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ABSTRACT Wearing inappropriate running shoes may lead to unnecessary injury through continued strain 
upon the lower extremities; potentially damaging a runner’s performance. Many technologies have been 
developed for accurate shoe recommendation, which centre on running gait analysis. However, these often 
require supervised use in the laboratory/shop or exhibit too high a cost for personal use. This work addresses 
the need for a deployable, inexpensive product with the ability to accurately assess running shoe-type 
recommendation. This was achieved through quantitative analysis of the running gait from 203 individuals 
through use of a tri-axial accelerometer and tri-axial gyroscope-based wearable (Mymo). In combination with 
a custom neural network to provide the shoe-type classifications running within the cloud, we experience an 
accuracy of 94.6% in classifying the correct type of shoe across unseen test data. 

INDEX TERMS deep learning, gait analysis, foot pronation, IMU, running shoes.

I. INTRODUCTION 
Running is one of the most common forms of exercise due 
to its ease of access, low cost and beneficial health effects [1, 
2]. Moreover, novice and recreational running is becoming 
increasingly popular and seen as the obvious target for those 
hoping to encourage greater public health through exercise [3]. 
In the UK it is driven by the potential of recreational running 
as a public health promotion target [4]. Indeed, popularity in 
novice and recreational running has been recently fuelled by 
the global phenomenon of mass group events [5]. In fact, the 
latter is perceived to be a useful mechanism for those inclined 
to be less physical active (i.e. novice), enabling them to better 
engage with the sport due to the socially orientated-based 
communities associated with such events. 

With a growing number of novice and recreational 
participant’s, rates of running injuries increases with relatively 
long periods (up to 52 weeks) of injury sustained [6]. This has 
an obvious economic impact on healthcare utilisation (direct 
costs) and absenteeism from paid and unpaid work (indirect) 
[7]. The latter Dutch study examined 1696 participants and 
found direct and indirect costs per running related injury were 
up to €71.81 and €54.70, respectively. That can have 

significant implications for health agencies and employers due 
to negative impact on public services and loss of productivity, 
respectively. Additionally, running injuries could cause drop-
out from the sport and other activities [6], creating a 
downward spiral in health outcomes and quality of life. Thus, 
it is important to gain more insight to the impact of running 
related injuries and create mechanisms to limit their 
occurrence. 

Most running injuries develop progressively over the 
many kilometres that are ran, i.e. overuse [8]. However, the 
aetiology of these injuries is multifactorial [9], implying that 
to understand the mechanisms leading to an injury, a holistic 
approach is warranted, including the study of a large set of 
potential risk factors [8]. The latter study argues that factors 
could include activities such as training characteristics, 
running mechanics and anatomy of the runner whereby 
vertical ground reaction force (VGRF) exerts stress during 
those activities on bones, muscles and tendons. Thus, as 
running biomechanics are associated with injury risk, any 
effect of the shoe type on the running pattern and VGRF 
parameters deserve attention [8].  
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Running shoes have experienced tremendous changes in the 
last 50 years, from very minimal to highly supportive and 
cushioned shoes and many other variations [10]. Shoes with 
different functionality have been released because of 
technological improvements (e.g., material engineering) used 
in running shoe development, such as cushioned, stability and 
minimalist running shoes [11]. Currently, there are hundreds 
of running shoes commercially available for runners with 
various nuances to entice customers. Yet, guidance for most 
shoppers is non-existent or limited for their specific needs and 
requirements. It is important for all runners to be aware of how 
their foot is balanced [12] as choosing a stability-based 
running shoe would ease excessive pronation (the degree to 
which the arch of your foot collapses upon impact), a possible 
risk factor of running-related injuries [13]. Furthermore, 
runners often lack evidence-based approaches by disregarding 
retailer advice (and any in-store technology they may have to 
aid purchases due to embarrassment or inexperience) and 
relying solely on consumer trends risk alternating between 
shoe type and increasing risk of injury [14]. There is a need to 
enable personalised approaches to identifying correct running 
shoe type, whereby the customer can collect their own data 
e.g. in the comfort of their home. This could ensure the 
customer does not feel stigmatised or pressurised into 
purchasing too costly a product, unsuitable for their needs. 

Wearable technologies are rapidly becoming ubiquitous in 
our daily lives and viable solutions to provide tailored 
approaches to healthy living [15] and/or injury prevention 
from running [16]. Wearables offer discrete, high-resolution 
data that can be gathered ad-hoc or continuously for prolonged 
periods for a range of healthcare applications. Inertial sensor-
based wearables are perhaps the most common comprising 
devices such as fitness trackers that quantify movement by 
measuring acceleration (accelerometers) and angular velocity 
(gyroscopes). Those sensors are low-cost and can be applied 
to a plethora of healthcare activities in a range of environments 
that require quantification of fine motor tasks such as spatial 
and temporal characteristics of gait [17] for providing 
objective, personalised data.  

Recently, Mymo Group Ltd proposed a Cloud-based 
approach via a smartphone [18] to provide all runners with 
better insight to their running mechanics and consequently 
recommend shoe type to prevent injury. Their platform uses a 
single low-cost inertial-based wearable to provide a pragmatic 
solution for all runners that can be used in any setting. Here, 
we present (i) the analytical methodology that is used to 
identify features of the inertial signals to examine a runner’s 
gait and (ii) a custom neural network to provide the shoe-type 
classifications within the Cloud.  

The rest of the paper is organized as follows. Section II 
reviews the underpinning background regarding running 
analysis and how running shoes are recommended. Section III 
reports the running shoe recommendation system with 2 
typical running gait outcomes. Section IV discusses the wider 

applicability of the system. Section V concludes the papers 
and points out future directions. 

 
II. BACKGROUND 
A. TRADITIONAL RUNNING ANALYSIS 
Video-based assessment is a useful approach to analyse and 
inspect a runner’s gait, such as body alignment and landing 
position of the feet [19, 20]. That can be a time-consuming 
process, requiring a trained biomechanics expert to sit and 
watch the runner from various angles (i.e. front, back, side) to 
study how their body transitions through space and how the 
feet make contact with the ground and for how long. Specialist 
software allows them to study the runner on a frame-by-frame 
basis with animations to examine joint angles for a complete 
kinematic analysis. With advances  in computer vision and 
pattern recognition methods, gait assessment can now be 
automated [21]. Yet, such approaches are computationally 
intensive and cannot be used at scale given the e.g. 
requirement for multiple cameras.  
 
B. FOOT STRIKE PATTERNS: Recommending a shoe 
Ambulatory and running gait patterns vary from person to 
person and so each runner requires the optimal shoe to fit 
their requirements. Typically, a shoe is recommended to an 
individual based on how the foot lands and makes contact 
with the ground with patterns divided into (i) pronation, (ii) 
neutral, and (iii) supination (Fig. 1A). Additionally, foot 
strike types can also be categorised based on sagittal 
examination and angle of the foot upon initial contact the 
ground, (i) heel strike, (ii) mid-foot strike, and (iii) fore foot 
strike [22]. Depending on the combination of these gait 
characteristics, a shoe type will be recommended. In general, 
running shoes are categorised into pronation assisted and 
neutral support, with pronation assistance often utilising 
cushioning around the heel to reduce roll [23]. For example, 
a runner with a mid-neutral profile would receive a neutral 
shoe type, i.e. stability shoe with gentle arch from front to 
back. Alternatively, a mid-pronation profile would receive a 
support shoe, i.e. rigid shoe for increased stability. 
 

 
FIGURE 1.  Basic representation to highlight feet strikes. From left to 
right: (A) pronation, neutral, supination; and (B) heel strike, mid foot 
strike and fore foot strike.  
 

Efforts have been made to utilize wearables to assess foot 
strike for running shoe recommendation [24]. However, the 
referenced approach is unsuitable, as it requires the wearable 
to be attached to the laces of a shoe while running. Given the 
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runner must use shoes to gather foot strike data, the resulting 
recommendations may be flawed as the shoes worn during 
data collection may already provide e.g. cushioning support. 
Instead, Mymo adopts a bare foot running approach to 
achieve the most natural measures of a person(s) gait, with a 
wearable attached via a thin neoprene sock (ensuring firm 
attachment to the skin and to limit motion artefact, Fig 2) to 
better understand the natural strike pattern of the foot to 
recommend shoe type. 
 

 
FIGURE 2.  Attachment of the Mymo wearable with neoprene sock 
 
III. SHOE RECOMMENDATION SYSTEM  
A. SYSTEM ARCHITECTURE 
The Mymo infrastructure primarily consists of four modules, 
Fig. 3. The Mymo wearable is worn on the foot and streams 
data to a smartphone application (App) via Bluetooth. Once 
the capture window is over (1min/foot), the App transmits 
the raw data through an API, where the classification takes 
place through signal analysis and feature extraction 
informing a deep learning model, returning the individual's 
foot strike pattern and their recommended shoe-type. 

The environment architecture for time-series analysis and 
deep-learning model training consisted of a Python 3.7 
notebook with an Nvidia K80 GPU backend to greatly 
increase the speed of training and visualisation tasks. To 
interface with the Python modules, a Django RESTful API 
is deployed to a server to listen for data from the mobile 
application, where analysis and classification take place; 
allowing the majority of processing to be performed away 
from relatively low-powered mobile processors. 
  

 
FIGURE 3.  Flow of Mymo system from wearable to shoe classification 
 
B. The Mymo WEARABLE 
This is a small (37×25×13mm) and lightweight (10g) device, 
which is worn above the talus joint on the anterior aspect of 
the left and right foot. It is hypothesised by the manufacturers 
(Mymo Ltd.) that this location provides the optimal location 
to determine foot strike pattern (heel, mid, fore) and degree 
of pronation (neutral, slight, severe). That is because the talus 
best represents rotations at different stages of the running 
gait cycle: (i) at heel strike the point of contact between the 
ground and hindfoot is lateral to the centre of the ankle joint 

creating a valgus thrust on the subtalar joint, where the 
calcaneus joint responds by eversion; (ii) that causes the talus 
to rotate inwardly the talar head to flex plantarly and; (iii) 
when the forefoot contacts the ground there is a reversal of 
that motion [25]. The wearable remains in situ on the foot by 
use of a stretchable neoprene sock (suitable for most foot 
types) that the runner places on his/her bare foot. A single 
button on the wearable switches on the device which 
automatically connects to the mobile App which has a 
procedure/implementation wizzard for ease of use.  

The wearable contains both a tri-axial accelerometer and 
tri-axial gyroscope, wirelessly transmitting signals to a 
smartphone (60 Hertz, Hz) during each 1min data capture for 
each foot, providing approximately 7200 data-
points/participant. Before running, the participant is asked to 
remain (still) in a standing posture for approximately 10 
seconds (s) to calibrate inertial sensors to account for 
individual offsets due to anatomical differences. Once foot 
strike pattern data is collected for one foot the neoprene sock 
(with wearable) is removed and placed on the runners other 
bare foot, to repeat the entire process, including calibration. 
 
C. DATA COLLECTION 
Data collection and video capture for Mymo took place over 
multiple sessions at low-resource (community-based) 
running clubs and other leisure facilities within the 
Newcastle-upon-Tyne region, UK. Ethical approval was 
granted by Northumbria University Research Ethics 
Committee (Ref: 21603). Adolescent and adult volunteers 
(n=203, 91M:112F) participated in donning the wearable and 
gave verbal consent before providing data during treadmill-
based testing. All volunteers reported no conditions affecting 
overall running performance and all were supervised to run 
on the treadmill for 2mins in total (1min each foot) at a set 
pace of 5mph/8kph with the Mymo wearable worn on right 
and left foot. 
 
D. REFERENCE 
Video recording with handheld smartphones were used to 
capture foot strike patterns as the reference standard. Video 
data (of the runner’s waist and legs only) were recorded 
throughout the duration of testing from front, side and rear 
views at 120FPS to allow for slow-motion and high-
resolution frame-by-frame analysis. Video data were used to 
identify foot strike and degree of pronation for each runner 
by a trained physiotherapist and biomechanics expert, who is 
also an elite club runner. Specifically, he labelled all video 
data for left and right foot strike type (heel, mid, fore) and 
degree of pronation (neutral, slight, severe). Subsequently, 
the expert recommended a shoe type (neutral or support) 
based on a combination of left and right foot strike 
parameters. Video data were also use to inform algorithm 
development for preliminary inertial data interpretation. 

E. SIGNAL PROCESSING: Filtering and segmentation 
To improve the overall accuracy of the system, data were 
pre-processed to account for signal noise such as electrical 
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interference and motion artefact due to any slight size 
discrepancies of neoprene sock and participants feet.  
 
1)  Filtering 
A band-pass Butterworth filter [26-28] was applied to 
account for noise and motion artefact [29]. Performing at 60 
Hz with a sampling period of 3 Hz and a cut-off frequency 
of 5 Hz, we remove extraneous noise from all inertial signals. 
2)  Dynamic signal segmentation 
We define each gait cycle between two periods, stance and 
swing, where stance refers to the duration of time an 
individual's foot is on the ground and the contrary for swing 
[28]. Within the gait cycle are various features often used in 
gait analysis, the most notable are initial contact (IC) and toe-
off (TO) events, which define initial and final contact of the 
foot with the ground. By locating and quantifying IC/TO 
events we defined a single cycle of the foot during running.  

Utilizing the IC event allowed for the most accurate 
definition of a gait cycle, as the foot-mounted accelerometer 
is highly sensitive to contact points; resulting in large, 
distinguishable regions of interest (ROI) within the signal. 
By isolating the vertical axis of the accelerometer data we 
can apply a zero-crossing gradient maxima detection 
algorithm similar to [30, 31] and successfully isolate the IC 
events of a signal, Fig. 4. An IC event is only considered if 
the vertex lies above a dynamic threshold, defined as any 
point above the 75th percentile range of the smoothed 
waveform. This will remove abnormal running strides 
experienced as a runner reaches their terminal speed and help 
to isolate weak steps if, for example, a runner slightly 
stumbles. For further robustness, operating within the notion 
that the average healthy stride is comparable in timing [32, 
33], false-positives (IC peaks that are detected too closely 
together after filtering) can be removed, such that: 

�𝐼𝐼𝐼𝐼𝑃𝑃 <  𝐼𝐼𝐼𝐼𝑃𝑃+1 −
𝑥𝑥
2

 →  𝐼𝐼𝐼𝐼𝑃𝑃,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣�       (1) 
where 𝑥𝑥 is the average stride length observed by the 
individual and 𝐼𝐼𝐼𝐼𝑃𝑃,𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 denotes whether the point is a 
suitable IC data point. 
 

 
FIGURE 4.  A graphical example of how Initial contact (IC) points may 
be defined by the orange markers 
 
F. RUNNING GAIT OUTCOMES 
To accurately classify the correct shoe type for a runner we 
must consider the features of pronation and foot strike 

location. Quantifying these features allows for a generalized 
observation of the gait cycle during foot contact, where 
pronation predominantly effects the runner. 
 
1)  Pronation 
Pronation refers to the roll of the foot occurring upon contact 
with the ground. Thus, IC events were used to evaluate the 
angle of pronation from the vertical axis and ROI (±30 Hz). 
Similar to a previous methodology [34], a change-test-repeat 
approach to define thresholds, where manually changes were 
made until the best accuracy was achieved on all data in 
relation to expert raters labelling which was aided by 
observing the raw data for each participant, Fig 5 and 6. By 
examining the maximum peaks in the traverse plane about 
the longitudinal axis within the ROI, we can identify the 
major roll events around IC, Fig 7. The further the roll peak 
velocity, the more pronation an individual is considered to 
experience (neutral ≤0.13s; pronation >0.13s and <0.25s; 
severe pronation ≥0.25s). This method is applied for every 
identified IC and an average is taken to account for any 
occasionally experienced anomalous results. 
 

 
FIGURE 5.  Left foot scatter plots strike angles & pronation distances 
 
2) Foot strike 
Foot strike location is the angular position of the foot when 
contact is made with the ground, therefore, to quantify the 
foot location, one must observe the angle of the foot during 
IC. Again, the same ROI is used but this time to examine the 
angular velocity in the sagittal plane about the mediolateral 
axis to establish the angle of the foot.  
 
G. DEEP LEARNING MODEL: Shoe finder 
The results of the feature extraction inform a custom 
ensemble deep learning model to classify the correct type of 
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running shoe (neutral or support) based upon the runner’s 
combined left and right foot patterns. We chose to optimise 
our parameters through random selection based optimisation. 
The parameters we chose to observe were the number of 
hidden layers, their respective activation functions, learning 
rate and the total training epochs. By manually optimising 
our network parameters, we were able to identify those of the 
highest effect and eventually land at our final configuration 
of two hidden layers with relu and softmax in each respective 
layer in combination with 10,000 epochs and a learning rate 
of 0.2, optimized for maximum performance. The following 
section describes the data preparation and model structure. 
 

 
FIGURE 6.  Right foot scatter plots strike angles & pronation distances 
 

 
FIGURE 7.  Graphical illustration of pronation calculation where the 
distance between contact and roll velocity denotes severity of pronation 
 
1)  Data preparation 
Participant IMU data were labelled by the expert assessor via 
video to recommend a shoe-type given severity of pronation 
and foot-strike location for 203 tests. We split the data into a 
common and pragmatic 75/25% train-test ratio [35, 36], 

which provided 51 participant’s data for testing the model 
for evaluating the overall performance. The model takes four 
inputs, left pronation (LP), left foot-strike (LFS), right 
pronation (RP) and right foot-strike (RFS) and has a single 
output, i.e. shoe type (neutral or support), Fig 8.  
  
2)  Model structure 
Our final model is comprised of three sub-models; a 
multilayer perceptron (MLP) classifier [37], a gradient 
boosted classifier and a custom-trained model; utilised in an 
ensemble to increase performance. As stated our models 
hyper-parameters consists of two hidden layers with relu and 
softmax activation functions, respectively. Utilising an 
ensemble model has shown to be effective in optimising the 
performance of gait recognition and classification [38, 39]. 
Through calculating the average result of the three models, 
we are able to account for outliers presented by any given 
methodology; drastically decreasing false positives in our 
test data.  

 

 
FIGURE 8.  Network structure of custom classifier. 
 
IV. RESULTS 
The following section will describe the final results obtained 
from each facet of the shoe recommendation system in detail; 
with the ensemble model’s summation and optimisation 
strategy discussed. All results are evaluated in comparison to 
manual classification via the video-based reference data. 

A.  GAIT FEATURES: Pronation and foot strike 
Foot pronation and foot-strike location algorithms were 
tested on all 203 datasets, i.e. the algorithm is static and does 
not benefit from training data. In comparison to the expert 
video-based classification, our results concluded with 92.0% 
and 94.3% for pronation and foot-strike respectively. Those 
robust foot strike and pronation data were subsequently used 
to inform the input layer of our neural network.  

B.  DEEP LEARNING MODELS: Shoe type 
During training, our test dataset (51) is utilised to evaluate 
the performance of each model and benchmarked every 1000 
epochs for reference; Fig 9 and 10 illustrate accuracy and 
loss, respectively. 

As seen, each individual network presents reasonable 
accuracy for shoe recommendation (neutral or support) at 
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10,000 epochs with the gradient boosting classifier exerting 
the lowest accuracy of 86.5%, the custom classifier at 90.5% 
and the MLP classifier at 94%. Upon inspecting these results, 
it became apparent that in disputed situations, each model 
may perform differently dependent on their learning biases. 
Therefore, an ensemble summation of all three tested models 
is presented in attempt to improve accuracy. 

Fig 11 indicates the structural flow of using an ensemble 
model for running-shoe recommendation. By averaging 
results of all three models when faced with the same data, we 
take the average result as our label for shoe-type. Due to shoe 
recommendation’s binary output (1/neutral, 0/support), 
weightings need not be assigned to any model for bias 
reduction. Consequently, our final results with the ensemble 
model amount to 97.7% across all test data. 
 

 
FIGURE 9.  Training accuracy of networks used in ensemble model. 
 

 
FIGURE 10.  Training loss of models in ensemble model. 
 
C. COMPLETE SYSTEM TEST: Gait and shoe type 
In full-throughput testing wherein the flow follows the 
defined Mymo structure of wearable attachment, data 
capture, gait feature extraction (pronation: neutral, pronation 
or severe pronation; or foot strike: heel, mid or fore), neural 
network shoe recommendation (neutral or support), our 
summated accuracy is 94.6% across all test participants. 
 

 

 
FIGURE 11.  Structure of the ensemble model. 
 
V. DISCUSSION 
The purpose of this study was to develop a signal processing 
algorithm for running analysis for use with the Mymo 
wearable and Cloud-based system. Mymo is a low-cost, 
commercial device mounted on the foot with the intent of 
allowing all runners to avoid unnecessary injury through the 
selection of a suitable shoe. Our approach here will now 
enable Mymo to quantify pronation (neutral, pronated, 
severely pronated) and foot-strike (heel, mid, fore, 
subsequently recommending appropriate running shoe type 
(neutral or support).  

A. SIGNAL PROCESSING 
The rate of data smoothing has shown to potentially affect 
the extraction of foot-strike location and by utilizing 
different smoothing parameters we can significantly modify 
the overall result. [40, 41]. To ensure this wouldn’t adversely 
affect the feature extraction, manual adjustment of 
parameters within the Butterworth band-pass filter were 
performed until optimal results were achieved. Alternative 
methods were explored when deciding on the optimal signal 
processing technique. Our preliminary examination of all 
data to synchronized videos included moving-average 
processing to smooth any noise within the data. However, we 
found the approaches far too aggressive, with significant 
signal-loss in sensitive domains of the data such as timing of 
possible IC events, Fig 12. Our final band-pass parameters 
were a sample period of 3 Hz, a cut-off frequency of 5 Hz 
and a Nyquist frequency, allowing us to meet an optimal 
accuracy of 92.0% (pronation) and 94.3% (foot strike) across 
all testing data.  
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FIGURE 12.  Examination of data influenced choice of filter. 

B. SIGNAL SEGMENTATION 
Zero-crossing approaches to gait signal segmentation have 
shown to be highly effective across the research domain [42-
44]. Here, we adopted the same zero-crossing methodologies 
within our dynamic signal segmentation to identify IC events 
within an individual’s gait and subsequently located points 
of interest through isolation of the vertical acceleration. 
Through utilizing a dynamic threshold based upon the 
individual’s average peak location and height, we were able 
to successfully differentiate the clearest strikes of the gait 
cycle; eliminating anomalous strides such as those when a 
runner begins to reach maximum speed on the treadmill or 
slows down towards the end of the data-capture period. 

Other research has examined the effectiveness of deep 
learning for signal segmentation, showing the benefit of 
artificial intelligence which outperforms conventional 
methods like time series analysis e.g. zero crossing [45, 46]. 
However, the potential benefit gained through applying 
neural networks to the dynamic segmentation of high 
resolution gait data, suffers as a result of the computational 
complexity associated with their use [47]. Indeed, the 
approach may not be suitable for a mobile platform, of which 
Mymo primarily runs. 

C. DEEP LEARNING MODEL 
Although our features were extracted through conventional 
data analysis methodologies, those features inform our deep 
learning ensemble model to classify the correct type of 
running shoe for an individual. Our initial test results based 
upon labels assigned from an expert rater was 97.7% across 
all test subjects.  

Accumulative testing of the entire throughput of the 
system, we were able to obtain an accuracy of 94.6%; 
proving the effectiveness of the Mymo wearable for 
classifying running shoe type. Although the final results 
from the ensemble model were excellent, our test data only 
consisted of data from 44 participants. Despite this, the test 
dataset consisted of varied and challenging participants, 
exhibiting a range of gait kinematics from both neutral and 
pronated runners.  

As previously discussed, neural networks tend to have 
high computational complexity, posing a concern for mobile 
deployment. Although our implementation has opted to 
utilize a neural network for classifying a running shoe type, 
the average throughput duration is only 1.62s per test, still 
within a reasonable execution time, which is due to the low 
dimensionality of our binary classifier. The neural network 
used here is a low-powered binary classifier based upon the 
feature-extraction section of our proposed work. The 
network helps to streamline the process for mobile 
development due to its low-powered nature. Furthermore, 
some outliers exist in our labelled data that may not 
necessarily correspond to a e.g. 'decision tree' approach. 
Since we require an excellent accuracy, a neural network was 
suitable to help detect anomalous results and include them in 
the modelling of output data. If neural networks were to be 
used for each element of the Mymo infrastructure, execution 
times will exponentially increase as a neural network would 
have to endure data containing considerably higher 
resolution (7200 data points per test) to accurately extract 
features; with significantly higher computational complexity 
than the binary classifier used for shoe classification. 
 
1) Practicalities for deep learning on mobile platforms 
Similar to dynamic signal segmentation, gait feature 
extraction has shown to be accurate when applied with deep 
learning [46]. However, due to utilizing a deep learning 
model for binary classification of shoe type, overwhelming 
a mobile device with multiple models for individual tasks 
may prove to exclude those with older hardware.  

D. DATA CAPTURE AND LABELLING 
Measuring foot pronation is a highly disputed topic in the 
bio-mechanic research field [48, 49], with no standardized 
method for doing so without the use of sophisticated 
equipment [50]. Although our data capture process included 
three camera angles and classification from an expert, this 
process was still technically valid within the confines of foot 
pronation research. For validation in future work (section 
V.F), corroboration with gold/reference standard equipment 
like pressure sensing and/or 3D motion analysis may prove 
more beneficial for greater running insight and generation of 
more running features. 
 
E. LIMITATIONS 
There is a limitation to the system. The binary output of shoe 
recommendation (i.e. neutral or support) excludes the ability 
to differentiate supination from neutral observing runners. 
As our approach measures the distance between IC and 
maximum roll, supination classifications are considered as 
neutral due to an opposite roll direction from those 
experiencing pronation. Although this presents a limitation 
to the labelling of a runners’ pronation severity, major 
manufacturers recommend a neutral cushioned running shoe 
for those experiencing supination [51, 52]; and as such, will 
not affect the overall recommendation of running shoe to the 
end-user.  
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F. FUTURE WORK 
Here, we present a methodology for 2 useful running gait 
outcomes for use on the Mymo system. Pronation and foot 
strike have been useful to inform a running shoe with 
excellent accuracy. Next we aim to quantify and validate 
additional outcomes such foot contact time with the ground 
to 3D motion analysis in a laboratory setting. It is 
hypothesized that additional outcomes will better inform the 
Mymo system for improved runner analysis. Moreover, we 
will expand shoe classification methodology to “neutral with 
support” to aid classification of runners with supination. 

Our model selection and hyper-parameter optimization 
followed trial-and-error procedures, with the highest 
performing model configurations applied to the final 
ensemble model structure to achieve the aforementioned 
accuracy rates. In future work, streamlining the process 
through the application of an autonomous training algorithm 
such as Particle Swarm Optimization [53] may prove useful. 
Such approaches provide an evolutionary method to 
maximizing the accuracy of a network; by training models 
and assessing the test accuracy over multiple iterations, we 
are able to hand-select the best configuration established by 
the process. Other approaches may also be taken in a similar 
domain such as an automatic random grid-search [54] and a 
genetic algorithm approach [55]. 
 
VI. CONCLUSION 
The Mymo wearable is a low-cost product, providing shoe 
recommendation for runners with the use of an inertial sensor 
mounted on the foot. This paper presents a novel approach 
for the recommendation of running shoe type through the use 
of time-series gait feature extraction techniques to inform a 
custom deep learning ensemble model for running shoe 
recommendation; with a combined accuracy of 94.6%. 

Future work will explore the feasibility of using neural 
networks for feature extraction as well as classification in an 
attempt to further improve accuracy while maintaining 
efficiency. Extraction of different gait parameters may also 
help to inform running information for all individuals while 
developing the Mymo system.  
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	E. SIGNAL PROCESSING: Filtering and segmentation
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	During training, our test dataset (51) is utilised to evaluate the performance of each model and benchmarked every 1000 epochs for reference; Fig 9 and 10 illustrate accuracy and loss, respectively.
	As seen, each individual network presents reasonable accuracy for shoe recommendation (neutral or support) at 10,000 epochs with the gradient boosting classifier exerting the lowest accuracy of 86.5%, the custom classifier at 90.5% and the MLP classif...
	Fig 11 indicates the structural flow of using an ensemble model for running-shoe recommendation. By averaging results of all three models when faced with the same data, we take the average result as our label for shoe-type. Due to shoe recommendation’...
	FIGURE 9.  Training accuracy of networks used in ensemble model.
	FIGURE 10.  Training loss of models in ensemble model.
	C. COMPLETE SYSTEM TEST: Gait and shoe type

	In full-throughput testing wherein the flow follows the defined Mymo structure of wearable attachment, data capture, gait feature extraction (pronation: neutral, pronation or severe pronation; or foot strike: heel, mid or fore), neural network shoe re...
	FIGURE 11.  Structure of the ensemble model.
	V. DISCUSSION
	The purpose of this study was to develop a signal processing algorithm for running analysis for use with the Mymo wearable and Cloud-based system. Mymo is a low-cost, commercial device mounted on the foot with the intent of allowing all runners to avo...
	A. SIGNAL PROCESSING
	The rate of data smoothing has shown to potentially affect the extraction of foot-strike location and by utilizing different smoothing parameters we can significantly modify the overall result. [40, 41]. To ensure this wouldn’t adversely affect the fe...
	FIGURE 12.  Examination of data influenced choice of filter.
	B. SIGNAL SEGMENTATION
	Zero-crossing approaches to gait signal segmentation have shown to be highly effective across the research domain [42-44]. Here, we adopted the same zero-crossing methodologies within our dynamic signal segmentation to identify IC events within an ind...
	Other research has examined the effectiveness of deep learning for signal segmentation, showing the benefit of artificial intelligence which outperforms conventional methods like time series analysis e.g. zero crossing [45, 46]. However, the potential...
	C. DEEP LEARNING MODEL
	Although our features were extracted through conventional data analysis methodologies, those features inform our deep learning ensemble model to classify the correct type of running shoe for an individual. Our initial test results based upon labels as...
	Accumulative testing of the entire throughput of the system, we were able to obtain an accuracy of 94.6%; proving the effectiveness of the Mymo wearable for classifying running shoe type. Although the final results from the ensemble model were excelle...
	As previously discussed, neural networks tend to have high computational complexity, posing a concern for mobile deployment. Although our implementation has opted to utilize a neural network for classifying a running shoe type, the average throughput ...
	Similar to dynamic signal segmentation, gait feature extraction has shown to be accurate when applied with deep learning [46]. However, due to utilizing a deep learning model for binary classification of shoe type, overwhelming a mobile device with mu...
	D. DATA CAPTURE AND LABELLING
	Measuring foot pronation is a highly disputed topic in the bio-mechanic research field [48, 49], with no standardized method for doing so without the use of sophisticated equipment [50]. Although our data capture process included three camera angles a...
	E. LIMITATIONS
	There is a limitation to the system. The binary output of shoe recommendation (i.e. neutral or support) excludes the ability to differentiate supination from neutral observing runners. As our approach measures the distance between IC and maximum roll,...
	F. FUTURE WORK
	Here, we present a methodology for 2 useful running gait outcomes for use on the Mymo system. Pronation and foot strike have been useful to inform a running shoe with excellent accuracy. Next we aim to quantify and validate additional outcomes such fo...
	Our model selection and hyper-parameter optimization followed trial-and-error procedures, with the highest performing model configurations applied to the final ensemble model structure to achieve the aforementioned accuracy rates. In future work, stre...
	VI. CONCLUSION
	The Mymo wearable is a low-cost product, providing shoe recommendation for runners with the use of an inertial sensor mounted on the foot. This paper presents a novel approach for the recommendation of running shoe type through the use of time-series ...
	Future work will explore the feasibility of using neural networks for feature extraction as well as classification in an attempt to further improve accuracy while maintaining efficiency. Extraction of different gait parameters may also help to inform ...
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