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ABSTRACT  
Endophytic fungi are promising sources of bioactive substances; however, their secondary metabolites are 
toxic to plants, animals, and humans. This study aimed toevaluate the toxic, cytotoxic, mutagenic and 
oxidant/antioxidant activities of acetonitrile extract (AEPc), citrinin (CIT) and dicitrinin-A (DIC-A) of 
Penicillium citrinum. For this, the test substances at 0.5; 1.0; 1.5 and 2 lg/mLwere exposed for 24 and 48 
h in Artemia salina, and 48 h in Allium cepa test systems. The oxidant/antioxidant test was evaluated in 

pre-, co- and post-treatment with the stressor hydrogen peroxide (H2O2) in Saccharomyces cerevisiae. 

The results suggest that the AEPc, CIT and DIC-A at 0.5; 1.0; 1.5 and 2 lg/mL showed toxicity in A. 
saline, with LC50  (24 h) of 2.03 lg/mL, 1.71 lg/mL and 2.29 lg/mL, and LC50  (48 h) of 0.51 lg/mL,  
0.54 lg/mL and 0.54 lg/mL, respectively.In A. cepa, the test substances also exerted cytotoxic and 
mutagenic effects. The AEPc, CIT and DIC-A at lower concentrations modulated the damage induced 

by H2O2 in the proficient and mutant strains of S. cerevisiae for cytoplasmic and mitochondrial super-
oxide dismutase. Moreover, the AEPc at 2 lg/mL and CIT at the two highest concentrations did not 

affect the H2O2-induced DNA damage in the test strains. In conclusion, AEPc, CIT and DIC-A of P. 
citri-num may exert their toxic, cytotoxic and mutagenic effects in the test systems possibly through 
oxida-tive stress induction pathway. 
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1. Introduction 
 
Secondary metabolites, also known as natural products, are an 

abundant source of compound with promising biological 

activities (Blunt et al. 2008, 2009). Fungi, derived from marine 

algae represent a potential source for obtaining secondary 

metabolites (Wali et al. 2019) that can be widely used in human 

medicines (Gerwick and Fenner 2013). Several studies suggest 

that endophytic fungi have a variety of biotechno-logical 

potential, such as enzyme production, bioremediation, 

biodegradation, biotransformation, biocontrol, and treatment of 

various diseases, including cancer (Arora and Chandra 2011, 

Yao et al. 2011, Wen et al. 2014, Blunt et al. 2015, Zheng et al. 

2016). 

Among the various secondary metabolites derived from 

fungi, citrinin (CIT), a polyketide, was first isolated by 

Hetherington and Raistrick from Penicillium citrinum (Thacker et 

al. 1997). Species belonging to the genus Penicillium have 

several metabolic routes, commanded by specific genes, 

allowing the biosynthesis of potent secondary metabolites, 

being widely used as antibiotics and antifungals, in addition to 

other metabolites applied as immunosuppressants and 

antitumor agents (Visagie et al. 2014). The species P. citrinum 

corresponds to a filamentous fungus with extensive territorial 

expansion, and well known for its potential to produce sec-

ondary metabolites (Bennett and Klich 2003). Studies show that 

the species P. citrinum produces an eccentric diversity of 

secondary metabolites, including the natural metabolite CIT 

 
(El-Neketi et al. 2013, Hu et al. 2017). Since CIT possesses 

good antibiotic properties, studies have endeavored to reduce 

its toxicity (Xu et al. 2006), rather than evaluating its antitumor 

effect (Du et al. 2010, Wang et al. 2013). However, CIT, as well 

as its co-product, a polyketide known as dicitri-nin-A (DIC-A) has 

been explored for their cytotoxicity (Yao et al. 2011), anti-

microbial effect, genotoxic and mutagenic properties (Kumar et 

al. 2014). CIT has been identified as an important antitumor 

agent, due to its antagonistic properties, such as antioxidant and 

cytotoxic properties (Lesgards et al. 2014). Moreover, CIT has 

been reported as a neuroprotectant, as it can prevent glutamate 

excitotoxicity and neuronal death (Nakajima et al. 2016). Fungi 

belonging to the genus Penicillum have several metabolic 

routes, managed by spe-cific genes, which allow the 

biosynthesis of potent biomole-cules used as antibiotics 

(Penicillin and some of its derivatives), immunosuppressants 

(Cyclosporin), cholesterol inhibitors (Levostatin) and antitumor 

(Paclitaxel) (Keller 2019, Williams and Andersen 2020).  
In order to understand the effects of natural substances 

obtained from endophytic fungi, regarding nuclear DNA 

damage, it is necessary to apply several non-clinical tests in 

eukaryotic systems, involving in vitro and in vivo studies, such 

as Artemia salina and Allium cepa for the evaluation of tox-icity, 

cytotoxicity and mutagenicity. A. salina is a minicrusta-cean that 

providesan important information on toxicity (Gajardo and 

Beardmore 2012), it is easy to culture, has low costs and is 

readily commercially available (Nunes et al. 2006, Shaala et al. 

2015). On the other hand, A. cepa test is able to evaluate 

different DNA damages such as toxic, cytotoxic, gen-otoxic and 

mutagenic effects, which are analyzed by the number of mitotic 

cells (mitotic index); formation of micronu-clei and chromosomal 

changes (Leme & Marin-Morales 2009). Moreover, such tests 

can evaluate DNA repair activities (Santos et al. 2015), and 

more importantly, shows similar results in other test systems 

constituted with prokaryotic and eukaryotic test models 

(Fiskesjo€ 1985).  
The cellular response to oxidative damage to fungal DNA is 

similar to the response of mammalian cells, and 30% of genes 

related to human diseases have functional homolo-gous genes 

in yeasts (De La Torre-Ruiz et al. 2015). The tests with 

Saccharomyces cerevisiae are important for measuring the 

mechanisms of changes in replication fidelity, sensitivity to DNA 

damage and the cellular responses (Skoneczna et al. 2015), 

including oxidative stress and antioxidant capacity (De Oliveira 

et al. 2014). Therefore, the aim of the present study was to 

isolate and characterize compounds (CIT and DIC-A), from 

acetonitrile extract (AEPc) of the P. citrinum of endo-phytic of 

the marine macroalgae Dichotomaria marginata and to evaluate 

their toxic/cytotoxic, mutagenic and oxidant/anti-oxidant effects 

in A. salina, A. cepa and S. cerevisiae test systems. 

 

2. Materials and methods 
 
2.1. Experimental design and isolation of substances 
 

Analytical grade solvents such as methanol (CH3OH), ethyl, n-

hexane and acetonitrile (CH3CN) were purchased from the



 
 

 

Synth, Dynamics, Merck. These solvents were used for extrac-

tion and fractionation. Sephadex LH-20 Sigma-Aldrich station-

ary phase was used for the open-column chromatographic 

separation and solid media were used for the growth and 

isolation of microorganisms: Parboiled rice (MarconVR) and PDA 

(Potato Dextrose Agar-SigmaVR). 1H NMR (500 MHz), 13C NMR 

(126 MHz), HMBC, HMQC, were obtained on a Bruker Avance 

DRX-500 spectrometer with the solvents CDCl3, DMSO-d6 (CIL 

and Isotec-INC), and the not-deuterated residual solvent as 

internal reference. The electrospray ioniza-tion mass 

spectrometry was obtained in the positive mode using Orbitrap 

XL Hybrid with Fourier Transform (Thermo Scientific 

Instruments) coupled to a Thermo Instruments CLAE system 

(Accela PDA Detector, Accela automatic sampler and Accela 

pump, Thermo Instruments Scientific). The follow-ing conditions 

were used: capillary voltage of 4.5 kV; capillary temperature of 

260 C; auxiliary gas flow rate of 10–20 arbi-trary units; carrier 

gas flow rate of 40–50 arbitrary units; spray voltage of 4.5 kV; 

mass range of 100–1000 u.m.a (maximum resolution 30 000). 

 

2.2. Collection of Dichotomaria marginata 
 
The red macroalgae Dichotomaria marginata was collected 

in December 2009 in the northern region of S~ao Paulo 

state, on the beach of Fortaleza, in the city of Ubatuba, Brazil 

(23 24
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00
W) during low tide. Dr. Nair 

Yokoga (Institute of Botany, S~ao Paulo, Brazil) identified D. 

marginata, and a voucher specimenwas deposited in the 

Herbarium of the Botany Institute of S~ao Paulo, Brazil 

(Voucher no. SP 400960). 

 

2.3. Isolation and identification of endophytic fungus 
 
The endophyte fungus P. citrinum was isolated as previously 

described (Gubiani et al. 2014), from the inner tissue of the 

marine red macroalga D. marginata. After isolation, pure P. 

citrinum culture was identified by Dr. Anil Sazak (Ondokuz 

Mays Universities Fen Edebiyaties Fakulties Biyoloji Bolumu 

Kurupelit/Samsun Turkey). 

 

2.4. Acetronitrile extract of P. citrinum (AEPc) and 

isolation of CIT and DIC-A 
 
The endophytic fungus P. citrinum was grown in five Erlenmeyer 

flasks, each containing 90 g of rice. The medium was autoclaved 

four times (on four consecutive days) at  
121 C for 40 min. After sterilization, the medium was inocu-
lated and incubated at 25 C for 21 days. At the end of the 
incubation period, the cultures were combined, ground and 

extracted with CH3OH (5 250 mL). The solvent was evapo-

rated, producing a raw extract of CH3OH, which was dis-solved 

in CH3CN and hexane partitioned to obtain the AEPc.  
A  portion  (900 mg)  of  the  AEPc  was  fractionated  by  

Sephadex LH-20 column chromatography (70 cm 3.0 cm) 

and eluted with CH3OH: DCM (1: 1), producing 45 fractions of 

approximately 80 mL each. The analysis by charge-coupled 

device (CCD) and mass spectrophotometry (CLAE-DAD-IES- 



 

 

MS) [Column C18; CH3OH: H2O (5–100% CH3OH), 254 nm], 

allowed their clustering in 16 new fraction groups throughthe 

similarity of the chromatograms (FDm1Se-FDm16Se). The 

FDm9Se fraction (79 mg), after methanol washing, provided the 

CIT (30 mg) and FDm11Se (198 mg) was rechromatographed 

on Sephadex LH-20 column (70 cm x 3 cm) and eluted 

isocratically with CHCl3/CH3OH (1/1). From the fractions, 22 

subfractions were collected, which resulted in the DIC-A 

isolation (27 mg, in subfraction 3). 

 

2.5. Characterization of AEPc, CIT and DIC-A 
 

The analysis of RMN1H and13C revealed the substance CIT, 

HRESIMS m/z [M þ H] þ 251.0917 (calculated for C13H14O5) and 

m/z 273.0735 [M þ Na]þ. 1H RMN (CDCl3, 500 MHz) 8.23 (s, H-1), 

4.76 (qd, J ¼ 6.8, H-3), 2.97 (qd, H-4), 1.23 (d, J ¼ 6.8, H-9), 1.35 

(d, J ¼ 7.2, H-10), 2.01 (s, H-11), and DIC, HRESIMS m/z [M þ H]þ 

381.1701 [M þ H]þ, (calculated for C23H24O5), including m/z 

403.1521 [M þ Na]þ and m/z 783.3252 [2M þ H]þ. 1H RMN (CDCl3, 

500 MHz) 6.39 (s, H-7), 4.98 (qd, J ¼ 8.5, H-3), 4.62 (m, H-2
0
), 3.16 

(m, H-3
0
), 3.12 (m, H-4), 2.11 

(s, H-11), 1.33 (d, J ¼ 9.0, H-9
0
), 1.41 (d, J ¼ 8.0, H-8

0
), 1.43 (d, 

J ¼ 8.5, H-9), 1.31 (d, J ¼ 7.0, H-10), 2.20 (s, H-10
0
). The sub- 

stances were identified according to the method developed 

by Wakana et al. (2006) and Yao et al. (2011). The 
1
H NMR 

spectrum of the AEPc extract shows a variety of methyl, 
methylenic, methylenic and olefinics hydrogen signals 
(Supplementary materials: Figure 1S–7S). 

 
 

(CuSO4.5H2O) at 6 lg/mL and dechlorinated water, respect-

ively. After treatment, the roots were removed and fixed for 24 h 

in Carnoysolution. The roots were washed with distilled water (3 

baths of 5 min each), root hydrolysis was performed with 1 N 

HCl at 60 C for 11 min and the bath was repeated. The 

basophilic structures were stained with Schiff reagent for 2 h and 

then rinsed with the aid of running tap water. For assembling the 

slides, the root meristematic region was removed with a scalpel 

and a drop of 2% acetic carmine was added to stain the nuclear 

regionand covered with the cover slip. A slight pressure was 

exerted on the coverslip in order to scatter the meristematic cells 

throughout the slide. 

The toxicity of the test samples and controls was eval-

uated by determining the root growth inhibition in milli-meters 

of each onion. Cytotoxicity (mitotic index, MI) and 

mutagenicity (chromosomal changes, CA) were evaluated 

by counting 5000 meristematic cells (experimental unit: 1000 

cells/slide, total of 5 slides per treatment) by using a light 

microscope DM 500 (400x). Genotoxicity includes aneugenic 

effects (C-metaphases, metaphases with chromosomal 

adhe-sions, chromosomal losses, multipolar anaphases and 

poly-ploid metaphases) or clastogenic effects (chromosomal 

fragments, chromosomal bridges and other changes). In 

add-ition, the presence or absence of MN, which may result 

from aneugenic or clastogenic effects, was also evaluated 

along with the other chromosomal alterations (CA) (Mazzeo 

et al. 2011). 

 

 

2.6. Brine shrimp lethality bioassay (BSLB) 
 
The microcrustacean toxicity assay was conducted according to 

the method described by Meyer et al. (1982). Cysts of A. salina 

were incubated in artificial salted water (23 g of NaCl, 11 g of 

MgCl2.6H2O, 4 g of Na2SO4, 1.3 g of CaCl2.2H2O or 1.3 g of 

CaCl2.6H2O and 0.7 g KCl in 1000 mL of distilled water) at 25–

30 C. Sodium bicarbonate (Na2CO3) was used as a buffering 

agent for theadjustment of pH 9.0. After 48 h, ten live A. salina 

nauplii were collected and transferred to the test tube. The final 

volume of each sample was 5 mL of saline and tap water (1:1). 

Solutions of AEPc, CIT and DIC-A were prepared in 

quadruplicate at concentrations of 0.5, 1.0, 1.5 and 2.0 lg/mL. 

After 24 and 48 h, the number of live nau-plii was counted. 

Artificial saline and potassium dichromate (K2Cr2O7) were used 

as negative control (NC) and positive control (PC), respectively. 
 
 

2.7. Evaluation of toxicity, cytotoxicity and mutagenicity 

in A. cepa 
 
Medium size bulbs of A. cepa were obtained from the Center 

Supply company- CEAPI in Teresina- Piauı, 2017. The A. cepa 

test was carried out according to Fiskesjo€ (1985). Briefly, 

onions were kept in direct contact with AEPc, CIT and DIC-A for 

48 h, at a temperature of 25 ± 1 C, protected from light and 

maintenance of the solution every 24 h. The concentra-tions 

tested were same as BSLB assay. The positive (PC) and 

negative control (NC), were composed of copper sulfate 

 
2.8. Oxidant/antioxidant evaluation in S. cerevisiae 
 
The S. cerevisiae strains used for oxidant and/or antioxidant test 

included the proficient cytoplasmic superoxide dismutase 

(SodWT), three simple deficient strains (Sod1D, Sod2D and 

Cat1D) and two double deficient strains (Sod1D/Sod2D and 

Sod1D/Cat1D) (Table 1). These strains were proficient and 

deficient in Superoxide dismutase (Sod) and catalase (Cat) and 

were kindly provided by the Toxicological Genetics Research 

Group from the Federal University of Rio Grande do Sul 

(UFRGS). For the assay, S. cerevisiae strains were replicated 

in solid YEPD medium (1% yeast extract, 2% glucose, 2% 

peptone and 2% agar) and stored under appropriate condi-tions 

according to Andrade et al. (2011). Cells were seeded from the 

center to the edge of a petri dish in a continuous cycle, to both 

sides of the plate containing, in the center, a sterile filter paper 

disk, in which was added 10 lL of the test substances.  
The S. cerevisiae strains (Sodwt, Sod1D, Sod2D, 

Sod1DSod2D, Cat1D, Sod1DCat1D) were seeded in petri 

dishes from the center to the margin, where a disk of sterile filter 

paper was placed into the center of the plate and 10 lL of AEPc, 

CIT and DIC-A (at concentrations of 0.5–2.0 lg/mL) were added 

to three different treatment conditions (pre-, co-and post-

treatment). In pretreatment, the concentrations of the tested 

samples were first added to a filter paper disk in the center of 

the YEPD plate and 2 h later the oxidizing agent (30% hydrogen 

peroxide, H2O2) was added. In co-treatment, the samples and 

H2O2 were simultaneously added. In post-treatment, the H2O2 

was first added and the sample 



 

 

concentrations were added 2 h later. After 48 h of incubation, in 

an oven at 30 C, the growth inhibition halo was measured in 

millimeters (mm) from the margin of the filter paper disk to the 

cell growth initiation. All assays were performed in triplicate. 20 

lL of 30% H2O2 was used as a stressor. 

 

2.9. Statistical analyzes 
 
A. saline data were normalized, logarithmically transformed 

and subjected to non-linear regression analysis, in order to 

determine the concentration that causes death of 50% of the 

microcrustaceans (LC50). The results for A. cepa test were 

expressed as mean ± standard deviation (SD) and analyzes 

performed using two-way analysis of variance (ANOVA), fol-

lowed by the Tukey test for multiple comparisons. S. cerevi-

siae data were expressed as mean ± SD, with ANOVA 

analysis, followed by the Bonferroni test for multiple 

comparisons. All analyzes were performed using the 

GraphPad Prism software (version 6.0), considering p < .05, 

with a 95% confi-dence level. 

 

3. Results and discussion 
 
3.1. Effects AEPc, CIT and DIC-A on BSLB 
 
The AEPc and the metabolites CIT and DIC-A showed toxicity 

in A. salina with LC50 for 24 h 2.03 lg/mL (with 95% CI: 1.59–

2.60 lg/mL); 1.71 lg/mL (95% CI: 1.41–2.06 lg/mL) and  
2.29 lg/mL (95% CI: 1.69–3.12 lg/mL), respectively. At 48 h, the 

LC50 values of AEPc, CIT and DIC-A were 0.51 lg/mL (95% CI: 

0.39–0.69 lg/mL); 0.54 lg/mL (95% CI: 0.39–0.73 lg/mL) and 

0.54 lg/mL (95% CI: 0.34–0.85 lg/mL), respectively. The LC50 

values for the PC at 24 h was 1.05 lg/mL (95% CI:  
0.93–1.18 lg/mL)  and,  at  48 h,  it  was  0.7 lg/mL  (95%  CI:  
0.59–0.85 lg/mL). The evaluation of lethality in A. salina has 

been suggested as a toxicological test for a wide variety of 

substances, including crude extracts, isolated and synthetic 

compounds (Sangian et al. 2013, Islam et al. 2017). 

Compounds with a low LC50 may have potential antitumor 

activity (Nunes et al. 2008, Arcanjo et al. 2012). CIT is 

evident to induce dermal toxicity and apoptosis in the skin of 

rats, possibly due to its oxidative stress induction capacity 

(Kumar et al. 2011).  
DIC-A (also named as penicitrinone-A) is a co-product of CIT 

(dimer CIT) (Clark et al. 2006, Wakana et al. 2006). DIC-A with 

an IC50 value 58.4 ± 4.0 (Nong et al. 2013) is known to inhibit 

the protein tyronine phosphatase 2 (Shp2), which is a protein 

associated with breast cancer and other types of neo-plasms 

such as leukemia, lung, liver and gastric carcinoma. In addition, 

the Shp2 is involved in several cancer-related 

 

 

processes, including metastasis, apoptosis, DNA damage, 

cell proliferation and anti-cancer drug resistance (Zhang et 

al. 2015).  
In this study, AEPc, CIT and DIC-A induced toxicity in A. 

salina at 24 and 48 h at all concentrations (0.5–2.0 lg/mL) as 

observed by the reduction of survival rate of the nauplii when 

compared to the NC group. No statistical differences were 

observed between the substances and concentrations, as 

well as in relation to the PC group. The PC group signifi-

cantly reduced survival rate in comparison to the test sub-

stances, especially at higher concentrations (Figure 1(A)). 

Similar data were observed at 48 h exposure, except for CIT 

and DIC-A at higher concentrations, where the nauplii sur-

vival ratewas statistically different from the PC group (Figure 

1(B)). 

 

3.2. Cytotoxic and mutagenic effects of AEPc, CIT 

and DIC-Ain A. cepa 
 
To date, CIT has been extensively studied for its toxic 

proper-ties (Blasko et al. 2013), including nephrotoxicity, 

hepatotox-icity (Bennett and Klich 2003, Flajs and Peracia 

2009, EFSA, 2012, Shi and Pan 2012), cytotoxicity and 

genotoxicity (Chang et al. 2009). In our study, AEPc, CIT and 

DIC-A induced cytotoxicity at all concentrations, where these 

sub-stances increased the number of cells in interphases 

and reduced the number of dividing cells in A. cepa 

meristematic cells (Table 2).  
Toxic and cytotoxic alterations are related to the effects of 

anti-neoplastic drugs, since they induce apoptosis (Xiao et al. 

2003, Jordan and Wilson 2004). In this sense, CIT, at 20–100 

lM cencentrations, have been reported to induce apoptosis in 

several human cell lines, including leukemic cells (Yu et al. 

2006, Chan 2007). However, at 50 lM, CIT was not cytotoxic but 

affected microtubules organization, which is a risk factor for 

carcinogenesis (Gayathri et al. 2015, Yu et al. 2015). CIT 

cytotoxicity may be associated with the mitochon-drial 

dysfunction and the influx of calcium ions, leading to increase in 

membrane permeability, as observed in renal and hepatic cell 

membranes (Chagas et al. 1995, Da Lozzo et al. 1998). The 

mitotic index (MI) from A. cepa meristematic cells reliably 

identifies cytotoxic effects, when the MI shows a reduction of 

50% in comparison to the NC group, it is consid-ered a sublethal 

effect (Mesi and Koplicu 2013). 

The mutagenic effects of the isolates of P. citrinum was 

evaluated by cytogenetic damage, including MN formation and 

increased in c-metaphase CA, bridges, loose chromo-somes 

and anaphasic delays, leading to a significant increase in CA. 

AEPc, CIT and DIC-A, at all tested concentrations induced 

significant CA parameters. AEPc and DIC-A also 

    

  Table 1. Strains of S. cerevisiae.   

  Description Genotype Origin 

  EG103 (SOD WT) MATa leu2-3,112 trp1-289 ura3-52 GALþ Edith Gralla, L Angeles 
  EG118 (Sod1D) Sod1:URA3 all other markers as EG103  

  EG110 (Sod2D) Sod2:TRP1 all other markers as EG103  

  EG133 (Sod1DSod2D) Sod1:URA3 sod2::TRP1 double mutant all other markers as EG103  

  EG223 (Cat1D) EG103, except cat1: TRP1  

  EG (Sod1DCat1D) EG103, except sod1: URA3 and cat1:: TRP1  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. A. salina survival (%) to P. citrinum isolates: AEPc, CIT and DIC-A. 

 
Table 2. Cytotoxicity of AEPc, CIT and DIC-A from P. citrinum in A. cepa meristematic cells after 48 h of exposure.   
Treatments Conc. (mg/mL) Interphase Prophase (P) Metaphase (M) Anaphase (A) Telophase (T) Mitotic index (%) 
NC 0 439.4 ± 9.1 458.8 ± 18.9 43.4 ± 7.1 29.8 ± 3.1 28.6 ± 3.0 56.0 ± 0.9 
PC 6.0 876.8 ± 15.6 62.6 ± 14.6 29.0 ± 5.4 18.8 ± 3.3 13.6 ± 2.3 12.4 ± 1.5 
AEPc 0.5 585.2 ± 28.5 357.6 ± 22.8 24.4 ± 12.0 15.6 ± 7.1 16.8 ± 3.3 41.3 ± 2.1 
 1.0 545.2 ± 23.1 399.0 ± 18.2 25.0 ± 7.5 17.0 ± 3.7 13.4 ± 1.9 45.4 ± 1.8 
 1.5 561.2 ± 11.9 361.4 ± 6.8 29.0 ± 6.4 23.4 ± 3.1 25.0 ± 1.2 43.8 ± 1.2 
 2.0 597.6 ± 12.2 329.2 ± 8.8 24.2 ± 2.9 25.2 ± 2.1 23.8 ± 2.1 40.2 ± 1.2 
CIT 0.5 559.2 ± 28.0 367.0 ± 24.8 22.8 ± 5.9 23.4 ± 8.5 27.2 ± 4.4 44 ± 2.4 
 1.0 613.2 ± 35.9 332.2 ± 38.7 27.5 ± 4.0 14.8 ± 6.4 13.2 ± 1.78 38.7 ± 3.6 
 1.5 589.2 ± 56.6 367.2 ± 38.3 16.0 ± 5.5 11.2 ± 1.8 17.2 ± 7.1 41.2 ± 4.1 
 2.0 623.0 ± 13.5 326.4 ± 17.5 22.6 ± 5.7 10.6 ± 2.5 17.4 ± 1.6 37.7 ± 1.3 
DIC-A 0.5 569.8 ± 96.6 359.2 ± 57.0 21.4 ± 2.8 23.6 ± 2.8 26.0 ± 2.1 43 ± 5.9 
 1.0 591.8 ± 19.6 344.4 ± 21.8 18.6 ± 1.7 21.6 ± 1.3 23.6 ± 1.5 40.8 ± 2.0 
 1.5 603.2 ± 14.3 327.2 ± 13.9 23.4 ± 2.0 24.4 ± 2.3 21.8 ± 1.6 39.7 ± 1.4 
 2.0 626.4 ± 19.3 305.4 ± 19.0 20.0 ± 2.5 23.0 ± 3.1 25.2 ± 2.2 37.4 ± 1.9 

Varules are mean ± SD of 5000 cells (n ¼ 5 bulbs / group). p < .05;   p < .01; p < .001 compared to the NC group; ANOVA with Tukey Post-test, by multiple 
comparisons.              

 

increased the number of MN formation by the two highest 

concentrations (Table 3).  
Micronucleus (MN) formation is an irreversible nuclear 

alteration process, and it is the result of the final process of DNA 

changes. This parameter is commonly used to detect DNA 

damage after exposure to mutagenic agents (Fernandes et al. 

2007). There are reports of CIT cytotoxicity and geno-toxicity in 

embryonic cells, as observed by the induction of different 

mechanisms, including reactive oxygen species (ROS) 

formation, nitric oxide (NO) production, Bax and Bcl-2 

overexpression, mitochondrial membrane loss, cytochrome C 

 
 
release, caspase-9/3 activation, p21, kinase 2 and c-JUN-ter-

minal activation. In another study, CIT induced an increase in 

the frequency of MN, in concentrations 30 mM, from in vitro  
tests performed on V79 cells (Follmann€ et al. 2014). 

Moreover, CIT also causes apoptosis due to HSP90 inactiva-

tion and Ras and Rad 1 degradation (Chan 2008). 

Polyketides are evident to induce apoptosis and MN for-  
mation (Yu et al. 2006, Chan 2007, Donmez€-Altuntas et al. 

2007). CIT induces DNA damage via ROS formation through 

mitogen-activated protein kinase (MAPK) activation (Chan et al. 

2007, Farrugia and Balzan 2012). In rats, CIT at high 



 
Table 3. Mutagenic effects of AEPc, CIT, DIC-A on meristematic cells of A. cepa, after 48 h exposure by micronucleus formation and chromosomal aberrations.   
    Types of chromosomal alterations (CA)     

Treatment Conc. (mg/mL) Micronucleus c-metaphase Bridges Loose chromosomes delays  Total 
NC 0 0.6 ± 0.4 0.8 ± 0.2 0.2 ± 0.0 0.8 ± 0.1 1.0 ± 0.4 3.4 ± 0.5 
PC 6.0 3.4 ± 1.1 4.8 ± 0.8 5.0 ± 2.3 10.2 ± 0.8 10.2 ± 0.8 33.6 ± 3.7 
AEPc 0.5 0.8 ± 0.0 3.4 ± 0.5 2.8 ± 1.3 1.8 ± 1.0 3.0 ± 2.2 15.4 ± 2.9 
 1.0 2.2 ± 1.0 3.0 ± 0.7 2.6 ± 1.0 3.0 ± 1.4 3.4 ± 0.7 15.0 ± 1.3 
 1.5 3.0 ± 0.8 4.6 ± 1.5 3.6 ± 0.8 3.6 ± 1.0 3.8 ± 1.0 17.8 ± 4.6 
 2.0 4.4 ± 1.1 4.0 ± 1.0 4.4 ± 2.6 4.6 ± 1.5 3.0 ± 0.8 16.8 ± 1.8 
CIT 0.5 1.8 ± 1.1 2.6 ± 1.9 1.8 ± 1.4 1.2 ± 0.7 4.2 ± 2.4 12.6 ± 2.9 
 1.0 1.9 ± 1.1 4.2 ± 1.1 3.2 ± 2.1 0.6 ± 0.4 7.6 ± 1.6 19.2 ± 1.3 
 1.5 2.2 ± 1.2 3.6 ± 1.5 2.0 ± 1.0 4.6 ± 1.6 7.2 ± 2.3 19.6 ± 4.6 
 2.0 3.6 ± 1.5 4.2 ± 0.8 4.2 ± 1.3 5.6 ± 1.1 5.8 ± 0.8 21.6 ± 1.8 
DIC-A 0.5 0.6 ± 0.3 3.2 ± 0.8 3.8 ± 0.8 3.2 ± 1.1 2.2 ± 1.3 13.8 ± 1.9 
 1.0 0.2 ± 0.4 2.8 ± 1.3 3.8 ± 1.3 4.0 ± 1.5 1.2 ± 0.4 12.0 ± 3.2 
 1.5 0.2 ± 0.4 4.2 ± 1.3 3.8 ± 0.8 4.8 ± 1.3 2.0 ± 0.7 15.0 ± 1.4 
 2.0 2.4 ± 0.5 4.4 ± 1.1 4.8 ± 1.4 6.2 ± 1.6 2.0 ± 1.0 18.0 ± 2.3   
AEPc: Acetonitrile extract of Penicillium citrinum; CIT: Citrinin; DIC-A: Dicitrinin A; NC: Dechlorinated water; PC: Copper sulfate. Values are mean ± SD of 5000 cells  

(n ¼ 5 bulbs/group), ANOVA with Tukey Post-test, by multiple comparisons; p < .05; p < .01; p < .001 compared to the NC group. 
 
 
 
 
doses was seen to increase mRNA expression for Ccna2, 

Ccnb1 and E2f1 transcription factors, leading to cell cycle 

modifications, CA and genotoxicity (Liu et al. 2003, 

Knasmuller€ et al. 2004, Bouslimi et al. 2008, Folkmann et 

al. 2009, Chang et al. 2011, Kuroda et al. 2013). In addition, 

the induction of MN, mediated by CIT, and several other 

dam-ages caused to DNA were observed in HepG2 cells 

(Knasmuller€ et al. 2004). A good candidate for an antitumor 

agent should have the ability to induce cytotoxic, genotoxic 

and mutagenic effects in neoplastic cells, generating 

blocking effects of the neoplastic process. CIT is capable of 

causing clastogenic effects in in vivo and in vitro test systems 

(Liu et al. 2017).  
Chromosomal aberrations (CA) during the cell cycle induced 

by chemical compounds are indicative of mutagenic-ity and 

cytotoxicity (Tacar et al. 2013). However, an increase in CA, 

such as c-metaphases and loose chromosomes, by any test 

substance is not necessarily due to direct clastogenic effects, 

rather to an effect resulting from the breakdown of the cell 

division machinery during mitosis, which is controlled by the 

cellular cytoskeleton and microtubules (Eleftheriou et al. 2012). 

Chromosomal abnormalities can lead to apop-tosis. In a study, 

an administration of 0.9 mg/kg (i.p.) or 0.1 mg/kg of CIT in rats 

was found to reduce CA and double strand breaks as well as 

aneuploidy due to cell cycle arrest (Jeswal 1996, Yu et al. 2006). 

On the other hand, a genotoxic effect of CIT on Vero cells was 

also reported the by Yu et al. (2006). In this study, we have seen 

that numerous cells in interphase as well as CA such as 

chromosomal fragments, anaphase bridges, delayed 

chromosomes and MN formation by the treatment of AEPc, CIT 

and DIC-A in A. cepa meristem-atic cells (Figure 2). 

 

There are reports that CIT exerted nephropatoxic and 

hep-atotoxic effects on cultured cell lines and animal models 

(Arai and Hibino 1983, Aleo et al. 1991, Kogika et al. 1993). 

CIT induced nephrotoxicity by mechanisms associated with 

cell cycle arrest and microtubule formation, as evidenced in 

HEK293 cells, and also altered the expression of p53 and 

p21 proteins during the cell cycle, interfering in the cell 

division process (Chang et al. 2009). 

 
 
 

 

3.3. Oxidant/antioxidant and DNA repair capacities of 

AEPc, CIT and DIC-A in S. cerevisiae 
 
AEPc, CIT and DIC-A modulated the oxidative effects of 

H2O2-induced oxidative stress in proficient and mutated S. 

cerevi-siae at all concentrations (Table 4).  
AEPc, CIT and DIC-A, in most of the concentrations, 

modu-lated the effects of H2O2, but did not reduce its 

oxidative damages when compared to the NC group. 

Antioxidant effects were observed in the two lowest 

concentrationsof AEPc against all the test strains of S. 

cerevisae, and at all con-centrations for the double mutant 

Sod1DCat1D when com-pared to the PC group. Conversely, 

CIT and DIC-A exerted no antioxidant effects at 2 lg/mL 

(Table 5). It may be due to their oxidative effects at this 

concentration (data not shown). According to Iwahashi et al. 

(2007), CIT inhibits S. cerevisiae growth only at 

concentrations higher than 100 lg/mL, but in our study, CIT 

was found to show an oxidative stress at 2 lg/mL.  
According to Arora and Chandra (2011) isolated com-pounds 

of P. citrinum demonstrated potent antioxidant activ-ities (in 

vitro). However, another study indicates that CIT induces 

oxidative damage and lipid peroxidation at concen-trations 

above 15 mg/kg in rats (Kumar et al. 2014). In add-ition, 

genotoxicity was also observed by DNA fragmentation and 

apoptosis (Kumar et al. 2014). Previous studies have reported 

that ROS mediate DNA damage in rat skin with an increased 

expression of p53, p21/waf1 and Bax and cell cycle arrest in 

G0/G1 and G2/M (Kumar et al. 2011).  
The results demonstrate that the compounds tested have 

similar characteristics of antineoplastic agents, however, at low 

concentrations, the tested compounds are antioxidant. Several 

studies have reported that antioxidants such as nat-ural 

phenolic compounds can act as cytotoxic agents (Kashif et al. 

2015, Perveen & Al-Taweel 2017, Csepregi et al. 2020) and that 

capacity is linked to anti-proliferative and cytotoxic mechanisms 

in some cases (Yanez~ et al. 2004). CIT inhibits yeast growth at 

high concentrations (100 ppm), activating stress response 

genes such as AADs, FLR1, OYE3, GRE2 and MET17 that are 

responsible for the glutathione synthesis. 
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Figure 2. Cell division and chromosomal aberration in A.cepa meristematic cells. 

 
Table 4. Pretreatment of S. cerevisiae strains with AEPc, CIT and DIC-A.  

 
 
 

 
Loose chromossome 

 

 Chromosome bridge 
 

 Chromosome delay 

 
DIC 

 
 
 

 

 Anaphase delays 

 

Groups SODWT  Sod1D  Sod2D  Sod1DSod2D Cat1D  Sod1DCat1D 
NC 0.50 ± 0.58  0.50 ± 0.61  0.37 ± 0.39  0.41 ± 0.45  0.52 ± 049  0.50 ± 0.55  
PC 11.25 ± 0.9  15.00 ± 2.16  15.00 ± 0.81  20.25 ± 1.70  20.00 ± 2.06  22.00 ± 1.82  
AEPc (mg/mL)                   

0.5 3.25 ± 0.50 , 4.50 ± 0.58 , 4.25 ± 0.96 , 3.5 ± 0.58 , 4.25 ± 0.50 , 6.75 ± 0.96 , 
1.0 2.00 ± 0.00  7.25 ± 0.96 , 7.75 ± 0.96 , 7.25 ± 1.50 , 7.00 ± 0.82 , 3.00 ± 0.81 , 
1.5 5.50 ± 0.58 , 6.25 ± 0.96 , 7.75 ± 0.50 , 6.5 ± 0.58 , 8.25 ± 0.50 , 6.00 ± 0.58 , 
2.0 6.75 ± 0.50 , 8.0 ± 1.15 , 7.25 ± 0.96 , 7.25 ± 0.96 , 5.25 ± 0.50 , 6.00 ± 0.82 , 

CIT (mg/mL)                   

0.5 8.75 ± 0.50 , 7.50 ± 0.58 , 8.75 ± 0.58 , 6.00 ± 0.82 , 6.25 ± 0.96 , 3.80 ± 1.00 , 
1.0 6.75 ± 0.50 , 7.25 ± 0.96 , 9.00 ± 0.82 , 6.00 ± 0.00 , 5.75 ± 0.96 , 6.50 ± 0.57 , 
1.5 10.25 ± 0.96  8.50 ± 0.58 , 8.75 ± 0.50 , 7.25 ± 0.96 , 7.75 ± 0.96 , 7.00 ± 0.82 , 
2.0 9.75 ± 1.25 , 7.00 ± 1.15 , 9.75 ± 0.96 , 8.25 ± 0.96 , 8.75 ± 0.96 , 9.50 ± 0.58 , 

DIC-A (mg/mL)                   

0.5 2.00 ± 0.00  4.50 ± 0.58 , 7.00 ± 0.82 , 7.25 ± 0.96 , 4.50 ± 0.58 , 3.50 ± 0.50 , 
1.0 8.00 ± 0.82 , 6.00 ± 0.82 , 6.25 ± 0.50 , 7.75 ± 0.96 , 7.25 ± 1.00 , 8.25 ± 0.96 , 
1.5 6.50 ± 0.58 , 8.50 ± 0.58 , 8.25 ± 0.50 , 8.00 ± 0.82 , 6.75 ± 0.96 , 7.25 ± 0.50 , 
2.0 6.70 ± 0.50 , 7.25 ± 0.50 , 8.0 ± 1.15 , 8.25 ± 0.50 , 9.25 ± 0.96 , 7.50 ± 0.50 ,   

AEPc: Acetonitrile extract of Penicillium citrinum; CIT: Citrinin; DIC-A: Dicitrinin A; NC: (vehicle); PC: Hydrogen peroxide (stressor). Values are mean ± SD 

of inhib-ition halos measured in mm; ANOVA, two-way, Bonferroni post-test. p < .01 compared to the NC; p < .01 compared to the PC. 

 
Conversely, CIT was not found to induce DNA repair gene 

expression (Iwahashi et al. 2007), although it may allow acti-

vation of certain defensive genes, promoting adaptation and 

survival (Santos et al. 2012). In another study, using yeast cells, 

CIT (1600 lM) induced strong gene expression of 68 genes 

related to oxidative stress, suggesting a confirmation of the 

toxicity triggered by CIT is fundamentally based on its ability to 

generate ROS (Vanacloig-Pedros et al. 2016). In this context, 

CIT is capable of triggering oxidative stress responses through 

induction of natural genes and transcrip-tion factors (e.g., Skn7 

and Yap1) (Pascual-Ahuir et al. 2014).  
AEPc, CIT and DIC-A, in the three lowest concentrations 

and all strains, participated in the modulation of H2O2- 

 
 
induced damage, but did not eliminate oxidative damage 
when compared to the NC group. However, CIT at the con-

centration of 2.0 lg/mL did not modulate H2O2-induced dam-

age, as observed in all tested strains (Table 6).  
In this study, AEPc, CIT and DIC-A exerted a concentration 

dependent toxic and cytotoxic effects on A. salina and A. cepa 

test systems. In A. salina the test substances showed toxic 

effects by increasing the percentage mortality with the 

increasing of test concentration. In A. cepa test system, the 

substances reduced the MI value more than 50% in compari-

son to NC group, which indicates the cytotoxic characteristics of 

them. Moreover, AEPc, CIT and DIC-A, at all tested concen-

trations significantly increased the CA parameters, where 

 

 

 



   
AEPc: Acetonitrile extract of Penicillium citrinum; CIT: Citrinin; DIC-A: Dicitrinin A; NC: (vehicle); PC: Hydrogen peroxide (stressor). Values are mean ± SD 

of inhib-ition halos measured in mm; ANOVA, two-way, Bonferroni post-test. p < .0001 compared to the NC; p < .0001 compared to the PC. 

 

Table 6. Effects of AEPc, CIT, DIC-A and control groups on damages induced by H2O2 in S. cerevisiae strains.   
Groups SODWT  Sod1D  Sod2D  Sod1DSod2D  Cat1D  Sod1DCat1D 
NC 0.50 ± 0.58  0.50 ± 0.58  0.50 ± 0.58  0.50 ± 0.58  0.50 ± 0.58  0.50 ± 0.58  
PC 11.25 ± 0.95  15.00 ± 2.16  15.00 ± 0.81  16.25 ± 1.7  17.00 ± 2.06  15.00 ± 1.82  
AEPc (mg/mL)                   

0.5 5.75 ± 0.96 , 6.00 ± 0.82 , 6.0 ± 1.15 , 5.50 ± 0.58 , 4.00 ±0 .82 , 4.50 ± 0.58 , 
1.0 6.25 ± 0.5 

, 8.00 ± 1.15 , 7.25 ± 0.96 , 6.00 ± 1.15 , 5.00 ± 0.0 , 8.25 ± 0.96 , 
1.5 8.50 ± 0.58 , 8.75 ± 1.5 , 7.75 ± 0.96 , 8.00 ± 1.63 , 6.75 ± 0.58 , 5.75 ± 0.5 

, 
2.0 9.50 ± 0.58  12.50 ± 1.29  11.50 ± 1.29  9.00 ± 0.82 , 9.00 ± 1.29  8.50 ± 0.5  

CIT (mg/mL)                   

0.5 6.50 ± 1.0 
, 7.00 ± 0.82 , 7.50 ± 1.29 , 6.50 ± 1.0 , 7.00 ± 0.0 , 4.50 ± 0.58 , 

1.0 5.00 ± 0.82 , 7.75 ± 0.96 , 7.25 ± 0.96 , 6.75 ± 0.96 , 7.50 ± 0.58 , 7.75 ± 0.50 , 
1.5 7.00 ± 1.63 , 9.50 ± 2.38 , 7.75 ± 1.89 , 6.50 ± 1.0 , 7.25 ± 2.22 , 5.50 ± 0.58 , 
2.0 10.25 ± 0.96  13.25 ± 0.96  12.00 ± 0.58  10.00 ± 0.5  11.00 ± 0.96 , 8.00 ± 0.82 , 

DIC-A (mg/mL)                   

0.5 4.25 ± 0.5 
, 7.00 ± 0.82 , 5.0 ± 0.82 , 5.50 ± 1.0 , 4.75 ± 0.96 , 2.25 ± 0.96 , 

1.0 6.00 ± 1.63 , 7.75 ± 0.5 , 5.50 ± 0.58 , 5.50 ± 0.58 , 5.75 ± 0.96 , 5.00 ± 0.82 , 
1.5 6.50 ± 1.29 , 6.50 ± 0.58 , 7.75 ± 0.5 , 6.75 ± 0.5 , 8.00 ± 0.82 , 4.75 ± 0.96 , 
2.0 8.00 ± 0.82  10.00 ± 0.82  11.00 ± 0.5  9.00 ± 0.82  9.25 ± 0.96  9.00 ± 0.58    

AEPc: Acetonitrile extract of Penicillium citrinum; CIT: Citrinin; DIC-A: Dicitrinin A; NC: (vehicle); PC: Hydrogen peroxide (stressor). Values are mean ± SD 

of inhib-ition halos measured in mm; ANOVA, two-way, Bonferroni post-test. p < .0001 compared to the NC; p < .0001 compared to the PC. 

Groups SODWT  Sod1D  Sod2D  Sod1DSod2D Cat1D  Sod1DCat1D 
 

NC 0.50 ± 0.57  0.50 ± 0.57  0.50 ± 0.57  0.50 ± 0.57  0.50 ± 0.57  0.50 ± 0.57  
 

PC 11.25 ± 0.95  15.00 ± 2.16  15.00 ± 0.81  17.25 ± 1.7  15.00 ± 2.06  16.00 ± 1.82  
 

AEPc (mg/mL)                  
 

0.5 0.75 ± 0.95  1.75 ± 0.50  1.00 ± 1.15  1.75 ± 0.50  2.25 ± 1.70  0.25 ± 0.50  
 

1.0 1.25 ± 0.95  3.00 ± 0.82  2.25 ± 0.50  6.25 ± 0.50 , 4.75 ± 0.95 , 0.25 ± 0.50  
 

1.5 2.50 ± 1.29 , 5.75 ± 0.96 , 2.25 ± 0.96  7.25 ± 0.96 , 6.25 ± 0.96 , 0.25 ± 0.50  
 

2.0 2.75 ± 0.96 , 4.5 ± 1.29 , 1.25 ± 0.96  8.50 ± 0.58 , 4.25 ± 0.96 , 1.75 ± 1.26  
 

CIT (mg/mL)                  
 

0.5 3.75 ± 1.26 , 8.75 ± 1.50 , 6.25 ± 1.26 , 6.00 ± 1.15 , 6.75 ± 1.50 , 5.25 ± 0.96 , 
 

1.0 5.75 ± 0.96 , 9.00 ± 0.82 , 8.00 ± 0.82 , 7.75 ± 1.26 , 6.00 ± 0.00 , 6.75 ± 0.50 , 
 

1.5 6.00 ± 1.15 , 8.75 ± 0.96 , 7.25 ± 0.96 , 6.75 ± 0.96 , 7.25 ± 0.96 , 7.00 ± 0.82 , 
 

2.0 8.25 ± 1.26  9.25 ± 1.26  8.00 ± 0.82 , 8.00 ± 1.29  9.00 ± 0.58 , 8.00 ± 1.41  
 

DIC-A (mg/mL)      

5.00 ± 1.41 , 7.25 ± 0.96 , 5.50 ± 0.58 , 3.75 ± 0.96 , 
 

0.5 5.50 ± 0.58 , 5.75 ± 0.96 , 
 

1.0 6.75 ± 096 , 9.00 ± 0.82 , 6.00 ± 0.82 , 8.29 ± 0.96 , 8.00 ± 0.82 , 4.25 ± 0.50 , 
 

1.5 6.25 ± 1.26 , 9.25 ± 0.96 , 7.75 ± 0.96 , 7.00 ± 0.82 , 7.50 ± 1.29 , 5.75 ± 0.96 , 
 

2.0 9.00 ± 1.29  9.00 ± 1.41  9.25 ± 0.96  8.25 ± 1.26  8.00 ± 1.41  9.00 ± 1.70  
 



 

AEPc and DIC-A were seen to increase the number of MN 

for-mation at the two highest test concentrations. In 

mutagenic and non-mutagenic S. cerevisae strains, AEPc, 

CIT and DIC-A modulated the H2O2-induced oxidative 

damage in compari-son to the NC group. AEPc at 2 lg/mL 

and CIT at the two highest concentrations did not affect the 

H2O2-induced DNA damage in the test strains. 
 
 
 
 
 

4. Conclusion 
 
AEPc, CIT and DIC-A showed toxicity in A. salina. In A. cepat-

est system, the compounds also showed an inhibitory effect on 

cell division phases. The test substances also induced 

mutagenicity, especially at higher concentrations. Pre-, co-and 

post-treatments of AEPc, CIT and DIC-A significantly modulated 

H2O2-induced oxidative damage in S. cerevisiae strains. The 

substances also showed a DNA damage repair capacity in S. 

cerevisiae test strains. Further investigations are necessary to 

understand the exact mechanisms regarding the toxic, cytotoxic 

and mutagenic effects of these substances. 
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