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Abstract 

Data provenance is a structured form of metadata designed to record the ac-
tivities and datasets involved in data production, as well as their dependency 
relationships. The PROV data model, released by the W3C in 2013, defines a 
schema and constraints that together provide a structural and semantic foun-
dation for provenance. This enables the interoperable exchange of provenance 
between data producers and consumers. When the provenance content is sensi-
tive and subject to disclosure restrictions, however, a way of hiding parts of the 
provenance in a principled way before communicating it to certain parties is re-
quired. In this paper we present a provenance abstraction operator that achieves 
this goal. It maps a graphical representation of a PROV document PG1 to a 
new abstract version PG2, ensuring that (i) PG2 is a valid PROV graph, and 
(ii) the dependencies that appear in PG2 are justified by those that appear in 
PG1. These two properties ensure that further abstraction of abstract PROV 
graphs is possible. A guiding principle of the work is that of minimum damage: 
the resultant graph is altered as little as possible, while ensuring that the two 
properties are maintained. The operator developed is implemented as part of a 
user tool, described in a separate paper, that lets owners of sensitive provenance 
information control the abstraction by specifying an abstraction policy. 

Keywords: Provenance, Provenance metadata, provenance abstraction 

1. Introduction 

The provenance of data is a form of structured metadata that records the 
processes involved in data production. In addition to containing references 
to data generation or transformation processes, a provenance trace typically 
includes input or intermediate data products as well as references to agents, that 
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is the humans or software systems who were responsible for those processes. In 
multi-party collaboration settings that involve data sharing, as well as in third 
party auditing of data and processes, there is a broad expectation that shipping 
the available provenance to collaborators, or more generally publishing it along 
with the data, may help data consumers, including auditors, form judgements 
regarding the reliability of the data itself. 
Offering to disclose the provenance of data as evidential basis for establish-

ing data quality and reliability is particularly important when data products 
are exchanged as part of transactions that involve parties with limited mutual 
trust. This is the case for instance of dynamic coalitions [7]. These are ad hoc 
collaborative partnerships that are created to pursue a common goal, in scenar-
ios such as multi-agency emergency/threat responses, as well as the exchange of 
intelligence information. Despite the need to share data of a possibly sensitive 
nature, these coalitions are characterized by a lack of established interaction 
protocols and by limited trust amongst the partners. This situation creates 
a tension between data providers and consumers, when it comes to negotiating 
the level of detail of the provenance that providers are prepared to offer to con-
sumers. On the one hand, consumers will require as much provenance detail 
as possible, to use as a basis for establishing data credibility. Data providers, 
on the other hand, will be reticent to offer detailed provenance traces, because 
those may contain sensitive information regarding their own internal processes 
as well as any proprietary data used by those processes. In fact, the provenance 
of a data product will typically contain more sensitive information than the data 
product itself. 
In this paper we propose to resolve such tension by introducing an operator 

to achieve selective disclosure of provenance information. 

1.1. Motivating scenario: provenance of intelligence information 
To appreciate how such tension may arise, consider a scenario where a public 

agency PA wants to buy intelligence reports, say about potential threats to the 
public, from an intelligence provider, IP. The trust model is governed by a desire 
on the side of the PA for risk mitigation, and the environment is such that PA 
is not prepared to fully trust and act upon the information provided by the IP 
without performing some risk assessment on the information. The key issue here 
is not that the PA does not trust the IP (it is assumed that sufficient trust exists 
to contemplate purchasing IP’s intelligence reports), but that it must come to 
an independent assessment of the trustworthiness of the intelligence reports 
which have been provided. Under the assumption of limited trust by PA in 
IP’s information, PA must find some way to mitigate the risk of acting upon 
information provided by IP, which is potentially unreliable. At the same time, 
IP has a business incentive to supply PA with additional evidence that facilitates 
PA’s risk assessment and thus increases the chance of a successful transaction. 
The key assumption that motivates our work is that the provenance of each 
intelligence report is relevant in contributing, at least in part, the required 
evidence. However, simply disclosing all provenance may not be in IP’s business 
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interests, and so IP must find a way to strike a balance between supporting PA’s 
risk assessment and protecting its own business interests. 
We illustrate this with a fictional but realistic example of provenance for 

an intelligence report, shown in Fig. 1. Provenance can be visually depicted 
as a digraph whose nodes represent either entities (ovals in the figure), i.e., 
data, documents, etc., activities (rectangles), which represent the execution of 
some process over a period of time, or agents (pentagons), which represent 
humans or computing systems. The edges represent various types of directed 
relationships, the most common being “activity a used entity e”, “entity e was 
generated by activity a”, “activity a was associated with agent ag” (i.e., ag 
was responsible for a), and more. It is also possible to annotate each of the 
nodes using properties, for instance to qualify the kind of data and activities 
involved in the process execution. We omit annotations from our examples for 
readability, and because, within this work, they are not handled in any special 
way. 
Formally, such a graph is a depiction of a PROV document, which in turn 

conforms to the W3C PROV data model [23], introduced in Section 3.1. We 
will use the graph representation of provenance throughout the paper, as it 
facilitates reasoning about the mechanisms for provenance abstraction, which 
are at the core of our work. The graph layout in Figs. 1, 2 and 3 is such that 
the process execution flows from top to bottom, i.e, the top entities represent 
initial inputs, while the outputs are at the bottom. 
This provenance graph depicts a process of intelligence report generation, 

which is initiated by a request by PA. The process identifies target users from 
the request and acquires further information about those users, both on Twit-
ter (Twitter query) and from a proprietary database, IP users profile DB. 
The results are fed to two analytics sub-processes, each of which generates a re-
port. Note that analytics 1 only uses Twitter data, while analytics 2 also 
uses query results of the proprietary database. A consolidate step follows, 
which produces a master IP report. This is checked, to validate and possibly 
also to remove sensitive information, before the final PA report is generated 
for the customer. Notice that various agents are specified as being responsible 
for some of the steps, along with their chain of responsibility, i.e., Alice acts as 
Bob’s delegate, who in turn reports to Karen, along with Charlie. 
As we can see, the full-fledged provenance graph contains information about 

IP’s internal business processes, including the use of a proprietary database, 
which IP may consider privileged. It is therefore realistic to imagine that IP 
may want to hide some of those elements. Using our selective disclosure model, 
IP marks the sensitive elements, in this case the redact activity as well as the 
references to the two analytics processes. Note that doing so does not require 
any knowledge of the graph topology, rather only of the nodes (either activities, 
entities, or agents) that are to be abstracted out. 
The PROV document represented in Fig. 1 is valid, in the sense that it 

satisfies all the constraints specified as part of the PROV standard [10]. As 
we will see in the rest of the paper, replacing the three selected nodes with 
a single abstract node (an activity in this case) while preserving the validity 
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Figure 1: Example provenance graph depicting the generation of an intelligence report. 
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Figure 2: The result of abstracting out selected nodes redact, analytics 1, and analytics 2 
from the graph in Fig. 1. 

of the document, requires that all other nodes that lie on the directed paths 
that connect these nodes are also removed. In this example, the result of such 
abstraction operation is shown in Fig. 2. 
By construction, this is a new valid PROV graph. It is therefore possible 

to further abstract out some of its nodes. For example, IP may also decide 
that mentioning the use of a proprietary data source is inappropriate. Nodes 
IP users profiles DB and IPDB query are therefore abstracted out. As these 
are both entities, the new abstract node is also an entity, as shown in Fig. 3. 
Note that, to PA, while still informative, the report now appears as if it had been 
generated from its initial request using Twitter as a data source, and without 
reference to specific analytics algorithms. 
The mechanisms by which the data and provenance owner selects the nodes 

to be abstracted are not discussed in this paper, however a policy-based model 
is described in detail in our previous work [20]. Briefly, the idea, which makes 
use of the Bell-Lapadula model [2], is that the owner assigns a sensitivity value 
to each node, and nodes are selected to be abstracted out based on a specific 
recipient’s clearance level. Thus, different recipients will potentially receive 
different abstract versions of the same graph. Note also that forcefully removing 
nodes that were not marked for abstraction has implications, too, as some of 
those non-sensitive nodes may have had evidential value that is now lost. To 
model this problem we associate a utility value to each node, and then compute 
the residual utility of the abstracted graph. The paper cited above [20] provides 
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further details. 
We observe that removal of information from a provenance graph could be 

achieved in a number of other ways. For example, one could simply remove 
the labels as well as the annotations from individual nodes and relationships, 
i.e., anonymize part of the graph. Doing so, however, does not hide any of the 
structure of the process of data production. One could further remove nodes and 
relationships or indeed entire sub-graphs. The new graph will be disconnected, 
however, making it difficult to reconstruct the lineage of the end data product, 
that is, the sequence of data derivations from the initial inputs to the outcome 
of the process. 
Instead, in our approach the selected nodes are replaced with a new abstract 

node, which is then “re-wired” to the remaining original graph. This has the 
effect of hiding parts of the process structure as it was represented in the original 
provenance, while maintaining connectivity. One can still query the lineage, 
but some of the provenance elements returned by the query will now be an 
abstraction of the actual data production process. 
The main challenge addressed in this paper is to guarantee that abstraction 

produces PROV-compliant graphs, maintaining the interoperability guarantees 
provided from having standardized PROV and ensuring that the results can be 
consumed by standard PROV tools. 

1.2. Contributions 

In this paper we develop a model and algorithm for performing abstraction 
over PROV graphs, providing the theoretical underpinning to ensure that the 
abstraction process satisfies a number of properties. For the model development 
we restrict our attention almost completely to provenance graphs that contain 
only activities and entities, and the relevant relationships wgBy and used . Work 
on extending the model to agents is less mature, and we have chosen to exclude 
consideration of agents in this paper. The wasInfluencedBy relation is a super-
property of both wgBy and used and we explore the advantages of incorporating 
it in Section 4.5. 
Our main contribution is the formal functional definition of a provenance 

abstraction operator (Group) that rewrites a PROV graph PG into a new graph 
PG0 , by (a) mapping a set Vgr of nodes (for “vertex in a group”) in PG to a 
new abstract node vnew , and (b) mapping each relationship involving elements 
of Vgr (nodes) to a new relationship involving vnew in PG0 . The set Vgr is 
chosen by the user of the abstraction operator as the set of nodes she wishes 
to hide, and the graph rewriting operator Group is defined in three steps using 
three subordinate operators, detailed in Section 4. 
Our grouping operator ensures two formal properties of PG0: firstly, validity: 

if PG is a valid PROV graph, that is, it conforms to the PROV data model [23], 
then PG0 is also a valid PROV graph. Secondly, no unjustified dependencies are 
introduced into PG0: a relationship involving vnew is only created as a result of 
a mapping from an existing relationship involving elements of Vgr . Strictly, if 
two nodes are not directly related in PG, we guarantee that they are not directly 
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related in PG0 . Note that new indirect dependencies between two nodes in PG0 , 
manifested as new paths in the graph, may be introduced, however we argue 
that these are always justified by the topology of the underlying graph PG. 
A guiding principle throughout is that of minimal damage. We require that 

the grouping operator inflicts minimum unnecessary damage on the graph, while 
meeting the first two constraints. 
It is important to observe here that the task that we set ourselves is to de-

velop this abstraction operator given an arbitrary set of nodes in the graph that 
must be abstracted. For example, we do not allow ourselves the luxury of par-
titioning the set before the Group operator is applied. Here we wish to develop 
a pure PROV graph abstraction operator that can be applied independently of, 
or in combination with, other solutions. 
Furthermore, by making the abstraction operator closed with respect to the 

set of valid PROV graphs, abstraction can be naturally composed, i.e., using 
the Group operator one can abstract PG0 into some PG00 as we have shown in 
the earlier example. 
Finally, note also that PG0 itself has also an associated provenance graph, 

that is, a record of the provenance abstraction process as it was applied to 
PG. PROV provides a syntactic facility to maintain the association between 
a provenance graph and its own provenance, namely using the “provenance of 
provenance” mechanism (i.e., bundles [23]). 

2. Related Work 

Multiple strands of research relate to our work. These include creating views 
over a provenance graph to reduce its complexity, redacting a graph (including 
non-provenance graphs, such as a social media network) to obscure or remove 
some its sensitive elements, and summarising a collection of graphs. We also 
mention graph access control and anonymisation techniques, which are more 
peripheral to our work. A more comprehensive recent survey on approaches for 
provenance sanitisation is available [11]. 

2.1. Provenance views and graph redaction 

Graph redaction is used in [5] to rewrite a graph where particular nodes, node 
properties, or relationship instances are sensitive. The technique relies on the 
notion of surrogates, which are less sensitive versions of the graph where some 
information has been either removed or replaced, depending on the clearance 
level of the user who has access to the graph. If a measure of utility is associated 
with elements of the graph, removing or redacting graph elements may reduce 
the residual utility, and may also result in loss of connectivity. The paper 
describes techniques for generating surrogates that achieve a desired protection 
level, while maximizing graph connectivity and minimising utility loss. The 
technique applies to generic graphs, for instance a social media network, and is 
also demonstrated on a provenance graph. 
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Similar elements, namely a technique for graph editing, a user clearance 
policy based on nodes sensitivity and user clearance levels, and a quantitative 
measure of utility, are indeed at the core of our own ProvAbs system [20]. 
The current paper extends ProvAbs, but policies and utility maximisation are 
not discussed as the focus is on proving validity-preservation properties of the 
redaction operator (i.e., grouping). This is indeed the main distinctive feature 
that sets our work apart from [5], where there is no such notion of a valid graph. 
Also close to our abstraction model, both in motivation and in its techni-

cal approach, is the ProPub system [15], which computes views over provenance 
graphs that are suitable for publication by meeting certain privacy requirements. 
In ProPub, users specify edit operations on a graph, such as anonymizing, ab-
stracting, and hiding certain parts of it. The operations are specified as logic 
rules, and are interpreted natively by the Datalog-based prototype implemen-
tation. ProPub adopts an “apply–detect–repair” approach, whereby user rules 
are applied to the graph first, then consistency violations that may occur in 
the resulting new graph are detected, and a final set of edits are applied to the 
graph in order to repair such violations. In some cases, this causes nodes that 
the user wanted removed to be reintroduced, and it is not always possible to 
satisfy all rules. In contrast, our grouping involves more simply a set of nodes to 
be abstracted (but note that anonymization is a particular case, when the group 
contains a single element). In return for this simplicity in the specification of 
the nodes to be grouped, our method always produces a valid abstract graph 
while ensuring that the nodes specified in the policy are removed. 
Techniques for provenance redaction that are based on graph grammars in 

combination with a redaction policy language are discussed in [9], where they 
are deployed to edit provenance that is expressed using the Open Provenance 
Model [22] (a precursor to PROV). Although the authors claim that the redac-
tion operators ensure that specific relationships are preserved, this critical issue 
is not addressed formally in the paper, i.e., with reference to the OPM se-
mantics. In contrast, the formal schema and set of constraints that come with 
PROV [23, 10] provide the necessary grounding for reasoning about the validity-
preservation properties of the editing operations. 
The concept of sound workflow views proposed in [19] is closely related to 

our notion of justified relations (cf. Section 4.3), by which we impose that only 
certain new relations can be added to a provenance graph as a consequence of 
abstraction by grouping. A view over a workflow that consists of multiple inter-
connected tasks, is obtained by forming groups of such tasks. The groups are 
connected based on the underlying original dependencies, to form a new, higher-
level workflow. By doing so, however, one may create new paths between tasks 
that were previously not reachable from each other. As a result, lineage queries 
that operate on the workflow view, and essentially compute node reachability 
by transitive closure, return spurious results. A sound view is one where the 
groupings do not produce any spurious lineage results. As the number of possi-
ble groupings is combinatorial, the paper explores heuristics for detecting and 
generating sound views. 
The problem does not directly apply to our approach to abstraction, es-
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sentially because in our case the abstraction is performed on the provenance 
graph itself, rather than on the workflow whose execution the provenance graph 
represents. It is computed over a graph using a user-chosen set of nodes, with 
the purpose of obscuring information. In particular, while it is true that new 
paths are created, it is easy to see that these always involve both a concrete 
and an abstract node either at the source or at the destination, that is, they 
involve new relations (see for instance the example in Fig. 8 on page 22). As 
these relations on the abstract graph are justified (see Section 4.3), we conclude, 
intuitively, that the new paths encode dependencies that are similarly justified 
by the underlying graph. 
Related to [19] is Zoom [4], from some of the same authors. In Zoom, the 

main assumption is that the graph is a trace that specifically represents the exe-
cution of a dataflow. This is a common occurrence in e-science, where workflows 
that follow the dataflow model are a popular high level programming paradigm. 
In this setting views over provenance are effectively a form of abstraction and 
are computed based on the user’s indication of which workflow modules (tasks) 
are relevant, or perhaps based on which modules the user has access to. Thus, 
key to this approach is knowledge of the underlying workflow structure, which is 
used to specify the nodes in the graphs to be abstracted. This sets Zoom apart 
from our work, which instead investigates the properties of a grouping operator 
independently of the origins of the trace to which it is applied. 
Also specific to workflow-generated provenance, and thus too narrow in scope 

for our purposes, is a strand of research that investigates the problem of pre-
serving the privacy of functions used in workflows, when a large number of in-
put/output pairs for those functions is revealed through the provenance traces 
of multiple workflow executions. This work on module privacy [14, 13, 12] 
is concerned with protecting the semantics of workflow modules. It applies 
anonymization techniques specifically to provenance graphs and is again cen-
tred around a workflow-specific form of provenance and is thus also peripheral 
to our interest. 
2.2. Provenance Access Control 
Most of the work on protecting access to sensitive provenance includes policy 

models that extend traditional data Role-Based Access Control (RBAC), with a 
distinction made between PBAC (Provenance-Based Access Control) and PAC 
(Provenance Access Control). PBAC is about policy to specify access rights to 
data objects based on their provenance. An example, from [24], is a rule of the 
form “only the student submitter can access the graded homework object”. This 
rule can be enforced by looking for a dependency path in a provenance graph, 
whereby a given homework is attributed to a specific student (i.e., relation 
IsAuthoredBy in the Open Provenance Model). This assumes that the object’s 
attribution is explicit in the provenance graph. It is less clear how such a rule 
would be evaluated when the provenance is incomplete with respect to such 
attribution dependency, however. 
PAC, or how to enforce access control on parts of a provenance graph, is 

more directly relevant to our work. An analysis of some of the challenges asso-
ciated with secure provenance exchange can be found in [6], where examples are 
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presented that show how the provenance of data can be more sensitive than the 
data itself. Another position paper [17] describes the challenges associated with 
the exchange of provenance across multiple partners, in a setting where forgery 
of provenance by malicious users is a possibility, and where users may collude 
to reveal sensitive provenance to others. These are all common and complex 
security problems. Unfortunately, the paper stops short of providing any hints 
at technical solutions, and indeed it is not clear how these problems are specific 
to provenance, as opposed to data sharing in general. 
A concrete specification of an access control system or provenance [8] consists 

of a XACML-based policy language, in which path queries are used to specify 
target elements of the graph, as well as an implementation architecture and a 
prototype. 

2.3. Summarisation of provenance graphs 

A loosely related strand of research in this area aims at summarising a col-
lection of provenance graphs by constructing a “super-graph” that captures the 
common features across a collection of similar graphs, such as those that are 
produced by repeating execution of a process with different inputs and param-
eters. This has been addressed with an aim to improve provenance queries [16], 
as well as to provide a compact but approximate representation of provenance at 
the possible cost of information loss [1]. This work is only peripherally relevant 
here, as our approach only operates on one graph at a time. 
In [21] a mechanism is proposed to automatically construct aggregations 

from a single PROV graph. This relies on the concept of provenance types, 
which are fixed-length paths in the graph that occur more than once. The 
aggregation is defined as a mapping from provenance nodes to the provenance 
types, and there is a way to connect these types into a new PROV-like graph, by 
similarly mapping the graph edges to new weighted edges. The result is a new 
graph that is meant to capture the “essence” of a fine-grained set of provenance 
statements by observing regularities in the original graph. This is substantially 
different from our approach, namely (i) the choice of nodes to aggregate is 
driven by the discovery of provenance types, which is entirely driven by graph 
topology and not by a user choice, and (ii) there is no intent to generate valid 
PROV graphs, which is instead the main goal of our transformation. Thus, 
the approach is not suitable to support policy-driven (or other user-oriented) 
selective disclosure, and the aggregation operation produces a graph that may 
violate PROV constraints. 

2.4. General graph anonymization 

For completeness, we briefly mention more general techniques for graph 
editing, largely motivated by the need to preserve privacy in social network 
data. This body of work, which is not specific to provenance, extends the well-
known data anonymization framework developed for relational data to graph 
data structures [25, 3, 18]. The main idea is to randomly remove arcs between 
two nodes and replace them with new ones. As arcs in PROV graphs represent 
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wasGeneratedBy

wasInformedBywasDerivedFrom

Figure 4: Core elements of the PROV model, adapted from [23]. 

relationships with a given semantics, this approach generally results in false 
dependencies being created in the edited graph, and is therefore not viable. 
The main value of this body of work in this setting, as summarised in [26], is 
to ensure that various forms of anonymization are provably robust to attacks 
from adversaries who can potentially leverage their partial information about 
fragments of the graph, to infer additional knowledge. In this paper we do not 
discuss the robustness of abstraction by grouping, indeed we do not consider 
any specific threats, and so the challenge of preventing the reconstruction of the 
abstracted fragments of provenance graphs is left for future work. 

3. Background 

3.1. Core PROV model 

We now introduce the core elements of the PROV model, which forms the 
basis for the grouping operator. We maintain a dual view of provenance, both 
as a relational model (with binary relations) and as a graph model. Viewed as 
a relational model, PROV includes the three types of elements: Entities (En), 
Activities (Act), and Agents. However in this paper we restrict our attention 
to entities and activities and the relations between them. Agents have proved 
difficult to incorporate into our framework, but the results we have with entities 
and activities are worth recording. In line with the description in [23] (Section 
2), PROV is defined by the following core relations, with common abbreviations 
in brackets. 

Used (used) ⊆ Act × En 

WasGeneratedBy (wgBy) ⊆ En × Act 

WasDerivedFrom (wasDerivedFrom) ⊆ En × En 

WasInformedBy (wasInformedBy) ⊆ Act × Act 

These are summarized in Fig. 4. 
We note that, when considering graphs containing the relations wasInformedBy 

and wasDerivedFrom, we can replace those relations with patterns involving only 
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grouping. 

used and wgBy using Inference 5 (communication-generation-use-inference)1 

and Inference 11 (derivation-generation-use-inference)2 in the PROV-CONSTRAINTS 
document [10]. This replacement has to be handled with care, however. In 
the case of wasInformedBy and Inference 5, PROV-CONSTRAINTS contains a 
corresponding inference (Inference 6, generation-communication-use-inference)3 

that allows the reverse replacement, but there is no such reverse replacement 
for wasDerivedFrom and Inference 11, meaning that the original graph cannot 
be inferred back again, and in general the use of Inference 11 loses information. 

As the relations that we consider (used and wgBy) are binary, we can view 
a provenance graph D as a bipartite digraph G = (V , E ), where V = En ∪ Act, 
and each relation instance maps to a labelled directed edge. By convention, we 
orient these edges from right to left, to denote that the relation “points back 

wgBy used 
to the past”. Thus: a ←−−− e ∈ E iff wgBy(e, a) ∈ D , and e ←−− a ∈ E iff 
used(a, e) ∈ D . We denote the label associated to edge (vi , vj ) as label(vi , vj ). 
We denote a generic such graph by PGgu/ea , to indicate that it only contains 

En and Act nodes, and wgBy and used edges. In the rest of this paper we will 
equate provenance documents with their graphical models. Fig. 5 portrays a 
simple PGgu/ea graph that we will be using as a running example. 

3.2. Events in PGgu/ea 

Central to PROV is the notion that provenance is marked by events. A par-
tial order is defined over events, so that it may or may not be possible to establish 
whether or not one event precedes another. Events occur instantaneously, and 
they mark the lifetime boundaries of Entities (generation, invalidation), Activ-
ities (start, end), and Agents (start, end), as well as some of the interactions 
amongst those elements. These include the generation and usage of an entity 

1https://www.w3.org/TR/prov-constraints/#communication-generation-use-inference 
2https://www.w3.org/TR/prov-constraints/#derivation-generation-use-inference 
3https://www.w3.org/TR/prov-constraints/#generation-communication-use-inference 
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by an activity, attribution of an entity to an agent, and more. More specifically, 
the PROV-CONSTRAINTS document [10] defines the following types of events 
(quoted verbatim from Section 2.2): 

• An activity start event is the instantaneous event that marks the in-
stant an activity starts. 

• An activity end event is the instantaneous event that marks the instant 
an activity ends. 

• An entity generation event is the instantaneous event that marks the 
final instant of an entity’s creation timespan, after which it is available for 
use. The entity did not exist before this event. 

• An entity usage event is the instantaneous event that marks the first 
instant of an entity’s consumption timespan by an activity. The described 
usage had not started before this instant, although the activity could 
potentially have used the same entity at a different time. 

We denote the start and end events of an activity a as start(a), end(a), 
respectively, and we write ev(wgBy(e, a)) and ev(used(a, e)) to refer to events 
associated to instances wgBy(e, a) and used(a, e)) of entity generation and us-
age, respectively. 
As an example, in the graph of Fig. 5 the generation relation wgBy(e4, a1) 

has an associated generation event ev(wgBy(e4, a1)), whilst a1 has start and / 
or end events, written start(a1) and end(a1), respectively. Similarly, usage of 
e4 by a2 is marked by event ev(used(a2, e4)). 

3.3. Constraints and valid PGgu/ea graphs 

Validity of a PROV document is defined in terms of a set of constraints, as 
stated in the PROV-CONSTRAINTS document [10]. For instance, Constraint 
55 (“entity-activity-disjoint”) states that the Entities and Activities are disjoint: 

En ∩ Act = ∅ 

used used
Thus, a provenance graph PG in which both (1) a1 ←−− e1 and (2) e1 ←− − a1 

cannot be valid, because by definition (1) entails e1 ∈ En, a1 ∈ Act, while (2) 
entails a1 ∈ En, e1 ∈ Act, violating the constraint. We refer to this constraint 
in the sequel as C1. 
In this paper we are mainly concerned with temporal constraints which apply 

to PGgu/ea instances and determine admissible partial orderings over events. 
More precisely, let � ⊂ Ev × Ev denote a pre-order relation4 on the set Ev 
of events associated to instances of activities and relations as defined above. 

4Recall that a pre-order is a binary relation with reflexivity and transitivity, but no sym-
metry or anti-symmetry. 
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For a PROV document to be valid, � is required to satisfy the following set of 
constraints5(using the original numbering in [10]): 

• C2: generation-generation-ordering (Constraint 39): If an entity 
is generated by more than one activity, then the generation events must 
all be simultaneous. 

Let gen1 = ev(wgBy(e, a1)), gen2 = ev(wgBy(e, a2)) ∈ PG. Then 

gen1 � gen2, gen2 � gen1 

must hold. 

• C3: generation-precedes-usage(Constraint 37): A generation event 
for an entity must precede any usage event for that entity. For any a ∈ Act 
such that used(a, e) ∈ PG, 

ev(wgBy(e, a)) � ev(used(a, e)) 

must hold. 

• C4: usage-within-activity (Constraint 33): Any usage of e by a 
cannot precede the start of a and must precede the end of a. For any 
e ∈ En, a ∈ Act such that used(a, e) ∈ PG: 

start(a) � ev(used(a, e)) � end(a) 

• C5: generation-within-activity (Constraint 34): The generation of 
e by a cannot precede the start of a and must precede the end of a. Let 
wgBy(e, a) ∈ PG: 

start(a) � ev(wgBy(e, a)) � end(a) 

Additional relevant constraints state that multiple start (resp. end) events 
must all be simultaneous, and that the start event of an activity must precede 
the end event for that activity. 

Definition 1 (Validity). A graph G ∈ PGgu/ea is valid iff it satisfies con-
straints C1-C5. 

In the next section we present the Group operator. We will return to the 
constraints above in Section 5, where we propose a new set of abstract events 
that are derived from these and apply to the abstract graphs. 

5For simplicity, entity invalidation constraints are not considered. 
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4. Grouping Provenance graph nodes 

As mentioned in Section 1.2, our goal is to define a graph editing operator 
that selectively removes information from a graph G ∈ PGgu/ea , yielding a new 
graph G 0 ∈ PGgu/ea . We require the final operator to remove all the chosen 
nodes, and replace them by a single abstract node. As discussed in Section 1.1, 
this may be to avoid inadvertently revealing any internal business processes or 
details about the chain of command. Furthermore, we wish the modified graph 
to be a valid PROV graph, in the sense that the relations and constraints from 
Section 3 are respected. This will allow the output to be consumed by any 
system capable of reading the PROV language. 
In this section, we focus exclusively on the definition of the Group graph 

transformation operator as the prime way to achieve abstraction over provenance 
graphs. Group takes a graph G ∈ PGgu/ea with nodes V and edges E and a 
subset Vgr ⊂ V of its nodes that the user wishes to hide and produces a modified 
graph G 0 ∈ PGgu/ea . The nodes in Vgr are “grouped” together and replaced 
by a new single node. The Group operator has the following signature, where 
P(V ) is the powerset of the nodes V of the graph G : 

Group : PGgu/ea × P(V ) → PGgu/ea (1) 

As the operator is closed under composition, further abstraction can be 
achieved by repeated grouping, either on multiple disjoint sets Vgr , or on sets 
that include abstract nodes (abstraction of abstraction). 
We take a functional approach to the definition of Group, by defining three 

subordinate functions and then defining Group as the functional composition of 
these subordinate functions. 
In Section 4.1 we make the simplifying assumption that the set of nodes 

to be removed are all of the same type (either all En or all Act). We refer 
to this as homogeneous grouping and the replacement node is implicitly of the 
same type as the nodes selected to be removed. In Section 4.2 we remove 
this assumption, so the group of nodes initially selected to be removed can 
contain both entities and activities. A consequence of this is that the type of 
the replacement node is no longer implicit, and must be explicitly given. This 
leads to two variants of the operator, depending on which type (En or Act) is 
chosen for the final replacement node. In Section 4.2 we also identify an issue 
arising from simultaneous generation, and show how it may be circumvented, 
leading to a further variant of Group. 
In Section 4.3 we show that the relations in the abstract graph produced by 

any of the Group operators are justified by the original graph. In Section 4.4 we 
discuss the complexity of the operator, and in Section 4.5 we explore alternative 
approaches to abstraction. 

4.1. Closure and homogeneous grouping 

In this subsection we present the homogeneous version of the Group operator 
that will replace a selected set of nodes with an abstracted one, working under 
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the simplifying assumption that all the nodes selected to be removed are of the 
same type. As stated previously, we also wish to ensure that the final abstracted 
graph is a valid PROV graph. 
Let the set of nodes to be replaced in a graph G be Vgr . An issue, pointed out 

in the description of the ProPub system [15], mentioned earlier, is that removing 
Vgr and replacing it with a single node can lead to cycles in the modified graph. 
Intuitively, this occurs when Vgr is not “convex”, that is, there are paths in the 
graph that lead out of Vgr and then back in again. 
This suggests the introduction of a preliminary closure operation pclos(), 

which ensures acyclicity by capturing and including all the nodes on paths 
between nodes in the initial group. It is defined as follows. 

Definition 2 (Path Closure). Let G = (V , E ) ∈ PGgu/ea be a provenance 
graph, and let Vgr ⊂ V . For each pair vi , vj ∈ Vgr such that there are one or 
more directed paths vi ; vj in G, let Vij ⊂ V be the set of all nodes in all paths 
vi ; vj . The Path Closure of Vgr in G is S 

pclos(Vgr , G) = Vijvi ,vj ∈Vgr 

Fig. 6 illustrates pclos() in the transition from Fig. 6(a) to Fig. 6(b). pclos() 
is performed on the set {e1, e3, e4, e5}, G), resulting in the set {e1, e3, e4, e5, a1, a3}
in Fig. 6(b). We assume, for the moment, that nodes in pclos(Vgr , G) induce 
a single connected subgraph under G . 
However, while the application of pclos() ensures that the group to be ab-

stracted is free from cycles, simply replacing the shaded nodes in Fig. 6(b) with 
a single node e 0 is not sufficient. This is because the resulting graph would no 

0 0longer be bipartite, since the new edges e → e2 and e → e6 would connect 
nodes of the same type. 
To ensure that the eventual node replacement preserves the type-consistency 

of graph, we also require all the set boundary nodes (nodes in the defined set 
connected to nodes outside the set) to be of the same type. In the example in 
Fig. 6 we must extend the shaded set in Fig. 6(b) to include e-nodes e2, e6, as 
shown in Fig. 6(c). We define a second operator extend() to do this. 
Formally, the application of extend() to a set Vgr ⊂ V relative to type 

t ∈ {En, Act} will be Vgr augmented with all its adjacent nodes, in either 
direction, of type t . In this way all boundary nodes of our group will have type 
t . 

Definition 3 (extend). Let G = (V , E ) ∈ PGgu/ea , t ∈ {En, Act}. vs and vd 

are the source and destination nodes of a relationship. 

extend(Vgr , G , t) = 
Vgr ∪ 
{vd | (vd ← vs ) ∈ E ∧ vs ∈ Vgr ∧ vd 6∈ Vgr ∧ type(vd ) = t} ∪ 
{vs | (vd ← vs ) ∈ E ∧ vs 6∈ Vgr ∧ vd ∈ Vgr ∧ type(vs ) = t} 

17 



a1

a3

e4

e5

a2

a4e3

e2

e1
used

used

used

used

wgBy

wgBy

e6

a5
pclos() a1

a3

e4

e5

a2

a4e3

e2

e1
used

used

used

used

wgBy

wgBy

e6

a5

(a) (b)

extend()

outcut edges incut edges

a1

a3

e4

e5

a2

a4e3

e2

e1
used

used

used

used

wgBy

wgBy

e6

a5

(c)

a2

a4

used

used

a5

(d)

vnew
wgBy replace()

wgBy

used

used

used

used

used

used

used used

used

used

used

used

wgBy

wgBy

Figure 6: Path closure and replacement with extension to a set of entity nodes. 

In the example in Fig. 6 nodes e2 and e6 are now included, and 

extend({e1, e3, e4, e5, a1, a3}, G , En) = {e1, e3, e4, e5, a1, a3, e2, e6} 

as shaded in Fig. 6(c). To see that this is a minimal extension, in the sense that 
nodes are only included if necessary, observe that a new node is only included 
if i) it is of type t and ii) it is adjacent to a node already in the set. Finally, we 
can replace the collected nodes with a new abstract node, as shown in Fig. 6(d). 
The function replace() is defined to do this. 
Let V ∗ ⊂ V be obtained using pclos() then extend(), as outlined above, and 

let vnew be a new node that does not appear in V . Function replace() replaces 
V ∗ with vnew in V , and connects vnew to the rest of the graph. To aid us in the 
definition, we begin by defining the outcut, incut and the internal edges of V ∗ . 
The incut and outcut of the group of shaded nodes in Fig. 6(c) are marked. 

Definition 4. Let ϑout (V ∗) denote the outcut of G associated with V ∗ , defined 
as the set of arcs of G pointing out of V ∗ , let ϑin (V ∗) denote the incut of G 
associated with V ∗ , i.e., the set of arcs of G leading into V ∗ , and let ϑint (V ∗) 
denote internal edges, that connect two nodes inside V ∗ . ϑout (V ∗), ϑin (V ∗) 
and ϑint (V ∗) are given by: 

ϑout (V ∗ ) = {(vd ← vs ) | vs ∈ V ∗ , vd ∈ V \ V ∗ } 
ϑin (V ∗ ) = {(vd ← vs ) | vd ∈ V ∗ , vs ∈ V \ V ∗ } 
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ϑint (V ∗ ) = {(vd ← vs ) | vd , vs ∈ V ∗ } 

Function replace() replaces each arc (vd ← vs ) ∈ ϑout (V ∗) with a new arc 
(vd ← vnew ) of the same type, and replaces each arc (vd ← vs ) ∈ ϑin (V ∗) with 
a new arc (vnew ← vd ) of the same type. Arcs in ϑint (V ∗) simply disappear 
along with the nodes in V ∗ . 
The definitions of ϑ0 (V ∗) and ϑ0 in (V ∗) below define the final part of theout 

“rewiring” carried out by replace(). 

Definition 5. Let ty ∈ {used , wgBy}. Then: 
ty ty

ϑ0 (V ∗ ) = {(v ← ) | v ←− vout − vnew 
0 ∈ ϑout (V ∗ ) 

ty ty0ϑ0 ← ←− v ∈ ϑin (V ∗ )in (V ∗ ) = {(vnew − v) | v 

And the full definition of replace() is 

Definition 6 (replace). 

replace(V ∗ , vnew , G) = (V 0 , E 0), where: 

V 0 = V \ V ∗ ∪ {vnew } 
E 0 = E \ (ϑout (V ∗ ) ∪ ϑin (V ∗ ) ∪ ϑint (V ∗ ))}

∪ ϑ0 (V ∗ ) ∪ ϑ0 out in (V ∗ )} 

It is easy to verify that the resulting graph is type-correct. All boundary 
nodes in V ∗ are of the same type t ∈ {En, Act}, as noted above, and vnew is of 
type t by construction. Since the arcs have the same type as those they replace, 
it follows that replace() preserves type correctness. 
We now provide an initial definition of our Group() operator, under the 

simplifying assumption that all nodes in Vgr are of the same type before closure. 
We denote this type by type(Vgr ) (with a slight abuse of notation), and denote 
the initial definition of Group as Grouphom . Definitions 8 and 9 in Section 4.2 
remove the assumption of type-homogeneity. 
Under assumption of type homogeneity, the grouping operator is a functional 

composition of pclos(), extend(), and replace() functions, defined as follows. 

Definition 7 (Homogeneous Grouping). Let G = (V , E ) ∈ PGgu/ea , Vgr ⊆ 
V be a type-homogeneous set, and let vnew be a new node with type(vnew ) = 
type(Vgr ). 

Grouphom (G , Vgr , vnew ) = 

replace( 

extend( 

pclos(Vgr , G), V , type(Vgr )), vnew , G) 

19 



a1

a3

e4

e5

a2

a4e3

e2

e1
used

used

used

used

wgBy

wgBy

e6

a5
pclos()

(a) (b)

a1

a3

e4

e5

a2

a4e3

e2

e1
used

used

used

used

wgBy

wgBy

e6

a5

(c)

a1

a3

e4

e5

a2

a4e3

e2

e1
used

used

used

used

wgBy

wgBy

a5

extend()

(d)

e2

e1

used

e6

a5

anew

replace()

outcut edges

used

(a)

wgBy

used

used
used

used

used

used

wgBy
used

usedused

used

used

wgBy

wgByused

used

e6

used
e3

Figure 7: Path closure and replacement with extension to a set of activity nodes. 

Fig. 7 shows the application of Grouphom to a set of Activity nodes. The 
progression is similar to that of Fig. 6. This time type(v) = Act for each 
v ∈ Vgr = {a1, a2, a3}, and Vgr is replaced by another activity node, anew . The 
pclos operator ensures that the nodes e4 and e5 are included (Fig. 7(b)), and 
the extend operator includes the activity node a4 in Fig. 7(c). Note that there 
are no incut edges: ϑin (V ∗) = ∅. All shaded nodes are replaced with anew and 
the graph is rebuilt by the operator replace(). In the next section we remove 
the assumption that all the nodes initially selected are of the same type. 

4.2. Generalization to e-grouping and a-grouping 

So far we have described the grouping operator in terms of the component 
functional parts. We have been operating under the assumption made in Defi-
nition 2: that there is only one subgraph induced by pclos(Vgr , G). In the case 
where we have two or more subgraphs, the extend() operator and the replace() 
operator would iterate over the set of subgraphs produced, and be applied to 
each subgraph separately. 
We have also been operating under the assumption of group homogeneity: 

that all nodes in Vgr are of the same type. Additional care must be taken if we 
allow Vgr to include both node types. The type of the replacement node must 
now be specified, as it is no longer implied from the type of the nodes in Vgr . 
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Indeed, the choice of the type can lead to different abstracted graphs. Thus, we 
will now refer to grouping as t-grouping, where t ∈ {En, Act}, i.e., e-grouping 
or a-grouping. 
Consider Fig. 8. Fig. 8(a) is a subgraph of our running example. Fig. 8(a-1, 

a-2) illustrates the application of the Grouphom operator (Def. 7), assuming 
a-grouping and Vgr = {e4, a2}. Although pclos has no effect, the extension 
incorporates activity node a1 because the boundary nodes for the set to be 
replaced must be of type Act. In Fig. 8(a-2) replace replaces all these nodes 
with anew and edits the edges of the graph accordingly. 
Consider now the case of e-grouping in Fig. 8(e-1, e-2). Again, pclos has no 

effect, but the extension leads to the incorporation of e5, which in turn leads to 
the pattern shown in Fig. 8(e-2), involving two generation events for the new 
entity enew . Although this is a valid pattern, the two generation events must 
be simultaneous (this is one of the temporal constraints defined in [10]): 

ev(wgBy(enew , a1)) � ev(wgBy(enew , a3)) ∧ (2) 

ev(wgBy(enew , a3)) � ev(wgBy(enew , a1)) (3) 

The intuitive interpretation for this pattern is that each of the two activities 
generated one entity in the group represented by enew , and that the abstraction 
makes these two events indistinguishable. Formally, nothing further needs to be 
done to the graph. We will explore the implications of the event ordering rules 
further in Section 5. However it is more natural for a PROV graph to record an 
entity as having been generated by a single activity, and to record a single event 
of generation. We can restore, if desired, the more natural pattern whereby one 
single event is recorded as having generated enew . This is achieved by forming 
a single generating activity, by merging the set of generating activities together 
as a new (abstract) node anew . In the example, this leads to the graph in 
Fig. 8(e-3). 
We now formalize these considerations by introducing two definitions for 

Group. The first, which we call t-grouping where t ∈ {En, Act}, is agnostic 
of multiple generation patterns, while the second (strict e-grouping) applies a 
further step to e-grouping to ensure that the new graph is free from multiple 
generation patterns. Note that a-grouping does not need a similar strict ver-
sion, since the new node, an activity, does not have the possibility of multiple 
generation. 

Definition 8 (t-Grouping). Let G = (V , E ) ∈ PGgu/ea , Vgr ∈ V , t ∈ 
{En, Act}, and let vnew be a new node with type(vnew ) = t. Then: 

Group(G , Vgr , vnew , t) = 

replace(extend(pclos(Vgr , G), V , t), vnew , G) 
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Figure 8: e-grouping and a-grouping on mixed type nodes

Note that the assumption that boundary nodes in the closure are homoge-
neous still holds in this case.

Strict e-grouping performs the further step illustrated in the transition from
Fig. 8(e-2) to Fig. 8(e-3). Note that the Group operator can only produce a
multiple generation pattern if type(vnew ) = En.

Definition 9 (Strict e-Grouping). Given G = (V ,E ) ∈ PGgu/ea , Vgr ∈ V ,
t ∈ {En,Act}, and a new node vnew with type(vnew ) = En, let

G ′ = (V ′,E ′) = Group(G ,Vgr , vnew , En).

Let Vgen = {a ∈ V ′ | a
wgBy←−−− vnew ∈ E ′} be the set of activity nodes that

generate vnew according to G ′, and let anew be a new activity node. Then:

Groupstr(G ,Vgr , vnew , t) =

{
G ′ if |Vgen | ≤ 1

replace(Vgen , anew ,G
′) otherwise

4.3. Justifying relations

In this section, we clarify what it means to say that relations in the abstract
graph are justified, and show that the relations produced by the Group operator
(more properly, the family of Group operators) are justified.

Definition 10. An abstract node is justified by the concrete graph if (i) it ap-
pears unchanged in the concrete graph, or (ii) it is a new node representing a
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set of concrete nodes, and one of the concrete nodes has the same type as the 
abstract node. An abstract relation between two nodes is justified if (i) the nodes 
are justified (in either sense (i) or (ii) above) and (ii) the type of the abstract 
relation is unchanged. An abstract graph is justified if the nodes and relations 
in it are justified. 

To see that the Group operator produces justified abstract graphs, consider 
two graphs: a concrete one, C , represented by the graph GC = (VC , EC ), and 

A At 
an abstract one A, represented by the graph GA = (VA, EA). If (v ←− v ) isd s 
a relation in EA of type t , we need to show that there is a justifying relation 

0tC C(vd0 ←− vs0 ) in EC . Observe too that the Group operator removes some nodes 
from GC but produces only one new node vnew in GA, so there are three cases to 

A C A Cconsider. Either (i) the relation is unchanged, so v = vd0 , t = t 0 and v = v 0 ;d s s 
or (ii) the destination or (iii) the source node is a new (and therefore abstract) 
node which the Group operator has inserted as a replacement for a set of nodes, 
and the other node is unchanged. In all cases the type of the relation must be 
unchanged, so t = t 0 . 

ATo see that relations are justified in this sense, consider how the nodes vd 
A A At

and v in (v ←− v ) were identified. s d s 
Considering case (i) first, we need to show that the type of the relation 

A Aremains unchanged during the abstraction operation. But since v and v have s d 
C Cnot changed from the concrete graph, we know that v , v ∈ V \ V ∗ . From s d 

this, and observation of Definition 4, it follows that none of ϑout (V ∗), ϑin (V ∗), 
A Aand ϑint (V ∗) apply and so, by Definition 6, neither v or v is removed froms d 

VC in the transformation by Group to VA. Thus the relationship is maintained 
in EA, and the type of the relation in EA does not change, t = t 0 . 

A AConsider next case (ii), in which v is the new node vnew and v is un-d s 
changed. In this case, to justify the new relation, we need to show that there 

0tC Cis a relation (vd0 ←− v s0 ) in E , and that the operation of Group produces the 
t A V C t 0relation (vnew ←− v ) in EA, where V A = s0 and t = . We see this by s s 

considering the definition of ϑin (V ∗) in Definition 4. The source of the relation 
is unchanged, since vs ∈ V \ V ∗ , so it is not in the set V ∗ that has been chosen 
to be abstracted. The type of vnew is given by the type of the boundary nodes 
in V ∗ , and the replacement relation is given by the definition of ϑin 

0 (V ∗) in 
Definition 5, from which we see that the source and type of the relation are 
unchanged in EA. 

A ACase (iii) is similar, except that vs is the new node vnew and vd is un-
changed, and follows from inspection of ϑout (V ∗) and ϑ0 (V ∗).out 
To see that this reasoning applies across all group operators (grouphom , t-

grouping, e-grouping and strict e-grouping), observe that the definitions called 
upon in the reasoning above are the definitions of ϑin , ϑout , ϑint , ϑ

0 
in , and ϑ0 out 

in Definitions 4 and 5, and the definition of replace in Definition 6, and that 
these do not change across any of the grouping operators. 
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4.4. Complexity of grouping operators 

The grouping operator ensures that the validity of a PROV graph is pre-
served, that is, the abstracted graph that results from a valid PROV graph 
does not violate PROV constraints. Such a guarantee, however, comes at a cost 
which is defined by the complexity of the pclos() and extend() operators. Here 
we analyse their worst-case complexity. Firstly, observe that the closure opera-
tor can be reduced to a special case of the node reachability problem for acyclic 
digraphs. Specifically, given two nodes v1, v2 ∈ Vgr such that v1 is reachable 
from v2, we need to collect all nodes along all paths that connect v1 to v2. This 
can be accomplished by enumerating all nodes x that are reachable from each 
v ∈ Vgr while keeping track of the corresponding paths. Whenever x ∈ Vgr , we 
collect all nodes along the recorded path from v to x . 
It is easy to see that the worst-case scenario occurs when the nodes in Vgr 

are located at the two ends of the graph, i.e., they are either source or sink 
nodes. In such case, the reachability algorithm needs to visit all nodes V and 
all edges E in the graph, and it must additionally keep track of all edges it 
traverses. 
Using a simple BFS approach, we can solve the reachability problem in O(|V |

+ |E|) steps, which in the worst-case is O(|V |2), with O(|E|) space complexity 
for recording all edges. Note that the many algorithms that exist to address the 
problem aim to strike a balance between the cost of pre-processing the graph 
in order to efficiently answer multiple reachability queries, and the complexity 
of each individual query. In our case, however, there is little advantage in pre-

6processing as we expect the closure over Vgr to be computed only once. 
An experimental evaluation of the actual cost of computing closures in prac-

tice is beyond the scope of this paper, which is focused on the theoretical un-
derpinnnings of the abstraction operations. However, two factors suggest that 
the practical complexity will be considerably less than the worst-case. Firstly, 
we can stop the graph traversal as soon as we have visited all Vgr nodes. Unless 
one of those is a sink node, this results in pruning part of the graph. Note also 
that in this case the abstraction will consist of one single abstract node that 
represents the entire graph, because the closure will include all nodes, which 
is unlikely to be a desired outcome. And secondly, in a PGgu/ea graph not 
all edges are allowed, in fact PGgu/ea graphs are bipartite with respect to the 
nodes types (entities and activities). Furthermore, there is at most one gener-
ating activity per entity. These factors greatly reduce the expected number of 
edges to much less than the theoretical maximum |V |2 . 
Regarding the extend() operator, note that this requires all nodes in pclos(Vgr , G) 

to be visited in order to check their type and possibly extend the closure to their 
immediate successors. This is a linear problem in the worst case, namely when 
the closure contains all nodes in the graph. 

6Note however that, when consecutive abstraction rounds are envisioned, i.e., abstraction 
over abstracted graphs, pre-processing may be appropriate, but that needs to be balanced 
against the cost of updating the data structures after each abstraction round. 
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4.5. Alternative approaches 

An alternative weaker approach to abstraction. Our entire approach is based on 
the premise that we aim to preserve the original used and wgBy relationships, 
possibly at the expense of incorporating additional nodes into the abstraction, 
i.e., by means of the extend() operator. For completeness, we mention here one 
alternative approach which replaces affected wgBy and used relationships with 
a weaker generic relationship. The PROV influence relationship is defined as 
An influence relation between two objects o2 and o1 is a generic dependency of 

7o2 on o1 that signifies some form of influence of o1 on o2 . 
The generic nature of the influence relationship, denoted wasInfluencedBy , 

is captured formally in the PROV-CONSTRAINTS document [10], specifi-
cally Inference 158 which states that wasInfluencedBy(id ; e, a, attrs) follows 
from both used(id ; a, e, t , attrs) and from wgBy(id ; e, a, t , attrs), and that 
wasInfluencedBy(id ; a2, a1, attrs) follows from wasInformedBy(id ; a2, a1, attrs). 
This inference rule justifies replacing used and wgBy relationships with the 

weaker wasInfluencedBy as needed. Consider Fig. 9, where the starting point 
is the same as in Fig. 8 and the goal is to abstract the set {e2, a2}. As we 
have seen, this can be accomplished through either e-grouping or a-grouping. 
Considering first a-grouping (on the left hand side of Fig. 9), first we generalise 
e4 wgBy a1 to e4 wasInfluencedBy a1 as shown on the left hand side. At this 
point, a2 and e4 are collapsed into the new anew node, but notice that there is 
no need to expand the grouping set, i.e., to include a1, because the new PROV 
graph at the bottom left is already type-correct. In particular, anew2 used e5 is 
a legal relationship, and is justified according to the argument in the previous 
section. 
Similarly, we can easily construct a valid abstract PROV graph for e-grouping 

without using extend(), by first generalising a2 used e5 to a2 wasInfluencedBy e5, 
then creating the abstract entity node enew , and connecting the node to the rest 
of the graph as shown in the bottom right part of the figure. 
With this approach we relax the requirement that the original relationships 

be preserved, accepting to use the more generic wasInfluencedBy relationship in 
return for not having to expand the grouping set to include “boundary” nodes 
to ensure type-correctness. 

Note on subdivision of input set. A second alternative approach is to sub-
divide the initial set chosen by the user into multiple smaller sets, thereby re-
ducing the amount of extra information hidden. This subdivision could be done 
manually, at the cost of a greater cognitive load for the user, but ideally would 
be done automatically, with the algorithm searching for an “ideal” subdivision 
according to some optimisation function. Care would be required to develop 
this algorithm. For example the subdivision could be taken to its logical limit 
by abstracting individual nodes, but this would have to be balanced against 

7https://www.w3.org/TR/prov-dm/#term-influence 
8https://www.w3.org/TR/2013/REC-prov-constraints-20130430/#influence-inference 
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Figure 9: Abstraction by relationship generalisation 

the increasing revelation of the structure of the graph. Understanding these 
trade-offs to develop an automatic approach would require substantial testing 
and evaluation. 
This approach would also require a measure of evaluating the “damage” to 

a graph caused by an application of an abstraction operator. We address the 
issue of damage evaluation in [20] where we present a simple policy model and 
language for controlling abstraction, in the context where provenance owners 
want to control the disclosure of their provenance graphs. There, the owner 
defines a policy which results in a sensitivity value being associated with nodes, 
which gives us a means of evaluating the “damage” to a graph caused by the ab-
straction operator. In [20] we do this by means of defining a property utility as 
a counterpart to sensitivity. It is used to indicate the interest of the provenance 
owner in ensuring that a node be retained as part of the graph, as it represents 
important evidence which is not sensitive. The utility values associated to dif-
ferent nodes are used to quantify any loss of utility as a result of the application 
of group though a measure of residual utility. If we write the utility of a node n 
as u(n), and Vret = V /Vgr is the set of nodes not intended to be hidden, and 
V 0 ⊂ Vret the nodes which were in fact retained after grouping, the residualret 
utility is simply 

Σn∈V 0 u(n)
RUV = ret (4) 

u(n)Σn∈Vret 
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which is a measure of the proportion of the graph utility not selected by the 
grouping operator. 
We believe that subdivision of the initial user input will be valuable in situ-

ations where the users requires a further dimension of control over provenance 
disclosure, but that the costs and benefits would be explored with respect to a 
particular user context. Thus, we regard further investigation of this approach 
as out of scope for the present paper. 

4.6. Summary 

We have presented operators that abstract information in a provenance 
graph. We first presented homogeneous grouping (in Section 4.1), in which 
the user selects a set of nodes of the same type, and for which the new, abstract 
node retains that type. Section 4.2 extended this work to allow the user to select 
any nodes, at the expense of having to chose the type of the final, abstract, node, 
and gave a further extension to deal with a problem arising from simultaneous 
generation of events. Section 4.3 showed that the newly created relations were 
justified by the original graph. Section 4.4 discussed the complexity of the new 
operator, and Section 4.5 briefly discussed two alternative approaches: making 
use of the wasInfluencedBy operator and subdivision of the input set of nodes. 

The Group operator preserves schema validity: the extend operator ensures 
that all the nodes to be replaced have the same type and so the replace op-
erator maintains type consistency. This is true because of the restricted focus 
of this work: we are considering PGgu/ea graphs which contain only entities 
and activities. Section 5 shows how event validity is ensured by identifying an 
order-preserving mapping between from abstract to concrete events. 
It is clear that, in order to meet our initial requirement of maintaining type-

correctness of the abstracted graph, in general more nodes than just the original 
ones selected will have to be hidden. This has implications for the use of this 
operator, especially given that hidden information may be a critical part of the 
graph. The choice that we make in this paper is to develop the abstraction 
operator ensuring first of all that abstract graph produced is valid and justified. 
Minimality remains a guiding principle, enforced by the fact that the extend 
operator only extends the set to be abstracted where necessary. This has the 
advantage that it allows us to ensure that the operator maintains the PROV-
compliance of the new graph, but the disadvantage that the loss of information 
cannot be controlled. 
The two alternative approaches in Section 4.5 both present valuable further 

lines of enquiry. 

5. Abstraction over events 

In Section 3.3 we recalled the definition of PROV ordering constraints C2-
C5, given in the PROV-CONSTRAINT document, which must be satisfied 
by any valid PROV graph. We now extend the notion of validity to events 
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Figure 10: Abstraction over a document content, and associated abstracted events 

defined on abstract graphs GA . In general these are not the same events 
as GC ’s, because when GA is obtained using either e-grouping or a-grouping 
over some concrete base graph GC , both entities and relationships may have 
changed. Specifically, when anew is created through a-grouping, GA’s events 
include start(anew ), end(anew ), as well as ev(used(e, anew )), ev(wgBy(anew , e)) 
for all e that are generated by or used by anew . For e-grouping, the new events 
are ev(wgBy(enew , a)) and ev(used(enew , a)) for any a that has generated (resp. 
used) enew . We are going to refer to the two sets of events in GC and GA as 
EV C , EV A , respectively. 
Note that until this point we have been using single edges between nodes. 

Abstraction, however, can create single relations from more than one concrete 
relation. PROV allows multiple edges between the same nodes to be distin-
guished using identifiers, and in this section we introduce identifiers on relations 
to allow us to develop the abstract event preorder on the abstract graph that 
is consistent with the preorder on the concrete graph. We use symbols such as 
g41, as in Fig. 10, to indicate relationships like wgBy(e4, a1). With slight abuse 
of notation, but in the interest of simplicity, in the following we are going to 
use g41 to also denote ev(wgBy(e4, a1)) when it is clear from the context that 
we refer to the event rather than to the relationship itself. 
To fix ideas, consider GC in Fig. 10(a), where two sections of a document 

are independently generated by two editing activities, and then they are inde-
pendently used by two more activities. Note that this is a slight extension of 
the abstract pattern of Fig. 8, where the document sections are e4, e5. The 
e-grouping set Vgr = {e4, e5} represents the whole document. 
The argument in this section is focused on e-grouping and generation-usage 

constraints, and omits similar logic which applies to a-grouping and to other 
temporal constraints. Let GA be the result of (non-strict) e-grouping, as 
depicted in Fig. 10(b), where the abstract generation and usage events are given 
new names, namely gNi as a shorthand for wgBy(eN , ai ), and uNij for each usage 
j of the form used(ai , eN ). The form uNij is only needed when multiple used 
relationships link the same two nodes. Thus, EV C = {g41, g53, u42, u52, u54}
and EV A = {gN 1, gN 3, uN 21 , uN 22 , uN 4}. If GC is valid, by constraint C3 the 
following must hold: 

g41 � u42, g53 � u52, g53 � u54 (5) 
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where � is the preorder relationship introduced in Section 3.2. Importantly, 
note however that g41 � u54 does not hold. Similarly, for GA to be valid we 
must have: 

gN 1 � uN 21 , gN 1 � uN 22 , gN 1 � uN 4 (6) 

gN 3 � uN 21 , gN 3 � uN 22 , gN 3 � uN 4 (7) 

To understand multiple generation and usage events associated with the 
same entity, recall that PROV-DM [23] defines those events as follows: 

• Generation is the completion of production of a new entity by an activity 
(Section 5.1.3 of [23]) 

• Usage is the beginning of utilizing an entity by an activity (Section 5.1.4 
of [23]) 

Thus, eN is generated when both generation events gN 1, gN 3 have occurred 
(by Constraint C2 from PROV-CONSTRAINTS, this implies that these ab-
stract events must be simultaneous), and it starts being used when the “earliest” 
of the usage events takes place, keeping in mind that no ordering relationships 
amongst the usage events is necessarily defined. 
We aim to establish a formal relationship between concrete and abstract 

events, and between temporal constraints amongst those events. Specifically, we 
will see that some constraints over events in EV C map directly to constraints 
in EV A , but also that, to be valid, GA may require additional constraints that 
are not in GC . Thus, intuitively, we aim to show that validity of GA follows 
from validity of GC , but only in part. 

5.1. Constraint C3 (generation precedes usage) 

For simplicity, consider initially the single temporal constraint C3 (genera-
tion precedes usage), i.e., assume that the preorder on EV C satisfies C3. We 
observe that Def. 5 (pg 19) effectively defines a mapping between relationships 
(graph arcs) in GC that cross the boundaries of a “convex” subgraph V ∗ of GC 

obtained by closure pclos() and expansion (extend(), for type consistency), and 
the new arcs in GA . Specifically, given V ∗ , Def. 5 provides the basis for the 
replace() operator, by mapping: 

ty ty
arcs: v ←− v 0 ∈ ϑout (V ∗ ) to arcs v ←− vnew ; (8) 

0 ty
arcs: v ←− v ∈ ϑin (V ∗ ) to arcs vnew 

ty←− v ; (9) 

arcs: in ϑint (V ∗ ) to themselves. (10) 

In turn, this defines a mapping between concrete and abstract events corre-
sponding to the arcs (wgBy and used). We denote such mapping by: 

ψ : EV C → EV A (11) 
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Figure 11: Paths within V ∗ determine temporal constraints in the abstract graph.

For example, for the events in Fig. 10(a) and (b) the mappings are: ψ(g41) =
gN1, ψ(u42) = uN21 , ψ(u54) = uN4, etc. By the nature of replace(), the only in-
teresting constraints covered by ψ() relate to events that occur on the boundary
of V ∗.

In this example, note that g41 � u42 holds in GC , and ψ(g41) = gN1 �
uN21 = ψ(u42) holds in GA, that is, ψ() preserves the order in GC . But for
instance, for GA to be valid, gN1 � uN4 must also hold, which however does not
follow from a corresponding constraint in GC , in fact g41 and u54 are unrelated.
Thus, intuitively we expect to be able to “explain” only some of the constraints
in GA in terms of constraints on GC .

To formalise this idea, and observing that ψ() is injective and total, thus
invertible, we define the support of a constraint in GA as follows.

Definition 11 (Support of constraint C3 in GA). Let g ′ = (a1 ← eN ), u ′ =
(eN ← a2) ∈ EV A be two generation and usage events, respectively, associated
with abstract entity node eN . For GA to be valid relative to C3, g ′ � u ′ must
hold. The support of g ′ � u ′ in GC is defined as the constraint ψ−1(g ′) �
ψ−1(a ′).

Proposition 1 (Condition for support). Let g ′ = (a1 ← eN ), u ′ = (eN ←
a2) ∈ EV A, g ′ � u ′ be a constraint as in Def. 11, and let ψ−1(g ′) = (a ′1 ←
ey), ψ−1(a ′) = (ex ← a ′2) ∈ EV C . The support of g ′ � a ′ is defined in GC only
if there a path from ex to ey in V ∗.
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Proof. Firstly, observe that ψ−1(g 0) ∈ ϑout (V ∗) and ψ−1(u 0) ∈ ϑin (V ∗). 
These both follow directly from our definition of ψ(). Also, a1 = a1 

0 and a2 = a2 
0 . 

Thus, the situation is as depicted in Fig. 11(a), showing the generation and 
usage events on the boundaries of V ∗ . If there is a path from ex to ey , then this 
must form a chain of generation-usage relationships, and by transitivity of the 
preorder, this entails g1y = (a1 ← ey ) � (ex ← a2) = ux 2, which is the support 

0of g 0 � a . 
On the other hand, consider the constraint (a3 ← eN ) � (eN ← a2). Its 

support is (a3 ← ez ) � (ex ← a2), however if there is no path from ex to ez , we 
cannot entail this constraint through transitivity, and in fact there is no such 
constraint in GC . 

The example in Fig. 10 shows a similar scenario, as noted above. Thus, the 
dependencies within V ∗ determine which additional constraints must hold in 
the abstract graph, that do not hold in the concrete graph. We can provide 
a simple interpretation of this situation, by considering the set of all possible 
total orderings amongst events in EV C , or unfoldings of GC , that are consistent 
with the temporal constraints in GC . It should be clear that adding constraints 
reduces the number of unfoldings. Thus, we have shown that ensuring validity 
of GA may require constraints that correspond to new constraints that did not 
need to hold in GC . We could say that GA represents only a fragment of the 
unfoldings of GC . In the example, these are only the unfoldings where g41 � u54 

is true. 

5.2. Constraints C2, C4, C5 

Regarding C2 (generation-generation ordering), we have again that new con-
straints on abstract events need to hold in GA , even when those are mapped from 
concrete events that are unrelated. For example, consider again Fig. 10 where 
g41 and g53 are unrelated, yet in GA , the corresponding abstract events must be 
simultaneous, because both are associated wth the generation of eN :ψ(g41) � 
ψ(g53) and ψ(g53) � ψ(g41). Generalising from the example, it is straighfor-

0ward to see that for any pair of generation events g , g ∈ ϑout (V ∗) in GA the 
following must hold: 

ψ(g) � ψ(g 0), ψ(g 0) � ψ(g) 

Regarding C4 and C5, intuitively these constraints state that any entity 
generation and usage events must “lie within” the interval defined by the start 
and end events for the relevant activities. Consider Fig. 11(b), with constraints: 

start(aN ) � u1N � end(aN ) (12) 

start(aN ) � gN 2 � end(aN ) (13) 

We would like to define start(aN ), end(aN ) in terms of corresponding concrete 
events, i.e., start(a1), end(a1) and start(a2), end(a2), so that we can determine 
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the relationship between the two. Our construction of ψ() does not help here, 
however, because ψ() is defined on constraints (usage, generation) that are as-
sociated with edges in the abstract graph, whereas these activity constraints 
are associated to (activity) nodes. The problem is that, to the best of our 
knowledge, PROV-CONSTRAINTS does not offer an intution to define such 
mappings. Unlike for “composite” entities, where usage and generation can be 
defined as we have done at the start of this section, there seems to be no corre-
sponding notion of “compound activity” where the start and end events of the 
composite are defined in terms of those of its components.9 Thus, we regard 
further investigations involving constraints C4, C5 as out of scope, and as an 
open problem. 

6. Summary and further research 

We have proposed a model for the principled hiding of provenance based on 
a formal definition of abstraction, in which elements of a provenance graph are 
grouped together and replaced by a single abstract node. A guiding principle 
throughout is that we avoid the introduction of unjustified dependencies: our 
abstraction will reduce the information content of a provenance graph, but it 
will not introduce information that is not justified by the combination of the 
abstraction and the information in the original graph. The abstraction acts 
on and results in provenance graphs which are PROV compliant. A separate 
paper [20] presents the tool implementing this model in detail. 
Our grouping operators ensure the validity of the resulting abstracted graph: 

if PG is a PROV graph, that is, it conforms to the PROV data model, meeting 
the constraints outlined in [23]. Also, no unjustified dependencies are intro-
duced into PG0: a relationship involving vnew is only created as a result of a 
mapping from an existing relationship involving elements of Vgr . Strictly, if 
0 0a and e 0 are directly related in PG0 , we guarantee that for each of a and e 0 , 
either they or an element in their abstracted set are directly related in PG. 
The work described in this paper is progressing in two main directions. First, 

we are aware that the fragment of PROV to which Group applies does not cover 
all relation types. Nevertheless, the method described in the paper for reasoning 
about PROV graph transformation can be used as a guideline to extend the work 
to the missing parts of PROV. A first extension would consider agents, possibly 
beginning with an initial simplifying assumption that agents are disjoint from 
entities and activities. 
Secondly, although in this work we have predominantly chosen not to allow 

the grouping operators to change types of edges, in Section 4.5 we have explored 
the use of the wasInfluencedBy relation, which is a supertype of both wgBy and 
used . Allowing the operator to change the node types has the advantage of 
retaining more information from the original PROV graph, as we point out, 

9There is a notion of one activity starting or ending other activities, but that does not 
seem to help with the mapping we are seeking. 
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and we should explore more completely the implications of allowing these types 
of changes more generally. 
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