
Received April 8, 2020, accepted April 22, 2020, date of publication May 4, 2020, date of current version May 19, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2992269

Network Embedding Using Deep Robust
Nonnegative Matrix Factorization
CHAOBO HE 1, HAI LIU2, YONG TANG2, XIANG FEI3, HANCHAO LI 3, AND QIONG ZHANG4
1School of Information Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
2School of Computer Science, South China Normal University, Guangzhou 510631, China
3Department of Computing, Coventry University, Coventry CV15FB, U.K.
4College of Computer Information and Engineering, Nanchang Institute of Technology, Nanchang 330044, China

Corresponding author: Qiong Zhang (qiong.zhang.1@outlook.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61772211, in part by the Humanity and
Social Science Youth Foundation of Ministry of Education of China under Grant 19YJCZH049, in part by the Natural Science Foundation
of Guangdong Province of China under Grant 2019A1515011292, and in part by the Science and Technology Support Program of
Guangzhou City of China under Grant 201905010006, Grant 201807010043, and Grant 201803020033.

ABSTRACT As an effective technique to learn low-dimensional node features in complicated network
environment, network embedding has become a promising research direction in the field of network analysis.
Due to the virtues of better interpretability and flexibility, matrix factorization based methods for network
embedding have received increasing attentions. However, most of them are inadequate to learn more
complicated hierarchical features hidden in complex networks because of their mechanisms of single-layer
factorization structure. Besides, their original feature matrices used for factorization and their robustness
against noises also need to be further improved. To solve these problems, we propose a novel network
embedding method named DRNMF (deep robust nonnegative matrix factorization), which is formed by
multi-layer NMF learning structure. Meanwhile, DRNMF employs the combination of high-order proximity
matrices of the network as the original feature matrix for the factorization. To improve the robustness against
noises, we use `2,1 norm to devise the objective function for the DRNMF network embedding model.
Effective iterative update rules are derived to resolve the model, and the convergence of these rules are
strictly proved. Moreover, we introduce a pre-training strategy to improve the efficiency of convergence.
Extensive experiments on several benchmarks of complex networks demonstrate that our proposed method
DRNMF is effective and has better performance than the state-of-the-art matrix factorization based methods
for network embedding.

INDEX TERMS Network embedding, deep nonnegative matrix factorization, network analysis, complex
networks.

I. INTRODUCTION
The complex networks in real world (e.g., online social
networks, co-authorship networks and hyperlink networks)
often contain much valuable information, which has made
network analysis become a hot research topic. A large number
of researchers have engaged in studying various tasks of
network analysis, such as node classification [1], node clus-
tering [2], link prediction [3], visualization [4], etc. Owing to
the fact that complex networks’ data are very sparse and high
dimensional, these network analysis tasks often suffer from
troubles of high computational cost and low performance.

The associate editor coordinating the review of this manuscript and

approving it for publication was Benyun Shi .

To overcome these problems, network embedding has been
proposed as an effective technique. This technique, also
known as graph embedding or network representation, aims
at learning low-dimensional node feature representations in
the given network, while preserving structural and inherent
properties of the network itself. The representations learnt can
be input into analytical tasks as feature vectors. It has been
proven by many existing works that better network embed-
ding operations are beneficial to improve the performance of
analysis tasks greatly [5]–[7].

As being a promising technical field, network embedding
has attracted numerous endeavors on the studies of algo-
rithms and methodologies. From algorithmic perspective,
the existing methods for network embedding can be roughly

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 85441

https://orcid.org/0000-0002-6651-1175
https://orcid.org/0000-0003-2283-5407
https://orcid.org/0000-0003-2734-3794

C. He et al.: Network Embedding Using DRNMF

summarized into three main categories: deep learning based
methods (e.g., SDNE [8] and DNGR [9]), random walk
based methods (e.g., DeepWalk [10] and Node2vec [11])
and matrix factorization based methods (e.g., M-NMF [12]
and GraRep [13]). The former two categories, especially the
deep learning based ones, seem to have become more and
more popular. Whereas, matrix factorization based methods
have their own distinct advantages: better interpretability,
less or no parameters, better flexibility to incorporate prior
knowledge, etc. In [14], Qiu et al. proved that DeepWalk and
Node2vec could be closely unified into the matrix factoriza-
tion framework. Moreover, in [12] and [13], both M-NMF
and GraRep present great competitiveness by comparing with
other types of methods. All of these have stimulated great
interests from researchers in matrix factorization based net-
work embedding methods.

Recently, some network embedding methods based on
matrix factorization have been proposed with improved per-
formance obtained in different works, but they still suffer
from the following problems:

• Most of the existing methods are with the mechanism
of single-layer mapping from the original network to
the final network embedding space, which limits their
capabilities to learn more complex and useful features
from the network. After all, real-world complex net-
works usually contain considerably complex hierarchi-
cal features, including microscopic node similarities and
macroscopic community structures, which are quite dif-
ficult to be discovered by using shallow methods.

• Simple adjacent matrix of the network is normally used
as the original feature matrix for factorization, neverthe-
less this feature matrix cannot represent enough local
and global structure information of the network, which
also reduces the performance of network embedding to
some extent.

• The actual complex networks generally contain noises,
such as casual followships in online social networks
and unreal links in hyperlink networks, but the squared
Frobenius norm is typically selected to measure the
factorization error in the existing matrix factorization
based network embedding methods, which makes them
not robust enough against noises.

To solve these problems mentioned above and improve the
performance of matrix factorization in network embedding,
a novel embedding method called DRNMF for short is pro-
posed. More specifically, the main work can be summarized
as follows:

• We devise an embedding approach using deep robust
nonnegative matrix factorization (DRNMF), which is
made by multi-layer NMF and the combination of
high-order proximity matrices as being the original
factorization feature matrix. Thus, more informative
and discriminative embedding effects can be obtained,
meanwhile `2,1 norm is applied to construct the objec-
tive function to improve the robustness against noises.

• We develop the effective iterative update rules to opti-
mize DRNMF model and also prove their convergence.
Besides, we introduce the pre-training strategy to expe-
dite their iterative process.

• We evaluate DRNMF model on several benchmark
datasets and different analysis tasks, including node
classification, clustering and visualization. The results
demonstrate that DRNMF is evidently superior over
the state-of-the-art matrix factorization based network
embedding methods.

The rest of this article is organized as follows. A brief
review of related research on NMF, deep NMF (DNMF) and
matrix factorization based network embedding is given in
Section II. In Section III, the proposed network embedding
method DRNMF is presented in detail. Experiments and spe-
cific analysis are reported in Section IV. Finally, conclusions
are given in Section V.

II. RELATED WORK
In this section, we briefly review the related work regarding
nonnegativematrix factorization (NMF), deepNMF (DNMF)
and network embedding based on matrix factorization.

A. NMF AND DNMF
NMF is a popular low-rank matrix decomposition model that
focuses on the analysis of data matrices whose elements are
nonnegative [15]. Mathematically, it can be formulated as:
given a data matrix X = [x1, x2, . . . , xn] ∈ Rm×n

+ composed
of n data samples as columns, each with m features, X can be
approximately decomposed into the product of two matrices
as X ≈ WH, where W = [w1,w2, . . . ,wr] ∈ Rm×r

+ is the
basis matrix, H = [h1,h2, . . . ,hn] ∈ Rr×n

+ is called the
coefficient matrix or the encoding matrix, r � min(m, n),
andR+ denotes the set of nonnegative elements. By applying
nonnegativity constraints on W and H, each data sample
xi can be represented as an additive linear combination of
nonnegative basis vectors, which is xi ≈

∑r
j=1wjhji. NMF

provides more interpretable parts based decompositions than
the other matrix factorization models, because it naturally
complies with human intuition of ‘‘combining parts to form
a whole’’. This characteristic makes NMF widely used in
various representation learning tasks, such as image repre-
sentation [16], [17], microbiome data representation [18], and
even network embedding [12], [19], [20].

NMF is essentially a shallow method, which only contains
single-layer mapping from W to X and H, thus it cannot
reveal more complex hierarchical features hidden in complex
data objects. Inspired by deep learning, DNMF [21] was pro-
posed to solve the problem left by traditional NMF, with prin-
cipal idea as stacking single-layer NMF into l (l > 1) layers,
thereby to obtain hierarchical mappings (W1,W2, . . . ,Wl)
and corresponding features (H1,H2, . . . ,Hl). An intuitive
representation of this hierarchical factorization and the com-
parison between NMF and DNMF are respectively described

85442 VOLUME 8, 2020

C. He et al.: Network Embedding Using DRNMF

FIGURE 1. NMF vs. DNMF.

in Eq. (1) and Fig. 1.

X ≈ W1H1,

H1 ≈ W2H2,

...

Hl−1 ≈ WlHl . (1)

Recently, there have already been some successful exam-
ples about DNMF on learning hierarchical features from
complex data objects. For example, Trigeorgis et al. [21]
used DNMF to automatically learn low-to-high level fea-
ture representations from face data, including pose, expres-
sion and identity features. Each representation level is suit-
able for clustering according to the uncovered corresponding
attributes of data, and similar work can be found in [22].
In [23], Song et al. applied DNMF to document classifica-
tion task and found that the process of hierarchical feature
learning could eventually lead to a better classification per-
formance. All of the above-mentioned works conducted com-
parison analysis among DNMF, NMF and other single-layer
matrix factorizationmethods, and the results demonstrate that
DNMF has stronger feature learning ability, which motivates
us to apply DNMF to network embedding.

It should be noted that those works on DNMF all used
Frobenius norm to construct the objective function, which
were written like ||X−W1W2 . . .WlHl ||

2
F . Noises with large

errors inX are prone to dominate the objective function in the
form of squared errors, which means that DNMF with Frobe-
nius norm is not robust enough against noises. Normally,
using `2,1 norm, robust NMF (RNMF) has been considered
to have better robustness against noises, comparing with the
regular NMF methods based on Frobenius norm. Therefore,
DRNMF is expected to perform better than DNMF, because
of the advantage of `2,1 norm over Frobenius norm, which
will be verified in experiments.

B. NETWORK EMBEDDING BASED ON MATRIX
FACTORIZATION
Owing that our goal is to boost the performance of matrix
factorization for network embedding, here we are only

concerned about matrix factorization based methods.
Detailed information of other types of methods (e.g., deep
learning basedmethods and randomwalk basedmethods) can
be found in some survey papers, such as [24], [25] and [26].
In general, the existing matrix factorization based methods
for network embedding mainly focus on two aspects: feature
matrix construction and dimension reduction, which will be
introduced respectively as follows.

The feature matrix of a given network is actually its orig-
inal high-dimensional representation matrix used for factor-
ization. At early stage, most methods select adjacent matrix
as feature matrix, such as SocioDim (Social dimensions) [27]
and GF (Graph factorization) [28]. However, many recent
literatures have pointed out that high-order proximity matrix
should be better to enhance the performance of network
embedding than adjacent matrix and other low-order prox-
imity matrices, because high-order proximity matrix is able
to convey more local and global structure information, which
is very useful to obtain more informative and discriminative
embeddings. For example, GreRep [13] used k-step proba-
bility transition matrix as the high-order proximity matrix,
and experimental results showed that it performs better than
other methods using first-order or second-order proximity
matrix, such as LINE [29]. In [30], MMDW method further
improved the performance by using the average k-step prob-
ability transition matrix as the high-order proximity matrix.
Similar works can also be found in [31]–[34].

Dimension reduction is used to obtain the final
low-dimensional network representations by factorizing
the original feature matrix. Factorization strategies vary
according to matrix properties. If the obtained feature
matrix is positive semi-definite, one can use SVD (singular
value decomposition) method such as in GraRep [13] and
HOPE [33]. For unstructured feature matrices, one can devise
alternative optimization methods to obtain the embedding,
such as inM-NMF [12],MMDW[30] and TADW[32], which
are generally more efficient than SVD. Due to the complexity
of calculating eigenvalues and eigenvectors, the computing
process of SVD is very time consuming when encountering
large-scale matrices.

Although the aforementioned matrix factorization based
methods have achieved performance improvement at differ-
ent levels, they are all shallow methods and still need to be
improved. Our proposed method DRNMF has multi-layer
factorization structure. Thus, DRNMF is fundamentally dif-
ferent from them. Moreover, to the best of our knowledge,
at present there are still no works about network embedding
using multi-layer matrix factorization.

III. METHODOLOGY
In this section, the proposed method DRNMF is described,
starting from introducing the statement of problem. Then,
DRNMF is presented in detail, including network embed-
ding model, optimization solution, convergence proof and the
embedding algorithm.

VOLUME 8, 2020 85443

C. He et al.: Network Embedding Using DRNMF

FIGURE 2. The framework of DRNMF network embedding model.

A. STATEMENT OF THE PROBLEM
Throughout this paper, matrices are denoted by bold
uppercase letters. For a given matrixX, its i-th column vector,
(i, j)-th element, trace, and Frobenius norm are denoted by
xi, xij, tr(X) and ||A||F , respectively. Meanwhile, the identity
matrix is denoted by I.
Without loss of generality, a given network can be formally

represented as a directed and unweighted graph as G =
(V ,E), where V = {v1, v2, . . . , vn} is the set of n nodes, and
E = {eij|vi ∈ V ∧ vj ∈ V } is the directed edge set. The
adjacent matrix is denoted as A = [aij]n×n. If eij ∈ E , then
aij = 1, else aij = 0. Following the idea presented in [13] and
[29], we define k-order proximity matrix of the network as:

Sk = S · S . . . S︸ ︷︷ ︸
k

, (2)

where S = [sij]n×n is also called as the first-order proximity
matrix with sij =

aij∑n
j=1 aij

.
Thus, the problem of network embedding here can

be formally stated as: given a network G with matrices
S,S2, . . . ,Sk , it is aimed at learning a low-dimensional rep-
resentation matrix H = [h1,h2, . . . ,hn] ∈ Rr×n

+ using
DRNMF,where hi is the r-dimensional feature representation
of node vi with r � n.

B. NETWORK EMBEDDING MODEL
The framework of DRNMFnetwork embeddingmodel can be
depicted as in Fig. 2. As we can see, this model is comprised
of two key components: proximity matrix construction and
DNMF with `2,1 norm, which can be described as follows.

1) PROXIMITY MATRIX CONSTRUCTION
Motivated by the work about the equivalence of DeepWalk
and matrix factorization presented in [32], we select the mean
value of all the k-order proximity matrices as the proximity
matrixM:

M =
S+ S2 + . . .+ Sk

k
. (3)

In Eq. (3), M combines multiple high-order proximities,
so it can be expected to capture more local and global struc-
ture features. In [32], k is advised to be set as 2 considering
the balance between the computational speed and accuracy.
Here our method DRNMF will also follow this suggestion.

2) DNMF WITH `2,1 NORM
After obtaining the proximity matrix M, we factorize M
using DNMF with `2,1 norm to produce an l-layer hier-
archical feature representations for the original network:
H1,H2, . . . ,Hl , where Hi (1 ≤ i ≤ l) denotes feature
representation at the i-th level. Besides, the dimensionality
ofHi will become much smaller along with the layer number
increase, which implies a more abstract and more compact
representation of the network. Similar to some other fea-
ture learning methods based on deep neural networks, this
presented deep structure could also be expected to lead to
more accurate network representation results, i.e., a betterHl .
In order to learn Hl and the other factor matrices (e.g., Wi),
we derive the following objective function using `2,1 norm:

minJ (Wi,Hl) = ||M−W1W2 . . .WlHl ||2,1,

s.t. Hl ≥ 0,Wi ≥ 0, ∀i = 1, 2, . . . , l, (4)

where Hl ∈ Rr×n
+ is treated as the final network embedding

representation matrix H and Wi ∈ Rdi−1×di
+ (1 ≤ i ≤ l) is set

as n = d0 > d1 > . . . > dl−1 > dl = r .

C. OPTIMIZATION SOLUTION
The minimization of the objective function in Eq. (4) is a
typical constraint optimization problem and we can solve
it by using alternating minimization strategy. Namely, all
the variables can be fixed first at each iteration except for
one unfixed to be updated. Through repeating these updat-
ing processes until the objective function achieve conver-
gence, the final optimized results can be obtained. Next,
we will present specific update rules for factor matrices Wi
(1 ≤ i ≤ l) and Hl .

1) UPDATE RULE FOR Wi
By fixing all the variables except for Wi, the objective func-
tion in Eq. (4) is simplified to:

minJ (Wi) = ||M− Pi−1WiQi+1Hl ||2,1,

s.t.Wi ≥ 0, ∀i = 1, 2, . . . , l, (5)

wherePi−1 =W1W2 . . .Wi−1 andQi+1 =Wi+1Wi+2 . . .Wl .
When i = 1, we set P0 = I. Similarly, when i = l, we set
Ql+1 = I.

To solve Eq. (5), we can firstly use the Lagrange multiplier
method to devise the Lagrange function of J (Wi):

L(Wi) = ||M− Pi−1WiQi+1Hl ||2,1 − tr(8iWT
i), (6)

85444 VOLUME 8, 2020

C. He et al.: Network Embedding Using DRNMF

where 8i is the Lagrange multiplier to Wi. Then, L(Wi) can
be rewritten in the form of matrix traces as

L(Wi) = tr((M− Pi−1WiQi+1Hl)

Di(M− Pi−1WiQi+1Hl)T)− tr(8iWT
i)

= tr(MDiMT)− 2tr(Pi−1WiQi+1HlDiMT)

+tr(Pi−1WiQi+1HlDiHT
l Q

T
i+1W

T
i P

T
i−1)

−tr(8iWT
i), (7)

where Di = [djj]n×n is a diagonal matrix and djj =
1

||mj−Pi−1WiQi+1(Hl)j||
. The partial derivative of L(Wi) with

respect toWi is:

∂L(Wi)
∂Wi

= −PT
i−1MDiHT

l Q
T
i+1

+PT
i−1Pi−1WiQi+1HlDiHT

l Q
T
i+1 −8i. (8)

Using Karush-Kuhn-Tucker (KKT) conditions [35],
we have

(PT
i−1Pi−1WiQi+1HlDiHT

l Q
T
i+1 − PT

i−1MDiHT
l Q

T
i+1)

�Wi = 0, (9)

where � denotes element-wise product. Finally, by solving
Eq. (9), we can obtain the following update rule forWi:

(Wi)ab = (Wi)ab
(PT

i−1MDiHT
l Q

T
i+1)ab

(PT
i−1Pi−1WiQi+1HlDiHT

l Q
T
i+1)ab

. (10)

2) UPDATE RULE FOR Hl
Similarly, through fixing all the variables except for Hl ,
the objective function in Eq. (4) is simplified to:

minJ (Hl) = ||M− PlHl ||2,1, s.t. Hl ≥ 0. (11)

Following the rule of Lagrange multiplier method pre-
sented above, we can also obtain the update rule for Hl as
follows:

Hl = Hl �
PT
l MDl

PT
l PlHlDl

. (12)

D. CONVERGENCE PROOF
In this section, the convergence of the update rules shown in
Eq. (10) and Eq. (12) are proved according to the following
theorems.
Theorem 1: Updating Wi using the rule of Eq. (10) while

fixing all the variables except for Wi, the objective func-
tion J (Wi) in Eq. (5) monotonically decreases to obtain the
minimum.
Theorem 2: Updating Hl using the rule of Eq. (12) while

fixing all the variables except for Hl , the objective function
J (Hl) in Eq. (11) monotonically decreases to obtain the
minimum.

The proof of convergence for Wi is similar to that for Hl ,
thus we only focus onWi here (i.e., the proof of Theorem 1).
To prove Theorem 1, we need to employ the following lemma.

Lemma 1: Given nonnegative matrices Y, N and U, where
Y = YT and N = NT, we have

tr(UTYUN) ≤
∑
a,b

(YU′N)ab
U2
ab

U′ab
, (13)

and the equality holds when U = U′. The detailed proof of
this Lemma can be found in [36].

Next, we select the widely used the auxiliary function
approach proposed in [37] to prove theorem 1. Firstly, accord-
ing to Lemma 1, we can obtain

J (Wi) = tr((M− Pi−1WiQi+1Hl)

Di(M− Pi−1WiQi+1Hl)T)

= tr(MDiMT)− 2tr(Pi−1WiQi+1HlDiMT)

+tr(WT
i P

T
i−1Pi−1WiQi+1HlDiHT

l Q
T
i+1)

≤ tr(MDiMT)− 2tr(Pi−1WiQi+1HlDiMT)

+

∑
a,b

((PT
i−1Pi−1W

′
iQi+1HlDiHT

l Q
T
i+1)ab

(Wi)2ab
(W′i)ab

) = Z (Wi,W′i). (14)

The equality holds whenWi =W′i, hence Z (Wi,W′i) is an
auxiliary function of J (Wi). The first order and second order
derivatives of Z (Wi,W′i) with respect toWi are as follows:

∂Z (Wi,W′i)
∂(Wi)ab
= −2(PT

i−1MDiHT
l Q

T
i+1)ab

+
2(PT

i−1Pi−1W
′
iQi+1HlDiHT

l Q
T
i+1)ab(Wi)ab

(W′i)ab
, (15)

∂Z2(Wi,W′i)
∂(Wi)ab∂(Wi)ab

=
2(PT

i−1Pi−1W
′
iQi+1HlDiHT

l Q
T
i+1)ab

(W′i)ab
. (16)

By reason that each matrix involved is nonnegative, we have
∂2 Z (Wi,W′i)
∂(Wi)ab∂(Wi)ab

≥ 0, which makes the Hessian matrix of
Z (Wi,W′i) be positive semi-definite. This indicates that
Z (Wi,W′i) is a convex function whose global minimum can
be obtained by setting the gradient of Z (Wi,W′i) to 0 and
solving it for Wi. To this end, we set Eq. (15) to 0 and can
obtain

(Wi)ab = (Wi)′ab
(PT

i−1MDiHT
l Q

T
i+1)ab

(PT
i−1Pi−1W

′
iQi+1HlDiHT

l Q
T
i+1)ab

. (17)

Obviously, Eq. (17) is the same to Eq. (10). Because
Z (Wi,W′i) is the auxiliary function of J (Wi), Eq. (17) can
also make J (Wi) converge to obtain the minimum. There-
fore, Theorem 1 holds.

E. NETWORK EMBEDDING ALGORITHM
After repeating update rules shown in Eq. (10) and Eq. (12)
until convergence, the finalHl is the result of network embed-
ding. To expedite the iterative process, we pre-train each layer

VOLUME 8, 2020 85445

C. He et al.: Network Embedding Using DRNMF

in DRNMF model to attain an initial approximation to the
factor matrices Wi and Hi. The effectiveness of pre-training
will be proven in the experimental part. To perform the
pre-training, we first decompose M ≈ W1H1 by using
robust NMF (RNMF), i.e., minimizing ||M − W1H1||2,1.
Then, we decompose H1 ≈ W2H2 by minimizing ||H1 −

W2H2||2,1. Doing the decomposition step by step, we can
finish the pre-training work for all the layers.

Afterwards, each layer is fine-tuned by using iterative
update rules to minimize the proposed objective func-
tion described in Eq. (4). Based on the above knowledge,
we devise DRNMF network embedding algorithm composed
of two stages: pre-training and fine-tuning. The entire algo-
rithmic framework is shown in Algorithm 1.

Algorithm 1 DRNMF Network Embedding Algorithm
Input: A, l, r, di (1 ≤ i ≤ l);
Output: Network embedding representation matrix H;

1 %Pre-training stage%
2 Compute the proximity matrixM;
3 W1,H1 =RNMF(M, d1);
4 for i = 2 to l do
5 Wi,Hi =RNMF(Hi−1, di);

6 %Fine-tuning stage%
7 while not converged do
8 for i = 1 to l do
9

Pi−1 =

I if i = 1,∏i−1

y=1
Wy otherwise;

Qi+1 =

I if i = l,∏l

y=i+1
Wy otherwise;

Compute the diagonal matrix Di;
10 UpdateWi via Eq. (10);

11 Pl = Pi−1Wi;
12 Update Hl via Eq. (12);

13 return Hl ;

Let d denote the maximal layer size out of all layers,
tp and tf respectively denote the number of iterations to
achieve convergence in pre-training stage and in fine-tuning
stage, we can approximately analyze the time complexity of
Algorithm 1. In the pre-training stage, the time complexity
of computing the proximity matrix M is O(n2) when we
set k = 2 by following the suggestion presented in [32],
and that for RNMF process is O(ltp(nd2 + n2d) + tpn2d)).
We can deduce the time complexity for the pre-training stage
to be O(ltp(nd2 + n2d)). In the fine-tuning stage, the time
complexity for computing Pi−1, Di and Pl are allO(nd2), for
computing Qi+1 is O(d3), for updating Wi and Hl are both
O(n2d). Therefore, the time complexity in the fine-tuning
stage is O(ltf (nd2 + n2d + d3) + tf (nd2 + n2d)), which

can be simplified to be O(ltf (nd2 + n2d) because of the
general condition d � n. To sum up, the overall time
complexity of Algorithm 1 isO(l(tp+ tf)(nd2+n2d)), which
has the same order of magnitude as many state-of-the-art
matrix factorization based network embeddingmethods, such
as M-NMF [12] and GraRep [13]. Owing to the reason that
Wi and Hl are very sparse, the practical time complexity
can be reduced significantly if only the non-zero entries of
matrices involved are computed.

IV. EXPERIMENTAL STUDY
In this section, the effectiveness of our proposed method
DRNMF is evaluated. First, we provide an overview of
experimental datasets, baseline methods and parameter set-
tings. Then we conduct detailed comparative analysis with
baseline methods on three network analysis tasks, including
node classification, node clustering and visualization. Finally,
we validate the robustness of DRNMF and the effective-
ness of pre-training strategy. All of the experiments are con-
ducted on a PCwith 64-bitsWindows-7 system, 3.4GHz Intel
i7-6700 CPU and 32GB RAM.

A. DATASETS
In our experiments, we use the following four widely-used
benchmark complex networks as the datasets:
• Political blog network (Polblog).1 Polblog is a hyperlink
network of websites, which is composed of 1224 blogs
about US politics and 19025 hyperlinks related to them.
Each blog is associated with a political label: liberal or
conservative.

• Citeseer.2 Citeseer is a citation network of aca-
demic papers from Citeseer digital library. It contains
3312 nodes (papers) and 4732 edges (citation links
among papers). Each node has one category label indi-
cating its topic.

• Cora2. Cora is also a citation network of academic
papers. It consists of 2708 nodes and 5429 edges, and
every node is assigned with a unique topic label.

• BlogCatalog2. BlogCatalog is an online social net-
work between bloggers. It contains 10312 bloggers
and 333983 friendships between them. Every blogger
is assigned a group label indicating its topic interest.
Although some bloggers have multiple labels, we only
keep their foremost labels for the convenience of com-
parisons.

These four datasets all contain complex hierarchical fea-
tures, and thus are suitable to be used to validate the effec-
tiveness of DRNMF. Besides, on these network datasets,
the label associated with each node can also be treated as
the cluster label indicating its group/cluster membership.
Therefore, these network datasets can support us to conduct
performance evaluation tasks for node classification and node
clustering at the same time. Detailed statistics for the datasets

1http://www-personal.umich.edu/˜mejn/netdata
2https://linqs.soe.ucsc.edu/data

85446 VOLUME 8, 2020

C. He et al.: Network Embedding Using DRNMF

TABLE 1. Statistics of datasets.

are summarized in Table 1, where #labels denotes the number
of class labels.

B. BASELINE METHODS
By reason that the motivation of this paper is to improve
the performance of matrix factorization for network embed-
ding by using DRNMF, we specially select 3 state-of-the-
art matrix factorization based methods for network embed-
ding as baselines, including M-NMF [12], DNMF [21] and
DANMF [38]. Besides, we also take into consideration the
comparisions with another two classical network embedding
methods, DeepWalk [10] and Node2vec [11], which are
closely related to matrix factorization. Therefore, we have
5 baseline methods in total, which are respectively introduced
as follows:
• M-NMF. M-NMF is based on modularized nonnega-
tive matrix factorization and can incorporate community
structure into network embedding. It uses the combina-
tion of first-order and second-order proximity matrices
as the feature matrix for factorization, which belongs to
single-layer matrix factorization method.

• DNMF. DNMF is the first method that formally intro-
ducing deep learning concept into the NMF model.
Although it is used to learn attribute representations of
images, its multi-layer matrix factorization structure can
also help it learn complex hierarchical features hidden
in the network. Here, we select the adjacent matrix as its
feature matrix and use Frobenius norm to devise its cost
function.

• DANMF. DANMF is a deep autoencoder-like NMF
method. It is used in community discovery, but it also can
be used in network embedding by naturally treating its
community membership matrix as the network embed-
ding representation matrix. Like DNMF, DANMF also
uses the adjacent matrix as being feature matrix and uses
the cost function based on Frobenius norm.

• DeepWalk. DeepWalk is a classical network embed-
ding method. It first transforms a network into linear
sequences by truncated random walk and then uses
Skip-gram natural language model to obtain node rep-
resentations. In [14], related theoretical analysis and
proofs show that DeepWalk empirically produces a
low-rank transformation of a network’s normalized
Laplacian matrix.

• Node2vec. Similar to DeepWalk, Node2vec is also on
the basis of random walk and can learn richer node rep-
resentations by exploring diverse node neighborhoods.

TABLE 2. Configuration of layers for DNMF, DANMF and DRNMF.

Theoretically, Node2vec is regarded as factorizing a
matrix related to stationary distribution and transition
probability tensor of a 2nd-order random walk, which
has also been proved in [14].

C. PARAMETER SETTINGS
For fair comparisons, parameters in all the methods are tuned
to be optimal or set to be their suggested values. For M-NMF,
their regularizer parameters α and β are respectively set to be
0.5 and 5. As suggested in [10], for DeepWalk, we set walks
per vertex γ = 80, window size ω = 10 and walk length
t = 40. For Node2vec, we use hyperparameter settings with
γ = 10, ω = 10 and t = 80. We employ a grid search over
return parameter and in-out parameter p, q ∈ {0.25, 0.5, 1, 2}
for training. For GraRep, we set k = 3 on Polblog, Citeseer
and Cora datasets, with k = 6 on BlogCatalog dataset.
For DANMF, we set the graph regularizer parameter λ to
be 1, which was suggested in [38]. It should be noted that
all these methods use the same dimension of representation
as r = 10 ∗ (#labels) on the same dataset. For the sake of
fairness, three methods with multi-layer learning structure
(i.e., DNMF, DANMF and DRNMF) have the same layer
configuration on the same dataset, which is shown in Table 2.
Although we have tried to set more layers, the performance
promotion is not significant while spending much more com-
putation time. Under each setting of parameters for different
methods, the experiments are repeated for 10 times and the
average results are reported here.

D. COMPARISONS ON NETWORK ANALYSIS TASKS
1) NODE CLASSIFICATION
Node classification involves using the representations gener-
ated by network embedding methods to classify each given
node into the category it belongs to. Here, the representation
of each node is used as its feature vector and the label it
associates with is treated as the true class label. In the exper-
iments, we use support vector machine (SVM) implemented
by Weka3 as the classifier. For every dataset, when training
the classifier, we randomly sample 10% to 90% of the labeled
nodes as training data and the rest as test data. Since each
node in each dataset has only one class label, we can simply
use classification accuracy (i.e., the proportion of correctly
classified nodes) as the performance metric. The evaluation
results on each dataset are shown in Fig. 3, from which we
have the following observations and analysis:

3https://www.cs.waikato.ac.nz/ml/weka

VOLUME 8, 2020 85447

C. He et al.: Network Embedding Using DRNMF

FIGURE 3. Node classification results on different datasets.

• The curve of our method DRNMF is consistently above
the curves of baseline methods, which means that node
representations learned by DRNMF are more informa-
tive and discriminative, thus the performance of node
classification can be improved much better.

• Compared with shallow methods M-NMF, DeepWalk
and Node2vec, multi-layer matrix factorization based
methods DNMF, DRNMF and DANMF perform better,
which demonstrates that the multi-layer factorization
structure is indeed able to obtain better node representa-
tions from the process of learning hierarchical features
of the original networks.

• AlthoughDNMF,DRNMF andDANMFhavemulti-layer
factorization structures, DRNMF performs better than
DNMF and DANMF. The reasons might be concluded
in two aspects. First, DRNMF uses the combination of
high-order proximity matrices as the original feature
matrix, which contains richer information about network
structure than the adjacent matrix used by DNMF and
DANMF. Second, DRNMF employs `2,1 norm, which
makes it more robust against noises existing in net-
works than DNMF and DANMF using Frobenius norm.
It can be noted that the first reason undoubtedly plays
a more important role, because network datasets used
here almost have no noises. In Section IV.E, we will
specially test the robustness of DRNMF by manually
adding noises to datasets.

2) NODE CLUSTERING
Due to the fact that node labels of network datasets used
here can also be treated as cluster labels, the performance
evaluation for node clustering can thereby be conducted.
To perform node clustering, we obtain node representations
through using network embedding method at first, and then
apply K-means algorithm to these learnt node representations
to attain clusters. As each node has ground-truth cluster mem-
bership, we use the widely-used Purity and NMI (Normalized
mutual information) [39] as metrics to measure the perfor-
mance. The larger the Purity and NMI values are, the better
the performance of node clustering will be. We run every
method on four datasets and the evaluation results are shown
in Table 3.

As is shown from Table 3, on Polblog dataset, Purity and
NMI are of equal value as 1.0 only on DRNMF method.
Besides, on every dataset, DRNMF is the only approach with
all the Purity values larger than 0.9. In terms of performance
improvement, compared with M-NMF, DNMF, DANMF,
DeepWalk and Node2vec, on Citeseer dataset, the Purity
value of DRNMF improves by 38%, 13.9%, 11.4%, 28.9%
and 25.6% respectively and the NMI value improves by
44.8%, 22.8%, 16.9%, 36.6% and 32.9% respectively. Similar
results can also be found on Cora and BlogCatalog datasets.
All the results demonstrate that DRNMF performs the best
in terms of node clustering, and it even has considerable
advantages compared with the baseline methods.

85448 VOLUME 8, 2020

C. He et al.: Network Embedding Using DRNMF

TABLE 3. Performance evaluation results on node clustering (bold numbers represent the best results).

FIGURE 4. Visualization results on Polblog.

3) VISUALIZATION
Visualization is another important application for network
embedding issues. It aims to display the given network in a
two-dimensional space. If the learned node representations
are more discriminative, the visualization results can display
clearer boundaries between nodes with different labels. This
also indicates the corresponding network embedding method
performs better.

In our experiments, we use node representations learned
from different network embedding methods as the input
to the t-SNE visualization tool [4], where the nodes
with the same label are highlighted with the same color.

As representatives, the visualization results on Polblog and
Citeseer datasets are given respectively as shown in Fig. 4 to
Fig. 5. From Fig. 4, it can be seen that the visualization results
of M-NMF, DNMF, DANMF, DeepWalk and Node2vec are
not satisfactory, because lots of nodes with different labels
are mixed with each other and the boundaries of different
groups are not clear. For DRNMF, nodes with the same
label aggregate together with clear boundary from the other
cluster. Moreover, the number of clusters seems to be consis-
tent with the number of ground truth’s. Similar observations
can also be found in Fig. 5. In general, the representations
learned by DRNMF are more identifiable, which makes the

VOLUME 8, 2020 85449

C. He et al.: Network Embedding Using DRNMF

FIGURE 5. Visualization results on Citeseer.

visualization results of DRNMF perform better than the base-
line methods.

E. ROBUSTNESS TEST
DRNMF network embedding model uses `2,1 norm instead
of the widely used Frobenius norm to devise its objective
function, which can be expected to improve the model’s
robustness against noises. To validate the effectiveness of
this mechanism, we specially conduct comparative experi-
ments between DRNMF using `2,1 norm (DRNMF_L21) and
DRNMF using Frobenius norm (DRNMF_Fro). In our exper-
iments, for each dataset, we first define a so-called cannot-
link pairwise constraints which include pairs of nodes with
different labels. The possible numbers (#CL) of cannot-link
pairwise constraints on a network with ground-truth classifi-
cation results setC = {c1, c2, . . . , c#labels} can be denoted as:

#CL =
#labels∑
i=1

#labels∑
j=i+1

|ci||cj|. (18)

Then, we randomly extract the fixed percentage values
(including 6 levels: 0%, 1%, 2%, 4%, 6% and 8%) of
cannot-link pairwise constraints to establish virtual links,
which can be regarded as noises. Finally, we evaluate the
performances of DRNMF_L21 and DRNMF_Fro on node
classification tasks under different noise levels. Note that
on each dataset, we only utilize 10% labeled nodes for the
convenience of comparisons. The results on different datasets
are shown in Fig. 6.

Aswe can see fromFig. 6, on each dataset, the performance
degradation of DRNMF_L21 is much smaller than that of
DRNMF_Fro with the percentage increase of noises. For
example, when the noise rate is 8% on BlogCatalog dataset,
the accuracy value of DRNMF_L21 is 0.21, which is 25.8%
lower than that without noises, but the accuracy value of
DRNMF_Fro is 0.13, which is 46.8% lower than that without
noises. Similar results can also be obtained on the other three
datasets. All the results illustrate that DRNMF_L21 has better
robustness than DRNMF_Fro. This makes DRNMFwith `2,1
norm more suitable to be applied to real-world complex
networks that contain noises in most cases.

85450 VOLUME 8, 2020

C. He et al.: Network Embedding Using DRNMF

FIGURE 6. Comparison of robustness on node classification.

FIGURE 7. Comparison of convergence efficiency (#Iterations).

F. CONVERGENCE EFFICIENCY ANALYSIS USING
PRE-TRAINING
In the proposed DRNMF network embedding algorithm
(i.e., Algorithm 1), the purpose of pre-training stage is to

expedite the iterative process in the subsequent fine-tuning
stage. To validate the effectiveness of this strategy, we con-
duct convergence efficiency comparisons in the fine-tuning
stage by using DRNMF with pre-training and DRNMF

VOLUME 8, 2020 85451

C. He et al.: Network Embedding Using DRNMF

TABLE 4. Comparisons of convergence efficiency (Time).

without pre-training on every dataset.We evaluate the conver-
gence efficiency from two aspects: the number of iterations
(#Iterations) and the convergence time (Time). The results are
shown in Fig. 7 and Table 4.

As shown in Fig. 7, DRNMF with pre-training needs 9,
28 and 67 iterations on Polblog, Citeseer and Cora
datasets respectively till convergence, while DRNMFwithout
pre-training respectively needs 28, 69 and 121 iterations.
On larger dataset BlogCatalog, DRNMF with pre-training
spending 251 iterations is more advantageous than DRNMF
without pre-training spending 592 iterations. Less iterations,
less convergence time. As shown in Table 4, compared with
DRNMF without pre-training, DRNMF with pre-training
saves time by 66.1%, 44.8%, 48.7% and 66.3% respectively
on Polblog, Citeseer, Cora and BlogCatalog datasets. In par-
ticular, it takes about 1.05 hours running on BlogCatalog
dataset, which is far less than 3.14 hours taken by DRNMF
without pre-training. All these mentioned results demonstrate
that, the proposed pre-training strategy in DRNMF acceler-
ates the model within less iterations and time consumption
till convergence, thereby effectively helps DRNMF improve
the convergence efficiency.

V. CONCLUSION
In order to further increase the performance of matrix factor-
ization for network embedding, in this paper, we propose a
method called DRNMF which has multi-layer factorization
structure. This structure makes DRNMF be able to learn
more useful hierarchical features hidden in complex net-
works. Meanwhile, we select the combination of high-order
proximity matrices of the network as the original feature
matrix for factorization, and use `2,1 norm to improve the
robustness of the network embedding model. These strategies
make our method perform better than the state-of-the-art
matrix factorization based methods, which has been verified
by extensive relevant experiments. In the future, there will
still be some issues as follows to be solved further.
• There is no doubt that the performance of DRNMF will
be affected by the configuration of layers, including the
number of layers and the size of each layer. As most
of the deep learning based methods, here their settings
need to be tuned manually according to the change of
performance. Therefore, an in-depth exploration of layer
configuration is quite necessary.

• The time complexity of DRNMF is O(l(tp + tf)(nd2 +
n2d)), which restricts itself to be applied efficiently in

large-scale complex networks. Hence, more efficient
optimization algorithms for DRNMF model need to be
developed.

• At present, it is generally believed that deep learning
methods are all built on the basis of neural networks.
However, DRNMF also has multi-layer learning struc-
ture, which makes it resemble a conventional deep learn-
ing method. It will be quite interesting to investigate
whether DRNMF can reach or even outperform those
network embedding methods established on the basis of
deep neural networks. This needs us to conduct more
research work with comparative experiments.

REFERENCES
[1] S. Bhagat, G. Cormode, and S. Muthukrishnan, Social Network Data

Analytics. London, U.K.: Springer-Verlag, 2011.
[2] S. Fortunato and D. Hric, ‘‘Community detection in networks: A user

guide,’’ Phys. Rep., vol. 659, no. 11, pp. 1–44, Nov. 2016.
[3] L. Lü and T. Zhou, ‘‘Link prediction in complex networks: A survey,’’

Phys. A, Stat. Mech. Appl., vol. 390, no. 6, pp. 1150–1170, Mar. 2011.
[4] L. van derMaaten andG.Hinton, ‘‘Visualizing data using t-SNE,’’ J.Mach.

Learn. Res., vol. 9, pp. 2579–2605, Nov. 2008.
[5] Y. Xie, M. Gong, S. Wang, W. Liu, and B. Yu, ‘‘Sim2vec: Node similarity

preserving network embedding,’’ Inf. Sci., vol. 495, pp. 37–51, Aug. 2019.
[6] M. M. Keikha, M. Rahgozar, and M. Asadpour, ‘‘Community aware

random walk for network embedding,’’ Knowl.-Based Syst., vol. 148,
pp. 47–54, May 2018.

[7] W. Liu, Z. Liu, F. Yu, P.-Y. Chen, T. Suzumura, and G. Hu, ‘‘A scalable
attribute-aware network embedding system,’’ Neurocomputing, vol. 339,
pp. 279–291, Apr. 2019.

[8] D. Wang, P. Cui, and W. Zhu, ‘‘Structural deep network embedding,’’
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining,
San Francisco, CA, USA, Aug. 2016, pp. 1225–1234.

[9] S. Cao, W. Lu, and Q. Xu, ‘‘Deep neural networks for learning graph
representations,’’ in Proc. 13th AAAI Conf. Artif. Intell., Phoenix, AZ,
USA, Feb. 2016, pp. 1145–1152.

[10] B. Perozzi, R. Al-Rfou, and S. Skiena, ‘‘DeepWalk: Online learning of
social representations,’’ in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), New York, NY, USA, Aug. 2014,
pp. 701–710.

[11] A. Grover and J. Leskovec, ‘‘Node2vec: Scalable feature learning for
networks,’’ in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining, San Francisco, CA, USA, Aug. 2016, pp. 855–864.

[12] X. Wang, P. Cui, J. Wang, J. Pei, W. Zhu, and S. Yang, ‘‘Commu-
nity preserving network embedding,’’ in Proc. AAAI Conf. Artif. Intell.,
San Francisco, CA, USA, Feb. 2017, pp. 203–209.

[13] S. Cao, W. Lu, and Q. Xu, ‘‘GraRep: Learning graph representations with
global structural information,’’ in Proc. 24th ACM Int. Conf. Inf. Knowl.
Manage. (CIKM), Melbourne, VIC, Australia, 2015, pp. 891–900.

[14] J. Qiu, Y. Dong, H. Ma, J. Li, K. Wang, and J. Tang, ‘‘Network
embedding as matrix factorization: Unifying DeepWalk, LINE, PTE,
and node2vec,’’ in Proc. 11th ACM Int. Conf. Web Search Data Mining
(WSDM), Los Angeles, CA, USA, Feb. 2018, pp. 1–9.

[15] D. D. Lee and H. S. Seung, ‘‘Learning the parts of objects by non-negative
matrix factorization,’’ Nature, vol. 401, no. 6755, pp. 788–791, Oct. 1999.

[16] H. Liu, Z. Wu, D. Cai, and T. S. Huang, ‘‘Constrained nonnegative matrix
factorization for image representation,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 34, no. 7, pp. 1299–1311, Jul. 2012.

[17] Z. Shu, X.Wu, H. Fan, P. Huang, D.Wu, C. Hu, and F. Ye, ‘‘Parameter-less
auto-weighted multiple graph regularized nonnegative matrix factoriza-
tion for data representation,’’ Knowl.-Based Syst., vol. 131, pp. 105–112,
Sep. 2017.

[18] X. Jiang, X. Hu, andW. Xu, ‘‘Microbiome data representation by joint non-
negative matrix factorization with Laplacian regularization,’’ IEEE/ACM
Trans. Comput. Biol. Bioinf., vol. 14, no. 2, pp. 353–359, Mar. 2017.

[19] C. He, Q. Zhang, Y. Tang, S. Liu, and H. Liu, ‘‘Network embedding using
semi-supervised kernel nonnegative matrix factorization,’’ IEEE Access,
vol. 7, pp. 92732–92744, 2019.

85452 VOLUME 8, 2020

C. He et al.: Network Embedding Using DRNMF

[20] S. Wang and W. Guo, ‘‘Sparse multigraph embedding for multi-
modal feature representation,’’ IEEE Trans. Multimedia, vol. 19, no. 7,
pp. 1454–1466, Jul. 2017.

[21] G. Trigeorgis, K. Bousmalis, S. Zafeiriou, and B. W. Schuller, ‘‘A deep
matrix factorization method for learning attribute representations,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 3, pp. 417–429, Mar. 2017.

[22] J. Yu, G. Zhou, A. Cichocki, and S. Xie, ‘‘Learning the hierarchical parts
of objects by deep non-smooth nonnegative matrix factorization,’’ IEEE
Access, vol. 6, pp. 58096–58105, 2018.

[23] H. A. Song, B.-K. Kim, T. L. Xuan, and S.-Y. Lee, ‘‘Hierarchical feature
extraction by multi-layer non-negative matrix factorization network for
classification task,’’ Neurocomputing, vol. 165, pp. 63–74, Oct. 2015.

[24] H. Cai, V. W. Zheng, and K. C.-C. Chang, ‘‘A comprehensive survey of
graph embedding: Problems, techniques, and applications,’’ IEEE Trans.
Knowl. Data Eng., vol. 30, no. 9, pp. 1616–1637, Sep. 2018.

[25] P. Goyal and E. Ferrara, ‘‘Graph embedding techniques, applications,
and performance: A survey,’’ Knowl.-Based Syst., vol. 151, pp. 78–94,
Jul. 2018.

[26] D. Zhang, J. Yin, X. Zhu, and C. Zhang, ‘‘Network representation learning:
A survey,’’ IEEE Trans. Big Data, vol. 6, no. 1, pp. 3–28, Mar. 2020.

[27] L. Tang and H. Liu, ‘‘Leveraging social media networks for classification,’’
Data Mining Knowl. Discovery, vol. 23, no. 3, pp. 447–478, Nov. 2011.

[28] A. Ahmed, N. Shervashidze, S. Narayanamurthy, V. Josifovski, and
A. J. Smola, ‘‘Distributed large-scale natural graph factorization,’’ in
Proc. 22nd Int. Conf. World Wide Web (WWW), Rio, Brazil, May 2013,
pp. 37–48.

[29] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, ‘‘LINE: Large-
scale information network embedding,’’ in Proc. 24th Int. Conf. World
Wide Web (WWW), Florence, Italy, May 2015, pp. 1067–1077.

[30] C. C. Tu, W. C. Zhang, Z. Y. Liu, and M. S. Sun, ‘‘Max-margin deepwalk:
Discriminative learning of network representation,’’ in Proc. 25th Int. Joint
Conf. Artif. Intell., New York, NY, USA, Jul. 2016, pp. 3889–3895.

[31] C. Yang, M. Sun, Z. Liu, and C. Tu, ‘‘Fast network embedding enhance-
ment via high order proximity approximation,’’ in Proc. 26th Int. Joint
Conf. Artif. Intell., Melbourne, VIC, Australia, Aug. 2017, pp. 3894–3900.

[32] C. Yang, Z. Y. Liu, D. L. Zhao, M. S. Sun, and E. Y. Chang, ‘‘Network
representation learning with rich text information,’’ in Proc. 24th Int. Joint
Conf. Artif. Intell., Buenos Aires, Argentina, Jul. 2015, pp. 2111–2117.

[33] M. Ou, P. Cui, J. Pei, Z. Zhang, and W. Zhu, ‘‘Asymmetric transitivity
preserving graph embedding,’’ in Proc. 22nd ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining, San Francisco, CA, USA, Aug. 2016,
pp. 1105–1114.

[34] S. Wang and W. Guo, ‘‘Robust co-clustering via dual local learn-
ing and high-order matrix factorization,’’ Knowl.-Based Syst., vol. 138,
pp. 176–187, Dec. 2017.

[35] S. Boyd and L. Vandenberghe, Convex Optimization. Oxford, U.K.:
Cambridge Univ. Press, 2004.

[36] C. H. Q. Ding, T. Li, and M. I. Jordan, ‘‘Convex and semi-nonnegative
matrix factorizations,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 32,
no. 1, pp. 45–55, Jan. 2010.

[37] D. D. Lee and H. S. Seung, ‘‘Algorithms for non-negative matrix factor-
ization,’’ in Proc. 13th Int. Conf. Neural Inf. Process. Syst., Denver, CO,
USA, Dec. 2000, pp. 535–541.

[38] F. Ye, C. Chen, and Z. Zheng, ‘‘Deep autoencoder-like nonnegative matrix
factorization for community detection,’’ in Proc. 27th ACM Int. Conf. Inf.
Knowl. Manage., Turin, Italy, Oct. 2018, pp. 1393–1402.

[39] C. He, Q. Zhang, Y. Tang, S. Liu, and J. Zheng, ‘‘Community detection
method based on robust semi-supervised nonnegative matrix factoriza-
tion,’’ Phys. A, Stat. Mech. Appl., vol. 523, pp. 279–291, Jun. 2019.

CHAOBO HE received the B.S., M.S., and Ph.D.
degrees from South China Normal University,
China, in 2004, 2007, and 2014, respectively.
He is currently an Associate Professor with the
Zhongkai University of Agriculture and Engineer-
ing, China, and is also a Visiting Scholar with
the School of Data and Computer Science, Sun
Yat-sen University, China. He has published over
20 articles on international journals and confer-
ences. His research interests are data mining and
social computing.

HAI LIU received the Ph.D. degree from the
School of Data and Computer Science, Sun
Yat-sen University, China, in 2010. He is currently
an Associate Professor with the School of Com-
puter Science, South ChinaNormal University. His
current research interests include machine learn-
ing, data mining, and big data.

YONG TANG received the B.S. degree in com-
puter science fromWuhan University, in 1985, and
the Ph.D. degree in computer science from the
University of Science and Technology of China,
in 2001. He is currently a Professor and the Dean
of the School of Computer Science, South China
Normal University, and also serves as the Director
of the Services Computing Engineering Research
Center of Guangdong Province. He has completed
more than 30 research and development projects.

He has authored or coauthored more than 100 publications in these areas.
His research interests include database and cooperative software, temporal
information processing, social network, and big data analytics.

XIANG FEI received the B.Sc. and Ph.D. degrees
from Southeast University China, in 1992 and
1999, respectively. After graduation, he worked,
as a Postdoctoral Research Fellow, on a number
of projects including European IST Programs and
EPSRC. He is currently working as a Senior Lec-
turer with the School of Computing, Electron-
ics and Maths, Coventry University. His current
research interests include machine learning and
data mining in cyber-physical systems.

HANCHAO LI received the B.Sc. degree in math-
ematics from the University of Warwick, in 2013,
and the M.Sc. degree in computing from Coven-
try University, in 2015, where he is currently
pursuing the Ph.D. degree, working on music
information retrieval, i.e., data mining in music
subject area. He has published several conference
and journal articles. His research interests are
big data, data mining, machine learning, and any
mathematics-related researches.

QIONG ZHANG received the Ph.D. degree from
Laval University, QC, Canada in 2016. He worked
as a Visiting Researcher with McGill University,
QC, Canada, from 2015 to 2016. He is currently
an Adjunct Professor with the Nanchang Institute
of Technology and also a Research Director with
Shenzhen Qihang Academy Company, Ltd. His
research interests include computer vision, image
processing, natural language processing, artificial
intelligence, data mining, etc.

VOLUME 8, 2020 85453

