previously been extracted in small 

amounts using OTG (data not shown). It is therefore possible that Ribi(S) recognises 

epitopes of the 16 kDa antigen which are not targets of the McAb and are exposed on the 
surface of cercarial tails as well as on schistosomula. Alternatively, it is possible that the 

binding of Ribi(S) to the surface of the parasite could be due to the recognition of 
epitopes of antigens other than the 16 kDa molecule which are exposed on the surface of 

the cercarial tails as well as the schistosomula. In order to investigate whether Ribi(S) 

recognised molecules other than the S. mansoni specific 16 kDa antigen, S. japonicum  

schistosomula were probed with this sera and the fluorescein labelled conjugate. Despite
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Figure 5 .4  The recognition of periodate treated 16 kDa antigen by Ribi(S)

1 2  3

Strips of a Western blot o f immunoaffinity purified 16 kDa antigen were incubated for 
l hour (lane 2) or for 4 hours (lane 3) with 20 mM sodium periodate in 50 mM sodium 
acetate buffer (pH 4.5). A control strip (lane l) was incubated for 4 hours in the acidic 
buffer alone. The strips were then probed with Ribi(S) at a dilution of l in 50. The 
position of the 16 kDa antigen is marked with an arrow.
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the species specificity of the 16 kDa antigen strong fluorescence was observed (data not 

shown). This demonstrated that, although the 16 kDa antigen was the only signal 

observed following the probing of Western blots with Rihi(S), this sera does recognise 
other surface exposed antigens which probably represent contaminants present in the 

affinity purified preparation used for immunisation. It was therefore not possible to 
conclude from these results whether or not Ribi(S) recognised surface exposed epitopes 

of the 16 kDa antigen.

S.2.3.6. The surface antigens recognised by Ribi(S)
The immunofluorescence studies detailed above suggested that Ribi(S) recognised 

antigens other than the 16 kDa molecule which were not visible upon the probing of 
Western blots. Thus, in an attempt to characterise these antigens the more sensitive 
technique of immunoprécipitation was used. Newly transformed schistosomula were 
radiolabelled with ,M1 and extracted with TX-100 followed by OTG. labelled surface 

antigens were then precipitated by a range of sera including a number of McAbs shown 

previously to recognise surface antigens. All of the sera gave stronger signals with the 
antigens extracted with OTG and Figure 5.6 demonstrates that Ribi(S) precipitated a 

number of OTG extracted antigens of varying molecular weights. Comparison of the 

pattern of molecules precipitated by Rihi(S) to those precipitated by B3A suggested that 
the 16 kDa antigen may be amongst those antigens recognised. However, the low 

molecular weight signals obtained with both Rihi(S) and with B3A were somewhat 
difficult to distinguish with certainty from the background response. This was not 

unexpected as previous attempts to radiolabel the 16 kDa antigen have either failed 

completely or provided similarly confusing data (Dr. Q. Bickle, personal communication). 
Other antigens precipitated by Ribi(S) included a signal of 18 to 20 kDa and antigens of 

approximately 23, 32 and 97 kDa. Comparison of the precipitation pattern o f Ribi(S) with 

that of the McAb, M22H12C suggested that the 32 kDa antigen corresponded to that 
described as the target of this McAb by Bickle et al., (1986). Furthermore, comparison 

of the antigens precipitated by Ribi(S) with those precipitated by sera raised in rabbits 

against a recombinant form of the vaccine candidate antigen, Sm23 (a gift from Dr. Q. 

Bickle) suggested that Ribi(S) also precipitated this surface antigen (Harn et al., 1985b). 
However, a 23 kDa antigen was also weakly precipitated by a number of the McAbs and 

by NRahS. This suggested that Sm23 may be a particularly "sticky" molecule with a
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Figure 5,6 Immunoprecipitation of radiolabelled schistosomula surface antigens

Living schistosomula were surface labelled with I'25 and solubilised by incubation in 1.5% 
OTG. The extracted antigens were then precipitated by incubation with a variety of sera 
followed by Protein A Sepharose and the immunoprecipitates were separated by SDS 
PAGE. Lane 1 =  I in 100 dilution of VMS, lane 2 = 1 in 100 dilution of Ribi(S), lane 
3 = 1 in 100 dilution of sera taken from mice immunised with the Ribi adjuvant alone, 
lane 4 = 1 in 20 dilution o f B3A, lanes 5 and 6 = 1 in 20 dilutions of the McAbs, 
M22H12C and C1C9 respectively, lanes 7 = 1 in 200 dilution of NRabS and lane 9 = 
1 in 200 dilution of sera raised against a recombinant form of Sm23. Possible positions 
of the 16 kDa antigen are arrowed.
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Figure 5.6 Immunoprecipitation o f radiolabelled schistosomula surface antigens

Living schistosomula were surface labelled with I1”  and solubilised by incubation in 1.5% 
OTG. The extracted antigens were then precipitated by incubation with a variety of sera 
followed by Protein A Sepharose and the immunoprecipitates were separated by SDS 
PAGE. Lane I =  1 in 100 dilution of VMS, lane 2 =  1 in 100 dilution of Ribi(S), lane 
3 = 1 in 100 dilution of sera taken from mice immunised with the Ribi adjuvant alone, 
lane 4 =  1 in 20 dilution of B3A, lanes 5 and 6 =  1 in 20 dilutions of the McAbs, 
M22H12C and C1C9 respectively, lanes 7 = 1 in 200 dilution of NRabS and lane 9 = 
1 in 200 dilution o f sera raised against a recombinant form of Sm23. Possible positions 
of the 16 kDa antigen are arrowed.

167



degree of affinity for immunoglobulin in general. It is also of interest to note that an 

antigen of 32 kDa and a signal o f 18 -2 0  kDa were observed on silver staining of the 

immunoaffinity column eluates which were used to immunise these mice (section 
3.2.2.1). These results therefore demonstrate that these contaminating molecules, although 

minor signals, were present in sufficient amounts to stimulate an antibody response.

5.2.4 IMMUNISATION OF MICE WITH THE 16 kDa ANTIGEN PLUS 
ALTERNATIVE ADJUVANTS

In addition to enhancing the specific response to immunising antigens, a particular 

adjuvant may selectively boost certain components of the immune system and hence have 

a profound effect on the type of immune response generated and the subsequent 
development of resistance. In a second attempt to generate a protective response by 

immunising with the partially purified 16 kDa antigen two different adjuvants were 
therefore used. As immunisation with the antigen plus Ribi failed to provide protection 

despite stimulating an antibody response of a titre and IgG subclass equal to that seen in 

mice vaccinated with irradiated cercariae, particular attention was paid to the possibility 
of presenting the antigen in a way which would stimulate a response against different 

epitopes. The adjuvant Spikoside which is a derivative of Quil A was therefore used to 

form ISCOMs into which the antigen could be incorporated. As incorporation into 
ISCOMs requires interactions between the hydrophobic region of the antigen and the lipid 

moieties of the ISCOM which are similar to those required for anchoring a surface 
molecule within the bilayer, it was hoped that this may lead to the exposure of epitopes 

of the 16 kDa antigen which are normally exposed upon the surface of the intact 

schistosomula. In addition, the novel adjuvant novasomes, a kind gift from Dr. C. 
Wright, Novavax, U.S.A. was used. This adjuvant is currently undergoing trials and as 

yet little is known about the way in which it stimulates an immune response. However, 

the preparation consists of a detergent (Brij 52) in a squalene emulsion and is designed 
to produce multimeric micelles incorporating the immunising antigen.

5.2.4.1 Immunisation of mice with the 16 kDa antigen incorporated into ISCOMs
(a) Incorporation of the 16 kDa antigen into ISCOMs

Appropriate amounts of the detergent MEGA 10, Spikoside and lipids were added to 
the most antigen rich fractions eluted from the immunoaftinity column following
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purification of the 16 kDa antigen from a total of 18 million MS. The preparation was 

then dialysed against PBS to enable the formation of the cage-like ISCOMs to occur. 

After 48 hours the dialysate became cloudy indicating that ISCOMs had been formed.

(b) Purificatiufl of ISCOMs
The ISCOMs were purified by centrifugation of the dialysate through a sucrose 

gradient. This enabled an opaque band of ISCOMs to be seen at the interface between the 

two sucrose concentrations. Twenty 200 /¿I fractions were then removed from the sucrose 
gradient and the fraction containing the band and the fractions directly above and below 

this region were examined for the presence o f ISCOMs by electron microscopy. Figure 

5.7 demonstrates that the formation of typical cage like ISCOMs had occurred. These 
were observed in all three of the fractions examined although the greater majority were 

found in the fraction containing the visible band.

(c) Localisation of the 16 kPa antigen
The 20 fractions removed from the sucrose gradient following centrifugation were 

separated by SDS PAGE, transferred by Western blotting and probed with VRabS. 

Although small amounts of the 16 kDa molecule were seen in numerous fractions, the 

majority of the antigen was concentrated in those fractions containing ISCOMs (data not 
shown). This suggested that the 16 kDa antigen had been successfully incorporated into 

the ISCOM structure. However, although the 16 kDa antigen was easily detectable in the 
fractions containing ISCOMs by probing of Western blots with VRabS, a signal was no 

longer visible on silver staining of similar gels. Thus, a large proportion o f the 16 kDa 

antigen present in the immunoaffinity column eluates appeared to have been lost during 
the process of forming ISCOMs. No other antigens were visible in the fractions 

containing ISCOMs following silver staining or probing of Western blots with VRabS.

(d) Immunisation

In an attempt to compensate for the small amount of antigen present within the 
ISCOMs a mouse was immunised with the largest feasible volume o f the ISCOM 

containing preparation. However, as a consequence of the toxicity of the Spikoside 

present in ISCOMs, this resulted in the death of the animal within 24 hours. A group of 
7 CBA mice were therefore immunised with 70 ¿d of ISCOMs incorporating the 16 kDa
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Figure 5.7 ISCOMs incorporating the 16 It Da antigen

50nm

Immunoaffinity purified 16 kDa antigen was incubated with detergent, lipid and the Quil 
A derivative, Spikoside and dialysed for 48 hours against PBS. The ISCOMs formed were 
then purified by centrifugation through a sucrose gradient and examined using electron 
microscopy. The above shows ISCOMs containing the 16 kDa antigen following negative 
staining with ammonium molybdate.
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antigen. This dose was tolerated without obvious side effects, moreover, only 5 /xl of an 

identical preparation gave a strong signal on dot blots probed with VRabS. A group of 

5 control mice were immunised with ISCOMs formed without the incorporation of 
protein. Following a total of five injections, sera raised in mice immunised with ISCOMs 

containing the 16 kDa antigen vie«, shown to recognise the 16 kDa molecule on Western 
blots of immunoaffinity purified material. No signal was observed on probing with sera 

raised in the control animals. All the mice were then challenged, perfused 5 weeks later 

and individual worm burdens obtained. Table 5.2 demonstrates that the mice immunised 
with ISCOMs containing the 16 kDa antigen showed a reduction in worm burden of 

16.4% on comparison with mice immunised with the empty structure. This difference was 

not however statistically significant. In view of the smaller size of the control group used, 
comparisons were then made between the average worm burden obtained for mice 

immunised with the 16 kDa antigen incorporated into ISCOMs and that of a larger control 
group which included the worm counts for mice immunised with the novasome adjuvant 

alone (see below) in addition to those for mice immunised with the empty ISCOM 

structure. Such comparisons were feasible as these studies were done in conjunction and 
there was no significant difference between the worm burdens obtained for these two 

groups of control animals. When compared with the larger control group, mice 

immunised with the 16 kDa antigen incorporated into ISCOMs had a reduction in worm 
burden of 18.7% which was statistically significant (p < 0.025).

5 .2 .4 .2  Immunisation o f mice with the immunoaffinity purified 16 kDa antigen 
plus novasomes

The most antigen rich eluates obtained following immunoaffinity purification of the 16 
kDa antigen from a total of 18 million MS were used in conjunction with novasomes to 

immunise a group of 7 CBA mice (section 2.20.2). A group of 5 control mice were 

immunised with the adjuvant alone. Following a total of four immunisations the sera 
taken from the immunised group was shown to recognise the immunoaffinity purified 16 

kDa antigen on Western blots. No signal was seen with sera taken from the control group. 
The mice were then challenged, perfused and the number of worms counted. The results 

obtained (Table 5.3) demonstrated that the worm burden in the immunised mice was 

reduced by 25.3% as compared to that of the novasomes alone control group. This 
difference was shown to be statistically significant (p < 0.025). Further comparisons
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TABLE 5.2 Reduction in worm burden of mice im m unised with ISCOM s incorporating the 16 kDa antigen

Number of mice per Immunisation protocol Worm burden Reduction (%) Significance

group (+ /-  S.D.)

5 ISCOMs alone 94.8 +/-14.3 -

7 ISCOMs incorporating the 16 kDa 79.2 +/-17.5 16.4 p < 0.1

antigen

A group of 7 female CBA mice were immunised s.c with ISCOMs incorporating the immunoaffinity purified 16 kDa antigen or with ISCOMs 
formed without the incorporation of protein. The mice were then challenged with 200 cercariae 2 weeks after the final immunisation and killed and 
perfused 35 days later. The average worm burden for each group was obtained and resistance calculated as described in Chapter 2.



TABLE 53  Reduction in the worm burden o f mice immunised with the immunoaflinirv purified 16 kDa antigen plus novasomes

Number of mice per 

group

Immunisation protocol Worm burden 

(+/- S D )

Reduction (%) Significance 1

5 Novasomes alone 99 4 +/-12.2 -

7 16 kDa antigen plus novasomes 74 3 +/- 20 8 25.3 p < 0 025

7 female CBA mice were immunised i p with the immunoaffinity purified 16 kDa antigen plus novasomes or with novasomes alone The mice were then 
challenged with 200 cercariae 9 weeks after the final immunisation and killed and perfused 35 days later Following perfusion the average worm burden 
was obtained and used to calculate resistance as described in Chapter 2.



were then made between the average worm burden of mice immunised with the 16 kDa 

antigen plus novasomes and a larger control group which included animals immunised 
with ISCOMs formed without the incorporation of antigen (as above) in addition to those 
immunised with novasomes alone. Such comparisons resulted in a smaller reduction in 

worm burden (23.7%), which was however more statistically significant ie. p < 0.01.

5.2.5 CHARACTERISATION OF THE ANTIBODY RESPONSE IN MICE 
IMMUNISED WITH THE 16 kDa ANTIGEN PLUS ALTERNATIVE 
ADJUVANTS

5.2.5.1 Recognition of the 16 kDa antigen
A pool of sera taken immediately prior to challenge from animals immunised with the 

16 kDa antigen plus novasomes or the molecule incorporated into ISCOMs was shown 

to recognise the antigen on Western blots o f immunoaffinity purified material (see Figure 
5.9). The doublet of approximately 58 kDa, which is a non-specific signal introduced 

during SDS PAGE, was also seen on blots probed with sera from immunised and control 

groups. However, difficulty was experienced in obtaining further information regarding 
the specificity of the sera obtained from immunised mice, as their litres were such that 

antigens including that of 16 kDa were not visible on probing Western blots of a crude 

detergent extract.

5.2 .5 .2  Recognition o f the 16 kDa antigen by sera taken from individual mice
Tables 5.2 and 5.3 give the average worm burdens for the groups of animals

immunised with the 16 kDa antigen incorporated into ISCOMs or the antigen plus 

novasomes respectively. However, closer examination of the results obtained revealed that 
a number of individuals within each group had worm burdens which differed substantially 

from the average. Thus, sera taken from individual mice immunised with the 16 kDa 
antigen incorporated into ISCOMs or with the antigen in conjunction with novasomes, 
were used to probe Western blots of the immunoaffinity purified molecule. Only four of 

the mice immunised with ISCOMs gave a detectable response against the 16 kDa 
molecule. In all cases this was not as strong as that observed in mice immunised with the 

antigen plus novasomes. Furthermore, comparison of the blots with the protection data 

demonstrated that the four responders had three of the highest worm burdens. Thus, the 
development of an anti-16 kDa antibody response following immunisation with ISCOMs
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did not correlate with a low worm burden. In contrast, sera taken from all of the mice 

immunised with the 16 kDa antigen plus novasomes recognised the immunoaffinity 

purified molecule. However, differences in the strength of the signals obtained were 
observed and comparison of the blots with the protection data demonstrated that in general 

mice with the stronger responses were amongst those with the lower worm burdens. Thus, 
the two highest worm burdens were seen in two of the three mice showing a minimal 

response. However, the third of these mice did have the lowest worm burden.
Pooled sera from mice immunised with the 16 kDa antigen incorporated into ISCOMs 

(ISC(S)) or the antigen in conjunction with novasomes (NOV(S)) were then used in 

further characterisation studies.

5.2.5.3 Antibody titre
Western blots o f immunoaftinity purified 16 kDa antigen were probed with increasing 

dilutions of NOV(S) or ISC(S). The results obtained demonstrated that a signal could not 

be observed with ISC(S) beyond a dilution of only 1 in 10 whereas NOV(S) had a titre 

of greater than 1 in 500 (data not shown).

5 .2.5.4 Antibody subclass
Western blots o f immunoaffinity purified 16 kDa antigen were probed with a 1 in 10 

dilution of ISC(S) o r a I in 50 dilution of NOV(S) and developed with IgG subclass 

specific conjugates. The results shown in Figure 5.8 demonstrate that the subclasses 
present in both sera covered a broader range than those within VMS or Ribi(S). With 

regard to NOV(S) (Figure 5.8(A)), the major subclass appeared to be IgG2a, although 

the signal with this conjugate was only marginally stronger than that obtained on probing 
with anti-IgGl antibodies. A reasonable signal was also observed with the anti lgG3 

conjugate and a weaker one with anti-lg2h. The poor titre of ISC(S) resulted in very weak 

signals being obtained on probing with the IgG subclass specific conjugates (Figure 
5.8(B)). However, signals easily discernible on the original blot were present following 

probing with the lg()2a, lgG2b and IgG3 specific conjugates, that obtained with the anti- 
lgG2a conjugate being marginally the strongest. No signal was visible on probing with 
anti-IgGl.

175



Figure 5.8 The subclass o f anti-16 kDa antibodies w ithin NOV(S) and ISC(S)

Strips of a Western blot o f immunoaffinity purified 16 kDa antigen were incubated 
overnight with a 1 in SO dilution of sera raised in mice immunised with the 16 kDa 
antigen plus novasomes (panel A) or a 1 in 10 dilution of sera raised in mice immunised 
with ISCOMs incorporating the 16 kDa antigen (panel B). The strips were then probed 
with IgG subclass specific conjugates. Lane 1 = IgGl, lane 2 = lgG2a, lane 3 = lgG2b 
and lane 4 = IgG3. The position of the 16 kDa antigen is marked with an arrow.
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5 .2 .5 .5  The nature of the epitopes recognised

(a) Treatment with sodium meta periodate
Western blots of immunoaffinity purified material were treated with sodium meta 

periodate for 1 hour or for 4 hours and probed with a 1 in 10 dilution of 1SC(S) or a 1 

in 50 dilution of NOV(S). Figure 5.9(A) demonstrates that the recognition of the 16 kDa 
antigen by ISC(S) was abolished following treatment with sodium meta periodate for 1 

hour. This suggests that only carbohydrate epitopes are recognised by this sera. In 

contrast, the recognition of the 16 kDa antigen by NOV(S) was not noticeably affected 
by periodate treatment for 1 hour (Figure 5.9(B)) nor for 4 hours (data not shown). This 

suggests that peptide epitopes are preferentially recognised following immunisation with 

the 16 kDa antigen plus the novasome adjuvant.

(b) Recognition of surface epitopes
Freshly transformed schistosomula were incubated in a 1 in 10 dilution of ISC(S) or 

a 1 in 50 dilution of NOV(S) and probed with a fluorescein labelled anti-mouse conjugate. 

No fluorescence was seen following probing with 1SC(S). However, probing with sera 
from mice immunised with the 16 kDa antigen plus novasomes gave fluorescence which 

was of an equal intensity to that observed following probing with B3A (data not shown). 

Unlike'B3A, NOV(S) bound to both the heads and tails of MS thus raising the possibility 
that this sera recognises molecules in addition to the 16 kDa antigen, which are not 

detected following the probing of Western blots (see section 5.2.3.5). It was therefore 
impossible to deduce whether NOV(S) recognises epitopes of the 16 kDa antigen which 

are exposed upon the surface o f the schistosomula. However, following 

immunofluorescence the heads of the parasites were more intensely labelled than the tails. 
This suggested that some antigens exposed upon the surface of the former but not the 

latter were recognised.

5.3 DISCUSSION
It has frequently been demonstrated that an adjuvant has the ability not only to 

augment an immune response but also to influence its protective capacity by enhancing 

particular features (Audihert and Lise, 1993). Thus, to increase the likelihood of obtaining 

a protective response following immunisation of mice with the partially purified 16 kDa 
antigen, a variety of adjuvants were used. Initially, the use of FCA, a water in mineral
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Figure 5 .9  The recognition o f periodate treated 16 kDa antigen by ISC(S) and

NOV(S)

Strips were cut from a Western blot of immunoaffinity purified 16 kDa antigen and 
treated for 1 hour with 20 mM sodium meta periodate in 50 mM sodium acetate buffer 
(pH 4.5) (lane 2), or with the acidic buffer alone (lane 1). The strips were then probed 
with ISC(S) (panel A) or NOV(S) (panel B) at a dilution of 1 in 10 and 1 in 50 
respectively. The position of the 16 kDa antigen is marked with an arrow.
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oil emulsion which incorporates heat killed mycobacteria in the mineral oil phase and the 
antigen for immunisation in aqueous phase droplets, was considered. However, although 

FCA is one of the most powerful adjuvants known, it is also highly toxic and is not 
licensed for use in either human or veterinary vaccines. Moreover, although it is licensed 

for use in experimental animals, chronic inflammation, ulceration at the site of injection 
and more long term auto-immune complications frequently occur. It was therefore decided 

that FCA was not suitable for use in experiments to determine the protective potential of 

the immunoaffinity purified 16 kDa antigen, as the small amounts of material available 
made it infeasible to immunise large groups of mice and hence essential that animals were 

not lost due to the ill effects o f adjuvant during the course of the experiment. 
Furthermore, immunisation with FCA results in the production of a large amount of non­
specific antibody which may have proved a complication if the sera raised was 

subsequently used for screening libraries.
As an alternative to FCA, Ribi adjuvant was chosen. Ribi incorporates two 

immunogenic components, monophosphoryl lipid A (MPL) and trehalose 

dicorynomycolate (TDM), which are suspended in an oil in water emulsion of 2% 
squalene plus 0.2% Tween 80. MPL is a non toxic form of lipid A, the biologically 

active, immunogenic moiety of the endotoxin lipopolysaccharide (LPS), which is a 

component of mycobacterial cell walls. MPL is formed by acid hydrolysis of diphosphoryl 
lipid A (DPL) and although it is 1000 times less potent than DPL in eliciting toxic and 

pyrogenic responses, it retains the adjuvanticity of DPL and of LPS as a whole (Ribi el 
al., 1986). MPL has been shown to stimulate good cell mediated immunity and a specific 

antibody response equal to that obtained on immunisation with FCA, even when used with 

as little as 25 ng of antigen (Rudhach el al., 1988, Hxnetal., 1994). Its immunogenicity 
is believed to be largely derived from its ability to incorporate rapidly into macrophages 

in the spleen and liver and to induce a state of activation which augments the ability of 

these cells to phagocytose and enhances their properties as antigen presenting cells (APCs) 
by increasing the expression of MHC class II (Alving, 1993). Cytokines released by these 

activated macrophages also stimulate the influx and subsequent activation of more 

macrophages and other effector cells. MPL also has the ability to enhance antibody 
production via the direct stimulation of Th cells, (Audibert and Lise, 1993) and to act as 

a T cell independent polyclonal B cell mitogen. Moreover, there is some evidence that 

MPL is able to inhibit the activity of suppressor T cells (Gupta el al., 1993).
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TDM was originally purified from the waxy "cord factor" of the tubercle bacillus by 
Asselineau and Lederer (1949). The form used in Ribi is however, a synthetic product 

which retains the adjuvanticity of the original TDM whilst lacking its toxicity. The 
incorporation of TDM in addition to MPL is believed to increase the adjuvanticity of the 
Ribi formulation as the two substances are thought to act synergistically. TDM binds the 
immunising antigen to the surface of the squalene oil droplets which effects the way in 

which the antigen is presented by APCs. This together with the cytokine profile 

stimulated by MPL is believed to influence the activation of different T cell subsets and 
hence the production of particular types of antibody (see below). As yet the complete Ribi 
formulation has not been licensed for human use although both major components of this 

adjuvant do have minimal toxicity and trials with MPL in humans have demonstrated that 
although some side effects were observed these were tolerable (Takada and Kotani, 1992).

Despite the generation of an anti-16 kDa antibody response which had a titre and 
characteristics similar to those of VMS (see below) no reduction in the worm burden of 

mice immunised with the immunoaffinity purified antigen plus Ribi adjuvant was seen. 

One explanation for this is that the antigen was presented in such a way as to stimulate 
a response against epitopes which were inappropriate as targets of a protective immune 

response. It was therefore decided to test other adjuvants likely to present the 16 kDa 

antigen in a different and perhaps more appropriate way. ISCOMs were chosen for use 
with the 16 kDa antigen as they are particularly suited to the presentation of membrane 

molecules. The Spikoside adjuvant used in their formation is a mixture of naturally 
occurring saponins, which are surface active glycosides extracted from the bark of the 
South American soaptree Quillaja saponariu (Morein et al., 1984). Spikoside has similar 

composition to the adjuvant Quil A although it has been specially selected for its ability 

to form ISCOMs. At its CMC (0.03%) Spikoside combines via hydrophobic interactions 
with cholesterol to form mixed micelles into which molecules with a hydrophobic domain 

can be incorporated. This results in the presentation of the molecule in an accessible, 

multimeric form. Immunisation with various viral glycoproteins incorporated into 
ISCOMs has been shown to stimulate the production of antibodies against epitopes not 

seen following immunisation with the antigen and other adjuvants (Morein et al., 1984, 

De Vries et al., 1988). Furthermore, immunisation with ISCOMs incorporating one of 

over 20 different membrane proteins have been shown to generate both humoral and cell 

mediated immunity which is long lasting and in many cases protective (Lovgren et al..
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1990, Ertuck et al. , 1991, Mumford et al., 1994, Kazanji et ill., 1994).
The enhanced immunogenicity of the ISCOM structure is believed to be based upon 

the ability of saponin to bind to the cholesterol of leucixyte membranes and hence enable 
the ISCOMs to interact with a number of different cell populations (Bomford, 1980). 
Examination of the fate of radiolabelled glycoproteins incorporated into ISCOMs 

(reviewed by Morein et al., 1990a) has demonstrated that they are rapidly and efficiently 
taken up by macrophages and transported from the site of injection into the lymphoid 
organs, in particular the spleen (Claassen and Osterhaus, 1992). Here the adjuvant 

activated macrophages phagocytose and serve as antigen presenting cells (APCs) for T 

cells. The latter results in the proliferation of T cells, the provision of B cell help and the 
generation of a DTH type response via the production of cytokines, in particular IL-2 and 

IFNy (Heath et al., 1991). Neutrophils may also have an important role to play in the 

adjuvanticity of saponins. The number of PMNs in the peritoneal lavage has been shown 
to increase by up to 80% following immunisation with an antigen incorporated into 
ISCOMs (Watson et al., 1989) and the production of neutrophil proteases capable of 

stimulating B cells has also been described. ISCOMs are also taken up directly by B cells 

which then form particularly efficient APCs for the presentation of antigen to specific T 

cells (Morein et al., 1990a). Finally, and of particular importance with regard to  the 
success of anti viral ISCOM vaccines, antigens incorporated into ISCOMs have been 

shown to enter the intracellular pathway of antigen processing and hence are able to 

stimulate Tc cells when presented in conjunction with MHC Class I (Morein et al., 1987, 

Takahashi et al., 1990).
ISCOMs were prepared here by extensive dialysis of the immunoaffinity purified 16 

kDa antigen, MEGA-10, Spikoside, cholesterol and phosphatidlycholine. They were 

purified on a sucrose gradient and shown by EM to be of the correct size (approximately 

35 nm in diameter) and to possess the characteristic loose translucent cage-like ISCOM 
structure which consists of ring-like suhuniLs each with a diameter of approximately 12 

nm. Western blotting of the sucrose gradient fractions then demonstrated that the 16 kDa 
antigen was present in those fractions containing the ISCOMs. This was taken as 

indicative of the incorporation of the 16 kDa antigen into the ISCOM itself, as a molecule 

of 16 kDa would not have been present at this position in the sucrose gradient had it 
retained its monomeric form. Moreover, large non-ISCOM micellar aggregates of the 16 

kDa antigen would have been discernible on carrying out electron microscopy. However,
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although some 16 kDa antigen was successfully incorporated into ISCOMs, silver staining 

o f  the fractions containing the purified structures demonstrated that a significant 

proportion of the molecule had not been incorporated. Such a phenomenon is not an 
unusual occurrence and although the incorporation of as much as 80% of a purified viral 

glycoprotein into ISCOMs has been described (Akerblom et al., 1989), the incorporation 

o f only 33 to 64% of a palmitified sporozoite protein (Kazanji et al., 1994) and only 15% 

of a purified HIV envelope glycoprotein (Pyle et al., 1989) has also been reported. 
Furthermore, it has been shown that the amount of antigen which incorporates into 
ISCOMs depends not only upon the successful application of the procedure used in the 

formation of the ISCOMs but also upon more specific characteristics of the antigen itself. 

For example, the studies of Mougin et a l., (1988) have demonstrated that ISCOMs 

formed hy the dialysis of Quil A and a mixture of hydrophobic surface glycoproteins 
incorporated a substantially greater percentage of one antigen than another. Moreover, the 
work of Kazanji et al., (1994) demonstrated that the proportion of a molecule which 

incorporated into ISCOMs correlated positively with the amount available in the starting 

material. Thus, the incorporation of a small percentage of the 16 kDa antigen into 
ISCOMs may be a consequence of the small amounts of antigen available within the 

immunoaffinity column eluates coupled with particular but as yet unspecified features of 
the molecule itself. Fortunately, one of the main advantages of the ISCOM adjuvant 

system is that very small amounts of antigen (0.1 fig) incorporated into ISCOMs have 

been shown to generate a good immune response (Morein et al., 1984, 1990b). Here, the 

glycosylated nature of the 16 kDa molecule made it impossible to use conventional protein 
estimation techniques to determine precisely the amount of antigen present in the ISCOM 

preparation. However, the probing of dot blots with VRahS did demonstrate that a strong 

signal was obtained with as little as 5 /¿I of the preparation and it was therefore decided 
to continue with the immunisations as planned. Initial immunisations demonstrated that 

a dose per mouse of 275 fi\ proved fatal, the mouse dying within 24 hours of inoculation. 
This was presumed to be due to the toxicity of the Spikoside adjuvant which although 

partially purified still contains a mixture o f saponins, some of which are known to be 

haemolytic (Kensil et al., 1991). When incorporated into ISCOMs the toxicity of saponin 

is reduced to a tenth of that o f free molecules and this has led to ISCOMs being used 
regularly for the immunisation of animals, in addition to allowing their consideration for 

human use. However, toxicity in mice has been seen by other workers (Dr. R. Jennings,
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University of Sheffield, personal communication) and it seems feasible that the large dose 
of ISCOMs used here contained enough saponin to cause toxicity even when incorporated 

into ISCOMs. Moreover, when considering the large number of ISCOMs and the small 
amounts of antigen which were present in the immunising preparation it is likely that a 

significant proportion of the ISCOMs present did not contain the 16 kDa molecule. Such 
"empty" ISCOMs have been shown to incorporate more saponin than those incorporating 

an antigen (Morein et al., 1990a) and hence may have increased toxicity. This suggestion 

is substantiated by the observation made here that although a 70 /xl dose of the ISCOM 

preparation containing the 16 kDa antigen was shown to be non-toxic, a similar dose of 
"empty" ISCOMs was fatal to the control animals and half of this amount was 

subsequently used. Following live immunisations, sera raised in the antigen immunised 

mice was shown to recognise the 16 kDa molecule by Western blotting and all of mice 
were then challenged. A 16.4% reduction in the worm burden of the immunised mice was 

observed, although this was not statistically significant.
Novasomes are a novel adjuvant which consist of the detergent Brij 52 in a squalene 

emulsion. As yet little is known about the properties of this adjuvant, however it was 

shown here that immunisation with the 16 kDa antigen plus novasomes induced an 

antibody response against the 16 kDa antigen and the best, albeit still low, level of 

protection (25.3%) which was statistically significant (p <  0.025).
In addition to examining the protection data obtained following immunisation with the 

16 kDa antigen plus different adjuvant systems, the sera raised in each case were 

characterised according to titre, subclass and the nature of the epitopes recognised. These 
characteristics were then compared with those of VMS and attempts are made here to 

relate the different features of the antibody responses generated to the varying levels of 

protection obtained. Comparisons of this kind are obviously somewhat limited in that the 
T cell response which has been shown to be of importance in the mouse model is not 

examined. Furthermore, the experiments carried out here have explored only the nature 
of the IgG response to the 16 kDa antigen. However, passive transfer studies employing 
VMS (Mangold and Dean, 1986, section 1.4.3.2) and protective McAbs (section 1.7) 

have demonstrated the ability of an appropriate antibody response to confer immunity and 

indicate the importance of the IgG antibody isotype.
With regard to the titre of the IgG antibody response obtained; both VMS and Ribi(S) 

had a titre of 1 in 5,000 as judged by the recognition of the 16 kDa antigen on Western
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blots of an OTG extract of MS. In contrast, the recognition of a 16 kDa signal with 

NOV(S) or ISC(S) required Western blots of the immunoaffinity purified antigen to be 

probed. The titre of NOV(S) was then reasonable (1 in 500), however ISC(S) was still 
very weak with a titre of only 1 in 10. Although the generation of an antibody response 

has been observed following immunisation with as little as 0.1 fig of BSA incorporated 

into ISCOMs (Morein et al., 1990b), a single dose o f  5 - 10 fig of antigen in ISCOMs 
is more usually quoted as suitable for the generation o f cell mediated immunity and the 

induction of an antibody response may require a larger dose in addition to more frequent 

immunisations. It therefore seems possible that the small amounts of 16 kDa antigen 
which were incorporated into ISCOMs could account for the poor titre of ISC(S). Despite 

inducing lower titres of anti-16 kDa antibodies, the immunisation of mice with the 16 kDa 

molecule incorporated into ISCOMs or with the antigen plus novasomes stimulated better 
levels of protection than those obtained following immunisation with the antigen in 

conjunction with Ribi. These results therefore demonstrate that as expected, the 
development of resistance was not dependent upon antibody titre alone.

Further analysis of the characteristics of VMS revealed that the antibodies recognising 

the 16 kDa antigen were restricted to the IgG2a subclass. This indicated that the nature 
of the antibody response generated against the 16 kDa antigen was not typical of the 

overall character of VMS which has been shown by ELISA and immunofluorescence to 

consist largely of IgGl with smaller amounts of IgG2a, IgG2b and IgG3 (Caulada- 

Benedetti et al., 1991, Delgado and McLaren, 1990). The studies o f Delgado and 

Mclaren (1990) which demonstrated that the IgGl fraction of VMS was the only isotype 

capable of transferring resistance to naive animals also suggest that the antibody response 

against the 16 kDa antigen may be unimportant to the development of vaccine immunity. 

However, the studies o f Richter et al., (1993) have demonstrated that the isotype response 

of mice vaccinated with radiation attenuated parasites to a variety of candidate vaccine 

antigens does differ and can depend upon the number of immunisations given, the strain 
of mouse vaccinated and the dose of radiation used for attenuation. For example, although 

HSP70 is recognised predominantly by IgG 1, GST is seen predominantly by IgM and the 

vaccine candidate molecule TPI by IgG2a. Thus, it is possible that the 16 kDa molecule 

represents an antigen which tends to stimulate a Thl type response and hence the 

production of specific IgG2a, within the context o f  the predominantly Th2 / IgGl type 
response which is characteristic of mice multiply vaccinated with irradiated cercariae.
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Immunisation with the purified 16 kDa antigen plus Ribi adjuvant also generated a 

restricted antibody profile. IgG2a was the only subclass produced in significant amounts 

although a very much weaker signal was seen with the IgG2b specific conjugate. Again 
this observation contrasted with published reports which describe the production of the 

three major IgG subclasses of mice, namely IgGl, IgG2a and IgG2b in response to 
immunisation with a number of antigens plus Ribi adjuvant, MPL and TDM, or MPL 

alone (Takayama et al., 1991, Kenney et al., 1989). However, the predominant subclass 

seen in  these latter studies was also seen to differ. Thus, Takayama el al., (1991) 

demonstrated that IgG2a was the major subclass produced on immunisation, whereas the 

studies of Kenney et al., (1989) reported that the IgGl response was predominant 

following the immunisation of mice with human serum albumin. It has been suggested 
that the mouse strain used for vaccination may affect the results obtained and naive 

C57BI/10 mice, the strain used for immunisation with the 16 kDa antigen plus Ribi, do 

produce measurably more IgG2b and IgG2a than IgGl (Salsuume-Sakai, et al., 1977). 

However, it appears unlikely that the complete lack of IgGl production seen in the 

experiments carried out here could be accounted for in this way.

Despite the low titre of the sera raised in mice immunised with the 16 kDa antigen 
incorporated into ISCOMs, signals were observed with the anti-IgG2a, IgG2b and lgG3 

specific conjugates, the signal with the former being slightly stronger than that with the 

latter two. The broad range of subclasses was as expected following vaccination with an 
antigen incorporated into ISCOMs as immunisation with influenza ISCOMs has been 

shown to stimulate the production of significant amounts of IgG l, marginally less lgG2a 

and small amounts of lgG2b and lgG3 (Ben Ahmeida el al., 1992). Other experiments 

employing the purified saponin QS-21 have provided similar results although a reversal 
in the proportions of lgG2a and IgG 1 was seen and the suggestion made that the variation 

in the results observed was a consequence of the presence of a variety of saponins with 
slightly different immunogenic qualities within different preparations of Quil A (Campbell 

and Peerbaye, 1992). However, although ISC(S) contained lgG2b and lgG3 in addition 

to IgG ia, the results obtained here demonstrated that, again, no IgGl was raised in 

response to the 16 kDa antigen.
A s yet very little information regarding the nature of the antibody response generated 

against other antigens used in conjunction with novasomes is available. However, the 

results obtained here which demonstrates the production of IgGl on immunisation with
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the 16 kDa antigen plus novasomes, suggests that the novasome adjuvant is capable o f 

stimulating either a different type of response to those epitopes recognised by VMS, 

Ribi(S) and ISC(S), or that different epitopes are recognised following the presentation 

of the antigen in this way.
The nature of the epitopes recognised by VMS and by sera generated in animals 

immunised with the 16 kDa molecule plus different adjuvants was also examined. The 

results with VMS were somewhat surprising in that the binding of the sera to the 16 kDa 

antigen was completely abolished by treatment with sodium meta periodate. This suggests 

that predominantly carbohydrate epitopes were recognised and contrasts with the 

recognition of the 16 kDa antigen by VRabS and with the previously reported properties 

of VMS as a whole. With regard to the latter, the studies of Omer Ali et al., (1986) 

demonstrated that although the binding of CIS to the surface of the schistosomula was 

reduced by 90% upon treatment of the parasite with sodium meta periodate, the binding 
of VMS was reduced by only 10%. Further studies (Omer Ali et al., 1988) then indicated 

that this was a consequence of the binding o f CIS to abundant non-species specific 
carbohydrate epitopes which cross react with those upon the egg whereas the recognition 

of the larvae by VMS appeared to be due predominantly to the recognition o f species 

specific peptide epitopes some of which cross react with the adult worm. However, in 

addition to the work carried out here, more recent studies (Richter et al., 1993) have 

shown that antibodies against carbohydrate epitopes are present within VMS. Moreover, 

the 16 kDa antigen has been shown to be a membrane glycoprotein with carbohydrate 

epitopes (see Chapter 4) and as the carbohydrate portion of glycoproteins are often 
exposed at the surface of an organism it seems feasible that antibodies against such 

epitopes may dominate the response to this particular molecule. The periodate sensitive 

nature of the signal recognised by Ribi(S) and ISC(S) confirms the dominance of 

immunogenic carbohydrate moieties within the 16 kDa antigen and as the molecule was 

incorporated into ISCOMs with the express purpose of presenting the molecule in a 
manner similar to that seen in the intact parasite, the latter also substantiates the above 

suggestion that carbohydrate epitopes of the 16 kDa antigen may normally be exposed 

upon the surface of the parasite. However, immunisation with the 16 kDa antigen plus 

novasomes again produced unique results in that there was no apparent reduction in the 

binding of NOV(S) to the 16 kDa antigen upon Western blots following periodate 
treatment of the blot for 4 hours. This indicates that NOV(S) recognises predominantly
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peptide epitopes and coincides with the presence of IgGl within this sera as this subclass 

is known to he raised predominantly against T cell dependent peptide epitopes (in Mazza 

et al., 1990). In addition, the recognition of peptide epitopes by NOV(S) suggests that 

the administration of the 16 kDa antigen in conjunction with novasomes results in the 
presentation of different epitopes rather than the generation of an IgG 1 response to those 

epitopes also seen by VMS, Rihi(S) and ISC(S).
Immunofluorescence studies employing the McAb, B3A have demonstrated that the 

16 kDa antigen is available for antibody binding upon the surface of living schistosomula. 

However, none of the sera raised in response to immunisation with the immunoaffinity 
purified molecule could be demonstrated unequivocally to bind to surface exposed 

epitopes of the 16 kDa molecule. With regard to Ribi(S) and NOV (S), fluorescence equal 

to that seen with B3A was observed on probing live schistosomula. However, with 
Ribi(S) the situation was shown to be complicated by the recognition of several surface 

antigens in addition to that o f 16 kDa. The possibility that NOV(S) also recognises 

contaminating antigens is substantiated by the binding of this serwto cercarial tails in 

addition to heads. In contrast, 1SC(S) failed to bind to the living schistosomula, a feature 

which could be explained by the particularly low titre of this sera.
Thus, sera raised in mice immunised with the 16 kDa antigen plus different adjuvants 

show some variation with regard to titre, major IgG subclass and the nature of the 

epitopes recognised. How do these differences relate to the levels of resistance seen? The 
lack of a relationship between resistance and the levels of antibodies raised against the 16 

kDa antigen in individual mice immunised with ISCOMs incorporating the 16 kDa 
molecule suggests that factors other than the anti-16 kDa IgG response were responsible 

for the reduced worm burdens seen in this model. However, similar comparisons made 

between the antibody titres and worm burdens of mice immunised with the 16 kDa 

antigen plus novasomes, do tentatively suggest that the antibody response stimulated in 

these animals may be of importance to the levels of protection observed. Hence these 

results are of particular interest, as in addition to providing the highest levels of 
protection, immunisation with the 16 kDa molecule plus novasomes stimulated an 

antibody response which was unique with regard to the recognition of peptide epitopes 

and the presence of IgG 1. This could suggest that either or both of these two factors are 

necessary for the development o f protective antibody mediated immunity. However, this 

is not substantiated by the results obtained upon characterisation of VMS nor by the
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recognition of a periodate sensitive epitope by the passively protective lgG3 Me Ah, B3A.

Thus, in summary, immunisation o f mice with the 16 kDa molecule plus novasomes 

or with the antigen incorporated into ISCOMs, produced low levels of protection which 

in the case of the former were statistically significant and related to the development of 

a suitable antibody response. The latter indicates that higher levels of resistance may be 
achieved as a consequence of higher antibody titres and suggests that varying the 

vaccination protocol and / or increasing the immunising dose may stimulate better levels 

o f protection. However, in view of the difficulties involved in producing significant 

amounts o f purified antigen from MS, an alternative source of 16 kDa antigen would be 

required if further immunisation studies were to be performed. In this regard, attempts 

have been made to identify a recombinant clone encoding the 16 kDa antigen (see Chapter 

6) .
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C H A PTER  6

S C R E E N IN G  OF A SPO RO C Y ST cDNA E X PR E SSIO N  LIBRARY 

W ITH  ANTIBODY PRO BES
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6.1 INTRODUCTION
Experiments detailed in Chapter 4 have demonstrated that obtaining sequence data for 

the 16 kDa antigen by gas phase N-terminal amino acid sequencing is infeasible. The 
peptide moiety of the antigen appears to be N-terminally blocked and the small amount 

of antigen available makes trypsin digestion and subsequent sequencing of any resulting 
peptides impractical. This chapter therefore describes attempts to obtain sequence data for 

this antigen using the alternative approach of identifying a recombinant clone encoding 

the molecule within a cDNA expression library. Identification of such a clone could also 

enable substantial amounts of recombinant protein to be produced for immunisation, thus 

abolishing the need for large amounts of parasite material and the use of time consuming 

purification techniques.
Clones encoding many schistosome proteins have previously been identified by 

screening adult cDNA expression libraries. These include some of the most promising 

vaccine candidate molecules such as GST (Balloul et al., 1987b), paramyosin (Lanar el 

al. , 1986), TPI (Shoemaker et a l., 1992) and schistosome myosin (Soisson et al., 1992). 
However, much evidence suggests that the 16 kDa antigen is a larval specific molecule 

which is not expressed in the later stages of the parasite, thus here, a sporocyst cDNA 

expression library constructed in A.gtl 1 (Francis and Bickle, 1992) was screened. That the 
16 kDa antigen is present within the sporocyst stage has already been demonstrated by the 

probing of Western blots of an SDS extract of sporocysts with the McAb, B3A (Dr. Q. 

Bickle, personal communication).
If a clone is to be isolated from a prokaryotic library using immunoscreening, it is 

necessary that the molecule has some peptide epitopes which are recognised by the 
antibody probe to be used. Furthermore, the presence of antigenic regions of a peptide 

nature are vital if a corresponding recombinant protein, produced in E. coli and hence not 

glycosylated, is to be of value for immunisation. The recognition of periodate sensitive 

epitopes by a variety of sera raised against the 16 kDa antigen has indicated the 
immunodominance o f carbohydrate epitopes present within this molecule. However, the 

continued recognition of the |>eriodate treated molecule by VRabS suggests that potentially 

clonable peptide epitopes are also present and identifiable by immunoscreening (see 

Chapter 4).
The following chapter describes attempts to produce sera specific for peptide epitopes 

of the 16 kDa antigen and details its use in screening the sporocyst cDNA expression
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library. Also described are experiments aimed at characterising the native antigens 

encoded by clones isolated using "antibody select" methods, sequencing and expression 

o f the encoded DNA as recombinant proteins.

6 .2  RESULTS

6.2.1 PRODUCTION OF ANTISERA FOR SCREENING OF THE cPNA 
LIBRARY

In order to identify clones encoding the 16 kDa antigen within the sporocyst cDNA 
expression library it was necessary to have a specific antibody probe. The McAb, B3A 

is unsuitable for this purpose as it recognises a carbohydrate epitope upon the 16 kDa 

antigen. Similarly, periodate sensitive epitopes are recognised by sera raised in mice 
immunised with the immunoaffinity purified 16 kDa antigen plus Ribi adjuvant or with 

the antigen incorporated into ISCOMs (see Chapter 5). In contrast, sera raised in mice 
immunised with the 16 kDa antigen plus novasomes did recognise some periodate 

insensitive epitopes. However, the use of-fre&tsera for screening libraries is impractical 

due to its low titre and the small amounts available. Furthermore, the recognition o f 
antigens in addition to that of 16 kDa by sera taken from mice immunised with the 

immunoaffinity purified antigen plus Ribi suggests that any sera raised against this 

partially purified preparation would not be monospecific. Alternative methods were 
therefore used in an attempt to produce a monospecific antibody reagent which recognises 

peptide epitopes of the 16 kDa antigen.

6.2.1.1 Immunisation o f  a rabbit with purified 16 kDa antigen

A detergent extract of 10 million MS was passed down an immunoaffinity column 
and the column washed and eluted as described previously. In an attempt to increase the 

purity of the 16 kDa molecule prior to immunisation the whole of the most antigen rich 

fraction was separated by SDS PAGE and the band corresponding to the 16 kDa antigen 
identified by Coomassie blue staining. The region of the gel containing this band was then 

excised, snap frozen and ground into a fine powder. The powdered gel was prepared for 

immunisation by resuspension in saline and the addition of Ribi adjuvant.

Previous experiments involving subcutaneous immunisation of rabbits with 

immunoaffinity purified 16 kDa antigen plus CFA have resulted in the generation of sera 
with a low anti-16 kDa antibody titre (Dr. Q. Bickle, personal communication). Thus,
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in an attempt to obtain sera with a titre suitable for use in screening, the 16 kDa antigen 

prepared as above was injected directly into the popliteal lymph node of a rabbit. This 

route of immunisation has been shown to be particularly efficient at generating high titre 
antibody responses with small amounts of antigen (Dr. T Bianco, personal 

communication). A total of three immunisations were given, one in each of the popliteal 
lymph nodes and one in multiple sites. Following the third immunisation the animal had 

to be destroyed due to paralysis of its hind legs. Semmtaken at or before the onset of 

paralysis did not recognise the 16 kDa antigen on Western blots and was therefore not of 
use for the screening of the cDNA library.

6 .2 .1 .2  Elution of antibodies from  the 16 kDa region of sodium meta periodate 

treated Western blots

A second approach to obtaining antibody suitable for screening the cDNA expression 
library was based on the elution of antibody from Western blots as described by Beall and 

Mitchell (1986). A TX-114 insoluble pellet of MS was boiled in SDS and the extracted 

molecules subjected to SDS PAGE and Western blotting. Regions of the blots 

corresponding to the 16 kDa antigen were then identified by probing strips cut from either 

end with B3A and the appropriate region of the nitrocellulose paper was excised. In order 

to reduce the binding of antibodies specific for carbohydrate epitopes, the strips were then 
treated with sodium meta periodate for 4 hours at room temperature in the dark. This 

procedure has already been shown to destroy the binding of the McAb to the 16 kDa 

antigen (section 4.2.3.1). Following periodate treatment the blots were incubated 

overnight with VRabS, washed extensively and the antibody binding to the strips eluted 

by the application of a low pH buffer. The eluted antibodies (Elal6) were then used to 
probe Western blots of SDS extracted antigens. Figure 6.1 demonstrates that the 16 kDa 

antigen was the only major antigen recognised by E lal6 , although weak signals were also 

seen at approximately 20 kDa and <  100 kDa. E lal6  was then shown to have a titre of 
greater than 1 in 100 by Western blotting. As periodate treatment of the Western blot 

prior to incubation with VRabS would have prevented the binding of antibodies specific 
for periodate sensitive epitopes, the eluted antibodies should be enriched for those which 

recognise peptide epitopes of the 16 kDa antigen and thus suitable for screening the 

sporocyst cDNA library.
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Figure 6.1 The recognition o f  the 16 kDa antigen by E la l6

Strips o f nitrocellulose cut from the 16 kDa region of Western blots of SDS extracted MS 
antigens were treated with sodium meta periodate and incubated overnight with a 1 in 200 
dilution of VRabS. Three successive elutions with low pH buffer yielded antibody 
solutions which were tested at a 1 in 10 dilution on a Western blot of SDS extracted MS 
antigens (lanes 2, 3 and 4). The blot was also probed with a 1 in 20 dilution of B3A (lane 
1). The position of the 16 kDa antigen is marked with an arrow.
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6.2.2 SCREENING OF THE SPOR(X:YST cDNA KXPRKSSION LIBRARY

90,000 recombinant clones were screened with Elal6 prepared as above. 20 positive 

clones were identified of which 9 were positive on secondary screening with VRabS. A 
number of these clones were then plaque purified and seven (2.1, 1.3, 18.5, 5.1, 6.2, 

D.30 and 12.7) were taken forward for further study.

6.2.3 ANTIBODY SELECT
Using the method of Ozaki et al., (1986) attempts were made to identify the native 

antigens encoded by the seven clones selected. The clones were plated at a high density, 

grown at 37°C and overlaid with filters impregnated with IPTG. This induces the 

expression of proteins which subsequently bind to the nitrocellulose filters. Antibodies 

recognising recombinant proteins were then selected from VRabS by overnight incubation 
of the filters with VRabS and elution of bound antibodies with a low pH buffer. The 

eluted antibodies were used to probe Western blots of aqueous and detergent extracts of 

MS. Figure 6.2 demonstrates that of the antibodies eluted from the clones, three, namely 

those eluted from clones 2.1, 1.3 and 18.5, recognised MS antigens. Antibodies eluted 

from clones 2.1 and 1.3 appeared to recognise the same molecule, an antigen of 15 kDa 
which unlike the 16 kDa antigen is seen predominantly in the aqueous phase of the TX- 

114 extraction (Figure 6.2 (Aq)). It is possible that this molecule corresponds to a 15 kDa 

molecule previously described by Francis (1989) as a soluble vaccine dominant antigen 
(see Chapter 7). In contrast, the antibodies eluted from clone 18.5 recognised an 

appropriately sized antigen in the detergent phase of the T X -114 extraction (Figure 6.2 
(Tx)) and amongst those antigens extracted from the TX-114 insoluble pellet by boiling 

in SDS (Figure 6.2 (SDS)). It therefore appeared possible that this clone encoded the 16 

kDa antigen, although the recognition of this low molecule weight molecule by affinity 

eluted antibodies was inconsistent. The signal was observed on one other occasion but 

failed to appear on two more. Furthermore, the recognition o f  this signal appeared to be 

somewhat dependent on the use of fresh antibodies eluted from filters overlaid on plates 
with a high titre of phage. Antibodies eluted from a second clone (clone 18.4) which was 

picked from the same plate as 18.5 following secondary screening with VRahS, also failed 
to produce a signal on an occasion on which a signal was seen using sera eluted from 

clone 18.5. Further studies were therefore necessary to determine whether a clone 

encoding the 16 kDa antigen had indeed been identified.
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Figure 6 .2  Antibody select

Antibodies were eluted from 7 different Xgtl 1 clones selected using E lal6 . These were 
then used to probe Western blots of aqueous (AQ), TX-114 (TX) and SDS extracted MS 
antigens. The blots were also probed with B3A and VRabS at a dilution of 1 in 20 and 
1 in 200 respectively. Antigens of interest are denoted by arrows and the designated clone 
number indicated at the top of the relevant strips (i.e. 2.1, 1.3, 18.5).
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6 .2 .4  INVESTIGATING THE PATTERN OF ANTIBODY BINDING TO THE

PEPTIDE ENCODED BY CLONE 18.5

As detailed in previous chapters the 16 kDa molecule has an antibody binding pattern 
which is characteristic of a "vaccine dominant" antigen. Recombinant proteins expressed 

by clones encoding this molecule would therefore be expected to display the same or a 

similar pattern o f antibody binding. Thus, in order to further characterise the peptide 

encoded by clone 18.5 (P 18.S) and to examine the possibility of this being the 16 kDa 

antigen, experiments were carried out to determine the antibody binding pattern of the B 
galactose (B-gal) recombinant protein expressed by this A.gtl 1 clone. Clone 18.5 was used 

to infect E. coli Y1090 and plated at a high titre in soft agar supplemented with IPTG to 

induce the expression of proteins. The soft agar containing the expressed proteins was 

then removed, boiled in sample buffer and subjected to SDS PAGE on an 8% 

polyacrylamide gel. Staining of the gel with Coomassie blue revealed that clone 18.5 
expresses a recombinant protein of approximately 138 kDa (FP 18.5/B-gal) (fusion protein 
18.5/B-gal) which is not expressed by non-recombinant phage (Figure 6.3). This protein 

represents the 116 kDa B-gal fused to a schistosome peptide of approximately 22 kDa. 

Comparable amounts of FP 18.5/B-gal, recombinant proteins comprised of 5. mansoni 

HSP70 and paramyosin similarly expressed in Xgtl 1, and B-gal expressed by non- 

recombinant phage were then electrophoresed and transferred by Western blotting. Strips 

of each blot were probed with a variety of sera which had been pre-absorbed with lysates 

of induced non-recombinant A-gtll grown in E. coli, to remove those antibodies which 

recognise bacterial antigens alone. As can be seen in Figure 6.4 FP 18.5/B-gal is 
recognised by VRahS (2 and 3) but not by chronic infection sera (CIS) nor by sera raised 

in mice harbouring a single sex infection (SSS). This recognition pattern can be contrasted 

with those of HSP70 and paramyosin which are recognised by all but normal sera and 

with that of B-gal alone which is not recognised by any of the pre absorbed sera used. 

However, although similar to the 16 kDa antigen with regard to its recognition by VRAbS 
but not CIS nor SSS, FP 18.5/B-gal differs in that it is not recognised by either VMS nor 

VRatS. Although the lack of recognition by VMS could be explained by the observation 

that this sera recognises only carbohydrate epitopes of the 16 kDa antigen (see Chapter 
4), VRatS has been shown to recognise some periodate insensitive epitopes (data not 

shown). However, this lack of recognition by VRatS does not demonstrate unequivocally 
that FP 18.5/B-gal does not represent the 16 kDa antigen, as there are several possible
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Figure 6.3 The recombinant protein expressed by clone 18.S

Increasing volumes of soft agar containing the proteins expressed by clone 18.5 (lanes 2 - 
7) or those expressed by a non-recombinant control (lane 1) were boiled in SDS PAGE 

sample buffer and separated by electrophoresis. The gel was then stained with Coomassie 
blue.
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Figure 6,4 The vaccine dominant nature o f FP 18.5/ß-gal

clone /  antigen 

X ß*9al

D12 HSP70

D3 P97

18-5 FP18-5

The proteins expressed by clone 18.5, a number of other recombinant clones and non- 
recombinant Agtl 1, were separated by SDS PAGE and transferred by Western blotting. 
The blots were then probed with a variety of E. coli lysate absorbed sera. VMS, NMS, 
SSS, CIS and VRatS were used at a dilution of 1 in 100. VRabS, NRabS and anti-ß-gal 
(a gift from Dr. M. Huggins) were used at a dilution of 1 in 200.
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explanations for differences between the antibody recognition pattern of a native antigen 

and its cloned counterpart. For example, it is possible that the DNA insert of clone 18.5 

does not represent a full length gene and that the epitopes recognised by VRatS within the 
native 16 kDa antigen are not encoded by clone 18.5. Alternatively, the peptide epitopes 

recognised by VRatS on the 16 kDa antigen may be conformational epitopes which are 
not expressed by a 6-gal recombinant protein produced in a prokaryotic cloning system. 

It was therefore decided that the binding of VRabS but not CIS nor SSS to FP 18.5/B-gal 

warranted still further investigations into the characteristics of P 18.5 and the possibility 

of it corresponding to the 16 kDa antigen.

6.2.5 SEQUENCING OF CLONE 18.5
Much information regarding the structure of a molecule can be acquired by obtaining 

nucleotide and amino acid sequence data. For example, if clone 18.5 does encode the 16 
kDa antigen, sequence data obtained for the encoded peptide may reveal the presence of 

regions of amino acids suitable for the attachment of O-linked carbohydrates. Similarly, 

as the 16 kDa antigen is an integral membrane molecule either a membrane spanning 
domain or a region suitable for acylation may be observed. Even if clone 18.5 does not 

encode the 16 kDa antigen, any sequence data obtained would still be of value, as the 

scanning of databases for homologous sequences could reveal a more likely identity for 

the encoded protein. Thus, the insert encoded by clone 18.5 was amplified in a PCR 

reaction using the forward and reverse Xgtl 1 primers and a product of approximately 500 

bp was obtained. In view of the small size of this insert, clone 18.5 was then cut with the 

enzymes Kpn I and Sac I to obtain DNA for subcloning and sequencing. The resulting

2.5 kb fragment was purified on low melting point agarose and subcloned into the paired 

sequencing vectors M13 mpl8 and mpl9. Performing cloning and sequencing with both 

of these vectors should have enabled the DNA insert to be sequenced in both orientations, 

however recombinant clones were only obtained in M13 mpl9. Thus, although some data 

was obtained by sequencing from M13 mp!9 with the Xgtl 1 forward primer, sequencing 

in the opposite direction was not possible and data for the DNA close to the binding site 

of the forward primer was not obtained. To confirm the existing data and to obtain the 

missing sequence, the PCR product obtained on amplification of the DNA encoded by 

clone 18.5, was cut with EcoR I to remove the PCR primers, purified using low melting 

point agarose and subcloned into EcoR I cut M13 mpl8. Although only one of the M13
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mpl8 / 19 vector pair was used for subcloning, digestion of both the vector and the PCR 

product with EcoR I enabled the DNA to be cloned into M13 mpl8 in both orientations. 

The complete sequence of the DNA encoded by clone 18.5 was obtained by sequencing 

several recombinant clones using the M13 (-40) forward primer. This data confirmed that 
obtained on sequencing of the Kpn I / Sac I fragment and is shown in Figure 6.5.

Initial analysis of the sequencing data obtained revealed that cloning irregularities had 

occurred during the construction of the cDNA expression library and during the 

subcloning of the PCR product into M13 mpl8. Figure 6.6 shows that, as expected, an 

EcoR 1 site is present at the junction of the 5' end of the cut PCR product with the M 13 

vector DNA. This demonstrates that the A.gtl 1 forward PCR primer and the Agtl 1 DNA 

found immediately upstream of the cloning site have been removed from the 5' end of the 

PCR product by cleavage of an EcoR I site at the junction of Agtl 1 and the 5' end of the 
cloned insert. This has produced an appropriate ’sticky end’ thus allowing conventional 
ligation of the EcoR I cut PCR product to similarly cut M13 mpl8. In contrast, an EcoR 

I site is absent at the junction of the 3' end of the PCR product and M13 Moreover, the 

DNA ligated directly to the M13 vector represents not the 3' end of the cDNA encoded 

by clone 18.5 but a short section of A.gtll DNA which corresponds to that observed 

immediately downstream of the cloning site. Closer examination of the sequence data 
obtained revealed that the junction between A.gtl 1 and the adenosine residues which 

represent the 3' end of the cDNA encoded by clone 18.5 can be observed upstream of this 

point, again an EcoR I site is absent. Thus, the absence o f an EcoR I site between the 3' 

end of the cDNA insert and Agtll of the clone 18.5 used as a template for the PCR 

reaction, has led to a similar absence in the PCR product. The A.gtl 1 DNA observed 

immediately downstream of the cloning site and the reverse PCR primer have thus not 

been removed from the 3' end of the PCR product on digestion with EcoR I. Despite this 

the EcoR 1 digested PCR product has been subcloned into M13 via an unconventional 

ligation between the remaining reverse primer and EcoR 1 cut M l3.

A single open reading frame which is in frame with B-gal was observed on translation 

of the nucleotide sequence obtained for P 18.5 (Figure 6.5). This was as expected as the 

inserted cDNA had been shown to be expressed as a recombinant protein in A.gtll. 

Examination of the amino acid sequence data then revealed that a methionine residue was 

present at position 27. Moreover, a stop codon is absent and an open reading frame 

maintained throughout the length of the clone. The absence of a stop codon and the
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Figure 6.5 The sequence of the peptide encoded by clone 18.5

A C A A T  A G T C C A G C A A G A G T A T C A C C T  A A C C T C G C T T  A A A A C T  AGA 
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G A G G T  A G A A A A T  A C T C G G G A G T C A G A A G T G T T C A T G G C A C A A A A A  
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C A A C A A G A T G C C A C A G T T T C T T C A C C T T C T T C A G A T C T G T G T C C T  
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no *20

410

A A A A A A A A  
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The Kpn I / Sac I fragment from the lambda gtll clone 18 5 was subcloned into 
M13 mpl9 and sequence data obtained This data was then confirmed and completed 
by sequencing of a PCR product obtained by amplification of the DNA encoded by 
clone 18 5 The nucleotide sequence obtained is shown with the corresponding 
amino acid residues beneath
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Figure 6.6 Cloning irregularities

EcoR  I site Xgtl 1 reverse primer

GGT ACCG AGCTCG A ATTC AC A AT A..............G A A A A A A A A A ACC AGCTG AGCGCCGGTCGCT ACC ATT ACCG AGCTCGGT ACCCGGG
<--------------------»<----------------------------------------------- ><--------------------------------------------- > <------------------------- >

M13 vector DNA DNA encoded by clone 18.5 Xgtl 1 DNA M13 vector DNA

A PCR product obtained following amplification of the DNA encoded by Xgtl 1 clone 18.5 was subcloned into the vector M13 mpl8 and sequenced. 
The above figure highlights the cloning irregularities which have occured during this subcloning and upon construction of the sporocyst cDNA 
library.



ambiguity surrounding the size o f the native antigen encoded by clone 18.5 makes it 

impossible to determine whether the methionine at position 27 is the initiating methionine. 

However, this seems unlikely as the sequence 5' to this residue is in the same open 
reading frame as that which is 3'. If this methionine were indeed the initiating residue 

prior sequence would represent the 5' untranslated region of the gene which would be 
more likely to contain stop codons. In addition, the nucleotide sequence surrounding the 

ATG which encodes the methionine at position 27 does not conform to the Kozak 

consensus sequence (i.e. AXXATGG) for the initiation of translation (Kozak, 1984). The 

absence of a stop codon prior to the string of ten adenosine residues at the 3' end of the 

clone also suggests that these encode lysine residues rather than representing the poly(A) 

tail. This is substantiated by the observation that the AATAA nucleotide sequence which 

often represents the signal for polyadenylation is not present upstream o f  this adenosine 

string. Thus, it appears that clone 18.5 is not a full length clone and that both 5' and 3' 
ends of the coding region are missing.

6.2.6 COMPUTER ANALYSIS OF THE SEQUENCE DATA OBTAINED FOR 
THE PEPTIDE ENCODED BY CLONE 18.5

The nucleotide and amino acid sequence data obtained for P 18.5 was used to search 

the Swissprot database. No homology with other molecules was found. Thus, the PC / 

Gene computer programme was used in an attempt to characterise the structural features 

of the encoded peptide. Firstly, the programme was used to employ the method of Kyte 

and Doolittle (1982) and a plot of the hydropathic index of the whole amino acid 

sequence was obtained. This demonstrated that there were no regions of particularly high 

hydrophobicity or of high hydrophilicity within the amino acid sequence. The hydropathic 

index generated by this method was then used as described by Klein et al., (1985) to 
determine the likelihood of this amino acid sequence encoding an integral membrane 

protein. As was expected from observation of the initial hydropathic index no membrane 

spanning regions were predicted. Using this method P 18.5 was therefore classified as 

being peripheral to the membrane rather than integral. This suggested that it does not 

correspond to the 16 kDa antigen. However, it is possible that rather than incorporating 

a stretch of hydrophobic amino acids, the 16 kDa antigen uses acylation i.e. the addition 

o f fatty acids to the peptide, for attachment to the lipid hilayer. Acylation can involve the 

incorporation of the complex fatty acid containing GPI anchor. Alternatively, a fatty acid
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can be linked directly to the peptide backbone. As discussed in Chapter 3 the presence 

of a GPI anchor within the 16 kDa antigen is a possibility made plausible by the 

susceptibility o f the antigen to extraction by a particular type of detergent. Furthermore, 
scanning of the amino acid data obtained using the Prosite computer programme revealed 

that following particular post-translational modifications the glycine at position 77 could 

form part of a site for the attachment of the fatty acid, myristate. The attachment of fatty 

acid to the N-terminus of proteins has also been observed to block N-terminal amino acid 

sequencing (Aitken et al., 1982, Ozols et al., 1984). Thus, despite the absence of 

hydrophobic regions within the amino acid sequence encoded by the DNA insert of clone
18.S it is possible that the encoded molecule could become integral to the membrane. 

Further analysis of the amino acid sequence obtained for clone 18.5 also revealed the 

presence of potential sites of phosphorylation by both protein kinase C and casein kinase 

II. However, potential sites for O-glycosylation i.e. serine or threonine residues within 

a proline rich region were not observed.

6 .2 .7  IMMUNISATION OF MICE WITH T H E  PEPTIDE ENCODED BY CLONE
18.5

Experiments to determine whether clone 18.5 encodes the 16 kDa antigen by 

examination o f its antibody binding pattern and by obtaining sequence data proved 

inconclusive. It was therefore decided to carry out immunisation experiments with the 

recombinant antigen, FP 18.5/B-gal. This should enable sera raised against the peptide 

in vivo to be used for screening Western blots o f  MS antigens in order to determine 

whether the 16 kDa antigen is recognised.

6 .2 .7 .1  Preparation of recombinant antigen

To obtain protein for immunisation, clone 18.5 was used to produce a recombinant 

lysogen in E. coli Y1089. This procedure has been used successfully on numerous 

occasions for the production of B-gal recombinant proteins in relatively high abundance 

(Young and Davis, 1983). Proteins expressed by the recombinant and a wild type lysogen 

were solubilised by boiling a sample of Y1089 in SDS PAGE sample buffer and separated 
by electrophoresis through a 8% polyacrylamide gel. Coomassie blue staining of the gel 

revealed the expression of a protein of approximately 138 kDa by the recombinant but not 

the control lysogen. The remaining bacterial cells were then lysed and the soluble fraction
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was separated from the insoluble material by sucrose gradient centrifugation. Both 

fractions were subjected to SDS PAGE and Western blotting. Figure 6.7 demonstrates 

that the 138 kDa protein expressed by the recombinant lysogen was recognised by VRabS 
but not NRabS and that the protein separated into the supernatant following sedimentation 

through sucrose. Although numerous other bacterial proteins are also seen in this phase 
a degree of purification had been achieved. In particular, the partitioning into the 

insoluble pellet of an antigen of approximately 55 kDa which is recognised strongly by 

both VRabS and NRabS, ensured that the 138 kDa recombinant protein was the major 

antigen in the supernatant.

6 .2 .7 .2  Immunisation o f mice with the FP 18.5/B-gal

The supernatant containing FP 18.5/B-gal was used to immunise mice in conjunction 

with CFA / IFA. A total of three subcutaneous immunisations were given to each of two 

female Balb/c and two female CBA mice. Similar groups of control mice were immunised 

with the supernatant obtained by separation through sucrose o f the proteins expressed by 

a non-recombinant lysogen. Western blots of the soluble and detergent fractions obtained 

by extraction of MS with OTG were probed with the sera raised. Figure 6.8 demonstrates 

that a low molecular weight antigen was recognised by sera from animals immunised with 

the recombinant antigen but not by sera taken from the controls. However, this antigen 

had a molecular weight of approximately 17 kDa and was present in the soluble (Aq) 

rather than the detergent (OTG) phase of the MS extract. These results indicate that P

18.5 does not represent a portion of the 16 kDa antigen.

6 .2 .7 .3  The protective capacity of the peptide encoded by clone 18.5
Although the above results suggested that P 18.5 does not represent the 16 kDa 

antigen, the immunised mice were challenged two weeks after the final immunisation and 

perfused eight weeks later. The worm burdens of the immunised mice were not 

significantly different from those of the controls. These results gave no indication that this 

antigen was worthy of further study.

6.2.9 RESCREENING QF THE cDNA LIBRARY
As it was demonstrated that the protein encoded by clone 18.5 does not represent the 

16 kDa antigen, a further 70,000 recombinant cDNA clones were screened in the hope
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Figure 6 .7  Recovery o f  FP 18 .5 /ß  gal from a recombinant lysogen

The Xgtl 1 clone 18.5 was used to produce a recombinant lysogen in E. coli YI089. An 
aliquot o f the antigens expressed by this lysogen were then separated by centrifugation 
through a sucrose cushion and the soluble (S) and insoluble (P) proteins obtained were 
electrophoresed and Western blotted alongside an aliquot of unfractionated lysate (W). 
The blot was probed with VRabS (panel A) or NRabS (panel B) at a dilution of 1 in 200. 
The position of the 138 kDa recombinant protein is marked with an arrow.
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Figure 6.8 Recognition o f a 17 kDa antigen by sera raised in mice immunised with 

F P  18.5/6 gal

Sera raised in mice immunised with the soluble fraction of the 18.5 lysogen (panel A) or 
with the soluble fraction o f the non-recombinant lysogen (panel B) were used at a dilution 
of 1 in 50 to probe aqueous (Aq) and detergent (OTG) extracts of MS. The position of 
the 17 kDa antigen recognised by sera raised in mice immunised with FP 18.5/B-gal is 
marked with an arrow.
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of identifying clones which do encode this molecule. Primary and secondary screening 

was carried out as described previously (section 6.2.2) using fresh antibodies eluted from 

the 16 kDa region of periodate treated Western blots. However, rather than subjecting the 
clones isolated to "antibody select" procedures, they were first plated on tertiary arrays 

and double lifts were taken and screened with either VRabS or CIS. Clones putatively 
encoding the 16 kDa antigen should he positive with the former but not the latter. 

Repeated screening of the tertiary arrays failed to identify clones which met this criteria.

6 .3  DISCUSSION

The identification of a clone encoding a peptide o f  interest has many advantages. 

Firstly, it enables sequence data to be obtained which may be used to provide information 

about the structure and perhaps the function of the molecule. Secondly, incorporation o f  

the DNA encoding the peptide of interest into a suitable expression vector may enable 
substantial amounts of recombinant protein to be produced in bacteria. This latter point 

is o f particular importance in the field of schistosome research as the availability o f  

parasite material relies heavily on the maintenance of a complex life cycle. Maintenance 
of such a life cycle is difficult and time consuming and the amount of parasite material 

which can be produced in this way is often limiting.

In order to identify clones encoding the 16 kDa antigen within a sporocyst cDNA 

expression library a monospecific serum which recognised at least some peptide epitopes 

was required. Neither the McAb nor sera obtained on immunisation of mice with the 

immunoaffinity purified antigen were suitable for this purpose, thus other methods were 

employed in an attempt to obtain a specific antibody probe. Initially, powdered 

polyacrylamide gel containing the 16 kDa antigen eluted from the immunoaffinity column 

and additionally purified by SDS PAGE was injected into the popliteal lymph nodes o f  

a rabbit. It has been demonstrated (Miller el al., 1989) that on subcutaneous injection, 

polymerised acrylamide acts as an adjuvant by slowly releasing the antigen from the gel 

matrix and thus allowing even weak immunogens to induce a good antibody response. 
However, injection of the polyacrylamide gel into the lymph nodes of a rabbit proved to  

be unsuccessful, as following the third injection the animal had to be destroyed due to  
paralysis of its hind legs. Moreover, sera taken prior to, or following the onset o f  

paralysis did not produce a signal in the 16 kDa region of Western hlots. Although 

injection directly into the lymph node has been carried out successfully on previous



occasions the antigens used were in solution rather than absorbed onto polyacrylamide 

(Dr. T. Bianco, personal communication). It therefore seems likely that the paralysis 

observed here was due to the injection into the lymph node of either the neurotoxic gel 
components, acrylamide and bis acrylamide, or a high level of SDS. Further studies 

involving electroelution of the 16 kDa antigen from the gel prior to immunisation were 

considered and this may have avoided the toxic side effects observed on immunising with 

the polyacrylamide gel. However, as described in Chapter 3, the amounts of 16 kDa 

antigen available for immunisation were very small and it was decided that the losses 
which invariably occur during electroelution would be unacceptable.

In a second approach to obtaining a specific probe for screening, antibodies were 

eluted from the 16 kDa region o f  periodate treated Western blots of SDS extracted MS 

antigens. Probing of Western blots of similarly extracted antigens with these eluted 

antibodies (Elal6) demonstrated that the major signal corresponded to the 16 kDa antigen 
and that E lal6 had an anti-16 kDa titre of a least 1 in 100. This sera was then used to 

screen approximately 90,000 recombinant clones of which seven were eventually selected 

for further studies. On identification of the antigens encoded by these clones using 

antibody select methods it became apparent that molecules other than the 16 kDa antigen 

were recognised by Elal6. For example, clones 2.1 and 1.3 were shown to encode a 15 

kDa aqueous phase molecule thought to be the 15 kDa vaccine dominant antigen described 

by Francis (1989). The isolation of clones encoding an aqueous phase molecule was 

surprising in that the antibodies used to screen the cDNA library were selected on the 

basis of their ability to bind to MS antigens extracted by SDS from a pellet previously 

extracted with TX-114. Such a method was used with the specific intent of excluding 

those antibodies which recognise TX-114 soluble molecules and hence enriching E la l6  
for antibodies against the 16 kDa antigen which remains largely insoluble. The presence 

within E lal6 of antibodies recognising a clone encoding an aqueous phase antigen 

suggests that a proportion of some soluble molecules remains associated with the MS 
pellet despite prior extraction with TX-114. Further studies have been carried out with 

this 15 kDa molecule and are detailed in Chapter 7.
Antibodies eluted from a third clone (clone 18.5) did appear to recognise an antigen 

of approximately 16 kDa which was present within both the TX-114 detergent phase and 

the SDS phase of the MS extract. However, the inconsistency of this recognition on 
repetition of the antibody select procedure and the requirement for antibodies eluted from
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a high titre of phage, led to doubts as to the validity of this result. It seemed possible that 

the inconsistency of the results obtained could be explained by a requirement for the 

absorption of an aliquot of antibodies from HI« 16 which when eluted have a sufficient 

titre for the recognition of the low molecular weight molecule on Western blots. Thus, 

a lower titre of phage may express too little recombinant protein for the absorption of a 
suitable aliquot of antibodies. Similarly, antibodies eluted from the sibling clone, clone 

18.4, may have failed to recognise the low molecular weight antigen on Western blots if 

clone 18.4 expressed less recombinant antigen than clone 18.5. A strong signal with 

VRabS which was used initially as a criteria for its selection for further studies does 

indicate that clone 18.5 may be particularly efficient at the expression of the encoded 

protein. Alternatively it is possible that the inconsistency of the results obtained was due 
to the presence of a spurious signal on some occasions. If the low molecular weight 

molecule recognised by antibodies eluted from clone 18.5 has a tendency towards the non­

specific binding of antibodies or protein molecules in general, then it is possible that 

varying results may be obtained which are dependent on the success of the washing 

protocol used within the antibody select procedure.
Although immunisation studies carried out at a later date indicated that the low 

molecular weight signal was a spurious signal (see section 6.2.7.2. and below), initial 

attempts to dispel the ambiguity surrounding the identity of P 18.5 involved examination 

of its antibody recognition profile and the obtaining of sequence data. Characterisation of 

the antibody binding properties of the peptide expressed by clone 18.5 as a fusion with 

B-gal (FP 18.5/B-gal) did not provide sufficient evidence to determine whether it 

represented the 16 kDa antigen or not. Thus, the cDNA insert from clone 18.5 was 

subcloned into M13 and sequenced. Examination of the nucleotide and amino acid 

sequence data obtained revealed that 413 bases representing 137 amino acids were 

encoded. Translation of this sequence would result in the production of a peptide of 

approximately 15 kDa. This contrasted significantly with the observation that the 
recombinant protein expressed by clone 18.5 had an estimated size of 138 kDa, as this 

corresponds to the fusion of a 22 kDa encoded peptide to the 116 kDa B-gal. However, 

further examination of the sequence data obtained indicated that the partial length cDNA 

encoded by clone 18.5 incorporated neither the 5' nor the 3' end o f the coding region of 

the gene. The absence of the latter and hence a stop signal, provided a possible 
explanation for the large size of the recombinant protein expressed, as translation could
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continue beyond the 3' end of the cDNA insert and through Agtl 1 DNA until a stop 

codon was encountered. That clone 18.5 encodes a 15 kDa peptide despite the absence 

of both the 5' and the 3' ends of the coding region of the gene also suggested that the 
complete gene may encode a peptide too big to correspond to the 16 kDa antigen. 

However, it was considered possible that the antigen could be represented by a larger 
precursor molecule which is post / co-translationally modified to produce a glycoprotein 

of an appropriate size. For example, a number of proteins destined for insertion into the 

surface membrane are processed by the cleavage, from a larger precursor protein, o f a 
signal sequence similar to that seen on the precursors o f  secretory molecules (Kreil, 

1981). This N-terminal signal consists of a core of at least nine hydrophobic amino acid 

residues and up to thirty residues (i.e. 3 kDa) in total. The sequence, which is normally 
present at the N-terminus of the protein, is required for the initiation of the binding of the 

ribosome on which the growing polypeptide chain is being synthesised to the lipid 

molecules within the membrane of the ER. This binding enables the polypeptide to pass 

co-translationally into the lumen of the ER through a channel formed in the membrane. 

Here, cleavage of the signal sequence and preliminary glycosylation take place prior to 
the transportation of the molecule to the cell surface (Kreil, 1981). The absence of data 

for the 5' untranslated region of the gene partially encoded by clone 18.5 made it 

impossible to determine if a putative N-terminal amino acid signal sequence was encoded.

Computer analysis o f  the amino acid sequence data obtained for P 18.5 also revealed 

that the sequence lacked features which may be expected to he associated with that 
encoding the 16 kDa antigen. A hydrophobic region suitable for anchoring the molecule 

within the surface membrane was not observed nor were possible sites of O-glycosylation. 

With regard to the latter, it is known that in many glycoproteins the sugar chains are 

clustered around a single short region of the core peptide (Blochberger el al., 1989). 

Thus, it was considered possible that ample glycosylation sites could be provided within 

a relatively short stretch of amino acids, which are encoded by the 5' or 3' regions absent 

from the partial length clone 18.5. With regard to the former, it has been suggested that 
molecules which are exposed at the surface of the schistosome membrane are more likely 

to be covalently linked to the membrane via acylation (i.e. the addition of fatty acids) 

than by virtue of their own transmembrane domain (Rogers and Tiu, 1991). Thus, clones 

can not be discounted from encoding a membrane antigen solely on the basis of their 

lacking a region of hydrophobic peptide sequence suitable for spanning the lipid bilayer.
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One form of acylation commonly used to anchor a molecule within a membrane is the 

addition of the complex fatty acid containing GP1 structure. The possibility of the 16 kDa 

antigen incorporating such an anchor has already been suggested by the susceptibility of 

this molecule to extraction by detergents with high CMCs. The likelihood of such an 

anchor being associated with a particular cloned molecule can also be assessed by analysis 

of cDNA sequence data. mRNA encoding proteins destined to be GP1 anchored contains 

a short stretch o f hydrophobic amino acids at its 3' end. This region of hydrophobic 

residues is never seen on the mature protein and it is believed to represent a signal 

sequence which directs its own cleavage from a precursor molecule and the subsequent 

addition of the GPI anchor (Low, 1987, Ferguson and Williams, 1988, Pearce et al., 

1991b). How this region acts as a signal for cleavage is not clearly understood. However, 

as no consensus sequence has been found on comparison of numerous GPI anchored 

protein precursor molecules it is thought that the conformation rather than the precise 

sequence of this hydrophobic region is important. The absence of sequence data for the 
y  untranslated region of the gene partially encoded by clone 18.5 made it impossible to 

exclude the possibility of this clone encoding a GPI linked protein and hence the 16 kDa 

antigen. If such a structure, which has a molecular weight of approximately 1.2 - 1.5 kDa 

(in Hall et al. , 1995), were to be required for the anchoring of P 18.5 this would increase 

the size of the mature product beyond 16 kDa. However, it has been noted that due, most 

probably, to the inefficient binding of SDS to the GPI structure, removal of the GPI 

anchor from GPI anchored proteins leads to an increase in the estimated size of the 

protein on SDS PAGE (Littlewood et al., 1989). Thus, if the 16 kDa antigen is GPI 

anchored, its size may be under estimated by SDS PAGE and the peptide moiety of the 

antigen could be represented by a sequence longer than that initially anticipated.
A second way of anchoring membrane proteins which do not possess a hydrophobic- 

membrane spanning domain is using acylation via the addition of fatty acid directly to the 

peptide backbone. This increases the hydrophobicity of the region to which the fatty acid 

is added and enables it to interact with the lipid molecules within the bilayer. In general 

this type of acylation involves either the addition of myristic acid via an amide bond to 

the amino group of an N-terminal glycine residue or the addition of myristic, stearic, 
oleic or palmitic acid via a thioester or ester linkage to a cysteine or serine / threonine 

residue respectively (Simon and Aderem, 1992). The addition of myristic acid via linkage 

to internal lysine residues has also been described (Stevenson et al., 1993). Acylation of
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soluble forms of immunoglobulin has previously been shown to enable molecules to 

become membrane bound (Huang el al., 1980). Similarly, deacylation of many proteins 

has been shown to abolish the ability of the molecule to be incorporated into vesicles 

(Petri et a l., 1981). However, of more relevance to the studies detailed here is the 

observation that direct acylation has been shown to he involved in the anchoring of some 

proteins to the schistosome bilayer. Thus, Pearce et al., (1991b) demonstrated that the 

addition of palmitic acid to a residue within a short C terminal hydrophobic region of a 

25 kDa vaccine candidate antigen (Sm25, see section 1.9.2.1), stabilised the otherwise 
unsuitable region for interaction with the lipid bilayer. Removal of the palmitate led to 

the transfer of Sm25 from the detergent to the aqueous phase following extraction with 

TX-114. On analysing the sequence data obtained for P 18.5 the Prosite computer 

program suggested the possibility of the peptide being acylated via the addition o f  myristic 

acid to the glycine residue at amino acid position 77. In order for this to occur the glycine 

must form part of a hexapeptide sequence which is recognised by the enzyme responsible 
for myristoylation, myristyl Coenzyme A : protein N-myristyl (NMT). This sequence 

consists o f an N-terminal glycine at position one together with uncharged residues at 
positions two and five. Any residues are allowed at positions three, four and six (Gordon 

1990). Although the glutamine and alanine residues at amino acids 78 and 81 respectively 

are uncharged and hence appropriate residues for positions two and five of this 
hexapeptide sequence, the glycine residue at position 77 is obviously not N-terminal. 

Despite this, amino acids 77 to 82 of P 18.5 were selected by the program as a possible 

site of myristoylation as the occurrence o f  post / co-translational modifications which 

result in the exposure of previously internal residues can not be dismissed. Whilst 

enabling the glycine at position 77 of P 18.5 to form an N-terminus, the post / co- 
translational removal of amino acids preceding this residue would obviously result in the 

production of a peptide of much reduced size. It was considered possible that a mature 

molecule o f 16 kDa could then be produced from this peptide by the addition o f  myristic 

acid, the inclusion of the sequence encoded by the absent 3' end of the coding region of 

the gene and subsequent glycosylation. However, although acylation following the 

cleavage of a large precursor molecule to expose a previously internal glycine residue has 
been described for picomaviral polyprotein precursors (Palmenberg, 1990), the removal 

of an initiating methionine to reveal an N-terminal glycine residue is the only modification 

described thus far in acylated eukaryotic proteins (Towler et al., 1988). It is therefore
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improbable that the antigen encoded by clone 18.5 is processed in such a way as to enable 

myristoylation to occur. Furthermore, it has been shown that although, in general, 

acylation serves to anchor many molecules within the surface membrane, some acylated 

proteins and in particular myristoylated proteins, are found within the aqueous phase 

following TX-114 extraction (Towler el al., 1988). Thus the presence of myristic acid 

does not guarantee a membrane location. Other functions of myristoylation such as the 

targeting of aqueous phase molecules which are peripherally associated with the plasma 

membrane to appropriate locations have also been suggested (Resh, 1989).

Obtaining sequence data for the DNA encoded by clone 18.5 also demonstrated that 

an EcoR 1 restriction site was absent at the junction of the 3' end of the cloned sporocyst 

cDNA with Agtl 1. Thus, EcoR I restriction of the PCR product amplified from this clone 

did not result in the cleavage of the A.gtl 1 sequence downstream of the cloning site nor 

of the reverse PCR primer. Despite this it was observed that following subcloning of the 

improperly cut PCR product into EcoR I cut M 13 only six of the twenty four nucleotides 

complementary to the A.gtl 1 reverse primer are present at the junction of the 3' end of the 

inserted PCR product and the M 13 DNA. It seems probable that the original PCR product 

incorporated more of the sequence complementary to that of the reverse primer as 

amplification is unlikely to have occurred following ligation of the primer to a stretch of 

just six bases. These results therefore suggest that a number of bases have been removed 

from the 3' end of the PCR product by exonuclease activity in the solutions used either 

for the attempted restriction with EcoR I or during the ligation reaction. The absence of 

four nucleotides (AATT) from the 5' terminus of the EcoR I cut sticky end of M 13 mpl8 
suggests that exonuclease activity has also removed bases from the vector DNA. The 

"nibbled" PCR product and vector have then been able to join via a blunt ended ligation 

and produce recombinant clones suitable for sequencing. During the course of this project 

the absence of an EcoR I restriction site at the 3' end of the cDNA encoded by several 

clones within the sporocyst expression library has been demonstrated. The possible 

reasons for this are discussed in more detail in Chapter 7.
As sequencing of P 18.5 did not enable the possibility o f it representing the 16 kDa 

antigen to be dismissed, attempts were made to raise antibody against this peptide and 

hence characterise the corresponding native molecule. Thus, clone 18.5 was used to 

produce a lysogen in Y1089 and the recombinant protein expressed (FP 18.5/B-gal) 

injected in conjunction with CFA / IFA into a small group of mice. Sera raised in these
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mice ««tshow n to recognise an antigen of approximately 17 kDa present within a 50 mM 

Tris/HCl (pH 7.4) extract of MS. It is possible that mice immunised with FP 18.5/B-gal 

do not produce antibodies against the schistosome part of the recombinant protein and that 
the 17 kDa signal represents recognition of a molecule of bacterial origin. However, this 

molecule is not seen by sera raised in mice immunised with the proteins expressed by a 
non recombinant lysogen, thus suggesting that recognition of the 17 kDa molecule by 

recombinant immunised mice does indeed represent the recognition of the schistosome 

peptide encoded by clone 18.5. That the peptide of approximately 15 kDa encoded by the 
partial length clone 18.5 represents a portion of a 17 kDa native antigen is also 

compatible with the sequencing data obtained and suggests that a further 2 kDa of 

molecule is synthesised by translation of the complete gene and inclusion of any 

subsequent post / co-translational modifications. However, the recognition of a 17 kDa 

aqueous phase antigen by mice immunised with FP 18.5/B-gal is obviously not consistent 
with the suggestion that clone 18.5 encodes the 16 kDa integral membrane antigen. Thus, 

it became apparent that the original low molecular weight signal observed on probing 

detergent phase antigens with sera eluted from clone 18.5 by antibody select procedures, 

represented a spurious one. This may be due to inefficient washing and perhaps a degree 

of affinity of the low molecular weight molecule for E la l6 . However, it is not clear why 

a 17 kDa aqueous phase antigen was not recognised by sera eluted from clone 18.5. 
Moreover, it is difficult to deduce why screening with antibodies selected on the basis of 

their ability to bind to the 16 kDa region of Western blots of detergent phase antigens 

(i.e.E lal6), isolated a clone encoding a molecule present within the aqueous phase of the 

extraction. However, experiments aimed at characterising the specificity of E lal6 by 

probing of a Western blot of SDS extracted antigens prior to screening, did demonstrate 
that a weak signal of approximately 17 kDa was recognised by this sera (section 6.2.1.2).

The selection of clones encoding a 15 kDa and a 17 kDa antigen demonstrates that 

E la l6  does recognise low molecular weight molecules. Despite this, further rounds of 
screening with fresh antibodies eluted from the low molecular weight region of the 

periodate treated Western blot failed to identify clones encoding the 16 kDa antigen. 
Thus, despite the screening of more than 160,000 recombinant clones, a clone encoding 

the 16 kDa antigen was not isolated. There are several possible reasons for this failure. 

Firstly, E lal6  could have recognised periodate insensitive carbohydrate epitopes rather 
than peptide epitopes as hoped. However, in view of the results discussed in Chapter 4
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which suggest that the only sugar present within the 16 kDa antigen is the periodate 

sensitive monosaccharide 6 GalNAc this seems unlikely. Secondly, it is possible that a 

large proportion of the antibodies present in Elat 16 recognise conformational epitopes 
which although peptide in nature are not expressed in a prokaryotic system. The selection 

o f antibodies from VRabS on the basis of their ability to bind to antigens following SDS 
PAGE should have enriched E la l6  for antibodies which recognise linearised epitopes. 

However, a proportion of the antibodies selected could still have recognised reformed 

conformational epitopes or any which are resistant to denaturation by SDS. Alternatively 
it is possible that clones encoding the 16 kDa antigen are poorly represented in the library 

screened. It has been demonstrated (Buell et al., 1988) that the efficiency of reverse 

transcription varies between mRNA species. Moreover, the cDNA library used had been 

subjected to amplification. Although during amplification A.gtl 1 phage were used to infect 

Y1088, a bacterial strain which carry the lac repressor to prevent the expression of 

recombinant proteins until IPTG is added, this system is "leaky" and small amounts of 

protein can be expressed prior to induction. If the protein expressed is toxic to the phage 

or the bacterial cell host this can lead to slow growth of the recombinant clone and thus 

under representation within the amplified library. Again this is an unlikely explanation 

for the failure to identify clones encoding the 16 kDa antigen within the cDNA library, 

as experiments detailed by Francis (1989) describe similar results on screening of the 

library prior to amplification. Finally although mature 16 kDa antigen has been identified 

in the sporocyst stage, mRNA encoding for this antigen may be in low abundance. The 

detection of clones encoding non abundant mRNA is particularly difficult when screening 

a cDNA expression library with antibody probes as only clones in which the cDNA is 

encoded in the correct orientation and reading frame can be identified. Screening of yet 

more recombinants may therefore be required to reveal a clone encoding the 16 kDa 

antigen.
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7.1 INTRODUCTION
As described in Chapter 6 several clones were isolated following the screening of a 

sporocyst cDNA expression library with affinity purified antibodies specific for low 
molecular weight antigens (Elal6). Using the method o f  Ozaki et al., (1986) the native 

antigens encoded by these clones were then identified within a TX-114 extract of MS. 

Two of the clones, 2.1 and 1.3, were shown to encode a 15 kDa molecule present within 

the aqueous phase of the preparation. Several pieces of evidence suggest that this 

molecule may be the same as that encoded by a clone (15V) described by Francis (1989). 

Firstly, clones 2.1, 1.3 and 15V were all isolated from the same sporocyst cDNA library 
as a consequence of their ability to bind antibodies within VRabS. Secondly, the 15 kDa 

antigen encoded by clone 15V was described by Francis (1989) as being present amongst 

MS antigens extracted with 6 M guanidinium hydrochloride (G/HC1) but not those 

extracted with 1 % sodium deoxycholate (DOC). The separation of different subsets of 

antigens into these extracts had already suggested that soluble antigens were removed by 
G/HC1 whereas the detergent DOC was required to extract those molecules integral to the 

membrane. Thus, the presence of the 15 kDa antigen encoded by 15V in the G/HC1 

extract suggests that like the antigen encoded by clones 2.1 and 1.3 the molecule has the 

characteristics of a soluble protein.

The recombinant protein expressed by clone 15V has been shown to be recognised 

by VRabS which can confer passive protection and by VMS, but not by sera from non- 

immune mice harbouring a chronic (CIS) or single sex (SSS) infection (Francis and 

Bickle, 1992). Thus, it is known that the antigen encoded by clone 15V is to some extent 

vaccine specific. Studies described in the first section o f this chapter were therefore aimed 

at characterising the antibody binding pattern of the peptide encoded by clone 2.1. Such 

studies should reveal whether the molecule encoded by this clone is also vaccine dominant 

and hence of interest as a potential vaccine candidate antigen.

The second part o f this chapter describes experiments aimed at acquiring information 

regarding the structure and possible function of the 15 kDa molecule encoded by the 
isolated clones. This involved obtaining nucleotide and amino acid sequence data and 

making comparisons with those sequences already recorded in established databases.
Finally the protective potential of the 15 kDa antigen was examined following its 

expression as a recombinant protein.
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7.2.1 INVESTIGATING THE PATTERN OF ANTIBODY BINDING TO THE

7.2 RESULTS

PEPTIDE ENCODED BY CLONE 2.1
To determine whether the peptide encoded by clone 2.1 is vaccine dominant the clone 

was plated at a high titre in soft agar supplemented with IPTG. The agar containing 

expressed proteins was then removed, boiled in SDS PAGE sample buffer and 

electrophoresed on an 8% polyacrylamide gel. Staining of the gel with Coomassie blue 

revealed that clone 2.1 expressed a protein of approximately 126 kDa (FP 2.1/B-gal) 
which was not expressed by the non recombinant phage (data not shown). This 

represented the 116 kDa 6-gal plus a fused peptide of approximately 10 kDa (P 2.1). 

Comparable amounts of FP 2.1/B-gal, a recombinant form of the heat shock protein 

HSP70, recombinant paramyosin (P 97) and B-gal expressed by non recombinant phage 

were then separated by SDS PAGE and transferred by Western blotting. Strips of each 
blot were probed with a variety of sera pre-absorbed against the bacterial proteins 

expressed by a culture of non-recombinant Agtl 1 which include a significant amount of 

B-gal. Figure 7.1 demonstrates that FP 2.1/B-gal was recognised strongly by VRabS (1 

and 3) and VMS(CBA). In contrast, a very weak signal was seen with SSS and the 

recognition of the antigen by CIS was either weak CIS(2) or absent CIS(l). This vaccine 

dominant pattern of recognition can be contrasted with that of HSP70 and P97 which 

were recognised by all except the normal sera and that of B-gal which was recognised 

only by sera raised against itself. The latter point demonstrates the effectiveness of the 

pre-absorption of the sera used.

7.2.2 OBTAINING SEQUENCE DATA FOR THE DNA ENCODED BY CLONES 

15V. 2.1 AND 1.3
The recognition o f FP 2.1/B-gal by VMS(CBA) and VRabS but not by SSS nor CIS 

suggests that the protein encoded by clone 2.1 is of interest as a vaccine dominant 

antigen. In addition, the similarities observed between the antibody binding pattern of FP 

2.1/B-gal and the 15 kDa antigen encoded by clone 15V (Francis, 1989) suggests that 
these clones may indeed encode the same molecule. In order to test this hypothesis and 

also to obtain further information regarding the structure and possible function of the 15 

kDa molecule(s) attempts were made to amplify and sequence the DNA encoded by clones 

15V, 2.1 and also 1.3.
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Figure 7.1 The vaccine dominant nature of FP 2.1/B gal

clone /  antigen

A  8-9 * 1

D i 2  HSPTO 

D3 P 9 7

P 2 -1

The recombinant proteins expressed by clone 2.1, a number of other recombinant clones 
and non-recombinant A.gtll, were separated by SDS PAGE and transferred by Western 
blotting. The blots were then probed with a variety of E. coli lysate absorbed sera. VMS, 
NMS, SSS, CIS and VRatS were used at a dilution of 1 in 100. VRabS, NRabS and anti- 
ß-gal were used at a dilution of 1 in 200.
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Figure 7.1 The vaccine dominant nature of FP 2.1/B-gal

The recombinant proteins expressed by clone 2.1, a number of other recombinant clones 
and non-recombinant Agtl 1, were separated by SDS PAGE and transferred by Western 
blotting. The blots were then probed with a variety of E. coli lysate absorbed sera. VMS, 
NMS, SSS, CIS and VRatS were used at a dilution of 1 in 100. VRabS, NRabS and anti- 
ß-gal were used at a dilution of 1 in 200.

2 2 0



7.2.2.1 PCR reactions

The cDNA encoded by all three clones was amplified from plate stocks by PCR 

reactions using the forward and reverse Xgtl 1 primers. The PCR products obtained were 
then electrophoresed on agarose gels and their sizes estimated (data not shown). 

Amplification of the DNA encoded by clones 15V and 2.1 produced a product of the 

same size i.e. approximately 400 bp. In contrast, the PCR product obtained from clone

1.3 had an estimated size of 1.7 kb. This data suggests that clones 2.1 and 15V may 

represent partial length clones of the gene encoding the 15 kDa antigen whereas clone 1.3 

might conceivably contain the complete coding region together with additional 

untranslated flanking regions. The DNA inserts of all three clones were therefore 

sequenced.

7.2.2.2 Sequencing

(a) Sequencing of the DNA encoded by clone 15V
Purified A.gtl 1 DNA from clone 15V was cut with the restriction enzymes Kpn I and 

Sac I. The resulting 2.5 kb product which contained the EcoR I cloning site and the 

cDNA insert, was then purified using low melting point agarose and subcloned into each 

of the Kpn l  / Sac I cut M13 mpl8 / mpl9 paired vectors. The full length sequence of 

the cDNA encoded by clone 15V (393 bp) was obtained by sequencing from recombinant 

mpl9 and mpl8 with the forward and reverse A.gtll primers respectively (Figure 7.2). 

Analysis of the nucleotide sequence data obtained demonstrated that as with clone 18.5 

(see Chapter 6) no EcoR I site was present at the junction of the 3' end of the cDNA 

insert of clone 15V and the Agtl 1 DNA. Instead a string of nine adenosine residues lead 
directly into Xgtl 1 sequence which is identical to that seen at the junction of A.gtl 1 and 

the cDNA encoded by clone 18.5. This string of adenosine residues may represent the 

poly(A) tail, however, a polyadenylation signal (AATAA) was not present 10 to 30 

residues downstream of the first of these adenosines, thus suggesting that these represent 

not the poly(A) tail but a string of adenosines within the 3' untranslated region of the 

gene.
As the cDNA encoded by clone 15V had been expressed as a recombinant protein in 

A.gtl 1, the reading frame of the subcloned Kpn 1 / Sac I fragment could be determined 

and the nucleotide sequence was translated (Figure 7.2). Analysis of the data obtained 
demonstrated that amino acid 1 of the translated sequence represented a methionine
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Figure 7.2 The sequence of the peptide encoded by clone 15V

10 20  30 40

ATGAAAGCT ACAAAT AAGAAACTTTCACAAACTGATGT ATCATGT 
M K A T N K K L S Q T  D V S C

10

SO 60 70 SO 90

GCTGCATTAAGAAAAAT ATTTCGTGAAATGGATAAAAAT AAAGAT 
A A L R K I  F R E M D K N K D

20 30

100 110 120 130

AGAACTATTTCAAAGCAAGAATTAAAAAATT AT ATGAAAAGTGAT 
R T I  S K Q E  L K N Y M K S D

40

140 190 160 170 ISO

T G T A A T T T T A T A T T T C C T A T  ACAAGTTGATCAATGGGTTGATAAA 
C N F  I F P  I Q V D Q W V D K

90 60

190 200 210 220

TA TG A T AAAAATAAAGATGGAAGATT AAATT ATGAAGAATTT ATT 
Y D K N K D G R L N Y  E E F  I

70

230 240 250 260

G A A TTTG TTTC A C A A TA TTTA TG A A TA TA A A TA TA TA A C TTTTTA
E F V S Q Y L 

10

270 2S0 290 300 310

C T T C A G T C C T T  ACAATGATCATATTCAACAAGT ACATTTCAGTGA

320 330 340 330

ATAACAATGT A G C A A TTTTTTTA A TTG A A C A A A TTTC C C C A A TTT

360 370 310

A G TC A TG TTTT AATACATAAAAAAAAA

The Kpn I / Sac I fragment from the lambda gtl 1 clone 15V was subcloned into the 
vectors M 13 mp 19 and mp 18 and sequenced using the forward and reverse lambda 
gtl 1 primers respectively The nucleotide sequence obtained is shown with the 
corresponding amino acid residues beneath The shaded regions denote those residues 
which are involved in the formation o f the putative calcium binding domain The loop 
is represented by the darker shade and the helices by the lighter shade
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residue and that a TGA stop codon was present at nucleotide positions 246 - 248. Despite 

this it seems unlikely that clone 15V incorporates the whole coding region of the gene 

encoding a 15 kDa antigen, as translation from the methionine residue at amino acid 
position 1 through to the proposed stop codon would result in the production of a peptide 

with an approximate size of only 9.2 kDa. It therefore seems more likely that the residue 
at position 1 of the amino acid sequence represents an internal rather than the initiating 

methionine and that the 5' end of the gene partially encoded by clone 15V is absent.

(b) Sequencing of the DNA encoded by clone 2.1
The PCR product obtained following amplification of the cDNA encoded by clone

2.1 was cut with EcoR I, purified on low melting point agarose and subcloned into 

similarly cut M13 mpl8. The sequence obtained from just one clone demonstrated that 
the 5' end of the cDNA insert encoded by clone 2.1 was identical to that of the cDNA 

encoded by clone 15V and hence confirms that the two clones do indeed encode part of 
the same gene. No additional sequence was obtained on sequencing of the insert from 

clone 2.1.

(c) Sequencing of the DNA encoded hv clone 1.3

DNA obtained by PCR from the A.gtl 1 clone 1.3 was purified on low melting point 

agarose and subcloned into the pGEM-T vector. Sequencing of one of the clones 

obtained, with the M13 (-40) reverse primer and the T3 forward primer gave non­

overlapping sequence for the 5' and 3' ends of the DNA encoded. Comparison of this 
sequence with that already obtained demonstrate that the 5' end of the cDNA encoded by 

clone 1.3 was identical to that of the cDNAs encoded by clones 15V and 2.1. Thus, these 

results demonstrated that clone 1.3 encodes part of the same gene as that encoded by 

clones 15V and 2.1 and that the larger size of the cDNA insert was not a consequence of 

the incorporation of additional 5' sequence. Examination of the sequence obtained for the 

3' end o f the cDNA insert of clone 1.3 demonstrated similarities to clone 15V and clone
18.5 (see Chapter 6) in that an EcoR I site was not present at the junction of the 3' end 

of the cDNA insert with A.gtll. Instead a stretch of seven adenosine residues leads 

directly into Agtl 1 sequence which is identical to that seen at the junction of the vector 
and the cDNAs encoded by clones 18.5 and 15V. However, as expected, the sequence 

immediately upstream of the seven 3' adenosine residues encoded by clone 1.3 differed

223



from that seen immediately upstream of the string of nine adenosines at the 3' end of 

clone 15V. These results therefore suggest that the large size of the insert encoded by 

clone 1.3 is due to the incorporation of a concatemer o f  different cDNA’s or to the 
inclusion of an extremely long 3' untranslated region. A polyadenylation signal was not 

seen towards the 3' end o f  the cDNA encoded by clone 1.3 thus suggesting that the 
terminal string of seven adenosine residues may not represent a poly(A) tail.

7 .2 .3  ATTEMPTS TO OBTAIN THE 5' END OF THE GENE ENCODING THE

15 KPA ANTIGEN
The above sequencing suggested that the 5' end of the coding region of the gene 

encoding the 15 kDa antigen is absent from the cDNA inserts of all three of the clones 
isolated. Thus, in an attempt to obtain data for this region a PCR reaction was carried out 

using the A.gtl 1 forward primer and a specially designed reverse primer which 
incorporates amino acids complementary to nucleotides 10 - 26 of the sequence already 

obtained for the 15 kDa antigen. The primers were used to amplify DNA from a high 

titre stock of A.gtl 1 libraries constructed from adult or sporocyst cDNA. The products 

obtained were separated by electrophoresis on agarose gels (data not shown). 

Amplification of DNA within the adult cDNA library produced a number of diffuse bands 

which ranged in size from approximately 200 to 400 base pairs. However, separation and 

purification of these weak and diffuse bands using low melting point agarose proved 

problematic and was therefore abandoned. In contrast, a single, stronger and more distinct 
band of 120 bp was seen following amplification of DNA within the sporocyst cDNA 

library (data not shown). This appeared to be big enough to incorporate a portion of the 

gene encoding for the 15 kDa antigen in addition to the PCR primers and the A.gtl 1 DNA 

present between the binding site of the forward primer and the EcoR I cloning site (total 

of 78 bp). Thus, the band was purified and subcloned by blunt ended ligation into the 

pGEM-T vector. Restriction with the enzyme Pvu II was then used to confirm the 

presence of the small insert within the pGEM clones isolated and sequencing of one of 

these clones was performed. Analysis of the data obtained demonstrated that the subcloned 
PCR product encoded only the two PCR primers and the A.gtl 1 DNA found between the 

region to which the forward primer hinds and the EcoR I cloning site. As no other hands 

were apparent following PCR from the sporocyst cDNA library these results therefore 

indicate that clones encoding the 5' end of the gene partially encoded by clones 2.1, 1.3



and 15V are not present.

7 .2 .4  ANALYSIS OF THE AMINO ACID SEQUENCE OBTAINED FOR THE

15 KPA ANTIGEN
The partial nucleotide and amino acid sequence obtained for the 15 kDa antigen was 

used to search the SwissProt data base for homology to other molecules. No complete 

identity with molecules within the database was observed, however, homologies of up to 

42% were seen with parvalbumin alpha (Zuehlke et al., 1989), members of the troponin 

C superfamily (Carpenter et al., 1984) and calcium binding proteins in general. Further 

examination of the data obtained revealed that this homology was limited to two particular 

regions of the sequence obtained for the 15 kDa antigen. These were similar to those 

encoding the calcium binding domains o f the aforementioned molecules, thus suggesting 

a putative role for the 15 kDa antigen as a calcium binding protein. However, in order 

for a molecule to bind calcium it is essential that within the proposed calcium binding 

domain (CaBD) certain structurally and functionally important residues are conserved, as 

these allow the formation of an EF hand (see section 7.3). A test sequence detailing the 

residues required for the formation of such a motif has been published (Ram et al., 1989) 

and a comparison between the test sequence and the appropriate regions of the 15 kDa 

antigen was made (Figure 7.3). Some variation was observed between the these two 

sequences, the most crucial of these being the absence of the central glycine in the loop 

structure of the first putative calcium binding domain (pCaBDI) of the 15 kDa antigen. 

A number of other residues within the helix region of both putative calcium binding 

domains were also not in accordance with the test sequence. However, as a number of 

functional Ca2’ binding proteins have been described which lack perfect EF hands (Ram 

et a l., 1989, Havercroft et al., 1990, Moser et al., 1992) it was considered necessary to 

investigate experimentally the possibility of the 15 kDa antigen binding calcium.

7 .2 .5  SUBCLQN1NG OF THE cDNA ENCODED BY CLONE 2.1 1NTQ A 
VECTOR SUITABLE FOR EXPRESSION

Recombinant antigen was required for use in experiments to assess the calcium 

binding ability of the 15 kDa antigen and for testing in immunisation studies. It was 
therefore considered necessary to subclone the DNA encoding P 2.1 into a suitable 

expression vector. Sequencing of all three clones isolated from the sporocyst cDNA
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Figure 7 .3  Com parison o f the proposed calcium  binding sites o f the 15 kDa antigen with the EF hand test sequence

Calcium ion binding positions

EF hand test sequence 

15V (amino acids 18-45) 

15V (amino acids 54-81)

<------ helix * <

X Y Z

n - - n n - - n D - * *

L - - I F - - M D - N - D

V - - W V - - Y D - N - D

loop ------ » <------ helix ------ »

-Y -X -Z

G - n * - - E n - - n n - - n

R - I S - - E L - - Y M - - D

G - L N - - E F - - F V - - Y

Amino acid residues 18 - 45 and 54 - 81 of the peptide encoded by clone 15V were aligned with the EF hand test sequence devised by Ram et al., 
(1989). The loop structure comprises 6 Ca:* ion ligating positions (X, Y, Z, -X, -Y, -Z). * = any residue with side chain oxygen (D, E, N, Q, S, 
T). n = any non polar residue (A, D, E, F, I, K, L, M, P, R. V, W) and - = any amino acid. Amino acids shown in bold accord with the test 
sequence.



library demonstrated the absence of an EcoR I site at the junction of the 3' end of the 
cDNA inserts and A.gtll. Thus, excision of DNA from these clones and direct subcloning 

into an expression vector may have proved problematic. A PCR product obtained by 

amplification of the cDNA encoded by clone 2.1 was therefore subcloned by blunt ended 

ligation into the TA plasmid. This vector has a unique EcoR I site situated 8 bases 

downstream of the site into which PCR products are cloned. Five recombinant clones 

were produced which on restriction with EcoR I released inserts of approximately 400 bp. 

The insert from one o f  these clones was then subcloned into EcoR I digested pGEX.

7.2 .6  EXPRESSION OF THE RECOMBINANT ANTIGEN IN pGEX
The pGEX vector expresses foreign peptides as a fusion with the C-terminus of a 26 

kDa S. japonicum GST. Recombinant proteins can therefore be separated from other 

bacterial products as a consequence of their ability to bind agarose beads coated with 

glutathione. Subcloning of the DNA insert excised from the TA vector into pGEX, 

produced five putative recombinant clones. The expression of proteins by these clones was 

then induced by the addition of IPTG to a high titre plasmid culture and the culture 
supernatant was rolled overnight with glutathione coated agarose beads. Bound proteins 

were eluted from the beads by boiling in SDS PAGE sample buf fer and separated by SDS 

PAGE. Coomassie blue staining of the resulting gel demonstrated that a single 

recombinant clone expressed a fusion protein of approximately 36 kDa (FP 2.1/GST) 

(Figure 7.4). This represents S. japonicum 26 kDa GST fused to a 10 kDa (P 2.1) peptide 

of the 15 kDa antigen. A prominent protein band was also seen at 26 kDa and was 

presumed to represent GST derived from the degradation of FP 2.1/GST.

7.2 .7  ANALYSIS OF THE CALCIUM BINDING ABILITY OF THE 15 KDA 

ANTIGEN
Multiple samples of the recombinant protein FP 2.1/GST, the native 15 kDa antigen 

within the aqueous phase following TX-114 extraction of MS and recombinant derived 

S. japonicum calpain, were subjected to SDS PAGE and Western blotting. Staining of 

part of the Western blot with amido black demonstrated that equivalent amounts of 

recombinant FP 2.1/GST and the calpain positive control were used (Figure 7.5 (A)). 
Moreover, probing o f  the aqueous phase antigens with sera raised against FP 2.1/GST 

(section 7.2.8.2) demonstrated that the native 15 kDa molecule was present (Figure 7.5
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Figure 7.4 The expression of FP 2 .1 /GST

-----20

----- 14

The DNA insert of A.gtl l clone 2.1 was amplified by PCR and subcloned into the pGEX 
expression vector. The expression of proteins by putative recombinants was then induced 
by the addition of IPTG to a high titre plasmid culture. Cleared bacterial lysate were 
rolled overnight with glutathione coated agarose beads and bound proteins were eluted 
from the beads by boiling in SDS PAGE sample buffer. The eluted proteins were then 
separated by SDS PAGE and the gel stained with Coomassie blue. A single recombinant 
clone expressed a fusion protein of approximately 36 kDa (FP 2.1/GST) (lane 3). The 
remaining clones expressed GST alone (lanes 1, 2 and 4).
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Figure 7 .5 Investigating the calcium binding capacity o f FP 2.1/G ST

Equivalent amounts of FP 2.1/GST (lane 1), recombinant derived S. japonicum calpain 
(lane 2) and aqueous phase antigens extracted from MS (lane 3) were electrophoresed in 
duplicate and transferred by Western blotting. One half of the blot was then stained with 
amido black (panel A) and the other probed with radiolabelled 45Ca (panel B). A single 
track of aqueous phase antigens was also probed with a 1 in SO dilution of sera raised 
against FP 2 .1/GST (panel C). The latter demonstrates the presence of the 15 kDa antigen 
amongst the aqueous phase antigens (arrowed in panel C). Only S. japonicum calpain 
showed binding of 4,Ca (arrowed in panel B).
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(C)). The remaining half of the blot was therefore probed with radioactive calcium (45Ca) 

and overlaid on photographic film which was developed several weeks later. Figure 

7.5(B) demonstrates that only S. japonicum calpain showed any ability to bind calcium.

7.2 .8  IMMUNISATION OF MICE WITH FP 2.1/GST
7.2.8.1 Preparation o f FP 2.1/GST for immunisation

Comparable amounts of FP 2 .1/GST and GST expressed by non recombinant pGEX 

were separated by SDS PAGE, Western blotted and probed with rabbit sera. Figure 7.6 

shows that unlike GST alone the recombinant protein was recognised by VRabS but not 
by NRahS. This demonstrated that the P 2.1 retains its antigenicity when expressed as a 

fusion with GST and thus FP 2.1/GST was suitable for use in immunisation studies. 

However, a further advantage of using the pGEX expression vector is that once a 

recombinant protein has been purified, the GST part of the fusion can be removed by 

cleavage with thrombin. FP 2.1/GST was therefore digested with this enzyme and the 
products examined hy SDS PAGE. Figure 7.7 (A) demonstrates that on Coomassie blue 

staining a 26 kDa GST and a 10 kDa peptide (P 2.1) were observed as expected. 

However, as can be seen in Figure 7.7 (B) Western blotting of similarly cleaved material 

revealed that following removal of GST the 10 kDa peptide was only weakly recognised 

by VRabS. This indicated that the P 2.1 epitope(s) recognised by this sera rely upon the 

fusion with GST for their structural integrity, their antigenicity and possibly their 

immunogenicity. It was therefore decided to use the whole rather than the cleaved 

recombinant protein for immunisation.

7 .2 .8 .2  Immunisation of mice with FP 2.1/GST

In a preliminary experiment to verify the immunogenicity of FP 2.1/GST and to 
identity the strain of mice which gives the most appropriate antibody response on 

immunisation, two female Balb/c and two female CBA mice were immunised with FP 

2.1/GST plus CFA / IFA. Similar groups o f  control mice were immunised with either 

adjuvant alone or adjuvant plus GST expressed by non-recombinant pGEX. These 

preliminary experiments demonstrated that both strains of mice produced antibody which 
recognised FP 2.1/GST on Western blots. However, the sera raised in CBA mice 

immunised with FP 2.1/GST gave an equal signal when used to probe GST alone. In 

contrast, the response seen in FP 2.1/GST immunised Balb/c mice had a greater
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Figure 7 .6  The antigenicity o f  FP 2.1/GST

1 2

A Western blot of FP 2 .1/GST was cut into strips and probed with a 1 in 200 dilution of 
VRabS (lane 1) or NRabS (lane 2). The position of FP 2 .1/GST is marked with an arrow.
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Figure 7.7 Cleavage o f FP 2.1/G ST with thrombin

10 ¿ig of FP 2 . 1/GST (lane 1) was electrophoresed alongside an equivalent amount of FP 
2.1/GST digested with thrombin overnight at 25°C (lane 2). Gels were then stained with 
Coomassie blue (A) or Western blotted and probed with a 1 in 200 dilution ot VRabS 
(B). The position of the thrombin released schistosome portion of the recombinant protein 
is marked with an arrow.
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specificity for the fused peptide (data not shown). Thus, groups of 8 Balh/c mice were 

immunised with either FP 2.1/GST plus CFA / IFA, adjuvant alone or adjuvant plus non 

recombinant GST. Following the last of five injections mice immunised with FP 2.1 /GST 
were shown to recognise a 15 kDa antigen on Western blots of the aqueous phase of a 

TX-114 extraction of MS (Figure 7.8). This molecule was not recognised by sera taken 

from mice in either o f  the control groups. The mice in all three groups were then 

challenged and perfused 5 weeks later. The average worm burden for each group is given 

in Table 7.1. As can be seen the group of mice immunised with FP 2 .1/GST had a mean 
worm burden which was not significantly different to that of the control groups. 

However, a number o f  mice within the FP 2.1/GST immunised group did have worm 

burdens which were noticeably different to the group average. Sera taken from individual 

mice was therefore used to probe strips of a Western blot of TX-114 aqueous phase 

antigens. Figure 7.8 demonstrates that sera from one of the mice immunised with the 

recombinant protein did not recognise the 15 kDa native antigen (lane 3). Moreover, the 

signal seen with two other sera was slightly weaker than that obtained with the rest (lanes 

6 and 7). However, comparison of the Western blots with the protection data revealed that 

these poor responders were amongst those mice with the lowest worm burdens. Thus, no 

correlation between recognition of the 15 kDa antigen and a low worm burden was 

observed. It should however be noted that the antibody response generated towards the 
15 kDa antigen was in general poor. In all cases a 1 in 50 dilution of sera was required 

for recognition of the molecule on a Western blot.

7 .2 .9  IDENTIFICATION OF THE 15 KDA ANTIGEN IN DIFFERENT STAGES 

OF THE SCHISTOSOME LIFE CYCLE
The clones encoding the 15 kDa antigen characterised here were isolated from a 

sporocyst cDNA library and antibodies selected on these clones recognise the 15 kDa 

antigens amongst the aqueous phase MS antigens. Hence it has already been demonstrated 

that the 15 kDa molecule is present in the early stages of the schistosome life cycle. Here 

attempts were made to determine whether the molecule is also present amongst antigens 

extracted from adult worms or from eggs. Thus, a detergent extract of adult worms and 

a PBS extract of eggs (TDR, WHO) were separated by SDS PAGE, Western blotted and 

probed with the positive sera raised against FP 2.1/GST (section 7.2.8.2). Figure 7.9 

demonstrates that unlike the stage specific 16 kDa antigen the 15 kDa antigen is present
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Figure 7.8 The recognition o f the 15 kDa antigen by mice immunised with FP 

2.1/GST

Mice immunised with FP 2.1/GST (lanes 1 - 7), non-recombinant GST (lanes 8 - 14) or 
CFA/IFA alone (lanes 1 5 -2 0 ) were bled immediately prior to challenge and the sera 
obtained from individual animals used to probe strips of a Western blot of aqueous phase 
MS antigens. All of the sera were used at a dilution of 1 in 50 and the position of the 15 
kDa antigen is marked with an arrow.
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TABLE 7.1 Immunisation of mice with FP 2.1/GST

Number of mice per 

group
Immunisation protocol Worm burden 

(+ /-  S.D.)
Reduction (%) Significance

6 CFA / IFA adjuvant alone 68.5 + /-14 .9 -

7 Non-recombinant GST plus CFA / 

IFA

69.1 + /-1 1 .0 “

7 FP 2.1/GST plus C FA /IFA 61.6 + /-13 .5 10.8% p <  0.25

Female CBA mice were immunised s.c with FP 2.1/GST, non-recombinant GST or with adjuvant alone. The mice were then challenged with 200 
cercariae 7 weeks after the last immunisation and killed and perfused 35 days later. The average worm burden for each of the groups was obtained 
and resistance calculated as described in Chapter 2.



Figure 7,9 The recognition of the 15 kDa antigen am ongst adult and egg antigens

Strips of a Western blot of a detergent extract of adult worms (panel A) or soluble egg 
antigens (panel B) were probed with a 1 in 50 dilution of sera raised against FP 2 .1/GST 
(lane 1) or non-recombinant GST (lane 2). The position o f  the 15 kDa antigen is marked 
with an arrow.
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in both the adult worm (Figure 7.9 (A)) and the schistosome egg (Figure 7.9 (B)).

7.3 DISCUSSION
Two clones (clones 2.1 and 1.3) isolated from the sporocyst cDNA library were shown 

by antibody select methods to encode a 15 kDa antigen present within the aqueous phase 
of a TX-114 extract of MS. This antigen was confirmed as being the same as that encoded 

by a third clone (clone 15V) which was isolated by Francis (1989) upon screening of the 

same cDNA library.
The exclusion of the 15 kDa molecule from the detergent phase of a TX-114 extract 

of MS demonstrates that this antigen is not integral to the membrane and hence suggests 

either an intracellular location or an extrinsic / peripheral association with the parasite 

surface (Towler et al., 1988). That the 15 kDa antigen shows some homology to a family 

of EF hand bearing intracellular calcium binding proteins (see below) indicates that 

perhaps the former is more likely. Despite their location a number of intracellular 
enzymes and muscle components are found amongst the most promising of the vaccine 

candidate antigens thus far described (e.g. GST, paramyosin, TPI). In some cases (e.g. 

TPI) the molecule is believed to be located adjacent to the surface membrane, for 
example, within the cells o f the tegument and to become transiently exposed upon the 

surface of the parasite during the process of transformation (Ham et al., 1992). In other 

cases (e.g. GST) the antigen has been shown to be amongst a highly immunogenic group 

of molecules released from the surface of the parasite (Capron et al., 1987). EF hand 

intracellular calcium binding proteins such as the calmodulin homologue Sm20, have 

already been observed in cells within the tegument of the schistosomula (Havercroft et 

al., 1990). Thus, a similar location and hence release or transient surface expression of 

the intracellular 15 kDa antigen described here seems possible.

The 15 kDa antigen is o f particular interest as the recombinant peptide expressed by 

clone 2.1 (FP 2.1/8-gal) was recognised predominantly by sera from animals vaccinated 

with irradiated cercariae. However, FP 2.1/B-gal was not seen by VRatS which is 

passively protective nor by sera from vaccinated C57B1/10 mice which develop high levels 

of protection. The absence of recognition by VMS(C57) could be attributed to a 

genetically restricted (H-2) inability of this particular strain of mouse to recognise the 15 

kDa antigen. The studies o f Richter and Ham (1993) and Richter et al., (1993) have 

demonstrated that a different pattern of antigen recognition develops in CBA and
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C57B1/10 mice following vaccination with irradiated cercariae. For example, the 

recognition of a recombinant form of paramyosin was shown to be largely restricted to 

VMS raised in CBA mice, an observation which has been confirmed by the studies 

carried out here (see Figure 7.1). Alternatively, it is possible that VMS(C57) and VRatS 

recognise epitopes present on the native 15 kDa molecule which were not expressed by 
FP 2.1/B-gal. Attempts to determine here whether VMS(C57) and VRatS recognise the 

native 15 kDa antigen on Western blots were unsuccessful as the large number of low 

molecular weight antigens seen by these sera ensured that it was impossible to determine 
definitively whether the 15 kDa molecule was amongst them (data not shown). The 

vaccine dominant nature of the 15 kDa antigen is somewhat surprising as the molecule 

is present in the egg and the adult as well as in the schistosomula stages o f  the parasite. 

This suggests that the 15 kDa antigen may be immunogenic only upon death of the 

irradiated schistosomula in the lungs, or that the restricted recognition o f  the molecule 

may arise as a direct result of structural changes which occur during the irradiation 

process itself. Radiation damage to the glycocalyx has been shown to allow normally 

unexposed molecules to be made available on the surface of the parasite (see Chapter 4). 

Furthermore, irradiation inhibits protein and glycoprotein synthesis and it has been 

observed that some secretory molecules may be considerably altered and more easily 

processed following such treatment (Kusel et al., 1989).

Having identified the 15 kDa molecule as a vaccine dominant antigen, sequence data 

was obtained for the cDNA inserts of clones 15V, 2.1 and 1.3. The large size of the 

cDNA encoded by clone 1.3 fostered hopes that it may represent the full length gene 

encoding the 15 kDa antigen. However, analysis of the sequence data obtained indicated 

that all three clones lacked the 5' end o f the coding region. More surprisingly, all three 

clones were shown to have identical 5' termini. It is possible that this could have arisen 

via the cleavage of an internal EcoR I site within the gene encoding the 15 kDa antigen 

which has enabled cDNAs to be ligated to Agtl 1 without the addition of EcoR  I linkers. 

Such an internal site should have been protected by methylation and as none of the clones 

thus far isolated from this library have been definitively shown to possess an insert 

cleaved at an internal EcoR I site it is not possible to conclude that th is process was 

inefficient. However, the EcoR I linkers used during the construction of the cDNA 

sporocyst library do possess a cysteine residue 3' to the EcoR I cloning site (i.e. 

GAATTCQ- Hence if ligation had occurred between the A-gt 11 vector and an EcoR I cut
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linker attached to the 5' end of the synthesised cDNA, a sequence of GAATTCC would 

be expected a the junction of Agtl 1 and the 5' end of the cDNA inserts of clones 15V,

2.1 and 1.3. The GAATTC sequence which was seen at the junction of A.gtl 1 and the 5' 
end of the cDNAs encoded by these three clones therefore suggests that ligation has 

occurred between the vector DNA and a EcoR I cut internal restriction site situated 

towards the 5' end of the gene encoding the 15 kDa antigen. It also became apparent on 

sequencing clones 15V and 1.3 that as with clone 18.5 (see Chapter 6) an EcoR I site was 

not present at the junction between the 3' termini of the encoded cDNAs and A.gtl 1. Other 

clones selected from this library have also been shown to lack such a site (Dr Q. Bickle, 

personal communication). The most likely explanation for this occurrence is that during 

the construction of the cDNA library EcoR I linkers were not ligated to the ends of a 

number o f  synthesised cDNAs. In view o f the presence of an EcoR I site at the junction 
of the vector and the 5' end of the cDNA inserts of a number of isolated clones, it was 

initially assumed that this applied only to the 3' termini. However, if as suggested above 

the cleavage of an internal EcoR I site has resulted in the formation of 5' EcoR I cut ends 

it is possible that linkers have not been ligated to either end of some cDNAs. This could 

be due to an inability of the T4 DNA polymerase used to fill in the ragged ends of the 

synthesised cDNA and thus produce blunt ends to which the linkers can ligate. 

Alternatively linkers may not have been added due to an inefficiency in the ligation 

reaction itself. Despite the absence of 3' EcoR I cut linkers the cDNAs encoded by clones 

1.3, 15V and 18.5 have ligated to the A.gtl 1 vector. Analysis of the data obtained here 

revealed that in each case this ligation had taken place between 3' cDNA sequence which 

was represented by a string of adenosine residues and A.gtl 1 sequence represented by the 

EcoR I cut end from which the 5' sequence A ATT had been removed. The removal of 

these residues from the EcoR I cut end of the M13 vector had already been seen to enable 

the subcloning of the 18.5 PCR product (see Chapter 6) and may he a consequence of 

exonuclease activity in one of the solutions used either for EcoR 1 restriction or ligation. 

The results obtained here suggest that, similarly ’nibbled’ A.gtl 1 DNA has a particular 
ability to join via a blunt ended ligation to cDNAs ending in a 3' string of adenosine 

residues.
Although all three of the clones encoding the 15 kDa antigen had identical 5' termini 

the 3' terminus of clone 1.3 was seen to differ from that of clone 15V. This was not 

unexpected in view of the large size of the 1.3 cDNA insert and suggested that this insert
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may represent either a concatemer of cDNAs, which starts with that encoded by clones

2.1 and 15V, or the cDNA encoded by clone 15V plus 3' untranslated cDNA which is 

absent from the shorter clones. The latter is not inconsistent with the observation that the 
3' end of the 15V sequence did not contain a polyadenylation signal upstream of the 

terminal adenosines which might therefore be upstream of the true Poly(A) tail. However, 

if the cDNA encoded by clone 1.3 does represent the product of a single 15V gene it 

would include an untranslated region of approximately 1.3 kb. Moreover, the absence of 

a polyadenylation signal at the 3' end of the cDNA encoded by clone 1.3 also suggested 
that the string of adenosines at the 3' end of this clone did not represent a Poly(A) tail. 

It should however be noted that whilst most characterised S. mansoni cDNAs have been 

reported to have the AATAA signal upstream of the Poly (A) tail, exceptions to the rule 

are common (Wright et al., 1990, Laclette et al., 1991). Alternatively, if the cDNA 

insert encoded by clone 1.3 represents a concatemer o f cDNAs joined via the ligation of 
EcoR 1 cut ends, it should be susceptible to EcoR 1 digestion. The PCR product from 

clone 1.3 was not susceptible to such cleavage (data not shown). However, as a number 

of clones isolated from the cDNA sporocyst library have been shown to contain cDNA 

inserts which lack a 3' EcoR I site it seems possible that some non-conventional ligation 

of cDNAs may have occurred and resulted in the formation of concatemers which are 

resistant to EcoR I digestion. Northern blotting could be used to establish the size o f the 

mRNA representing the gene partially encoded by clone 15V and hence determine the 

length of the untranslated regions and the likelihood o f  clone 1.3 encoding the product 
of a single gene. However, this was not a priority in the present studies as attention was 

focused instead upon obtaining data for the 5' end o f the coding region of the gene. 

Attempts to use a 15V specific 5' oligonucleotide and the A.gtll forward primer for 

amplifying DNA encoding this region from the cDNA sporocyst library were unsuccessful 

and resulted in the amplification and subcloning of a single band which proved to be the 
PCR primers. The absence of other PCR products suggested that the cDNA encoding the 

5' region of the 15V gene is not present within the cDNA sporocyst library. This could 

be a consequence of the cleavage of an internal EcoR I site following inefficient 

methylation of the cDNA used in its construction. A similar experiment using the above 

primers to amplify DNA within an adult cDNA library did however result in the 

production of several bands of various sizes. As a consequence of problems encountered 

during attempts to purify these weak, diffuse bands, further work was not carried out on
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these PCR products here. However, were further attempts to obtain the complete sequence 

of the gene encoding the IS kDa antigen to be made, purification, subcloning and 

sequencing of these PCR products may prove successful.
Despite the absence of data for the 5' end of the coding region of the gene encoding 

the 15 kDa antigen, sequence representing 393 nucleotides and hence 82 amino acids was 

obtained. This was used to search the Swissprot computer database whereby it was 

revealed that the 15 kDa antigen shared some homology with members of a family of 

calcium binding proteins (CaBPs). CaBPs regulate the levels of systemic and intracellular 
Ca2* and thereby control processes as diverse as muscle contraction, enzyme activation 

and exocytosis. They can be broadly separated into two groups; the transmembrane 

calcium transporters and the intracellular calcium binding proteins (Stewart et al., 1992). 

The latter includes those possessing a calcium binding domain known as an EF hand, with 

which the 15 kDa antigen has some homology. Within this particular group of CaBPs a 

further functional distinction can be made. The regulatory EF hand CaBPs such as 
troponin C and calmodulin, undergo a change in conformation on binding calcium which 

enables them to interact with particular molecules or enzymes often in specific cellular 

compartments. This leads to the generation of a specific action, for example, muscle 

contraction in the case of troponin C. In contrast, the second functional group of EF hand 

CaBPs act as physiological Ca2' buffers and thus play a role in modulating the level of 

intracellular Ca2' One such molecule is parvalbumin, a protein located primarily in fast 
twitch muscles. Following relaxation of the muscle parvalbumin functions by binding the 

Ca2' released by other CaBPs such as troponin C and thus preventing the immediate re­

initiation of muscle contraction (Strynadka and James, 1989). It is with parvalbumin that 

the 15 kDa antigen shares the greatest degree of homology. A number of CaBPs 

possessing EF hands have already been described in S. mansoni. These include a 20 kDa 

antigen with homology to calmodulin which is located in the muscle cells of all stages of 

the parasite (Havercroft et al., 1990, Stewart et al., 1992); an antigen of approximately 
60 kDa which has homology to calpain and is located in the sporocyst and adult stages 

(Andresen et al., 1991); a 9 kDa antigen, also with homology to calmodulin which is 

transiently expressed in cercariae and early schistosomula (Ram et al., 1989) and a 16 

kDa antigen, again with homology to calmodulin, which is found only in the schistosome 

egg (Moser et al., 1992). A number of CaBPs have also been identified in the envelope 

and apical membrane of the adult worm (Siddiqui et al., 1991) however these have not
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yet been characterised and it is not known if they possess an EF hand motif.

The motif known as the EF hand is in fact a structure which consists of a twelve 

amino acid loop surrounded by two, twelve residue a  helices. In almost all CaBPs this 

motif occurs in pairs which are separated by only five to ten amino acid residues. 

Typically the loops of these paired domains interact via anti-parallel 6 sheet hydrogen 

bonds to form the bottom o f a "cup" like structure, the sides of which are formed by the 

four amphipathic a  helices. A Ca2* ion binds to each loop via seven oxygen ligands, six 

of which are provided by the side chains of five amino acid residues within the loop (X, 
Y, -Y, Z, -Z, see Figure 7.3) and the seventh by an associated water molecule (-X). 

Other residues present within the loop stabilise its structure via the formation of hydrogen 

bonds (Strynadka and James, 1989). Thus, in order to form an EF hand, particular 

residues are required at specific positions within a putative Ca2* binding domain (CaBD) 

and a consensus sequence which indicates these residues has therefore been derived (Ram 

et al., 1989). Comparison of this consensus sequence with the sequence for the putative 
calcium binding domains o f the 15 kDa antigen demonstrated that some differences were 

apparent. However, as it has been shown previously that many CaBPs function despite 

incomplete identity with the consensus sequence, the ability of both the native 15 kDa 
antigen and the recombinant protein (F.P 2.1/GST) to bind radiolabelled calcium was 

examined experimentally. The results obtained demonstrated that the 15 kDa antigen was 

non-functional as a CaBP. It seems most probable that the failure of the first putative 

calcium binding domain (pCaBDI) (amino acids 18 - 45) of the 15 kDa molecule to  bind 

calcium is a consequence o f the substitution by arginine of the invariant glycine residue 

at position six within its loop structure. This glycine residue normally assists the peptide 

chain to make a 90° turn and thus ensures that the remaining Ca2* ligands are in 

coordinating positions. Although replacement of this residue has been observed in the loop 

of the functional intestinal CaBP (Strynadka and James, 1989) two additional amino acids 

are also present in the early part of this loop which enable it to turn instead at an 

asparagine residue at position 8. pCaBDI of the 15 kDa antigen does not have these extra 
amino acids present in the early part of its loop nor the asparagine residue at position 8. 

It is therefore unlikely that this loop turns despite the absence of the central glycine 

residue. A substitution o f this central glycine has also been described for a 21 .7  kDa 

putative CaBP encoded by another clone isolated from the cDNA library screened here. 

Computer modelling of the structure of this antigen predicted that the presence o f  a side
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chain on the non-glycine residue at position 6 of its putative calcium binding domain 

disrupted the structure of the loop and thus prevented the binding of calcium (Francis and 

Bickle, 1992). Although calcium binding domains are almost always paired, in many 
cases only one of the pair is required to be functional for the protein to bind some 

calcium (Andresen et al., 1991, Stewart et al., 1992). Thus, it might have been expected 

that binding of calcium to the 15 kDa antigen would have occurred via the second 

putative calcium domain (pCaBDII, amino acids 54 - 81) which, unlike the first, 

incorporates a loop which showed complete accordance with the consensus sequence. 

However, as stated above the 15 kDa antigen failed to bind any calcium at all thus 

suggesting that pCaBDII was also non-functional. The inability of pCaBDII to bind 

calcium may be a consequence o f  its close proximity to pCaBDI. As described earlier the 

deviations from the consensus sequence which are seen in the loop of pCaBDI are likely 

to result in an alteration in the overall structure of this region. Hence the conformation 

and the calcium binding ability o f  the closely associated pCaBDII may also be effected. 
Alternatively, the deviations from the consensus sequence within the helices of both 

putative calcium binding domains may play a role in their lack of Ca2* binding. Both 

helices of pCaBDII and the C-terminal helix of pCaBDI are imperfect in that polar 

tyrosines are present in some of the positions which ideally require a hydrophobic residue. 

Many CaBPs, including some o f  those cloned from S. mansoni, have been observed to 

function despite similar alterations. However, the use of the PC/Gene sequence analysis 

programme to predict the secondary structure of the 15 kDa antigen demonstrated that 
here such substitutions had resulted in a drastic shortening o f the C-terminal helix of 

pCaBDI and the N-terminal helix of pCaBDII. Moreover, the C-terminal "helix" of 

pCaBDII was represented by a completely extended conformation which may well 

contribute to the inability of the 15 kDa antigen to bind calcium. Despite the failure of 

the 15 kDa antigen to bind calcium, it seems likely that the molecule evolved from an 

ancestral protein which contained functional EF hand binding domains. Mutation of a 

single nucleotide could have led to the replacement of the glycine residue usually seen at 

loop position 6 with the arginine residue observed. Similarly the tyrosine residues 

responsible for the absence of a  helical conformation could have arisen from a single 

mutation of hydrophobic residues such as aspartate and phenylalanine. Thus, in addition 

to the 21.7 kDa antigen described by Francis and Bickle (1992), the 15 kDa antigen 

described here has been shown to  represent a non-functional EF hand containing protein.
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The reasons fo r the apparent loss of function of these putative CaBPs encoded by the 

sporocyst cDNA are unknown, as is the current function of these molecules within the 

parasite.
In order to  obtain antigen for assessing the protective potential of the 15 kDa antigen, 

a blunt ended PCR product from clone 2.1 was subcloned into the TA vector, excised 

with EcoR I and subcloned into pGEX. Of the five recombinant clones produced, only 

one expressed a fusion protein o f 36 kDa (FP 2.1 /GST). This represented the 26 kDa S. 

japonicum G ST fused to a 10 kDa peptide (P 2.1). As judged by the probing of Western 

blots with VRabS removal of GST from FP 2.1/GST via cleavage with thrombin resulted 

in a substantial decrease in the antigenicity of P 2.1. Thus, uncleaved FP 2.1/GST was 

used to immunise a group of 8 Balb/c mice and a group of mice immunised with non­

recombinant GST were included in addition to the normal adjuvant alone control. Despite 

the recognition of Western blotted, parasite derived 15 kDa antigen by sera raised in mice 

immunised with FP 2.1/GST, no significant protection against a challenge infection was 
observed. Comparison of the average worm burden of the group immunised with non- 

recombinant GST to that of mice immunised with adjuvant alone also demonstrated that, 

as expected, immunisation with S. japonicum GST did not protect mice against a S. 

mansoni challenge infection. Analysis of individual sera taken from mice immunised with 

FP 2 .1/GST did demonstrate that some of the mice did not produce a detectable antibody 

response against the 15 kDa antigen. Furthermore, sera taken from those mice which did 

recognise the 15 kDa molecule gave a signal which was weak even when a 1 : 50 dilution 

of sera was used. Thus, it is possible that a low antibody titre could contribute to the lack 

of protection seen in the FP 2 .1/GST immunised mice. However, this explanation seems 

unlikely as comparison of the protection data with the blots probed with sera from 
individual mice demonstrated that those mice giving the strongest antibody response 

following immunisation were amongst those with the higher worm burdens. Alternatively, 

the lack of protection observed could be a consequence of the recognition of inappropriate 

epitopes on the native molecule or of the production of antibodies of an inappropriate 

isotype. It is therefore difficult to conclude definitively that a protective response can not 
be obtained on immunisation with the 15 kDa antigen and the use of a different route of 

immunisation or of a different adjuvant could be considered. However, the results 

obtained here do suggest that despite its vaccine dominant nature, the 15 kDa molecule 

has no potential as a vaccine candidate antigen.
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Finally, it seems unlikely that the 15 kDa antigen described here (and by Francis 

(1989)) represents any previously described molecule. A 15 kDa vaccine dominant antigen 

was observed by Simpson et al., (1983a) amongst a detergent extract of 125I labelled 

schistosomular antigens. However, this molecule appeared to be expressed on the surface 

of the schistosomula and was larval specific (Omer Ali et al., 1989). Similarly, a vaccine 

dominant 15 kDa antigen was described amongst the antigens present in radiolabelled 

tegumental membranes of the adult worm (Simpson et al., 1989). This antigen was shown 

to separate into the detergent phase of a TX-114 extract of homogenised worms and is 

therefore unlikely to represent the 15 kDa antigen seen here to  be extracted by aqueous 

buffers. Lastly, a 15 kDa antigen has been described amongst the molecules of the 

schistosome glycocalyx (Dalton et al., 1987b). This is lost on transformation of the 

cercariae and hence was not present within latter stages of the life cycle.
Thus, it appears that the 15 kDa vaccine dominant antigen detailed here represents 

a previously undescribed antigen which although non functional is homologous to 

members of the EF hand calcium binding proteins.
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8.1 GENERAL DISCUSSION
Despite the success of a number of nationally organised integrated control 

programmes, the overall global estimate o f the number of people infected with 
schistosomes has not decreased within the past decade. It has therefore been accepted that 

new methods of controlling this important helminthic disease are required and much of 
recent research has focused upon attempts to develop a suitable vaccine. The feasibility 

of achieving this aim is supported by the demonstration that protective immunity can be 

stimulated in a range of animal models following immunisation with radiation attenuated 
parasites (reviewed by Taylor, 1994). Moreover, there is an ever increasing body of 

evidence to suggest that immunity develops, albeit slowly, in naturally infected humans 

(Butterworth et al., 1984, 1985, Wilkins et a l., 1984).

A wide variety of strategies have been employed with the aim of identifying 
molecules suitable for incorporation within a vaccine against schistosomiasis. As a result 

a number of promising vaccine candidate antigens have been identified. These include 
both intracellular and surface molecules, cross reactive and species specific molecules and 

molecules which are located on particular, or on all stages of the parasite. Studies in 

rodents and in non-human primates have demonstrated that a number of these antigens are 
able to stimulate protective immunity either in their native form and / or as recombinant 

molecules (Ham et al., 1987b, Balloul et a l. , 1987a, 1987c, Pearce era/., 1988, Soisson 

et al., 1992). However, many fail to stimulate levels of resistance equal to those obtained 

following immunisation with irradiated parasites and as yet none have been considered 

suitable for use in human trials. Thus, the search for vaccine candidate antigens continues.

The higher levels of resistance observed following vaccination with irradiated 

parasites as opposed to a non-attenuated infection indicate that the identification of vaccine 

dominant molecules may be a valid approach towards the selection of putative vaccine 

candidate antigens. Such molecules can be defined as those recognised by sera raised in 

animals vaccinated with irradiated parasites but not by sera raised in animals harbouring 

a chronic (CIS) or a single sex infection (SSS). This strategy does have its limitations, 

as some defined antigens which are recognised by CIS and SSS as well as by sera from 
vaccinated animals (e.g. the 38 kDa surface glycoprotein ), have previously been shown 

to stimulate protective immunity when presented in the absence of the inappropriate 
responses which are generated against them in chronically infected mice. However,
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schistosomes are complex organisms and when searching for vaccine candidate antigens 

it is necessary to employ some sort of criterion aimed at decreasing the number of 

molecules upon which further studies are performed. The isolation of vaccine dominant 
antigens has been used successfully to identify the 200 kDa schistosome myosin protein 

which is perhaps the most promising of the newer vaccine candidate molecules (Dalton 

and Strand, 1987, Soisson et ill., 1992, Soisson el al., 1993). The 16 kDa and 15 kDa 

antigens which are the focus of the research described here are also vaccine dominant.

The 16 kDa antigen which was originally identified as the target antigen of the 

protective McAb, M7B3A (Bickle et al., 1986) is present upon the surface of the early 

schistosomula and is the major antigen recognised following the probing of Western blots 

of cercarial and MS antigens with VRabS. It is not, however, found amongst soluble egg 

antigens nor is it labelled following the probing of cross-sections of adult worms with 

B3A (Dr. Q. Bickle, personal communication). Although highly immunogenic in the 
context of the irradiated vaccine, the 16 kDa molecule is of low abundance in both MS 

and cercariae (Bickle et a l., 1986, Chapter 3). This has proved a limiting factor 

throughout the course of this project although initial studies were aimed at counteracting 

this problem by optimising the techniques used for obtaining and purifying the 16 kDa 

antigen. Previous studies had demonstrated the 16 kDa antigen to be an integral 

membrane molecule requiring detergent for extraction. Here extraction o f almost all of 
the available antigen was achieved by incubation of the Tris insoluble fraction of sonicated 

MS with the non-ionic detergent OTG. Removal of the soluble antigens prior to detergent 

extraction also provided a significant initial enrichment for the 16 kDa antigen and this 

protocol was therefore used routinely for large scale preparations. A resistance to 

extraction with low CMC detergents (e.g. Triton / NP40) coupled with a susceptibility 
to extraction by some detergents with a high CMC (e.g. M EGA-10, OTG) was also noted 

during the performance of experiments aimed at optimising the extraction protocol. This 

suggested that the 16 kDa antigen may he held within the surface membrane via a GPI 
linkage (Hooper and Turner, 1988, Hooper and Bashir, 1991), although the resistance of 

the molecule to extraction with other high CMC detergents (e.g . DOC, CHAPS) and to 

cleavage with the GPI specific enzyme P1PLC (Dr. Q. Bickle, personal communication) 

contradicLs this suggestion. It therefore seems more likely that the requirement for strong 

detergents may be due to the 16 kDa antigen being somehow linked to internal elements 

of the parasite. However, clones should not be discounted from putatively encoding the
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16 kDa antigen solely on the basis of their lacking a region of hydrophobic peptide 

sequence suitable for spanning the lipid bilayer.

The extent to which the 16 kDa antigen was able to be purified following McAb 
affinity purification was disappointing, as a number of contaminating molecules were 

observed within the fractions containing the majority of the 16 kDa molecule. It was also 
hoped that lectin affinity chromatography may have provided a useful additional 

purification step as the 16 kDa antigen was the only molecule recognised by PNA when 

biotinylated lectin was used to probe Western blots of MS antigens. The specificity of the 

binding of the biotinylated lectin to the 16 kDa molecule was demonstrated by the 

inclusion of lactose during probing of the Western blots. Moreover, the signal was not 

negated by the addition of the weaker inhibitor galactose, thus suggesting that the 

interaction between PNA and the 16 kDa antigen was of a fairly high affinity. The latter 

proved however to be problematic as following the passage of the immunoaffinity purified 
16 kDa antigen down a column of PNA agarose coated beads, the multivalent interactions 

between the beads and the 16 kDa antigen were so strong as to be irreversible. The high 

affinity o f this interaction is somewhat surprising as subsequent analysis of the results of 

Nyame et al (1987, 1988a, 1988b, 1989) coupled with the observations made here 
regarding the absence of the O-linked disaccharide Gal B (1-3) GalNAc, suggested that 

PNA binds to the 16 kDa antigen via recognition of the monosaccharide B-galactose. 

Although PNA binds to this simple sugar, it does so with a low affinity and hence it is 

surprising that the 16 kDa antigen was not able to be eluted from the PNA agarose 

column.
Although complete purification of the 16 kDa antigen was not obtained, substantial 

enrichment was achieved. Whereas the molecule had previously been observed only on 

probing Western blots with antisera, it was seen here by Coomassie blue and silver 

staining to be the major component of the best column eluates. It should also be noted 

that the 16 kDa antigen was shown to be a glycoprotein and as glycosylated molecules are 

often poorly stained with Coomassie blue and silver nitrate, the actual amount of antigen 
obtained may have been greater than estimated. Staining of gels with the carbohydrate 

specific Periodic acid Schiff reagent was considered. However, this method would not 

have provided any additional information regarding the amount of 16 kDa antigen 

obtained, as the levels of staining observed with this reagent cannot be quantified unless 

it is known exactly to what extent an antigen is glycosylated.
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Although some contaminating molecules were observed, the 16 kDa antigen was the 

major component of several column eluates. On consideration of this, the failure of other 

techniques to enhance the purity o f the immunoaffinity purified 16 kDa molecule, and the 

relative lack of larval material available to continue investigating the potential of other 

purification methods, it was decided to use the immunoaffinity column eluates for the 
immunisation of mice. Several different adjuvants were used in conjunction with the 16 

kDa antigen and although none of the immunisation protocols induced high levels of 

protection, some resistance was seen following immunisation with the 16 kDa antigen 

incorporated into ISCOMs and with the antigen plus novasomes. In the case of the latter 

the reduction obtained was statistically significant, a feature which was of particular 

interest, as in addition to providing the highest level o f protection, this protocol also 
induced an immune response which differed from that seen following immunisation with 

the antigen plus other adjuvants. Firstly, an IgGl type response was observed in addition 
to the predominant IgG2a response which was seen following all immunisation protocols. 

Secondly, periodate insensitive epitopes of the 16 kDa antigen were recognised by 

NOV(S) as opposed to periodate sensitive carbohydrate entities. These results suggested 
that the recognition of peptide epitopes by antibodies of the subclass IgGl may be 

important for the generation of immunity at least in this model.

It could be argued that the low but significant levels o f immunity generated following 

immunisation with the 16 kDa antigen plus novasomes are also encouraging as they were 

observed despite the poor antibody titres obtained. A 1 in 500 dilution of NOV(S) was 

required for the recognition of affinity purified 16 kDa antigen on Western blots. The 

importance of antibody titre to specific larval surface antigens in immunity to S. mansoni 

has been strongly suggested by the extremely close correlation between immunity and 

antibody levels to the 200 kDa vaccine candidate antigen in baboons vaccinated with 

irradiated cercariae or the purified recombinant antigen (Soisson et al., 1993, section 

1.9.2.3(a)). Moreover, a tendency towards lower worm burdens was observed in mice 

which had higher anti-16 kDa antibody titres following immunisation with the purified 

antigen plus novasomes. It is therefore possible that increasing the antibody titres against 

the 16 kDa antigen may generate a higher level o f resistance and were further 

immunisations to be carried out it would be important to examine various ways of 
achieving this aim. These should include increasing the amounts of antigen used for each 

immunisation and / or altering the timing and frequency of injections. It would also be
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of interest to examine the protective potential of the 16 kDa antigen in other animals. 

Immunisation of rats with the molecule in conjunction with various adjuvants is perhaps 

the most obvious choice as rats generate high levels of protection following vaccination 

with radiation attenuated parasites. Moreover, protective immunity in the rat is clearly 

dependent upon antibody mediated mechanisms and is believed to be based upon the 
generation of ADCC type reactions which could involve IgG l. This animal may therefore 

be a particularly good model for the generation of protection following immunisation with 

the 16 kDa antigen plus novasomes.
The possibility of trying various immunisation protocols with the 16 kDa antigen is 

however limited by the small amounts of immunoaffinity purified 16 kDa antigen which 

are available. It therefore seems likely that any further immunisation studies would need 
to be deferred until an alternative immunogen could be developed. In this regard, attempts 

were made here to identify a clone encoding the 16 kDa antigen, a procedure which could 

enable the peptide component o f the antigen to be sequenced and produced in substantial 

quantities either as a recombinant or synthetic molecule. That the 16 kDa molecule 

incorporates a peptide component was confirmed by its susceptibility to proteases, that 
this peptide component would be suitably immunogenic is suggested by the demonstration 

that NOV(S) and more importantly passively protective VRabS, recognised epitopes of 

a periodate insensitive nature. Here approximately 160,000 recombinant clones from a 
sporocyst cDNA library were screened using antibodies eluted from the 16 kDa region 

of Western blots incubated with VRabS. No clones encoding the 16 kDa antigen were 

isolated. Previous attempts to isolate clones encoding vaccine dominant antigens by 

screening both the amplified and unamplified cDNA library with VRabS have also failed 

to isolate clones encoding the 16 kDa antigen (Francis, 1989, Dr.Q. Bickle, personal 

communication). Thus, in total approximately 220,000 recombinant clones have been 

screened without success. There are a number of possible explanations as to why cDNA 

encoding a particular antigen may be under represented in a good cDNA library (see 

Chapter 7). However, a further possibility which came to light as the result of the 

experiments carried out here was that internal EcoR I sites may not have been methylated 

and hence protected from cleavage during the construction of the cDNA sporocyst library. 
Thus, cleavage of cDNAs encoding the 16 kDa antigen could have occurred and negated 

the expression of a significant proportion of the molecule and / or prevented the 

expression of epitopes capable o f binding the antibodies used for screening. Were further
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screening to be carried out with the aim of isolating clones encoding the 16 kDa antigen 

it may therefore be necessary to utilise a different cDNA library.

A second way of obtaining sequence data for a peptide molecule is to carry out gas 
phase N-terminal amino acid sequencing. This is a sensitive method which enables the 

sequence of up to 50 amino acids at the amino terminal o f a peptide to be determined. By 
sequencing a number of different peptide fragments it is possible to determine the whole 

sequence of a protein using this method. Alternatively, the data obtained for the N- 

terminus of the protein can be used to design a probe which is then used to detect cloned 
DNA encoding the whole molecule. Attempts to sequence the 16 kDa antigen in this 

manner failed, most probably as a consequence of the molecule being N-terminally 

blocked. An N-terminal block can be induced by impure reagents used in purification 

procedures. However, as special care was taken with regard to the purity o f the reagents 

used for the preparation o f the 16 kDa antigen it seems more likely that the N-terminus 

of this molecule is blocked by a naturally occurring blocking group. Such groups include 

the fatty acids myristate and palmitate which may also be involved in anchoring molecules 

within the plasma membrane (Aitken et al., 1982, Ozols et al., 1984). If a molecule is 

N-terminally blocked amino acid sequencing can only be performed following cleavage 

of the protein component with enzymes such as trypsin, or with cyanogen bromide. The 

smaller peptides obtained are then isolated using high performance liquid chromatography 

(HPLC) and sequenced. This procedure was not attempted here as it requires very pure 

antigen. Thus, the immunoaffinity column eluates were unsuitable for this purpose and 

antigen additionally purified by SDS PAGE and transferred to ProBlott can not be cleaved 

by trypsin or cyanogen bromide.

The production of recombinant or synthetic peptides is only one o f a number of 

methods which may be used to obtain antigen for immunisation. An alternative way is via 

the generation of anti-idiotype antibodies. The use o f this method to provide an 

immunising preparation is particularly attractive with regard to the 16 kDa antigen, as it 

provides the possibility o f raising an immune response against carbohydrate epitopes. 
Such epitopes can not be produced using conventional recombinant technology and at least 

one such epitope, namely that which is recognised by the passively protective McAb, 
B3A, appears to be a suitable target for antibody mediated protection. Alternatively the 

McAb could be used to screen peptide libraries in order to detect mimeotopes.

The possible function of the 16 kDa antigen at the larval surface can only be surmised
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at present. In the absence of sequence data it is impossible to determine if there are any 

similarities between the 16 kDa antigen and other previously characterised molecules of 

known function. However, the appearance of this antigen at the larval surface following 

the loss of the glycocalyx and its presence exclusively at the surface of the skin stage 

schistosomula suggests that it may have a role to play in protecting the newly exposed 
surface of the early larval parasite against specific or non-specific immune attack. 

Alternatively, the 16 kDa antigen may have a function which is associated with the 

maturation of the heptalaminate surface membrane or the transport of metabolites and 

other molecules across the host / parasite interface. This would be aided by the O- 

glycosylation described here as occurring within the 16 kDa antigen, as O-glycosylation 

has frequently been shown to extend the length of a short peptide region and hence enable 

the extracellular domain of many glycoproteins to stretch above the cell surface.

Finally, it is important to note that the 16 kDa antigen initially described by Bickle 

et al. (1986) and further characterised as part of this thesis, is unlikely to represent any 
other previously described schistosomula antigen. This seems somewhat surprising in view 

of the large body of work carried out with the aim of identifying surface antigens 

recognised by sera raised in animals vaccinated with irradiated parasites. However, much 

of this work has involved the precipitation of radiolabelled surface antigens with a variety 

of sera and although there is a suggestion that the 16 kDa antigen may be labelled with 

IODOGEN (see Chapter 5) this labelling is not very efficient. The antigen has also failed 
to label with Bolton and Hunter reagent or lactoperoxidase. Furthermore, although the 16 

kDa antigen is a vaccine dominant glycoprotein, the studies carried out here demonstrate 
that it does not bind to Con A and thus would not have been isolated following the 

experiments of Dalton and Strand (1987) which utilised Con A chromatography to isolate 

vaccine dominant glycoproteins.

Clones encoding the 15 kDa antigen described here, were identified during the 

screening of the sporocyst cDNA library with sera specific for low molecular weight 

antigens. Although this screening was initially performed in the hope o f identifying clones 

encoding the 16 kDa antigen, work was continued upon the 15 kDa molecule, as the 
recombinant protein expressed by clones encoding this antigen was shown to be vaccine 

dominant.

The 15 kDa antigen differs significantly from the 16 kDa antigen in that it is a soluble
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protein which is seen in all stages of the life cycle. Thus, it seems most likely that this 

antigen represents an intracellular protein which may be presented to the immune system 

following its release from the parasite. That the antigen is present in the latter stages of 
the parasite yet is not recognised by CIS nor by SSS indicates that the molecule is not 

presented to the immune system during the course of a normal infection whereas its 

release is enhanced following the death of the irradiated larvae in the lungs. Alternatively 

the antigenicity of this molecule may be altered by the irradiation process itself.

The 15 kDa antigen was shown by sequencing of the clones obtained to have some 
homology to a group of EF hand bearing intracellular calcium binding proteins. This 

homology was limited to two regions of the 15 kDa molecule which had similarities to 

the calcium binding domains (CaBD) of these proteins. Comparison of the partial 

sequence obtained for the 15 kDa antigen with an EF hand test motif did, however, 

indicate that the putative CaBDs of the 15 kDa molecule lacked residues essential for the 

formation of the loop and helical regions which make up this structure. This was also 

indicated by the demonstration that both the recombinant and native 15 kDa antigen failed 

to bind radiolabelled calcium. In this respect the 15 kDa antigen is similar to a 21.7 kDa 

vaccine dominant antigen which was identified by Francis and Bickle (1992) following 

the isolation of clones from the cDNA library used here. The question remains as to 

whether these antigens represent molecules which at some time functioned as calcium 

binding proteins and also as to what their function might now be.

Despite the generation of sera which recognised both the native and recombinant 
forms of the 15 kDa antigen, mice immunised with a portion of the 15 kDa antigen 

expressed as a fusion with 5. japonicum  GST, were not protected against an S. mansoni 

challenge infection. Although the antibody response observed by Western blotting was 

ptx>r in all cases, it seems unlikely that attempts to increase this antibody titre would have 

any positive effects upon the development of resistance, as those mice which had the 

highest antibody titre were amongst those with the highest worm burdens. The 15 kDa 

molecule therefore failed to show any promise as a vaccine candidate antigen and no 
further studies were indicated.

Thus, in summary, although the 15 kDa antigen failed to show any promise as a 

vaccine candidate antigen, immunisation of mice with the 16 kDa plus novasomes 

stimulated low but significant levels of immunity. This immunity was observed despite
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the low titre of the antibody generated in response to the 16 kDa antigen and it is 

therefore possible that further experiments employing different immunisation protocols, 

may stimulate higher antibody titres and hence better levels of protection. The paucity and 

partial purity of the immunoaffinity purified antigen available at the present time makes 

such experiments infeasible unless an alternative immunogen can be found. It may be 
possible to meet this aim via the production of a recombinant or synthetic peptide 

molecule or the development of an anti-idiotype vaccine.
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APPENDIX

SOLUTIONS
The following is a list of solutions used frequently. In all cases solutions were 

made up in distilled or double distilled water and sterilised where appropriate by 

autoclaving at 121 °C for 20 minutes.

Borate buffer

(a) Sodium tetraborate

(b) Orthoboric acid

(per litre)

38.lg 

6. lg

Add (a) to (b) to give a buffer of appropriate pH

20 x Phosphate buffered saline (PBS!
(per litre)

NaCl

KC1

NaH2P 04 (anhydrous)

k h 2p o 4

160g

4g
22g

4g

10 x Tftg

Tris

EDTA

Sodium acetate

(per litre)

48.4g 

13.4g 

7.4g

pH to 8.1 with glacial acetic acid

TE

Tris

EDTA

pH to 8.0 with HC1

(per litre)

12.lg 

3.7g
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MEDIA
YT

Yeast extract

Tryptone

NaCl

(per litre)
5.0g

lO.Og

lO.Og

JLB

Tryptone 

Yeast extract 

NaCl 

Glucose

(per litre)

lO.Og

5.0g

15.0g

l.Og

Minimal Agar

Na,HP04

k h 2p o 4

n h 4c i

NaCl

Bacto agar

(per litre)
60.Og 

30.Og 

lO.Og 

5.0g 

15.0g

The solution prepared as above was sterilised by autoclaving and the following added to 

1 L.

1 M MgCl2 1 ml

0.1 M CaCl2 1 ml

1 M thiamine 1 ml

50% glucose 4 ml
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