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I 

 

Abstract 
 

The Teal Group estimated worldwide drone expenditure in 2013 to be $5.2 billion. 

Since then, worldwide drone expenditure has risen considerably, with the International 

Data Corporation (IDC) forecasting worldwide spending on drones to total $12.3 billion 

in 2019, with a compound annual growth rate (CAGR) forecast of 30.6% to 2022. As of 

2019, Goldman Sachs report military applications account for 70% of the total spend with 

consumer applications accounting for 17%, and commercial/civil applications accounting 

for the remaining 13% where the latter are showing the fastest growth. Applications in 

construction, agriculture, offshore oil and gas, policing, journalism, border protection, 

mining and cinematography are predicted to see the greatest drone investment. As the 

demands increase, and particularly for applications that are time critical or that span large 

geographical areas, the single drone solution may be inadequate due to its limited energy 

and payload.  

A multiple drone solution, where the drones are networked and the drone’s position 

is established by GPS (global positioning system), is able to complete demanding 

applications more efficiently. In such systems however, the accuracy of GPS can be 

substantially compromised when deployed near tall buildings, trees, or bridges or if 

deployed indoors or underground.  

In this research, a drone position determination (DPD) algorithm, is proposed to 

overcome the shortcomings of GPS when satellite signals are compromised. An ad-hoc 

Wi-Fi network of autonomous quadcopter drones is constructed, as a platform to 

demonstrate the algorithm performance. To complement the DPD algorithm calculation, 

a method to estimate the distance flown, and also estimate the complete flightpath of a 

drone by considering the interaction of the angular velocities of a quadcopter’s four rotors 

(AVQR), is presented. The flight plan to examine the AVQR algorithm yields results 

enabling the distance flown to be calculated to an accuracy of 95%. 
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Introduction 
 

 

 

1.1 Introduction and Motivation 
 

In 1898, Nikola Tesla, visionary and electrical engineering pioneer, demonstrated 

the first remotely controlled model boat [1]. Marincic and Budimir describe the 

demonstration as spectacular, even though many of the observers did not appreciate the 

significance of the invention [2]. Tesla believed this was the first robot representing a new 

category of machines that would enhance human life in a new way. Only nineteen years 

later in 1917, and only sixteen years after the Wright Brothers first manned flight, the 

Ruston Proctor Aerial Target, based on Tesla’s previous work, became the first unmanned 

aircraft in history [3]. Unmanned aerial vehicles (UAV) continued to be developed, but 

these were generally large aircraft very much resembling their manned equivalent. It was 

not until the 1960’s, when miniaturised components became available, that small radio 

controlled fixed wing model aircraft, that we recognise today, could be produced. These 

fixed wing UAVs are not only popular with the hobbyist but are also ideal for long range 

reconnaissance, mapping and military applications [4]. The obvious shortcoming of the 

fixed wing drone is their inability to hover and hold position over a ground location, ruling 

out aerial photography and reconnaissance applications. In 2010 the French company 

Parrot, released the first commercially available, out of the box, ready to fly quadcopter, 

the AR drone [5]. The quadcopter has four independent rotors driven by four electric 

motors, providing excellent stability, vertical take-off and hover capability, and making 

the drone generally straightforward to fly and control. The AR drone has both vertical and 

horizontal mounted cameras enabling excellent quality aerial photography and video to 

be produced by the relative beginner at low cost. Similar drone products soon followed 
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with manufacturers, DJI releasing the Phantom in 2013, and 3DR releasing the Iris drone 

in 2014 [6] [7].  

Since 2013 the growth in drone expenditure worldwide has grown considerably. The 

Teal Group estimated annual worldwide expenditure across the whole sector to be $5.2 

billion in 2013 and predicted growth to reach $11.6 billion by 2023 [8]. By 2018 the 

International Data Corporation (IDC) forecast an increase to the Teal Group estimate with 

annual predicted expenditure to total $12.3 billion in 2019 with a compound annual 

growth rate (CAGR) forecast of 30.6% to 2022 [9]. Drones have their origins with military 

applications, being able to fly missions without risk to flight crew and at lower cost, and 

the military will continue to consume the greatest proportion of drone expenditure (70%) 

[10]. The drone hobbyist (consumer applications) is predicted to account for 17% of drone 

expenditure [10]. In 2019 there is a vast choice of drone manufacturer and choice of drone, 

depending upon the required application. A number of platforms now publish the top 100 

companies (drone manufacturers) to follow [11]. As of 2018, the number of registered 

drone owners in the US according to FAA (Federal Aviation Administration) figures 

exceeds one million [12]. Civil and commercial applications account for the remaining 

13% of drone expenditure but it is in this area where the greatest growth is predicted. 

Construction, where drones are used in building surveys, inspections, health and safety 

inductions, maintenance inspections, progress reports, promotional photography and 

thermal imagery, receives approximately 50% of the commercial expenditure [13]. Other 

growth applications in the commercial and civil sector include agriculture, offshore oil 

and gas, policing, journalism, border protection, mining and cinematography [10]  

The ability of the quadcopter drone to partake in missions such as surveillance, 

search and rescue, and aerial photography result from the drone’s capacity to hover [14] 

[15] [16]. The efficient completion of such missions however is significantly impeded by 

the inability of the quadcopter drone to remain in the air for extended periods of time [17] 

[18]. Due to inherent inefficiency, the quadcopter drone requires considerable energy just 

to keep itself airborne. Current battery technology demands that the flight time is limited 

to a maximum of thirty minutes [19] . This shortcoming of the single drone has seen the 

emergence of multiple drone systems. Drones are connected and communicate over a 
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network enabling greater area coverage for the same flight time of the single drone [20]. 

The multi drone network, whilst improving the performance of the single drone, yields a 

number of technological challenges requiring solutions to ensure efficient completion of 

the required mission [21].  

 

1.2 Problem Statement 
 

Drones forming a Multi UAV network can be controlled from a base station on the 

ground or the UAVs themselves can act autonomously, making, communicating and 

acting on decisions as the required mission develops[22]. Although the type of network 

deployed, and the UAV’s themselves may vary in sensing capability, depending upon the 

required mission, all UAV networks require the following essential interconnected 

building blocks [20] [21] [23]: 

i) Communication and Networking 

Responsible for data flow across the network including data acquired from 

onboard sensors, and the communication of flight command information. 

Maintains network connectivity, handles routing and scheduling, and 

ensures quality of service (QoS) requirements are met. 

  

ii) Coordination 

Utilises data and information received from other UAVs on the network, 

and from its own sensor data, to make decisions with regard to flight path 

planning. Tasks can be distributed to single or multiple UAVs depending 

upon mission requirements.  

 

iii) Sensing 

Sensors provide data essential to the completion of the required mission. 

The type of sensors mounted on the UAV will therefore depend upon the 

particular mission being undertaken. UAV position and the determination 
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of other UAVs position on the network, essential to avoid obstacle and UAV 

collision, is achieved using GPS (global positioning system) [20] [24] [25]. 

 

Although the required building blocks for UAV networks have been identified, 

algorithm development continues to provide areas of research in which the aim is to 

optimise the performance of the network of UAVs in whichever application it is deployed. 

Building block iii) which describes GPS as the method of calculating UAV position 

provides the focus of interest in this research. 

The GPS method of calculating position on the earth has its origins with the US 

military. In 1978 the US Department of Defense (DoD) launched the 24 satellite 

NAVSTAR (GPS) System [26]. Although designed for the US military, the GPS system 

became available for civilian use in 1983 albeit with a significantly reduced accuracy of 

100m. Known as selective availability, the intentional degradation was implemented for 

national security reasons. In 2000, President Clinton revoked selective availability making 

GPS more responsive for civil and commercial use worldwide [27]. Other global 

navigation satellite systems (GNSS) are also in operation; GLONASS (Russia), Beidou 

(China), and QZSS (Japan). All GNSS are operated by the military within the associated 

nation and could be switched off at any time due to conflict. The world has become so 

reliant on GNSS in for example, banking, aviation, transport and business that lack of 

access would cause massive disruption. For this reason, to have GNSS autonomy, for 

technological advancement in research and innovation and to facilitate the potential 

development of new products, the European Union developed and funded their own 

GNSS, – Galileo [28]. The Galileo system began initial services in 2016 with 26 satellites 

in its constellation and is expected to reach full capacity of 30 satellites by 2020 [29]. 

GNSS requires that the receiver be in view of at least three satellites. Upon receiving 

the three signals from the satellites the receiver calculates its position using trilateration 

[30]. GNSS signals are transmitted with a certain accuracy however the accuracy of the 

position calculation at the receiver can depend upon a number of factors. Reflections of 

satellite signals due to trees or tall buildings can have a significant impact on accuracy. 

For example, a GPS enabled smartphone under open sky has a typical accuracy of 4.9m 
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[31] [32]. Also the more satellites that are in view the greater the potential  accuracy of 

the position calculation [33] [30]. Wing et al. report GPS accuracy of 5m under open sky, 

7m in young forest conditions and 10m under closed forest canopies [34]. Modsching et 

al. concluded GPS accuracy in a built up city of 15m where results were taken on a wide 

street with four story houses on both sides [35]. These are examples of the very conditions 

in which a drone network, in the applications of search and rescue or disaster 

management, could be deployed. The aim of this research is thus to develop an alternative 

to the GPS method of determining position which is applicable to UAVs within a UAV 

network, particularly for use in situations where the GPS signals are compromised.  

 

1.3 Aims and Objectives 
 

The aim of this research project is to develop a drone position determination (DPD) 

algorithm. The algorithm utilises the RSSI (Received Signal Strength Indicator) received 

from multiple Wi-Fi sources to enable each individual drone to calculate its position 

within a drone network. Wi-Fi is chosen as the preferred networking technology to 

communicate data between drones in this research. The main reasons for this choice is 

due to the data transmission rate of Wi-Fi (300Mb/s) being significantly superior to other 

data network technologies such as Zigbee (10-250Kb/s) enabling faster data 

communication, and also because Wi-Fi is used by the majority of current drone 

manufacturers as the method of communicating commands to their drones [36]. Although 

the DPD algorithm is demonstrated using a network of drones, the method has potential 

to operate in other scenarios such as to calculate the position of autonomous intelligent 

carts moving around a factory floor environment. 

The key objectives of this research involve: 

(i) To design software algorithms to enable autonomous quadcopter drone flight 

path control.  

 

(ii) To propose an effective method to estimate the flightpath of a drone from the 

relative angular velocity of the quadcopters four rotors (AQVR).  
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(iii) To develop a platform incorporating a network of quadcopter drones, to 

measure the performance of the DPD algorithm.  

 

(iv) To develop and implement a drone position determination (DPD) algorithm 

enabling real time drone position calculation. 

 

 

1.4 Original Contributions 
 

The original contributions to knowledge described in this thesis are summarised as 

follows: 

a) The flight control programs are constructed using a modular approach. Each 

possible flight movement e.g. forward, backward, roll left, roll right, is 

written as an individual ‘C’ function incorporating arguments to control the 

velocity of movement and the distance flown. Combining the functions in the 

required order enables any required flight plan to be realised. Navigation data 

transmitted by the drone is captured, not only to measure the flight control 

program performance, but also to enable conditional flight distance control. 

The distance flown is calculated in real time by effectively integrating the 

velocity in the x direction vx and the velocity in the y direction vy provided 

within the navigation data. By recording each calculated incremental 

movement in the x and y direction every 20ms, when the navigation data is 

read, a graph of the complete drone flight path can be plotted. To enable flight 

missions to be realised, the distance flown by the drone in both the x and the 

y direction should have an accuracy of 95%. 

 

b) The movement of a quadcopter drone in any direction is achieved by creating 

a relative difference in the angular velocity of the four rotors. A torque 

equation, developed from first principles, demonstrates that the flight path of 

a quadcopter drone can be estimated from the angular velocity of the 
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quadcopter’s four rotors (AVQR). The distance travelled in any particular 

direction provided by the torque equation should be accurate to 95%.  

 

c) A network of autonomous quadcopter drones is designed and developed 

utilising commercially available Parrot AR2 drones. Each drone on the 

network is augmented with two IoT (Internet of Things) Wi-Fi modules to 

control the flight of the drone and to enable network capability. Drones on 

the network are able to communicate with each other, transmitting, receiving 

and responding to flight control codes to realise any desired flight plan. 

 

d) A drone position determination (DPD) algorithm is proposed providing each 

drone on the network with the ability to calculate its own position in real 

time. The algorithm utilises the received signal strength indicator (RSSI) 

value to estimate the distance between a Wi-Fi transmitter and receiver. 

Measurements of RSSI are taken whilst the drone is instructed to complete a 

prescribed flight plan to enable the drone position to be calculated. 

 

 

1.5 Publications 
 

1) P. Harrington, W. P. Ng, “Investigation of the speed-up performance of a dual 

microcontroller parallel processing system in the execution of a mathematical 

operation,” in IEEE Communications PGNet, Liverpool 2012. 

 

2) P. Harrington, T. Chen, W. P. Ng, “Establishing the flightpath of a quadcopter drone 

from the relative angular velocity of the four rotors,” in 11th IEEE/IET International 

Symposium on Communication Systems, Networks & Digital Signal Processing 

(CSNDSP), Budapest, Hungary, 2018. 
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Figure 1-1  Research Road Map



9 

 

1.6 Thesis Organisation 
 

This thesis proposes an alternative method to GNSS which could be used in 

situations when GNSS signals are compromised. The delivery of this thesis is presented 

in 7 chapters. 

Chapter 1 provides an introduction to UAVs, their history, and the evolution of the 

quadcopter drone. Applications of UAVs are briefly presented before the shortcomings of 

the single drone and the benefits of a multi drone network solution are discussed. Problem 

statement, aims and objectives, and original contribution are also discussed in this chapter. 

The theory behind the quadcopter drone are presented initially in Chapter 2, followed by 

a discussion of the sensors which assist the flight of a quadcopter drone. A literature 

review on Wi-Fi, which is commonly used as the communications channel for flight 

commands transmitted to drones is presented followed by a discussion of drone 

applications. The chapter concludes with a discussion of the attributes of the Parrot AR2 

drone and a discussion of the commands and data transmitted and received by this drone. 

Chapter 3 describes the development of the hardware platform and control 

algorithms to enable autonomous UAV control. Flight control programs are constructed 

utilising a modular approach, enabling developed modules to be combined to achieve any 

desired flight plan. Navigation data transmitted by the drone is captured enabling 

flightpath analysis.  

In Chapter 4 a method to estimate the flightpath of a quadcopter drone from a 

consideration of the angular velocity of the four rotors (AQVR) is presented. A torque 

equation developed from first principles incorporating the relative angular velocity of the 

four rotors not only provides a method for flightpath estimation but also provides a 

method to estimate of the distance travelled which could potentially be used to augment 

the calculation of distance travelled in Chapter 3. 

Chapter 5 presents the development of an autonomous multi UAV platform. This 

3-D platform is used to analyse the performance of the real time UAV position algorithm 

discussed in Chapter 6 to be analysed. 
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Chapter 6 describes the real time drone position algorithm. The algorithm utilises 

the received signal strength indicator (RSSI) values from multiple Wi-Fi sources, in order 

to determine UAV position.  

Finally Chapter 7 includes the thesis conclusion and recommendations for future 

work.  
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Quadcopter Drone Theory and 

Applications 
 

 

 

2.1 Introduction 
 

In recent years quadcopter drones have received considerable interest from research 

institutions not only to explain the physics behind quadcopter drone flight, but also in 

developing drone applications. This chapter presents the theory behind quadcopter drone 

flight, describes a number of drone applications, and also explains the flight command 

packet transmitted, and the navigation data received, from a commercially available 

quadcopter – the Parrot AR2 drone  

 

 

2.2 Quadcopter Flight Theory 
 

Elevation of the quadcopter drone is provided by four rotors powered by four 

brushless dc motors. Unlike a standard helicopter the quadcopter does not have a rear 

rotor to provide stability and prevent rotation in the z axis. The diagram of Figure 2-1 

illustrates how the quadcopter drone eliminates unwanted rotation by configuring adjacent 

rotors to rotate in the opposite direction. Rotor 1 thus rotates in the clockwise direction 

whilst rotor 2 rotates in the counterclockwise direction, and rotor 3 rotates in the clockwise 

direction whilst rotor 4 rotates in the counterclockwise direction. 
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Figure 2-1 Quadcopter rotor configuration 

 

The force, or thrust, required to elevate the drone from the ground is provided by the 

four rotors. The thrust is calculated from (Equation 2-1) where Ti is the thrust generated 

by a single rotor defined by subscript i, ρ is the density of air, A is the cross sectional area 

of the rotor, and vi is the velocity of air generated by a particular rotor defined by the 

subscript i [37]. 

 

   Ti  =  ρAvi²      (Equation 2-1) 

 

The total thrust T, is therefore determined by the sum of thrust provided by the four rotors.  

 

T  =  ρA∑ 𝑣𝑖
24

𝑖=1      (Equation 2-2) 

 

An important parameter when developing a quadcopter is the thrust to weight ratio. 

To elevate the drone the thrust to weight ratio must be greater than 1. In reality quadcopter 

drones are designed with a minimum thrust to drone ratio of 2 to ensure the rotors can 

elevate the drone from the ground and also have the capacity to ascend and manoeuvre 

Rotor 2 

Front 

Rear 

Rotor 3 Rotor 4 

Rotor 1 
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once the drone is in the air [38]. When hovering the thrust delivered by the rotors is 

balanced by the force due to gravity as described in Equation 2-3, where m is the mass of 

the drone and g is the acceleration due to gravity. 

 

ρA∑ 𝑣𝑖
24

𝑖=1   =  mg     (Equation 2-3) 

 

The rotors of a quadcopter drone are fixed, i.e. they cannot change their angle relative 

to the drone to create movement. The drone can only move in a particular direction by 

pitching forward or backwards (x direction), or rolling to the left or right (y direction). 

Drone yaw movement is a rotation about the z axis. Pitch, roll and yaw angle movement 

is illustrated in Figure 2-2. 

Pitch, roll and yaw angles are created due to a difference in the relative angular 

velocity of appropriate rotors. Pitching forward and therefore creating movement in the 

forward direction, for example, results from the two rotors at the rear increasing their 

relative velocity relative to the two rotors at the front. The diagram of Figure 2-3 illustrates 

the angles and thrust components, Tver vertical thrust, Thor horizontal thrust, and T thrust, 

created as the drone either pitches forward or rolls, and Tdg the drone drag. 

 

 

Figure 2-2  Diagram showing drone pitch, roll and yaw movement 
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Figure 2-3  Diagram illustrating thrust and angles created as the drone pitches or rolls 

 

In the diagram of Figure 2-3, mg is the vertical force due to gravity. As the drone 

pitches or rolls, the drone maintains the same height, therefore the vertical thrust is given 

by, 

Tver = mg      (Equation 2-4) 

 

The force in the horizontal direction is given by, 

 

Thor  = Tcos( 90 – θ)     (Equation 2-5) 
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As the drone pitches or rolls the overall thrust, T, provided by the drone rotors clearly 

increases and is given by, 

 

T²  =  Thor²  +  Tver²     (Equation 2-6) 

 

The force to move the drone in the horizontal direction is given by ma which is equal to 

the thrust in the horizontal direction Thor minus the drag Tdg or, 

 

Tcos( 90 – θ) – Tdg  =  ma     (Equation 2-7) 

 

A summary of the forces required to be generated by the drone, and the external 

forces acting on the drone which must be overcome to enable drone flight, are listed 

below. 

(i) For the drone to elevate itself from the ground, the thrust to weight ratio 

should be greater than 1, i.e. the thrust developed in the four rotors must 

exceed the force due to gravity, (Figure 2-3). 

(ii) After take-off, in order for the drone to hover, the thrust developed by the 

four rotors must be equal to the force due to gravity, (Equation 2-4). 

(iii) In order to ascend, the thrust developed by the four rotors must be greater 

than the force to due gravity and conversely for the drone to descend the 

thrust developed by the four rotors must be less than the force due to gravity, 

(Equation 2-4). 

(iv) To fly in the forward direction the two rear rotors (rotor 3 and rotor 4) rotate 

at a greater angular velocity than the two front rotors (rotor 1 and rotor 2). As 

a result the drone pitches forward, but in order to maintain height the vertical 

component of thrust is now equal to the force due to gravity. In order to move 

in the forward direction a force is required in the horizontal direction which 

is equivalent to the horizontal component of thrust generated by the four 

rotors, minus the drone drag, (Equation 2-7). 
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(v) To fly in reverse the forces are as described in (d) but with rotors 1 and 2 

rotating at a greater angular velocity than rotors 3 and 4. 

(vi) To roll to the left, the forces are as described in (d) above but with rotors 2 

and 3 rotating at a greater angular velocity than rotors 1 and 4. 

(vii) Finally to roll to the right, the forces are as described in (d) above but with 

rotors 1 and 4 rotating at a greater angular velocity than rotors 2 and 3.  

 

 

2.3 On Board Drone Sensors 
 

In order to maintain a stable controlled flight the drone requires a number of on board 

sensors which are discussed below. 

 

2.3.1 Accelerometer 

 

The accelerometer is a device, found in most drones, to determine the acceleration 

of the drone in the x, y and z planes [39]. Electronic accelerometers use the piezoelectric 

effect, where an acceleration in the device creates a stress on the crystals inducing a 

variation in capacitance. The change in capacitance is converted to a voltage which is 

interpreted as a measure of acceleration. The acceleration can be used to assist in the 

calculation of the drone velocity. 

 

2.3.2 Gyroscope 

 

The classic gyroscope consists of a disc or wheel which can rotate rapidly about an 

axis which is itself free to rotate. Solid state gyroscopes which are generally used in 

drones, use the Coriolis force [40] to measure angular velocity, and assist in maintaining 

drone stability and orientation. The Coriolis force occurs as a result of an angular rotation 

being applied to a moving body. Gyroscopes of this type have many applications 

including, in aircraft to assist in orientation stabilisation, in cameras to determine hand 

movement and in motor vehicles to assist in accident prevention. 
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2.3.3 Magnetometer 

 

The accelerometer and gyroscope determine acceleration and yaw movement 

respectively, but only relative to the drone’s starting position. The magnetometer uses the 

Hall-effect to measure magnetic field strength. The drone uses a magnetometer to 

determine the earth’s magnetic field and thus provide the drone with directional 

information. In conjunction with the accelerometer and gyroscope the drone has 

information regarding acceleration, yaw movement and direction.  

 

2.3.4 Ultra Sonic Transducer 

 

The drone utilises an ultra-sonic transducer to determine altitude. The ultra-sonic 

transducer transmits ultra-sonic pulses towards the ground which are reflected back and 

are received by the ultra-sonic transducer. The time of flight of the ultra-sonic pulses is 

proportional to the distance travelled, enabling altitude calculation [41]. 

 

2.3.5 Radio Control or Wi-Fi 

 

Historically model aircraft and boats have been controlled via RC (radio control), 

however more recently UAVs are being developed to be controlled via Wi-Fi. This 

enables any platform with Wi-Fi capability such as a tablet or mobile phone running the 

required app to control the flight of the UAV. Since Wi-Fi control can only provide a 

range of approximately 50m compared with RC which can provide ranges up to 18km 

(conditions dependant), drone user forums suggest RC is the preferred method for drone 

control [42] [43] . They also prefer the ergonomics and tactile feel that joystick control 

provides over on screen control buttons available on a tablet or smart phone [44]. Wi-Fi 

control however, does provide the possibility of creating drone Wi-Fi networks and since 

the drone used in this research, the Parrot AR2 drone, is controlled via Wi-Fi, a Wi-Fi 

literature review follows.  
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2.4 Wi-Fi literature review 
 

Internet usage has grown from 16 million in 1995 to 4.4 billion (56.8% of the world 

population) in 2019 worldwide [45]. In Great Britain, by 2016, 82% of adults went on line 

daily (or almost daily) compared with 35% in 2006 [46]. By 2019, 91% of all adults had 

recently (within three months) used the internet with 99% of adults between 16 to 44 years 

being recent internet users [47]. This growth has been made possible in part by the 

evolution of Wi-Fi which has enabled wireless internet connectivity to laptops, 

smartphones and tablets [48]. Through the availability of Wi-Fi, wireless internet 

connectivity has been made possible in Universities, Colleges and schools, buses trains 

and aircraft, shops and hotels, in cities and within the home. As well as providing internet 

connectivity, Wi-Fi has also been at the heart of the IoT explosion with a plethora of Wi-

Fi devices with built in sensors becoming available, enabling for example, thermostats, 

ovens and fridges to become networked and controlled over the internet [49]. 

Historically, it was back in the mid-1980s, when it was realised that a common 

wireless standard to enable the interconnection of network equipment from different 

vendors was required. In 1988 an Institute of Electrical and Electronic Engineers (IEEE) 

committee chaired by engineer Victor Hayes was convened to draw up a standard that 

would be acceptable to all vendors [50]. The new committee was named 802.11, a title 

which has become synonymous with Wi-Fi, and which is still in use today. It was not 

however until 1997 that the committee agreed the 802.11 specification. The standard 

allowed for a data transfer rate of one or two megabits per second (Mbit/s) on the 2.4GHz 

frequency band [48]. Amendments to the original 802.11 standard were soon developed. 

Some of the more common of these amendments are described below [51]. 

 

802.11b (1999) Still operating in the 2.4GHz band but with a maximum data rate 

of 11MBits/s. The increase in data throughput led to the rapid 

acceptance of 802.11b as the definitive wireless LAN technology. 

Can experience interference from products using the same 2.4GHz 

frequency e.g. microwave ovens.  
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802.11a (2000) Operating in the 5 GHz band, employing OFDM (Orthogonal 

Frequency Division Multiplexing) allowing data rates of up to 

54Mbit/s (including error correction code, effective speed 50% of 

rated speed). The shorter wavelength of 802.11a compared with 

802.11b means that signals are more easily absorbed by walls and 

solid obstacles. In theory, 802.11b has a greater range than 

802.11a. 

 

802.11g (2003) Designed to combine the best of 802.11a and 802.11b. Operates in 

the 2.4GHz band, employs OFMD and 54Mbits/s data rate 

(22Mbits/s including error detection codes). Rapidly adopted due 

to high data rates and lower manufacturing costs. 

 

802.11n (2009) Utilises multiple wireless signals and antennas, Multiple Input and 

Multiple Output (MIMO). Maximum theoretical data rate of 

450MBits/s. Operates on both 2.4GHz and 5 GHz frequency bands. 

 

802.11ac (2013) The standard found in the majority of current Wi-Fi devices, builds 

on the performance of 802.11n operating in the 5GHz frequency 

band. Development enhancements including Multiple MIMO 

(MUMIMO) provide a data rate of up to 1.3GBits/s. 

 

802.11ax (2019) Due for ratification by the IEEE in 2019. Demonstrations show a 

maximum data rate of 11GBits/s. 

 

As well as providing wireless network connectivity, Wi-Fi is now also being used as 

the communications channel to control the flight of quadcopter drones. Traditionally 

remote control aircraft, cars and boats were controlled by a dedicated radio transmitter. 

Manufacturers of quadcopter drones have taken advantage of technology by enabling 

flight commands to be transmitted to drones by mobile phones or tablets via a Wi-Fi 
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communications channel. The requirement of the manufacturer to provide a radio 

transmitter to control the flight of the drone is thus eliminated, reducing costs. 

Manufacturers supplying such drones include DJI (Mavic 2 Zoom, Mavic 2 Pro), Skydio 

(Skydio R1), Yuneec (Mantis Q), Parrott (Minidrone Spider, AR2), [6] [52] [53] [42]. 

Utilising Wi-Fi as the method of communications to control drones opens up the potential 

of creating a Wi-Fi drone network. 

Using Wi-Fi as a drone communication channel does however have limitations. A 

list of Wi-Fi standards and ranges is presented in Table 2-1. From Table 2-1 it is observed 

that the different IEEE standards offer a very similar indoor range with the exception of 

802.11n standard. Also, as the distance between transmitter and receiver increases, the 

signal strength at the receiver falls, lowering the bandwidth and data transmission rate. 

Experiments carried out by Galbraith and Brown show a reduction in data transmission 

rate from 547Mbps at 2m to 12Mbps at 60m [54]. Wi-Fi thus exhibits limitations as a 

communications channel, however the impact of these limitations in this research, is 

minimal. The largest distance between transmitter and receiver during experimentation in 

this research is governed by the size of the gym in which the experimentation takes place 

(25m x 15m). The greatest distance is therefore the diagonal of the 25m x15m rectangle 

which is 29.15m. 

  

         Table 2-1 Wi-Fi Standards and ranges 

 

Wi-Fi 

Standard 

Indoor range 

(m) 

802.11b 35m 

802.11a 35m 

802.11g 38m 

802.11n 70m 

802.11ac 35m 
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This distance is less than the maximum range specified in Table 2-1 and therefore does 

not impact on the integrity of the communications channel. Also the maximum amount of 

data communicated in one packet between transmitter and receiver in this research is 990 

bytes, the data transmitted as the flight control command packet depicted in Figure 2-4. 

The impact of the reduced transmission rate over larger distances is minimal for the 

relatively small number of bytes transmitted to the drone via the Wi-Fi communications 

channel. 

 

 

2.5 Applications of UAVs 
 

Drones are found in an ever increasing number of applications. A number of these 

applications are discussed in this section. 

 

2.5.1 Surveillance 

 

The vast majority of drones carry an onboard camera capable of taking video as well 

as photographs. Gandhi and Ghosal discuss a drone designed for military surveillance. 

The size, hovering capability and relatively low cost of the drone make it an excellent 

option for deployment in such applications. The drone can produce photographs and video 

of areas of interest removing the necessity for direct manual intervention and minimising 

the potential for loss of life whilst performing the operation [55]. As well as military 

surveillance drones also find applications in tactical surveillance in police applications. 

Such a system discussed by Rangel and Terra carries out urban surveillance relaying real 

time information to the ground for evaluation and action. Since its deployment in 2015 

they describe effective results in drug control, mapping and pest control [56]. Depending 

on the subject of surveillance, drones are often modified with appropriate sensors to 

monitor the area of interest. Patel et al. develop a bespoke drone for use in an agricultural 

application incorporating an infra-red camera which will provide a colour image showing 

the difference between diseased and mature crops [57]. The major shortcoming of drone 
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deployment in surveillance applications is the limited time the drone can remain in the 

air. Current battery technology limit drone flight times to a maximum of approximately 

30 minutes. Williams and Yakemenko present a solution to the battery issue by 

implementing a system of drone swapping enabling the area of surveillance to be 

monitored for an indefinite period [58]. An alternative solution to the limited flight time 

of a single drone is to adopt a system of a multi drone network. Capitain, Marino and 

Ollero propose such a system where data is communicated between drones and a base 

station, and enables greater coverage than would be possible with a single drone [59]. 

 

2.5.2 Drone Journalism 

 

Capturing images of places of interest, areas of natural disaster, and areas devastated 

by war activity is not a new idea. An article in the Daily Mail reports in 1906 George R. 

Lawrence captured birds eye view photographs of American cities by rigging a 49 pound 

camera to a system of kites [60]. The photographs are truly remarkable providing images 

from a position that had never before been seen. Until the emergence of drones aerial 

journalism was the remit of small aircraft and helicopters. One of the first examples of 

drone aerial journalism occurred after a disaster in Arkansas in 2014 when tornados 

devastated cities across the state [61]. News organisations struggled to provide 

information and helicopters could not fly due to the bad weather. A drone was flown to 

capture some of the worst case areas and shared across multiple news websites. Drones 

have since grown in popularity to cover news stories resulting in the term ‘drone 

journalism’ being coined for such activities. Tremayne and Clarke, and Schroyer, 

emphasise the importance of using drones in modern day journalism [62] [63]. The use of 

drones for journalistic applications does incur a number of issues however. Photographing 

or videoing a battlefield, village or town where there may be a large number of casualties 

raises ethical issues [64]. Filming a celebrity’s property, or a member of the general public 

raises the issue of privacy [65]. Flying a drone near an airfield raises the issue of danger 

with potentially catastrophic consequences due to the possibility of collision with aircraft 

in the process of taking off or landing [66] . To counter these issues the FAA (Federal 

Aviation Authority) in the USA require that for all commercial use, for drones under 55 



23 

 

pounds, the drone is registered and the pilot has a Part 107 license [67]. For all recreational 

use the drone must be registered [68]. In the UK, airspace is regulated by the CAA (Civil 

Aviation Authority). For commercial use a permission from the CAA is required [69]. For 

recreational use drones between 250g and 20kg must be registered by the end of 

November 2019 [70]. 

 

2.5.3 Disaster Management Applications 

 

Considerable work has been conducted utilising drones in the area of disaster 

management. Drones can provide effective assistance in several stages of such scenarios. 

Erdelj and Natalizio propose a three stage operational life cycle. The first is pre-disaster 

preparedness, effectively setting up early warning systems. The second is disaster 

assessment, providing real time data of the disaster to enable logistical planning. The third 

is disaster response and recovery including search and rescue [71]. Developing their 

previous work Erdelj and Natalizio suggest drones could also re-establish damaged 

communication infrastructure and deliver essential medical supplies [72]. Saha suggests 

a similar drone solution incorporating an autonomous drone with GPS [73]. Camera 

proposes utilising a fleet of drones scanning a disaster stricken area to provide real time 

data from which response strategies can be formulated [74]. Although applications of 

drones in disaster management are in their infancy, drones have been used in disasters to 

assist with search and rescue operations and provide damage information. Dozens of 

drones were deployed both in Houston in response to Hurricane Harvey and Florida in 

response to Hurricane Irma [75]. 

 

2.5.4 Pipeline Monitoring and Leak Detection 

 

The use of drones in pipeline and leak detection is being researched. Due to the drone 

being non-intrusive and highly mobile the use of drones in this activity is receiving 

increasing attention. Shukla et al. discuss the use of an autonomous drone to discover and 

track an oil or gas pipeline at low altitude. Utilising the on board cameras for navigation 
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and techniques for edge and line detection they develop algorithms to realise the detection 

and tracking of pipelines [76]. Essentially to minimise costs Bretschneider and Shetti 

propose a method of methane leakage detection from pipelines utilising a drone mounted 

with optical and laser based detectors [77]. A method to detect water leakage in buried 

pipes by mounting a thermal imaging camera on a quadcopter drone is proposed by 

Shakmak and Al-Abaibeh [78]. 

 

2.5.5 Delivery by Drone 

 

In 2013 Amazon CEO announced on CBS news that his company had developed a 

fleet of unmanned aerial vehicles (UAVs) for small parcel delivery [79]. Delivery by 

drone poses problems requiring innovating solutions and is receiving interest from the 

research community. Murray and Chu propose models to optimise routing and scheduling 

of unmanned aircraft [80]. Similarly Dorling et al. propose two solutions to vehicle 

routing problems also taking into account the effect of the battery, and payload weight on 

energy consumption [81]. Delivery by drone does yield potential benefits. Goodchild and 

choy discuss the benefits of drone delivery in reducing CO2 emissions [82]. The reduction 

of motor vehicles and associated benefits using drones in making last mile deliveries is 

discussed by Gulden [83].  

Although it is difficult to imagine that governments would permit the delivery of 

parcels to the general public by this method, drones are already making deliveries in 

exceptional circumstances. Reuters reports the first authorized unmanned delivery of 

goods in Europe: the delivery of essential medical goods to the German island of Juist[84]. 

The delivery of medicines to Haiti following the devastating earthquake in 2010 is 

discussed by Choi-Fitzpatrick et al. [85].  
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2.5.6 Key Performance Indicators Relating to Drone Applications 

 

A number of key performance indicators (KPIs) can be derived from the applications 

discussed in the previous sub-sections. Drone surveillance and disaster management 

applications require a number of aspects of drone control.  

KP1: The drone must take-off and land when commanded to do so.  

KP2 The drone must be able to ascend to the required height in order to be able to 

survey the area of interest. 

KPI3 The drone must be able to hover over any required position for the time required 

to complete the mission. 

KPI4 The drone must have the ability to communicate data relative to the associated 

application back to the control station e.g. photographs and video. 

As well as the above, additional KPIs can be derived for pipeline monitoring and leak 

detection applications. 

KPI5 The drone must be able to follow a pre-defined flight path e.g. to follow a 

pipeline looking for leaks or to fly to a delivery destination. 

KPI6 The drone must be able to return from the destination back to the starting 

location. 

KPI7 The drone must be able to detect and avoid obstacles in its path. 

KPI8 For delivery applications the drone must be able to complete the required flight 

with the additional payload of what is to be delivered. 

 

Although this section has covered the main applications and the current areas of 

research related to drones, new applications are continuously emerging as the technology 

evolves. 
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2.6 Control of a Commercially Available UAV 
 

The Parrot AR2 drone is controlled via an app running on a smartphone or a tablet. 

Due to its general low cost and ease of flight control, the Parrot AR2 drone has been used 

extensively in research projects and is used as the drone of choice in this project [86] [87] 

[88] [89]. In 2012, the Parrot AR2 drone replaced the original Parrot AR drone. Although 

similar in physical appearance, the AR2 drone benefits from enhancements to on board 

equipment and sensors. The on board camera quality was increased to 720p. Sensor 

improvements included an upgraded 3-axis gyroscope along with a 3-axis accelerometer 

and magnetometer. Improvements to the battery enabled 50% longer flight times. A 

complete specification of the Parrot AR2 drone is described in Table 2-2 [41]. 

 

2.6.1 Analysis of Data Traffic Between a UAV and Flight Control Platform 

 

When power is applied to the AR2 drone, it configures itself as a Wi-Fi access point. 

When the control platform (smartphone, tablet or computer), connects to the access point 

a Wi-Fi communications channel is established, which enables flight control AT 

commands to be transmitted from control platform to drone, and navigation data to be 

transmitted from drone to control platform. Flight control AT commands are transmitted 

as a packet consisting of 30 flight commands (actually the same command) every 20ms 

via UDP (user datagram protocol) on port 5556. The data of Figure 2-4 depicts a flight 

control command packet captured via the network traffic capture software ‘wireshark’, 

whilst the drone is hovering. The first column of Figure 2-4 displays the memory location 

of the byte values of the flight command packet that are transmitted to the drone. The 

second and third columns, both consisting of eight bytes, contain the hexadecimal values 

of the flight command packet transmitted to the drone. The fourth and fifth columns, again 

consisting of eight values each, contain the alphanumeric values corresponding to the 

hexadecimal values of columns two and three. The first command in the data packet 

begins at location 0x002c with the hexadecimal value $41 equivalent to alphanumeric 

character A. The final character of the command is located at memory location 0x004C 

with the hexadecimal value 0x0d equivalent to the alphanumeric character ‘full stop’.  
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Table 2-2 Specification of Parrot AR2 drone 

 

HD VIDEO RECORDING  720p 30fps HD camera  

Wide-angle lens: 92° diagonal  

Basic encoding profile: H264  

Photo format: JPEG  

Connection: Wi-Fi 

ELECTRONIC ASSISTANCE Processor: ARM Cortex A8 1 GHz  

32-bit processor with DSP video 800MHz 

TMS320DMC64x  

OS: Linux 2.6.32  

RAM: DDR2 1 GB at 200 MHz  

USB: High-speed USB 2.0 for extensions  

Wi-Fi 802.11 b/g/n  

Gyroscope: 3 axes, accuracy of 2,000°/second 

Accelerometer: 3 axes, accuracy of +/- 50mg 

Magnetometer: 3 axes, accuracy of 6°  

Pressure sensor: Accuracy of +/- 10Pa  

Altitude ultrasound sensor: Measures altitude 

Vertical camera: QVGA 60 FPS to measure the 

ground speed  

MOTORS & WEIGHT   4 "inrunner" type brush-free motors: 14.5 watts 

and 28,500 rev/min  

Micro ball bearing:   

Nylatron Gears:   

Bronze self-lubricating ball bearings: 

Weight: indoor frame 380 g/ outdoor frame 420g 
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Figure 2-4 Flight control command packet transmitted from controller to drone 
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A single complete command requires a minimum of 28 characters depending upon 

the value following the ‘equal to’ sign in the command. The command is duplicated thirty 

times and the packet is transmitted to the drone. The first command in the packet is shown 

below. 

 

    AT*PCMD_MAG=111850,0,0,0,0,0,0,0. 

 

The beginning of the command, AT*PCMD_MAG, informs the drone that it is 

receiving a flight control command. The value following the ‘equals to’ sign is the 

sequence number which is effectively a command counter and is required for every AT 

command transmitted to the drone. The sequence number starts from zero for the first 

command transmitted and is incremented for every subsequent command transmitted. In 

the flight command shown the sequence number is 111850 indicating that this is the 

111850th command that has been transmitted. It is observed in Figure 2-4 that the next 

command in the packet has a sequence number of 111851. The drone will only execute a 

command whose sequence number is greater than the sequence number of the command 

previously executed. The seven values following the sequence number describe the 

velocity and direction in which the drone should fly. When all seven values are 0, the 

drone is being instructed to hover. The detail of how these values impact on the drone 

when they are not zero are described in Table 3-1. 

As well as receiving AT flight commands, the drone also transmits flight data, known 

as navigation data, every 20ms to the flight control platform. The navigation data is 

grouped into sections of similar type (e.g. vx velocity in the x direction, vy velocity in the 

y direction) that Parrot call options. In total there are twenty one available options that the 

drone can transmit. The controller however can also request to receive a subset of the 

available options by transmitting the relevant command to the drone as required. The most 

relevant option is the so called navdata_demo option which contains the navigation data 

described in Table 2-3. 

 

 



30 

 

Table 2-3 Navdata_demo option transmitted as subset of navigation data 

typedef struct _navdata_demo_t { 

uint16_t    tag;     /* Navdata block ('option') identifier */ 

uint16_t    size;    /*set this to the size of this structure */ 

uint32_t    ctrl_state;              /*Flying state defined in CTRL_STATES enum */ 

uint32_t    vbat_flying_percentage;  /*battery voltage (%) */ 

float32_t   theta;                    /*UAV's pitch in milli-degrees */ 

float32_t   phi;                      /*UAV's roll  in milli-degrees */ 

float32_t   psi;                      /*UAV's yaw   in milli-degrees */  

int32_t     altitude;                 /*UAV's altitude in millimeters */ 

float32_t   vx;                       /*UAV's estimated linear velocity in x direction */ 

float32_t   vy;                       /*UAV's estimated linear velocity in y direction */ 

float32_t   vz;                       /*UAV's estimated linear velocity in z direction */ 

}_ATTRIBUTE_PACKED_ navdata_demo_t 

 

As well as describing the data contained in the navdata_demo option, Table 2-3 also 

shows the number of bytes required for each value transmitted. The altitude data for 

example follows the yaw data and consists of a 32 bit, or 4 byte, integer value. The first 

value transmitted is the 16 bit option tag number. The navdata_demo is always the first 

data option transmitted and has a tag number of $0000. The second value transmitted is 

the size in bytes of the data transmitted in the option including the tag and the size values. 

Potentially useful data then follows including battery percentage, pitch, roll and yaw 

angles, altitude, and velocity in the x, y, and z directions. Following the last value 

transmitted, velocity in the z direction vz, data relating to the camera is also transmitted 

but is not included in Table 2-3 as it is now deprecated.  

The navigation data is transmitted as a structure as defined in Table 2-4. The 32 bit 

header are the first four bytes of navigation data packet transmitted. At the receiving end 

the header is checked and once verified ensures the validity of the navigation data that 

follows. 
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Table 2-4 Navigation data structure definition 

typedef struct  navdata_t { 

  uint32_t         header;  /*Always set to NAVDATA_HEADER */ 

uint32_t        ardrone_state; /*Bit mask from def_ardrone_state_mask_t */ 

uint32_t         sequence;  /*Sequence number incremented for each sent 

packet */ 

  bool_t        vision_defined; 

  navdata_option_t   options[1]; 

}_ATTRIBUTE_PACKED_ navdata_t; 

 

 

Following the header is a 32 bit ardrone state word. This word contains bits which 

define the current state of the drone for example bit 12 indicates motor status, bit 15 

indicates low battery voltage. Following the 32 bit state word is the 32 bit sequence 

number. This value defines the number of the current navigation data packet. The value 

is incremented after each packet transmission and is effectively a running total of the 

number of navigation data packets that have been transmitted. A 32 bit vision defined 

value precedes the navigation data options. A subset of the navigation data transmitted by 

the drone and captured by ‘wireshark’ is shown in Figure 2-5. 

The navigation data header which is defined as $55667788 is observed in Figure 2-5 

to begin at location $002c. Following the header is the 32 bit state word which in this case 

is $0f8000b5. The next value is the 32 bit sequence number $00002bf3 (decimal 11,251), 

indicating that this is the 11,251th navigation data packet transmitted. The 32 bit vision 

defined value $00000001 follows before the navigation data options begin at location 

$003c. The tag values of the first four navigation data options transmitted are highlighted 

in red, blue, green, and black in Figure 2-5. The two bytes following the tag number is the 

number of bytes transmitted as part of that option.  

Within the navdata_demo option two data values are highlighted to indicate where 

the battery voltage, and altitude as an example are located. In yellow is the 32 bit 

vbat_flying_percentage value which is indicating that the battery is currently at 51% of 

capacity.  
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Figure 2-5  Subset of navigation data captured by wireshark 

 

The 32 bit values of pitch, roll and yaw angles follow, and then the 32 bit altitude value, 

$000002c5, highlighted in purple. Converting to decimal, the altitude data informs the 

controlling consul that the drone is flying at an altitude of 709mm. The titles of the four 

navigation data options highlighted are as shown in Table 2-5. 

 

Table 2-5 Examples of navigation data options 

navdata_demo (red),  tag number 0000, consists of 148 ($0094) bytes, 

time (blue),   tag number 0001, consists of 8 ($0008) bytes, 

raw_measures (green) tag number 0002 consists of 52 ($0034) bytes, 

magneto (black),  tag number 0003 consists of 46 ($002e) bytes. 

v

 

v
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2.7 Summary 
 

Initially this chapter discusses the physics behind the quadcopter drone. Formulae 

relating to the thrust required by the four rotors to both elevate the drone, and move the 

drone forwards, backwards, or laterally, are derived. The sensors present within drones to 

enable stable and controlled flight are discussed. The varying number of applications to 

which drones are now being applied are presented and discussed. Finally a detailed 

analysis of the flight command packet transmitted, and the navigation data received from 

the Parrott AR2 drone are presented. This information will be used extensively in the next 

chapter in the development of an autonomous quadcopter drone. 
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Autonomous Quadcopter Drone Control 
 

 

 

3.1 Introduction 
 

This chapter describes the development of the hardware platform and control 

algorithms to enable autonomous UAV 3-dimensional flight control. The Parrot AR2 

drone is designed to be controlled by a tablet or smartphone, however, autonomous flight 

control requires a computer or microcontroller which can execute a flight program stored 

in memory. Since the drone’s on board microcontroller is not accessible, a laptop solution, 

and a solution incorporating Wi-Fi modules with on board microcontrollers, are used to 

meet the hardware platform requirements of the autonomous drone. Programs are 

developed to run on the hardware platforms to control the flight of the drone and enable 

the drone to follow any desired flight plan. The hardware platforms and flight control 

programs are evaluated experimentally and compared with expected results.  

 

3.2 Autonomous UAV Hardware Platform 
 

An autonomous UAV requires a hardware platform which is capable of executing a 

stored flight program in its memory and be able to communicate commands to the drone 

(achieved via Wi-Fi in this case). Two hardware platforms, (a) and (b) below, are 

implemented and are depicted in Figure 3-1. 

 

(a) Control via laptop  

(b) Control via NodeMCU Wi-Fi module  
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(b)

Drone Drone

 

Figure 3-1(a) Drone flight controlled by laptop (b) Drone flight controlled by 

NodeMCU module (DWi-Fi_0.1) 

 

Control via laptop requires the installation of the software development kit (SDK), 

provided by the drone manufacturer, Parrot. The SDK, whilst enabling user flight control 

programs to be constructed and executed, also handles drone Wi-Fi connection, 

navigation data reception, and flight command transmission to the drone, as depicted in 

Figure 3-1a. 

In Figure 3-1b above the NodeMCU module effectively replaces the laptop. The 

NodeMCU is an IoT platform which incorporates an ESP8266 Wi-Fi module, and a 

microcontroller with 128k of application program memory. The microcontroller has thirty 

accessible pins enabling I/O (input/output), serial data communications, PWM pulse 

width modulation (PWM) output, analogue to digital converter (ADC) inputs, and is 

readily programmed utilizing the Arduino IDE (integrated development environment). 

The device is 4.8cm long by 2.5cm wide and weighs 10g, which enables it to be mounted 

on the drone without compromising the drone during flight.  

In order for the drone to fly a controlled flight plan in 3-dimensional space, 

commands must be received by the drone every 20ms, otherwise the drone drifts in a 
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random and uncontrollable manner. In a network environment of potentially multiple 

networked drones, searching and connecting to appropriate Wi-Fi networks can take in 

excess of one second. A single NodeMCU module is therefore unable to control the flight 

of the drone and handle network requirements. A second NodeMCU module is thus 

incorporated into the hardware configuration to enable the possible construction of a 

drone network of similarly configured drones. The flight control NodeMCU module is 

labelled DWi-Fi_x.1 and the network module is labelled DWi-Fi_x.0, where x is the drone 

number. In the following description the drone is numbered as drone 0. 

 

The function of the two NodeMCU modules mounted on drone 0 is described below.  

 

DWi-Fi_0.1: 

(i)   Connects to the drone Wi-Fi network to which it is attached.   

(ii)   Communicates flight control commands to the drone. 

(iii) Reads navigation data from the drone. 

(iv)   Transmits navigation data via serial port connections to DWi-Fi_0.0. 

(v)   Receives flight control codes from DWi-Fi_0.0 and responds accordingly. 

 

DWi-Fi_0.0 

(i)   Enables drone network capability by connecting to DWi-Fi_0.0 modules to other  

  DWi-Fi_x.0 modules of similarly configured drones. 

(ii)   Transmits flight control codes across the network. 

(iii) Receives flight control codes that have been transmitted across the network. 

(iv)   Communicates flight control codes to DWi-Fi_0.1 via serial port. 

(v)   Receives navigation data from DWi-Fi_0.1. 

(vi)   Transmits received navigation data from DWi-Fi_0.1 across the network. 

 

A 3.3V voltage regulator circuit also mounted on the drone receives power from the 

drone’s 11.1V lithium battery and provides power to both NodeMCU modules. The 

hardware circuit for the NodeMCU controlled drone with network capability, is shown in 

Figure 3-2. A third NodeMCU module, DWi-Fi_LT, captures navigation data transmitted 
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from DWi-Fi_0.0. The navigation data is originally transmitted by the drone to DWi-

Fi_0.1 via Wi-Fi, which then transmits to DWi-Fi_0.0 via the serial port connection. 
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Figure 3-2  Circuit diagram of NodeMCU controlled autonomous drone. 
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3.3 Autonomous UAV Flight Control Algorithm 
  

Autonomous UAV flight control in 3-dimensional space via a laptop, utilises the 

SDK provided by the drone manufacturer Parrot, to facilitate the construction of flight 

control programs. Two functions, made available within the SDK, can be called from the 

flight control program, to i) enable drone take off and land, and ii) autonomous drone 

flight control. The two SDK functions are shown below. 

 

i) Take-off and land function (TOAL) 

ardrone_tool_set_ui_pad_start(t/l); 

 

ii) Autonomous drone flight control function (ADFC) 

ardrone_at_set_progress_cmd_with_magneto(a, b, c, d, e, f, g); 

 

The argument functionality table of Table 3-1 describes how each argument in the above 

functions impacts on the drone. 

 

Table 3-1  SDK argument functionality table 

Function Argument   Value          Function 

TOAL t/l 1 Take-off 

TOAL t/l 0 Land 

ADFC a 1 Enables combined yaw mode 

ADFC a 0 Enables hover mode 

ADFC b -1.0 max to +1.0 max Roll left/Roll right 

ADFC c -1.0 max to +1.0 max Pitch forward/Pitch backward 

ADFC d -1.0 max to +1.0 max Ascend/Descend 

ADFC e -1.0 max to +1.0 max Anticlockwise/Anticlockwise

  rotation 

ADFC f 0 Drone points to North after 

  calibration 

ADFC g  Magnetometer accuracy 
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The SDK translates functions TOAL and ADFC into the AT commands that are 

transmitted to the drone as described in Section 2.6.1. An example of an AT command to 

fly the drone in the forward direction is shown below. 

AT*PCMD_MAG= seq_num,1,0,-1110651699,0,0,0,0; 

In the above example, the negative value of argument c indicates that the drone should fly 

in the forward direction. The value of argument c is the IEEE 754 equivalent of -0.1 and 

indicates that the drone should fly in the forward direction at the corresponding velocity. 

The SDK builds a packet of thirty AT commands, and transmits the whole packet to the 

drone every 20ms. 

For autonomous 3-dimensional flight control via the NodeMCU Wi-Fi module the 

AT commands described above are constructed directly. The program running in the 

NodeMCU module mimics the SDK by building the required thirty AT command packet 

before transmitting complete packets to the drone every 20ms. 

The seven flight control functions for both laptop and NodeMCU platforms, are 

depicted in Table 3-2. By combining the available functions in the required sequence, any 

desired flight plan can be realised.   

 

 

Table 3-2  Flight control functions 

 

Flight Function argument a   argument b 

take_off()       -     - 

land()        -     - 

hover(a)         Time to hover (s)   - 

forward_backward(a,b) Distance to travel (mm) Velocity (-0.1 to 0.1) 

roll_left_roll_right(a,b) Distance to travel (mm) Velocity (-0.1 to 0.1) 

ascend_descend(a,b) Height required (mm) Velocity (-0.1 to 0.1) 

rotate_clock_anticlock(a,b) Number of degrees (mm) Velocity (-0.1 to 0.1) 
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The seven flight control functions operate completely independently from each 

other. The execution of any function in a desired flight plan is completed before the 

execution of the next function in the flight plan can begin. The current functions therefore 

cannot instruct the drone to fly a combination of flight instructions, e.g. to fly forward and 

ascend simultaneously for example. Additional functions can be developed, however, to 

permit simultaneous flight instructions to be completed by the drone. For example, to 

simultaneously fly forward and ascend, the function call would require four arguments; 

(w) a velocity argument to ascend and (x) the height the drone should ascend to, and (y) 

a velocity argument for the forward flight and (z) the distance the drone should fly in the 

forward direction. Within the function to fly forwards, backwards, ascend and descend, 

the velocity value to ascend would be inserted into position d, and the velocity value to 

fly forwards would be inserted into position c, of the flight control function described in 

Table 3-1. The flight control function would be executed continuously until the required 

height, and the required distance flown in the forward direction have been realised. A 

possible function call to fly forward and ascend simultaneously is described below. 

 

forward_backward_ascend_descend(w, x, y, z); 

 

In a similar fashion additional functions could be written to combine drone flight 

movement, e.g. to fly diagonally, if required. 

 

3.3.1 Drone Distance Flown Calculation 

 

The drone has no means of determining the distance it is required to fly, as specified 

in argument ‘b’ in the forward_backward(a,b) and roll_left_roll_right(a,b) functions. The 

distance travelled is therefore calculated in the program by effective integration of 

received navigation data, vx velocity of flight in the x direction (forwards or backwards), 

and vy velocity of flight in the y direction (lateral movement). The calculation of the 

distance travelled in the x direction is described in Figure 3-3. 
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Figure 3-3  Diagram illustrating distance calculation method 

 

The velocity vx_old in Figure 3-3 is the drone velocity received and stored from the 

previous navigation data received at time t. The time intervals t, 2t, 3t, are the times at 

which navigation data is received. The velocity vx_new is the current drone velocity 

received at time 2t. In the diagram of Figure 3-3, the distance travelled between time t and 

2t in the x direction, distance_x, is, calculated from the area of the trapezoid A2 (ABDE) 

in Figure 3-3. The area of trapezoid A2 is given by the sum of the areas of the triangle 

ABC, and the rectangle ACDE. 

 

Area of triangle   ABC  =  0.5(vx_new - vx_old)(2t – t)  (Equation 3-1) 

 

Area of rectangle   ACDE  =  (vx_old)(2t – t)   (Equation 3-2) 

 

If the difference in the velocity vdiff is given by: 

 

vdiff = vx_new – vx_old    (Equation 3-3) 
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Then by substituting into Equation 3-1, the area of triangle ABC is given by: 

 

Area of ABC  = 0.5vdiff(2t – t)    (Equation 3-4) 

 

The area of trapezoid ABDE, equivalent to the distance travelled in the x direction, 

distance_x, is therefore given by: 

 

 

Area of trapezoid ABDE  = (0.5vdiff(2t – t)) + ((vx_old)(2t – t)) (Equation 3-5) 

 

Similarly, distances travelled in the y direction (distance_y), can be calculated from 

vy_old, vy_new and t. The drone position in terms of x,y co-ordinates are thus calculated 

for every increment of time t. These co-ordinates are saved and enable a complete x y plot 

of the drone flight plan to be drawn at the end of the flight. The total distance travelled in 

the x direction and the y direction are calculated from the sum of the distance_x values 

and the distance_y values respectively. 

The accuracy of the calculated distances depend upon the accuracy of the velocity 

data supplied by the drone, however the accuracy of this velocity data varies depending 

upon the terrain the drone is flying over. The manufacturing company Parrot, suggest that 

for the most accurate velocity values the drone should be flown over a uniform patterned 

floor such as square tiles. The accuracy of the distances calculated in this thesis can vary 

between 91% and 99% when compared with the actual measured flight distance. The 

calculated flight distance can therefore only be considered as an estimate of the actual 

distance flown. 
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3.4 Drone Flight Control Program Development  
 

The autonomous drone flight control functions were developed utilising the SDK, to 

run initially on the laptop, and then modified to be made available to the Node MCU Wi-

Fi modules. The SDK provides a number of programs written as threads to assist 

autonomous flight control program development. The essential threads are the 

ardrone_control thread which generates the flight control packet illustrated in Figure 2-4 

and transmits the packet to the drone, and the navdata_update thread, which reads the 

navigation data transmitted by the drone every 20ms. Since there was potential for the 

navigation data to assist with flight control, the initial functions were constructed within 

the navdata_update thread. A function to fly the drone in the forward direction was 

constructed which simply executed the autonomous flight control function described in 

Table 3-1 with the value -0.1 in the c argument position. The function was executed within 

a control loop to ensure it was executed a number of times. Upon execution the drone was 

observed to take off and fly in the forward direction until the loop counter in the control 

loop decremented to zero. Since there was no flight distance control, care was taken to 

ensure that the number in the control loop was of a size to ensure that the drone did not 

crash into the surrounding walls of the gym in which the tests were carried out. 

It would be expected that the velocity of the drone would be constant once the 

terminal velocity of the drone is reached, however upon closer inspection, this was found 

not to be the case. During the flight, the drone did not maintain its pitch angle, and was 

observed to decelerate, then pitch forward and accelerate again several times during the 

forward flight. The reason for this was discovered after closer inspection of the 

navdata_update function. This function should execute every 20ms, however on occasion 

it was observed to skip, and execute after 40ms or even 60ms. Commands should be 

transmitted to the drone every 20ms to ensure correct uninterrupted flight, however, if the 

navdate_update function where the flight control program is located, does not execute for 

60ms, then this will not be the case. This was the cause of the drone being interrupted 

during the time when it was expected to fly in the forward direction at a constant velocity. 

Quite why the navdata_update function, on occasion, skips execution, could not be 

ascertained.  
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To overcome this undesirable situation a completely separate flight control thread 

entitled ‘fly’ was constructed. The thread contains a number of flight control functions 

which when executed informs the drone of the desired flight. The three main flight control 

functions to instruct the drone to fly forwards or backwards, roll left or roll right, and 

ascend or descend were constructed in a similar fashion.  

All three functions contain two arguments. One argument informs the drone of the 

velocity at which it should fly and the second argument informs the drone the distance it 

should fly. For the fly forward/backward function and the roll left/roll right function the 

distance the drone flies is calculated during the flight using the method described in Figure 

3-3 and Equation 3-5. For the ascend/descend function the distance (height) the drone 

should fly is provided by the drone in the ‘height’ navigation data. The fly forward or 

backward program function is shown in Figure 3-4 below. 

 

void forward_backward(int n, float m) 

{ 

extern float distance_new; 

extern int distance_flag; 

extern float distance; 

 

while (distance_new < =n) 

 { 

 if (distance_flag != 1) 

  { 

  ardrone_at_set_progress_cmd_with_magneto(1, 0, m, 0, 0, 0, 0); 

  } 

 

 

 else 

  { 

  distance_new = distance_new + distance; 

  distance_flag = 0; 

  ardrone_at_set_progress_cmd_with_magneto(1, 0, m, 0, 0, 0, 0); 

  } 

 } 

distance_new = 0; 

printf("man finished\n"); 

} 

 

Figure 3-4  Program illustrating the fly forward or backward structure 
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The function of Figure 3-4 is executed by a function call, for example 

forward_backward(15000,-0.1). The arguments passed to the function, 15000, (n, in the 

forward_backward function) instructs the drone to fly 15000mm, and -0.1, (m, in the 

forward_backward function) instructs the drone to fly at the velocity corresponding to this 

value. The variables distance_new, distance_flag, and distance are declared in the 

navdata_update function where the distance flown by the drone is calculated. The 

variables are declared as extern in the forward_backward function to make theses 

variables calculated in navdata_update available to the forward_backward function. The 

distance_new variable is the calculated distance the drone has flown and is initially 

cleared to zero in the navdata_update function.  

While the distance required for the drone to fly (n), is less than distance_new 

(initially zero) the main section of the function is executed. To ensure that the distance 

travelled (distance_new) is only updated after the navdate_update has been executed and 

the distance travelled (distance) has therefore been calculated, a flag system is introduced. 

A flag, ‘distance_flag’, is set to 1 at the end of navdata_update which is examined at the 

beginning of the forward_backward function. If the flag is cleared to ‘0’, the distance 

travelled will not be updated, and the command to fly the drone forward as described in 

Section 3.3 is executed with the argument -0.1 inserted into the correct argument. If the 

flag is set to ‘1’, the distance travelled is updated, the distance_flag is cleared to zero and 

the command to fly the drone forwards is executed as before. Once the calculated distance 

travelled is equal to or greater than the distance required specified in the original 

argument, the distance_new variable is cleared to zero and the function is terminated. The 

functions to roll left or roll right and to ascend or descend are constructed in a very similar 

manner to the description above. The three functions, when combined in the required 

order, enables the drone to be instructed to fly to any desired flight plan in 3-dimensional 

space. Once fully tested, the programs were transposed into programs and uploaded to the 

NodeMCU module, thus establishing a fully self-contained, autonomous flying drone.  
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3.5 Autonomous UAV Flight Plan Control 
 

In the flight plan of Figure 3-5, the drone is required to take off and hover for 9s (red 

functions), climb to 1.5 m (blue function), fly forward in the x direction for 12m (yellow 

function), hover for 3s, and finally land (green function). 

 

 

 

Function 2:

hover for 9s at 

0.75m

Function 1: 

take off

Function 3: 

climb to 1.5m

Function 4: 

fly forward for 12m

Function 5: 

hover for 3s

Function 6: 

land

 

  

Figure 3-5  Diagram showing flight plan to take off, hover, climb, fly forward, hover 

and land 

 

The flowchart and associated program required to achieve the flight plan of Figure 3-5 is 

depicted in Figure 3-6. 
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forward_backward(12000,-0.1)

hover(3)

land()

 

Figure 3-6 Flowchart and associated program required to achieve the flight plan of 

Figure 3-5 

 

The flowcharts in Figure 3-7 to Figure 3-12 describe the functions of Table 3-2 required 

to achieve the flight plan of Figure 3-5. 

 

 

The take_off and hover functions (Figure 3-7 and Figure 3-8) 

The take-off and hover functions are executed for every desired flight plan. The command 

that instructs the drone to take-off in Figure 3-7 is repeated for 2 seconds to ensure that 

the drone responds. The hover command in Figure 3-8 is repeated for 9 seconds to ensure 

the drone has completed the take-off phase, is stable in flight, and is ready to accept further 

flight commands. 
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Figure 3-7 Flowchart describing take-off algorithm 
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Figure 3-8 Flowchart describing 9 second hover algorithm 
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Figure 3-9  Flowchart describing algorithm to ascend to 1200mm 

 

The ascend_descend function (Figure 3-9) 

The arguments passed to the function (1500,0.2) inform the height to which the drone 

should ascend (1500mm) and the velocity of ascent (the velocity corresponding to 0.2). 

The function first examines the polarity of the velocity argument. A positive value, 0.2 in 

this case, instructs the drone to ascend. The height of the drone, provided by the navigation 

data, is compared continuously with the required height (1500mm) and the autonomous 

flight control function causing the drone to ascend continuously executed until the 

required height is reached when the function terminates. 
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end

Yes

No
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n = -0.1

 

Figure 3-10  Flowchart describing fly forward 12m algorithm 

 

The forward_backward function (Figure 3-10) 

The arguments passed to the function (12000,-0.1), determine the distance of travel, 12m, 

the direction of travel (negative velocity argument indicates forwards) and the drone 

velocity. The distance_new variable keeps a running total of the distance travelled in the 

x direction and is initially cleared to zero. While distance_new is less than or equal to 
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12m, the distance_flag is examined to confirm whether it is currently 0 or 1. The 

distance_flag is declared in the routine that reads the navigation data and is also made 

available within the forward_backward function. The distance_flag is set to 1 at the end 

of the routine that reads the navigation data and informs the forward_backward function 

that new navigation is available and distance_new can be updated. The distance flag is 

cleared after distance new has been updated. The distance flag ensures that distance_new 

is only updated when new navigation data is available. Irrespective of the value of the 

distance_flag the autonomous flight control function is executed to fly the drone forward. 

When distance_new is equal to or greater than 12m the function terminates. 

 

The hover function (brake) (Figure 3-11) 

Upon completion of the previous function, the hover function is executed for 3 seconds 

which effectively acts as a brake. When flying in the forward direction the drone is pitched 

forwards. When the hover function is executed the drone pitches backwards effecting a 

braking action. The drone then hovers until the 3 seconds has elapsed.  

 

hover(i)

ardrone_at_set_progress_cmd_with_magneto(0, 0, 0, 0, 0, 0, 0); 

has 1s  

elapsed?

i = i -1

i= 0?

hover end

Yes

Yes

No

No

Argument passed to function:

i=3

 

Figure 3-11  Flowchart describing 3s hover (brake) algorithm 
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Figure 3-12  Flowchart describing land algorithm 

 

 

The land function (Figure 3-12) 

The land function is executed at the end of every flight plan. The command that instructs 

the drone to land is executed continuously for 2 seconds to ensure that the drone responds 

to the instruction and lands. 

 

Under laptop control the program to deliver the flight plan of Figure 3-5 can be 

executed directly from within the SDK. Under NodeMCU control, the algorithms 

described in the flowcharts of Figure 3-13, Figure 3-14 and Figure 3-15 are uploaded to 

NodeMCU modules DWi-Fi_0.1, DWi-Fi_0.0, and DWi-Fi_LT respectively. The 

interaction during execution of the three programs is as follows: 

 

(i) DWi-Fi_0.1 configures as a station and connects to drone. 

DWi-Fi_LT configures as an access point. 

 

(ii) DWi-Fi_0.1 informs DWi-Fi_0.0 that it is connected to the drone. 
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(iii) DWi-Fi_0.0 reads DWi-Fi_0.1’s connection confirmation message and configures 

itself as a station. 

 

(iv) DWi-Fi_0.0 connects to DWi-Fi_LT and transmits take off code ‘TO’ to DWi-

Fi_0.1. 

 

(v) DWi-Fi_0.1 reads take off code and executes take off function. 

 

(vi)  DWi-Fi_0.1 executes next function in flight plan list. 

 

(vii) If function in (vi) is not complete, DWi-Fi_0.1 delays 20ms and transmits 

navigation data to DWi-Fi_0.0. 

 

(viii) DWi-Fi_0.0 transmits navigation data to DWi-Fi_LT. 

 

(ix) DWi-Fi_LT displays navigation data on laptop screen. 

 

(x) Repeat (vii) to (ix) until execution of current function is complete. 

 

(xi) Repeat (vi) to (x) until last function in flight plan is executed and DWi-Fi_0.1 

transmits ‘goodbye” to DWi-Fi_0.0. 

 

(xii) DWi-Fi_0.0 transmits ‘goodbye” to DWi-Fi_LT. 

 

(xiii) DWi-Fi_LT transmits ‘goodbye” to laptop and is displayed on the screen. 
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Figure 3-13 Flowchart describing module DWi-Fi_0.1 algorithm 
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Figure 3-14 Flowchart describing module DWi-Fi_0.0 algorithm 
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Figure 3-15 Flowchart describing module DWi-Fi_LT algorithm 

 

 

 

 

 

 

 

 



57 

 

3.6 Results and Analysis 
 

The flight plan of Figure 3-5, which contains five of the seven developed flight 

control functions, is executed to examine the response of the drone to the flight control 

functions. The navigation data captured during the flight enables important parameters 

such as the height, and distance flown to be examined and compared with the expected 

values from the arguments included in the flight control functions. The test flight plan 

also enables the drone movement in pitch, roll and yaw angles to be analysed as the flight 

control program is executed. The graph of Figure 3.16 depicts the flight of the drone 

resulting from the execution of the flight control program of Figure 3-5. 

The graph of Figure 3-16 shows the flight program commencing at 3.6 seconds at 

which time the take-off function begins execution. Two seconds later at 5.6 seconds, the 

take-off function is complete, movement is observed in the pitch, roll and yaw angles, and 

at 6.6 seconds, the drone lifts off the ground. The hover function begins execution at 5.6 

seconds (before the drone has actually left the ground) and continues for 9 seconds, as 

requested in the program, until completion at 14.6 seconds.  

 

 

 

Figure 3-16  Graph of pitch angle, roll angle, yaw angle and drone height plotted 

against time 
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During the execution of the hover function the drone is observed to hover at a height 

between 740 and 800cm. At 14.6s, the third phase of the flight plan (ascend to 1500mm) 

begins execution. The drone is observed to climb initially to 1600mm before finally 

settling at 1520mm. The ascend function completes at 17.2 seconds at which time the next 

phase of the flight plan, fly forwards 12m, begins. The pitch angle decreases to 5 degrees 

initially, indicating the drone is pitching forward and therefore moving in the forward 

direction. 

The graph of Figure 3-17 shows the velocity in the x direction beginning to increase 

at 17.2 seconds until levelling out at approximately 1.5m/s. The drone is observed to fly 

in the forward direction until the required 12m is reached at 25.9 seconds. The graph of 

Figure 3-16 shows the drone pitching backwards 9.1 degrees, producing a braking action, 

at 26.4 seconds. The drone comes to a halt after flying a total of 14m, overshooting the 

required distance by 2m, due to the drone’s momentum. The drone remains in the air 

hovering for 3 seconds as requested in the flight program before being instructed to land 

when the final function in the flight control program is executed. 

 

 

 

Figure 3-17  Graph showing the velocity in the x direction and the distance travelled 

plotted against time 
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The drone completes the flight plan of Figure 3-5 as expected, however the test flight 

also reveals two issues. 

 

(i) When the brake is applied the drone pitches back 9.1 degrees and comes to a halt. 

Although not so much of an issue at lower velocities, 1.5m/s in this test flight, at 

higher velocities the harsh brake can cause significant deviation in height and 

direction. 

(ii) Although requested to fly a distance of 12m, in function 4 of the flight plan, the 

drone overshoots the requested distance by 2m. The overshoot is due to the 

momentum of the drone as it accelerates to its terminal velocity of approximately 

1.5m/s. 

 

Modifications to function 4 of the flight plan which flies the drone in the forward direction 

are discussed in the next sections to address the points raised in (i) and (ii) above. 

 

3.6.1 Flight Function Modification - Braking 

 

The worst case scenario of the harsh brake application is depicted in Figure 3-18 

when the brake is applied when the drone has reached maximum velocity. The pitch angle 

is observed to swing from -19 degrees when flying forward, to 31 degrees in the reverse 

direction, in 1.2 seconds, resulting in a rapid deceleration, impacting drastically on the 

drone height and direction of flight. 

The velocity of flight is determined by the velocity argument (b), which can vary 

from 0 to -0.4 for forward flight and 0 to +0.4 for reverse flight, in the 

forward_backward(a,b) flight control function. The greater the magnitude of the velocity 

argument, the greater the flight velocity. When flying in the forward direction, a soft brake 

is introduced by increasing the velocity argument by 0.1 increments in the flight control 

function, with a short delay in between increments, until the velocity argument value is 

equivalent to the magnitude of the original velocity argument, but is now positive. The 

brake is thus applied to the drone in a more controlled manner over a greater period of 

time. 
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Figure 3-18  Graph of velocity in the x direction and pitch angle plotted against time 

 

In a similar fashion the forward_backward function is modified to accelerate the drone in 

controlled increments. The graph of Figure 3-19 depicts the result of the drone flight 

incorporating the modified program. 

 

 

Figure 3-19  Graph of velocity in the x direction (after acceleration and deceleration 

modification), and pitch angle plotted against time 
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Although the drone takes longer to accelerate to the maximum velocity as would be 

expected, a significant improvement is observed when the brake is applied. The soft brake 

ensures the drone only pitches back 11 degrees compared to 31 degrees previously. The 

issues of uncontrolled movement of the drone, created by a hard brake, are thus nullified 

and the drone comes to a controlled halt. 

 

3.6.2 Flight Function Optimisation - Overshoot  

 

To further examine the overshoot experienced by the drone at the moment in time 

when the brake is applied, the drone is flown for 12m at velocity arguments of -0.1,-0.15, 

-0.2 and-0.25. The resulting overshoot for the four test flights is depicted in Figure 3-20. 

The distance overshoot results displayed in Figure 3-20 were taken with the acceleration 

and braking enhancement included in the flight program. The results clearly show the 

increase in overshoot from the required flight distance as the velocity is increased. The 

drone also comes to a halt earlier as the velocity increases as expected, since the drone 

reaches the required distance in a shorter space of time.  

 

 

 

Figure 3-20  Graph of drone distance travelled against time at different velocities 
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Table 3-3  Table showing results of drone velocity and average overshoot 

Velocity Overshoot data 

Velocity 

Argument 

Average velocity vx 

(cm/s) 

Distance required 

(cm) 

Average 

overshoot 

(cm) 

-0.1 144.3 1500 220.3 

-0.15 223.9 1500 343 

-0.2 314.9 1500 452.6 

-0.25 391.8 1500 612.8 

-0.3 467.7 1200 800.6 

 

To eliminate the overshoot, a practical algorithm is adopted, by considering the 

relationship between the velocity of the drone, at the moment in time when the brake is 

applied. The drone is flown for four flights at velocities corresponding to velocity 

arguments of -0.1, -0.15, -0.2, -0.25, -0.3, i.e. twenty flights in total, and the average 

velocity and overshoot for the four flights plotted to determine the relationship. The 

results are presented in Table 3-3 and plotted in the graph of Figure 3-21. 

 

 

 

Figure 3-21  Graph of overshot plotted against drone velocity in the x direction 
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The graph of Figure 3-21 can be approximated to a linear relationship between the 

overshoot and the velocity in the x direction presented in Equation 3-6. 

 

   overshoot = 1.65vx– 20.33    (Equation 3-6) 

 

The equation is inserted into the forward_backward function enabling the projected 

overshoot to be calculated as the drone is flying forward in real time. The calculated 

overshoot value is subtracted from the required distance passed to the function so that the 

actual distance flown will be as expressed in Equation 3-7. 

 

  distance_new   =  distance_required  – overshoot (Equation 3-7) 

 

To examine the performance of the overshoot elimination algorithm, the two equations 

above are inserted into the forward_backward program and tests flights flown for velocity 

arguments of -0.1, -0.15, -0.2, -0.25 and -0.3 for a number of required distances. The 

actual distance travelled, the calculated overshoot, and the percentage error in the distance 

travelled for the test flights, are shown in Table 3-4. 

 

Table 3-4 Table showing results of drone velocity, distance travelled, and calculated 

overshoot 

Velocity 

Argument 

Velocity 

(cm/s) 

Distance 

Required 

(cm) 

Distance 

Travelled 

(cm) 

Calculated 

Overshoot 

(cm) 

Distance 

error 

(%) 

-0.1 152.3 1500 1490 232 -0.7 

-0.1 154.0 2000 2017 234 0.8 

      
-0.15 221.1 1500 1586 345 5.4 

-0.15 227.8 2000 1985 356 -0.7 

      
-0.2 294.8 1500 1517 467 1.1 

      
-0.25 380.6 1500 1540 609 2.7 

      
-0.3 405.0 1500 1643 650 8.7 
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The ‘Calculated Overshoot’ column entries are calculated from Equation 3-6 in real 

time and are subtracted from the ‘Distance Required’ in the program to determine when 

the brake should be applied. In the first row for example the brake is applied after the 

drone has flown 1500cm – 232cm  =  1268cm. The drone’s momentum carries the drone 

forward a further 222cm so that the drone actually flies forward a distance of 1490cm. 

The results show good distance accuracy when flown at lower velocities. As the velocity 

increases the distance error is also observed to increase with a maximum error of 8.7% 

when flown at a velocity of 405cm/s. An acceptable error for the drone flying a relatively 

short distance at high speed. 

 

3.6.3 Results of Autonomous UAV Following a Square Flight Plan  

 

To examine the drone’s response to a more complex 3-dimensional flight plan, the 

drone is requested to fly a square of side 7m at a velocity of 1.5m/s (velocity argument -

0.1). The x, y plot of the drone flight is depicted in Figure 3-22 and flight accuracy 

measurements displayed in Table 3-5. 

  

 

Figure 3-22  Graph showing the x-y plot of the autonomous controlled drone flying a 7m 

square 
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Table 3-5 Table showing the deviation in direction and distance from the 7m square 

flight plan 

Direction of 

flight 

Distance 

travelled (cm) 

Deviation from 

required distance (%) 

Deviation from 

required direction (%) 

Forward +x 713 2 (long) 2 (to the left) 

Right –y 618 12 (short) 0 

Backward -x 724 3 (long) 3 (to the right) 

Left +y 659 6 (short) 4 (to the back) 

 

 

The diagram of Figure 3-22 shows the drone commencing the 3-dimensional flight 

plan from the origin. The drone then flies the first phase in the x direction, flies the second 

phase rolling in the –y direction, flies the third phase backwards in the –x direction, and 

finally completes the square by rolling in the +y direction. 

The results of Table 3-5 show the drone flying further than the requested distance in 

the x direction, and shorter than the requested distance in the y direction, when completing 

the square. Although relatively low deviations from the required distances are observed, 

these percentage deviations will reduce further, if greater distances are required in the 

control program. Deviations of less than 5% are observed in the direction of flight. 
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3.7 Summary 
 

Results taken during programmed flights show that the laptop and NodeMCU Wi-Fi 

modules provide the hardware platform required for autonomous drone flight control. The 

programs developed to run on the hardware platforms, are written as functions enabling 

them to be combined to produce any required 3-dimensional flight plan. The distance 

travelled by the drone in both the x and y directions, is calculated by integrating the 

available velocity in the x direction vx and the velocity in the y direction vy, with respect 

to time. The resulting incremental distance values in the x and y directions enables the 

flight to be drawn as an x-y plot.  The enhancement made to the flight control functions 

to minimise the braking effects on the drone caused by a harsh brake, are shown by results, 

to significantly reduce deviations to the drone flight. Results also show that the distance 

overshoot modification to functions, improves the accuracy of the requested distance of 

flight. The NodeMCU hardware platform and the developed flight control programs 

enable autonomous flight control where the drone can be programmed to fly any desired 

3-dimensional flight plan. 
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Estimation of UAV Flightpath from the 

Relative Angular Velocity of the 

Quadcopter Rotors (AVQR) 
 

 

 

4.1 Introduction 
 

The flightpath of a quadcopter drone can be determined and controlled by GPS or 

waypoint methods. These methods however require additional specialist components, and 

in the case of GPS, outdoor flights. This chapter introduces a unique method to estimate 

the drone flightpath, utilising the relative angular velocity of the four rotors and thus 

eliminating the shortcomings of GPS techniques and the requirement of additional 

components or equipment. 

The differences in the angular velocity of the four rotors of a quadcopter drone 

creates torque, causing the drone to pitch, roll or yaw in the appropriate direction. The 

torque is thus proportional to the angle of pitch, roll or yaw generated and the resulting 

drone directional movement. A torque equation incorporating the torque components of 

pitch, roll and yaw is developed from first principles from which the flightpath of the 

drone can be estimated.  

The accuracy of the estimated flightpath is presented by analysing the results 

generated from the torque equation for a number of 3-dimensional test flights. 
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4.2 The Rotor Torque Equation 
 

The relationship between the rotor speed and the movement of the drone can be 

shown to be a function of the torque developed by the four rotors. The overall torque can 

be calculated by a consideration of the torque developed in the three aspects of pitch, roll 

and yaw movement. The torque developed by pitch and roll aspects can be calculated 

from the thrust developed by the four rotors (i). The torque developed by the yaw aspect 

is determined by the angular velocity of the rotors in the Euler rigid body equation (ii) 

[90]. 

 

(i)  Torque equations for pitch and roll movement. 

 

Whilst the rotors rotate, the blades generate downward thrust. The power required to 

generate the required thrust is given by [90]. 

 

T hP Tv       (Equation 4-1) 

 

Where PT is the power required to generate the ideal thrust, T is the thrust and vh is the 

velocity of air passing through the blades. 

 

From momentum theory, the power required to produce a given thrust is given by: 

 

3

2
T

T
P

A
      (Equation 4-2) 

 

Where ρ is the density of air, and A is the area described by the rotating blade [90]. 
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The power consumed while a rotor is rotating can be derived from the following equation: 

 

v

t

k

k
CP       (Equation 4-3) 

 

Where PC  is the power consumed, τ is the torque, kv is a proportionality constant and kt 

represents a torque proportionality constant. The constant kv is the motor velocity constant 

(or back EMF constant) applied to brushless DC motors. The motor velocity constant is 

defined as the ratio of the motors’ angular velocity without load, to the peak voltage across 

the motor coils (the back EMF). The maximum value of kv is therefore limited by the 

maximum no load rotor angular velocity and the minimum peak voltage across the motor 

coils. The torque constant kt is defined by the ratio of the DC motor’s output torque to the 

current flowing through the motor windings. It is a function of the motor design including 

the armature length and the number of wire turns. The maximum value of torque constant 

kt is therefore determined by the maximum output torque output and the minimum current 

flowing through the motor windings.  

Combining Equation 4-2 and Equation 4-3, the relationship between thrust T and 

angular velocity ω can be derived as follows: 

 

3
v v

τ

t t

k k
k

2 k k

T
T

A
 


      (Equation 4-4) 

and 

2

2v τ

t

k k 2
k

k

A
T


 

 
   
 

    (Equation 4-5) 

 

The thrust T is thus directly proportional to the square of the angular velocity ω of each 

rotor. 
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A quadcopter drone has four rotors. To ensure the rotors are balanced, and the drone 

does not rotate when the rotors are rotating, the Parrot AR2 drone’s front left rotor (rotor 

1) rotates in a clockwise direction, the front right rotor (rotor 2) rotates in an anticlockwise 

direction, the rear right rotor (rotor 3) rotates in a clockwise direction and the rear left 

rotor (rotor 4) rotates in an anticlockwise direction. The relative variation in velocity of 

the rotors impacts on the pitch angle, yaw angle and roll angle of the drone which 

ultimately governs the drone’s flightpath. 

Forward flight requires an increase in velocity of rotors 3 and 4 and a decrease in 

velocity in rotors 1 and 2. The rotor velocity imbalance from the rear to the front generates 

torque causing the drone to pitch forwards and rotate about its centre of gravity. As the 

rotors angle away from the horizontal plane the drone moves forwards. The angle the 

drone pitches forwards (the pitch angle) will determine the velocity of flight. To continue 

forward flight at constant velocity the torque applied to the drone is required to be 

maintained, ensuring that the pitch angle remains constant. To fly in reverse, the above 

also applies but with an increase in speed of rotors 1 and 2 and a decrease in speed of 

rotors 3 and 4. A similar explanation is true for lateral (roll) movement [91]. 

The torque generated for pitch or roll can be determined by consideration of the 

standard torque formula:  

  τi = rTi     (Equation 4-6) 

 

Where τi is the torque generated by a rotor i, r is the radius between the drone body to 

each rotor (common for each rotor), and Ti is the thrust generated by rotor i. For forward 

flight i.e. the drone is pitching forwards, the torque due to the pitch angle is determined 

by the difference between the front thrust and the rear thrust.  

1 2 3 4pitch rT rT rT rT         (Equation 4-7) 

 

Substituting Equation 4-5  

 

𝜏𝑝𝑖𝑡𝑐ℎ =  𝑟(𝑘1𝜔1
2 + 𝑘1𝜔2

2 − 𝑘1𝜔3
2 − 𝑘1𝜔4

2)   (Equation 4-8) 
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Assuming the PWM rotor speed value has a linear relationship with the angular velocity 

ω. 

 

PWMki iPWM       (Equation 4-9) 

 

 

Substituting into Equation 4-8 yields 

 

 
1 2 2 2 2

1 2 3 4
2

PWM

k

k
pitch

r
PWM PWM PWM PWM       (Equation 4-10) 

 

Applying the same process to the torque due to the roll angle yields: 

 

 
1 2 2 2 2

1 4 2 3
2

PWM

k

k
roll

r
PWM PWM PWM PWM         (Equation 4-11) 

 

(ii) Torque equation for yaw angle: 

 

The torque due to the movement in the yaw angle can be determined by consideration 

of the Euler rigid body equation shown in Equation 4-12, which identifies the relationship 

between the torque and the angular velocity for each rotor [90] 

 

  Iω ω Iω M     (Equation 4-12) 

 

 

where I is the inertia matrix, ω is the angular velocity about the principle axes and M is 

the applied torque. 
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The drone has four rotors each of which will generate torque, impacting on the whole 

system. The torque due to yaw movement is given by the sum of the torque generated by 

each individual rotor, represented by the following equation [92]. 

 

4 4

1 1
( )yaw

i i
i i iτ

 
   M ω ω ωI I    (Equation 4-13) 

 

In steady state flight the acceleration component ω  approximates to zero and can be 

removed from the equation yielding: 

 

24

1
yaw

i
i i iτ


  M ω I     (Equation 4-14) 

 

Applying the same previous assumption that the PWM rotor speed value has a linear 

relationship with the angular velocity ω yields: 

 

2 2 2 2
1 3 2 4

2
PWMk

( )yawτ PWM PWM PWM PWM   
I

  (Equation 4-15) 

 

The overall rotor torque equation attributed to pitch, roll and yaw angle movement is thus 

given by the following matrix equation. 

 

 

 

 

2 2 2 2
1 2 3 4

2 2 2 2
1 4 2 3

2 2 2 2
1 3 2 4

+ - -

+ - -

+ - -

k

k

a

pitch

Drone roll

yaw

PWM PWM PWM PWM
τ

PWM PWM PWM PWM

τ
PWM PWM PWM PWM

τ

 
   
        

  
 

   (Equation 4-16) 
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4.3 Rotor Torque Equation Test Results and Analysis 
 

To evaluate the pitch and roll components of the rotor torque equation, the drone is 

flown under laptop control in a 3-dimensional, 7m square flight plan, at a velocity of 

approximately 1.5m/s. The yaw component of the torque equation is evaluated by rotating 

the drone about its z-axis, 90 degrees, 180 degrees and 270 degrees at velocity arguments 

of -0.1, -0.2 and -0.3. The angular velocities of the rotors are captured as navigation data 

transmitted from the drone to the laptop during the test flights. The rotor angular velocity 

data is expressed as a PWM value, where 0 is the minimum value, and 255 is the 

maximum value. The angular velocity (PWM) values for each rotor are substituted into 

the rotor torque equation, enabling graphs to be plotted of the rotor torque equation against 

time for the different test flights. The three components of the torque equation are 

analysed to establish the significance in the variation of these values as the drone 

completes the test flights. 

 

4.3.1 Analysis of the Pitch and Roll Components of the Torque Equation 

 

The graph of Figure 4-1 depicts the raw angular velocity data plotted against time 

for the drone following a 3-dimensional flight plan where it takes off and hovers, climbs 

to 1.2m, flies forward 7m at a velocity of approximately 1.5m/s and then brakes and 

hovers. The rotors are numbered such that rotor 1 is front left, rotor 2 is front right, rotor 

3 is rear right and rotor 4 is rear left. 
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Figure 4-1 Graph showing the angular velocity of the four rotors (PWM values) plotted 

against time 

 

It is clear from the graph of Figure 4-1 that realising the 3-dimensional flight plan from 

the raw angular velocity data is challenging. It is also observed from Figure 4-1 that when 

hovering (between 7s and 13s) the rotors do not rotate at the same angular velocity but differ 

from a minimum PWM value of 175 to a maximum PWM value of 185. As the developed 

torque equation assumes the angular velocity of all rotors is equal whilst hovering in the 

horizontal position, the angular velocity values are normalised to the average rotor angular 

velocity when the drone is hovering. The normalised angular velocity values for the four 

rotors are inserted into the torque equation resulting in the graph of Figure 4-2 which depicts 

the pitch torque (blue) and the roll torque (red) for the drone flight rotor data. The yaw torque 

is not shown in this graph as there is no rotational movement of the drone in this test flight. 

There is minimal movement in the roll torque in Figure 4-2 as would be expected for the 

drone flying in the forward direction. The pitch torque also oscillates about the zero torque 

position until 15.2s has elapsed when the drone begins to move forward. The decrease in the 

pitch torque indicates that the two rear rotors are rotating at a greater angular velocity than 

the two front rotors initiating forward movement. 
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Figure 4-2  Graph showing the torque generated in the pitch and roll components plotted 

against time. 

 

The pitch torque continues to decrease to a minimum torque value of approximately -

180000. At 20.2 seconds the brake is applied and the pitch torque increases until it reaches 

0 torque at approximately 25s when the drone hovers in the horizontal plane.  

The distance the drone has flown in the forward direction can be estimated by determining 

the sum of: 

i) da = the distance the drone flies during the acceleration phase to terminal velocity. 

ii) dv = the distance the drone flies at terminal velocity when the acceleration is equal 

to zero. 

iii) db = the distance the drone flies during the deceleration phase from terminal 

velocity to zero velocity. 

The terminal velocity of the drone when flown with velocity arguments of -0.1, -0.2, 

and -0.3 is depicted in. Figure 4-3. 
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Figure 4-3  Graph showing drone velocities for velocity argument values of -0.1, -0.2 

and -0.3 

 

The graph of Figure 4-3 enables the velocity of the drone for differing velocity argument 

values to be determined and is summarised in Table 4-1. 

Since the velocity argument in the program is set to -0.1 then the drone in the test 

flight accelerates to a velocity of 1.5ms. The distance that the drone flies in the forward 

direction can be determined from the graph of Figure 4-4. 

 

Table 4-1 Table showing drone velocity arguments and corresponding drone velocity. 

 

Velocity argument Velocity cm/s Velocity m/s 

-0.1 150 1.5 

-0.2 300 3 

-0.3 450 4.5 
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.  

Figure 4-4 Graph of distance travelled and pitch torque plotted against time 

 

The distance travelled during the acceleration phase, da, is determined from the graph 

as 3.3m, which is the distanced travelled until the pitch torque reaches steady state. The 

drone has then reached terminal velocity, 1.5m/s in this case, which it flies at for 1.1s. 

The distance travelled during the constant velocity, phase, dv, is thus 1.7m. Finally, during 

the braking phase, db, the drone flies a further 2.2m making a total of 7.2m, for the whole 

flight. 

For any distance flown in the forward direction greater than 7m at a velocity 

argument of -0.1, the values of da and db will be the same. The only calculation required 

in determining the total distance flown, is that of dv, which can be determined from a graph 

of pitch torque plotted against time, similar to that of Figure 4-4. The total distance flown 

can then be realised by the sum of da, dv and db, 

Using the same technique described above, values of da, db and the terminal 

velocities, are determined for the drone flying in reverse, rolling to the right and rolling 

to the left and are displayed in Table 4-2.  

 

-500

-400

-300

-200

-100

0

100

200

300

400

500

600

700

800

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

-25000

-20000

-15000

-10000

-5000

0

5000

10000

15000

20000

25000

30000

35000

40000

D
is

ta
n

ce
 (

cm
)

Time (seconds)

To
rq

u
e*

k

Torque pitch Distance

db = distance travelled during

braking = 2.2m

Time duration of constant 

velocity flight = 1.1s

Total distance travelled = 7.2m

da =  distance travelled during 

acceleration =  3.3m 

dv = distance travelled during constant 

velocity = v*t = 1.5*1.1 = 1.7m 



78 

 

Table 4-2 Table showing values of da, db and drone velocity for a velocity  

argument of -0.1. 

 

Direction of 

flight 

Distance flown 

during acceleration 

da (m) 

Distance flown 

during breaking 

db(m) 

Velocity m/s 

Forward 3.3 2 1.5 

Reverse 3 2 1.5 

Roll Left 3 1.3 1.25 

Roll Right 3 1.3 1.25 

 

To examine the performance for a more complex drone flight, the rotor angular 

velocities for the 7m square flight plan of Chapter 4 are substituted into the torque 

equation yielding the graph shown in Figure 4-5.  

 

The 3-dimensional flight plan of the drone can be determined by interpreting the 

graph of Figure 4-5. At 15.8s, the pitch torque (blue) goes negative whilst the roll torque 

remains at zero, indicating the drone is moving in the forward direction. 

 

Figure 4-5 Graph showing the pitch and roll torque plotted against time for a square 

flight plan 
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From previous analysis, the drone movement is interpreted to be moving in the 

forward direction, 7.2m, during the time the pitch torque is negative. As the torque pitch 

returns to zero, a two second delay is followed by the roll torque (red) going positive. 

During the time the roll torque is positive, the pitch torque is approximately zero 

indicating the drone is rolling to the right. The distance the drone rolls to the right can be 

estimated from the values associated with left roll, available in Table 4-2. The distance 

travelled during acceleration da is 3m. The time the drone is flying at terminal velocity is 

approximately 1.8s which means the distance travelled during this time period dv is 2.25m. 

The distance travelled during deceleration db is 1.25m, giving a total roll distance of 6.5m. 

After a further two second delay the torque pitch goes positive indicating a drone 

movement in the reverse direction. Finally the roll torque goes negative indicating a roll 

to the left. Considering the graph of Figure 4-5, the pitch torque indicating reverse 

movement and the roll torque indicating left movement are almost mirror images of the 

torque pitch forward and the torque roll right respectively, identifying an approximate 

square flight plan. The estimated distances travelled as the drone traverses a 7m square 

are illustrated in Table 4-3. 

 

Table 4-3  Table showing the estimated distance travelled for a square flight plan and 

associated accuracy 

 

Drone movement 

Distance travelled 

from Figure 3-21 

(m) 

Estimated distance 

travelled from torque 

equation (m) 

Accuracy 

(%) 

Forward 7.1 7.2 99 

Roll right 6.2 6.6 94 

Backward 7.2 7.0 97 

Roll left 6.6 6.6 99 
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The estimated distance travelled in Table 4-3 is shown to have a worst case accuracy of 

94%. The pitch and roll components of the torque equation are thus observed to provide 

an excellent estimation of the distance travelled in the x and the y directions. 

 

4.3.2 Analysis of the Yaw Component of the Torque Equation 

 

Results of the drone rotating 270 degrees at a velocity argument of 0.3, and at a 

velocity argument of 0.2, are shown in Figure 4-6 and Figure 4-7 for comparison. 

 

Figure 4-6  Graph of yaw torque for a 270 degree rotation with a velocity argument of 

0.3 plotted against time 

 

 

Figure 4-7  Graph of yaw torque for a 270 degree rotation with a velocity argument of 

0.3 plotted against time 
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Prior to the negative going impulse on graphs of Figure 4-6 and Figure 4-7, the drone 

has taken off and is hovering. The negative impulses at 13.3 seconds and 11.9 seconds 

respectively depicted in the graphs of Figure 4-6 and Figure 4-7, are as a result of the 

torque created in the rotors initiating rotational movement. From the yaw component of 

the torque equation, (equation 5-16), rotors 2 and 4 (rotating clockwise) have a greater 

angular velocity than rotors 1 and 3 (rotating anticlockwise) creating a clockwise 

rotational movement. A negative impulse thus implies a clockwise rotation. A positive 

impulse would imply an anticlockwise rotation. The drone rotates through 270 degrees 

when it is informed to stop which initiates an impulse in the positive direction. The 

positive impulses are observed to occur at 17.8 seconds in Figure 4-6 and 20.8 seconds in 

Figure 4-7. The drone thus completes the 270 degree rotation in 4.5 seconds, (Figure 4-6) 

when rotating with a velocity argument of 0.3 equating to an angular velocity of 60 

degrees/second, and 9.1 seconds (Figure 4-7) with a velocity argument of 0.2 equating to 

an angular velocity of 30 degrees/second. As would be expected the drone completes the 

270 degree rotation faster when rotating at a greater angular velocity. The angular velocity 

of rotation can be determined from the magnitude of the initial impulse initiating 

rotational movement. From the graphs of Figure 4-6 and Figure 4-7 a rotational angular 

velocity of 60 degrees/second is initiated by an impulse of magnitude -104000 and a 

rotational angular velocity of 30 degrees/second is initiated by an impulse of magnitude 

81000. Table 4-4 shows results of the drone rotating through 270, 180 and 90 degree 

angles and the resulting magnitude of the impulse at different angular velocities. 

Table 4-4 Results showing impulse response at different angular velocities 

 

Velocity 

argument 

Rotation 

(degrees) 

Time for rotation 

(s) 

Angular velocity 

(degrees/second) 

Magnitude of 

initial impulse 

0.3 270 4.5 60 -104000 

0.3 180 3.3 54.5 -106000 

0.3 90 1.6 56.3 -100000 

0.2 270 9.1 29.7 -81000 

0.2 180 4.7 38.3 -61000 

0.2 90 2.9 31 -95000 
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From the results of Table 4-4 it is observed that the angular velocity of rotation can 

be identified from the magnitude of the impulse initiating rotation. Knowing the angular 

velocity, and the time taken to complete the rotation, an approximation of the number of 

degrees rotated by the drone can be realised. The average angular velocities are calculated 

as 57 degrees/second and 33 degrees/second for angular velocity arguments of 0.3 and 0.2 

respectively. Calculated angles for the time taken to complete the rotation and accuracy 

calculations are displayed in Table 4-5. 

 

From the results of Table 4-5 it is concluded that a greater accuracy of calculated 

degrees of rotation is observed when the angular velocity of drone rotation is 57 degrees 

per second compared to 33 degrees per second. As the angular velocity of the drone 

rotation decreases, the differences between the angular velocities of the rotors also 

decreases, limiting the performance of the torque equation in the yaw component. When 

the angular velocity argument governing the drone angular velocity rotation is set to 0.1, 

the differences in angular velocity of the rotors is so reduced that meaningful rotor angular 

velocity data analysis cannot be realised. 

 

Table 4-5 Table showing calculated angle of rotation and accuracy 

 

Average 

angular 

velocity 

degrees/s 

Rotation 

completion time 

(s) 

Actual angle of 

rotation 

(degrees) 

Calculated angle 

of rotation 

(degrees) 

Accuracy 

(%) 

57 4.5 270 256.5 95 

57 3.3 180 188.1 96 

57 1.6 90 91.2 99 

33 9.1 270 300.3 90 

33 4.7 180 155.1 86 

33 2.9 90 95.7 95 
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4.4 Summary 
 

In this chapter a torque equation, incorporating pitch, roll, and yaw components, is 

developed to estimate the 3-dimentional flightpath of a quadcopter drone. The 

performance of the torque equation in the pitch and roll components is examined by 

analysing the results generated from flying the drone in a 7m square flight plan. The yaw 

component of the torque equation is examined by analysing the results generated from 

rotating the drone through 90°, 180° and 270°decreases at different angular velocities. 

The pitch and roll components of the torque equation generate graphical results 

which enable:  

(i) the direction of flight to be realised, 

(ii) the terminal velocity and hence the distance travelled, calculated to a minimum 

accuracy of 94% for the flight of test. 

 

The yaw component of the torque equation generate graphical results which enable: 

(i) an estimation of the drone rotational angular velocity, 

(ii) an estimation of the angle of rotation. Most accurate results ( 95% minimum) are 

obtained when the drone is rotating at a higher angular velocity (57°/s). At angular 

velocities of less than 33°/s meaningful results cannot be realised.  

 

For indoor applications, e.g. inside a warehouse, and applications taking place 

underground, e.g. in the mining industry, where GPS is not available, it is essential for a 

drone to be able to estimate how far it has flown in a particular direction. If a drone can 

estimate how far it has flown, then it can estimate its current position. The ability for a 

drone to be able to establish its position is necessary for it to be able to successfully 

complete missions for which it has been deployed. In this Chapter, a novel method which 

considers the relative angular velocities of the four rotors to estimate the distance travelled 

by a drone in a particular direction, is developed and implemented. 
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Autonomous Dual-UAV Control 
 

 

 

5.1 Introduction 
 

The autonomous drone, developed in Chapter 3 incorporating two NodeMCU 

modules, is further developed in this Chapter to enable two drones to be flown in 3-

dimensions and controlled over a network. The DWi-Fi_x.0 NodeMCUs previously 

discussed in Chapter 3 are able to create a network of similarly configured drones, over 

which flight control codes and navigation data can be transmitted and received. The 

network control algorithm required to enable and control multiple autonomous drones, is 

developed and discussed. The algorithm performance is evaluated experimentally and 

compared with expected results. 

 

5.2 Autonomous Dual-UAV Hardware Configuration 
 

The hardware configuration for the two drone network is depicted in Figure 5-1. The 

two drone network of Figure 5-1 incorporates five Wi-Fi modules and three 

communications channels. Two Wi-Fi modules are required per drone, the function of 

which are as follows. 

1) Module DWi-Fi_x.1 (flight control module) 

 

a) Connects to the drone Wi-Fi (blue channel), and enables flight commands to be 

transmitted to the drone.  

b) Reception of navigation data transmitted by the drone (blue channel). 
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c) Connects to DWiFi_x.0 via serial port connections (green channel). The serial port 

connections enable DWi-Fi_x.0 to transmit flight codes to DWi-Fi_x.1. 

d)  Transmission of navigation data, (received by DWi-Fi_x.1 in a), to DWi-Fi_x.0 

(green channel). 

 

DWi-Fi_0.1

DWi-Fi_0.0

DWi-Fi_1.1

DWi-Fi_1.0

Laptop

Laptop Wi-Fi 

Module

DWi-Fi_LT 

Configured as a 

Station

Drone 0 

Configured as 

an Access 

Point

Drone 1 

Configured as 

a Station

SO

SO

SI

SI

SO

SI

SO

SI

Drone 1 Drone 0

 

Legend 

 Wi-Fi communication link between DWi-Fi_x.0 modules and DWi_Fi_LT 

 Wi-Fi communication link between DWi-Fi_x.1 modules and respective drone 

 Serial communications link between DWi-Fi_x.0 module and DWi-Fi_x.1 on  

 the same drone 

 

Figure 5-1  Diagram of two drone network configuration 

 

 



86 

 

2) Module DWi-Fi_1.0 (Network Station) 

a) Connects to network created by module DWi-Fi_0.0, enabling reception of flight 

codes from DWi-Fi_0.0 (red channel). 

b) Transmission of flight codes to DWi-Fi_1.1 (green channel). 

c) Transmission of navigation data to DWi-Fi_0.0 (red channel). 

 

3) Module DWi-Fi_0.0 (Network Access Point) 

a) Transmission of flight codes to DWi-Fi_1.0 (red channel). 

b) Transmission of flight codes to DWi-Fi_0.1 (green channel). 

c) Reception of navigation data from DWi-Fi_1.0 (red channel). 

d) Transmission of navigation data to Laptop Wi-Fi module (red channel) 

 

The DWi-Fi_LT module is configured as a station and connects to the DWi-Fi_0.0 network 

to receive navigation data and display on the laptop screen. 
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5.3 Autonomous Dual-UAV Network Algorithm 
 

The flowchart of Figure 5-2 describes the functionality of the overall dual drone 

network algorithm. After network formation both drones take off and hover for five 

minutes before landing 

 

The table of Table 5-1 lists the available flight codes which can be transmitted across 

the network between DWi-Fi_x.0 modules, and transmitted to DWi-Fi_1.x modules via 

the serial port connection, to control the flight plan of the networked drones. The flight 

path control codes are read and interpreted by DWi-Fi_1.x modules, The DWi-Fi_1.x 

modules then instruct the drone to react accordingly to the received flight control code. 

 

Table 5-1 Table showing drone flight path control codes 

Flight code Flight code function 

TO Take off 

FOx Fly forward (x metres) 

REx Fly in reverse (x metres) 

RLx Roll to the left (x metres) 

RRx Roll to the right (x metres) 

LA Land 
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Dual UAV algorithm 

Start

Connection

 complete?

Drones connect to DWiFi_x.1 modules? 

DWi-Fi_0.0 communicates to DWi-Fi_0.1 and 

DWi-Fi_1.0 code ‘TO’ to take-off 

DWi-Fi_1.0 and laptop module connect to 

DWi-Fi_0.0 network

Connection

 complete?

Drone 0 takes off and hovers

Drone 1 takes off and hovers. Timer = 0.

Timer = 

5 seconds ?

Navigation data from drone 1 transmitted 

to DWi-Fi_0.0 and retransmitted to laptop Wi-Fi module

Drone 1 commences landing and 

transmits ‘LA’ to DWi-Fi_0.0

DWi-Fi_0.0 transmits ‘LA’ to DWi-Fi_0.1and 

Drone 0 commences landing

Drone 1 lands

Drone 0 lands

Dual UAV algorithm End

No

Yes

Yes

No

No

Yes

DWi-Fi_1.0 communicates to 

DWi-Fi_1.1 code ‘TO’ to take-off

 

Figure 5-2  Flowchart describing the two drone flight algorithm 
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As described in the flowchart the algorithm begins with a network formation phase which 

establishes the network, followed by a flight control phase where flight control codes are 

transmitted between drones to enable the flight mission.  

Network Formation Phase 

(i) DWi-Fi_0.1 configured as a station. 

DWi-Fi_1.1 configured as a station. 

DWi-Fi_LT configured as a station. 

 

(ii) DWi-Fi_0.1 attempts to connect to drone 0 Wi-Fi network and sends a message 

via serial port to DWi-Fi_0.1 when connected. 

DWi-Fi_1.1 attempts to connect to drone 1 Wi-Fi network and sends a message 

via serial port to DWi-Fi_1.1 when connected. 

 

(iii) DWi-Fi_0.0 reads confirmation of drone network connection message from  DWi-

Fi_0.1 via serial port and configures itself as an access point.  

DWi-Fi_1.0 reads confirmation of drone network connection message from        

DWi-Fi_1.1 via serial port and configures itself as a station. 

 

(iv) DWi-Fi_1.0 and DWi-Fi_LT attempt to connect to DWi-Fi_0.0 access point. 

DWi-Fi_0.0 waits until both DWi-Fi_1.0 and DWi-Fi_LT are connected. 

 

Network Formation Phase Complete 
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Dual Drone Flight Control Phase 

(i) DWi-Fi_0.0 transmits take off command code ‘TO’ via serial port to DWi-Fi_0.1.  

DWi-Fi_0.0 transmits take off command code ‘TO’ via Wi-Fi to DWi-Fi_1.0.  

 

(ii) DWi-Fi_0.1 receives ‘TO’ from DWi-Fi_0.0 and transmits the take-off command 

to drone 0 and drone 0 takes off. 

DWi-Fi_1.0 receives ‘TO’ from DWi-Fi_0.0 and retransmits to DWi-Fi_1.1 via 

serial port. 

 

(iii) DWi-Fi_1.1 receives ‘TO’ from DWi-Fi_1.0 and transmits the take-off command 

to drone 1 and drone 1 takes off. 

 

(iv) DWi-Fi_1.1 transmits hover command for 5 seconds to drone. 

DWi-Fi_0.1 transmits hover command to drone. 

Navigation data transmitted from drone 1 to DWi-Fi_1.1 (Wi-Fi), DWi-Fi_1.1 

transmits navigation data to DWi-Fi_1.0 (serial port), DWi-Fi_1.0 transmits 

navigation data to DWi-Fi_0.0 (Wi-Fi), and finally DWi-Fi_0.0 transmits 

navigation data to DWi-Fi_LT for laptop display. 

 

(v) When 5 seconds hover time has elapsed DWi-Fi_1.1 transmits land command to 

drone 1 and drone 1 commences landing. 

DWi-Fi_1.1 transmits land code ‘LA’ to DWi-Fi_1.0. 

 

(vi) DWi-Fi_1.0 transmits land code ‘LA” to DWi-Fi_0.0, DWi-Fi_0.0 retransmits 

‘LA’ to DWi-Fi_0.1 and DWi-Fi_0.1 transmits the land command to drone 0. 

Drone 0 commences landing 

 

Dual Drone Flight Control Phase Complete 
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In the example the drones follow a simple flight plan of take-off, hover for 5 seconds 

and land. The flight plan is stored as a program in NodeMCU module DWi-Fi_1.1. Any 

required 3-dimensional flight plan could be followed in place of the hover function. 

Required flight plans can also be transmitted between networked modules DWi-Fi_x.0 

using the available flight codes described in Table 5-1. Although the example presented 

relates to two drones, the algorithm is scalable, and can be modified with minor 

adjustments, to include more drones. 

Flowcharts in Figure 5-3, Figure 5-4, Figure 5-5, and Figure 5-6 describe the detail of the 

programs uploaded to DWi-Fi_0.0, DWi-Fi_0.1, and DWi-Fi_1.0, DWi-Fi_1.1 

respectively. 



92 

 

DWi-Fi_0.0

Start

Drone 0

 connected?

Read message from DWi-Fi_0.1 via serial 

port confirming connection to drone

Configure DWi-Fi_0.0 as an 

Access Point

No

Yes

Wait until DWi-Fi-1.0 and Laptop Wi-Fi 

module are connected to network

Network

Complete?

Transmit take-off code ‘TO’ to 

DWi-Fi_0.1  via serial port

Transmit take-off code ‘TO’ to 

DWi-Fi_1.0  via network

Read Drone 1 Navigation data from 

DWi-Fi_1.0  via network

‘LA’

Received

Transmit land code ‘LA’ to 

DWi-Fi_0.1  via serial port

DWi-Fi_0.0

End

No

Yes

No

Yes

Transmit  navigation data to laptop 

 

Figure 5-3  Flowchart describing DWi-Fi_0.0 program algorithm 
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DWi-Fi_0.1

Start

Drone 0

 connected?

Connect to drone 0

Inform DWi-Fi_0.0 that 

drone 0 is connected

Configure DWi-Fi_0.1 as a 

Station

No

Yes

Read flight code 

from DWi-Fi_0.0

‘TO’ 

received?

Take-off command 

transmitted to drone

Hover function transmitted to 

drone 0

‘LA’ 

received?

Read flight code 

from DWi-Fi_0.0

Drone 0 lands

DWi-Fi_0.1

End

Drone 0 takes off

Yes

No

No

Yes

 

Figure 5-4  Flowchart depicting DWi-Fi_0.1 program algorithm 



94 

 

DWi-Fi_1.0

Start

Drone 1

 connected?

Read message from DWi-Fi_1.1 via serial 

port confirming connection to drone

Configure DWi-Fi_1.0 as a 

Station

No

Yes

Read flight code from

DWi-Fi_0.0

‘TO’

 received?

Take-off command code ‘TO’

 transmitted to DWi-Fi_1.1 

Read navigation data and 

transmit to DWi-Fi_0.0

‘LA’

 received?

 Transmit ‘LA’ 

to DWi-Fi_0.0

DWi-Fi_1.0

End

No

Yes

No

Yes

 

Figure 5-5 Flowchart describing DWi-Fi_1.0 program algorithm 
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DWi-Fi_1.1

Start

Drone 1

 connected?

Connect to drone 1

Inform DWi-Fi_1.0 that 

drone 0 is connected

Configure DWi-Fi_1.1 as a 

Station

No

Yes

Read flight code 

from DWi-Fi_1.0

‘TO’ 

received?

Take-off command transmitted

 to drone (Drone 1 takes off)

Hover command transmitted 

to drone 1

Yes

No

Timer = 0

Timer = 

5 seconds ?

No

Yes

Transmit ‘LA’ to

DWi-Fi_1.0

DWi-Fi_1.1

End

Land command transmitted to 

Drone 1 (Drone 1 lands)

 

Figure 5-6  Flowchart describing DWi-Fi_1.1 program algorithm 
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5.4 Results/Discussion 
 

The programs described in the flowcharts of the previous section are uploaded to the 

respective Wi-Fi modules. Power from the on board lithium batteries is applied to the two 

drones and to the Wi-Fi modules. A few seconds is required for the Wi-Fi networks to be 

established, before the rotors of both drones begin to rotate, and the drones leave the 

ground. After hovering for approximately five seconds, the drones land. A plot of the 

height and duration of hover for both drones is depicted in Figure 5-7. 

The graph of Figure 5-7 shows the two drones taking off, climbing to approximately 

73cm, hovering for approximately 3.5 seconds, and then landing. Although instructed to 

hover for 5 seconds the hover function actually begins execution before the drone takes 

off as described in Chapter 4. The graph of Figure 5-7 shows a clear latency of 

approximately 0.2 seconds between the drones during take-off. This result is due to the 

structure of the controlling programs. Drone 0 is instructed to take off before transmitting 

the take-off code to drone 1. Similarly Drone 1 is instructed to land before transmitting 

the land code to drone 0. In both cases, the transmission of the command code across the 

Wi-Fi network, the interpretation of the command code, the transmission of the code via  

 

Figure 5-7  Graph showing take-off, height, and landing of two networked drones 
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the serial port to DWi-Fi_x.1, and finally the interpretation of the code by the drone incurs 

the 0.2 second delay between both drones during take-off and landing.  

The photographs of Figure 5-8 show three shots in time during the two drone 

networked flight, where drone 0 is at the rear and drone 1 at the front. In Figure 5-8(a) the 

shot captures both drones during the hover period. Figure 5-8(b) shows a shot at 

approximately 10.25 seconds into the flight time when drone 1 has begun to descend but 

drone 0 is still hovering. Finally, Figure 5-8(c) shows the time in the process at 

approximately 10.75 seconds, when drone 1 has almost landed and drone 0 is commencing 

decent. 

 

 

       (a)                                             (b)                            (c)  

 Figure 5-8  Photographs showing the two drones in mid flight (a) both drones hovering, 

(b) leading drone, drone 1 commences landing, (c) drone 1 almost landed, drone 0 

commencing landing. 
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5.5 Summary 
 

The hardware of the autonomous flying drone, developed in Chapter 4, provides the 

platform for a dual-drone system. The DWi-Fi_x.0 Wi-Fi modules, strapped to the drones, 

enable drones to form a two drone network. Although the discussion in this chapter largely 

describes the formation of a two drone network, the algorithms have been constructed to 

be expandable. Chapter 6 develops the algorithms further, to enable additional drones in 

range of the access point drone, to join the network.  

Two or three character flight codes communicated over the network control the flight 

of the two drones. Although the example discusses the two drones following a basic flight 

plan of take-off, hover, and land, any combination of the available flight codes, can be 

communicated across the network to follow any required 3-dimensional flight plan. 

However, since there is currently no method for the drones to determine their relative 

position, flying more complex flight plans incurs the potential of flight collision. 

A network discovery algorithm, enabling multiple station drones to form a drone 

network, and a method to enable the networked drones to calculate their relative positions, 

prevent random collisions, and allow the potential for formation flying, is presented in 

Chapter 6. 
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Drone Node Discovery Algorithm and 

Drone Position Algorithm 
 

 

 

6.1 Introduction 
 

The dual UAV implementation of Chapter 5 is enhanced in this chapter by enabling 

the possibility of multi drone network formation. A drone discovery algorithm is 

developed to enable any station drone in the range of the access point drone to make a 

connection and join the drone network. The drone discovery algorithm is tested and results 

presented for analysis. 

A multi drone network requires that each drone is aware of its position to avoid 

collision. The received signal strength indicator, RSSI, is a variable, inherently available 

to all stations on the Wi-Fi network and is used to determine the distance between the 

access point drone and the station drone. Results of the distances determined by the RSSI 

measurements between stationary access point and stations drones, and flying access point 

and station drones are compared for accuracy and analysis.  

Finally, using the distance information provided by the RSSI data, an algorithm to 

determine the position of the station drones with respect to the access point drone as a set 

of Cartesian co-ordinates is proposed. 
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6.2 Current Methods of Node Discovery and Drone Positioning 
 

A number of node discovery algorithms and drone positioning algorithms currently 

exist. This following subsections discuss a number of these algorithms and explain why 

the development of new algorithms is appropriate for this research. 

 

6.2.1 Node Discovery Algorithms 

 

To establish a drone network, a drone discovery algorithm is required. The drone 

discovery algorithm should enable all drones with the appropriate configuration to 

connect and form a network. A number of discovery algorithms have been discussed and 

implemented in published research however the deployment of a particular algorithm is 

largely dependent upon the network application and the number of nodes in the network 

concerned. A paper published by Konwar et al., discuss a method of node discovery such 

that only nodes with mutual association form a network. This is achieved by the nodes 

sharing knowledge by transmitting and receiving gossip messages [93]. Dyo and Mascolo 

discuss an efficient node discovery in mobile sensor networks by ensuring nodes are 

awake when they are likely to encounter other nodes [94] . An energy efficient neighbour 

discovery protocol is discussed by Kohvakka et al., which reduces the power consumed 

by nodes during the discovery phase [95]. The method of drone discovery in this research 

will follow a method similar to that of Konwar et al.. In this research however, the 

messages communicated between access point and potential nodes are minimised to 

ensure a speedy network formation, and also to ensure all non-drone nodes are discarded. 

 

6.2.2 Drone Positioning Algorithms 

 

A multi drone network requires that each drone is aware of its position to avoid 

collision. For an indoor network of drones, GPS cannot be used for positioning, and 

therefore an alternative method is required. Mustafah et al. propose a method of 

positioning using two video cameras The cameras are not mounted on the drone but are 
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able to calculate the drones’ position, and communicate this information to the drone via 

a Wi-Fi communication link. They claim reasonable results but the method would not be 

appropriate for a multi drone system if a pair of stereo cameras are required for each drone 

[96]. The method of drone positioning proposed by Mustafah et al., is further developed 

by Jin et al., but now with the two cameras mounted on the drone. After take-off the drone 

maintains a constant height and uses the cameras to scan and determine its position. The 

method is more of a theoretical proposal and there are no actual results of the proposed 

method presented in the published paper [97]. A different approach is implemented by 

Bahiki et al., who suggest a method of indoor positioning by combining infra-red and 

ultrasonic ranging sensors. The presented results enable relative drone position to be 

estimated but not their absolute position [98]. Furthermore, additional hardware is 

required to be mounted on the drone. A method of drone positioning is required in this 

research which does not require any additional hardware to be mounted on the drone. 

 

 

6.3 Drone Node Discovery Algorithm 
 

The drone node discovery algorithm effectively establishes the drone network 

enabling a number of drones configured as stations to connect to the drone configured as 

an access point. The hardware configuration is essentially as depicted in Figure 5-1 but 

with the possibility of additional station drones, having the ability to connect to the drone 

configured as an access point, thus establishing a multi drone network.  

The C program uploaded to every DWi-Fi_x.0 network module configured as a 

station is identical. Additional drones can therefore be added to the network without the 

requirement to make any change to the network program. A C-program structure of type 

struct_drone_info is created within each DWi-Fi_x.0 module as described in Table 6-1. 

The structure contains essential information pertinent to each station drone on the 

network. The first value within the structure is the drone number which is assigned by the 

access point drone during the drone discovery process. The Received Signal Strength 

Indicator (RSSI) value is the second value stored in the structure and is the most recently 

read RSSI value between station and access point. 
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Table 6-1 C program structure created within each DWi-Fi_x.0 station drone 

 

struct drone_info {int drone_no; 

                         int  RSSI_val; 

                           IPAddress ipC; 

                          }; 

 

The final value stored in the structure is the value of the drones IP address allocated by 

the access point drone during the Dynamic Host Configuration Protocol (DHCP) process. 

Prior to commencement of the discovery process all DWi-Fi_x.1 modules connect 

to their respective drones. The DWi-Fi_x.1 modules report to their DWi-Fi_x.0 modules 

confirming that the connection is made. The DWi-Fi_0.0 module then configures itself as 

an access point with an IP address of 192.168.04.01. All other DWi-Fi_x.0 network 

modules configure themselves as stations and attempt to connect to the access point. A 

node connection time limit within the program of approximately 15 seconds is introduced 

to enable all network modules to connect to the access point. The function, 

WiFi.softAPgetStationNum(), running within the DWi-Fi_0.0 module, returns the 

number of current connections. This function is executed continuously within the 15 

second connection time and the final assigned variable becomes the number of station 

nodes connected to the network. The access point module allocates IP addresses of 

192.168.4.02, 192.168.4.03, 192.168.4.04, 192.168.4.05 to the connected nodes. The 

network thus consists of an access point drone, a number of station drones and a laptop 

node. The access point drone allocates itself as ‘Drone 0’ and allocates a drone number to 

each additional station drone. The drone number is important as this number determines 

the position that the drone will ultimately take within the drone formation. The drone 

formation and associated drone numbers are illustrated in Figure 6-1. 
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Drone 0
Drone 1

Drone 2

Drone 3

Drone 4

1m

1m

1m

1m

 

Figure 6-1 Drone number and associated drone formation position. 

 

The laptop node is allocated with an IP address but should not be allocated a drone 

number. The access point node however does not know which IP address has been 

allocated to the laptop node. To ensure therefore that the laptop does not receive a drone 

number the access point node cycles through each allocated IP address transmitting the 

question, drone? If the current node receiving the question is a drone then it responds 

‘Yes’ and the access point allocates the drone with a drone number. If the current node 

responds with a ‘No’ (i.e. it is the laptop node) the node is not numbered. All valid drones 

on the network are thus numbered drone 1, drone 2, drone 3, and drone 4. 
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6.3.1 Drone Discovery Algorithm Results 

 

The discovery algorithm is examined with an access point drone (Drone 0), two 

station drones, and a laptop node. In order to examine network activity the drone 0 

network node is connected to the laptop enabling network activity to be printed to the 

laptop screen. The laptop node for test purposes is powered by a 9V battery. Results of 

the execution of the discovery algorithm with respect to Drone 0 are depicted in Figure 

6-2.  

a. Initially ‘Drone 0 Connected’ is printed to the laptop screen indicating that 

DWi_Fi_0.0 has received a message from  DWi_Fi_0.1, via the serial port 

connection, informing DWi_Fi_0.0 that  DWi_Fi_0.1 is successfully connected to 

the drone AP. 

b. DWi_Fi_0.0 IP address 192.168.4.1 is printed to the screen. 

c. The next five lines illustrate the station connections. The section of code that 

generates this output requires approximately 15 seconds to complete to provide 

time for the station nodes to connect to the access point. The last line of this section 

indicates that three station nodes are connected to the access point as expected 

(two drone stations and the laptop station). 

d. At this stage, although IP address have been allocated to the station nodes, it is not 

known which nodes are drones and which node is the laptop. DWi_Fi_0.0 thus 

transmits the question ‘drone?’ to IP address 192.168.4.2 and awaits a response. 

In this example DWi_Fi_0.0 receives three bytes, ‘YES’ from node IP address 

192.168.4.2 indicating that this node is a drone. DWi_Fi_0.0 transmits ‘1’ to IP 

address 192.168.4.2 informing this node that it is drone 1. This process is repeated 

for the remaining nodes detected on the network. 

e. When the question is asked of node with IP address 192.168.4.4 it responds with 

the answer ‘No’. The laptop has been discovered. 

f. Finally, when all nodes have responded to the ‘drone’ question, all IP addresses 

of discovered nodes and their associated drone numbers are listed on the laptop 

screen. The discovery program is now complete. 
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The results show that the implementation of the discovery algorithm detects and 

numbers all drone nodes as required. The IP addresses and associated drone numbers for 

all drones on the network are stored in a structure array within DWi_Fi_0.0 for later use. 

It is noted also that the results shown in Figure 6-2 are variable i.e. the drone nodes and 

laptop could be allocated different IP addresses and node numbers for subsequent 

execution of the discovery program. 
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Drone_0_IPAddress = 192.168.4.1      Drone 0 IP address. 

Number of connections = 0 

Number of connections = 1 Displays the number of network nodes 

Number of connections = 1 connected to DWi-Fi_0.0, which requires  

Number of connections = 3 approximately 15s to complete. After 15s 

Number of connections = 3     3 nodes are shown to be connected.  

 

192.168.4.2 Drone 0 asks the question, drone? To  

drone? node with IP address 192.168.4.2.  

3 Drone 0 receives 3 bytes – YES from 

YES  node with IP address 192.168.4.2  

Drone detected confirming this node is a drone. 

 The drone is informed it is drone 1 (not 

shown). 

  

192.168.4.3       As above but to IP address 192.168.4.3 

drone? 

3 

YES        Drone confirmed. The drone is informed 

Drone detected       it is drone 2 (not shown) 

 

192.168.4.4       As above but to IP address 192.168.4.4 

drone? 

3 

No!        Not a drone. IP address 192.168.4.4 is the  

Request Failed       laptop node. 

laptop  

detected 

 

0       

192.168.4.1 

 

1 

192.168.4.2 List of node IP address and associated 

drone number 

2 

192.168.4.3 

 

0 

192.168.4.4 

Discovery Complete      End of Discovery 

 

 

Figure 6-2 Results of discovery algorithm execution 
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6.4 Drone Position Algorithm 
 

The aim of the drone position algorithm is to determine the position of each drone 

on the network as a set of x,y co-ordinates. Drone 0 is in the reference position at the 

origin, and the distance between drone 0 and any other drone on the network is determined 

by the value of the RSSI (Received Signal Strength Indicator) between drone 0 and the 

respective drone. Once the position of each drone is known, they should fly in turn to the 

correct formation position depending on the drone number as depicted in Figure 6-1. The 

first requirement is to establish the relationship between the RSSI value and the distance 

between drone 0 and a drone on the network which is established in the next section. 

 

6.4.1 The RSSI Value as a Measure of Distance on a Wi-Fi Network 

 

The RSSI value is a measure of the power of a signal at the receiving node. The unit 

of RSSI is dBm, a dimensionless unit which uses 1mW as the reference power level. The 

RSSI value is negative and moves closer to 0 as the receiver approaches the signal source. 

Distance measurement between two nodes within an indoor environment can prove 

challenging due to multipath effects.  

The recognised equation for RSSI distance measurement is described by Equation 

6-1 below [99]. Known as the log-normal shadowing model, Equation 6-1 is suitable for 

indoor and outdoor environments and includes a number of parameters to account for 

varying environmental conditions [100]  

 

   P(d) = Xσ + P0 - 10ηplog(d/d0)   (Equation 6-1) 

 

In Equation 6-1 P(d) is the received power in dBm at distance d. P0 is the received power 

at a short distance d0, where d0 is typically 1m. ηp  is the path loss exponent, has a typical 

value of between 2 and 4, and is dependent upon environmental conditions such as room 

size and room contents. Xσ is a Gaussian random variable with zero mean which is used 

to describe the Gaussian interference on the received signal. A large Xσ value is derived 

from multipath influences however Ladha et al. suggest that this can be reduced 
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significantly by simply taking an average from a number of sample RSSI readings [99]. 

Ladha et al. also suggest a method to calculate the path loss exponent ηp, however the 

method relies on calculating angles between a node and known reference points which 

would be variable within differing environments and is therefore considered not to be 

valid for this research [99]. 

 

Capriglione et al. explore the challenges of distance measurement using RSSI within 

an indoor environment. The conclusions from their results are listed below. 

 

(i) Multipath fading and shadowing of the Wi-Fi channel due to the size and shape 

and the presence of walls and obstacles within the indoor environment. 

(ii) Variability of the signal power at the transmitter. Transmitted signal power can 

vary from similar transmitters resulting in differing power signal strength received 

at the receiver causing error. 

(iii) Sensitivity at the receiver. The sensitivity of similar receivers can vary, resulting 

in different RSSI values being recorded for a common distance creating an error 

in the distance measurement. 

(iv) The orientation of the antenna. Antennae have their own radiation pattern which 

is generally not orthogonal. The RSSI value at the receiver can thus vary for the 

same distance between transmitter and receiver dependent on their mutual 

orientation. 

 

The conclusions of Capriglione et al. provide a useful insight into the potential source of 

error when attempting to measure distance from RSSI values [101]. 

 

Xu et al. explore the impact of environmental temperature on the RSSI value. They 

report a decrease in the RSSI value as the temperature increases. Specifically, an increase 

in temperature from 22° to 34° saw an average decrease in RSSI of 7.7% when the 

distance between transmitter and receiver is set at 5m and a decrease in RSSI of 6.2% 

when a distance between transmitter and receiver is set at 10m [102]. Research by 

Luomala and Hakala and also Sabu et al., attribute the decrease in RSSI with increasing 
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temperature to the effect on the electronic components within transmitter and receiver as 

the temperature rises. Essentially, the mobility of charged carriers within CMOS 

transistors which are used in transmitter and receiver circuitry, reduces with increasing 

temperature. This reduction in mobility impacts on the performance of the circuitry, 

resulting in a decrease in RSSI as the temperature is increased [103] [104].  

Xu et al. also explore how the height of the sensor nodes, the influence of antenna 

type, and the influence of the human body impact on the RSSI value.  

With regard to the height of the receiver, RSSI readings are taken with a receiving 

node at 135cm from the ground and at 6cm from the ground with a 5m distance between 

transmitter and receiver. An average increase of 8.5% in the RSSI value is reported at the 

greater height of 135cm. With a 10m distance between transmitter and receiver the 

average RSSI reading increases by 5.9% at the greater distance of 135cm from the ground.  

They conclude that multipath effects impact on the RSSI value when the receiver is closer 

to the ground. 

A helix antenna is reported to provide higher values of RSSI, and RSSI values with 

less variation than a patch antenna when RSSI values are measured with the different 

antennae over the same distance. 

In examining the influence of the human body on RSSI, the receiving sensor node is 

worn on the human body. Although the procedure of the test is not clearly defined or 

explained they report a 3.7% fall in RSSI at 5m and a 2.9% fall in RSSI at 10m due to the 

influence of the human body [102].  

 

Research by Ivanic and Mezei, investigates the RSSI and distance relationship both 

indoors and outdoors with the receiving sensor oriented at differing angles. RSSI readings 

are taken as the receiving node is rotated at 45° intervals from 0° to 315° at increasing 

distances from 0.5m to 6m. Results for the outdoor measurement depict an expected 

logarithmic decay as the distance between transmitter and receiver is increased however 

variations in RSSI are observed as the angle of the receiver is varied with a worst case 

difference of -10dBm between RSSI values recorded at 0° and 90°. Results taken indoors 

depict a significant dispersion in the RSSI values. The expected logarithmic decay is not 

clearly defined as the distance between transmitter and receiver is increased. Significant 
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variation in RSSI values for varying angles is also observed. The variation between the 

results taken indoors and the results taken outdoors is attributed to multipath effects 

impacting on the indoor measurements. What is clear from the results is the effect of the 

orientation of the receiving node, which from the results presented, significantly impacts 

on the RSSI values obtained over the range of distances measured [105]. 

 

Barai et al. describe a study using the very same NodeMCU modules utilised in this 

thesis. They program one NodeMCU as an access point and the second NodeMCU as a 

station and measure the RSSI value with respect to the distance between the two modules. 

They take 300 RSSI samples at distances from 0.3m to 10m and incorporate a curve fitting 

technique to generate an equation to estimate the distance. They conclude that their 

technique proves a minimum distance accuracy estimation of 91.68% [106]. 

Unfortunately there is very little detail of the experimental configuration employed other 

than that the experiment is carried out on the roof top of a two story building. Information 

regarding the height of the NodeMCU modules, the orientation of the modules, the area 

of the roof top, or the presence of any rooftop furniture, all of which can impact the RSSI 

values read by the receiving node, is not provided. 

 

6.4.2 RSSI Distance Measurement 

 

To establish the distance between a Wi-Fi transmitter and a Wi-Fi receiver utilising 

the RSSI value obtained at the receiving node, conditions mitigating the accuracy of RSSI 

measurements described in the previous section are considered as discussed below. 

i) To minimise multipath effects measurements of RSSI values are taken 

indoors in a large gymnasium measuring 15m x 25m. 

ii) To reduce the effects of the Xσ  Gaussian random variable of Equation 6-1, 

ten RSSI readings are taken at each measurement position and the average 

value calculated. 

iii) The height of the transmitter and receiver are fixed at 1.2m above the 

ground to mitigate ground multipath effects. 
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iv) The radiation pattern for the Wi-Fi modules is determined by taking RSSI 

measurements at 45° intervals from 0° to 315°. Whilst varying the angle, 

the orientation of the Wi-Fi modules remains constant i.e. both transmitter 

and receiver point to 0°. 

v) RSSI measurements are taken at 3m, 6m and 12m at each angle as described 

in iv).  

 

RSSI values are taken at distance intervals of 3m, 6m and 12m to provide a good 

demarcation between RSSI measurements. To establish the radiation pattern, RSSI values 

are measured at angles from 0° to 315° at 45° intervals between the transmitter and 

receiver at each measured distance. The resulting radiation pattern is depicted Figure 6-3. 

The radiation pattern of Figure 6-3 displays results with similar patterns of RSSI 

against angle, measured over the distances measured. As expected, a clear demarcation 

between the radiation patterns is also observed with increasing RSSI values at the 

differing angles as the distance between transmitter and receiver is increased. 

  

 

Figure 6-3 Radiation pattern measured at intervals of 3m, 6m, and 12m. 

-75

-70

-65

-60

-55

-50

-45

-40
0

45

90

135

180

225

270

315

3m 6m 12m



112 

 

The radiation patterns result from the relative orientation between the antennae of 

the transmitter and receiver. Figure 6-2 shows that the largest RSSI values are obtained at 

angles of 90°and 270° when the NodeMCU modules are oriented side by side. The 

NodeMCU antenna is mounted on the top left of the module. The greatest RSSI value 

may therefore be expected to be received when the transmitter and receiver are side by 

side for a particular distance. 

The graph of Figure 6-4 depicts the measured RSSI values plotted against distance 

at varying angles. The RSSI value is observed to decrease as the distance increases as 

expected. Results taken at 0° and at 180° show the lowest values of RSSI when the 

transmitter and receiver NodeMCU modules are positioned directly behind and in front 

of each other which is the orientation providing the weakest signal reception. There is 

however a considerable variation in the RSSI value depending upon the angle of 

measurement. At 90° and 270°, at a distance of 3m for example, an RSSI value of -48dBm 

is measured, whereas at 0° at 3m, an RSSI value of -63dBm is measured. This is a 

difference of 15dB for a measurement at the same distance, only differing in the 

orientation of the measurement.  

 

Figure 6-4 Graph of RSSI (dBm) values plotted against distance (m) 
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The results however, do show an approximate linear response for decreasing RSSI as the 

distance increases for the varying angles measured. An important factor in the 

determination of the distance between transmitter and receiver from the RSSI value. 

 

6.4.3 RSSI Measurements Taken From Flying Drones 

 

The RSSI measurements in the previous section are taken from two static drones 

where the access point drone is the reference point and remains stationary and the station 

drone is manually moved the incremental measurement distances. It is important, now 

that distances can be determined from the RSSI value provided the angle is known, that 

measurements are taken from flying drones. It is possible that the rotating motors driving 

the propellers on the drone, could impact on the integrity of the Wi-Fi signal with induced 

harmonics. Tests are therefore carried out with two flying drones. The access point drone 

and the station drone begin two metres apart oriented at 0° i.e. the access point drone is 

positioned directly behind the station drone both pointed at 0°. Both drones take-off and 

climb to 1.2m before the station drone (drone1) flies forward 12m, hovers for 10s and 

then flies backwards 12m to the starting position. RSSI measurements are taken by the 

station drone during the 12m forward flight and the 12m flight in the reverse direction. 

Results of the test flight are depicted in Figure 6-5. The distance travelled by the drone 

follows the expected path, flying 12m in the forward direction, hovering for 10s and then 

flying 12m in reverse to the drone’s original position. Photographs of the two drone flight 

to measure the RSSI are depicted in Figure 6-6, Figure 6-7, Figure 6-8 and Figure 6-9.  

During the flight the RSSI value read by the station drone is observed to fluctuate 

considerably but more so on the outward journey rather than on the inward journey. This 

is due to the pitch of the drone. When flying forwards the NodeMCU module DWi-Fi_1.0 

is obscured by the drone itself as the drone pitches forward. On the return journey when 

the drone pitches backwards there is a clear line of sight from the receiver to the 

transmitter. The results of the shape of the RSSI graph yield expected results. As the drone 

flies the outward stage of the journey the RSSI value is seen to fall and on the return stage 

of the journey the RSSI value is seen to increase back to the starting RSSI value as the 

return journey is completed. 
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Figure 6-5 Graph of distance travelled (cm) and RSSI (dBm) plotted against time 

 

Unexpected results are only obtained when the drone is hovering for 10s after completing 

the outward journey. The RSSI value is observed to fluctuate drastically between -66dBm 

and -76dBm, a variation of 10dB. At this time in the flight the drone was very close to the 

internal wall and this fluctuation could be due to multipath effects. 

As a guide to the accuracy of the measurements, RSSI values from the drone flight 

are compared with the RSSI values measured with the standing drone from Figure 6-4 

displayed in Table 6-2. The RSSI values correlate very well, with a worst case difference 

of 5dB, representing a distance of approximately 3m.  

 

Table 6-2 Comparison of RSSI measurements from flying and stationary drone 
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Good correlation is observed on the outward journey with the RSSI values only differing 

by 1dB.  The inward journey is not so good with a worst case difference of 3dB. Taking 

into consideration the results obtained, it is possible that a measurement of RSSI can be 

used to determine the distance between transmitter and receiver and will be used in the 

algorithm to establish drone position proposed in the next section. 

In the following photographs illustrating the flight of the two drones to capture the 

RSSI value, drone 0 is on the left of each photograph, and drone 1 is on the right of each 

photograph. 

 

(a) (b) 

 

         (c)                                    (d) 

Figure 6-6 Two drone flight to capture RSSI 1 (a) drone 0 takes off, drone 1 on the ground, 

(b) drone 0 hovers at 0.75m and drone 1 on the ground, (c) drone 0 hovers at 0.75m and 

drone 1 hovering at 0.75m, (d) drone0 ascends to 1.2m, drone 1 hovering at 0.75m  
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(a)              (b) 

 

 

     (c) 

Figure 6-7  Two drone flight to capture RSSI 2 (a) Drone 0 and drone 1 hovering at 

1.2m, (b) drone 1 begins to fly forward, (c) drone 1 continues its forward flight of 12m 
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(a) 

 

(b) 

 

(c) 

Figure 6-8 Two drone flight to capture RSSI 3 (a) drone 1 flies 12m and hovers for 10s 

(b) drone 1 flies backwards 12m, (c) drone 1 arrives at original position and hovers. 
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(a) 

 

(b) 

 

(c)  

Figure 6-9  Two drone flight to capture RSSI 4 (a) drone 0 hovers, drone 1 commences 

landing, (b) drone 0 commences landing, drone 1 landed (c) drone 0 lands. 
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6.4.4 Proposed Drone Position Algorithm 

 

A drone position algorithm is proposed to determine the position of the drones that 

have been detected on the network during the discovery process, as a set of Cartesian co-

ordinates. Once the position of the drones has been determined then they can fly to the 

required location depending upon the allocated drone number as depicted in Figure 6-1.  

The proposed drone position algorithm is completed in two phases. The first phase 

determines the quadrant on a Cartesian graph in which the drone is situated. The second 

phase then calculates the drone position as a pair of Cartesian co-ordinates within that 

quadrant. 

Phase 1 

Each of the quadrants are labelled as zones as depicted in Figure 6-10. Drone 0 is 

positioned at the origin, and drone 1, whose position is to be determined, is located within 

any one of the four zone regions.  

 

Drone 0

Zone 1Zone 2

Zone 3

Zone 4

Drone 1

+x-x

+y

-y
 

Figure 6-10 Zone quadrant labelling 
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Zone 1Zone 2

Zone 3 Zone 4

A

Drone 1
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C

2m

2m

a
b

c

 

Figure 6-11 Diagram depicting drone position algorithm 

 

Before execution of the drone positioning algorithm, drone 0 takes off and instructs 

drone 1 to do likewise. The drone positioning algorithm is executed entirely by drone 1 

whilst drone 1 and drone 0 are airborne. 

Once in the air, Drone 1 can take an RSSI reading but this alone cannot determine 

drone 1’s position. A single RSSI reading provides a distance measurement r, which 

potentially positions drone 1 at any point on a sphere of radius r with respect to the origin. 

In order to determine drone 1’s position drone 1 is required to move. The movement of 

drone 1 to determine its position is described in Figure 6-11. In the example shown in 

Figure 6-11 drone 1 is positioned at point A within Zone 3, and drone 0, the access point 

drone, is positioned at the origin, point O.  

 

Drone Movement to determine the Zone in which the drone is situated 

 

i) Drone 1 takes 10 RSSI readings at position A. The average of these 10 readings is 

recorded as the definitive RSSI, labelled RSSI_1, for drone 1 at position A. 
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ii) Drone 1 moves 2m to the left to position B and hovers for 5 seconds to brake and 

stabilise the drone and then hovers for a further 2 seconds. At the beginning of the 

two second hover period, whilst drone 1 is stationary, 10 RSSI readings are taken 

at position B. The average of these ten readings is recorded as the definitive RSSI 

reading for drone 1 at position B, labelled as RSSI_2. 

iii) Finally Drone 1 moves forwards 2m to position C hovers for 5 seconds and then 

hovers for a further 2 seconds as before. At the beginning of the 2 second hover 

period whilst the drone is stationary the average of 10 RSSI readings is recorded 

as the definitive RSSI reading for drone 1 at position C, labelled as RSSI_3. 

 

The three RSSI values recorded, RSSI_1, RSSI_2 and RSSI_3 are then utilised in 

determining the zone in which drone 1 is located. If the value of RSSI_1 taken at point A 

is greater than the value of RSSI_2 taken at point B as would be the case in the example 

of Figure 6-12, then drone 1 must be in the  –x region i.e. either zone 2 or zone 3. 

  

A
2m

b
a

2m

B

C

O (0,0)
x

y

 ψ

θ 

c

 

Figure 6-12 Diagram illustrating the angles required to determine the drone zone 
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Table 6-3 Table showing the comparisons of RSSI readings, and the resulting zone 

 

Comparison 1 Comparison 2 Zone 

RSSI_1 < RSSI_2 RSSI_2 > RSSI_3 1 

RSSI_1 > RSSI_2 RSSI_2 > RSSI_3 2 

RSSI_1 > RSSI_2 RSSI_2 < RSSI_3 3 

RSSI_1 < RSSI_2 RSSI_2 < RSSI_3 4 

 

 

If RSSI_2 is less than the value of RSSI_3 taken at point C as it is in the example, 

then drone 1 must also be in the –y region i.e. either zone 1 or zone 2. By combining the 

results determined by the two comparisons, the zone in which the drone is positioned can 

be realised. In the example since RSSI_1 is greater than RSSI_2 and RSSI_3 is greater 

than RSSI_2 then drone 1 is located in zone 3. A table showing the comparisons of the 

distances and the resulting zone is shown in Table 6-3. 

 

Phase 2 

To improve the accuracy of the x-y position calculation, the distances a, and c of 

Figure 6-12 are calculated from the RSSI, distance graph of  Figure 6-4 using the mid 

angle value i.e. either 45°, 135°, 215° or 315° depending upon the zone in which the drone 

is situated. Angle ψ can then be calculated knowing the lengths of the a, c and 2m triangle. 

Knowing angle ψ, angle θ can be determined and knowing distance c, the x–y position 

can finally be calculated. Drone 1, now aware of its x-y position, can fly to its required 

location, 1m to the left of drone 0 as illustrated in Figure 6-1. In the case of the example 

illustrated in Figure 6-12, drone 1 would fly a distance ym forwards, followed by a 

distance of x-1m to the right to find its correct location in the formation. Once drone 1 is 

in position, drone 0 instructs drone 2 to take off. Drone 2 then follows the same process 

as drone 1, in determining the zone in which it is situated, its x-y position, and finally 

flying to its formation position. Any additional drones connected to drone 0 during the 

discovery procedure continue the process as described until all drones are in position 

within the required formation. 
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6.5 Summary  
 

The dual UAV network of Chapter 5 has been enhanced in this chapter to enable the 

formation of multi-drone networks. A discovery algorithm, which allows any station 

drone in range of an access point drone, to join the network of drones has been 

successfully developed and implemented. During the discovery process every station 

drone which finally connects to the network is provided with a unique drone number. This 

number provides each station drone the information it requires to find its position in the 

drone network formation. 

In order to avoid collision, a requirement of a drone network is that each drone is 

aware of its own position. The received signal strength indicator RSSI is investigated as 

a possible measure of the distance between the access point drone and station drones. 

Tests completed at differing distances and orientation of Wi-Fi modules show that the 

RSSI value does fluctuate when measured for the same distance and orientation by as 

much as 6dB which corresponds to a distance of approximately 4m. This error can be 

reduced by averaging the RSSI values over a number of samples. Results show that the 

RSSI values can be used as a distance measurement particularly over shorter distances 

(between 2 and 12m) when the variation of RSSI as the distance increases is at its greatest. 

An algorithm, utilising measured RSSI values is proposed to estimate the drone 

position. The algorithm involves performing a calculation using three RSSI measurements 

taken at three different locations after take-off. The algorithm can be experimented with 

to determine the optimum three locations providing the RSSI readings to generate the 

most accurate drone position. 

 

 

The research completed and presented in this Chapter thus provides contributions to 

knowledge in the areas of drone discovery and network formation, autonomous drone 

control, and drone positioning within a drone network. A summary of the contributions to 

knowledge within these areas follows. 
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Drone Discovery and Network Formation 

 

 A discovery algorithm is developed to discover all potential drone nodes within 

range. 

This is essential to ensure that all drone nodes that are within range are included 

in the network to be formed. 

 An algorithm is developed to enable the unique numbering of all discovered 

drones. 

This unique number is vital to each drone so that it is aware of where it should 

appear within the network formation. 

 The formation of a network allowing flight control commands to be transmitted 

between all discovered drones. 

Formation of the drone network is essential to enable flight commands to be 

transmitted between drones. 

 

 

Autonomous Drone Control 

 

 A hardware platform mounted on the drone to facilitate autonomous drone control 

and network capability. 

The hardware platform consisting of one NodeMCU module to control the 

autonomous flight of the drone, and a second NodeMCU module to enable 

network capability, is essential to enable autonomous control and drone network 

formation.  

 Transmission and reception of developed flight command codes between drones, 

enabling any drone on the network to inform another drone on the network to 

follow a desired flight plan. 

The developed flight command codes and the algorithms to permit their 

transmission, are vital to ensure the required drone receives the correct flight 

command code.  
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 The development and implementation of the flight control algorithms are critical 

to enable autonomous flight control. 

 

 

Drone positioning 

 

 The measurement of RSSI values between two stationary (non flying) drones and 

relating these values to the distance between the two drones. 

In using the RSSI as a distance measurement, it is essential to establish the 

correlation between the RSSI value and the distance between drones. 

 Measurements taken of RSSI values between two flying drones, as one drone flies 

a controlled distance away from the other and then returns back to its original 

position. 

It is essential that flying drones are able to take RSSI values between one another 

and the values are not compromised by harmonics induced by the drone rotors. 

 The development of an algorithm to establish drone position. 

In order to avoid collision, and also to be able to complete a desired mission, it is 

vital that drones are aware of their own position and the position of other drones 

within the network. The proposed method of drone positioning has the potential 

to determine a drone’s position within a drone network. 

 

 

The research thus provides an essential platform for future development in 

establishing drone networks, autonomous drone control, and drone positioning within a 

drone network.  
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Conclusion and Future Work 
 

 

 

7.1 Conclusion 
 

This thesis presents the development of an autonomous quadcopter drone network. 

In developing an autonomous drone, flight commands are required to be executed by a 

device running a stored program, without human interaction. Flight control programs 

running on a lap top computer provide autonomy but not a practical solution. In this thesis 

a fully autonomous drone is implemented by strapping a microcontroller module 

(NodeMCU) containing flight path programs, to the drone. Upon execution of an example 

flight path program the drone has been shown to follow the flightpath to a minimum 

accuracy of 88%. An additional algorithm developed which estimates the drone flight path 

from the angular velocity of the four rotors (AVQR) enables the distance travelled for the 

particular flight plan under test to an accuracy of 95%.  

Communication and transmission of flight instructions between a number of drones 

is achieved by creating a drone network. Drone network capability is established by the 

introduction of a second NodeMCU module which is able to connect to other drones with 

the same hardware configuration. Flight command codes can now be transmitted between 

drones to instruct an identified drone to follow a particular flightpath. 

To avoid collision it is essential within a drone network that all drones are aware of 

their own position. The received signal strength indicator RSSI, between transmitter and 

receiver on the network, is introduced as a measure of the distance between drones and 

an algorithm utilising this distance calculation is proposed to enable drone position 

calculation. 

This thesis thus presents all aspects required in the development of a quadcopter 

drone network. 



127 

 

The theory behind the flight of a quadcopter drone is presented in Chapter 2. An 

understanding of the theory behind drone flight is essential before embarking on a drone 

project. Justification of the project by considering a number of drone applications and in 

particular applications where a network of drones would potentially enhance the 

performance is also presented. Data transmitted between the Parrot AR2 drone and the 

controlling device is presented and interpreted. This data, consisting of commands 

transmitted to the drone, and navigation data transmitted by the drone is essential in the 

flight control algorithms developed in Chapter 3. 

The development of the autonomous drone is discussed in Chapter 3. The 

autonomous drone is initially developed utilising the software development kit (SDK) 

made available from the manufacturer Parrot. The SDK implements thread programming 

to enable quadcopter flight control. The user is able to develop their own threads to carry 

out any desirable flight plan. A thread is thus developed to enable the drone to fly a 

number of flight plans incorporating take-off, fly forwards, fly backwards, fly to the left, 

fly to the right, to ascend, to descend and to land. Each of these individual flight control 

instructions are written as a C program function. Combining the functions in the desired 

order enables the drone to follow any desired flight plan. The distance travelled by the 

drone is calculated from two variables vx – velocity in the x direction, and vy –velocity in 

the y direction, transmitted by the drone as part of the navigation data. The velocity values 

are effectively integrated with respect to time to provide an estimate of the distance 

travelled. The accuracy of the distance calculation is therefore dependent upon the 

accuracy of the velocity data values obtained from the drone. Unfortunately these values 

do vary in accuracy depending upon the terrain the drone is flying over. Parrot suggest 

flying over a uniform repeated pattern such as a floor of square tiles to provide the most 

accurate velocity data. Results captured in tests show that the accuracy of the distance 

calculated can vary between 91% and 99%. 

The practical autonomous drone is implemented by modifying the programs 

developed on the lap top and uploading to a NodeMCU module. The programs running in 

the NodeMCU do not incorporate thread programming but are able to read navigation 
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data transmitted by the drone and transmit flight commands to the drone. When strapped 

to the drone, a fully autonomous drone is implemented. 

An algorithm is developed in Chapter 4 to estimate the flightpath of the quadcopter 

drone by considering the relative angular velocity of the four rotors. A differing angular 

velocity in the rotors of the quadcopter creates torque and initiates drone movement. If 

for example the rear motors are rotating at a greater angular velocity than the front rotors, 

the generated torque causes the drone to pitch forward and move in the forward direction. 

A torque equation is developed to enable the flight plan of the drone and the distance 

travelled in any particular direction to be estimated. The magnitude of the resulting output 

from the torque equation indicates the drone velocity, and the time the resulting output is 

active enables the distance travelled to be calculated. Results from experimentation show 

the distance travelled calculated to minimum accuracy of 95%, 

Chapter 5 describes the development of a dual drone network. Each drone 

incorporates an additional NodeMCU module to enable network capability. The 

additional NodeMCU module (DWi-Fi_x.0) is connected to the original NodeMCU 

(DWi_Fi_x.1) module via serial communication links. A set of three byte flight command 

codes have been developed which DWi-Fi_x.0 communicates to DWi_Fi_x.1 via the 

serial communication connection to instruct the flight plan to be followed. The flight 

command codes can also be transmitted from one drone to another across the network to 

enable one drone to control the flightpath of another drone. DWi-Fi_x.0 also receives 

navigation data from DWi_Fi_x.1 via the serial communication connection which is 

transmitted on to the laptop to capture the flight information data. In the dual drone 

network test, drone 0 instructs drone 1 to take-off and then takes-off itself. The drones 

hover for 5 seconds before drone 1 lands and also instructs drone 0 to land. The captured 

data shows a lag of approximately 0.2 seconds between the two drones responding to both 

the take-off command and lag command. This can also be observed visually. This is 

explained by the time taken to receive and interpret the command and the network delay. 

The dual drone network of Chapter 5 is developed in Chapter 6 to produce a multi 

drone network. A discovery algorithm is developed and implemented to enable any station 

drone within range of the access point drone to join the drone network. Each drone on the 
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network is allocated a drone number by the access point drone for identification purposes 

and so the drone knows where within the drone formation it should position itself. The 

program code developed for the network modules, DWi-Fi_x.0, are all identical and are 

therefore transferable meaning that they could be strapped to any drone from any 

manufacturer. To produce a complete drone network for drones from a different 

manufacturer would require the flight control modules DWi-Fi_x.1 to be programmed 

with the flight command for the particular drones concerned. The current algorithm caters 

for one access point drone and 4 station point drones. The received signal strength 

indicator, RSSI, at the station drone is utilised to determine the distance between access 

point and station drones. Initial measurements of RSSI are taken between access point 

and station drones at varying distances and orientation whilst the drones are not flying to 

establish the relationship between the distance and the RSSI value. The RSSI values are 

measured during a flight where both drones take off, climb to 1.2m, the station drone flies 

forward 12m, hovers for 10s, flies backwards to the starting point and then both drones 

land. Results show a good correlation between the RSSI measurements taken when the 

drone is not flying and the RSSI measurements taken when the drone is flying the 

described flight plan. The RSSI values are observed to fluctuate considerably during the 

data captured during the flight test. More accurate RSSI measurements could be taken 

when flying if the drone is stationary and a number of RSSI values are taken and the 

average calculated. 

Finally a drone position algorithm has been proposed to determine the position of 

the drones on the network. The position of the drones are represented as a set of Cartesian 

co-ordinates with respect to the access point drone which is positioned at the origin. The 

algorithm utilises the RSSI measurement between access point and drone to determine the 

distance. By completing a series of movements and measuring the RSSI values at each 

new location the position of the drone can be calculated. It would be interesting to 

determine the accuracy of the proposed algorithm. 
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7.2 Future work 
 

Although the discovery and flight control communication algorithms have been 

developed for a multi drone system they have only been implemented and tested using 

two drones. The examination of the algorithms with an increased number of drones should 

be performed to ensure their integrity. The current algorithms caters for one access point 

drone and 4 station point drones. Some applications, such as surveillance, may require 

more drones and in differing configurations such as a ‘daisy chain’. Consideration should 

be given to modify the algorithms to cater for such applications. 

In determining the distance between the access point drone and a station drone an 

RSSI value from a single source is utilised. In fact between the access point drone and the 

station drone there are three access points. Each drone has its own access point and the 

access point drone NodeMCU is also configured as an access point. A more reliable RSSI 

measurement could therefore be potentially achieved by triangulating the three RSSI 

values available to provide a more accurate estimation of the distance between two drones. 

Flight control programs have been developed to implement the drone position 

algorithm. The flight control programs have been tested and the drones perform the 

desired flight plan. What was not realised when the algorithm was tested was that the 

drones were flying too low, and the floor was impacting on the RSSI values measured. 

Flying the drones at a greater height, at for example 1.2m, appears to solve the multipath 

reception problem. Once implemented, the 2m distances flown by the drone in the 

algorithm to calculate the position can be varied to obtain the optimum drone position 

result.  
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