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ABSTRACT 
Rhodococcus equi, a veterinary pathogen that causes pyogranulomatous pneumonia, can secrete low 

molecular weight chelators called siderophores to scavenge iron when its bioavailability is limited. 

When iron is plentiful, synthesis of siderophores and ferri–siderophore transport systems are 

repressed.  

Current literature on bacterial iron regulation and homeostasis indicates two distinct protein families 

of global iron-dependent transcriptional repressor: Fur and DtxR. Gram-negative bacteria produce 

Fur to regulate iron uptake genes and the biosynthesis of siderophores in response to the iron level 

in the cell. However, the Gram-positive Corynebacteriaceae produce DtxR-like proteins to regulate 

analogous genes.  

Much remains undefined with respect to rhodococcal siderophore biosynthesis and uptake.  Detailed 

analysis of the R. equi 103S genome for genes related to iron homeostasis identified two potential 

metal regulatory genes each from the Fur and DtxR families: iron dependent regulatory protein 

(IdeR), Diphtheria toxin repressor (DtxR), Ferric uptake regulator A (FurA) and Ferric uptake 

regulator B (FurB).  Bioinformatic analysis confirmed that this complement of genes was conserved 

throughout Rhodococcus and the Corynebacteriaceae in general. To investigate their individual roles 

in metal homeostasis, molecular cloning and gene expression was performed, to facilitate analysis of 

regulator-metal specificities. Each gene was cloned but over-expression for functional analysis could 

only be achieved for ideR; thus, a thorough systematic analysis could not be achieved.  In order to 

address their individual roles, homology-based protein modelling was used, and comparisons made 

with characterised homologues from M. tuberculosis.  The geometrical conservation of key ligand 

amino acid residues strongly suggests R. equi utilises ideR as an iron regulator; furB as a zinc 

regulator, dtxR as a manganese regulator and furA as an oxidative stress response protein. 

Most bacteria generate an exaggerated response to iron limitation in vitro, however R. equi produces 

very small siderophore yields s, which has complicated their characterisation.  In-frame deletion of 

the putative metal regulator genes ideR, dtxR, furA and furB was attempted in order to address the 

hypothesis that de-repression might generate greater yields. All genes were deleted individually; a 

marked phenotypic difference was noted only for R. equi-ΔfurA, which significantly upregulated the 

catalase encoded by the neighbouring gene and was coincidentally hyper-resistant to hydrogen 

peroxide. Surprisingly, analysis of siderophore production in the mutants indicated no increase in 

yield. The thesis discusses the relevance of this observation to microbial ecology.  The availability 

of these mutants in combination with their predicted metal specificities facilitates the design of 

experiments to define their individual roles in metal homeostasis beyond the scope of this thesis. 

The combination of ‘omic’ analyses was attempted here to initiate the ultimate definition of the 

complex molecular network associated with iron uptake. The genomic investigation informed 

hypothesis building for the other omic analyses.  It suggested R. equi is capable of synthesising two 

siderophores, rhequibactin and rhequichelin; up to three had previously been postulated in the 
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literature. Culture optimisation was required to deliver a robust experimental design to impose iron 

limitation in isolation from other stresses.  Once medium composition and biomarker-indicated 

harvesting criteria were established, biomass and associated secretomes were produced en masse for 

integrated omics analysis. 

A comparative untargeted metabolomics study demonstrated an adapted iron-starved metabolome; 

strong siderophore candidates were then investigated using a targeted strategy.  A strong candidate 

metabolite was identified by mass that appeared to be responsible for a heterobactin-like 

chromophore, however further biochemical characterisation has been elusive.  Interestingly, the 

metabolite readily precipitates on complexation with iron, an observation also made for 

heterobactins.   

Secondly, a transcriptomic study was attempted to study the global gene expression under iron 

starvation, and the impact of the loss of the IdeR in the deletion mutant generated in this work.  

However, the RNA extraction proved particularly challenging likely due to difficulties arising from 

lysis of the mycolic acid-containing cell wall. In the absence of a high-quality transcriptome sample, 

the study did not advance further and other aspects of the study were prioritised. 

Finally, a comparative proteomic analysis into iron regulatory mechanisms associated with the 

rhodococcal cell wall was performed. Current literature deliberates how R. equi uses a range of 

strategies to overcome iron limitation through proposed uptake mechanisms associated with 

translocation across the cytoplasmic membrane via ABC transport systems, while no consideration 

has yet been made with regards to transport across the mycolic acid-containing cell wall structure. 

In this study no obvious candidate proteins for ferri-sideophore transport across the mycolate region 

were identified, therefore it is possible that R. equi utilises facilitated diffusion via a porin for entry 

of ferri-siderophore complexes into the pseudoperiplasm, where a substrate-binding lipoprotein may 

act as the primary receptor to facilitate cytosolic transfer through an ABC transport system. 
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1.1 Biology and bioavailability of iron 

Iron is one of the Earth’s most abundant elements contributing greater than 30 % of the Earth’s mass.  

It can be detected in the atmosphere, biosphere, lithosphere, and hydrosphere (Morgan and Anders, 

1980) and, given its abundance, it is not surprising that most eukaryotic and prokaryotic organisms 

have evolved to utilise iron as a critical component for cellular processes and metabolic pathways. 

Despite its abundance in the environment, the bioavailability of iron can be limited due to the notable 

chemical property of the ability to mediate electron transfer to change between a reduced ferrous 

iron [Fe (II) / Fe 2+] and an oxidised ferric iron [Fe (III) / Fe 3+] form among other oxidation-reduction 

potentials. Throughout evolution, and due to the increase of oxygen tension, the redox properties of 

iron became extremely desirable. While ferrous iron is soluble in anoxic conditions, it readily 

insolublises  in the presence of oxygen, becoming the oxidised ferric form, that can be reduced to the 

ferrous again through acidification (Miller and Berner, 1989). Generally, two mechanisms are 

utilised by organisms to sequester iron (Silva and Faustino, 2015). The first involves the acidification 

of the environment in order to firstly solubilise the readily available ferric iron and to stimulate 

reduction to the ferrous form, that can be translocated intracellularly. The second methodology often 

used (and is discussed in detail later) is the synthesis and secretion of low-molecular weight chelatory 

peptide known as siderophores. 

Furthermore, the wide range of metabolic reactions that utilise iron clearly highlights its utility as a 

biological catalyst; the versatile nature of iron is somewhat due to the capability to adopt several 

electron configurations, and as such is listed as a transition metal, due to incomplete d orbitals. The 

oxidative states of iron range from Fe2- through to Fe6+, with the principal states, being the 

aforementioned 2+ (d6) and 3+ (d5) stable valences unlike a number of iron-dependent 

monooxygenases that produce high valence iron as a reactive intermediate during catalytic cycles 

(Outten and Theil, 2009). Iron (III) is a hard acid utilising hard oxygen ligand such as hydroxyl, 

carboxyl and other oxygen containing groups, whereas iron (II) is an intermediate of hard / soft acid, 

accommodating oxygen-based ligands but preferring nitrogen and sulphur ligands (Foster et al., 

2014). The redox transition between Fe2+ and Fe3+ ions and ligand-donor atoms are dependent on the 

chemical bond strength formed. Furthermore, the suitability of iron for biocatalysis is a result of 
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extreme variability of the Fe2+/Fe3+ redox potential, which can be modified by appropriate ligands, 

so that iron complexes can encompass almost the entire biologically relevant range of redox 

potentials. Interestingly, the distribution of donor atoms which ligate the metal, and their geometry, 

will therefore control the functional properties (Nies, 2016). 

Typically, the free Fe3+ concentration in most environments is severely limited (10-18  M), as a result 

of Fe(OH)3 insolubility. This is significantly lower than the required iron concentration needed to 

support life. The low bioavailability of iron for mammalian cells is further exacerbated by ferric iron 

sequestration that is necessary for production of haemoglobin synthesis (Andrews, 1999) with up to 

70% of the human body iron pool comprised of haem iron in erythrocytes. 

When an aqueous solution, iron is monopolised by the Fe2+ and Fe3+ valence forms as the complexes 

are able to readily undergo electron transfer and acid–base reactions, illuminating the extensive 

diversity of catalytic functions of which the element is able to perform, further underlining the 

importance in biological systems(Silva and Faustino, 2015). 

 

With the bioavailability of iron in a mammalian host (typically 10-18 M) far below the concentrations 

require for growth (Dussurget and Smith, 1998), many pathogens have developed a range of intricate 

systems in order to obtain sufficient iron to survive and replicate (Mietzner and Morse, 1994). Some 

of the systems employed include siderophore-mediated acquisition (Andrews et al., 2003), and iron 

acquisition mechanisms from haem and haem-containing proteins through either direct uptake of 

haem and or through the use of haemophores followed secretion of haemolysins to lyse red blood 

cells and release haemoglobin (Caza and Kronstad, 2013). 

1.2 Bacterial acquisition and exportation of metal ions 

The acquisition and the intracellular import of metal ions including iron into the cytosol of bacterial 

cells must predominantly be performed by transporter systems, as transition metal cations, oxyanions 

or metallo-complexes are unable to diffuse through the bacterial membranes or associated porin 

channels.  
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Gram-negative bacteria often utilise high-affinity outer membrane receptors to acquire and transport 

iron through the outer membrane into the cytoplasm by binding to a range of glycoproteins including  

transferrin, lactoferrin and ferritin; iron specific chelatory peptide molecules known as siderophores 

or other small molecule chelators such as citrate, or salicylic acid (Caza and Kronstad, 2013; Ratledge 

and Dover, 2000; Wandersman and Delepelaire, 2004). The transport of iron is facilitated by 

attachment of the complex with a specific outer membrane receptor; that are high-affinity to facilitate 

scavenging from the environment and allow transfer into the periplasm, with subsequent periplasmic 

and cytoplasmic translocation as depicted by the example in Figure 1-1. 

 

Figure 1-1: An example of an iron (III) transport system utilised by E. coli and other 
Enterobacteriaceae.  
The range of mechanisms employed used to transport iron-siderophore complexes through the 
periplasm and associated membranes into the cytoplasm. Cytoplasmic iron-siderophore transporters 
utilise a standard ABC-type transporter mechanism, pushed by ATP-hydrolysis (Hider and Kong, 
2010). 

1.2.1.1 Outer-membrane receptors 

These outer-membrane receptors are employed as a result of the ferric-complexes exceeding the 

maximum size for translocation using a channel-forming porin and therefore require a specific ferric-

uptake mechanism. Ferric-siderophore complex associated uptake is often mediated in the form of a 

conserved 22-stranded antiparallel b-barrelled receptor with a N-terminal plug domain  as seen in 

Figure 1-2.  
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Figure 1-2: A cartoon representation of the outer membrane receptor FecA (1KMO) (ligand 
free) (Krewulak and Vogel, 2008). 
The outer membrane receptor is displayed the form of a ribbon structure, showing the 22-b strand 
barrel (ribbon) and N-terminal plug domain (space filling). 

Importantly, the b-barrels extend beyond the Gram-negative lipid bilayer, and regardless of sequence 

similarity, these transporters are structurally similar when the Cα backbones of the β-barrels are 

compared, and to maintain correct protein folding and insertion into the outer-membrane there is a 

highly conserved C-terminal phenylalanine (or tryptophan) residue (Struyve et al., 1991). 

The transportation of the iron-complexes through outer membrane is driven by the proton motive 

force at the cytoplasmic membrane mediated by the TonB, ExbB and ExbD protein complex, this is 

due to the physical separation of the outer membrane from the plasma membrane, and the necessity 

for substrate translocation (Krewulak and Vogel, 2011). ExbB and ExbD form the proton channel 

that energizes uptake through TonB, which facilitates the interaction between the N-terminal plug of 

the outer-membrane receptor and TonB causing a conformational change to release the substrate into 

the periplasmic space (Moeck and Coulton, 1998). 
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Figure 1-3: The TonB-mediated transport mechanism employed to facilitate transition metal 
translocation through the cell envelope in Gram-negative bacteria (Klein and Lewinson, 
2011). 

1.2.1.2 Periplasmic binding proteins 

From the periplasmic space, the iron-complexes are further bound by specific binding proteins and 

translocated to the cytoplasm, a mechanism enabled by ATP-binding cassette (ABC-type) transporter 

proteins (Clarke et al., 2001; Hider and Kong, 2010). These periplasmic binding proteins can be 

classified into groups based upon their sequence similarity, and subsequently their ability to bind to 

a specific type of ligand (Krewulak and Vogel, 2008). The classifications are listed in the Table 1-1. 

Table 1-1 Clustering of periplasmic binding proteins based on ligand specificity.  
Adapted from papers by Claverys (2001); Tam and Saier (1993), with particular interest in cluster 8, 
for siderophore ligand binding proteins. 

Cluster Specific Ligand Binding Proteins 
1 Malto-Oligosaccharides, Multiple Sugars, a-Glycerol, Phosphate and Iron 
2  Hexoses and Pentoses 
3 Polar Amino Acids 
4  Aliphatic Amino Acids and Amides 
5 Peptides and Nickel 
6  Inorganic Polyanions 
7  Organic Polyanions 
8  Iron Complexes (and Vitamin B12) 
9 Manganese and Zinc 
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Cluster 8 of the periplasmic binding proteins is responsible for shuttling iron-complexed molecules, 

including iron-siderophore complexes; interestingly, each siderophore-ligand group appears to have 

a defined periplasmic binding protein responsible for across the periplasm. For example, E. coli 

utilises the proteins FhuD and FepB to bind the siderophore-ligands with hydroxamate and 

catecholate moieties respectively as shown Figure 1-1 (Hider and Kong, 2010).  

As with most documented iron-uptake pathways, once transported into the periplasm, the ferri-

siderophore complexes with the specific siderophore-periplasmic-binding protein component of the 

ABC-type transporter, an example structure is depicted in Figure 1-4 (Ma et al., 2009). The resultant 

effect caused by permease-component interaction is to import the complex into the cytoplasm 

facilitated by ATP hydrolysis.  

 

Figure 1-4 A ribbon structure of typical ABC-type transporter.  
E. coli ModABC shown above, Solute binding protein ModA (shown in green). This example shows 
transport of tungstate (WO4

2-) anion (shown in red, with grey background shading, within ModA) 
(Hollenstein et al., 2007). Other solute-binding-proteins utilise a universal structure with differing 
metal coordination sites, as shown in the lower section of the figure by Fe(III)-specific solute binding 
protein Campylobacter jejuni FbpA (1Y4T) (Tom-Yew et al., 2005), as well as other relevant metal 
ion binding sites for Zn(II) and Mn(II). 
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Unlike in Gram-negative bacteria, there is a significant gap in the literature regarding iron regulation 

in Gram-positive bacteria. While siderophore compounds have been both well described and 

characterised in these organisms, the transport mechanisms associated are still widely postulated 

among the scientific community, especially in the mycolic acid-containing group of actinobacteria. 

As archetypal Gram-positive bacteria lack an outer membrane, the mechanisms utilised by the Gram-

negative bacteria are likely to be redundant  Nonetheless, Gram-positive organisms have been shown 

to produce both lipoproteins and ABC-type transporter proteins analogous to those present in Gram-

negative organisms (Hider and Kong, 2010). However the 30-50 kDa soluble proteins that are found 

in the periplasm of Gram-negative bacteria are accessory proteins covalently anchored by 

lipoproteins to outer leaflet of the plasma membrane (Wilkens, 2015). Interestingly, the soluble 

section previously mentioned, folds in an identical manner to Gram-negative periplasmic binding 

proteins, and both anchor onto the transmembrane channel of the transporter, highlighting an 

analogous method of metal transport (Miethke and Marahiel, 2007). 

While it is well established that Gram-positive bacteria have import mechanisms to facilitate uptake 

of ferri-siderophores, this has recently extended to include transport of apo-siderophores (Fukushima 

et al., 2013). A study of the protein YxeB of the Gram-positive organism Bacillus cereus provided 

the first direct experimental evidence of a Gram-positive siderophore-shuttle mechanism, in which 

iron exchanges from a ferri-siderophore complex to an apo-siderophore bound to the substrate 

binding protein without intermediate metal ion reduction (Fukushima et al., 2014), suggesting that 

Bacillus cereus utilises a novel method of iron importation. The model described by Fukushima et 

al. (2013) highlights that YxeB may have a two-pathway importation system, preferentially using a 

siderophore shuttle system, with a secondary displacement strategy (Figure 1-5).  
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Figure 1-5 Models of the Gram-positive siderophore-shuttle mechanism and displacement 
mechanism of YxeB (Fukushima et al., 2014).  
Both pathways operate in Gram-positive organisms, but the shuttle pathway is preferred. (1) The iron 
bound siderophore approaches the YxeB-apo-siderophore complex and rests near the binding pocket, 
with two potential routes of uptake. Steps 2–4 provide the shuttle pathway, Steps 5–7 provide 
displacement pathway.  (2) Iron exchanges from the Fe–siderophore to the apo-siderophore in the 
binding pocket. The YxeB protein catalyses this step by increasing the local concentration of the 
entering ligand and the ferric complex. (3) The newly transferred Fe–siderophore complex (B) is 
transported across the membrane and the original (now apo-) siderophore (A) remains bound to the 
YxeB protein. (4) The receptor is bound to an apo-siderophore, and the process can repeat. (5) The 
iron–siderophore complex (A) displaces the apo-siderophore (B) and occupies the binding pocket. 
(6) The original iron–siderophore (A) is transported across the membrane. (7) The siderophore-
binding-protein is bound to an apo-siderophore (B) 
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1.3 Siderophores  

One of the most described methods of iron acquisition is through the use of siderophores. These 

secreted chelatory compounds are typically of low-molecular weight have a natural high affinity for 

iron (III) and are employed by microbes to scavenge iron from iron-binding proteins. Once bound, 

the ferri-siderophore complexes are transported through the use of specific membrane-bound iron-

siderophore receptors and associated import systems. After transportation, the iron is dissociated 

from the siderophore principally through redox-mediated reactions (Pluháček, 2016).   

Siderophore biosynthesis is usually regulated by the amount of environmental iron available to the 

microbe, with siderophore secretion occurring, quite often to outcompete other less-well adapted 

organisms (Emery, 1982). As a result, the ability to sequester iron, and thereby survive over less 

well-developed organisms, can change and impact the ecology. Furthermore, it has been documented 

that a range of plasmids have siderophore biosynthesis genes encoded, and as a result can confer 

horizontal gene transfer thereby associating secretion of siderophores with both a diverse nature of 

pathogenicity and virulence (Bullen et al., 1999; Holden and Bachman, 2015; Naka et al., 2013).  

 

As previously mentioned, siderophores are a group of secreted high-affinity chelators preferential to 

iron (III), this selectivity relates to the ligand specificity of iron (II), as the nature of the divalent d-

block metal cations such as zinc, copper, manganese, and nickel are crucial for many biological 

processes. Unlike the divalent cations, the trivalent forms are generally inessential, thereby providing 

a route for iron (III) selectivity with subsequent release occurring via reduction (Hider and Kong, 

2010), a reaction not possible for other trivalent metals. 

Typically, iron-siderophore complexes are formed using oxygen donor atoms presenting an 

octahedral geometry, with the binding sites located often in specific orientations, which are can be 

pivotal in ferric-siderophore-complex recognition for cellular import (Roosenberg et al., 2000). The 

formation of the octahedral complex is generally favourable for binding with iron (III) due to the 

thermodynamically stable, high spin nature of  iron (III), frequently employing a three bidentate-

ligand arrangement, to facilitate a hexadentate structure for binding to the iron atom with minimal 
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ligand repulsion (Hider and Kong, 2010). 

As described earlier, iron (III) ions are almost always bound by oxygen-based ligands but can 

accommodate nitrogen and sulphur ligands, and as such siderophores may have an interrupted 

geometry due to inclusion of these other donor atoms, thereby potentially impairing the affinity 

(Roosenberg et al., 2000). 

The stereochemistry of ferri-siderophore complexes can vary depending on the ligand structure; for 

example, a tris-chelate of catechol, (a symmetrical bidentate ligand) can exist as an enantiomeric pair 

as shown in Figure 1-6, whereas other asymmetrical ligand structures such as hydroxamates can form 

L -cis, L  -trans, D -cis and D -trans geometric and optical (enantiomer) isomers. 

 

Figure 1-6: An enantiomeric isomer pair, highlighting the optical differences between the two 
classes (Hider and Kong, 2010).  
One of the enantiomers rotates the light in one direction, the other rotates the light in the opposite 
direction but by the same amount. In all other aspects, including boiling point, refractive index, 
density and viscosity, the two optical isomers are identical. 

Recent reviews indicate that upwards of 500 siderophores have been isolated and characterised, of 

which they can be classified by the composition and topology of the iron-binding moieties, including 

catecholates (including phenolates), hydroxamates, and carboxylates, however an ever-emerging 

group of mixed-type ligands are being discovered (Miethke and Marahiel, 2007). Siderophores can 

also be classified by their backbone structure or family (Roosenberg et al., 2000). A selection of 

characterised siderophores are shown in Figure 1-7, grouped by the iron-binding moiety present 

(Miethke and Marahiel, 2007).  
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Figure 1-7 Representative examples of different siderophores and their natural producers.  
Moieties involved in iron coordination are highlighted as follows: catecholates are in red, phenolates 
are in orange, hydroxamates are in pale yellow, α-hydroxy-carboxylates (deriving from citrate units) 
are in light green, and α-keto-carboxylates (deriving from 2-oxo-glutarate units) are in blue-green 
(Miethke and Marahiel, 2007). 
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The three major classifications of siderophores, catecholates, hydroxamates and carboxylates are 

shown in Figure 1-8, which highlights the complexation that occurs when the hydroxyl groups are 

reduced upon iron binding (Gorska et al., 2014). 

 

Figure 1-8 Three major ligand groups employed by siderophores, and their complexation 
with iron (III).  
The R groups present on each of the moieties are representative of variable backbone groups. 

 

Interestingly, both metal-binding and siderophore chirality are influential for conformation and 

configuration of ferric-siderophore complexes and as a result can affect protein−siderophore 

interactions including the biologically significant mechanism of cellular transport (Raymond et al., 

2015). 

Prior to iron-binding, siderophore structures are flexible, with the octahedral geometry only present 

when stabilised by the metal-ligand interaction Figure 1-9.  This stability is a result of the strict ligand 

denticity, and hard acid-base interactions between the iron (III) and siderophore respectively 

(Miethke and Marahiel, 2007). 
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Figure 1-9: Examples of apo- and ferric-Siderophore complex formations.  
A) Siderophores unbound to iron highlighting molecule flexibility, B) Siderophores bound to iron 
producing a stable octahedral geometry in a hexadentate formation. Coloured ligands highlight 
siderophore ligand groups, grey sections highlight variable peptide backbone structures. I) A 
hydroxamate ligand from ferrichrome(Locher et al., 1998) utilised by E. coli. II) A catecholate ligand 
from enterobactin (Peuckert et al., 2011) utilised by B. subtilis. III) A carboxylate ligand from 
staphyloferrin (Grigg et al., 2010) utilised by Staphylococci.  

1.4 Release of iron from siderophore complex  

 

Siderophores by nature, have a universally predominant affinity for the ferric form over ferrous iron, 

a structure-function principle essential for ensuring selectivity over other abundant metal ions in the 

environment. Once ferri-siderophore chelation is achieved, the molecular recognition can occur, and 

the receptor can facilitate capture, transport and eventual release of the metal ions from the 

siderophore. 

 Complexation with the ferric form of iron will prevent the formation of hydroxyl radicals due to the 

highly negative redox potential, thereby preventing cellular damage. (Hider and Kong, 2010). This 

damage prevention is achieved as the siderophore ligand-donor groups have a higher selectivity of 

iron(III) over iron (II) as a result of binding of the negatively-charged oxygen donor groups in to the 

high-spin Fe3+ metal centre, severely reducing the redox potential to highly negative values 

(Harrington and Crumbliss, 2009).  
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The redox potential values for siderophore classes can vary, and typically catechol-derived 

siderophores occupy the most negative redox potential comparative to other groups, while also 

hexadentate siderophore complexes have a greater negative potential over tetradentate and bi-dentate 

siderophore complexes. These factors affecting redox potential appear to share a significant 

relationship with the iron binding capacity of a siderophore – pFeIII value, where the greater the pFeIII 

value the more negative the redox potential (Hider and Kong, 2010; Miethke and Marahiel, 2007). 

 

The most commonly accepted hypothesis for iron release is through reduction of the bound iron (III) 

ion to iron (II), facilitated by a decrease in thermodynamic and kinetic stability promoting ligand 

exchange. The reduction of the Fe3+ to the lower charge density Fe2+ ion is likely to promote 

dissociation from the ligand binding sites to target locations within the cells (Dhungana and 

Crumbliss, 2005; Hider and Kong, 2010).  

The reduction is predicted to occur through changes in cellular environment, where the biological 

reducing agents such as NADH with electron donor co-factors can be utilised (Dhungana and 

Crumbliss, 2005). The siderophore denticity is likely to influence the mechanisms required to 

promote release of iron into the cell as lower negative redox potential siderophores such as a-

hydroxycarboxylates and hydroxamate-ligand siderophores are liable to be reduced upon interaction 

with such reducing agents. However, siderophores with greater negative redox values such as 

hexadentate tris-catechol-ligand siderophores may require alternative mechanisms or a combination 

of reduction mechanisms such as protonation. 

 

The redox potential of iron-siderophore complexes can be further influenced by protonation of the 

aqueous environment, as competition between Fe3+ and H+ for siderophore ligand groups already 

occurs. Crumbliss and colleagues have previously shown that a reduction in pH can release Fe3+ from 

thermodynamically-stable siderophore complexes using competitive protonation (Albrecht-Gary and 

Crumbliss, 1998; Boukhalfa and Crumbliss, 2002) While the environmental pH change may not be 

sufficient for the H+ ions to compete with Fe3+ for protonation of the negatively-charged donor 
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groups, the speciation of iron(III)-complexes can be manipulated, where the protonation of ligand 

donor groups can occur in iron(II)-complexes using proton-driven dissociation and eventual release 

of the bound iron. 

 

Prokaryotic organisms often allow importation of iron-bound siderophore complexes using lipophilic 

cell membrane bound receptors including FhuA, and yet other mechanisms may also be involved in 

an iron exchange process from a hydrophilic extracellular siderophore system to a membrane-bound 

siderophore system even with an exceptionally negative redox potential as described by Dhungana 

et al. (2003), highlighting how an environmental lipophilicity caused shift in redox potential may 

facilitate a cascade event of redox methods to facilitate ligand exchange (Ratledge and Dover, 2000).  

 

Research on regulation of iron uptake pathways and associated expression of genes is somewhat 

limited, with the majority of studies have focussed on the Ferric uptake regulator (Fur) protein family 

(discussed in detail later) which globally coordinate responses to intracellular iron levels; iron-

complexed Fur proteins bind to promoters to directly repress transcription or act via alternative 

indirect activation of alternative regulons(Crosa and Walsh, 2002). Although Fur has been identified 

as the as the main iron-responsive regulator in a vast range of bacteria, the Diphtheria toxin regulator 

protein (DtxR) has been identified as the global iron regulator in many high G+C content Gram-

positive bacteria (Boland and Meijer, 2000) (also discussed later in the thesis), and may also 

contribute to iron regulation through other indirect regulatory methods including expression of the 

diphtheria toxin, haem-associated iron regulation, siderophore synthesis and efflux as well as 

siderophore dependent-uptake of iron (Brune et al., 2006). Importantly, DtxR and Fur have no 

significant sequence homology, but both proteins function as Fe2+-dependent transcriptional 

repressors. 

As well as coordination chemistry-based ligand-based classification, siderophores can be classified 

predominantly into two groups based on their biosynthetic production methods, these include 

production by 1) a non-ribosomal peptide synthetase (NRPS) pathway or 2) NRPS-independent 



 17 

pathway. 

 

Non-ribosomal peptide synthetases are multi-modular enzymes responsible for an assembly-line 

production of specific peptides without the need for an RNA template. Functioning in a similar 

manner to the fatty-acid synthetase and polyketide synthetase enzymes (Crosa and Walsh, 2002), the 

NRPS link together predominantly nonproteinogenic amino acids via thioester intermediates; the 

proteins are modular with each module being responsible for the extension of the product of the 

previous module by a single specific amino acid.  Each module consists of an (i) adenylation domain, 

which selects and activates the extending amino acid via adenylation, (ii) a peptidyl carrier protein 

domain, which maintains the product as a enzyme-linked thioester and a (iii) condensation domain 

which forms the peptide bond.  The product may be passed to successive NRPS proteins for further 

extension and the production line often is terminated by a thioesterase domain which releases and 

often cyclises the final product.   

The extension of the peptide product is colinear, with the N-terminal amino acids of the product 

being condensed at the first module on the N-terminal region of the NRPS and additions being made 

to the C-terminus as the peptide progresses towards the C-terminus of the NRPS.  The thiol groups 

that tether the growing product at the peptidyl carrier domains are 4-phosphopantethinyl groups 

introduced as post-translational modifications of a conserved serine residue that are long and flexible 

enough to promote the transfer of the intermediates to the spatially distinct reaction centres (Mootz 

et al., 2001) in the condensation domains of neighbouring modules. It is during this thioester 

intermediate stage that any additional editing such as epimerisation or N-methylation can be 

performed.  

The chain elongation occurs upon peptide bond formation catalysed by a condensation domain which 

facilitates the connection of the free amine group of a downstream PCP-bound acceptor amino acid 

with the activated upstream thioester PCP-bound donor (Crosa and Walsh, 2002). 
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Figure 1-10 The domain arrangement of bacterial non-ribosomal synthetases and associated 
catalytic reactions (Süssmuth, 2017).  
0)NRPS priming: phosphopantetheinyl transferase-mediated instalment of phosphpantatheine at a 
conserved serine of the apo-T domain.  1) Selection and adenylation of the amino acid by the A 
domain to produce an  aminoacyl-AMP species and pyrophosphate. 2) Thiolation of the activated 
amino acid and release of AMP to produce an aminoacyl-thioester attached to the 
phosphopantetheine of the holo-T domain, catalysed by the A domain. 3) Peptide bond formation by 
the Condensation domain couples the activated amino acid to the amino acid attached to the upstream 
module. 4) Oligopeptide release is achieved by formation of an intermediate ester bond between the 
C terminus of the peptide and a conserved serine of the Te domain. Hydrolysis or intramolecular 
attack of a nucleophilic moiety yields a linear or macrocyclic product, respectively. Reaction 
products given in red. (Abbreviation : Nuc = nucleophile). 

 

As previously described, siderophores are usually classified by the type of functional ligand 

architecture present used to bind the extracellular iron. The catecholate and phenolic ligand groups 

typically utilises 2,3-dihydroxybenzoic acid and salicylate respectively, which are synthesised using 

phenylalanine, tryptophan and tyrosine precursor amino acids (KEGG Pathway, Figure 1-11), and as 

such a isochorismate synthetase gene is usually present within the siderophore biosynthetic gene 

cluster (Lamb, 2015).  Hydroxamate ligand-bearing siderophores, however, are produced within the 

NRPS mechanism by modification of lysine, ornithine or polyamine residues, when a free side chain 

undergoes hydroxylation and formylation of the nitrogen molecule (Lamb, 2015). The production of 

these ligands is usually catalysed by a mono-oxygenase (Hider and Kong, 2010), while other groups 

produced including carboxylate ligands, are occasionally attached as preformed compounds such as 

citrate. 



 
Figure 1-11 KEGG Pathway for biosynthesis of bacterial catecholate siderophores using phenylalanine, tryptophan and tyrosine precursor amino acids.
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1.5 Introduction to the Rhodococcus genus 

The genus Rhodococcus was first proposed in 1891 by Zopf, as a reclassification of Micrococcus 

erythromyxa and Micrococcus rhodochrous (Overbeck, 1891; Zopf, 1891) based on the production 

of red pigment, with the species reclassified a number of times further (Buchanan, 1915). Due to the 

lack of suitable characteristics for the genus description, the strains were, once again, included in the 

genus Micrococcus within Bergey’s Manual of Determinative Bacteriology: Fifth and Sixth Editions. 

The genus Rhodococcus was re-established by Goodfellow and Alderson in 1977, by identification 

of nine species that could be described to a greater extent through the use of a more robust advanced 

numerical taxonomic study (Goodfellow and Alderson, 1977). As of 2013, 33 unique species were 

assigned to the genus Rhodococcus (Jones et al., 2013a). 

Characterised as a nocardioform actinomycetes, rhodococci, like other closed related genera are 

defined by their mycolic acid-containing cell wall and G+C-rich genomic content (Bell et al., 1998; 

Zhi et al., 2009).  The genus can be identified as Gram-positive, non-motile, obligate aerobes. The 

morphological variations within Rhodococcus are diverse; species are often pleomorphic and may 

produce filaments (Alvarez, 2010) which can readily lead to a misidentification of analogous genera 

within the order Actinomycetales (Savini et al., 2012).  

Classification within the genus Rhodococcus is further validated by presence of a distinctive cell 

envelope feature, the arabinogalactan layer, a covalently attached cell wall polysaccharide (Sutcliffe 

et al., 2010) that links mycolic acids to peptidoglycan, this mycolate-containing cell envelope region 

is a defining feature that facilitates survival under tough environmental conditions. The complexity 

and size of these 2-alkyl branched 3-hydroxy long chain fatty acids can vary within Rhodococcus 

and are comparable to other mycolate-containing bacteria such as Mycobacterium and 

Corynebacterium (Figure 1-12). Similar to M. tuberculosis, the high hydrophobicity of the 

rhodococcal cell envelope frequently functions as a barrier to prevent entry to the cell including 

antibiotic treatments (de Carvalho et al., 2014). Transport across the mycolate-layer can be achieved 

if the molecule is hydrophobic, otherwise active transports systems are typically required. Literature 

regarding membrane transport is typically focussed on translocation of the cytoplasmic membrane 

as for typical gram-positive bacterium, without consideration of the mycolic acid-containing cell 
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wall region. 

R. equi has a cell wall chemotype IV defined by the presence of arabinogalactan, galactose and meso-

2,6-diaminopimelic acid to provide a scaffold for covalent anchoring of the mycolates (Schaechter, 

2009), with A1γ peptidoglycan also promoting stability within the cell wall. Although other similar 

genera from Family Corynebacteriaceae have a chemotype IV cell wall (Jones and Goodfellow, 

2012), rhodococci can be readily distinguished through chemotaxonomic characteristics including 

10-methyl tuberculostearic-branched fatty acid chains; a phospholipid profile containing di-

phosphatidylglycerol, phosphatidylinositol, phosphatidylethanolamine, and phosphatidylinositol 

mannosides, and non-cyclised dehydrogenated menaquinones (Bell et al., 1998; de Carvalho et al., 

2014). 

 

Figure 1-12 Comparison of mycolic acid structures in the suborder Corynebacteriales.  
This comparison emphasises contrasting complexities. Typically, rhodocococcal mycolates (ester of 
a mycolic acid) are intermediary sized displaying an aliphatic 2-alkyl chain, with 12-16 carbon 
molecules whilst the 3-hydroxyl meromycolate typically contains 18–40 carbons denoted by x, y and 
z; comparative to the complex M. tuberculosis methoxymycolate ranging between 18-40 carbons. 
M. smegmatis mycolates encompass either double or single unsaturations whilst retaining a longer 
chain length, comparative to rhodomeromycolates that contain simple modifications for example, 
four unsaturations (Sutcliffe et al., 2010).   
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Over the years, rhodococci have been identified as ubiquitous, with isolation occurring in a wide 

range of environments (Kuyukina and Ivshina, 2010), including extreme conditions such as an oil 

polluted desert in Kuwait (Radwan et al., 1995), and Antarctic soil (de Carvalho et al., 2014). The 

majority of isolations emanate from contaminated materials including aquatic sediment, ground 

water, soils, and manure (Bell et al., 1998), from which persistent xenobiotic contamination or uptake 

of environmental organic compounds are often used as a sole carbon source (Gűrtler and Seviour, 

2010). The degradation of xenobiotics and recalcitrant contaminants such as petroleum hydrocarbons 

(Kuyukina and Ivshina, 2010) by rhodococcal species is of particular commercial interest, as 

typically they are not naturally degraded in the environment, highlighting the significance of using 

rhodococcal species as a bioremediation tool. Other commercial uses for Rhodococcus species 

include the production of acrylamide from a purified recombinant nitrilase enzyme originally 

encoded by Rhodococcus rhodochrous (Yamada and Kobayashi, 1996). 

The genus Rhodococcus contains only a handful of pathogenic species, such as Rhodococcus 

fascians, a phytopathogen causing leafy gall disease in plants (Putnam and Miller, 2006) and 

Rhodococcus equi, the opportunistic pathogen promoting infection in animals and 

immunocompromised human patients (Jones et al., 2013a; Savini et al., 2012; Topino et al., 2010). 

1.6  Rhodococcus equi: the virulent zoonotic pathogen 

Rhodococcus equi was first isolated in 1923 from pyogranulomatous bronchopneumonia 

encountered in Swedish foals (Magnusson, 1923). The majority of research regarding this pathogen 

has centred on the ability to cause pyogranulomatous infections in equine species (Vazquez-Boland 

et al., 2009). However, R. equi is a well-known multi-host pathogen infecting a wide array of other 

animals including cattle, swine, cats, dogs, wild birds and humans (Makrai et al., 2002; Muscatello 

et al., 2007; Takai et al., 2003; Topino et al., 2010). R. equi is a facultative intracellular pathogen 

commonly isolated from animal dung, soils and dust particles, and is primarily found in environments 

such as horse breeding farms that contain these elements.  

The pathogen can be spread by aerosol inoculation, through either dust inhalation or droplet 

transmission between hosts, providing potential infection routes for humans and animals alike 

(Mosser and Hondalus, 1996).  
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R. equi infections typically occur in foals when weaning, as maternal antibodies from colostral milk 

are reduced. Furthermore, the foal immune system is not fully developed, leading to a severely 

increased infection rate between 6 and 12 weeks. The most common clinical manifestation of 

infection is chronic pyogranulomatous bronchopneumonia in conjunction with abscessation (Giguere 

and Prescott, 1997) (Figure 1-13). 

 

 

Figure 1-13: A lung from a foal suffering from purulent pneumonia with numerous abscesses 
caused by R. equi infection (Vazquez-Boland et al., 2013). 
Early symptoms begin with mild fevers and slight cough, and can progress with an irregular 

respiratory rate however, this may not be discernible early on unless exposed to stress factors or 

exercise. As a result, lung function can deteriorate over time and may not present symptomatically 

(Vazquez-Boland et al., 2013). 

 These signs, if missed can allow for disease progression, therefore identification of chronic 

conditions can appear as acute, termed ‘acute on chronic’ (Giguere and Prescott, 1997). Clinical 

signs may include lethargy with decreased appetite, fever or increased effort when breathing. Other 

clinical manifestations of R. equi can include intestinal infections including ulcerative colitis and 

typhlitis with granulomatous or suppurative mesenteric lymphadenitis (Vazquez-Boland et al., 

2013).  

In nearly all infected foals, a surface antigen, VapA encoded on an 85–90-kbp virulence plasmid, 

mediates the virulence of R. equi, (discussed in 1.6.4). 

Although R. equi disease is common in foals, it is unusual disease in adult horses with occasional 
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reports of lung and lymph node infections. A rare example of an R. equi infection in an adult horse 

included a septicaemia and lung abscessation in conjunction with acquired immunodeficiency 

(Freestone et al., 1987).  

Importantly, R. equi can be cultured from almost all surfaces in horse breeding environments, it is 

interesting that the disease in some farms can be endemic, whilst others remain disease-free (Giguère 

et al., 2011). The costs associated with endemic R. equi diseases can be great therefore appropriate 

steps towards disease management and treatment should be taken. 

Treatment of R. equi infections can be troublesome due to a range of natural antimicrobial resistance 

mechanisms the pathogen has developed, as R. equi is typically isolated from soil, the organism’s 

genome has evolved to contain a number of chromosomal resistance mechanisms including 

resistance to oxidative stress and low pH in the soil (Pei et al., 2007), which can reduce the efficacy 

of natural soil-borne antimicrobials (Vazquez-Boland et al., 2013). Additionally, the cell wall of the 

pathogen, specifically the hydrophobic mycolic acids may provide intrinsic resistance preventing 

internalisation of the drugs. 

The administration of rifampin and erythromycin for R. equi infections was the preliminary drug 

choice in the 1980’s (Sweeney et al., 1987; Vazquez-Boland et al., 2013) established from in vitro 

susceptibility and pharmacokinetic statistics (Giguère et al., 2011). The combination therapy of 

rifampin and erythromycin has an active bacteriostatic effect on R. equi infections, subsequently 

requiring the continuation of treatment until the bacterial infection can be cleared by the host immune 

system (Giguère et al., 2012; Vazquez-Boland et al., 2013). Further to this, a case study by Gurel 

and colleagues presented adjusted treatment regimens to include Streptolysin-O, an oxygen-labile 

haemolytic endotoxin in addition to the standard combination therapy of rifampin and erythromycin. 

This resulted in a superior treatment by characterised by lowered bacterial counts in the lungs, 

providing longer survival time in foals, through modulation of site-specific expression of 

extracellular matrix and inflammatory response genes (Gurel et al., 2013).  

The combination of new generations of macrolides including clarithromycin and azithromycin with 

rifampin has proven to be an effective treatment. Unresolved macrolide and rifampin-resistant strains 

have been treated using antimicrobial agents including gentamicin and doxycycline (Burton et al., 
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2013; Vazquez-Boland et al., 2013). The treatment method using rifampin and macrolides together 

has a synergistic effect both in vitro and in vivo and reduces the risk of resistance to R. equi emerging 

for either drug classes (Giguère et al., 2012). 

 

Although R. equi has primarily been associated with the animal populations, opportunistic infection 

can occur in immunocompromised humans exposed to R. equi-contaminated areas and animals 

(Prescott, 1991). First reported in 1967, R. equi was cultured from an immunocompromised male 

presenting with a fever and apparent cavity pneumonia and a subsequent abscess (Golub et al., 1967). 

Treatment consisted of erythromycin for 8 weeks, followed by a further 6 weeks upon discovery of 

abscesses, resolving the symptoms and infection. 

Over the years, the incidence of R. equi infections has increased coincident with the 

immunodeficiency associated with cancer therapy, organ transplantation and infection with the 

Human Immunodeficiency Virus, and subsequent acquired immune deficiency syndrome(Weinstock 

and Brown, 2002). As a result of their compromised immune function, these patients are at greater 

risk of R. equi infections, with approximately only 10 – 15 % of infections occurring in 

immunocompetent hosts (Kedlaya et al., 2001). Typically 80 % of total R. equi infections affect the 

pulmonary system and can present with symptoms including nodular infiltrates or a pneumonic 

consolidations and pulmonary cavitation often leading to the misdiagnosis of pulmonary tuberculosis 

(Vazquez-Boland et al., 2013; Weinstock and Brown, 2002). Misdiagnosis appears to be common 

especially in developing countries that have inferior laboratory facilities, this results in the 

application of ineffective treatment regimes, facilitating the emergence of drug resistance (Gray et 

al., 2000). 

 

The taxonomic position of R. equi has been recently subject to review, as a study performed by Jones 

and colleagues provided presented evidence that R. equi is reasonably differentiated from other 

rhodococcal species (Jones et al., 2013a), while another taxonomic revision identified Rhodococcus 

hoagii as a validly published synonym of R. equi (Kampfer et al., 2014). 
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The use of chemotaxonomic, molecular systematic and numerical taxonomic data provided sufficient 

evidence to reclassify R. equi into a new proposed genus: Prescottia, type species Prescottia equi 

(Jones et al., 2013a) however the genus Prescottia was deemed illegitimate due to previous use 

within the family Orchidaceae. As a result the new genus name Prescottella, type strain Prescottella 

equi was proposed (Jones et al., 2013b). 

The proposal of the new bacterial taxon Prescottella equi was supported by an investigation 

performed by Sangal and colleagues, that analysed the phylogenetic relationship between R. equi 

strains, other rhodococcoal species and nocardial species (Sangal et al., 2019; Sangal et al., 2014). 

Sangal’s series of phylogenetic trees (Figure 1-14) strongly agues for the differentiation of R. equi 

species from other Corynebacteriales, supporting reclassification of R. equi as Prescottella equi. 

However, the genus name Prescottella cannot be validated until the Judicial Commission reports on 

whether the species epithet equi should be conserved over the nomenclatural variant hoagii.  (Garrity, 

2014).
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Figure 1-14: A phylogenetic tree from 400 universal proteins highlighting the differentiating genomic relationship between R. equi and other related species 
(Sangal et al., 2019).
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Virulent isolates of R. equi from equine pulmonary infections harbour an 85 – 90 kb plasmid that 

carries a pathogenicity island (PAI) encoding virulence-associated proteins (Letek et al., 2010; 

Meijer and Prescott, 2004; Vazquez-Boland et al., 2013). Although some virulence mechanisms are 

not characterised, a significant component for pathogenicity is the PAI plasmid. Plasmid-deficient 

strains are unable to replicate in macrophages in vitro or in mice (Meijer and Prescott, 2004). 

Containing 69 open reading frames, the PAI plasmid comprises four regions; devoted to replication, 

conjugation, and pathogenicity, while the function of the fourth is unknown. 

The series of vap genes present in the PAI, encode virulence associated proteins A, C, D, E, F, G, H 

(Meijer and Prescott, 2004). VapA is a 17.4-kDa surface lipoprotein antigen (Byrne et al., 2001; 

Letek et al., 2008) and is thought to contribute to scaffolding within a protein complex responsible 

for interaction with host macrophage components (von Bargen et al., 2009). The deletion of vapA 

diminishes the virulence of the pathogen, further highlighting the contribution of VapA in R. equi 

pathogenicity. A study by Ocampo-Soso and colleagues developed a useful PCR-based typing 

method, demonstrating clear associations between plasmid types and animal hosts (Ocampo-Sosa et 

al., 2007). VapB, isolated from a plasmid variant associated with swine, shares a 78 % amino acid 

sequence identity with VapA, while a bovine equivalent VapN has also been isolated (Valero-Rello 

et al., 2015), and are thought to be allelic variations of one locus, that have evolved to produce 

different Vap-containing plasmids (Ocampo-Sosa et al., 2007). The zoonotic nature is highlighted 

by the presence of VapA VapB and VapN in R. equi strains commonly isolated from 

immunocompromised human patients. Ocampo-Soso proposed the hypothesis that host tropism is 

determined by the plasmid variant harboured by the bacterium, supported by a further study 

demonstrating a conserved backbone but different vap pathogenicity island components (Letek et al., 

2008). 
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Rhodococcus equi is a pathogenic representative of the mycolate-containing actinobacteria.  Little is 

understood regarding the transport processes shuttling materials across their important outer 

membrane structure.  Our over-arching hypothesis is that characterisation of key transmycolate 

transport processes will identify new transporter archetypes that will illuminate the functional 

biology of this membrane. This study aimed to further characterise iron acquisition systems as these 

are considered critical in establishing infection and are worthy of further detailed study in their own 

right. 

The main aim for the research project was to identify and characterise the molecular components of 

siderophore-mediated iron acquisition in Rhodococcus equi.  This requires mapping the complex 

iron regulatory network in the bacterium, primarily by focussing on the iron homeostasis 

mechanisms, as well as attempting to identify  the associated transmycolate cell wall transport 

mechanisms utilised for iron uptake by their co-ordinated over expression with the siderophores. 

Currently, the literature suggests R. equi synthesises two siderophores under iron starvation;  a 

catecholate-hydroxamate mixed type-siderophore termed rhequibactin (Miranda-CasoLuengo et al., 

2008) and a hydroxamate siderophore termed rhequichelin (Miranda-CasoLuengo et al., 2012), 

however both regulation and uptake of these siderophores are uncharacterised. Genes encoding ABC 

importers that would mediate transport into the cytoplasm are evident in siderophore gene clusters 

but candidates for transmycolate uptake pathways have not been identified.  

Canonically, bacterial metal ion homeostasis is regulated via a series of metal-binding transcriptional 

repressor proteins.  The initial project objectives were identification of any metalloregulatory 

proteins that might regulate transcription of essential virulence factors including the biosynthetic 

machinery that synthesise siderophores and associated transport mechanisms. Complementary 

approaches would be explored to characterise their associated regulons and metallic co-regulators.  

Overexpression would allow protein purification and functional analysis such as DNA-binding and 

metal-binding studies.  Furthermore, unlike most bacteria that generate an exaggerated response to 

iron limitation in vitro, R. equi appears to produce a very small yield of its siderophores, which has 

complicated their characterisation.  Therefore, in order to address the hypothesis that complete 
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deregulation might generate a greater siderophore yield, production of in-frame deletion mutations 

of the putative metal regulator genes may facilitate this and also might reveal co-regulated uptake 

components via integrated post-genomics analysis of the mutants  

Ultimately, analysis of data from combined studies of mutant and iron-starved wild-type cells would 

allow, 1) identification and characterisation of R. equi siderophores, using a metabolomics approach. 

2) identification of mycolate-associated proteins associated with the transmycolate uptake of ferri-

siderophores using a proteomic approach and. 3) mapping of the global gene expression of R. equi 

under iron limitation and overlaps with the regulons of transcriptional regulators to  identify 

candidates for these and further roles in R. equi iron homeostasis. 
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2 Materials and Methods 
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2.1 Bacterial strains and plasmid vectors 

The bacterial strains and plasmid vectors used in this thesis are listed in Error! Reference source 

not found.. Plasmid maps are available in the Appendices for Chapter 2. 

Table 2-1: List of bacterial strains and plasmid vectors 

Strain/Vector 
(supplier) Genotype Supplier 

Escherichia coli  

XL-10 
GOLD 

endA1 glnV44 recA1 thi-1 gyrA96 relA1 lac The Δ(mcrA)183 
Δ(mcrCB-hsdSMR-mrr)173 tetR F’[proAB lacIqZΔM15 
Tn10(TetR Amy CmR)] 

Stratagene 

Ecloni 10G  
F- mcrA Δ(mrr-hsdRMS-mcrBC) endA1 recA1 Φ80dlacZΔM15 
ΔlacX74 araD139 Δ(ara,leu)7697 galU galK rpsL nupG λ- tonA Lucigen 

BL21 (DE3)  
B F– ompT gal dcm lon hsdSB(rB–mB–) λ(DE3 [lacI lacUV5-
T7p07 ind1 sam7 nin5]) [malB+]K-12(λS) Invitrogen 

Rhodococcus   

Rhodococcus equi 103S Prof I. Sutcliffe 
Rhodococcus erythropolis PR4 (=NBRC 100887) NBRC 
Plasmids  

pUC18 
Bacterial cloning, vector Synthetic construct (L09136) oriColE1 
AmpR lacZa M13mp18 polylinker 

Norrander et al. 
(1983) 

pET23b Bacterial expression vector, T7 tag, His-tag MCS AmpR Novagene 

pSelAct  Bacterial vector lacZ, codA:upp, AprR  van der Geize et 
al. (2008) 

pLongJon Derived from pSelAct, contains pGroES insertion. This work 

pGEX-6P-1 Bacterial expression vector, (U78872) MCS AmpR GST-tag 
lacI GE Healthcare 

 

R. equi strains were grown in complex broth (LB or BHI) for 48 hours at 37 °C with shaking at 180 

rpm. Cultures were then heat-fixed to a microscope slide, stained using a standard Gram staining 

protocol and their morphology visualised by oil immersion microscopy at 100 x objective 

magnification. 

 

Competent E. coli cells were prepared, and vectors transformed as previously described, purified 

using QIAprep spin Miniprep Kit to produce pure plasmid. The vectors were linearised using 

restriction enzymes, ready for amplicon assembly. 

 



 33 

2.2 Iron limitation methods 

 

Lactate minimal medium was identified as an appropriate medium for culture and imposing iron 

limitation (Table 2-2). The iron limiting conditions were achieved by omission of iron chloride from 

the trace element solution. Cultures were grown at 37 °C until growth limitation was achieved, 

monitored by optical density at 600 nm. 1 ml aliquots were centrifuged at 13,000 x g; supernatants 

and pellets were frozen for further analysis. 

Table 2-2 Composition of lactate minimal medium for iron limitation in Rhodococcus equi  
Component Amount (g) per 1 L 

K2HPO4 5 
NaH2PO4 1.5 
MgSO4.7H2O 0.2 
(NH4)2SO4 1 
Trace element solution 0.2 ml 
Thiamine hydrochloride 0.034 
Sodium L-lactate 2.24 

 

2.2.1.1 Trace elements solution  

The trace element solution was prepared according to methods described by Vishniac and Santer 

(1957) in Table 2-3, later modified by addition of 0.5 M MES buffer to maintain stability. A 

secondary modified trace element solution was also prepared without the addition of iron for use in 

iron limited cultures. 

Table 2-3: Composition of Vishniac and Santer Trace elements solution 

Component Amount (g) per 1 L 

Na2-EDTA 50.00 
ZnSO4 . 7H2O 22.00 
CaCl2 . 2H2O 5.54 
MnCl2 . 4H2O 5.06 
FeSO4 . 7H2O 5.00 
(NH4)6Mo7O24 . 4H2O 1.10 
CuSO4 . 5H2O 1.57 
CoCl2 . 6H2O 1.61 

 

2.2.2.1 Glassware cleaning 

Glassware was cleaned by submersion in 10 % (v/v) Nitric acid overnight to remove mineral traces 
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and was rinsed twice with MilliQ H2O and Acetone.  

2.2.2.2 Media modification 

The lactate minimal media was modified to determine growth limiting factors, including doubled 

carbon source, doubled nitrogen source and 10 mg/ml Riboflavin supplementation. All cultures were 

performed in triplicate, and differences were monitored via spectrophotometry. 

 

Fiss-glucose minimal media was utilised based upon previous literature for successful siderophore 

production in Rhodococcus erythropolis (Vellore 2001) that appears to be adapted from Minimal 

medium (MM) described by Ratledge  that was used as the iron-limiting medium for mycobacteria 

(Hall and Ratledge, 1982). 

 

Lactate-Minimal media was utilised as described in 2.2.1, with additional iron limiting parameters 

including use of acid-washed glassware (2.2.2.1) and passage of liquid medium through a 

chromatography column packed with Chelex-100 resin, prior to sterilisation.  

2.3 DNA methods 

 

Genomic DNA was prepared by suspending a colony of bacteria in microcentrifuge tube containing 

50 µl 18.2 MΩ•cm H2O. The suspension was then held at 100 °C for 5 minutes and centrifuged for 

1 minute at 13,000 RPM. The supernatant (genomic DNA) was recovered and stored at -20 °C for 

future use. 

 

Plasmid DNA was extracted from overnight cultures of E. coli using a QIAprep spin mini-prep kit 

(Qiagen) according to the manufacturers’ protocol.  
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Polymerase chain reaction (PCR) was performed using the ultra-high fidelity Q5 DNA polymerase 

(New England Biolabs Inc.), which are thermostable with 3´→ 5´ exonuclease activity. The reactions 

were setup on ice (Table 2-4), and quickly transferred to a thermocycler for amplification (Table 

2-5). 

Table 2-4: PCR reaction setup using Q5 DNA polymerase 

Component 25 µl Reaction Final Concentration 

5X Q5 Reaction Buffer 5 µl 1X 
10 mM dNTPs 0.5 µl 200 µM 
10 µM Forward Primer 1.25 µl 0.5 µM 
10 µM Reverse Primer 1.25 µl 0.5 µM 
Template DNA variable < 1,000 ng 
Q5 High-Fidelity DNA Polymerase 0.25 µl 0.02 U/µl 
5X Q5 High GC Enhancer  5 µl 1X 
Nuclease-Free Water to 25 µl 

 

 
Table 2-5 : Typical thermocycling conditions for a Q5 DNA polymerase PCR reaction 

Step Temperature Time 

Initial Denaturation 98°C 30 seconds 
 
Annealing   

98°C 
*°C 
72°C 

5–10 seconds 
10–30 seconds 
20–30 seconds/kb 

Final Extension 72°C 2 minutes 
Hold 4–10°C 

 

 

PCR was performed as a diagnostic tool to rapidly confirm species identify and presence of virulence 

plasmid using appropriate primers. Standard protocol and typical cycling conditions, and PCR 

optimisation methods were performed as described in standard operating procedures. 

 

Agarose gel was prepared at varying concentrations dependent on expected PCR product size 

(typically between 0.8 and 1.5 % (w/v)) by dissolving the agarose powder in TAE which was heated 

until dissolved. After cooling to around 50°C, Sybr safe was added to a give a final 1x working 

solution; the gel was then poured into a casting tray with a suitable well-forming comb inserted. 

Once set, the casting tray was transferred to an electrophoresis chamber and submerge in TAE. The 

comb was removed, and samples supplemented with 6x DNA loading dye (NE Biolabs, UK), and 
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molecular standard were pipetted into the wells. Samples were electrophoresed for ~ 40 minutes 

using a constant voltage of 130 volts. The gel was then transferred to the Gel Doc scanner (BioRad) 

and visualised using Quantity One software, molecular size of DNA in bands was estimated by 

comparison to an appropriate molecular standard. 

 

When necessary, samples containing PCR products were pooled, using taped combs to produce wider 

wells.  Samples were then electrophoresed to recover DNA as in 2.3.5. The bands of interest 

identified by reference to the molecular standard were excised from the gel, using a transilluminator 

and scalpel. Excised bands were then weighed and purified using the QIAquick Gel Extraction kit 

(QIAGEN) or NZYgelpure (NZYtech), according to the manufacturer’s protocol.  

 

To improve efficiency of subsequent molecular cloning techniques, the PCR reaction mixtures were 

purified using the NZYgelpure (NZYtech) kit with a PCR-clean up protocol to remove any additional 

primer-dimers or contaminating nucleotides. 

 

Millipore MF-Millipore™ VSWP plain white mixed cellulose ester membrane filters were utilized 

for microdialysis of DNA. Extraction kit eluents were pipetted into the centre of the membrane, 

inside a petri dish containing 18.2 MΩ•cm H2O. Once dialysed for up to 30 minutes, the desalted 

purified product was recovered and stored in a clean microcentrifuge tube. 
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2.4 Oligonucleotide primers 

 

Table 2-6: Oligonucleotides primers designed for quality control PCR reactions specific for 

R. equi and VapA. 
Primer  Sequence (5′- 3′)  Tm(°C) 
equispecificup TCCAGAAGCGGGATGAGGATTC 62.1 
equispecificlo TGGTGTGATGGCGGAAGATC 59.4 
VapAup GAGCAAGCGATACCGCCGG 63.1 
VapAlo CTGGATATGGCCGAGGAAGC 61.4 

 

Table 2-7: Oligonucleotides primers designed for metal regulatory gene amplicons.  

Recognition sites introduced for restriction endonucleases upstream and downstream of the target 
sequence to facilitate cloning into vectors. Restriction sites are bold highlighted, with the associated 
endonuclease given in the adjacent cell. 

Primer  Sequence (5′- 3′)  Restriction 
endonuclease  

Tm(°C) 

23REQ20130_IdeRf  GCTAGCTACATATGAAGGATCTGGTCGACACC NdeI  69.5 
23REQ20130_IdeRr TAATAATAGCGGCCGCTCAGACCTGCTTCACCTGGA NotI  72.9 
23REQ19260_DtxRf GCTAGCTACATATGGCCACGCAGAAATCAGACGCAC NdeI  72.9 
23REQ19260_DtxRr TAATAATAGCGGCCGCCTAGACCAGCCAGATGGCTT NotI  72.9 
23REQ04740_FurAf GCTAGCTACATATGCAACAAGGAGAGCACGACTTCG NdeI  71.7 
23REQ04740_FurAr TAATAATAGCGGCCGCTCATTGTGCGAAGCCTCCTT NotI  71.7 
23REQ29120_FurBf GCTAGCTACATATGACCGAGAACGTGACCGACCCGA NdeI  74 
23REQ29120_FurBr TAATAATAGCGGCCGCTCAGCGAGCTTGCGCGCAGT NotI  >75 

 

 

Table 2-8 Generation of the R. erythropolis PR4 GroESL fragment 
Name Sequence 5’ -3’- n GC  Tm 

PR4GroEpromup GCGAGGCTGGCGGGAACTTCGAAGAAGTGAACAATAGGTG 40 55% 80°C 
PR4GroEpromlo CTAAAGCGTTATTCGACACCATGGTGAGCCCTCCACTTTGGG 42 52% 72°C 

 

 

Table 2-9 Oligoucleotide primers used in Sanger sequencing methods 
Name Sequence 5’ -3’- 

T7minus1  AATACGACTCACTATAGGG 
M13 FP TGTAAAACGACGGCCAGT 
M13 RP CAGGAAACAGCTATGACC 

pSelAct FP AGGGTTTTCCCAGTCACGAC 
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Table 2-10 Primers for fXa-hybrids 
Primer name Sequence n %GC Therm. 

Tm 
%GC 
Tm 

Upstream vector overlap GGCGACCATCCTCCAAAATC     

Factor Xa recognition site AATCGAAGGTCGT     

Downstream vector overlap GACCCGGGAATTCCGGGGAT     

ideR      
Original ideR forward primer ATGAAGGATCTGGTCGACACC 21 52.4 52.7 49.2 

Original ideR reverse primer (rc) TCAGACCTGCTTCACCTGGA 20 55.0 52.9 48.7 

Complete fXa-ideR hybrid forward primer GGCGACCATCCTCCAAAATCAATCGAAGGTCGTATGAAGGATCTGGTCGACACC 54 51.9 84.2 68.7 

Complete fXa-ideR hybrid reverse primer 

(rc) 

GACCCGGGAATTCCGGGGATTCAGACCTGCTTCACCTGGA 40 60.0 82.1 67.6 

dtxR      
Original dtxR forward primer ATGGCCACGCAGAAATCAGACGCAC 25 56.0 66.6 55.9 

Original dtxR reverse primer (rc) CTAGACCAGCCAGATGGCTT 20 55.0 51.0 48.7 

Complete fXa-dtxR hybrid forward primer GGCGACCATCCTCCAAAATCAATCGAAGGTCGTATGGCCACGCAGAAATCAGACGCAC 58 53.4 87.7 70.2 

Complete fXa-dtxR hybrid reverse primer 

(rc) 

GACCCGGGAATTCCGGGGATCTAGACCAGCCAGATGGCTT 40 60.0 80.7 67.6 

furA      
Original furA forward primer ATGCAACAAGGAGAGCACGACTTCG 25 52.0 62.4 54.2 

Original furA reverse primer (rc) TCATTGTGCGAAGCCTCCTT 20 50.0 54.7 46.7 

Complete fXa-furA hybrid forward primer GGCGACCATCCTCCAAAATCAATCGAAGGTCGTATGCAACAAGGAGAGCACGACTTCG 58 51.7 86.0 69.5 

Complete fXa-furA hybrid reverse primer 

(rc) 

GACCCGGGAATTCCGGGGATTCATTGTGCGAAGCCTCCTT 40 57.5 81.9 66.6 

furB      
Original furB forward primer ATGACCGAGAACGTGACCGACCCGA 25 60.0 68.0 57.5 

Original furB reverse primer TCAGCGAGCTTGCGCGCAGT 20 65.0 63.9 52.8 

Complete fXa-furB hybrid forward primer GGCGACCATCCTCCAAAATCAATCGAAGGTCGTATGACCGAGAACGTGACCGACCCGA 58 55.2 88.3 70.9 

Complete fXa-furB hybrid reverse primer GACCCGGGAATTCCGGGGATTCAGCGAGCTTGCGCGCAGT 40 65.0 86.0 69.7 
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Table 2-11: IdeR gene knockout insertion (REQ_20130) primer design 
Fragment name component sequence n %GC %GC Tm Therm Tm 

upstrm ideRupup homologous CGGAAAGTTCCGCGCGCGTT 20 65.0 52.8 65.8 
vector overlap CGCGGTGGCGGCCGCTCTAGAACTAGT 27 76.2 59.0 69.7 

complete CGCGGTGGCGGCCGCTCTAGAACTAGTCGGAAAGTTCCGCGCGCGTT 47 66.0 72.6 88.5 
ideRuplo homologous CGTGGTGTCGACCAGATCCT 20 60.0 50.8 54.5 

dwnstrm overlap ACCTGGACGGCGTGGGCCAT 20 70.0 54.9 65.1 
complete ACCTGGACGGCGTGGGCCATCGTGGTGTCGACCAGATCCT 40 65.0 69.7 85.1 

dwnstrm ideRdwnup homologous ATGGCCCACGCCGTCCAGGT 20 70.0 54.9 65.1 
upstrm overlap AGGATCTGGTCGACACCACG 20 60.0 50.8 54.5 

complete AGGATCTGGTCGACACCACGATGGCCCACGCCGTCCAGGT 40 65.0 69.7 85.1 
ideRdwnlo homologous CGCTACCGATCCGGTCAGCT 20 65.0 52.8 58.8 

vector overlap TTCCTGCAGCCCGGGGGATCCACTAGT 27 63.0 60.7 70.8 
complete TTCCTGCAGCCCGGGGGATCCACTAGTCGCTACCGATCCGGTCAGCT 47 63.8 71.7 86.4 

Table 2-12: DtxR gene knockout insertion (REQ_19260) primer design 
Fragment name component sequence n %GC %GC Tm Therm Tm 

upstrm dtxRupup homologous AGACGCTCGATGAGCGAGCG 20 65.0 52.8 60.2 
vector overlap CGCGGTGGCGGCCGCTCTAGAACTAGT 27 76.2 59.0 69.7 

complete CGCGGTGGCGGCCGCTCTAGAACTAGTAGACGCTCGATGAGCGAGCG 47 66.0 72.6 86.4 
dtxRuplo homologous TGCGGGTGCGTCTGATTTCT 20 55.0 48.7 57.8 

dwnstrm overlap ATGGCTTGTGCCGCAGGGTT 20 60.0 50.8 61.1 
complete ATGGCTTGTGCCGCAGGGTTTGCGGGTGCGTCTGATTTCT 40 57.5 66.6 83.2 

dwnstrm dtxRdwnup homologous AACCCTGCGGCACAAGCCAT 20 60.0 50.8 61.1 
upstrm overlap AGAAATCAGACGCACCCGCA 20 55.0 48.7 57.8 

complete AGAAATCAGACGCACCCGCAAACCCTGCGGCACAAGCCAT 40 57.5 66.6 83.2 
dtxRdwnlo homologous CGCCGCTCGCGAGTTTCGAC 20 70.0 54.9 64.6 

Vector overlap TTCCTGCAGCCCGGGGGATCCACTAGT 27 63.0 60.7 70.8 
complete TTCCTGCAGCCCGGGGGATCCACTAGTCGCCGCTCGCGAGTTTCGAC 47 66.0 72.6 88.6 
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Table 2-13: FurA gene knockout insertion (REQ_04740) primer design 
Fragment name component sequence n %GC %GC Tm Therm Tm 

upstrm furAupup homologous CGGTCGCCCTGTGCGCGCAG 20 80.0 59.0 70.4 

vector overlap CGCGGTGGCGGCCGCTCTAGAACTAGT 27 66.7 62.2 71.3 

complete CGCGGTGGCGGCCGCTCTAGAACTAGTCGGTCGCCCTGTGCGCGCAG 47 72.3 75.2 91.0 

furAuplo homologous GGGGTCGAAGTCGTGCTCTC 20 65.0 52.8 55.9 

dwnstrm overlap CCTCCTTGGCGCTGACGGGC 20 75.0 56.9 65.5 

complete CCTCCTTGGCGCTGACGGGCGGGGTCGAAGTCGTGCTCTC 40 70.0 86.2 71.7 

dwnstrm furAdwnup homologous GCCCGTCAGCGCCAAGGAGG 20 75.0 56.9 65.5 

upstrm overlap GAGAGCACGACTTCGACCCC 20 65.0 52.8 55.9 

complete GAGAGCACGACTTCGACCCCGCCCGTCAGCGCCAAGGAGG 40 70.0 86.2 71.7 

furAdwnlo homologous GTCGAGATTCGACGGGCCCG 20 70.0 54.9 63.3 

Vector overlap TTCCTGCAGCCCGGGGGATCCACTAGT 27 63.0 60.7 70.8 

complete TTCCTGCAGCCCGGGGGATCCACTAGTGTCGAGATTCGACGGGCCCG 47 66.0 72.6 88.6 

furAdwnlo2 homologous GCCCTCGACCCCGCGCTCGT 20 80.0 59.0 69.0 

Vector overlap TTCCTGCAGCCCGGGGGATCCACTAGT 27 63.0 60.7 70.8 

complete TTCCTGCAGCCCGGGGGATCCACTAGTGCCCTCGACCCCGCGCTCGT 47 70.2 74.3 90.7 

                           

Table 2-14: FurB gene knockout insertion (REQ_29130) primer design 
Fragment name component sequence n %GC %GC Tm Therm Tm 

upstrm furBupup homologous ACGTCTGGTCGAAGTAGCTCAGGTC 25 56.0 55.9 58.9 

vector overlap CGCGGTGGCGGCCGCTCTAGAACTAGT 27 66.7 62.2 71.3 

complete CGCGGTGGCGGCCGCTCTAGAACTAGTACGTCTGGTCGAAGTAGCTCAGGTC 52 61.5 72.2 84.3 

furBuplo homologous ATCGGTCGGGTCGGTCACGT 20 65.0 52.8 60.9 

dwnstrm overlap GCGCAGTCCCGACAGGTACC 20 70.0 54.9 59.0 

complete GCGCAGTCCCGACAGGTACCATCGGTCGGGTCGGTCACGT 40 67.5 70.7 85.1 

dwnstrm furBdwnup homologous GGTACCTGTCGGGACTGCGC 20 70.0 54.9 59.0 

upstrm overlap ACGTGACCGACCCGACCGAT 20 65.0 52.8 60.9 

complete ACGTGACCGACCCGACCGATGGTACCTGTCGGGACTGCGC 40 67.5 70.7 85.1 

furBdwnlo homologous ACGGCCGGGACCAGGACGGT 20 75.0 56.9 66.2 

Vector overlap TTCCTGCAGCCCGGGGGATCCACTAGT 27 63.0 60.7 70.8 

complete TTCCTGCAGCCCGGGGGATCCACTAGTACGGCCGGGACCAGGACGGT 47 68.1 73.5 88.4 
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2.5 Transformation protocols 

 

To prepare the competent cells, 5 ml LB media was inoculated with a single colony of E. coli and 

incubated over night at 37 °C. 1 ml of the overnight culture was inoculated into a sterile conical flask 

containing 50 ml LB broth. The flask was then incubated at 37 °C with 200 RPM in an orbital 

incubator, until a cell density 0.6 – 0.7 was achieved. Cell density by taking a 1 ml aliquot and read 

using a spectrophotometer at 600nm. 

Once the desired optical density was achieved, the culture was chilled on ice for 10 minutes, then 

dispensed into 50 ml falcon tubes and centrifuged at 4000 x g at 4 °C for 5 minutes. The supernatant 

was discarded, and the pellet resuspended in 25 ml 0.1M CaCl2. The suspension was placed on ice 

for 30 minutes before centrifugation again at 4000 x g at 4 °C for 5 minutes. Supernatant was 

discarded and pellet gently resuspended in 2.5 ml 0.1M CaCl2.  

The fresh competent cells are ready for transformation, and will remain competent for up to 24 hours 

at 4 °C. However, for long term storage, 2.5 ml glycerol (50 % v/v) should be added, then dispensed 

into 100 μl aliquots and stored at -80 °C until needed. 

 

If in long-term storage, thaw cells slowly on ice. 1 μl plasmid DNA (or all of ligation mixture) was 

added to a 50 μl aliquot of competent cells, then incubated on ice for 30 minutes. The mixture was 

then heat shocked using a water bath at 42 °C for 45 – 90 seconds and transferred back on ice for 2 

minutes. Recovery was mediated with the addition of 200 μl of non-selective media (typically LB or 

BHI) and incubated at 37 °C for 45 minutes – 1 hour using an orbital incubator, allowing the cells to 

express the antibiotic resistance marker. 

Cells were then spread (~100 μl/plate) on to selective media and incubated overnight at 37 °C. 
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2.6 Electroporation protocols 

 

To prepare electrocompetent rhodococcal cells, a single colony from an agar plate was inoculated 

into 50 ml of non-selective complex media (typically Brain-Heart Infusion or Luria-Bertoni broth). 

The culture was grown for 48 hours at 28 – 37 °C depending on the strain. Once an optical density 

of between 2 – 4 was achieved at 600 nm the cultures were cooled on ice to prevent further growth 

or degradation. The culture was transferred to a pre-cooled sterile falcon tube and centrifuged at 2880 

x g for 10 minutes to collect cells. The supernatant was discarded at this stage, and the cell pellet was 

resuspended in 30 ml sterile ice-cold 10 % glycerol (v/v). The suspension was centrifuged as above, 

and the supernatant discarded, the washed cell pellet was then resuspended in 15 ml sterile ice-cold 

10 % glycerol (v/v). The centrifugation and resuspension in glycerol was repeated twice more, with 

resuspensions in 2.5 ml and then a final 600 µl glycerol.  

The now-competent cells were aliquot into 100 µl amounts and kept cold on ice until electroporation. 

Alternatively, cells were stored at -80 °C until needed, but efficiency may be reduced.  

 

Electroporation of rhodococcal cells was achieved by adding 50 ng of the required recombinant 

plasmid into a 100 µl aliquot of cells prepared earlier. A negative control of 100 µl cells was also 

prepared at this stage. The plasmid-cells mixture was added to a pre-cooled sterile electroporation 

cuvette (0.2 mm gap) without generating bubbles. The cuvette was added to the Gene Pulser System 

(Bio-Rad) and pulsed using parameters set at 25 μF, 2500 V, and 600 Ω. Recovery was mediated by 

the addition of 1 ml pre-warmed complex media, and transferred into a sterile 1.5 ml microcentrifuge 

tube, which was then incubated at 30 °C for between 2 – 5 hours depending on the strain. 

100 µl of the recovered culture was then spread onto agar containing the appropriate antibiotic, and 

incubated for 2 – 3 days at 30 °C. 
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2.7 Molecular cloning methods 

 

2.7.1.1  Vector preparation 

Shuttle vectors such as pUC18/19 contain a multiple cloning site that facilitates blunt ended ligation. 

The multiple cloning site of these vectors contains a recognition site for restriction enzymes such as 

including EcoRV, SmaI, that when digested produce linearised plasmid with blunt ends. An example 

of plasmid digestion for blunt-ended cloning is shown in Table 2-15, where the reaction is incubated 

for between 15 minutes to 1 hour at the appropriate temperature for the enzyme described by the 

manufacturer. 

Table 2-15 An example of blunt-ended vector preparation, by digestion of 1 µg of plasmid 
with a restriction enzyme 

Component Volume (μl) 
Vector 1 µg 
Buffer (x10) 5 
Restriction enzyme  1 
Milli Q H2O  (up to 50 μl) 

2.7.1.2 Ligation methods    

Unlike traditional cloning methods, blunt-ended cloning does not require the insert DNA to be 

digested, therefore can be directly ligated with the digested blunt-ended vector. The ligations were 

performed using ATP-dependant T4-Ligase. An example of plasmid-vector ligation reaction is 

shown in Table 2-16. 

Table 2-16 An example of a ligation using T4 ligase (a 3:1 molar ratio is shown) 
Component Volume (μl) 
T4 DNA Ligase Buffer (10X) 2 μl 
Vector DNA (4 kb) 50 ng (0.020 pmol) 
Insert DNA (1 kb) 37.5 ng (0.060 pmol) 
Nuclease-free water to 20 μl 
T4 Ligase 1 μl 

Once ligated, the recombinant vector is useful intermediate stage that provides an opportunity to 

sequence the PCR amplicon before further downstream processing.  

2.7.1.3 Screening bacterial colonies Using X-gal and IPTG: α-Complementation 

To detect positive transformants, a blue white screen was performed as a screening method, activity 

is detected by X-gal and cleaved to produce 5-bromo-4-chloro-indoxyl that consequently results in 
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the characteristic blue colour. The inhibition of β-galactosidase activity prevents the cleavage, with 

the colony remaining white indicating a successful ligation and transformation. The screening 

process was performed by either spreading the IPTG and Xgal on top of the plates before use, or by 

incorporating the IPTG and Xgal into media before pouring plates. 

For addition of IPTG and Xgal on top of premade agar plates 40 μl of IPTG and X-gal was pipetted 

directly on top of each premade agar plate as needed and spread around using a plate-spreader. The 

plates were dried for 15 minutes before use. Alternatively, incorporation of IPTG and Xgal into agar 

plates was performed by preparation of the agar of choice autoclaved as per standard operating 

procedure and allowed to cool in a 55 °C water bath. After cooling, antibiotic was added if required, 

and IPTG and X-gal were added to a final concentration of 0.1 mM and 40 μg/ml respectively. The 

agar was then mixed and poured into sterile petri-dishes, ensuring no bubbles were present. 

 

2.7.2.1 Vector preparation 

Cloning vectors such as the pET vector range contain a multiple cloning site that facilitates traditional 

cohesive ended ligation. The multiple cloning site of these vectors contains a recognition site for 

restriction enzymes such as NdeI, NotI, XhoI that when digested produce linearised plasmid with 

cohesive overhanging ends. Double digestion using restriction enzymes facilitates a configuration at 

the cleavage site that is compatible with the ends of the amplicon. An example of plasmid digestion 

for cohesive-ended cloning is shown in Table 2-17, where the reaction is typically incubated for 

between 15 minutes to 1 hour at the appropriate temperature for the enzymes described by the 

manufacturer. 

Table 2-17  An example of plasmid preparation for cohesive-ended cloning, by digestion of 1 
µg of plasmid with two restriction enzymes 

Component Volume (μl) 
Vector 1 µg 
Buffer (x10) 5 
Restriction enzyme 1 1 
Restriction enzyme 2 1 
Milli Q H2O  (up to 50 μl) 
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2.7.2.2 Amplicon preparation 

Similar to the cloning vector, the purified PCR amplicon of interest need to be digested with matching 

restriction enzymes to generate cohesive ends to produce a configuration site that is compatible with 

the ends of the linearised vector. 

2.7.2.3 Ligation methods 

The ligations were performed using ATP-dependant T4-Ligase, as previously described for the blunt 

ended ligations, with modifications of using the complementary digested vector and amplicon. 

 

The plasmid was assembled according to the supplier protocol for assembly of 2-3 fragments (Table 

2-18). Optimal assembly efficiency was achieved by producing ≥ 20 bp overlap regions between 

each fragment with equimolarity. 

The picomolar quantity of fragments was calculated using Equation 1. Optimised cloning efficiency 

for HiFi assembly is based on 50–100 ng of vector with 2-fold excess of inserts, using the picomolar 

values previously calculated. The reactions were incubated in a thermocycler at 50°C for 15 minutes 

and were subsequently stored at -20 °C, on ice for transformation. The competent cell transformation 

was performed using 2 µl assembled product according to standard protocol, plated onto an 

appropriate antibiotic agar plate. 

Table 2-18 NEBuilder HiFi DNA assembly 
Recommended Amount of Fragments Used for 2–3 Fragment Assembly* 
Recommended DNA Molar Ratio vector:insert = 1:2 
Total Amount of Fragments 0.03–0.2 pmols* 

X μl 
NEBuilder 
HiFi DNA Assembly Master Mix 

10 μl 

Deionized H2O 10-X μl 
Total Volume 20 μl✝✝ 

 

!"#$%	 × ()*+
,,-(" ×

.-!

.!"	×
.
$ = ()*+	#$% 

Equation 1:Calculation for required pmol DNA to be used in the HiFi DNA assembly  
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2.8 DNA sequencing 

Recombinant plasmids were sent to GATC Biotech / Eurofins Genomics for sequence analysis by 

Sanger sequencing. The service employed – SupremeRUN, required 20 µl of previously purified 

plasmid DNA at an approximate concentration of 50 ng / µl.  

The trace data results (available in .fasta  and .ab1 format) were viewed using the program FinchTV 

chromatogram viewer (Geospiza, Inc.) and processed using Blastn (NCBI) for sequence 

confirmation. 

2.9 Protein methods 

 

2.9.1.1 Optimisation of gene expression 

Gene expression was performed after transformation of the recombinant plasmids into an expression 

host (described earlier), this was achieved using chemically competent E. coli BL21 (DE3) cells 

(unless otherwise stated). After transformation, the culture was plated on complex agar 

(supplemented with the appropriate antibiotic) and incubated at 37 °C overnight. Antibody-resistant 

colonies were selected and grown in LB broth (antibiotic supplemented) overnight at 37 °C with 

shaking at 200 RPM.  

For optimisation, 1 mL culture aliquots were transferred into different Erlenmeyer flasks containing 

50 mL sterile LB broth (antibiotic supplemented) and grown at 37 °C at 180 RPM to an OD600 of 0.5 

–0.7. At which point the cultures were supplemented with Isopropyl β-D-thiogalactopyranoside 

(IPTG) and incubated at different temperatures before harvesting as shown in Table 2-19. 

Table 2-19 Optimisation of conditions for gene expression 
Flask no. IPTG concentration Temperature  Time 

1 1 mM 37 °C 4 hours 
2 1 mM 30 °C 4 hours 
3 1 mM 25 °C 4 hours 
4 1 mM 20 °C 4 hours 
5 1 mM 16 °C Overnight 
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2.9.1.2 Large scale expression 

For large scale expression, an antibody resistant colony was selected and grown in 10 mL LB broth 

(antibiotic supplemented) overnight at 37°C with shaking at 200 RPM. The overnight culture was 

used to inoculate one litre of LB media (antibiotic supplemented) and grown to an OD600 of 0.5 – 0.7 

at 180 RPM, at 37°C. Protein production was induced by the addition of IPTG and incubated at the 

temperature that indicated following previous optimisation. 

2.9.1.3 Lysate production 

After expression, the cells were harvested by centrifuging at 5000 x g for 15 min at 4°C. Pelleted 

cells were re-suspended to 10 ml/g in  basic lysis buffer (0.05 M Tris.HCl; 0.5M NaCl pH7.4) and 

lysed by sonicating resuspended cells to 7 cycles of 10 s sonication/ 10 s cooling with amplitude 

setting at 10 microns using the Soniprep 150 plus ultrasonic disintegrator. The lysate was clarified 

by centrifuging at 27,000 x g for 30 min at 4°C. 

 

After lysate centrifugation, cellular fractionation was performed on the lysate debris pellet by 

addition of Percoll (Amersham, Pharmacia Biotech, Sweden) to yield a 60 % solution prepared in 

phosphate-buffered saline (PBS) to isolate integral cell-wall associated proteins by density gradient 

centrifugation. 

 The pellet was resuspended in the 60 % (v/v) Percoll solution and centrifuged at 27,000 x g for 1 

hour, the subsequent buoyant fraction was harvested and washed using PBS and centrifuged at 

27,000 x g for 1 hour. The washes were repeated until a pellet free from Percoll was acquired. The 

cell wall fractionated pellet was resuspended into in 12.5 mM Tris.HCl pH 6.8 containing 2 % SDS, 

stirred overnight at 4°C followed by centrifugation at 27,000 x g for 30 min at 4°C for clarification. 

The cell wall fraction was analysed by SDS-PAGE. 

 

To isolate and recover amphiphilic proteins from the cell envelope region, Percoll phase separation 

was performed as previously described in 2.9.2, until the final resuspension stage of the cell wall 
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fractionated pellet, upon which, the buoyant cell wall containing fraction was resuspended in 2 % 

Triton X-114 (v/v) by shaking overnight at 4 °C, 150 rpm adapted from methods listed by Tan et al. 

(1995). Insoluble material was removed by centrifugation at 27,000 x g, 4 °C for 15 minutes, 

followed by initial incubation of the supernatant at 37 °C for 10 minutes to facilitate the biphasic 

separation that occurred upon centrifugation at 14,400 x g at 25 °C for 15 minutes. The cell wall 

fraction-contained detergent phase was extracted and stored separately, with the aqueous phase 

resuspended in PBS and phase partitioned as aforementioned, before pooling the extracted detergent 

phases. 

The phase partitioned triton protein extract was precipitated by addition of 10 volumes of acetone 

overnight at -20 °C. The extract was further centrifuged at 27,000 x g at 4 °C to pellet proteins with 

subsequent removal of the supernatant. The extracted pellet was dried by centrifugal evaporation and 

resuspended in Tris-HCl pH 7.4, before addition of SDS-loading buffer and SDS-PAGE analysis. 

 

Denatured protein samples were separated based on their electrophoretic mobility using Sodium 

dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) in a mini-gel format 

(Miniprotean® II, Bio-Rad). Buffer formulation shown in Table 2-20. 

Table 2-20 SDS-PAGE buffer compositions 
Compounds Resolving buffer (pH 8.8) Stacking buffer (pH 6.8) 
Tris base 46.75 g 15. 125 g 
SDS 1 g 1 g  
H2O 250 ml 250 ml 

 

Gel preparation was performed by addition of resolving gel (Table 2-21) between the casting plates 

(0.75 mm depth) and overlaid with isopropanol. 

Table 2-21 Composition of PAGE resolving gel at various acrylamide concentrations 
Components 8 % 10 % 12 % 15 % 
Acrylamide/bisacrylamide (37.5:1; 40 %) 2.00 ml 2.50 ml 3.00 ml 3.75 ml 
H2O 5.50 ml 4.75 ml 4.50 ml 3.75 ml 
Resolving buffer 2.50 ml 2.50 ml 2.50 ml 2.50 ml 
10 % Ammonium persulphate (APS) 50 µl 50 µl 50 µl 50 µl 
N,N,N’,N’- tetramethylethylene-diamine (TEMED) 10 µl 10 µl 10 µl 10 µl 
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 Once set, the isopropanol was discarded and stacking gel (Table 2-22) was added above the resolving 

gel; a well-forming comb was inserted and the gel was left to set. Once set, the gels were clamped 

into the electrophoresis chamber and anode buffer region filled with 1x SDS-running buffer. The 

cathode buffer region was also filled with 1x SDS-running buffer, appropriate for the number of gels 

ran. The comb was removed and 10 µl protein sample or molecular marker was loaded per well, 

protein separation occurred by electrophoresis at 200V for 1 hour. Once adequate separation was 

achieved, the gel was removed and immersed in an appropriate staining solution. 

Table 2-22 Composition of PAGE stacking gel 
Components Stacking gel 
Acrylamide/bisacrylamide (37.5:1; 40 %) 0.50 ml 
H2O 2.50 ml 
Stacking buffer 1.00 ml 
10 % Ammonium persulphate (APS) 30 µl 
N,N,N’,N’- tetramethylethylene-diamine (TEMED) 10 µl 

 

2.9.4.1 SDS protein loading  

6x SDS-loading buffer (375 mM Tris-HCl, 9 % SDS, 50 % glycerol, 9 % betamercatoethanol and 

0.03 % bromophenol blue) was added to protein lysate to give 1x final concentration, and boiled for 

10 minutes at 100 °C, before loading onto the gel. 

2.9.4.2 Coomassie blue staining and imaging  

Typical protein staining for SDS-PAGE was achieved using Coomassie blue R-250 staining by 

immersion for 20 minutes, before thorough rising with water and overnight de-staining using 

Coomassie de-stain. Gel images were captured using a G:Box system (SYNgene) with GenSys 

imaging software. 

 

Similarly, to SDS-PAGE, Native gels were performed using the mini-gel format (Miniprotean® II, 

Bio-Rad). Gel compositions varied as both resolving and stacking gel buffers did not contain SDS to 

prevent protein denaturation, all other components were identical. 

2.9.5.1 Native protein loading  

4x Native-loading buffer (400 mM Tris HCl pH 8.6, 40% Glycerol and 0.02% Bromophenol blue.) 
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was added to protein lysate to give a 1x final concentration and loaded directly onto the gel. 

2.9.5.2 Native gel staining and imaging 

Native-gel staining was achieved using Coomassie blue R-250 staining as performed for SDS-PAGE. 

Specific Native-gel staining methods are described in detail in the appropriate chapter methods 

sections. All gel images were captured using a G:Box system (SYNgene) with GeneSys imaging 

software. 

2.10 Chromatography methods 

 

2.10.1.1 Heparin HP HiTrap 

The clarified lysate was subjected to group specific affinity chromatography for DNA binding as the 

first step in the purification of the recombinant proteins. A 1 ml Heparin Sepharose high performance 

resin column (GE healthcare) fixed to an automated AKTA purifier Fast Protein Liquid 

Chromatography (FPLC) system (Amersham Pharmacia). The column was equilibrated with 10 

column volumes of equilibration buffer (10 mM sodium phosphate, pH 7) at a flow rate of 1 ml / 

min. The sample was loaded onto the column at a flow rate of 0.5 ml / min and washed with 10 

column volumes of equilibration buffer at a flow rate of 1 ml/min. Elution of bound protein was 

performed using linear gradient with elution buffer (10 mM sodium phosphate, 1–2 M NaCl, pH 7) 

using equilibration buffer as the diluent at a flow rate of 2 ml / min. Eluate was collected in 5 ml 

fractions.  Fractions of interest identified by UV absorbance by FPLC were analysed by SDS-PAGE. 

2.10.1.2 GSTrap FF HiTrap 

The clarified lysate was subjected to GST-tagged protein purification as the first step in the 

purification of the recombinant proteins. A 1 ml GSTrap FF column prepacked with Glutathione 

Sepharose Fast Flow resin (GE healthcare) was fixed to an automated AKTA purifier Fast Protein 

Liquid Chromatography (FPLC) system (Amersham Pharmacia). The column was equilibrated with 

5 column volumes of equilibration buffer (PBS, pH 7.3) at a flow rate of 2 ml / min. The sample was 

loaded onto the column at a flow rate of 0.5 ml / min and washed with 10 column volumes of 
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equilibration buffer at a flow rate of 2 ml/min. Elution of bound protein was performed using isocratic 

gradient with 100 % elution buffer (50 mM Tris-HCl, 10 mM reduced glutathione, pH 7.9) at a flow 

rate of 1 ml / min. Eluate was collected in 4 ml fractions.  Fractions of interest identified by UV 

absorbance by FPLC were analysed by SDS-PAGE. 

 

2.10.2.1 XAD-2 resin  

As a first stage purification from complex culture conditions, the bacterial supernatant was 

complexed with 1 % Ferric chloride and adjusted to pH 2.0 to aid column retention. The acidified 

bacterial supernatant was then loaded on to Amberlite XAD-2 adsorption resin pre-equilibrated with 

H2O at a rate of 4.0 ml / min. The column was washed copiously with H2O to remove any unbound 

material and flow through collected in 50 ml fractions. After sufficient washing, the column was 

eluted using 50 / 50 % (v/v) methanol / water followed by 100 % methanol. 

 

2.10.3.1  P2 Biogel 

As a secondary purification measure, fractions of interest were pooled together and applied to the 

top of a 1-meter BioRad chromatography column packed with P2 Biogel size exclusion resin, that 

was previously equilibrated in 50 % methanol running buffer to ensure that a change in buffer did 

not affect solubility of the sample. The sample was left to run through the column until resin was 

visible before addition of 10 ml running buffer with addition of the buffer adapter. The column was 

set up to run at a flowrate of 0.4 ml/min and to collect fraction volumes of 4.8 ml using an attached 

fraction collector. Fractions were tested via UV-vis spectral analysis (280 nm – 700 nm) both with 

and without the addition of the modified CAS solution (2.11.3).  

 

Normal phase TLC was used to detect the presence of siderophores. Concentrated fractions were 

spotted one inch from the bottom of 10 x 20 or 5 x 10 silica gel plates and allowed to dry. The plates 

were then placed in a sealed glass chamber containing a n-butanol:acetic acid:dH2O (12:3:5) solvent 
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and allowed to run until the solvent front came within approximately one inch of the top of the plate. 

The plate was then dried and developed by spraying with 0.1 M FeCl3 in 0.1 N HCl or by looking 

directly under UV light. 

2.11 Biochemical analysis methods 

 

2.11.1.1 Hydrogen peroxide 

A modified disc inhibition assay (Rosner, 1993) was used to determine the relative sensitivities of 

the bacterium. An overnight bacterial starter culture was prepared in complex media (LB or BHI) of 

which 200 µl of inoculum was spread onto BHI agar. A filter disk was then applied to surface of 

plate, inoculated with 10 µl reagent. The plate was then incubated for two days to allow growth of a 

bacterial lawn. The zone of inhibition was calculated by an average diameter measurement of the 

inhibited area in three directions. 

 

Chromeazurol S agar plates were prepared in 3 steps: (1) preparation of CAS indicator solution; (2) 

preparation of basal agar medium; and (3) preparation of CAS agar plates. 

2.11.2.1 Preparation of CAS Indicator Solution 

To prepare 100 ml of CAS indicator solution, 60.5 mg chromeazurol S was dissolved in 50 ml of 

distilled H2O, to which 10 ml of ferric chloride solution was added (prepared by addition of 27 mg 

FeCl3.6H2O and 83.3 µl concentrated HCl in 100 ml distilled H2O). To the above solution, 72.9 mg 

hexadecyltrimethyl ammonium bromide (HDTMA) dissolved in 40 ml distilled H2O was added 

slowly along with stirring. The resultant dark blue CAS indicator solution was autoclaved. 

2.11.2.2 Preparation of Basal Agar Medium 

To prepare 100 ml of basal agar medium, 3 g 3-(N-morpholino) propane sulfonic acid (MOPS), 0.05 

g sodium chloride, 0.03 g potassium phosphate, 0.01 g ammonium chloride, 0.5 g L-asparagine were 

dissolved in 83 ml H2O. The pH was adjusted to 6.8 by addition of sodium hydroxide and the total 
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volume brought up to 88 ml using H2O. Ultimately, 1.5 g of agar was added to the above solution 

was autoclaved. 

2.11.2.3 Preparation of CAS Agar Plates 

To prepare CAS agar plates, the autoclaved basal agar medium was cooled to 50 °C in a water bath 

along with the CAS indicator solution and a 50 % glucose solution. After adequate cooling, 2 ml of 

the 50% glucose solution was added to the basal agar medium followed by addition of 10 ml CAS 

indicator solution slowly down the container walls, with slight agitation. The CAS Blue agar was 

poured aseptically into sterile plastic petri dishes and stored at 4 °C until required. 

 

2.11.3.1 Preparation of the modified CAS solution 

To prepare the solution, 21.9 mg HDTMA was dissolved in 25 ml water while stirring constantly 

over low heat. In a separate container 1.5 ml of 1 mM FeCl3.6H2O (prepared in 10 mM HCl) was 

mixed with 7.5 ml of 2 mM CAS.  This solution was slowly added to the HDTMA solution while 

stirring, and the mixture was transferred to a 100-ml volumetric flask.  

An alternate buffer solution was prepared by dissolving 9.76 g MES in 50 ml H2O, to prevent dye 

precipitation. The pH was adjusted to 5.6 using 50% KOH, and the buffer solution was then added 

to the dye-containing volumetric flask, the volume was finally increased up to 100 ml using H2O.  

2.11.3.2 Microtitre assay to detect siderophore production 

To identify siderophore production, bacterial culture aliquots were taken at appropriate time points 

and cells were pelleted by centrifugation at 13,000 x g for 1 minute, the supernatant was then filtered 

using a 0.2 µM membrane filter and used promptly or stored at -20 °C until needed. 

The bacterial supernatants of interested were transferred in 100 µl aliquots to a microtitre plate, to 

which 100 µl of the modified CAS assay solution was added. The reaction was controlled by 

incubation at 37 °C for 30 – 45 minutes. Absorbance was measured at 630 nm with a microplate 

reader, with a blank performed using media and CAS solution. Alternatively, an identification could 

be made based on visual inspection of colour, comparative to a blank.  
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2.12 in silico homology-based protein-modelling methods 

 

The protein structure prediction tool of choice was the Protein Homology/analogY Recognition 

Engine V2.0 (Phyre2) server (Kelley et al., 2015a) 

(http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index). Single sequences were modelled 

using a 4-stage automated pipeline:1) Gathering of homologous sequences, 2) Fold library scanning, 

3) Loop modelling and 4) Sidechain placement.  

2.12.1.1 Advanced Phyre2 - One to one threading 

2.12.1.2 Crystallographic Object-Oriented Toolkit (Coot) 

The molecular-graphics application Coot was used for superposition of structures for sequence and 

fold comparison (Emsley et al., 2010). The method of choice was Secondary Structure Matching 

(SSM) superposition, an automatic method of protein superposing performed by alignment of 

secondary structure elements from one protein to another, without dependence on sequence identity. 

2.12.1.3 PyMol viewer 

Structures were viewed using the open source molecular visualisation tool PyMOL 

(https://pymol.org/) to provide a visual comparison of query and subject structures. The structures 

were shown as a cartoon and metal binding sites were shown using sticks. Thesis images were 

captured using the Draw/Ray tool, with a transparent background and CMYK colouring for future 

publications. 

2.12.1.4 DALI protein structure comparison server 

To identify the root-mean-square deviation (RSMD) of atomic positions of superimposed proteins, 

a pairwise structure comparison was performed using the DALI server (Holm and Laakso, 2016) 

(http://ekhidna2.biocenter.helsinki.fi/dali). The results output is given as a summary report, and a 

detailed pairwise structural alignment detailing three-state secondary structure definitions by the 

algorithm Define Secondary Structure of Proteins (DSSP). 
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2.13 Proteomic methods 

 

The stained protein bands were excised from the gel with a scalpel, cut into 1 mm3 segments and 

transferred to a LoBind microcentrifuge tube. To each tube 200 μl of 100 mM ammonium 

bicarbonate (NH4HCO3) and 120 μl ACN was added and incubated for 15 min at room temperature 

with shaking, to remove the stain, this step was repeated twice. The gel pieces were then dehydrated 

by addition of 200 μl 100% ACN. Once dehydrated, the ACN was removed and discarded. The 

protein-containing gel pieces were then reduced by addition of 100 μl 20 mM DTT for 30 min at 

56°C, with shaking. The excess liquid was removed, and the gel pieces dehydrated as above. The 

protein-containing gel pieces were then subject to alkylation by addition of 100 μl 55 mM IAA for 

20 min in the dark, room temperature. Excess liquid was discarded, and the gel pieces washed twice 

with 100 μl 100 mM NH4HCO3, before dehydrating with ACN as above. The excess was discarded, 

and gel pieces dried by evaporation using a vacuum centrifuge. The protein-containing gel pieces 

were then digested by complete saturation with (30 μl) 20 μg/ml Trypsin/Lys- C mix for 20 min on 

ice. After which, 50 μl of 50 mM NH4HCO3 was added to completely cover the gel pieces, and 

incubated up to 18 hours at 37 °C. 

2.13.1.1 Extraction of peptides 

To extract digested peptides from the protein-gel 50 μl 50% (v/v) ACN / 5% (v/v) formic acid (FA); 

was added and shaken for 30 minutes. The peptides were collected in a new LoBind microcentrifuge 

tube. The extraction was repeated using 50μl of 83% (v/v) ACN / 0.2% (v/v) FA, from which the 

peptides was removed and pooled with the previous extraction.  

The pooled peptide solution was snap-frozen using liquid nitrogen, and the LoBind microcentrifuge 

tube was pierced to facilitate freeze drying. The solutions were lyophilised overnight and stored at -

80 °C until needed for analysis. Once ready for LC-MS analysis, the lyophilised samples were re-

suspended in 20 µL of 5% (v/v) ACN, 0.1% (v/v) TFA. 
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2.13.2.1 System information 

The peptide characterisations were performed on a Nanoflow Dionex™ 3000 RSLC (Dionex, 

Sunnyvale, CA) linked to a Q-Exactive Plus (Thermo, Hemel Hempstead, UK). high resolution mass 

spectrometry system using C18 EasySpray column, in a data dependant acquisition (DDA). The 

system was maintained by Dr W. Cheung. 

2.13.2.2 LC Instrument settings 

The instrumental system settings for  nanoflow liquid chromatographic separation used a binary 

buffer system for the peptide separation: Buffer A (95 % ultrapure water / 5 % ACN with 0.1 % 

formic acid), Buffer B (95 % ACN / 5% ultrapure water with 0.1 % formic acid), the loading and 

transport buffers (95 % ultrapure water/ 5% ACN with 0.1 % Tetrafluoruacetic acid (TFA)). The 

sample injection was set load 5 μl; flow rate was set to 0.3 μl / minute. The trap column used was 

Acclaim™ PepMap™ 100 C18 LC column (Thermo Scientific™), (5 μm particle size; pore size 100 

Å), maintained at 45 °C. 

2.13.2.3 LC gradient elution 

The liquid chromatographic profile was performed as a gradient listed below. 

Starting condition 96% buffer A, 4% buffer B, 0 min (4% buffer B/ 96% buffer A), 3 min (8% buffer 

B/ 92% buffer A), 93 min (30% buffer B/ 70% buffer A), 98 min (80% buffer B/ 20% buffer A), 

held for additional 10 minutes and then returned to starting condition with 20 min allowed for column 

equilibration. 

2.13.2.4 MS Instrument settings 

Full scan MS scanning was performed at 70,000 MS resolution with an automatic gain control (AGC) 

of 1e6 and injection time of 100 ms, the scan range was set to 375 to 1400 m/z. For data-dependant-

MS2, acquisition was performed at 35,000 with an AGC of 1e5 with a maximum injection time of 

100 ms. The isolation window was set to 1.3 m/z, with a underfilled ratio of 0.4 %, Dynamic 

exclusion was set to 15 seconds, and the top 10 most abundant ions were selected for MS/MS with a 
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normalized Collison energy (NCE) level of 10, 30 and 50.  

 

Protein identification was performed by searching raw uninterpreted tandem mass spectral ion peak 

lists against the relevant database. For analysis, the thermo .RAW files were converted to mascot 

generic format (.mgf) using RawConverter (He et al., 2015). This analysis process was facilitated 

using the MS/MS ion search function of the in-house MASCOT server (Matrix Science).  

The following parameters were used:(a) database: Rhodococcus equi 103S, (b) enzyme: Trypsin, (c) 

missed cleavages: allow up to one, (d) fixed modifications: carbamidomethyl (C), (e) variable 

modifications: oxidative (M), (f) peptide tolerance: 25 ppm, (g) MS / MS tolerance: 50 ppm,  (h) 

peptide charge: 2+, 3+ and 4+,  (i) mass value: monoisotopic, (j) data format: Mascot generic, (k) 

instrument: ESI-TRAP. 

The resulting peptide score distribution identifies the probability that the observed match is a random 

event, further identifying the quantity of peptide matches above the identity or homology thresholds. 

Furthermore, each analysis predicts an average score from which greater than the value indicates 

identity or extensive homology (p < 0.05). Results were viewed using either the Protein family 

summary or report builder view, ranked by score, from which the peptide coverage and fragmentation 

pattern can be viewed. 

 

To facilitate identification of biologically relevant changes in protein expression, a proteomic 

workflow using the software Progenesis LCMS (Nonlinear Dynamics) and MASCOT (Matrix 

Science) was utilised. 

2.13.4.1 Data alignment and pre-processing 

The raw chromatography data files (thermo. RAW) were imported into the Progenesis LCMS 

software, and the chromatographic profiles were automatically aligned, with additional vectors 

manually applied for unaligned regions in each sample. Sample filtering was performed using the 

default peak picking parameters, from which peptide ions were further filtered based on charge, 
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excluding all peptides not exhibiting a 2+, 3+ or 4+ charge.  

Prior to further analysis, the software automatically selects a normalisation reference, to apply a 

normalisation factor for future statistical analysis, calculated by finding the mean of the log 

abundance ratios of the peptide ions that fall within the robust estimated limits. Peptide ions outside 

these limits are considered to be outliers and therefore will not affect the normalisation.  

2.13.4.2 Experimental design and Protein identification 

The experimental design was setup to analyse runs using a ‘between-subject design’ grouping 

samples based upon appearance in a given condition. Next, the validation, and review of peptides 

was performed by selection filtering to exclusively scrutinise statistically significant features 

(peptides with a fold change of ≥ 2 and ANOVA p-value ≤ 0.05). Principal component analysis 

(PCA) and standardised expression profiles are produced to review selected peptide ions if necessary. 

With the given parameters applied, the peptide ion peak list table was exported into the mascot 

generic format to facilitate protein identification through MASCOT MS/MS ion searching as 

described in 2.13.3.  After the appropriate search, the results were exported from MASCOT in the 

extensible markup language file format (.xml) and imported into Progenesis LCMS assigning 

identified peptides to the significant features. Peptide identifications were refined based upon an 

acceptance criterion using the batch detection option, excluding results that have: (a) a peptide score 

of < 40; and/or (b) a peptide hit count of < 2. The peptide search results were further validated at the 

protein level by resolving peptide conflicts, where conflicts occur between peptides, manual 

interpretation of results were performed, based upon peptide score, peptide hits and the given mass 

error (ppm). After which, the acceptance criterion detailed above was reapplied to the dataset. 

2.13.4.3 Protein filtering and statistical analysis 

Using the Review Proteins tab, proteins were reviewed, tagged and filtered in a similar manner as 

the peptide analysis, with selection filtering performed to exclusively scrutinise statistically 

significant proteins (with a fold change of ≥ 2 and ANOVA p-value ≤ 0.05). Ranking proteins by 

highest mean also facilitated identification, tagging and filtering for proteins upregulated in a given 

condition. Protein statistics could also be performed at this stage, with PCA plots and standardised 
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expression profiles given, dependant on the filters applied. Report outputs of the given results were 

used in subsequent protein localisation data analysis methods. 

 

Using the report produced in 2.13.4 differentially expressed proteins were further examined with 

regards to cellular localisation. For large quantities of identified proteins, a batch analysis 

methodology was produced, where Gi accession numbers were isolated and entered into Batch Entrez 

(https://www.ncbi.nlm.nih.gov/sites/batchentrez) against the Protein database. Retrieved batch 

records were compiled into a .FASTA format, ordered by Accession number for subsequent analysis. 

Protein localisation was determined using a consensus strategy for prediction of transmembrane 

topology and signal peptides using the online bioinformatic tools TOPCONS (Tsirigos et al., 2015), 

PredLIPO (Bagos et al., 2008), SignalP (Almagro Armenteros et al., 2019) and Phobius (Kall et al., 

2007). The compiled protein .FASTA file of interest was uploaded to the desired webserver, with 

the Gram-positive organism option selected (if available). The analysis outputs were assembled into 

a single spreadsheet and consensus established based upon majority. 
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2.14  Metabolomic methods 

 

2.14.1.1 System information 

The chemical analysis were performed on a Dionex UltiMate 3000 UHPLC system (Dionex, 

Sunnyvale, CA) connected to a Thermoscientific Q-Exactive mass spectrometer system (Thermo, 

Hemel Hempstead, UK).  

2.14.1.2 LC instrument settings - C18 Reverse Phase 

Chromatographic separations were achieved using a Waters T3 high strength silica (HSS) C18 

UHPLC column (150 x 1.8 mm, 1.7 µm) (Waters, Elstree, UK) with a flow rate of 0.4 mL/min 

operating at 45 °C and a 5 µL injection volume. Samples were held at 4 °C within the autosampler 

module prior and following injections.  

2.14.1.3 LC gradient elution - C18 Reverse Phase 

The LC buffers were a binary solvent system consisting of Buffer A (Ultrapure water 18.2 Ω 

collected from a Millipore Deionizer (MODEL) with ≤ 2 ppb TOC and 0.1% formic acid). Buffer B 

consisted of LC-MS Optima grade acetonitrile with 0.1% formic acid.  The LC profile was as 

follows: 0 min (5% B) hold for 1 min proceeding to a linear gradient to 100% B at 12 mins, held for 

further 2 min (wash period) and returned to starting condition at 14 min with a column stabilization 

time of another 4 mins. The total run time per analytical run was approximately 20 min when 

including needle wash cycles. 

2.14.1.4 MS instrument settings - C18 Reverse Phase 

For the heated electrospray ionization (HESI) introduction source, the capillary temperature and 

voltage were maintained at 325oC and 3.8 KV (Positive mode)/ 3.5KV (Negative mode) respectively. 

(N2) sheath flow was set to 45 and an auxiliary flow was set to 15 (all arbitrary units). The radio 

frequency of the S-lens was set to 50. For MS1 profiling the mass spectrometer was operating at 

17.5K mass resolution with a scan rate of 13.2 scan/s-1 with automatic gain control (AGC) at 1e6 and 

a maximum injection time of 100ms.  
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For MS2 profiling the mass spectrometer was operating at 35K mass resolution with a scan rate of 8 

scan/s-1 with automatic gain control (AGC) set to 5e5 and a maximum injection time of 50ms. The 

mass ranges were set to 85-900 for positive ionisation and 115-950 for negative respectively, unless 

independently stated. Positive and Negative polarity data sets were acquired independently using the 

identical cinematographic profile as described above. 

2.14.1.5 LC instrument settings – HILIC 

Chromatographic separations were performed on a Water Acquity Ethylene Bridge Hybrid (BEH) 

Amide analytical column (2.1 x 150mm) with particle size of 1.7micron at a flow rate of 400µL/min; 

column temperature set to 45oC. 

2.14.1.6 LC gradient elution – HILIC 

The Binary buffer system was as follows: Buffer A was MilliQ water and Buffer B was ACN, both 

with 10mM ammonium formate adjusted to pH 3.5 using formic acid. The LC profile was as follows: 

T:0 min: 90%(B), T: 2min 60% (B) T: 5min 40%(B), T:7.5 min 40%(B), T:7.6min 90%(B), T:10 

min 90% (B). 

2.14.1.7 MS instrument settings – HILIC 

The Heated spray ionization source (HESI) was set to the following parameters: Sheath gas flow rate 

of 50, the Aux gas flow rate was set to 13 and the sweep gas flow rate was 3. The Spray voltage of 

set to 3.5kV with a Capillary temperature of 275oC. The Aux gas heater temperature was adjusted to 

425oC. The system was primed with a minimum of 10 sequential injections of pooled QC to stabilise 

the HESI source and to check for chromatographic stability before initialising batch analysis.  

The MS1 mass acquisition range was as follows: 75-1000 m/z units at a mass resolution of 35,000 

at approximately 7.6 scans per second, microscan: 1, lock mass: off. The AGC was set to 1e6 and 

the ion injection time was 100mS-1. The data was acquired on Positive mode polarity only. 

 

2.14.2.1 Compound Discoverer 2.0 

Post data acquisition processing and alignment was performed using Thermo Scientific Compound 
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Discoverer 2.0 software suite (Thermo Fisher Scientific, UK).  The Data files were parsed into its 

respective polarities and further groups by cultivar and additional truss positions. Pooled QC samples 

and sample blanks were also included and grouped accordingly in order to assess and evaluate system 

stability and tracked potential carry over effect throughout the entire batch analysis. 

Chromatographic alignment window was set to 0.15 min/ second, with mass tolerance of 5 ppm 

using an adaptive curve algorithm. The minimum peak intensity was set to 500,000 counts with 

minimum signal/noise threshold of 3/1 with protonated adducts (M+H) preferred, the gap filling 

protocol was also turned, and missing values were replaced based on a predefined experimental class 

design. Positive and Negative polarity data sets were processed independently. 

 

2.14.3.1 MetaboAnalyst 4.0 

The compound list generated by Compound Discoverer was firstly prepared prior to analysis using 

MetaboAnalyst. Firstly, the compound list was ranked lowest to highest based upon column retention 

time with each metabolite assigned a metabolite number (M). Next each condition was assigned a 

class value, and samples renamed S1-S9. For software compatibility, molecular weight and retention 

time columns were removed and the spreadsheet saved as a .csv file. 

Analysis of the dataset is performed by using the Statistical analysis node of MetaboAnalyst 4.0, 

from which the dataset is uploaded, and the parameters set to Peak Integrity Table with the format 

Sample in rows (unpaired). The dataset integrity step was optionally skipped due to the gap filling 

protocol utilised in 2.14.2.1. Data filtering was performed using Non-parametric relative standard 

deviation (MAD/median), with normalisation achieved by log transformation and pareto scaling. The 

resulting analysis path facilitated both Univariate and Chemometric analysis as well as clustering 

analysis.  
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2.15 Transcriptomic methods 

 

2.15.1.1 Cell disruption and RNA purification 

For RNA isolation of R. equi 103S, 10 ml was aliquot into a sterile RNase-free falcon tube, the 

bacterial cells were harvested by centrifugation for 1 minute at 13,000 rpm and supernatant 

discarded. 350 μL RNA-WIZ was then added to the cell pellet and resuspended by vigorous 

vortexing.  

The cells in RNA-WIZ were added to approximately 250 μl of ice-cold Zirconia Beads in a 0.5 ml 

screw cap tube, and bacterial cells lysed by vigorous vortexing at maximum speed for 10 minutes, 

modified to 30 seconds pulsing using a FastPrep 120 at 6.5 speed, followed by 30 seconds cooling 

on ice, repeated three times. 

The Zirconia beads were pelleted by centrifugation at 13,000 rpm for 5 minutes at 4 °C, and the 

bacterial lysate was aliquot into a fresh 1.5 ml microcentrifuge tube. Lysate quantity was estimated, 

and 0.2 volumes of chloroform was added, mixed thoroughly and incubated at room temperature for 

10 minutes. Aqueous and organic phases were separated by centrifugation for 5 minutes at 13,000 

rpm at 4 °C, the RNA-containing aqueous layer was extracted and aliquot into a fresh 1.5 ml 

microcentrifuge tube.  

2.15.1.2 Final RNA purification 

The quantity of aqueous phase extracted was estimated when pipetting, and 0.5 volumes of 100% 

ethanol was added, and mixed thoroughly. The sample was then transferred into a filter cartridge and 

centrifuged at 13,000 rpm for 1 minute to bind RNA to the filter, flow through supernatant was 

discarded. The filter was washed by addition of 700 μl Wash Solution 1 and subject to centrifugation 

at 13,000 rpm, with flow through discarded. The wash step was repeated twice more using 500 μl 

Wash Solution 2/3, with centrifugation and supernatant discarded as performed previously. The filter 

cartridges were then centrifuged for an additional minute to remove excess wash solution, before 

transferring the filter cartridge to a fresh 2 ml collection tube. 
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Elution of RNA was achieved by addition of 50 μl Elution buffer (preheated to 95 – 100 °C) to the 

centre of the filter, and centrifugation for 1 minute at 13,000 rpm. 

2.15.1.3 DNase I treatment 

To ensure any traces of genomic DNA was removed from the eluted RNA, 1/9th RNA volume of 

10X DNase buffer and 4 μl DNase I was added. The sample was incubated at 37 °C for 30 minutes 

to induce digestion of genomic DNA, after which the process was inactivated by addition of DNase 

Inactivation Reagent equivalent to 0.2 volumes of initial RNA elution volume. The sample was then 

thoroughly mixed by vortexing. The sample was then incubated at room temperature for 2 minutes, 

with intermittent flicking of the tube to resuspend the DNase Inactivation Reagent. 

2.15.1.4   Quality Assurance of RNA integrity  

The isolated RNA was quantified using a Qubit Fluorometer and quality checked using an Agilent 

Bioanalyzer. An RNA integrity number (RIN) of > 7 was required to proceed before depletion. QA 

Prior to library preparation, the depleted RNA was quantified using a Qubit Fluorometer and quality 

checked using an Agilent Bioanalyzer. An RNA integrity number (RIN) of > 7 was required to 

proceed with the library preparation.  
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3 Genomic survey of iron homeostasis: A 

Bioinformatic analysis of iron acquisition, targets 

for mutagenesis and cloning in Rhodococcus equi 

103S 
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3.1 Introduction 

The aim of this chapter was to audit the requirements for siderophore-mediated iron-acquisition by 

R. equi 103S assigning gene identities, where possible, to each expected component.  This survey 

would inform transcriptome and proteome data analysis and vice versa.  The requirements are 

classified by function: regulation, biosynthesis and export, and ferri-siderophore uptake.  Candidate 

genes were initially assembled via a text-based analysis of the R. equi genome annotations using key 

search terms (identified in each section). 

3.2 A bioinformatic investigation into transcriptional regulation 

A manual genomic data mining survey was performed to identify genes of interest that may be 

involved with regulation of iron homeostasis within the R. equi 103S chromosome. An abridged 

version of the search terms with the predicted products is shown in Table 3-1. 

Table 3-1: Abridged genomic survey of iron regulatory genes in R. equi 103S.  
Search terms were derived from logical association with previously identified iron regulatory terms 
and mechanisms. 

Search terms locus tag predicted product 
bactin REQ_24100 iron-enterobactin transporter ATP-binding protein  

REQ_03460 Fe2+-enterobactin ABC transporter substrate-binding protein 
chel  REQ_47020 enterochelin ABC transporter permease  

REQ_22510 ferrochelatase 
dtxR REQ_19260 putative DtxR-like transcriptional regulator  

REQ_20130 DtxR-like transcriptional regulator 
fur REQ_04740 ferric uptake regulator FurA  

REQ_29130 ferric uptake regulator FurB 
heme* REQ_10250 heme ABC transporter ATP-binding protein  

REQ_22210 heme A synthase  
REQ_22880 heme ABC transporter ATP-binding protein  
REQ_26300 hemerythrin 

iron REQ_03140 iron-regulated lsr2 protein  
REQ_08040 iron ABC transporter permease  
REQ_11550 iron ABC transporter  
REQ_12610 iron transporter  
REQ_24080 iron ABC transporter permease  
REQ_24090 iron ABC transporter  
REQ_24100 iron-enterobactin transporter ATP-binding product  
REQ_29940 iron siderophore-binding protein  
REQ_31890 iron siderophore-binding protein  
REQ_47010 iron ABC transporter permease 

metal REQ_18320 zinc metalloprotease  
REQ_44570 metal-binding protein 

siderophore REQ_08190 putative siderophore binding protein  
REQ_18150 putative siderophore binding protein  
REQ_31980 putative siderophore binding protein  
REQ_37010 putative siderophore binding protein 

*Haem also used with no further returns 

The bioinformatic investigation revealed the presence of four genes that might encode iron regulator 

proteins: ideR (REQ_20130), dtxR (REQ_19260), furA (REQ_04740), furB (REQ_29130).  
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Analysis of their sequence via the conserved domains database at NCBI revealed that all were 

predicted to be metal-dependent transcriptional regulators (Table 3-2 and Figure 3-1, Figure 3-2). 

This analysis confirms the validity of the outcome of the automated gene assignment / annotation, 

however, the presence of four potentially iron-dependent transcriptional regulators requires careful 

analysis.  The best characterised organism from this taxon is M. tuberculosis H37Rv, which also 

appears to have a complement of four such regulators (Rodriguez and Smith, 2003). Here a 

bioinformatic analysis was used to determine whether this complement of regulators has arisen 

through recent gene duplication and whether it is a feature of this strain of R. equi, is found more 

broadly across the genus or the nocardioform actinomycetes in general. 
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Table 3-2 Specific hits generated by conserved domain database searching for candidate iron-responsive transcriptional regulators 
Candidate R equi gene CDD Domain hits 

Locus ID Assignment Name Accession Description Query 
length 

Sequence 
coverage 

E value Graphical 
representation 

REQ_20130 ideR MntR COG1321 Mn-dependent transcriptional regulator, DtxR family  230 4-134 3.9 x 10-49 Figure 3-1A 
HTH_DTXR smart00529 Helix-turn-helix diphteria tox regulatory element; iron 

dependent repressor 
29-122 1.33 x 10-37 

Fe_dep_repr_C pfam02742 Iron dependent repressor, metal binding and dimerisation 
domain 

67-136 6.81 x 10-33 

FeoA smart00899 Represents the core domain of the ferrous iron (Fe2+) transport 
protein FeoA found in bacteria 

153-228 4.73x 10-8 

FeoA pfam04023 FeoA domain; This family includes FeoA a small protein, 
probably involved in Fe2+ transport 

153-228 2.92 x 10-6 

REQ_19260 dtxR MntR COG1321 Mn-dependent transcriptional regulator, DtxR family; 244 25-176 2.36 x 10-52 Figure 3-1B 
Fe_dep_repr_C pfam02742 Iron dependent repressor, metal binding and dimerisation 

domain 
88-157 1.93 x 10-38 

HTH_DTXR smart00529 Helix-turn-helix diphteria tox regulatory element; iron 
dependent repressor 

50-144 1.13 x 10-35 

FeoA pfam04023 FeoA domain; This family includes FeoA a small protein, 
probably involved in Fe2+ transport 

170-242 5.41 x 10-14 

FeoA smart00899 Represents the core domain of the ferrous iron (Fe2+) transport 
protein FeoA found in bacteria 

170-242 6.18 x 10-12 

REQ_04740 furA Fur COG0735 Fe2+ or Zn2+ uptake regulation protein [Inorganic ion transport 
and metabolism]; 

184 9-146 3.40 x 10-35 Figure 3-2A 

Fur_like cd07153 Ferric uptake regulator(Fur) and related metalloregulatory 
proteins; 

24-137 4.39 x 10-31 

REQ_29130 furB Fur COG0735 Fe2+ or Zn2+ uptake regulation protein [Inorganic ion transport 
and metabolism]; 

149 21-45 2.75 x 10-45 Figure 3-2B 

FUR pfam01475 Ferric uptake regulator family 21-138 6.63 x 10-41 
Fur_like cd07153 Ferric uptake regulator(Fur) and related metalloregulatory 

proteins;  
26-141 8.93 x 10-41 
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B 

 
 

 

Figure 3-1 Conserved domains prediction for putative DtxR type metal sensitive regulators 
The predicted primary structures for (A) REQ_20130, and (B) REQ_19260, were used as the query in a search of the Conserved Domain Database.  Database v 3.16 
was used with composition-based adjustment rather than the low complexity filter, and with an E-value threshold of 0.01 and a maximum of 500 hits prescribed. 
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Figure 3-2 Conserved domains prediction for putative Fur type metal sensitive regulators 
The predicted primary structures for (A) REQ_04740, and (B) REQ_29130 were used as the query in a search of the Conserved Domain Database.  Database v 3.16 
was used with composition-based adjustment rather than the low complexity filter, and with an E-value threshold of 0.01 and a maximum of 500hits prescribed. 
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3.2.1.1 Fur regulatory proteins 

The Fur family of regulators are ubiquitous in bacteria, controlling metal-dependent transcriptional 

repression (detailed description in Chapter 4) and commonly is the major global regulator integrating 

intracellular iron levels in Gram-negative bacterial physiology. Originally described in E. coli, fur 

operates as an iron-sensing repressor responsible for regulation of gene expression relating to iron 

acquisition (siderophore) and transport methods (Stojiljkovic et al., 1994). 

The amino acyl sequences of the two Fur-type regulators of R. equi 103S were aligned using AlignX 

(Lu and Moriyama, 2004) revealing 32.2% similarity (48/149) and 23.5% (35/149) identity over the 

full length of the alignment and that FurA was some 40 residues longer than FurB (Figure 3-3).  

This degree of sequence diversity, alongside their dispersed genetic loci, indicates that this is not a 

recent gene duplication event and that the functions of these proteins have likely diverged. 

                      1                                               50 
REQ_04740 FurA    (1) MQQGEHDFDPRAELRGAGLRVTAPRVAVLN------TVAANPHSDADQVA 
REQ_29120 FurB    (1) --MTENVTDPTDQRERAGRAVVGVRSTKQRSAISALLDDITEFRSAQELH 
     Consensus    (1)     E   DP      AG  V A R                    A  L  
 
                      51                                             100 
REQ_04740 FurA   (45) TEVRRQLGSVSTQAVYDVLGACVRVGLLRRIEPAGSPARYETRTADNHHH 
REQ_29120 FurB   (49) DELRRRGQGIGLTTVYRTLQTLAEAGTVDVLRTDTGESVYRRCSSGHHHH 
     Consensus   (51)  ELRR    I    VY  L      G L  I      A Y   SA  HHH 
 
                      101                                            150 
REQ_04740 FurA   (95) LVCRSCGTVVDVDCVVGHAPCLEPSSNHGFEIDEAEVVFWGLCPDCRHDS 
REQ_29120 FurB   (99) LVCRACGFTVEVDGPAVEQWSQTIADTNGFTDVSHTVEIFGTCRDCAQAR 
     Consensus  (101) LVCRACG  VDVD           A   GF      V  FG C DC     
 
                      151                                   191 
REQ_04740 FurA  (145) AKTGAQSVTSSQNQDDVPGSGGSITSKTATARQRQGGFAQ- 
REQ_29120 FurB  (149) ----------------------------------------- 
     Consensus  (151)                                           

Figure 3-3: Sequence alignment of Fur-type transcriptional regulators of Rhodococcus equi. 
Residues highlighted in yellow/red are identical and those highlighted in green/black are similar. 

3.2.1.2 DtxR(-like) regulatory proteins 

Similarly, the amino acyl sequences of the two DtxR-type regulators were aligned using AlignX  

revealing 42.0% similarity (97/231) and 27.3% (63/231) identity over the full length of the alignment 

(Figure 3-4).  The predicted start codon of REQ_19260 DtxR is an unusual TTG variant, 

consideration of the alignment indicates that GTG codons representing V20 or V29 might be the 

bona fide start.  Likewise, the sequence diversity and chromosomal location indicate that this 



 

 72 

apparent redundancy is not the consequence of a recent gene duplication event and likely indicates 

divergent function. 

                      
                        1                                               50 
REQ_19260 - DtxR    (1) LPKLVTVATQKSDAPAPSEVTHPETLSSVAQDYLKVIWTVQEWSRERVST 
REQ_20130 - IdeR    (1) --------------------VRVKDLVDTTEMYLRTIYDLEEEG-VVPLR 
       Consensus    (1)                          L      YLK IW L E         
 
                        51                                             100 
REQ_19260 - DtxR   (51) KLLSERIGVSASTVSEAIRKLSDQGLVDHARYGSIALTDAGRSAAVSMVR 
REQ_20130 - IdeR   (30) ARIAERLEQSGPTVSQTVARMERDGLLQVAGDRHLELTEKGRNLAVAVMR 
       Consensus   (51)   IAERI  SA TVS  I KL   GLL  A    I LTD GR  AVAMMR 
 
                        101                                            150 
REQ_19260 - DtxR  (101) RHRLIETFLVNELGYGWDEVHDEAEVLEHAVSDRMIDRIDAKLGFPERDP 
REQ_20130 - IdeR   (80) KHRLAERLLVDIIGLEWDQVHAEACRWEHVMSEDVERRLVEVLKNPTTSP 
       Consensus  (101) KHRL E  LV  IG  WD VH EA   EH MSD M  RI   L  P   P 
 
                        151                                            200 
REQ_19260 - DtxR  (151) HGDPIPSADGSVPTPPAR------QLSDYQDGE----SG-RVARISDADP 
REQ_20130 - IdeR  (130) YGNPIPGLADLGLDRPVGNAETLIRLTDVPPGKPTAVVVRRLAEHVQSDP 
       Consensus  (151) HG PIP         P         LSD   G        RLA    ADP 
 
                        201                                            250 
REQ_19260 - DtxR  (190) AMLRYFDSVGIALDTDITVIERRDFAGTVSIRLGTDPATGNVDLGNPAAQ 
REQ_20130 - IdeR  (180) ELIGQLREAGVVPDARVTVETR---PGSVTITASGHDEFDLPEEMAHAVQ 
       Consensus  (201)  LI      GI  D  ITV  R    GSVSI           D    A Q 
 
                        251 
REQ_19260 - DtxR  (240) AIWLV 
REQ_20130 - IdeR  (227) VKQV- 
       Consensus  (251)    L  

 

Figure 3-4: Sequence alignment of DtxR-type transcriptional regulators of Rhodococcus equi.  
Residues highlighted in yellow/red are identical and those highlighted in green/black are similar. 
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In order to determine whether this apparent redundancy in iron-dependent transcriptional regulators 

was a conserved feature of genus Rhodococcus or an unusual feature of R. equi 103S, each candidate 

gene product sequence was used as a query in BLASTP (v2.6.1+) with outputs being restricted to 

Rhodococcus (Taxon ID 1827).  The large number of rhodococcal genomes represented in Genbank 

complicates analysis as multiple entries have been deposited for several species.  The Organism 

Reports associated with the BLASTP analyses were useful, facilitating a structured analysis of gene 

content and allele diversity within species groups. 

For simplicity, the analysis focussed on the multispecies Refseq entries indicated by BLASTP.  

Entries for each set of hits were ranked (using E) and entries that were identified in other searches 

were labelled with the rank number assigned to the other protein for easy cross referencing.   

3.2.2.1 Multispecies analysis of Fur regulatory proteins within Rhodococcus 

The Fur family was considered first.  Representative bacterial genomes were selected from the 

Refseq descriptors for FurA hits and were retained for the analyses of each of the four proteins.  The 

27 genomes chosen represent 6 of 7 clades of Rhodococcus identified by Creason et al. (2014) using 

a whole genome sequence approach (clade I is not represented).  In the descriptive tables that follow, 

the ordering of these genomes (which reflects the similarity of their FurA homologue to that of R. 

equi 103S) is retained throughout for ease of comparison. 

For the Fur family, this approach identified credible hits for both FurA and FurB in most genomes 

of this panel.  Some of the Refseq entries appeared in both FurA and FurB hit lists.  Such matches 

are the expected consequences of comparing similar sequences and demonstrate the appropriate 

sensitivity of the methodology in seeking homologues; i.e., if the sequences can be used to detect 

each other they should detect intermediate orthologous sequences.  Poor quality hits have been 

shaded in Table 3-3 and Table 3-4 for ease of reference; the criteria used to isolate these was a marked 

increase in E-value in the ranking and/or cross-matching with the partner data set.  In some cases, 

namely WP_042575680, WP_037185410, and WP_019665665, these ‘poor hits’ were the best hits 

within the indicated genome for FurA and they did not appear among the FurB hits, simply indicating 
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significant sequence divergence of FurA over evolutionary time within Rhodococcus.  In some cases, 

hits were identified with either the A or B subfamily but were secondary hits for that genome.  

Sometimes proteins were identified in both searches, but these may even have represented tertiary 

hits within that genome and might represent other regulatory proteins.  In one case, WP_064075786 

was found as a hit for both FurA and FurB in the Rhodococcus qingshengii JCM 15477 genome 

suggesting that only a single regulator of the Fur lineage was encoded, bearing greatest resemblance 

to FurA of R. equi 103S rather than FurB (based on comparison of respective E-values only). 

In summary, this search strategy identified discrete FurA and FurB homologues in 26 of the 27 strains 

selected for this analysis (on the basis of their possession of FurA).  It is clear that the possession of 

two members of this protein family is not an unusual feature of R. equi 103S but is a common feature 

of rhodococci. 

The validity of these assignments was interrogated by generation of a maximum-likelihood 

phylogenetic tree (Figure 3-5) which considered the evolutionary relationships inferred by the 

sequence variations in the group of gene candidates.  The Jones Taylor Thornton matrix-based 

algorithm differentiated two major clusters which effectively separated FurA and FurB candidates 

as assigned in Table 3-4.  This second sequenced-based approach is wholly consistent with these 

representing two orthologous proteins families executing discrete physiological roles. 
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Table 3-3: BLASTP ranked table identifying conservation of the Fur-family proteins 
restricted to Rhodococcus.  
Poor quality hits are indicated by shading, cross-matched hits are also included but identifed. 

 FurA  FurB 

ranking Refseq 
accession 

Score E value match  Refseq accession Score E value match 

1 WP_005515947 348 3.00x10-123 
 

 WP_013416459 280 2.00x10-97  

2 WP_054187028 231 5.00x10-77   WP_003944514 231 2.00x10-78  

3 WP_003943517 231 5.00x10-77   WP_033233185 231 5.00x10-78  

4 WP_019746588 227 2.00x10-75   WP_020969953 230 6.00x10-78  

5 WP_033235908 218 2.00x10-72   WP_020908177 230 6.00x10-78  

6 WP_005248503 208 2.00x10-68   WP_006943911 229 1.00x10-77  

7 WP_011596752 207 6.00x10-68   WP_010594270 229 2.00x10-77  

8 WP_024102806 206 7.00x10-68   WP_005261219 228 5.00x10-77  

9 WP_005256074 205 2.00x10-67   WP_005247888 228 5.00x10-77  

10 WP_029547199 201 9.00x10-66   WP_011594307 227 1.00x10-76  

11 WP_010594993 195 2.00x10-63   WP_032368170 222 1.00x10-74  

12 WP_068054043 183 1.00x10-58   WP_027497490 222 1.00x10-74  

13 WP_019665665 152 1.00x10-46   WP_037193030 219 2.00x10-73  

14 WP_043781216 149 2.00x10-45   WP_020111630 213 4.00x10-71  

15 WP_005243590 149 2.00x10-45   WP_016691347 211 2.00x10-70  

16 WP_037185410 147 8.00x10-45   WP_016935071 209 9.00x10-70  

17 WP_037129600 147 2.00x10-44 B24  WP_006554468 209 9.00x10-70  

18 WP_042575680 146 2.00x10-44 
 

 WP_042572828 207 4.00x10-69  

19 WP_081557467 147 3.00x10-44 B28  WP_027505728 206 1.00x10-68  

20 WP_064075786 147 3.00x10-44 B27  WP_068100239 206 1.00x10-68  

21 WP_003941459 147 3.00x10-44 B26  WP_026137834 59.3 1.00x10-10  

22  
   

 WP_010595420 58.2 3.00x10-10  

23  
   

 WP_020906505 56.2 2.00x10-09  

24  
   

 WP_037129600 55.8 3.00x10-09 A17 

25  
   

 WP_019747524 55.8 3.00x10-09 
 

26  
   

 WP_003941459 55.8 3.00x10-09 A21 

27  
   

 WP_064075786 55.5 5.00x10-09 A20 

28  
   

 WP_081557467 55.1 7.00x10-09 A19 

29  
   

 WP_029546787 54.7 7.00x10-09 
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Table 3-4: Multispecies identification of the iron-dependent transcriptional regulators FurA 
and FurB using BLASTP.  
Hits are cross-correlated with Table 3-3, poor quality hits are indicated by grey shading. Black 
shading indicates a single Fur family transcriptional regulator. 

Species identifier 
Clade Fur 

family 
Ref seq accession 

 Primary hit Secondary / tertiary hits 

equi 103S V 
A WP_005515947   

B WP_013416459   

equi C7 V 
A WP_005515947   

B WP_013416459   

sp Br-6  
A WP_005515947   

B WP_013416459   

sp YH3-3  
A WP_054187028 WP_081557467  

B WP_003944514 WP_081557467  

sp ADH  
A WP_054187028  WP_003941459 
B WP_003944514  WP_003941459 

erythropolis SK121 III 
A WP_003943517 WP_037129600 WP_003941459 
B WP_003944514 WP_037129600 WP_003941459 

enclensis NIO-1009  
A WP_003943517 WP_037129600 WP_003941459 
B WP_003944514 WP_037129600 WP_003941459 

qingshengii CW25 III 
A WP_003943517  WP_003941459 
B WP_003944514  WP_003941459 

erythropolis PR4 III 
A WP_019746588   

B WP_020908177 WP_020906505  

opacus NRRL B-24011 IV 
A WP_019746588   

B WP_020969953   

globerulus NBRC 14531  
A WP_033235908   

B WP_033233185   

opacus PD630 IV 
A WP_005248503   

B WP_005247888   

jostii RHA1 IV 
A WP_011596752 WP_043781216  

B WP_011594307   

pyridinivorans SB3094 VII 
A WP_024102806   

B WP_006554468   

rhodochrous NBRC 16069 III/VI/VII 
A WP_024102806   

B WP_016691347   

imtechensis RKJ300 IV 
A WP_005256074 WP_005243590  

B WP_005261219   

wratislaviensis IFP 2016 IV 
A WP_005256074 WP_005243590  

B WP_005247888   

aetherivorans BCP1  
A WP_029547199   

B WP_006943911 WP_029546787  

ruber NBRC 15591 VI 
A WP_010594993   

B WP_010594270   

sp. EPR-147  
A WP_068054043   

B WP_037193030   

fascians A73a II 
A WP_019665665   

B WP_020111630   

sp. Leaf225  
A WP_037185410   

B WP_027505728   

sp. MEB064  
A WP_042575680   

B WP_042572828   

sp. Leaf247  
A WP_042575680   

B WP_042572828   

qingshengii JCM 15477 III 
A WP_064075786   

B WP_064075786   

kroppenstedtii DSM 44908  
A WP_068362965   

B WP_068100239   
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Figure 3-5: Evolutionary analysis of multispecies iron-dependent transcriptional regulators 
FurA and FurB by Maximum Likelihood. 
Evolutionary history was inferred using the maximum-likelihood method and  Jones Taylor Thornton 
matrix-based approach. Phylogeny was inferred utilitising a bootstrap value of 1000. The tree wth 
the highest log likelihood (-3680.87) is shown. The percentage of trees in which the associated taxa 
clustered together is shown next to the branches. Initial tree(s) for the heuristic search were ovtained 
automatically by appluing Neighbour-Join and BioNJ algorithms to a matrix of pairwise distances 
estimated using a JTT model, and then sekecting the topology with superior log likelihood value. 
The tree is drawn to scale, with branch lengths measured in the number of subsitituions per site. This 
analysis involved 50 amino aicds sequences. There were a total of 200 positions in the final dataset. 
Evolutionary analyses were conducted in MEGAX. 
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3.2.2.2 Multispecies analysis of DtxR(-like) regulatory proteins within Rhodococcus 

Consideration of BLASTP hits arising from searches in which R. equi 103S DtxR and IdeR as queries 

generated similar outcomes with discrete hits being indicated for DtxR and IdeR in 26 of the 27 

genomes of the panel with Rhodococcus sp. MEB064 appearing to encode a single member of this 

family which more closely resembles DtxR of R. equi 103S. 

In summary, of the 27 genomes investigated here, 25 appear to possess homologues of all four 

putative iron-dependent transcriptional regulator proteins with none possessing less than three of 

them.  It is unlikely that all of these proteins participate in iron homeostasis.  Members of each of the 

Fur and DtxR/IdeR families have been demonstrated to coordinate responses to variations in other 

ions (Capdevila et al., 2017); this may well be the case in R. equi 103S.  More detailed bioinformatic 

analysis provided more insight. 

Similarly, the validity of these assignments was interrogated by generation of a maximum-likelihood 

phylogenetic tree (Figure 3-6) which considered the evolutionary relationships inferred by the 

sequence variations in the group of gene candidates.  The Jones Taylor Thornton matrix-based 

algorithm differentiated two major clusters which effectively separated DtxR and IdeR candidates as 

assigned in Table 3-6. This second sequenced-based approach is wholly consistent with these 

representing two orthologous proteins families executing discrete physiological roles. 
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Table 3-5 BLASTP ranked table identifying conservation of the DtxR-family proteins 
restricted to Rhodococcus.  
Poor quality hits are indicated by shading, cross-matched hits are also included but identifed. 

 DtxR  IdeR 

ranking Refseq 
accession Score E value match  Refseq 

accession Score E value match 

1 WP_013415758 482 3.00x10-174   WP_005513651 449 6.00x10-162  

2 WP_005240680 382 6.00x10-135 IdeR22  WP_005240804 409 9.00x10-146  

3 WP_011598478 381 2.00x10-134 IdeR24  WP_015890477 408 1.00x10-145  

4 WP_051636871 377 7.00x10-133   WP_027499530 407 5.00x10-145  

5 WP_019748070 374 1.00x10-131 IdeR21  WP_010592606 393 1.00x10-139  

6 WP_033234902 373 4.00x10-131 IdeR20  WP_006551330 393 1.00x10-139  

7 WP_030535607 373 4.00x10-131 IdeR25  WP_016692727 392 4.00x10-139  

8 WP_003942116 373 4.00x10-131 IdeR26  WP_006935008 392 4.00x10-139  

9 WP_050655153 372 1.00x10-130 IdeR27  WP_033234793 390 2.00x10-138  

10 WP_029543295 362 5.00x10-127   WP_003942150 390 2.00x10-138  

11 WP_006551268 360 2.00x10-126   WP_019664070 386 6.00x10-137  

12 WP_016693574 360 3.00x10-126   WP_032397915 384 3.00x10-136  

13 WP_040271917 356 5.00x10-125   WP_032377729 384 7.00x10-136  

14 WP_032397843 352 4.00x10-123   WP_027496875 383 1.00x10-135  

15 WP_027496759 350 2.00x10-122   WP_068050657 383 1.00x10-135  

16 WP_068050758 350 3.00x10-122   WP_027505168 375 1.00x10-132  

17 WP_019664180 348 1.00x10-121   WP_068105572 369 3.00x10-130  

18 WP_056074537 310 2.00x10-106 IdeR23  WP_042572644 369 4.00x10-130  

19 WP_012686883 102 3.00x10-25   WP_051730506 213 2.00x10-68  

20      WP_033234902 96.3 8.00x10-23 DtxR6 

21      WP_019748070 93.2 1.00x10-21 DtxR5 

22      WP_005240680 92.8 1.00x10-21 DtxR2 

23      WP_056074537 92 2.00x10-21 DtxR18 

24      WP_011598478 92 3.00x10-21 DtxR3 

25      WP_030535607 92 3.00x10-21 DtxR7 

26      WP_003942116 92 3.00x10-21 Dtx8 

27      WP_050655153 91.7 4.00x10-21 DtxR9 
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Table 3-6 Multispecies identification of the iron-dependent transcriptional regulators DtxR 
and IderR using BLASTP.  
Hits are cross correlated with Table 3-3, poor quality hits are indicated by grey shading. Black 
shading indicates a single DtxR-like family transcriptional regulator. 

Species identifier family Ref seq accession 
Primary hit Secondary hit 

equi 103S DtxR WP_013415758  
IdeR WP_005513651  

equi C7 DtxR WP_013415758  
IdeR WP_005513651  

sp Br-6 DtxR WP_013415758  
IdeR WP_005513651  

sp YH3-3 DtxR WP_030535607  
IdeR WP_003942150  

sp ADH DtxR WP_030535607  
IdeR WP_003942150  

erythropolis SK121 DtxR WP_003942116  
IdeR WP_003942150  

enclensis NIO-1009 DtxR WP_003942116  
IdeR WP_003942150  

qingshengii CW25 DtxR WP_003942116  
IdeR WP_003942150  

erythropolis PR4 DtxR WP_019748070  
IdeR WP_003942150  

opacus NRRL B-24011 DtxR WP_019748070  
IdeR WP_003942150  

globerulus NBRC 14531 DtxR WP_033234902  
IdeR WP_033234793  

opacus PD630 DtxR WP_005240680  
IdeR WP_005240804  

jostii RHA1 DtxR WP_011598478  
IdeR WP_005240804  

pyridinivorans SB3094 DtxR AHD19433  
IdeR WP_006551330  

rhodochrous NBRC 16069 DtxR WP_059381216  
IdeR WP_016692727  

imtechensis RKJ300 DtxR WP_005240680 WP_012686883 
IdeR WP_005240804  

wratislaviensis IFP 2016 DtxR WP_005240680  
IdeR WP_005240804  

aetherivorans BCP1 DtxR WP_029543295  
IdeR WP_029543389  

ruber NBRC 15591 DtxR WP_040271917  
IdeR WP_010592606  

sp. EPR-147 DtxR WP_068050758  
IdeR WP_068050657  

fascians A73a DtxR WP_019664180  
IdeR WP_019664070  

sp. Leaf225 DtxR KQU34775  
IdeR WP_027505168  

sp. MEB064 DtxR KIQ20630  
IdeR KIQ20630  

sp. Leaf247 DtxR WP_056074537  
IdeR WP_042572644  

qingshengii JCM 15477 DtxR WP_003942116  
IdeR WP_003942150  

kroppenstedtii DSM 44908 DtxR SFA60262  
IdeR WP_068105572  
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Figure 3-6: Evolutionary analysis of multispecies iron-dependent transcriptional regulators 
DtxR and IdeR by Maximum Likelihood. 
Evolutionary history was inferred using the maximum-likelihood method and Jones Taylor Thornton 
matrix-based approach. Phylogeny was inferred utilitising a bootstrap value of 1000. The tree wth 
the highest log likelihood (-4319.37) is shown. The percentage of trees in which the associated taxa 
clustered together is shown next to the branches. Initial tree(s) for the heuristic search were ovtained 
automatically by appluing Neighbour-Join and BioNJ algorithms to a matrix of pairwise distances 
estimated using a JTT model, and then sekecting the topology with superior log likelihood value. 
The tree is drawn to scale, with branch lengths measured in the number of subsitituions per site. This 
analysis involved 51 amino aicds sequences. There were a total of 272 positions in the final dataset. 
Evolutionary analyses were conducted in MEGAX.  
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Next, the genetic context of the regulators was addressed in comparison with more distant relatives, 

the pathogenic mycobacteria M. tuberculosis H37Rv and M. leprae TN. Like R. equi, both of these 

pathogens respectively transit through or reside in intracellular locations during the disease process 

(Sibley et al., 1987; Smith, 2003).  The obligate intracellular pathogen M. leprae has a very 

degenerate genome (Young and Robertson, 2001) and is a particularly useful comparison, as it is 

widely recognised as having retained a minimal gene set to achieve the requirements of an 

intracellular mycobacterial pathogen (Vissa and Brennan, 2001). The roles of conserved gene 

products are usefully considered in this context.   

In order to consider genetic synteny, text-based queries were used to interrogate the Database of 

prOkaryotic OpeRons (Door2, url: http://csbl.bmb.uga.edu/DOOR/index.php).  Identities of genes 

were confirmed using a reciprocal BlastP protocol, i.e. the relationships between hits and the original 

queries were interrogated in the opposing direction considering those that provided mutual best hits 

as good evidence of functional orthology. 

The text search for FurA revealed 36 operons; those of the nocardioform actinomycetes (n=34) 

appear to have a well-conserved genetic structure.  Several entries including Operon ID 766677 (R. 

equi 103S), indicate that furA is located in a multi-gene operon of between 6 and 2 components.  In 

other cases, a single gene operon is predicted.  However, in each case furA precedes a gene encoding 

a catalase-peroxidase, a common component of the bacterial response to oxidative stress.  This gene 

is particularly important in tuberculosis chemotherapy as it activates the major bactericidal drug, 

isoniazid (Zhao et al., 2006). The corresponding gene in M. leprae, ML2008, is a pseudogene as is 

the catalase-peroxidase.  Although the latter might be perceived as indicating that these genes are not 

necessary for intracellular growth, M. leprae shows a particular tropism for Schwann cells (Ooi and 

Srinivasan, 2004) and this might represent an environment where they can thrive due to a lack of 

selective pressure; they then engineer these infected Schwann cells to become stem-like cells, which 

likely inhibits clearance and promotes dissemination (Masaki et al., 2013).  In contrast, both genes 

appear to be essential in Mycobacterium tuberculosis mouse infection models (Pym et al., 2001). 

When Pym et al. investigated complementation of a furA katG double mutant, the absence of FurA 

caused the catalase-peroxidase to be upregulated and restored full virulence.  It appears likely, 

therefore, that furA genes of M. tuberculosis and R. equi are orthologous. 
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3.3 A review of literature regarding Rhodococcus equi siderophores 

Currently, there are two partially-identified siderophores produced by R. equi, a catecholate ligand-

group siderophore – rhequibactin and a hydroxamate siderophore – rhequichelin. Interestingly both 

of these potential siderophores were identified by bioinformatic analysis of the genome, as after 

previous characterisation of Rhodococcus equi as a siderophore-negative bacterial species (Fiss and 

Brooks, 1991; Hall and Ratledge, 1986). 

 

Miranda-CasoLuengo and colleagues predicted that R. equi produces rhequibactin; a diffusible 

catecholate-containing siderophore during growth in iron-limited conditions (Miranda-CasoLuengo 

et al., 2008). Catecholate-containing siderophores are typically produced using a NRPS pathway, 

confirmed for rhequibactin through R. equi genome analysis. Seven NRPS-encoding gene clusters 

were initially identified, with two hypothesised to be involved in siderophore biosynthesis.   

While R. equi produces a catecholate-containing siderophore, rhequibactin and a non-diffusible 

siderophore required for saprophytic growth under low iron conditions, in vivo proliferation of R. 

equi mutants SID1 (iupU::pSID1K, derivative of ATCC 33701)  and SID3 (iupS::pSID3K, derivative 

of ATCC 33701) results did not significantly differ compared to the wild-type, with a failure to 

attenuate in the presence of the bidentate chelating ligand 2,2 dipyridyl suggesting that R. equi utilises 

an additional method of iron acquisition (Miranda-CasoLuengo et al., 2008), later identified as a 

hydroxamate-containing siderophore, rhequichelin (Miranda-CasoLuengo et al., 2012).  

 

A bioinformatic study performed by Letek and colleagues identified the gene cluster rhbABCDE 

(REQ07610 – REQ07650) (rhb - rhequichelin biosynthesis), with rhbBCDE forming a four-cistron 

operon likely encoding biosynthesis components (Letek et al., 2010; Miranda-CasoLuengo et al., 

2012). Bioinformatic analysis of the gene cluster supported involvement in siderophore biosynthesis 

(Herbst et al., 2013). 

REQ07630 was shown to encode RhbC, a protein homologous to the exochelin-producing NRPS 
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enzymes of Mycobacterium smegmatis, FxbB and FxbC (Miranda-CasoLuengo et al., 2012; Zhu et 

al., 1998). RhbC was predicted to synthesise a tetrapeptide-hydroxamate siderophore (Dhungana et 

al., 2007; Miranda-CasoLuengo et al., 2008). Transcription of RhbC was determined to be influenced 

by iron levels present in the medium, as had previously been observed with iupS and iupT encoding 

rhequibactin. Genes flanking RhbC were predicted to encode proteins involved with amino acid 

modification, as well as activation and release of the RhbC hydroxamate-siderophore product 

(Miranda-CasoLuengo et al., 2012). 

Mutagenesis confirmed the requirement of the rhbCD genes to produce rhequichelin. The gene 

deletions prevented growth of R. equi SID2 (deletion of rhbCD) in low concentrations of 2,2-

dipyridyl, and in macrophages; the former could be recovered by feeding with wild-type supernatant 

(Miranda-CasoLuengo et al., 2012; Miranda-CasoLuengo et al., 2008). The lack of growth of this 

mutant in macrophages is in contrast to Miranda-CasoLuengo’s previous work with rhequibachin 

which was not required for virulence.  Importantly, the rhequichelin biosynthesis dependency 

exhibited by R. equi is reminiscent of the requirement of (carboxy)mycobactin for macrophage 

proliferation in M. tuberculosis (Luo et al., 2005). 

 

In addition to the identification of the rhequibactin biosynthetic gene cluster, Miranda-CasoLuengo 

et al. (2008) hypothesised that the gene iupU (REQ_23810) may be involved with R. equi 

siderophore biosynthesis, given the proximal location of the iupABC siderophore transport system 

and a mbtH gene linkage (Lautru et al., 2007). Notably, mbtH-like genes have previously been 

identified as an essential component for production of some NRPS-dependent natural products 

(Lautru et al., 2007). Transcriptional analysis identified that iupU did not appear to be regulated by 

iron, with comparable levels under iron starvation. Remarkably, mutagenic disruption of iupU: SID1 

(iupU::pSID1K, derivative of ATCC 33701) inhibited R. equi growth under iron limitation, and 

unlike R. equi mutant SID3 (iupS::pSID3K, derivative of ATCC 33701), SID1 could not be cross-

fed by the wild-type strain, indicating that the product of IupU either is not secreted or is not 

diffusible in water. If accurate, production of a non-diffusible siderophore would be reminiscent of 

a cell-wall bound mycobactin produced by M. tuberculosis. 
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Recently, Chu et al. (2016) characterised a selection of humimycins from the Rhodococcus genera, 

that function by inhibiting lipid II flippase and potentiate β-lactam activity against methicillin-

resistant Staphylococcus aureus in mice. This investigation into MRSA-active antibiotics, identified 

that the NRPS encoded by REQ_23810 (iupU) synthesises humimycin A, rather than a cell-wall 

bound mycobactin-like siderophore. 

3.4 Siderophore biosynthesis 

Bacterial iron metabolism is regulated depending on intracellular availibility, to prevent oversupply 

and the overwhelming formation of reactive oxygen species (Fenton’s reaction), produced as a 

byproduct of redox stress (Andrews et al., 2003). Siderophore biosynthesis and transport systems 

can be repressed in many bacteria when under iron-replete conditions, to prevent such toxicity. Often, 

regulation is mediated by the Fur protein; acting as a negative regulator, transcription is repressed 

upon interation with Fe2+ and in its absence is de-repressed, (Andrews et al., 2003; Hantke, 2001) 

and is discussed in detail later in Chapter 4.  

 

Siderophores are known to be synthesized by both non-ribosomal peptide synthetase (NRPS)-

dependent and NRPS-independent pathways. Therefore, the R. equi 103S chromosomal genome was 

searched for NRPS proteins (Table 3-7) by mining the FN563149.1 genome annotation text for 

associated terms, such as NRPS and non-ribosomal peptide synthetase. 

Table 3-7: NRPS found within the R. equi 103S chromosomal genome. 
NRPS locus tag (former tag) Product annotation Refseq protein ID 
1 REQ_RS03725 (REQ_07630) non-ribosomal peptide synthetase WP_049799404.1 
2 REQ_RS03985 (REQ_08140) non-ribosomal peptide synthetase WP_013414937.1 
3 REQ_RS03995 (REQ_08160) non-ribosomal peptide synthetase WP_013414938.1 
4 REQ_RS11660 (REQ_23810) non-ribosomal peptide synthetase WP_013416064.1 
5 REQ_RS13285 (REQ_27140) non-ribosomal peptide synthetase WP_041674289.1 
6 REQ_RS17625 (REQ_35940) non-ribosomal peptide synthetase WP_013416894.1 
7 REQ_RS17630 (REQ_35950) non-ribosomal peptide synthetase WP_041674405.1 
8 REQ_RS17635 (REQ_35960) non-ribosomal peptide synthetase WP_041674406.1 
9 REQ_RS19895 (REQ_40560) non-ribosomal peptide synthetase WP_013417196.1 
10 REQ_RS20875 (REQ_42660) non-ribosomal peptide synthetase WP_013417352.1 
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3.5 Predicted structures of secondary metabolites 

 

In silico secondary metabolite structure predictions were produced based on nonribosomal peptide 

biosynthetic pathways retrieved from R. equi 103S DNA sequence data by manual data mining. A 

Hidden Markov Model (HMM) was used to predict domain identity for the ten multi-modular 

enzymes identified (Bachmann and Ravel, 2009).  

Predicted operon structures were identified using the online DOOR2 operon database (Mao et al., 

2009), and were tabulated along with predicted structures generated using the predicted amino acids 

from the corresponding NRPS (Chapter 3 Appendices - 1). Where no predictions were generated for 

the adenylation (specificity-imparting) domain of a particular module, the product was assembled 

using an alanine scaffold containing an undefined ‘R’ group.  

Apart from the previously identified operon (gene ID: REQ_07630/rhbC) encoding the putative 

siderophore rhequichelin (Miranda-CasoLuengo et al., 2012) the prediction tools used to identify 

secondary metabolites cannot solely predict based upon between secondary metabolite produced by 

NRPS pathways, and therefore cannot predict any contributions made by NRPS-independent 

siderophore (NIS) synthetase pathways, polyketide synthases, terpenes, alkaloids or saccharides, 

therefore a more robust tool for analysis of biosynthetic gene clusters was required. 

 

The bioinformatic tool antibiotics and Secondary Metabolite Analysis SHell (antiSMASH) was 

identified as a suitable alternative to manual annotation of NRPS operons, by providing a “rapid 

genome-wide identification, annotation and analysis of secondary metabolite biosynthesis gene 

clusters in bacterial genomes” (Weber et al., 2015).  

antiSMASH is comprehensive pipeline capable of automatically datamining genomes of interest to 

identify putative secondary metabolite biosynthetic gene clusters. Essentially the software aligns 

identified regions at the gene cluster level to their nearest relatives from a gene cluster database and 
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facilitates integration of specific secondary-metabolite predictions tools to function as a 

complementary tool for the identification of novel metabolites. 

Therefore the R. equi 103S genome (Genbank ID: FN563149.1) was analysed using antiSMASH 

with ClusterFinder BCG detection addition, with ClusterBlast and Whole-genome PFAM analysis. 

Full genome cluster analysis available in Chapter 3 Appendices - 2. A refined NRPS cluster analysis 

is shown in Table 3-8. 

Table 3-8 A NRPS-refined cluster analysis from record FN563149.1 R. equi 103S genome 

showing the biosynthetic gene cluster location and the most similar known cluster. 

From the refined analysis, two clusters appear analogous to known siderophore biosynthetic gene 

clusters (highlighted in yellow), a further two are analogous to antibiotic/ antifungal biosynthetic 

gene clusters, two are similar to anti-cancer agents and one is uncharacterised. The identification of 

two putative siderophore biosynthetic gene clusters would corroborate with the previous literature 

for R. equi (Miranda-CasoLuengo et al., 2012; Miranda-CasoLuengo et al., 2008), with biosynthetic 

gene cluster regions 3 producing rhequichelin, and cluster 4 responsible for production of 

rhequibactin.  

These putative siderophore clusters were also identified in the original prediction made in 3.5, with 

the first identified NRPS from section 3.5 correlating with rhequichelin and the Erythrochelin-like 

cluster NRPS region 3 from the antiSMASH analysis in Table 3-8; with the second and third NRPS 

identified from section 3.5 correlating with rhequibactin and the Heterobactin-like cluster region 4 

from the antiSMASH analysis. 

 

The first analysis was performed using the PKS/NRPS analysis web tool (Bachmann and Ravel, 

2009) for R. equi 103S (full results available in Chapter 3 Appendices - 3).  Analysis of NRPS 1 

Region Type From To Most similar known cluster Similarity 
3 NRPS 

770,105 825,773 Erythrochelin 
57% 

4 NRPS 
831,286 892,258 Heterobactin 

54% 
8 NRPS 

2,488,176 2,551,002 Skyllamycin 
4% 

9 NRPS 
2,840,029 2,895,666 Thailanstatin 

10% 
12 NRPS 

3,780,516 3,880,782 Fengycin 
20% 

13 NRPS 
4,281,932 4,337,935 N/A 

14 NRPS 
4,503,597 4,577,253 Rimosamide 

14% 
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predicted a four-module pathway for incorporation of amino acids into a peptide assembly 

mechanism (Figure 3-7).  Based on the the predicted specificity for each aminoacyl adenylation 

domain the product is predicted to be N5-formyl-hydroxyornithinyl-X-threoninyl-X (Figure 3-7). 

 
LIST OF PARSE HMMs HITs for NRPS 1 
 
DOMAIN      No.    coordinates                    Score. E value 
A_DOMAIN    1/4     596   807 ..     1   228 []   301.5  2.3e-90 
T_DOMAIN    1/5     966  1029 ..     1    68 []    67.4  5.4e-21 
C_DOMAIN    2/5    1508  1936 ..     1   455 []   225.6  1.5e-67 
A_DOMAIN    2/4    2099  2311 ..     1   228 []   310.5  4.4e-93 
T_DOMAIN    3/5    2470  2533 ..     1    68 []    71.5  3.9e-22 
C_DOMAIN    3/5    3029  3453 ..     1   455 []   139.7  1.2e-41 
A_DOMAIN    3/4    3632  3847 ..     1   228 []   269.4    1e-80 
T_DOMAIN    4/5    4011  4076 ..     1    68 []    76.5  1.5e-23 
C_DOMAIN    4/5    4093  4532 ..     1   455 []   390.6 3.4e-117 
A_DOMAIN    4/4    4705  4908 ..     1   228 []   237.8  3.4e-71 
T_DOMAIN    5/5    5071  5135 ..     1    68 []    81.2    7e-25 
C_DOMAIN    5/5    5152  5567 .]     1   455 []   113.7  7.9e-34 

Figure 3-7 NRPS prediction tool using a HMM model to predict potential amino acids used to 
create the secondary metabolite. 
NRPS 1 contains 4 Adenylation domains, thereby producing a metabolite containing 4 linked amino 
acid structures. The parsed HMM domain hits are given below the graphic, detailing the domain 
types and numbers, coordinates, score and E value probability. 

The predictions associated with the clusters associated with the R. equi siderophores were of great 

interest.  The virulence-associated siderophore rhequichelin was predicted as a tetrapeptide of the 

form N5-formyl-hydroxyornithinyl-X-X-X.   The prediction of N5-formyl-hydroxyornithine at 

position 1 is considered likely accurate due to the conservation of key residues forming the 

adenylation domain binding pocket with respect to that of the characterised FxbB in Mycobacterium 

smegmatis (exochelin MS) and CchH in Streptomyces coelicolor (Coelichelin) (Figure 3-8). 
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Query= AD1 
                                                                Score    E 
Sequences producing significant alignments:                    (bits)  Value 
 
gi|5763943|CchH-M1-5hfOrn|Coelichelin synthetase                  20   0.008 
gi|3560506|gb|AAC82549.1|FxbB-M1-5hfOrn|Exocheline synthetase     20   0.008 
 
 
 
>gi|5763943|CchH-M1-5hfOrn|Coelichelin synthetase 
 Length = 8 
Score = 20.4 bits (41), Expect = 0.008,   Method: Compositional matrix adjust. 
Identities = 8/8 (100%), Positives = 8/8 (100%) 
 
Query: 1 DINYWGGI 8 
         DINYWGGI 
Sbjct: 1 DINYWGGI 8 
 
 
>gi|3560506|gb|AAC82549.1|FxbB-M1-5hfOrn|Exocheline synthetase 
Length = 8 
Score = 20.4 bits (41), Expect = 0.008,   Method: Compositional matrix adjust. 
Identities = 8/8 (100%), Positives = 8/8 (100%) 
 
Query: 1 DINYWGGI 8 
         DINYWGGI 
Sbjct: 1 DINYWGGI 8 

Figure 3-8: A Non-continuous extended motif alignment for adenylation domain 1 binding 
pocket of the putative rhequichelin in R. equi 103S. 
Binding site search performed using eightball.pep database; conserved domains are highlighted in 
yellow. 

However, the adenylation domain 3 binding pocket residues identified by the HMM prediction tool 

differs by one amino acid, from those identified by Miranda-CasoLuengo and colleagues. The 

conflicting residue identified by the NRPSpredictor2 tool, Tryptophan3693, is contiguously located to 

the alternatively predicted Glutamic acid3694. The inclusion of Tryptophan3693 in the binding pocket 

produced significant alignments given in Figure 3-9, with a maximum of 62 % residue identities 

matching, and Tryptophan3693 being consistent in all alignments. Therefore, an alternative NRPS 

adenylation domain binding pocket blast search was performed to challenge the robustness of the 

initial prediction using Glutamic acid3964 rather than Tryptophan3693, the results shown in Figure 3-10 

demonstrated a marked increase in identity match (up to 100 %) and a probability significance (E 

value) increase from 0.082 to 0.024. Given both the reliability score and genetic similarities between 

rhodococci and mycobacteria, as well as the contiguous locations of the residues it appears plausible 

that the third adenylation domain is responsible for synthesising N5-hydroxyornithine as predicted 

by Miranda-CasoLuengo et al. rather than threonine, as initially indicated in this research using the 

PKS/NRPS analysis web tool. 
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Query= AD3 
Database: eightball.pep  
                                                                     Score    E 
Sequences producing significant alignments:                          (bits) Value 
 
gi|837256|gb|AAA85160.1|SyrB-M1-Thr|syringomycin synthetase 2          17   0.082 
gi|9715734|gb|CAC01604.1|AdpB-M3-Thr|Anabaenopeptilide synthetase B    17   0.10  
gi|9715733|gb|CAC01603.1|AdpA-M2-Thr|Anabaenopeptilide synthetas...    17   0.10  
gi|5763943|CchH-M2-Thr|Coelichelin synthetase                          17   0.14  
gi||genome sequencing|PvdD-M8-Thr|Pyoverdin synthetase                 17   0.14  
 
>gi|837256|gb|AAA85160.1|SyrB-M1-Thr|syringomycin synthetase 2 
          Length = 8 
 
 Score = 17.3 bits (33), Expect = 0.082,   Method: Compositional matrix adjust. 
 Identities = 5/8 (62%), Positives = 7/8 (87%) 
Query: 1 DMWNLGLI 8 
         D WNLG++ 
Sbjct: 1 DFWNLGMV 8 
>gi|9715734|gb|CAC01604.1|AdpB-M3-Thr|Anabaenopeptilide 
         synthetase B 
          Length = 8 
 
 Score = 16.9 bits (32), Expect = 0.10,   Method: Compositional matrix adjust. 
 Identities = 5/8 (62%), Positives = 7/8 (87%) 
Query: 1 DMWNLGLI 8 
         D WN+G+I 
Sbjct: 1 DFWNIGMI 8 
 
>gi|9715733|gb|CAC01603.1|AdpA-M2-Thr|Anabaenopeptilide 
         synthetase A 
          Length = 8 
 Score = 16.9 bits (32), Expect = 0.10,   Method: Compositional matrix adjust. 
 Identities = 5/8 (62%), Positives = 7/8 (87%) 
Query: 1 DMWNLGLI 8 
         D WN+G+I 
Sbjct: 1 DFWNIGMI 8 
 
>gi|5763943|CchH-M2-Thr|Coelichelin synthetase 
          Length = 8 
 Score = 16.5 bits (31), Expect = 0.14,   Method: Compositional matrix adjust. 
 Identities = 4/8 (50%), Positives = 7/8 (87%) 
Query: 1 DMWNLGLI 8 
         D WN+G++ 
Sbjct: 1 DFWNIGMV 8 
 
>gi||genome sequencing|PvdD-M8-Thr|Pyoverdin synthetase 
          Length = 8 
 Score = 16.5 bits (31), Expect = 0.14,   Method: Compositional matrix adjust. 
 Identities = 4/8 (50%), Positives = 7/8 (87%) 
Query: 1 DMWNLGLI 8 
         D WN+G++ 
Sbjct: 1 DFWNIGMV 8 

Figure 3-9: A Non-continuous extended motif alignment to identify the binding pocket 
residues of Adenylation domain 3 of the NRPS system encoding the putative siderophore 
rhequichelin.  
Binding site search performed using eightball.pep database; matching residue identities are 
highlighted in yellow, with Tryptophan3293 highlighted in red throughout. 
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Query= >Alternative_hypothesis: DMENLGLI 
Database: eightball.pep  
                                                                Score    E 
Sequences producing significant alignments:                      (bits) Value 
gi|5763943|CchH-M3-5hOrn|Coelichelin synthetase                        19   0.024 
gi|3560507|gb|AAC82550.1|FxbC-M3-5hOrn|Exochelin synthetase            19   0.024 
gi|3560507|gb|AAC82550.1|FxbC-M1-5hOrn|Exochelin synthetase            19   0.024 
gi|837256|gb|AAA85160.1|SyrE-M8-Asp/hAsp/Glu|syringomycin synthe...    15   0.44  
gi|9715734|gb|CAC01604.1|AdpB-M2-Ahp|Anabaenopeptilide synthetase B    15   0.49  
 
>gi|5763943|CchH-M3-5hOrn|Coelichelin synthetase 
          Length = 8 
 
 Score = 18.9 bits (37), Expect = 0.024,   Method: Compositional matrix adjust. 
 Identities = 8/8 (100%), Positives = 8/8 (100%) 
Query: 1 DMENLGLI 8 
         DMENLGLI 
Sbjct: 1 DMENLGLI 8 
 
>gi|3560507|gb|AAC82550.1|FxbC-M3-5hOrn|Exochelin synthetase 
          Length = 8 
 
 Score = 18.9 bits (37), Expect = 0.024,   Method: Compositional matrix adjust. 
 Identities = 8/8 (100%), Positives = 8/8 (100%) 
Query: 1 DMENLGLI 8 
         DMENLGLI 
Sbjct: 1 DMENLGLI 8 
 
>gi|3560507|gb|AAC82550.1|FxbC-M1-5hOrn|Exochelin synthetase 
          Length = 8 
 
 Score = 18.9 bits (37), Expect = 0.024,   Method: Compositional matrix adjust. 
 Identities = 8/8 (100%), Positives = 8/8 (100%) 
Query: 1 DMENLGLI 8 
         DMENLGLI 
Sbjct: 1 DMENLGLI 8 
 
>gi|837256|gb|AAA85160.1|SyrE-M8-Asp/hAsp/Glu|syringomycin 
         synthetase 
          Length = 8 
 
 Score = 14.6 bits (26), Expect = 0.44,   Method: Compositional matrix adjust. 
 Identities = 4/8 (50%), Positives = 8/8 (100%) 
Query: 1 DMENLGLI 8 
         DM++LG++ 
Sbjct: 1 DMKDLGMV 8 
 
 
>gi|9715734|gb|CAC01604.1|AdpB-M2-Ahp|Anabaenopeptilide 
         synthetase B 
          Length = 8 
 
 Score = 14.6 bits (26), Expect = 0.49,   Method: Compositional matrix adjust. 
 Identities = 4/8 (50%), Positives = 7/8 (87%) 
 
Query: 1 DMENLGLI 8 
         D+EN G++ 
Sbjct: 1 DVENAGVV 8 

Figure 3-10: A Non-continuous extended motif alignment using an alternative NRPS 
adenylation domain binding pocket residue for the NRPS system encoding the putative 
siderophore rhequichelin.. 
Binding site search performed using eightball.pep database; matching residues are highlighted in 
yellow and conserved Glutamic acid3694 residues are highlighted in green. Glutamic acid3694 used as 
a variant in candidate residue choice over Tryptophan3693, to predict alternative peptide synthesis by 
the adenylation domain 3. 

When the cluster encoding rhequichelin was further analysed using antiSMASH, a secondary 

metabolite genome-mining pipeline that identifies and aligns regions likely to generate secondary 

metabolites at the gene cluster level to their nearest relatives from a database containing all other 

known gene clusters, and integrates or cross-links all previously available secondary-metabolite 
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specific gene analysis methods in one interactive view (Blin et al., 2019).  With this analysis 57 % 

homology to the erythrochelin biosynthetic gene cluster (BGC) of Saccharopolyspora erythraea 

(Figure 3-11) was recognised as well as other gene cluster for both previously identified pathways 

and unknown analogous gene clusters. The gene cluster is displayed in Figure 3-12 and annotation 

of the peptide assembly is shown in Figure 3-13. 

 Figure 3-11: antiSMASH KnownClusterBlast search identifying that Erythrochelin has 57 
% similarity to the Query sequence Rhequichelin.  
Homologous genes include the NRPS of interest, a monooxygenase gene, a mbtH-like protein as 
well as an ABC-transporter subunit. 

 

Figure 3-12: Biosynthetic gene cluster Region 3 (rhequichelin) for R. equi 103S identified 
using antiSMASH.  
The cluster is displayed using SnapGene, with gene functions colours described in the legend. 
Feature names, location, size, colour, directionality and product type are given beneath.  
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Table 3-9: Biosynthetic gene cluster Region 3 (rhequichelin) features tabulated using 
Snapgene, 
 Identifed by feature names, location, size, colour, directionality and product type. 

 
 

 

Figure 3-13: The detailed domain annotation for the Biosynthetic gene cluster Region 3 
encoded by the NRPS gene REQ_07630.  
Domains - C: condensation; A: Adenylation, E- Epimerization; Pale blue circle: Peptide Carrier 
Protein with attached 4'-phospho-pantetheine, Grey circle: TIGR01720 identified for post-
condensation modification. 

The antiSMASH monomer predictions for the siderophore rhequichelin are orn - ser - orn - haorn 

(full predictions results shown in Table 3-10. where a range of bioinformatic prediction tools are 

pipelined by antiSMASH to predict substrate specificities of non-ribosomal peptide synthetase 

adenylation domains.)  

The main output predictions are based on the NRPSPredictor2; SVM and Stachelhaus code 

predictions tools, which are then collated to present a consensus (Blin et al., 2019). 

  



 

 94 

Table 3-10: Consensus NPRS monomer prediction output as detailed by antiSMASH 
v5.0.0rc1 

REQ_07630: orn - ser - orn - haorn  
Consensus: AMP-binding 

(460..857): orn  
 

AMP-binding 
(1961..2361):ser  
 

AMP-binding 
(3483..3897): orn  
 

AMP-binding 
(4562..4956):haorn  
 

     
NRPSPredictor2 orn  

 
 

ser orn haorn 

     
SVM prediction details: 
 
Predicted 
physicochemical 
class: 
 

hydrophilic  hydrophobic-
aliphatic 
 
 

hydrophilic N/A 

Large clusters 
prediction: 
 

orn, lys, arg 
 

ser, thr, dhpg, hpg 
 

orn, lys, arg 
 

N/A 

Small clusters 
prediction: 
 

orn, horn 
 

 ser N/A N/A 

Single AA 
prediction: 
 

orn ser N/A N/A 

Stachelhaus prediction details: 
 
Stachelhaus 
sequence: 
 

DINYWGGIGK 
 

DVpHaSLVeK 
 

DMwNLGLINK 
 

DVFiLGAVNK 
 

Nearest 
Stachelhaus code: 
 

orn 
 

ser orn orn 

Stachelhaus code 
match: 
 

100 % (strong) 70 % (weak) 90 % (moderate) 90 % (moderate) 

As previously mentioned Miranda-CasoLuengo and colleagues  proved the biosynthetic gene cluster 

rhbABCDE (REQ_07610-50) was responsible for production of a putative tetrapeptide hydroxamate 

siderophore, rhequichelin (Miranda-CasoLuengo et al., 2012). They predicted that the NRPS 

modules 1 and 3 of REQ_07630 are responsible for assembly of N5-formyl-N5-hydroxyornithine and 

N5-hydroxyornithine respectively based on binding pocket homology identified by Challis et al. 

(2000), whereas modules 2 and 4 were predicted to be serine and N5-acyl-N5-hydroxyornithine using 

the bioinformatic tool NRPSpredictor2. 

The bioinformatic tools used do not take into consideration potential tailoring reactions, that may 

alter the structure of the assembled peptide, analysis of neighbouring genes include: a putative 

lysine/ornithine N-monooxygenase, probably to facilitate hydroxylation of L-ornithine to N5-

hydroxyornithine to form a ferric ligands, and a putative methionyl-tRNA formyltransferase which 
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is likely to catalyse the formylation of N5-hydroxyornithine to produce to N5-formyl-N5-

hydroxyornithine (Miranda-CasoLuengo et al., 2012).  

Interestingly, a putative secreted tyrosine/serine phosphatase flanks the NRPS encoding 

rhequichelin, which may prove to be an excellent candidate for future mutagenesis studies to explore 

any relationship between protein/peptide phosphorylation and iron acquisition. Recently a systematic 

global analysis of genes encoding protein phosphatases in Aspergillus fumigatus identified, via 

mutagenesis, that a selection of phosphatases are involved directly or indirectly in post-translational 

modifications affecting the response to iron assimilation, impacting not only the transcription of 

several genes involved in siderophore biosynthesis (Winkelstroter et al., 2015). However, the 

apparent extracytoplasmic location of this protein, would indicate a direct functional role in 

siderophore-mediated iron acquisition in either export or import.  Finally, as both the PKS/NRPS 

analysis web tool (Bachmann and Ravel, 2009) and antiSMASH pipeline (Blin et al., 2017) were not 

able to detect a canonical type I thioesterase domain to cleave the fully assembled peptide from the 

peptidyl carrier protein (PCP) domain in the final module, it is reasonable to predict that the product 

of the upstream gene (REQ_07620), which encodes an α/β-hydrolase fold protein, functions as an 

external stand-alone type II thioesterase that could release the product from the NRPS synthetase 

after assembly (Linne et al., 2004). The distinct lack of a functional thioesterase, may be the result 

of a liberation event that occurs due to by an intramolecular nucleophilic substitution, as described 

in the paper that recently identified the mixed-ligand siderophores qinichelin produced by 

Streptomyces sp. MBT76. Gubbens et al. (2017) speculates that the condensation domain in the final 

module catalyses both α-amidation of hOrn-6 to finalise polypeptide and δ-amidation to self-cyclise 

the last hydroxyornithine to release product. 

 

Previously, Miranda-CasoLuengo et al. (2008) identified two NRPS genes of interest, iupS 

(REQ_08140) and iupT (REQ_08160) clustered in a six cistron operon and separated by a gene 

encoding a putative substrate-binding lipoprotein (subsequently discussed in detail). The cluster was 

based on neighbouring, divergently transcribed operons annotated as encoding putative siderophore 

transport components as well as genes involved in the production of the siderophore ferric ligand-
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bearing precursor 2,3-dihydroxybenzoic acid. This precursor molecule is also present in the closely 

related rhodococcal species Rhodococcus erythropolis, Rhodococcus rhodochrous, 

and Rhodococcus jostii, all of which can produce mixed-type catecholate-hydroxamate siderophores: 

heterobactin (Carran et al., 2001), rhodobactin (Dhungana et al., 2007), and rhodochelin (Bosello et 

al., 2011) respectively. 

While Miranda-CasoLuengo et al. (2008) discussed the presence of the biosynthetic gene cluster 

likely to encode rhequibactin, along with experimental evidence of a catechol peptide as well as a 

chromophore, it is surprising that the chemical structure and characterisation of rhequibactin has 

proven to be elusive even after a decade. Therefore, the NRPS genes listed above (listed as NRPS 2 

and NRPS 3 in this analysis) were submitted to the PKS/NRPS analysis web tool (Bachmann and 

Ravel, 2009), as an independent attempt to predict the siderophore structure, however the tool was 

unable to accurately predict the adenylation domains specificities for the NRPS (Figure 3-14). 
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LIST OF PARSE HMMs HITs for NRPS 2 (tr|E4WDC5|E4WDC5_RHOE1 Putative non-ribosomal peptide synthetase 
OS=Rhodococcus equi (strain 103S) GN=REQ_08140 PE=4 SV=1) 
C_DOMAIN    1/2       8   439 ..     1   455 []   101.7  3.1e-30 
A_DOMAIN    1/2     615   825 ..     1   228 []   220.4  5.9e-66 
T_DOMAIN    1/3     985  1047 ..     1    66 [.    71.0  5.1e-22 
C_DOMAIN    2/2    1071  1500 ..     1   455 []   312.8  8.7e-94 
A_DOMAIN    2/2    1658  1867 ..     1   228 []   240.3  6.1e-72 
T_DOMAIN    3/3    2027  2090 ..     1    68 []    71.2  4.7e-22 

 
LIST OF PARSE HMMs HITs for NRPS 3 (tr|E4WDC7|E4WDC7_RHOE1 Putative non-ribosomal peptide 
synthetase OS=Rhodococcus equi (strain 103S) GN=REQ_08160 PE=4 SV=1) 
C_DOMAIN    1/2       5   440 ..     1   455 []   226.3  9.8e-68 
A_DOMAIN    1/2     615   825 ..     1   228 []   242.7  1.2e-72 
T_DOMAIN    1/2     980  1043 ..     1    68 []    60.2  5.8e-19 
C_DOMAIN    2/2    1544  1971 ..     1   455 []   208.7  1.9e-62 
A_DOMAIN    2/2    2152  2364 ..     1   228 []   228.2  2.6e-68 
T_DOMAIN    2/2    2520  2583 ..     1    68 []    53.6  4.1e-17 

Figure 3-14: NRPS prediction tool using a HMM model to predict amino acyl components of 
secondary metabolites.  
NRPS 2 (top) contains 2 unpredicted Adenylation domains, NRPS 3 (bottom) contains 2 Adenylation 
domains; one predicted Glutamine and the other unknown. The parsed HMM domain hits are given 
below the graphic, detailing the domain types and numbers, coordinates, score and E value 
probability. 

Given the lack of identifiable adenylation domains substrate specificities predicted by the PKS/NRPS 

analysis web tool, the R. equi genome was further analysed using  the antiSMASH pipeline, the 

software identified a gene cluster prediction with 54 % homology to the Heterobactin BGC of R. 

erythropolis (Figure 3-15) as well as other homologous gene cluster for both previously identified 
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pathways and unknown analogous gene clusters. 

 

Figure 3-15: antiSMASH KnownClusterBlast search identifying Heterobactin as 54 % 
similarity to the Query sequence Rhequibactin.  
Homologous genes include biosynthetic machinery for production of the precursor peptide 2,3-
dihydroxybenzoic acid and a MFS transporter. 

 Interestingly, the homology between sequences appears to relate to the production of 2,3-

dihydroxybenzoic acid as a siderophore-precursor forming catecholate moiety, thereby highlighting 

a functional similarity. The composition and organisation of this gene cluster is described in Figure 

3-16 and Table 3-11, while the annotation of the peptide assembly is shown in Figure 3-17. 

 
Figure 3-16: Biosynthetic gene cluster Region 4 (rhequibactin) prediction for R. equi 103S 
identified using antiSMASH.  
The cluster is displayed using SnapGene, with gene functions colours described in the legend.  

Similar to the biosynthetic gene cluster encoding rhequichelin, the antiSMASH pipeline was not able 

to detect a canonical type I thioesterase domain to cleave the fully assembled peptide from the PCP 

domain in the final module (Figure 3-17), so an external stand-alone type II thioesterase may be 

employed to release the product from the NRPS synthetase after assembly (Linne et al., 2004). 
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Figure 3-17: The detailed domain annotation for the Biosynthetic gene cluster Region 4 
encoded by the precursor genes REQ_08110, REQ_08120, NRPS genes REQ_08140 and 
REQ_08160.  
Domains - C: condensation; A: Adenylation, E- Epimerization KR- Keto-reductase ; Pale blue circle: 
Peptide Carrier Protein with attached 4'-phospho-pantetheine, Grey circle: TIGR01720 identified for 
post-condensation modification. 

 

Table 3-11: Biosynthetic gene cluster Region 4 (rhequibactin)  
features tabulated using Snapgene, identifying feature names, location, size, colour, directionality 
and product type. 
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The antiSMASH v5.00rc1 polymer prediction for the siderophore rhequibactin are (dhb) + (X - X) 

+ (X - X), where dhb is the precursor 2,3-dihydroxybenzoic acid, the catecholate moiety, produced 

by REQ_08110, identified as a consensus using NRPSPredictor2; SVM and Stachelhaus code 

predictions. However, the other monomer predictions are unclassified (X), likely due to the 

uncertainty of AMP-binding domains prediction algorithms employed in antiSMASH v5.00rc1 

prediction tools. Upon updating from v4.2.1 to v5.00rc1, the source code was refactored to improve 

runtime and program stability, however as a result some of the externally-contributed modules 

(SANDPUMA, trans-AT PKS comparisons, terpene PrediCAT) were temporarily removed while 

contributors prepare v5.x compliant versions (Blin et al., 2019). 

Utilising a stable version of antiSMASH v4.2.1 facilitated a consensus prediction method based 

using the SANDPUMA ensemble, as this was proven to out-perform each of the other methods 

individually (Blin et al., 2017), the underlying algorithm predictions as well as SVM, profileHMM 

and PrediCAT predictions are still shown and are used in forming the consensus. The NRPS 

prediction output using antiSMASH 4.2.1 given in Table 3-12 suggest a polypeptide consisting of 

the monomers (dhb|sal) + (lys-orn) + (orn-[d-cyclo-horn]). 

Table 3-12: Consensus NPRS monomer prediction output as detailed by antiSMASH v4.2.1 
Monomers 
prediction: (dhb|sal) + (lys-orn) + (orn-[d-cyclo-horn]) 

Gene REQ_08110 REQ_08140 REQ_08160 
Monomer 1 2 3 4 5 

Stachelhaus code: dhb|sal N/A N/A N/A d-cyclo-
horn/orn 

NRPSPredictor3 
SVM: dhb N/A N/A N/A N/A 

pHMM: dhb lys orn orn orn 

PrediCAT: N/A-N/A Q45R83_A1-8--lys N/A-N/A N/A-
N/A N/A-N/A 

SANDPUMA 
ensemble: dhb|sal ala orn orn orn 

%ID to nearest 
neighbour: 62.781 47.325 47.561 49.18 57.32 

SNN score: 0.0157247776787 0.0 0.0 0.0 0.0 
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The lack of experimental characterisation of the R. equi siderophores by previous studies, is 

indicative that R. equi does not regulate production of its siderophores in a conventional rate 

analogous to other iron starved bacteria. Therefore, the bioinformatic analysis of biosynthetic gene 

clusters was used to produce putative structures and associated masses that can be used in targeted 

approaches to siderophore characterisation. 

3.5.5.1 Rhequichelin putative structure 

Following the previous analysis of the rhequichelin biosynthetic gene cluster, and the predicted 

specificities of the NRPS adenylation domains in the context of the the previous literature (Miranda-

CasoLuengo et al., 2012), it is hypothesised that the hydroxamate siderophore rhequichelin is 

comprised of the peptide monomers:N5-formyl-N5-hydroxyornithine -serine - N5-hydroxyornithine - 

N5-acyl-N5-hydroxyornithine. 

Assembly of the hypothetical structure was performed with support from Dr. D. Tetard, following 

the orthodox peptide assembly parameters. Using the previous in-depth predictions made by 

Miranda-CasoLuengo, modifications have been considered for this putative structure as shown in 

Figure 3-18.  

Figure 3-18: Predictive structure of the tetrapeptide rhequichelin. 

Due the prediction of a N5-acyl-N5-hydroxyornithine peptide monomer, deduction of an accurate 

mass clearly becomes more challenging. The predicted amphiphilic nature of this siderophore 

suggests that this undefined acylation does not directly contribute to metal coordination, but the 

presumed fatty-acid attachment may vary in length, degree of unsaturation and functionality (Kem 

and Butler, 2015). A non-exclusive selection of potential acylation groups and their predicted masses 

were compiled (Table 3-13), that might support the identification of candidate molecules in a targeted 

metabolomic approach to the molecular characterisation of rhequichelin. 

 



 

 102 

Table 3-13: Potential variations in acyl groups for rhequichelin, C1-6 and associated 
predicted masses 

3.5.5.2 Rhequibactin putative structure  

After the analysis of the rhequibactin biosynthetic gene cluster,  combined with the predicted 

specificities of NRPS adenylation domains in the context of the previous literature, it is almost certain 

that rhequibactin utilises  2,3-hydroxybenzoic acid residues for iron coordination, given the 

proximity of identification of the upstream 2,3-DHB biosynthetic machinery, previous experimental 

verification of catecholates moieties (Miranda-CasoLuengo et al., 2008).  Additionally, two 

siderophores from the Rhodococcus genus, heterobactin A and rhodobactin isolated from 

Rhodococcus erythropolis IGTS8 and Rhodococcus rhodochrous OFS respectively, (Bosello et al., 

2013; Dhungana et al., 2007) both contain 2,3-dihydroxybenzoic acid.  

As with rhequchelin, assembly of the hypothetical structure rhequibactin was performed with 

direction from Dr. D. Tetard, following the orthodox linear peptide assembly, a catecholate-

hydroxamate mixed ligand model of the siderophore rhequibactin was constructed (Figure 3-19) 

using the peptide monomers; 2,3-dihydroxybenzoic acid, lysine, ornithine (x2), and a cyclised δ-N-

hydroxy-ornithine. 

 

Figure 3-19: Rhequibactin predicted structure 

 

R = C1:0 C2:0 C3:0 C4:0 C5:0 C6:0 

Chemical Formula: C21H40N8O10 C22H42N8O10 C23H44N8O10 C24H46N8O10 C25H48N8O10 C26H50N8O10 

Exact Mass: 564.29 578.30 592.32 606.33 620.35 634.36 

Molecular Weight: 564.60 578.62 592.65 606.6 620.71 634.73 
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Intriguingly, the predicted structure of rhequibactin is reminiscent of the recently identified mixed-

ligand siderophores qinichelin produced by Streptomyces sp. MBT76 (Figure 3-20a) (Gubbens et al., 

2017) and the heterobactins produced by Rhodococcus erythropolis PR4 (Bosello et al., 2013). 

Assembly of qinichelin follows an orthodox linear peptide assembly logic, where the catecholate-

hexapeptide backbone (Ser-1, Orn-2, Ser-3, Ser-4, hOrn-5, and hOrn-6), is attached to the precursor 

2,3-DHB and are sequentially bound and converted to aminoacyl adenylates.  

Assembly of heterobactin B also follows an orthodox linear peptide assembly logic, with a 

catecholate tripeptide backbone (Arg-1, Gly-2 and hOrn-3) attached to a precursor 2,3-DHB. The 

presence of 2,3-DHB and modified ornithine residues in not only the heterobactins, but both 

rhodochelin and rhodobactin, implies that these shared features are indicative of a conserved motif 

within the Rhodococcus genus (Bosello et al., 2013).  

Figure 3-20: Siderophore structures analogous to the predicted structure of rhequibactin.  
a) qinichelin. b) heterobactin B 

When considering peptidic modifications, rhequibactin appears to utilise three epimerisation 

domains on monomers 3, 4 and 5; resulting in assembly of ornithine D-enantiomers. Furthermore, 

without experimental evidence, accurate bioinformatic identification of ornithine tailoring can be 

challenging, especially between unmodified ornithine (Orn), δ-N-hydroxyl and ornithine (hOrn) 

A 

 

B 
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residues, however although not identified as part of the rhequibactin biosynthetic gene clusters, the 

putative lysine/ornithine N-monooxygenase involved in rhequichelin synthesis  may be utilised in 

rhequibactin synthesis, as functional crosstalk can occur between biosynthetic gene clusters. 

It remains questionable as to how liberation of rhequibactin occurs, however given the lack of 

canonical C-terminal thioester domain, it hypothetically could occur in an analogous manner to 

qinichelin by self-cyclisation of the last hydroxyornithine to release the compound. 

3.6 Iron transport in R. equi 

As previously described in chapter one, iron is essential for life, therefore pathogenic microbes must 

have associated virulence mechanisms to ensure enough is available intracellularly to survive. 

Siderophores, as previously alluded are examples of such a virulence factor, however the 

mechanisms associated with cellular transport are poorly described. R. equi appears to have a putative 

ABC siderophore transport system IupABC (REQ_24080 – REQ_24100, Door2 operon: 767082) 

(Miranda-CasoLuengo et al., 2008), homologous to the FxuABC transport system in M. smegmatis; 

CchDCE system of S. coelicolor and belongs to the binding-protein-dependent transport system 

permease family – FecCD (Accession: pfam01032) (Staudenmaier et al., 1989). The conserved 

domain analysis of IupABC is described in Figure 3-21 (Marchler-Bauer et al., 2017).  

The similarities between the transport system for the hydroxamate siderophore coelichelin (cchCDE) 

and the siderophore transport system encoded by iupABC in R. equi further suggest that the transport 

system is likely responsible for cellular iron transport (Miranda-CasoLuengo et al., 2008). However, 

as R. equi is predicted to synthesise two siderophores, it is logical to assume that there is at least one 

additional transport system for cellular transfer of iron, and that both siderophore systems do not rely 

on the single operon iupABC. Other putative iron transport systems identified by manual R. equi 

genome mining include; a canonical ABC transport operon containing a substrate-binding 

lipoprotein, two permeases and an ATPase (REQ_4700-47440), a heme oxygenase and transport 

system (REQ_22880-28910), a ferredoxin transport system (REQ_08010-08050) and a EfeB 

exogenous heme recovery system (REQ_12590-12610). 



 

 105 

Figure 3-21: Conserved domains for operon iupABC.  
(A) putative ABC transporter integral membrane subunit IupA [Rhodococcus equi 103S] Domain 
hits identified include: FecCD, accession: pfam01032, interval: 192-486, E-value: 2.77 e-87, FepD, 
accession: COG0609, interval: 182-488, E-value: 1.94 e-83. (B) putative ABC transporter integral 
membrane subunit IupB [Rhodococcus equi 103S] Domain hits identified include: FecCD, 
accession: pfam01032, interval: 36-343, E-value: 7.06 e-67, FepG, accession: COG4779, interval: 
6-348, E-value: 7.24 e-78. (C) putative ABC transporter ATPase subunit IupC [Rhodococcus equi 
103S] Domain hits identified include: FepC, accession: COG1120, interval: 11-268, E-value: 4.50 
e-132. Database:  CDSEARCH/cdd   Low complexity filter: no  Composition Based Adjustment: yes   
E-value threshold: 0.01 (Marchler-Bauer et al., 2017) 

Currently, the methods of rhodococcal iron import have not been well characterised, however, other 

biologically analogous cytoplasmic transport systems have been hypothesised. 

Challis (2008) predicted that the transport proteins for the Streptomyces coelicolor siderophore - 

coelichelin encoded by the cchCDEF genes are functionally similar to other known ferric-

siderophore systems, including use of a lipoprotein receptor, permease and ATPase components as 

previously described by Miethke and Marahiel (2007). Interestingly, this transport system appears to 

utilise an iron-siderophore binding lipoprotein receptor encoded by the gene cchF, the hypothesis 

proposed is that after initial capture of the ferri-siderophore complex by CchF, the transfer of the 

iron-bound siderophore through the membrane to the cytoplasm is mediated by the membrane-

A  

B  

C  
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spanning permeases and an ATPase as shown in Figure 3-22 (Challis, 2008), before release of ferrous 

iron by reduction as described in chapter one.  

Similarly, Bacillus cereus utilises a siderophore-shuttle mechanism for iron uptake (Fukushima et 

al., 2014), using YxeB - a lipoprotein siderophore-binding protein encoded by BC_0383 that is 

located directly upstream of putative permease genes BC_0381 and BC_0382. 

However, unlike S. coelicolor and B. cereus, R. equi does not appear to have a locally encoded 

lipoprotein receptor, therefore the candidate lipoprotein homologous to CchF may be an orphan gene 

located elsewhere in the chromosome. A BlastN search for CchF NP_624811.1 with taxa ID 

restricted to Rhodococcus equi 103S (Table 3-14) highlighted nine candidate lipoproteins, associated 

with iron-uptake proteins, from which 4 could be excluded due to their association with coherent 

transport operons (greyed-out tabulated results). Likewise, a BlastP search for YxeB NP_830222.1 

with taxa ID restricted to Rhodococcus equi 103S (Table 3-15) highlighted 5 candidate lipoproteins, 

four of which were previously identified in the CchF BlastP search above. Where 3 of the candidates 

were deemed to be suitable; one candidate, the ABC transporter substrate-binding protein 

[Rhodococcus hoagii] encoded by the gene REQ_08150 is located between the two-NRPS system 

predicted to synthesise rhequibactin. While no further elucidations can be made without experimental 

evidence, the genomic analysis in combination with literature reviews for Gram-positive transport 

systems provide a valuable insight to candidates for future characterisation of iron-regulatory 

transport systems within R. equi, which are currently undefined. 

The mechanism around cellular exportation of siderophores to sequester the iron for survival is 

currently not well described, with literature (mainly described in Gram-negative bacteria) elucidating 

transport is likely to occur using members of the major facilitator superfamily (MFS)-type transporter 

and are typically transcriptionally regulated by the ferric uptake repressor Fur. 

Rhequibactin, like other siderophores, potentially features aromatic rings and side-chains capable of 

binding ferric iron, these characteristics are likely to prevent passive diffusion through the lipid 

domain of the membrane and suggest that cellular export is an active process. The membrane protein 

with homology to the MFS-class efflux pump suggests that the protein encoded by REQ_08180 

functions as a rhequibactin exporter similar to EntS for enterobactin. 
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Figure 3-22: Proposed siderophore mediated uptake and transport of iron employed by S. 
coelicolor using an ABC-transporter system – ChhCDEF. 
CchF - lipoprotein receptor, CchCD – membrane spanning permeases, CchE – ATPase.  Ferrous iron 
is predicted to be released intracellularly from the ferric-siderophore complex by reduction (Challis, 
2008). 
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Table 3-14:BlastP results for NP_624811.1 iron-siderophore binding lipoprotein [Streptomyces coelicolor A3(2)] restricted to TxID: Rhodococcus equi 103S  
Database:All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF excluding environmental samples from WGS projects, Lipoprotein prediction 

were also calculated using PRED-LIPO and reliability scores given (Bagos et al., 2008). Greyed out results indicated incompatibility for orphan gene prediction. 

Description Score Query 
cover 

E 
value 

Ident Accession Gene ID Associated genes in operon  Lipo 
signal  

Lipo 
reliability 
score 

MULTISPECIES: iron-siderophore ABC 

transporter substrate-binding protein 

[Rhodococcus] 

155 95% 4e-45 35% WP_013415831.1 REQ_20510 

 

none Yes 1.000 

iron-siderophore ABC transporter substrate-

binding protein [Rhodococcus hoagii] 

154 95% 7e-45 35% WP_013414625.1 REQ_03550 

 

fmn flavoprotein Yes 0.995 

iron-siderophore ABC transporter substrate-

binding protein [Rhodococcus hoagii] 

150 82% 2e-43 34% WP_013416507.1 REQ_29940 

 

puromycin N-acetyltransferase, S9 family 

peptidase 

Yes 0.967 

iron-siderophore ABC transporter substrate-

binding protein [Rhodococcus hoagii] 

114 86% 1e-29 30% WP_013417129.1 REQ_39540 

 

none Yes 0.997 

MULTISPECIES: iron-siderophore ABC 

transporter substrate-binding protein 

[Rhodococcus] 

89.4 77% 1e-20 29% WP_005515932.1 REQ_04870 

 

none Yes 0.996 

Fe2+-enterobactin ABC transporter 

substrate-binding protein [Rhodococcus 

hoagii] 

80.9 90% 7e-18 29% WP_013414617.1 REQ_03460 

 

none Yes 0.493 

iron-siderophore ABC transporter substrate-

binding protein [Rhodococcus hoagii] 

75.1 79% 7e-16 27% WP_013416640.1  REQ_31890 

 

none Yes 0.998 

iron ABC transporter substrate-binding 

protein [Rhodococcus hoagii] 

33.5 82% 0.024 24% WP_013417667.1  REQ_47000 

 

None, but upstream of two iron ABC 

permeases and a iron ABC transporter ATP-

binding protein 

Yes 0.995 

putative ABC transporter substrate binding 

lipoprotein [Rhodococcus hoagii 103S] 

25.4 28% 9.8 23% CBH48336.1 REQ_22900 

 

Heme oxygenase and associated permease 

and ATP-binding protein. 

Yes 0.993 
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Table 3-15: BlastP results for NP_830222.1 ferrichrome-binding protein [Bacillus cereus ATCC 14579] restricted to TxID: Rhodococcus equi 103S 
 Database: All non-redundant GenBank CDS translations+PDB+SwissProt+PIR+PRF excluding environmental samples from WGS projects, Lipoprotein prediction 

were also calculated using PRED-LIPO and reliability scores given (Bagos et al., 2008). Greyed out results indicated incompatibility for orphan gene prediction. 

Yellow highlighted result indicated a significant result of interest. 

Description Score Query 
cover 

E 
value 

Ident Accession Gene ID Associated genes in operon  Lipo 
signal 

Lipo 
reliability 
score 

CchF 
search 

iron-siderophore ABC transporter 

substrate-binding protein [Rhodococcus 

hoagii] 

65.5 83% 7e-13 27% WP_013416640.1 REQ_31890 none Yes 0.998 Yes 

iron-siderophore ABC transporter 

substrate-binding protein [Rhodococcus 

hoagii] 

58.5 51% 2e-10 32% WP_013414625.1 REQ_03550 fmn flavoprotein Yes 0.995 Yes 

Fe2+-enterobactin ABC transporter 

substrate-binding protein [Rhodococcus 

hoagii] 

54.7 82% 3e-09 24% WP_013414617.1 REQ_03460 none Yes 0.493 Yes 

ABC transporter substrate-binding 
protein [Rhodococcus hoagii] 

52.4 58% 2e-08 23% WP_005515427.1 REQ_08150 none 

situated between dual NRPS 
system encoding rhequibactin 

Yes  0.998 No 

iron-siderophore ABC transporter 

substrate-binding protein [Rhodococcus 

hoagii] 

49.7 78% 1e-07 26% WP_013416507.1 REQ_29940 puromycin N-acetyltransferase, S9 

family peptidase 

Yes 0.967 Yes 
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3.7 A bioinformatic analysis into transcriptional control of iron-responsive 

genes 

Bacterial iron acquisition (as previously discussed) is typically regulated by iron-responsive proteins 

belonging to the metalloregulator families Fur and DtxR. These transcriptional regulators sense the 

appropriate metal ions and upon binding to the cognate metal, can either activate or prevent DNA 

operator binding. Metalloregulatory co-repressors are of particular interest in managing metal-

homeostasis, as the corepressor-operator association prevents RNA polymerase binding thereby 

inhibiting the initiation of gene transcription. 

 

 The protein IdeR, appears to be well conserved within rhodococci (demonstrated earlier), as well as 

being essential for mycobacteria (Rodriguez et al., 2002a). it is both a structural and functional 

homologue of DtxR from Corynebacterium diphtheriae (Kunkle and Schmitt, 2003) and in 

Mycobacterium smegmatis functions as a co-repressor responsible for iron-dependent repression of 

siderophore biosynthesis (Dussurget et al., 1999). 

IdeR, like Fur and DtxR, has been experimentally confirmed to allosterically bind iron and interact 

with a defined sequence (known as the iron-box) in the operator regions of iron-regulated genes to 

control their transcription. Previously, Rodriguez et al. (2002a) performed global expression 

profiling with DNA microarrays comparing wild-type M. tuberculosis H37Rv with an ideR mutant 

derivative to compile a list of gene candidates repressed by IdeR. This definition of the IdeR 

regulome facilitated a comparison of known IdeR operator sequences from M. tuberculosis and the 

proposal of a 19-bp consensus iron box sequence. 

3.7.1.1 Identification of R. equi 103S co-repressor recognition sequences  

Given the inherent similarities between rhodococcal and mycobacterial regulatory systems, it was 

feasible to hypothesise that rhodococci would utilise an orthologous iron-regulatory mechanism 

through allosteric co-repression. The IdeR operator sequence of the Mycobacterium smegmatis fxbA 

gene was initially used as a template to identify any putative rhodococcal iron-boxes. 
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Although no identical sequence matches were identified, allowing up to 4 nucleotide mismatches 

facilitated a list of candidates to be produced, the sequences were then compared using ClustalΩ 

1.2.4 multiple sequence alignment to identify conserved nucleotides and produce a putative R. equi 

iron-box consensus sequence Figure 3-23, as well as a nucleotide logo comparison between a 

consensus of identified ideR binding sites and the canonical iron box consensus, from which there 

was minimal difference. 

Msm fxbA      aaaggtaaggcttaccaat 

IdeRb10       gctggttaggctcgccgcc 19 

IdeRb11       cgcggttaggctcgccatt 19 

IdeRb7        tgcggttaggctccccgtc 19 

IdeRb8        gtaggttaggctccccttc 19 

IdeRb12       ctcggttaggctcccctat 19 

IdeRb1        gaaggttagcctttgctat 19 

IdeRb6        ttaggttagccttcgctcc 19 

IdeRb9        cgaggttagcctatcctgc 19 

IdeRb3        aaaggttagcctaaccgta 19 

IdeRb5        attggttagcctaaccgaa 19 

IdeRb13       ttaggttaggctcaccact 19 

IdeRb2        tacggttagcctaaccttt 19 

IdeRb4        ttcggttagcctaaccaat 19 

                 ****** **   *    

Consensus     nnnggttagsctnnscnnn 

Figure 3-23: Multiple sequence alignment of putative iron-box operators in the R. equi 103S 
chromosome, using the experimentally verified iron-box from fxbA in Mycobacterium 
smegmatis as a template.  
N = A, C, G, or T; W = A or T; S = C or G; V = A, C, or G. Solid boxes (black) indicate a 
predominance of one nucleotide in the IdeR binding site sequences.  

 

To identify if the recognition sequences function as an iron-responsive operator, the genomic context 

of the putative IdeR binding sites was also considered (Table 3-16). To be considered a canonical 

operator sequence, the recognition sequence should be present on the DNA strand upstream of the 

gene of interest, to allow the RNA polymerase to drive transcription as shown in the example, Figure 

3-24. 
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Figure 3-24: The basic structure of prokaryotic transcriptional de-repression.  
The binding of RNA polymerase to the promotor is prevented by the repressor binding to the DNA 
at the operator. De-repression occurs when an inducer (given as iron above) binds to the repressor, 
The operator-DNA binding affinity is reduced facilitates transcription by allowing RNA polymerase 
access to the promoter driving gene expression. 

Table 3-16 lists the putative iron boxes, further identifying chromosomal coordinates, the recognised 

sequence, genomic location and context, as well as associated gene ID and annotations. The 

SnapGene sequence visualiser and search function allowed for rapid identification of sequence 

context, and as such the candidate list could be further categorically refined by: Canonical de-

repression, non-canonical and potentially random encounters. 

Firstly, the canonical de-repression operons identified include IdeRB1 upstream of a putative 

lysine/ornithine N-monooxygenase (REQ_07640), a gene predicted to facilitate hydroxylation of L-

ornithine to N5-hydroxyornithine in the production of the siderophore rhequichelin.  

Interestingly, IdeRB2/3 utilises a perfectly palindromic recognition sequence 5’- ggttagcctaacc – 

3’on both DNA strands to potentially inhibit transcription in both directions, this would be 

functionally useful as downstream genes in either direction is directly relevant to bacterial iron 

sequestration employing the putative siderophore rhequibactin. Downstream of the IdeRB2 site is 

the non-ribosomal peptide synthetase (REQ_08140) predicted to synthesise rhequibactin, 
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furthermore Downstream of IdeRB3 the operon (REQ_08130, REQ_08120, REQ_08110) is 

predicted to produce the rhequibactin precursor catechol moiety 2,3-dihydroxybenzoic acid.  

IdeRB5 and IdeRB8 recognition sites are upstream of genes encoding a substrate-binding lipoprotein 

(REQ_08150) and an ABC transporter substrate-binding protein (REQ_20510) respectively, likely 

to be involved with the uptake of a ferri-siderophore complex across the cytoplasmic membrane, and 

is consistent with the predictive functional analysis performed earlier on iron transport methods in 

R. equi. 

Additionally, IdeRB11 is another example of a canonical iron-box recognition site upstream of a 

gene predicted to express a putative glutamate dehydrogenase (REQ_30320), which is noteworthy 

as most bacteria require a large intracellular pool of glutamate to provide amine groups for amino 

acid synthesis (Miethke et al., 2006), and consequently, a range enzymes in amino acid biosynthesis 

pathways are iron-dependent therefore iron starvation may consequently instigate amino acid 

starvation. 

The final canonical iron-box recognition site IdeRB13 is located upstream of an operon predicted to 

encode an ABC transporter system consisting of a substrate-binding protein, two transmembrane 

proteins and an ATPase (REQ_47000-47030). The localisation of the iron-box upstream of a 

complete ABC transport system suggests that this may be one of the established mechanisms of 

cellular importation of iron utilised by R. equi, however this would need to be verified 

experimentally. 

Unlike the aforementioned iron-boxes sequences, the R. equi chromosome also appears to contain a 

series of non-canonically located recognition sites for transcription repression.  Considering the 9 

strictly conserved bases of the recognition sequence (Figure 3-23) and assuming random sequence 

distributions, then one would expect to encounter the sequence every 49 nucleotides and thus find 19 

instances on the chromosome. 

IdeRB9 is a non-canonical iron-box recognition sequence located in the promoter for a heme 

oxygenease and ABC transport operon on the sense strand, however the operon ORF is divergently 

transcribed on the anti-sense DNA strand. Therefore, possible answers may include the theory 

mentioned about regarding repression of both DNA stands, or, potentially an alternative recognition 
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sequence may be utilised. This could be further explored experimentally, using a chIP on chip or 

chIP-seq analysis methodologies to explore the significance of transcription factor binding sites 

(Mundade et al., 2014; Pillai and Chellappan, 2015).   
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Table 3-16: Identification of putative iron boxes in the R. equi 103S chromosome with consideration of genetic context. 
The chromosomal coordinates, the recognised sequence, genomic location and context, as well as associated gene ID and annotations are identified in respective 
columns. 

IdeR 
Binding 
site 

Gene ID Coordinates Recognition 
sequence 5’ - 
3’ 

Location  Gene annotation / function 

ideR b1 REQ_07640 806,825 .. 
806,837 

ggttagcctttgc Intergenic –  
recognition site 
present upstream of 
gene 

 

putative lysine/ornithine N-
monooxygenase 

ideR b2/3 REQ_08130 

REQ_08120 

REQ_08110 

 

REQ_08140 

854,947 .. 
854,959 

ggttagcctaacc Palindromic 
intergenic –  
recognition site 
present upstream of 
both genes 

 

isochorismate synthase 

short chain dehydrogenase 

2,3-dihydroxybenzoate-
AMP ligase 

 

non-ribosomal peptide 
synthetase 

ideR b4/5 REQ_08150 862,836 .. 
862,848 

ggttagcctaacc Palindromic,  

intergenic –  
recognition site 
present upstream of 
sense-strand 
encoding gene. Non-
intergenic –  
recognition site 
present present on 
antisense strand. 

 

substrate-binding 
lipoprotein 
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ideR b6 N/A 1,137,709 .. 
1,137,721 

ggttagccttcgc Non-intergenic–  
recognition site 
present present on 
sense-strand 

  

N/A 

ideR b7 REQ_15910 

 

REQ_15900 

1,662,459 ..  
1,662,447 

ggttaggctcccc Non-intergenic –  
recognition site 
present, near end of 
gene, prior to stop 
codon. Also 
upstream of 
additional gene. 

 

MFS transporter 

 

Hypothetical protein 

ideR b8 REQ20510 2,162,443 .. 
2,162,431 

ggttaggctcccc intergenic –  
recognition site 
present upstream of 
encoding gene. 

 

ABC transporter substrate-
binding protein 

ideR b9 REQ_22910 

REQ_22900 

REQ_22890 

REQ_22880 

2,411,889 .. 
2,411,901 

ggttagcctatcc Non-intergenic – 
recognition site 
present on sense 
strand, with both up 
and downstream 
genes read from 
antisense strand.  

heme oxygenase 

ABC transporter substrate-
binding protein 

ABC transporter 
transmembrane protein 

ABC transporter ATPase 

ideR b10 REQ_27140 2,864,472 .. 
2,864,460 

ggttaggctcgcc Non-intergenic – 
recognition site 
present in the middle 
of gene 

 

non-ribosomal peptide 
synthetase 
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ideR b11 REQ_30320 3,217,638 .. 
3,217,626 

ggttaggctcgcc intergenic -  
recognition site 
present upstream of 
gene on antisense 
strand.  

putative glutamate 
dehydrogenase 

ideR b12 REQ_33100 3,521,446 .. 
3,521,434 

ggttaggctcccc Non-intergenic - 
recognition site 
present on antisense 
strand, with both up 
and downstream 
genes read from 
sense strand.  

putative diacylglycerol 
kinase family protein 

ideR b13 REQ_47000 

REQ_47010 

REQ_47020 

REQ_47030 

 

4,995,347 ..  
4,995,359 

ggttaggctcacc intergenic -  
recognition site 
present upstream of 
gene on sense strand. 

 

ABC transporter substrate-
binding protein 

ABC transporter 
transmembrane protein 

ABC transporter 
transmembrane protein 

ABC transporter ATPase 
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3.8 Summary of the bioinformatic investigation 

While very little is known regarding R. equi iron regulation, previously literature highlights that these 

iron regulatory proteins are responsible for controlling siderophore biosynthesis and transport. The 

working hypothesis and currently known literature regarding iron homeostasis is summarised in 

Figure 3-25, detailing the core functions predicted to regulate intracellular iron levels within R. equi. 

Firstly, a cellular response to iron starvation; according to literature, R. equi is unusual in that it does 

not produce sufficient siderophore under iron limitation to be detected in a Chromazurol S assay, 

however it undoubtedly has the capacity to produce multiple siderophoric compounds. Secondly, R. 

equi is likely to have a mechanism responsible for prevention of oxidative stress, through a variety 

of control parameters likely to include intracellular iron storage, repression of iron uptake 

mechanisms and detoxification of reactive oxygen species. These themes are explored in detail 

throughout this thesis. 

The bioinformatics analysis has established that the possession of two each of the Fur and IdeR/DtxR 

families of repressors is common in rhodococci and related genera.  It is unlikely that all of these 

proteins co-repress their regulons with ferrous iron and interactions with other metals and discrete 

physiological roles have been described in other bacteria (see later in Chapter 4).  Each of these four 

regulators was considered as a target for molecular cloning and expression techniques, in order to 

facilitate regulator-binding site analysis with pull-down assays or physio-chemical analysis such as 

ICP-OES analysis to confirm metalloprotein binding site specificities.  Additionally, each of the 

regulator genes was targeted for unmarked in-frame gene deletion, in order to define their influence 

individually on rhodococcal physiology.  Ultimately, transcriptomes could be defined relating to R. 

equi response to iron limitation and the definition of individual repressor regulons in the mutants. 

Analysis of the biosynthetic gene clusters predicted to synthesise the siderophores, also aids 

experimental analysis, including use of the putative structures in a targeted metabolomic approach 

for siderophore identification and characterisation.
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Figure 3-25: An R. equi iron homeostasis network map generated from the preliminary genomic survey and current literature. 
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4 Predicted Metal-binding capacities for the putative 

metal-dependent regulators of Rhodococcus equi 

103S 
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4.1 Introduction to metalloregulation 

The first row of d-block ions, especially manganese, iron, cobalt, nickel, copper, and zinc are 

essential to cell function, whether it be for stabilising biomolecular structure, their role in metal-

sensing signal transduction systems, or acting as cofactors for metalloenzymes. Despite their 

essential roles, if present to excess they can exert a toxic effect (Ma et al., 2009). 

Bacteria have evolved transition metal homeostatic systems that can employ metalloregulatory 

proteins to effectively sense intracellular bioavailability and either scavenge the metals when they 

are in poor supply and may sequester or export them oversupplied (Higgins and Giedroc, 2013).  

Additionally, there are also metallochaperone components which manage their intracellular transit 

to the site of use (O'Halloran and Culotta, 2000).  

Most bacteria utilise an array of DNA-binding transcriptional regulators to manage the homeostasis 

of transition metals. Typically, this type of regulator forms a coordination complex with a specific 

metal, to activate or inhibit binding to a DNA operator, limiting access to, and activity of RNA 

polymerase thereby regulating expression of downstream genes such as metal transporters, 

chaperones and metallo-storage proteins (Capdevila et al., 2017). 

4.2 A brief review of iron-dependent regulatory protein families 

 

The Fur protein was originally described in E. coli as an iron-sensing repressor responsible for 

regulation of gene expression relating to iron acquisition (siderophore) and transport methods 

(Stojiljkovic et al., 1994). Fur is frequently described as a global transcriptional regulator responsible 

for over 90 genes encoding both proteins and noncoding RNAs and involved in regulation of iron 

and prevention of oxidative stress, acid tolerance  and production of toxins and other virulence factors 

(Litwin and Calderwood, 1993). Often described as a positive metal-dependent repressor, it represses 

transcription upon coordination with the metal co-repressor Fe (II) (although Fur is able to bind other 

related transition metals to a lesser effect in vitro) and is de-repressed in its absence by blocking of 

target gene transcription. 
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Typically, bacteria utilise members of the Fur superfamily in regulation of iron and zinc metabolism 

using transcriptional repression with Fur (ferric uptake regulator) or Zur (Zinc uptake regulator) 

proteins respectively (Fillat, 2014; Hantke, 2001). However, other members of the Fur superfamily 

have been functionally characterised, that are responsible for sensing and regulating homeostatic 

control in a diverse range of metals (Lee and Helmann, 2007)  including Mur (manganese uptake 

regulator) (Diaz-Mireles et al., 2005), Nur (nickel uptake regulator) (An et al., 2009) as well as Irr (a 

haem-responsive regulator) (Kobayashi et al., 2016).  

An additional member of the Fur superfamily – PerR, a peroxide stress response repressor is often 

found in Gram-positive organisms and due to the profound relationship between iron metabolism, 

free-radical production and the regulation of genes associated in response to oxidative stress it is 

quite common to find interactivity between PerR and Fur regulators, as well as extensive overlapping 

between both associated regulons (Fillat, 2014). 

4.2.1.1 Understanding the features of the Fur family proteins  

The canonical mechanism utilised for regulation by Fur proteins is typically by binding as a dimer 

to palindromic A/T-rich sequences found in the promoter region of the target gene using a metal co-

factor for co-repression (Bagg and Neilands, 1987). This metal coordination facilitates a 

conformational change of the metalloregulatory protein to both stabilise and promote DNA 

interaction (Fillat, 2014).  

The average length of a Fur superfamily protein is approximately 120 amino acids, and the common 

structural fold associated Fur proteins is comprised of an N-terminus winged-helix DNA-binding 

domain, and mechanistic regulatory located in the C-terminal region that are specific to metal 

regulator nature; while also facilitating dimerisation. The superfamily typically features a conserved 

region rich in histidine and cysteine residues represented by the motif HHHXHX2CX2C that is 

located at the beginning of the dimerisation domain, after a hinge region present between the DNA-

binding domain and the C-terminus (Capdevila et al., 2017). 

Often described as homodimeric DNA-binding proteins, members of the Fur superfamily typically 

comprise up to three metal binding sites; a regulatory metal binding site, a structural zinc binding 

site and occasionally a secondary metal site that utilises ligands derived from the C-terminal 
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regulatory domain and is interlinked with metal ligands that coordinate with the primary metal ion 

(Capdevila et al., 2017). 

4.2.1.2 Fur protein superfamily: metal-coordination 

The primary regulatory metal binding site of Fur family proteins is located at the start of the 

dimerisation domain. In all known cases the primary binding occurs in a high-affinity metal-sensing 

site located in the hinge region between the DNA-binding domain and the dimerisation domain.  The 

metal coordination in this primary site is believed to engage amino acids from both domains of the 

regulator to stabilise a ‘closed calliper’ formation of the dimer that in turn can stabilise its interaction 

with the DNA operator (Capdevila et al., 2017). Further to this, the Fur superfamily of proteins are 

a great example of how transition metal selectivity can be regulated by discrete modifications of 

coordinating ligands to facilitate an allosteric regulatory mechanism for the desired primary metal 

ion (Capdevila et al., 2017; Ji et al., 2018). This allosteric mechanism employed by Fur/PerR proteins 

to bind Fe (II) or Mn (II) is facilitated in a penta-coordination using three Histidine and two aspartic 

acid/glutamic acid residues comparative to Zur proteins utilising a tetra-coordination, with two 

Histidine residues, one aspartic acid/glutamic acid residue, and one cysteine residue to bind Zn (II) 

(Fillat, 2014; Ji et al., 2018).The primary/regulatory metal coordination is likely required to stabilise 

the dimer at the hinge region and allow formation of a DNA-binding calliper form, increasing the 

affinity approximately 1000-fold  thereby accounting for Fur activation as described by Deng et al. 

(2015). 

The structural zinc (II) binding site mentioned previously, is highly conserved among the Fur 

superfamily, the coordination groups are consistently comprised of four cysteine residues (also 

known as a Cys4 zinc finger) (Fillat, 2014), readily identifiable within amino acid sequences by a 

CXXC motif and is essential to promote stability within the C-terminal dimerization domain as zinc-

binding motifs are stable configurations and seldom produce conformational changes upon binding 

(Tang et al., 2014). While the use of two CXXC motifs is widely accepted to be responsible for 

coordination of structural sites, there are a few exceptions to the rule, notably S. coelicolor’s Nur, 

which was found to lack this zinc-coordinated structural site, even under reducing conditions for 

crystal growth to prevent oxidation of the cysteine residues (An et al., 2009). 
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4.2.1.3 Understanding the activation of Fur: The Fur box 

The iron (II)-Fur protein-complex model has been well established to regulate activation through 

recognition and binding to the upstream promoter region of Fur-repressed genes. 

Fur targets a characteristic 19-bp AT-rich palindromic sequence, known as the ‘Fur box’. A 19-bp 

consensus sequence was derived from analysis of promoter regions of Fur-regulated genes (Escolar 

et al., 1999). Only one promoter matched the consensus sequence identically, with a match of 14-15 

bp being common, with a minimum of 11 matched bases being required for recognition (Baichoo et 

al., 2002). A comparison of models was performed to explain the Fur box consensus sequence is 

given in Figure 4-1. 

. 

Figure 4-1: Model comparisons to explain the Fur box consensus sequence  
(A) The classical 19-bp inverted repeat sequence, originally thought to bind a single Fur dimer. (B) 
An alternative model comprised of three GATAAT motifs in a head-to-head-to-tail (6-6-1-6) array, 
suggesting that Fur binds to a repeated array of the hexamer GATAAT. (C) Baichoo’s model 
suggesting that 19-bp Fur box results from two overlapping heptamer inverted repeats [(7-1-7)2] that 
together define a 21-bp sequence. (Baichoo et al., 2002).  
 

Interestingly, Calderwood and Mekalanos (1988) identified that insertion of this Fur box recognition 

sequence into an operator site of a promoter upstream of a non-iron-regulated gene, inclusion led to 

transcriptional repression that was relieved under iron limitation. 

 

The DtxR family of metalloregulatory proteins includes two major subfamilies that act as sensors of 

Fe(II) and Mn(II) and global regulators in Gram-positive organisms.  The prototype DtxR is 

associated with the iron-dependent regulation of the diphtheria toxin in Corynebacterium diphtheriae 

(Tao et al., 1994). Due to their prominence as global pathogens and the association with iron 
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regulation of important virulence factors C. diphtheriae DtxR and a Mycobacterium tuberculosis 

homologue IdeR have been extensively studied; both are responsible for regulating gene expression 

associated with bacterial iron transport and storage (Rodriguez et al., 2002b; Tao et al., 1994).  

4.2.2.1 DtxR protein family: domain architecture and metal coordination  

Although the DtxR transcriptional response is highly specific for iron in vivo (Schmitt et al., 1995) , 

in vitro analyses demonstrated that the metal coordination sites can often accommodate other 

divalent cations such as cobalt (II) or nickel (II), and subsequent DNA-binding can often occur (Qiu 

et al., 1995). Most of the resolved crystal structures for DtxR and associated homologues are 

characterised using an alternative cation such as cobalt or nickel. Surprisingly however, there have 

been no crystal structures resolved containing the cognate ferrous ion, this is likely due to the order 

relative stabilities of complexes formed by transition metal known as the Irving-Williams series, in 

which the stability of complexes formed by divalent first-row transition metal ions typically increase 

following the order of  Mn(II) < Fe(II) < Co(II) < Ni(II) < Cu(II) > Zn(II) (Irving and Williams, 

1953). 

The general structure of the DtxR-family of proteins consist of firstly, an N-terminal DtxR-type 

helix-turn-helix domain, that is comprised of approximately 65 amino acids conserved within the 

DtxR-like protein family. This winged helix motif comprises two wings, three a-helices and three 

b-sheets. Functionally this serves, to facilitate DNA-binding as the DNA-recognition helix makes 

sequence-specific DNA interactions with the major groove of DNA, while the wings make 

complimentary DNA contacts, often within the minor grooves or with the DNA backbone (Mitchell 

et al., 2019). In addition to this the DtxR-family also contains a dimerization domain in the C-

terminal region that includes two metal-coordination sites, and an SH3-like domain extension (Feese 

et al., 2001) thought to enrich the DNA-binding affinity by stabilisation of protein-protein 

interactions (Mitchell et al., 2019).  

The two metal binding sites described for the DtxR-family proteins have previously been 

characterised in Corynebacterium diphtheriae DtxR and M. tuberculosis IdeR, and can be 

differentiated by their function, firstly the primary regulatory site and a structural ancillary site.  
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The ancillary site has previously been observed to be occupied in all high-resolution crystal structures 

of DtxR determined in the presence of divalent metal ions, and was found to be tetrahedrally 

coordinated by side chain ligands of His79, Glu83, His98, and a sulphate ion with equivalent ligand 

groups identified for DtxR homologues, suggesting a conservation within the superfamily (Pohl et 

al., 1999). Coordination within this ancillary binding site is hypothesised to increase allosteric 

activation of the primary metal sensing site (Capdevila et al., 2017). 

In wild type DtxR, the primary metal-coordinating site has only been observed to be partially 

occupied in Cd-DtxR and Mn-DtxR structures. In both of those cases, the metal appears to be 

coordinated by Glu105, His106 side chains,  the main chain carbonyl oxygen of Cys102, and a water 

molecule (Pohl et al., 1998). Site-directed mutagenesis studies were performed based upon reports 

that lack of metal coordination may be due to the oxidation or other modification of Cys102 (Qiu et 

al., 1995). Structures of mutant C102D DtxR proteins were resolved in holo-form in the presence of 

NiCl2 from which six metal-coordinating ligands included Met10, Asp102, Glu105, His106, the main 

chain of Asp102 and a water molecule, form an octahedral geometry.  

Interestingly these coordinating ligands are fully conserved in the DtxR homologue IdeR from M. 

tuberculosis, from which a crystal structure (1FX7) was resolved with a primary Co(II) cofactor 

under pentavalent coordination with distorted trigonal bipyramidal geometry (Feese et al., 2001), 

this was likely due to the , the ionic radii of Co (II) and Fe (II) are distinctly analogous and although 

the native ligand for DtxR-like proteins is Fe(II), other divalent cations including nickel, cobalt, 

manganese, and zinc have also been shown to bind to and activate the regulators in vitro. 

However, some DtxR-like proteins have been identified to control de-repression of two metal ion 

transport systems in response to manganese(II) but not iron(II) and as such coordinate the metal 

ligand using a binuclear geometry (Cong et al., 2018; Que and Helmann, 2000).  

 

4.2.3.1 Divalent metal homeostasis in Bacillus subtilis  

A review by Helmann (2014) discusses the bacterial response to metal ion sufficiency, in that B. 

subtilis utilises MntR to regulate manganese homeostasis, as well as two Fur-family paralogs Fur 
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and Zur to principally regulate intracellular iron and zinc levels respectively, while an additional Fur-

family paralog PerR, is responsible for regulation of  peroxide response genes . 

Functioning as a metal-dependent peroxide sensor by transcriptional repression in B. subtilis, PerR 

has the ability to coordinate with Mn(II) or Fe(II) to facilitate DNA-binding both in vitro and in vivo.  

The protein PerR in B. subtilis is an archetypal example of the family of metal-containing peroxide 

sensors that are found in an extensive range of bacteria. (Ma, 2013)(Ma, 2013)The global regulon of 

PerR is diverse in nature, containing itself, a catalase gene KatA, an alkyl hydroperoxidase AhpCF, 

haem biosynthetic genes, as well as the iron-storage protein MrgA, a Zn(II) uptake transport gene 

ZosA, and the global iron homeostasis regulator Fur. This diverse nature of PerR regulated genes, 

advocates a deep-rooted relationship between management of the cellular peroxide stress response 

and the cellular homeostasis of divalent metal cations. 

The transcriptional response to changes in iron availability by B. subtilis, is coordinated using Fur to 

sense intracellular iron availability. The B. subtilis Fur regulon has been well characterised over the 

years and includes over 50 genes responsible for iron uptake systems, siderophore biosynthesis and 

transport mechanisms as well as xenosiderophore equivalents (Pi and Helmann, 2017). 

Conventionally, Fe(II)-coordinated Fur binds the Fur-box DNA region with high affinity and 

represses the transcription of these genes to maintain adequate iron homeostasis, to prevent cellular 

toxicity or oxidative effects. 

4.2.3.2 Divalent metal homeostasis in M. tuberculosis 

A review by Zondervan discussed a trio of virulence strategies employed by M. tuberculosis 

including: immune modulation, dormancy and phagosomal rupture, specifically discussing the role 

of divalent metals in the associated regulatory mechanisms (Zondervan et al., 2018).  The review 

highlights the use of the divalent metals iron, zinc and manganese, and how they are regulated by 

IdeR (Pandey and Rodriguez, 2014) , Zur (Maciag et al., 2007) and MntR (Papp-Wallace and 

Maguire, 2006) respectively. The binding of co-factor iron (II) into the regulatory metal site of IdeR 

and zinc (II) into the structural metal site, stabilises dimer formation increasing binding capacity to 

sites involved in gene suppression. 
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4.3 Putative gene selections 

At the outset, the aims relating to the Fur and DtxR superfamily members of R. equi 103S identified 

in Chapter 3 were to characterise these proteins by a combination of molecular cloning to support in 

vitro analysis of metal and DNA binding and unmarked in-frame deletion mutagenesis to establish 

their regulons.   

4.4 Strategy 1 – Molecular cloning, overexpression and in vitro 

characterisation of metal regulatory proteins 

 

The nucleotide sequence data for the open reading frames (ORF) that encode the metal regulatory 

genes of interest (ideR, dtxR, furA and furB) was retrieved from the Rhodococcus equi 103S entry 

(accession: FN563149.1) in the National Centre for Biotechnology Information (NCBI) nucleotide 

database (https://www.ncbi.nlm.nih.gov). The aim of the molecular cloning was to produce native 

proteins in a heterologous host (E. coli) and to attempt to purify these based using Heparin agarose; 

a common approach taken for DNA-binding proteins. The use of artificial tags to promote 

purification was avoided in case such modifications influenced protein function; the use of a 

hexahistine-tags was particularly avoided due to the likelihood of their interference with downstream 

metal binding analyses. 

The oligonucleotide primers (section 2.4.2) were designed in pairs to amplify the gene region of 

interest, the length of the primers was kept between 32 and 36 base pairs, with differences in primer 

melting temperatures being limited to a maximum 5 °C difference for each pair. Restriction 

endonuclease recognition sites were introduced to facilitate ligation with the vector of choice. The 

regions of interest were amplified by polymerase chain reaction (PCR) using Q5 polymerase (New 

England Biolabs) using Rhodococcus equi 103S genomic DNA as a template (as described in Section 

2.3.3). The PCR procedure was performed without an annealing step given that the primer melting 

temperatures exceeded the PCR extension step temperature of 72 °C. The gene of interest and 

amplicons sizes produced via PCR are given in Table 4-1.  
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Table 4-1: Metal-dependent regulatory genes of interest  
Gene of interest (locus ID) Length (base pairs) 

 Gene Amplicon 
ideR (REQ_20130) 687 
dtxR (REQ_19260) 717 
furA (REQ_04740) 555 
furB (REQ_29120) 447 

The reaction products were analysed using agarose gel electrophoresis (Figure 4-2); and each 

appeared to produce single DNA bands consistent with the expected amplicon size (Table 4-1). 

However, due to the presence of potential primer dimers formed, the bands of interest were excised 

from the gel and the DNA purified as previously described in section 2.3.6. 

 

  Figure 4-2: PCR amplification of four putative R. equi iron regulatory genes. 
M = NEB 100 bp ladder. Analysed on a 1 % agarose electrophoresis gel with Sybr safe DNA stain 
and imaged using Quantity One (Bio-Rad) imaging software. 

 

The purified DNA amplicons and the vector pET23b(+) were prepared for cloning by digestion using 

NdeI/NotI restriction endonucleases and subsequent ligation as previously described in section 2.7.2. 

The cloning strategy is depicted in Figure 4-3 and available in Chapter 4 Appendices. 
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Figure 4-3: Strategy for cloning of R. equi metal regulators in pET23b.  
The same approach was taken for each gene and here the ideR amplicon is used as an illustrative 
example .  Each amplicon  was generated by PCR using primers listed in Table 2-7 and R. equi 103S 
genomic DNA as a template.  Amplicons and plasmid DNA were prepared for cloning by digestion 
with restriction endocnucleases NdeI and NotI before ligation with T4 DNA ligase.  
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Recombinant plasmids were selected by transformation of competent E. coli XL-10 Gold cells, 

where transformants acquired ampicillin resistance; transformant clones were examined using 

colony PCR to detect incorporation of the PCR amplicon into the vector.  

Positive colony PCR results detecting amplicon incorporation into the vector pET23b was initially 

achieved for genes furA and furB (Figure 4-4) and subsequently both ideR (Figure 4-5) and dtxR 

(Figure 4-6). These samples were sent to GATC biotech for Sanger sequencing confirmation using 

the T7-minus1 sequencing primer, which returned at least one plasmid isolate of each type without 

nucleotide insertion or mutation. 

 

Figure 4-4: Colony PCR confirming amplicon incorporation for furA and furB.  
Lane M = Hyperladder 1kb plus molecular marker. Analysed by 1 % agarose gel electrophoresis, 
DNA stained using SYBR Safe; imaged using Quantity One (Bio-Rad) imaging software. 
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Figure 4-5: Colony PCR confirming amplicon incorporation for ideR.   
Lane M = Hyperladder 1kb plus molecular marker. Analysed by 1 % agarose gel electrophoresis, 
DNA stained using SYBR Safe; imaged using Quantity One (Bio-Rad) imaging software. 

 

Figure 4-6 Colony PCR confirming amplicon incorporation for dtxR.  
Lane M= Hyperladder 1kb plus molecular marker. Analysed by 1 % agarose gel electrophoresis, 
DNA stained using SYBR Safe; imaged using Quantity One (Bio-Rad) imaging software. 

 

To facilitate gene expression, E. coli BL21 (DE3) were transformed using the recombinant plasmids. 

Both recombinant Fur-family plasmids (pET23b-furA; pET23b-furB) were generated transformants. 

Interestingly however, transformation of this strain with the DtxR-family constructs was 

unsuccessful on multiple occasions.  This failure to generate transformants indicated a toxicity 
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related issue, therefore both DtxR-family recombinant plasmids (pET23b-ideR; pET23b-dtxR) were 

used to transformed Overexpress C41 (DE3), a strain that was phenotypically selected for conferring 

tolerance to toxic proteins. Using this approach transformants were successfully isolated. 

Induction of recombinant gene expression using isopropyl β- d-1-thiogalactopyranoside (IPTG) was 

attempted. Optimal production of soluble recombinant protein was sought using by addition of 1mM 

IPTG at mid-log cellular growth, with subsequent incubation at varying temperatures as previous 

described (section 2.9.1.1). 

Analysis of clarified lysates using SDS-PAGE, identified heterologous protein overproduction for 

IdeR based upon an estimated protein size of 25.5 kb (Figure 4-7), the overproduction of protein was 

considerably larger in the IPTG-induced cultures comparative to the non-induced culture, for which 

some expression of the protein occurs likely due to leaky expression. 

The other regulatory genes of interest dtxR, furA or furB, were not successful in heterologous protein 

production, under any IPTG induction conditions. Lysates were also denatured using 8 M Urea 

sample buffer without detection of the desired heterologous protein.  In order to make timely progress 

on the project, the successfully overproduced soluble IdeR protein was trialled in the downstream 

processing before further optimisation of the other products. 

 

Figure 4-7: 12 % SDS-PAGE gel for the expression study of pET23b-IdeR.  
The recombinant cells were grown at 37°C until mid-log phase. Once the desired optical density was 
achieved, expression was induced by addition of IPTG to a final concentration of 1mM. Expression 
was monitored at 4 different temperatures (16 [overnight], 25, 30 and 37 °C [4 hours]). (37x): - A 
control performed at 37 °C without induction. 
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The recombinant protein production for IdeR was scaled to a culture of 1 litre using the 1mM IPTG; 

37 °C induction for four hours. Cellular material was harvested; lysed in 0.05 M Tris-HCl; 0.5 M 

NaCl, pH 7.4 and clarified by centrifugation as described in (section 2.9.1.3). 

 

The clarified lysate was subjected to affinity chromatography as the first step in the purification 

of the recombinant proteins. A HiTrap Heparin HP column prepacked with High Performance 

Heparin Sepharose was fixed to an automated AKTA purifier Fast Protein Liquid Chromatography 

(FPLC) system (Amersham Pharmacia) to identify DNA-binding proteins including the 

recombinant protein IdeR.  After the clarified lysate loading phase and extensive column 

washing, the chromatogram an increase in eluate UV absorbance indicated an elution of protein 

on initiation of a linear gradient of NaCl concentration.  After several fractions, the UV 

absorbance returned to baseline  and no further elution of protein was indicated.(Figure 4-8).  

 

Figure 4-8: Attempted purification of Rhodococcus equi IdeR on Heparin-agarose. 
After loading of the lysate and extensive washing, elution of any bound IdeR was attempted using a 
linear gradient of NaCl (0 - 2 M)  in in 10 mM Sodium phosphate over 100 ml at a flow rate of 2 
mL/min. Eluate was collected in 5 mL fractions. The composition of each fraction was analysed on 
SDS-PAGE to identify those containing protein of interest. 

Analysis of the fractions with increased UV absorbance was performed by SDS-PAGE; this analysis 

provided no evidence for the retention of IdeR on the heparin-agarose column. 

It was considered that metal ions represented in the lysate might influence protein behaviour and 

another lysate was treated with Chelex-100 resin before chromatography on heparin-agarose; the 
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resulting chromatogram resembled that one seen previously. Both the non-adsorbed flow-through 

fractions and early eluting protein fractions were analysed via SDS-PAGE (Figure 4-9 and Figure 

4-10 respectively). 

 

Figure 4-9: 12 % SDS-PAGE analysis of chelex-treated IdeR clarified lysate flow-through 

 

Figure 4-10 :2 % SDS-PAGE analysis of chelex-treated IdeR clarified lysate fractions 30-38. 

Analysis of the flow-through fractions indicated that significant quantities of a major protein 

consistent with the expected mobility of IdeR had not bound to the column.   

Analysis of fractions 30-38 yielded a selection of faint protein bands, one in particular of interest in 

fraction 37 that correlated with the appropriate band size of the recombinant protein, however given 

the low yield, an alternative approach to protein purification was sought. 
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4.5 Strategy 2 - Fusion of metal regulatory proteins with Glutathione-S 

transferase 

Due to the unsuccessful attempts at protein purification using Heparin columns, it was hypothesised 

that the regulators might be produced in higher yield and could be readily purified by producing them 

as Glutathione-S transferase (GST) fusion proteins. The GST fusion partner facilitates protein 

recovery, on-column proteolytic cleavage, allowing elution of purified protein, without likely 

interference with the metal-binding activities of the protein of interest. 

 

GST has a history of successful use as a fusion partner however, it is possible and even likely that 

fusion of the metal-dependent regulators with the enzyme would generate a steric hindrance that 

interfered with DNA binding activity.  The cloning strategy used allowed for the proteolytic cleavage 

of the fusion partner using the specific protease Factor Xa. Oligonucleotide primers were designed 

(section 2.4.5) to incorporate a Factor Xa recognition sequence adjacent to the genes of interest, and 

to facilitate their subsequent assembly with a modified pGEX-D6P-1 vector, to form the pGEXJT-

fXa-[gene] plasmid series ( Figure 4-11). 
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Figure 4-11: Experiment methodology for producing pGEXJT-fXa hybrid plasmids. 
 The example above uses the gene ideR isolated from R.equi 103S chromosomal DNA assembled 
with linearised pGEX-6P-1 using NEB HIFI assembly kit 

 



 

 138 

The regions of interest were amplified by polymerase chain reaction (PCR) using Q5 polymerase 

(New England Biolabs) using Rhodococcus equi 103S genomic DNA as a template using a analogous 

methodology to section 4.4.1 performed earlier. Amplicon lengths are given in Table 4-2. 

Table 4-2: Metalloregulatory genes of interest with given gene and fXa-amplicon lengths 
Gene of interest (locus ID) Length (base pairs) 

Gene fXa-Amplicon 
ideR (REQ_20130) 686 740 
dtxR (REQ_19260) 716 770 
FurA (REQ_04740) 555 608 
FurB (REQ_29120) 446 500 

 

 

Figure 4-12: PCR amplification for four putative iron regulatory genes with incorporation of 
a Factor Xa region.  
M = Hyperladder 1kb (Bioline). Analysed on a 1 % agarose electrophoresis gel, imaged using 
Quantity One (Bio-Rad) imaging software. 

 

The pGEX-6P-1 vector stocks were acquired from Professor Black’s research group at Northumbria 

University. The vector pGEX-6P-1 encodes the recognition sequence for site-specific cleavage by 

PreScission Protease between the GST domain and the MCS (Figure 4-13). 

 

Figure 4-13: GST vector pGEX-6P-1 showing the correct reading frame, and cutting region 
of PreScission Protease denoted by the arrow. 

While pGEX-6P-1 offered the most efficient method of cleavage and purification of GST-tagged 
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proteins, the proteolytic processing of the fusion protein would leave two non-native amino acid 

resiues (Gly-Pro), which may affect the downstream DNA binding capabilities of the metal-

dependent regulatory proteins. 

4.5.2.1 Modification of pGEX-6P1 

In order to preserve the functionality of the C-terminal DNA binding domain of the regulatory 

proteins, an alternative protease was selected. Factor Xa protease facilitates cleavage directly after 

the recognition sequence. 

 

Figure 4-14: GST vector pGEX-5X-1 showing the correct reading frame and cutting region of 
Factor Xa Protease denoted by the arrow. 

Modification of pGEX-6P-1 was selected over purchase of pGEX-5X-1, as the protease replacement 

could be performed concurrently with regulatory gene insertion. The removal of the PreScission 

protease site (Figure 4-15) was performed by digestion using the restriction enzyme AloI recognising 

^(7/12-13) GAAC (N)6 TCC (12-13/7)^ sites.  

 

Figure 4-15: Elimination of the PreScission protease cut site using the restriction enzyme AloI 
in the vector pGEX-6P-1. 

Unfortunately the enzyme AloI appeared to inefficiently cut the vector pGEX-6P-1 producing 

multiple DNA bands (Figure 4-16), therefore a linearised band of cut vector consistent with the 

desired size was purified via electrophoresis and subsequent extraction from excised agarose.  
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Figure 4-16: 1 % agarose gel electrophoretic analysis of the plasmid pGEX-6P-1 when cut 
with the restriction enzyme AloI.  
M = Hyperladder 1kb molecular marker 

4.5.2.2 Molecular cloning – NEBuilder HiFi Assembly and sequencing analysis 

The linearised vector and fXa-gene PCR amplicons were assembled using NEBuilder HiFi assembly 

kit as described in (section 2.7.3), Transformants of E. cloni®10G (Lucigen) were plated on 

ampicillin-containing agar plates. Single colonies were selected, and liquid cultures grown overnight 

to extract and purify plasmid DNA for nucleotide sequence verification. 

The sequencing results identified that the assembly process was unsuccessful, or rather the enzyme 

AloI was inefficient at digestion of the vector as the sequencing data identified an intact PreScission 

protease recognition site (Figure 4-17).  

 

Figure 4-17: Sequencing results with preScission site identified 

This inefficiency could potentially be the result of AloI remaining bound to the cleaved DNA altering 

the electrophoretic mobility, effecting the attainment of the appropriate DNA during excision. 

4.5.2.3 Alternative vector preparation – pGEXPCR 

Due to the previous unsuccessful vector preparations using the restriction enzyme AloI, an alternative 

strategy was implemented, to produce a compatible vector preparation via polymerase chain reaction 

using Q5 DNA polymerase and the plasmid pGEX-6P-1 as DNA template (diluted 1:10 with distilled 
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H2O) (Figure 4-18a). The thermocycling conditions were based on a standard 3-step and 30 cycle 

protocol; annealing at 70 °C for 30 seconds. The PCR amplicon size of 4947 base pairs was analysed 

by agarose gel electrophoresis (Figure 4-18b) against a molecular marker standard for indication of 

product size, before processing with a PCR purification kit and subsequent quantification of 158.0 

ng/µl and purity analysis of 1.87 (260/280 nm absorbance) using a Nanodrop1000 

spectrophotometer. 

 

A  B  

Figure 4-18 Production of the amplicon pGEXPCR via PCR 
A) Experimental methodology highlighting the region for amplification. B) 1) 1% agarose gel 
electrophoretic analysis of the amplicon pGEXPCR. M – Hyperladder 1Kb molecular marker. 

 

The newly produced pGEXPCR vector and fXa-gene PCR amplicons were assembled using 

NEBuilder HiFi assembly kit as previously described (experimental strategy shown in Figure 4-19 

and in Chapter 4 Appendices). Transformant clones of E. cloni®10G cells (Lucigen) were plated on 

ampicillin-containing agar plates. Single colonies were selected, and liquid cultures grown overnight 

to extract and purify plasmid DNA for nucleotide sequence verification. Vector insertion regions 

were sequenced to confirm no mutations had occurred during the amplification and assembly stages. 
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Figure 4-19: Experiment methodology for producing pGEXPCR-fXa hybrid plasmids, the 
example above uses the gene ideR. 

 

The sequence-confirmed plasmids pGEXPCR-fXa-ideR, pGEXPCR-fXa-dtxR and pGEXPCR-fXa-

furA were transformed using E. coli BL21 (DE3) competent cells to facilitate heterologous protein 

overproduction, however pGEXPCR-fXa-furB was not due to an unsuccessful plasmid assembly. 

Overnight cultures were setup using LB media, from which 1 ml aliquots were sub-cultured into 
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autoinduction medium supplemented with trace elements. The cultures were grown at 30 °C for two 

days, to facilitate cellular growth and complete glucose utilisation, which subsequently initiates 

automatic protein induction upon utilisation of lactose in the media. 

The cellular material was harvested, resuspended and lysed as described previously, before 

centrifugal clarification. The clarified lysates were analysed using SDS-PAGE for protein 

overproduction (Figure 4-20), from which it appeared that the recombinant fusion protein IdeR-GST 

was both soluble and overproduced, but dtxR-GST and furA-GST did not appear to facilitate 

overexpression. In order to make timely progress on this project, it was decided to proceed with 

purification of IdeR-GST, as the others would need further optimisation. 

 

Figure 4-20: Electrophoretic analysis of heterologous protein over production from clarified 
lysates. 
Analysis performed by 12 % SDS-PAGE; stained using coomassie blue. M – NEB broadrange 
prestained protein marker, Samples were clarified lysates of the GST-fusion proteins. 
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The clarified lysate of pGEXPCR-fXa-ideR was subjected to affinity chromatography using a 

prepacked 1 ml GSTrap FF HiTrap column (GE Healthcare) as described in section 2.10.1.2. Column 

bound proteins were eluted under non-denaturing conditions using an isocratic gradient of 100 % 

elution buffer (50 mM Tris-HCl, 10 mM reduced glutathione, pH 7.9) at a flow rate of 1 ml / min. 

Eluate was collected in 4 ml fractions; fractions of interest identified by UV absorbance by FPLC 

(Figure 4-21) were analysed by SDS-PAGE shown in Figure 4-22 and Figure 4-23. 

 
Figure 4-21 FPLC chromatogram of GSTrap purification of IdeR-GST 
Column was equilibrated using buffer PBS, pH 7.3; sample applied and washed with 10 column 
volumes of equillibriation buffer and eluted using an elution buffer (50 mM Tris-HCl, 10 mM 
reduced glutathione, pH 7.9) 
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Figure 4-22 Electrophoretic analysis of FPLC flowthrough fractions for purification of IdeR-
GST 
Analysis performed by 12 % SDS-PAGE; stained using coomassie blue.  M – NEB broadrange 
prestained protein marker, C.L – clarified lyase from Figure 4-20; Flowthrough fractions 2 – 9. . 

 

Figure 4-23: Electrophoretic analysis of FPLC peak fractions for the purification of IdeR-
GST 
Analysis performed by 12 % SDS-PAGE; stained using coomassie blue.  M – NEB broadrange 
prestained protein marker, fractions 10 – 17  tested with peak fractions 14 and 15 identified. 

Purification of the protein using a one-step elution under non-denaturing conditions provided the 

option to identify the native metal binding capacity using an ICP-OES. To perform this analysis, first 

the fusion-tag was to be cleaved using ImmunoPure Factor Xa purified from Bovine plasma. 

While measurement of the IdeR protein metal-binding capacity using ICP-OES would potentially 

infer a preference for a range of different divalent cations, analysis without the other three 

metalloregulatory proteins would limit the scope of the project. Therefore, the IdeR-GST protein 

sample was stored at -20 °C until heterologous gene expression for the other metalloregulatory-GST 

constructs was successful.   
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4.6 Strategy 3 - In silico analysis of the putative metal regulators of R. equi 

103S by protein scaffolding 

The initial experimental design was to analyse the native metal binding sites of the metal regulatory 

proteins; however, the project was refocussed to facilitate an in-silico metal binding analysis was 

performed alongside metalloregulatory gene mutagenesis and -omic analysis.  

 

Due to the ever-emerging development of new bioinformatics tools and online databases in the 

Digital era, protein analysis has developed to facilitate in-depth physicochemical analysis and 

structure elucidation through in silico protein modelling, as well as prediction of protein function 

and protein-protein interactions based upon homology to existing structures. The considerable 

advantage of in silico studies over experimental studies (X-ray crystallography, nuclear magnetic 

resonance (NMR) spectroscopy and electron microscopy (EM)) is the reduction in costs associated 

with labour and time but relies on having a pre-existing homologous database entry. The ability to 

perform high-throughput sequence analysis in silico is advantageous to rapidly assign putative 

identities, contributing to identification of novel properties and drug screening.  

 

The most successful method for  in silico protein modelling is using a homology-based approach, in 

which the three-dimensional structure of the query sequence is predicted by scaffolding to an existing 

structure of an evolutionarily-related template protein structure, an overview is given in Figure 4-24 

(Sanchez and Sali, 1997).  
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Figure 4-24:Flowchart detailing the basic principles of in silico protein-modelling 

The pipeline of in silico homology-based modelling is typically performed in four stages, first 

identification of the best template typically using a BlastP search; from which resolved crystal 

structural homologues in the protein data bank will selected preferentially. Secondly, a target-

template sequence alignment will be performed, followed by structure building, and finally model 

evaluation (Nikolaev et al., 2018). 

With the perpetually developing field of bioinformatics, there are now a range of tools that can be 

utilised to streamline and automate the process. Phyre2 is a protein homology/analogy recognition 

engine designed to predict a query structure by using a library of known protein structures taken from 

the Structural Classification of Proteins database strengthened with newer depositions in the Protein 



 

 148 

Data Bank (PDB) (Kelley et al., 2015b). The protein sequences of each of these structures is cross-

referenced against the nonredundant sequence database and a profile constructed, from which known 

and predicted secondary structures are also compiled. The query sequence is searched against the 

nonredundant sequence database, and a profile is created, as well as multiple PSI-Blast searches used 

to gather both close and remote sequence homologs, which are compiled to produce a multiple 

pairwise sequence alignment. The secondary structure is typically predicted using Psi-Pred, SSPro 

and JNet tools to identify alpha helices, beta strands and coils. A profile-profile alignment is 

performed for both the profile and secondary structure to rank alignments, from which the top ten 

alignments are used to produce full three-dimensional models of the query. 

By using the Phyre2 prediction software, it was anticipated that the aim of the chapter, that the roles 

of the four metalloregulators could be distinguished based upon the structural geometry of their metal 

coordinating sites when cross-referenced with the RCSB Protein Data Bank. 

 

The IdeR amino acid sequence was submitted to the Phyre2 protein-modelling tool (Kelley et al., 

2015b). The output produced a hypothetical protein structure (100 % residues modelled at > 90% 

confidence) using the crystal structure 1FX7-C (iron-dependent regulator (IdeR) from 

Mycobacterium tuberculosis, chain C, resolution: 2.00 Å) (Feese et al., 2001). The template was 

ranked 1 based on raw alignment score, taking into consideration both sequence and secondary 

structure similarities. The probability of sequence-template homology is given as 100 % confidence, 

and percentage identity between the sequence and template is 78 % suggesting an extremely high 

model accuracy.  

The predicted output model dimensions (Å) were: X:46.174 Y:47.643 Z:53.182. The R. equi IdeR 

model was imported to the programme Coot v0.8.9.1 (CCP4i2 shell) and superposed based upon 

protein topology using SSM superposition to 1FX7-C for structural comparison, visualised using 

PyMol (Figure 4-25). 
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B C D 

Figure 4-25: A comparative analysis of known and predicted IdeR structures.  
A) 2.0 Å crystal structure of wild type M. tuberculosis IdeR in complex with Co(II). B) Crystal 
structure 1FX7; Chain C. A 2.0 Å crystal structure of wild type M. tuberculosis IdeR in complex 
with Co(II). C) Structure prediction of wildtype R. equi 103S IdeR using Chain C of 1FX7 as the 
template. Secondary structure elucidation predicted using Phyre2, aligned using Coot SSM 
supposition. D) Alignment of known IdeR structure from M. tuberculosis (blue) and predicted IdeR 
structure from R. equi 103S (green). 

When submitted to the DALI server (Holm, 2019), a pairwise alignment between 1FX7-C and R. 

equi IdeR model produced a Z-score of 36.5 and a rmsd value of 0.5, further illustrating the high 

degree of similarity; it is important to note that a further degree of variance is to be expected due to 

the comparison of holo- and apo- structures, and that the protein modification in the form of metal 

binding may produce a degree of molecular flexion. 

Given the predicted high model accuracy, the predicted metal coordinating sites of IdeR from R. equi 

are reminiscent of those observed in IdeR from M. tuberculosis; (pdb no:1FX7; sequence chain view 

shown in Figure 4-26). Upon performing a sequence alignment (Figure 4-27), the three metal 

coordinating sites appear to be inherently conserved. Before in depth discussion regarding the metal 
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binding coordination, it is important to note that although the crystal structure of 1FX7 was resolved 

with binding of cobalt, the ionic radii of Co (II) and Fe (II) are distinctly analogous even in differing 

coordination states. Furthermore,  a range of transition metal ions [ranging from Fe(II), Co(II), Ni(II), 

Zn(II), Mn(II), or Cd(II)] can act as corepressors with DtxR in vitro (Schmitt and Holmes, 1993).  

 
Figure 4-26: Chain Sequence View for the Entity PDB 1FX7.  
The three domains are identified by both colour and d1fx7c(x) variation given by SCOP (Murzin et 
al., 1995). Protein secondary structure was identified by DSSP and variations are listed in the DSSP 
legend (Kabsch and Sander, 1983). Structural features including ligand binding sites are listed on by 
Site Record and Protein modification and variations are listed in the Legend (Golovin et al., 2005; 
Montecchi-Palazzi et al., 2008).  
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IdeR(m.tb)      MNELVDTTEMYLRTIYDLEEEGVTPLRARIAERLDQSGPTVSQTVSRMERDGLLRVAGDR 60 

ideR(r.eq)      MKDLVDTTEMYLRTIYDLEEEGVVPLRARIAERLEQSGPTVSQTVARMERDGLLQVAGDR 60 

                *::********************.**********:**********:********:***** 

 

IdeR(m.tb)      HLELTEKGRALAIAVMRKHRLAERLLVDVIGLPWEEVHAEACRWEHVMSEDVERRLVKVL 120 

ideR(r.eq)      HLELTEKGRNLAVAVMRKHRLAERLLVDIIGLEWDQVHAEACRWEHVMSEDVERRLVEVL 120 

                ********* **:***************:*** *::*********************:** 

 

IdeR(m.tb)      NNPTTSPFGNPIPGLVELGVGPEPGADDANLVRLTELPAGSPVAVVVRQLTEHVQGDIDL 180 

ideR(r.eq)      KNPTTSPYGNPIPGLADLGLDRPVG-NAETLIRLTDVPPGKPTAVVVRRLAEHVQSDPEL 179 

                :******:*******.:**:.   * :  .*:***::* *.*.*****:*:****.* :* 

 

IdeR(m.tb)      ITRLKDAGVVPNARVTVETTPGGGVTIVIPGHENVTLPHEMAHAVKVEKV 230 

ideR(r.eq)      IGQLREAGVVPDARVTVETRPG-SVTITASGHDEFDLPEEMAHAVQVKQV 228 

                * :*::*****:******* ** .***.  **::. **.******:*::* 

 

Figure 4-27: Sequence alignment between IdeR proteins from R. equi and M. tuberculosis.  
Metal binding sites identified for IdeR(m.tb) were annotated using relevant binding domain analyses 
from Figure 4-26 and IdeR(R.eq) binding sites were extrapolated accordingly. Metal binding 
coordinating groups are clustered by colour. 

Analysis of the first metal binding site for IdeR (1FX7) identifies that a Cobalt (II) atom is 

pentavalently coordinated (Feese et al., 2001) by directly using protein side chain-ligands His79, 

Glu83, His 89, Glu172 and Gln175 (Figure 4-28) with distorted trigonal bipyramidal geometry (a 

common geometric configuration for first-row transition metals given the ionic radii as previously 

mentioned).  

 

Figure 4-28: Metal binding site 1 of 1FX7, M. tuberculosis IdeR in complex with Co(II). 

Given the significant sequence similarities, it is plausible to hypothesise that the protein IdeR 

produced by R. equi coordinates metal by means of an analogous strategy utilising protein side chain-

ligands His79, Glu83, His 89 Glu171 and Gln174. 
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Figure 4-29: Hypothesised metal binding site 1 of the homology-based model of IdeR from R. 
equi, in apo-form. 

Interestingly, when characterising the crystal 1FX7, Feese and colleagues identified a water molecule 

(1) residing within a polar pocket generated by the side chains of Arg80, Glu83, Ser126, and Asn130 and 

Glu172, and Gln175. Although the water molecule does not directly coordinate with the metal, it may 

be involved in metal-dependent activation of IdeR, based upon electrostatic interactions that can 

bridge the two metal binding ligands of domain 3 with domain 2 (Feese et al., 2001). This polar 

pocket appears to be present within the model of IdeR from R. equi given that the amino acids 

involved are also conserved. 

 

Figure 4-30: A Polar pocket occupied by a water molecule adjacent to metal binding site 1 of 
IdeR (1FX7). 

Analysis of the second metal binding domain in the IdeR crystal structure 1FX7 yields a Cobalt (II) 

atom in an octahedral coordination complex (Feese et al., 2001), liganded by four protein side chains, 
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Met10, Cys102, Glu105 and His106 (Figure 4-31). Critically, the Cysteine102 residue operates as a 

bidentate ligand utilising both the sulphur and carbonyl oxygen atoms adjacently. The final ligand 

required to complete the octahedral geometry was identified as a solvent group (likely a water 

molecule (2) or a hydroxyl ion), which unlike that in the first metal binding site, directly coordinates 

with the metal as well as bridging to the main chain carbonyl oxygen of Leu4 and as such is postulated 

to facilitate metal-dependent repressor activity. Stabilisation of the N-terminal residues through 

electrostatic and hydrophobic interactions is understood to be vital for orientation and maintenance 

of the DNA-binding helices to bind DNA. 

 

 

Figure 4-31: Metal binding site 2 of M. tuberculosis IdeR in complex with Co(II). 

As for the first, the second metal binding site of R. equi IdeR is also likely to operate in a similar 

manner to the mycobacterial IdeR counterpart, conforming in an octahedral coordination complex. 

The conservation of the binding pocket using Met10, Cys102, Glu105 and His106 amino acid side-chains 

(Figure 4-32) illustrates that a transition metal is likely to coordinate in a corresponding manner 

including both the bidentate Cys102, and senary solvent ligand interface.  
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Figure 4-32: Hypothesised metal binding site 2 of the homology-based model of IdeR from R. 
equi, in apo-form. 

The crystal structure 1FX7 for IdeR also was identified to have a third metal-coordinating site, where 

another cobalt(II) atom was found complexed with two histidine ligands His219, His 223 and four 

coordinating water molecules. The close proximal location of the histidine residues is characteristic 

of a metal coordinating site denoted by a HEX2H motif and is likely that a single a-helix turn 

between the two histidine’s facilitate the residues to function as adjacent ligands in an octahedral 

coordination.  

Unusually, two coordinating water molecules appear to bridge the cobalt (II) metal atom to a sulphate 

ion in a non-canonical metal binding site for DtxR-like structures, it was therefore postulated by the 

authors that this third metal binding domain was likely a construct of the crystallisation process, 

given the high concentrations of cobalt and lithium sulphate available 

This is further corroborated, when contrasted with the R. equi IdeR sequence alignment, which 

identified an amino acid substitution in the HEX2H motif, that has been postulated to alter the metal-

binding specificity by instead utilising glutamic acid rather than histidine for location 219 (EEX2H) 

(Taylor et al., 2005). This, however, reduces our confidence in the metal binding analysis, conferring 

that this third metal binding site is not essential, and as previously predicted, a convenient by-product 

of the crystallisation process. 
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The DtxR amino acid sequence from R. equi was submitted to the Phyre2 protein-modelling tool. 

The initial output produced a hypothetical structure using the crystal structure 5ZR4 (manganese 

regulator – MntR, Mycobacterium tuberculosis, chain B) as a template. The template was a 70 % 

identity match with 100 % confidence.  

The crystal structure for MntR from the closely related species Mycobacterium tuberculosis was only 

recently resolved by Cong et al. (2018). Although the study of DtxR-like metalloregulators within 

Mycobacterium tuberculosis has previously been explored with structural studies of IdeR, Cong and 

colleagues succeeded in producing crystal structures for MntR in both apo- and –holo- forms (5ZR4 

and 5ZR6 respectively). Given the gaps in secondary structure annotation by DSSP for the apo-form 

of MntR, it was hypothesised that the holo-form may be a better structural scaffold for DtxR to 

further clarifying the putative structure by in silico methods, from which a one-to-one threading of 

the crystal structure 5ZR6 yielded a 73 % identity match with 100 % confidence.  

The R. equi DtxR model was imported to the programme Coot v0.8.9.1 EL (CCP4i2 shell) and 

superposed based upon protein topology using SSM superposition to 5ZR6-A and 5ZR4-A for 

structural comparison, visualised using PyMol (Figure 4-33) 

When submitted to the DALI server (Holm, 2019), a pairwise alignment between 5ZR6-A and R. 

equi DtxR model produced a Z-score of 35.4 and a rmsd value of 0.4. 

Given the predicted high model accuracy, the anticipated metal coordinating sites of DtxR from R. 

equi are reminiscent of those observed in MntR from M. tuberculosis; (pdb 5ZR6; sequence chain 

view shown in Figure 4-34). Upon performing a sequence alignment (Figure 4-35), the two metal 

coordinating sites appear to be inherently conserved. 
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Figure 4-33: A comparative analysis of known and predicted DtxR/MntR structures.  
A) 3.0 Å crystal structure of wild type M. tuberculosis MntR in complex with Mn(II). B) Structural 
suposition of 5ZR6, 5ZR4 and DtxR (R.equi)  C) Crystal structure 5ZR6; Chain A. A 3.0 Å crystal 
structure of wild type M. tuberculosis DtxR in complex with Mn(II).  D) Crystal structure 5ZR4; 
Chain A. A 3.1 Å crystal structure of wild type M. tuberculosis DtxR in apo-form. E) Structure 
prediction of wildtype R. equi 103S DtxR using Chain A of 5ZR6 as the template. Secondary 
structure elucidation predicted using Phyre2, aligned using Coot SSM supposition. 
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Figure 4-34: Chain Sequence View for the Entity PDB 5ZR6.  
Protein secondary structure was identified by DSSP and variations are listed in the DSSP legend 
(Kabsch and Sander, 1983). Structural features including ligand binding sites are listed on by Site 
Record and Protein modification and variations are listed in the Legend (Golovin et al., 2005; 
Montecchi-Palazzi et al., 2008). 

MntR      ----------------MRADEEPGDLSAVAQDYLKVIWTAQEWSQDKVSTKMLAERIGVS 44 
DtxR      MPKLVTVATQKSDAPAPSEVTHPETLSSVAQDYLKVIWTVQEWSRERVSTKLLSERIGVS 60 
                               .*  **:***********.****:::****:*:****** 
 
MntR      ASTASESIRKLAEQGLVDHEKYGAVTLTDSGRRAALAMVRRHRLLETFLVNELGYRWDEV 104 
DtxR      ASTVSEAIRKLSDQGLVDHARYGSIALTDAGRSAAVSMVRRHRLIETFLVNELGYGWDEV 120 
          ***.**:****::****** :**:::***:** **::*******:********** **** 
 
MntR      HDEAEVLEHAVSDRLMARIDAKLGFPQRDPHGDPIPGADGQVPTPPARQLWACRDGDTGT 164 
DtxR      HDEAEVLEHAVSDRMIDRIDAKLGFPERDPHGDPIPSADGSVPTPPARQLSDYQDGESGR 180 
          **************:: *********:*********.***.*********   :**::*  
 
MntR      VARISDADPQMLRYFASIGISLDSRLRVLARREFAGMISVATDS-ADGATVDLGSPAAQA 223 
DtxR      VARISDADPAMLRYFDSVGIALDTDITVIERRDFAGTVSIRLGTDPATGNVDLGNPAAQA 240 
          ********* ***** *:**:**: : *: **:*** :*:  .:    ..****.***** 
 
MntR      IWVVS 228 
DtxR      IWLV- 244 
          **:*  

Figure 4-35: Sequence alignment between DtxR and MntR proteins from R. equi and M. 
tuberculosis respectively.  
Metal binding sites identified for MntR were annotated using relevant binding domain analyses from 
Figure 4-33 and DtxR binding sites were extrapolated accordingly. Metal binding coordinating 
groups are clustered by colour. Black highlighted nucleotides were deleted in for crystal constructs 
to improve stability. 
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Analysis of the first metal binding site for MntR (5ZR6) identified an Mn(II) atom in an octahedral 

coordination configuration located between the helix-turn-helix domain and dimerization domain 

(Cong et al., 2018). The metal ion is coordinated using protein side chain-ligands Asp16, Glu109, 

Glu112, His113; pivotally, the Glu109 residue operates as a bidentate ligand utilising both the side-

chain and carbonyl oxygen atoms adjacently, as well as a senary solvent ligand to complete the 

octahedral coordinating interface (Figure 4-36; water group not shown).  

 

Figure 4-36: Metal binding site 1 M. tuberculosis MntR 5zr6 complexed with Mn(II) 

Given the significant sequence similarities, it is conceivable that the protein DtxR produced by R. 

equi coordinates metal ions by analogously utilising protein side chain-ligands Asp32, Glu128, His129, 

as well as Glu125 functioning as a bidentate ligand, and a senary solvent molecule ligand (Figure 4-37) 

as described for MntR above.  
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Figure 4-37: Predicted metal binding site 1 of the homology-based model for DtxR in R. equi, 
in apo-form. 

Analysis of the secondary metal binding site identified an unusual pentavalent bi-nuclear metal ion 

cluster, with two manganese ions present, bridged by one water molecule (Cong et al., 2018). The 

first manganese ion is coordinated using protein side chain-ligands His86, His105, Asp170, while the 

second is coordinated using protein side chain-ligands, Asp133, His135 and Asp137, the configurated is 

completed by bridging the manganese ions using a water molecule and the side chain of Glu90 (Figure 

4-38). 

 

Figure 4-38: Metal binding site 2 M. tuberculosis MntR 5zr6 complexed with Mn(II) 

The intrinsic nature of the sequence similarities between MntR and DtxR from M. tuberculosis and 

R. equi respectively, advocates a deep-rooted functional protein similarity. The conservation of the 

amino acids involved in this unusual pentavalent bi-nuclear metal ion cluster for the second metal 
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binding site shows minimal variation when the structures are superposed, further supporting the 

hypothesis that DtxR operates as a manganese-dependent transcriptional repressor with analogous 

binding sites to that of MntR. The secondary metal coordinating site includes protein side-chain 

ligands His102, Glu106, His121, Asp186, likely bridged by a water molecule and the side-chain of Glu106 

to the second ion that is coordinated by side-chain ligands of Asp149, His151 and Asp153 (Figure 4-39).   

 

Figure 4-39: Predicted metal binding site 2 of the homology-based model for DtxR in R. equi, 
in apo-form. 
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The FurA amino acid sequence was submitted to the Phyre2 protein-modelling tool (Kelley et al., 

2015b). The output produced a hypothetical protein structure (74 % residues modelled at 100 % 

confidence) using the crystal structure 2FE3-B (peroxide operon regulator from Bacillus subtilis, 

chain B, resolution: 1.75 Å). The template was ranked 1 based on raw alignment score, taking into 

consideration both sequence and secondary structure similarities. The probability of sequence-

template homology is given as 100 % confidence, and percentage identity between the sequence and 

template is 24 % indicating perhaps a core structural premise.  

The R. equi FurA model was imported to the programme Coot v0.8.9.1 (CCP4i2 shell) and 

superposed based upon protein topology using SSM superposition to the 2FE3-B for structural 

comparison, visualised using PyMol (Figure 4-25). 
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Figure 4-40: A comparative analysis of known and predicted PerR/FurA structures.  
A)1.75 Å crystal structure of wild type B. subtilis PerR in a structural complex with Zn(II), the 
functional regulatory site remains in apo-form. B) Structural suposition of 2FE3 and FurA (R.equi)  
C) Crystal structure 2FE3; Chain B. A 1.75 Å crystal structure of wild type B. subtilis PerR in a 
structural complex with Zn(II), the functional regulatory site remains in apo-form. D) Structure 
prediction of wildtype R. equi 103S FurA using Chain B of 2FE3 as the template. Secondary structure 
elucidation predicted using Phyre2, aligned using Coot SSM supposition. 
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When submitted to the DALI server (Holm, 2019), a pairwise alignment between 2FE3-B and R. 

equi FurA model produced a Z-score of 19.4 and a rmsd value of 0.6. 

Previous studies identified a comparable sequence homology between a Fur protein from 

Pseudomonas aeruginosa and PerR from B. subtilis, yielding a ID score of 26 %, while presenting 

structural similarities in both the DNA-binding and dimerisation domains. The in-silico model of R. 

equi FurA appears to correspond well with these findings, given the supposition shown in Figure 

4-40.  

Interestingly, the anticipated metal coordinating sites of FurA from R. equi also appear to be 

conserved between analogous species B. subtilis and M. tuberculosis (Figure 4-41and Figure 4-42). 

The sequence alignment revealed a conservation of two metal coordinating sites, that are 

characteristic of these regulatory proteins. 

 

Figure 4-41: Chain Sequence View for the Entity PDB 2FE3.  
Protein secondary structure was identified by DSSP and variations are listed in the DSSP legend 
(Kabsch and Sander, 1983). Structural features including ligand binding sites are listed on by Site 
Record and Protein modification and variations are listed in the Legend (Golovin et al., 2005; 
Montecchi-Palazzi et al., 2008) 
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PerR_(B.subtilis)          -MAAHELKEALETLKETGVRITPQRHAILEYLVNSMAHPTADDIYKALEGKFPNMSVATV 59 

FurA_(R.equi)              MQQGEHDFDPRAELRGAGLRVTAPRVAVLNT-VAANPHSDADQVATEVRRQLGSVSTQAV 59 

FurA_(M.tuberculosis)      ---MSSIPDYAEQLRTADLRVTRPRVAVLEA-VNAHPHADTETIFGAVRFALPDVSRQAV 56 

                                   :    *: :.:*:*  * *:*:  * :  *  :: :   :.  : .:*  :* 

 

PerR_(B.subtilis)          YNNLRVFRESGLVKELTYGDASSRFDFVT-SDHYHAICENCGKIVDFHYPGLDEVEQLAA 118 

FurA_(R.equi)              YDVLGACVRVGLLRRIEPAGSPARYETRTADNHHHLVCRSCGTVVDVDCVVGHAPCLEPS 119 

FurA_(M.tuberculosis)      YDVLHALTAAGLVRKIQPSGSVARYESRVGDNHHHIVCRSCGVIADVDCAVGEAPCLTAS 116 

                           *: * .    **::.:  ..: :*::  . .:*:* :*..** :.*..    .      : 

 

PerR_(B.subtilis)          HVTGFKVSHHRLEIYGVCQECSKKENH--------------------------------- 145 

FurA_(R.equi)              SNHGFEIDEAEVVFWGLCPDCRHDSAKTGAQSVTSSQNQDDVPGSGGSITSKTATARQRQ 179 

FurA_(M.tuberculosis)      DHNGFLLDEAEVIYWGLCPDCSISDTSRSHP----------------------------- 147 

                              ** :.. .:  :*:* :*  ..                                    

 

PerR_(B.subtilis)          ----- 145 

FurA_(R.equi)              GGFAQ 184 

FurA_(M.tuberculosis)      ----- 147 

 

Figure 4-42 Sequence alignment between PerR and two variations of FurA proteins from 
B.subtilis, R. equi and M. tuberculosis respectively.  
Metal binding sites identified for PerR were annotated using relevant binding domain analyses from 
Figure 4-41 and in-text analysis of the regulatory binding site that remains in apo-form. FurA binding 
sites for R. equi were extrapolated accordingly and cross compared with FurA from M. tuberculosis. 
Metal binding coordinating groups are clustered by colour. Green highlighted text indicates ligand 
groups for the Zn(II) structural domain. Yellow highlighted text indicates ligand groups for metal-
ion regulatory binding site. Red text highlights amino acid variation. 

Analysis of the structural metal binding site in PerR identified a Zn(II) atom in a tetrahedral 

coordination configuration using a canonical (CXaa2C)2 motif to stabilise the dimeric protein by 

‘locking in’ three b-strands of each PerR monomer, to form the two sections of the dimer b-sheet 

(Traoré et al., 2006). As such, the metal ion (in this case, zinc (II)) is coordinated using the sulphydryl 

side-chain ligands of Cys96, Cys99 and Cys136, Cys139 (Figure 4-43). 

 

Figure 4-43: Structural metal binding site of PerR (2FE3) from B. subtilis occupied by a Zn 
(II) atom. 

As previously alluded with discussion of the sequence alignments in Figure 4-42, it is extremely 

plausible that FurA from R. equi utilises an analogous structural zinc binding domain coordinated 

using the sulphydryl side-chain ligands of Cys97, Cys100 and Cys137, Cys140 (Figure 4-44), and 
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presumably will function in dimer stabilisation through b-sheet formation. 

 

Figure 4-44: Predicted structural metal binding site of the homology-based model of FurA 
from R. equi in apo-form. 

Analysis of the PerR crystal structure 2FE3 recognised the regulatory metal binding site in apo-form 

(Figure 4-45). Traoré et al. (2006) identified that a transition metal may bind in a pentavalent 

coordination configuration, likely by means of distorted trigonal bipyramidal geometry similar to 

that described for the primary IdeR metal binding site earlier. 

Critically, the ion of the holo-PerR protein form appears to be coordinated using a C-terminal ligand 

His37 and the N-terminal ligands His91, His93, Asp85 and Asp104, and all 5 of these residues are well-

conserved within the PerR regulatory family to facilitate a high-affinity metal binding site and are 

essential for repressor functionality in vivo for Fe(II) or Mn(II) cofactors (Lee and Helmann, 2006). 

Pivotally, PerR activation occurs by wrapping around the metal ion connecting the N- and C- termini 

to facilitate DNA binding. 

 

Figure 4-45: The regulatory metal binding site of PerR (2FE3) from B. subtilis in apo-form. 
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Analysis of the metal binding site in the putative FurA model from R. equi implies that metal 

coordination is achieved in a comparable mechanism of pentavalent coordination utilising protein 

side chain-ligands His37, Glu85, His92, His94 and Asp105 (Figure 4-46).  

 

Figure 4-46: Predicted regulatory metal binding site of the homology based model of FurA 
from R. equi in apo-form. 

Interestingly, an amino acid substitution is observed for metal-binding pocket ligand Glu85; in both 

the FurA sequences of R. equi and M. tuberculosis an Asp residue, likely a result of the phylogenetic 

divergence. Substitution of Asp with Glu is an frequently observed conservative replacement, due to 

only having an Epstein’s coefficient difference of 0.03 (Epstein, 1967); of which the insignificant 

variance is a result of an amino group present in lieu of one of the oxygen atoms, thereby avoiding 

induction of a negative charge.  

More significantly though, the C-terminal ligand His37, which is believed to permit DNA-binding by 

aligning the C- and N- termini when the metal ion is bound creating the binding pocket, is conserved 

in the R. equi FurA model.  It is therefore conceivable that mutation of the His37 residue would 

prevent activation and subsequent DNA binding. 
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The FurB amino acid sequence was submitted to the Phyre2 protein-modelling tool (Kelley et al., 

2015b). The output produced a hypothetical protein structure (100 % residues modelled at >90 % 

confidence) using the crystal structure 2o03-A (zinc uptake regulator from M. tuberculosis, chain A, 

resolution: 2.70 Å). The template was ranked 7th based on raw alignment score, taking into 

consideration both sequence and secondary structure similarities. The probability of sequence-

template homology is given as 100 % confidence, and percentage identity between the sequence and 

template is 69 % suggesting a high model accuracy and was selected over then other higher-ranking 

alignments due to their significantly lower sequence identity conservation.  

The R. equi FurB model was imported to the programme Coot v0.8.9.1 (CCP4i2 shell) and 

superposed based upon protein topology using SSM superposition to the 2o03-A for structural 

comparison, visualised using PyMol (Figure 4-47). 

A 

 

 B C 

Figure 4-47: A comparative analysis of known and predicted FurB structures.  
A) 2.70 Å crystal structure of wild type M. tuberculosis FurB complexed with Zn(II). B) Structure 
prediction of wildtype R. equi 103S FurB using Chain B of 2o03 as the template. Secondary structure 
elucidation predicted using Phyre2, aligned using Coot SSM supposition. C) Structural supposition 
of 2o03-B and FurB (R. equi)   



 

 168 

When submitted to the DALI server (Holm, 2019), a pairwise alignment between 2o03-B and R. equi 

FurB model produced a Z-score of 9.6 and a rmsd value of 3.3. 

The crystal structure 2o03 of M. tuberculosis FurB identified a flexible two-domain arrangement, 

comprised of an N-terminal canonical three winged helix and two-stranded antiparallel β-sheet DNA 

binding domain	and the C-terminal dimerisation domain that contains three antiparallel β-strands and 

metal binding sites (Lucarelli et al., 2007). Interestingly, the overall fold of this M. tuberculosis FurB 

protein is reminiscent of Fur from P. aeruginosa, in respect of the domain architecture.  

As the in silico model was predicted with high model accuracy, it is reasonable to hypothesise that 

the predicted metal coordinating sites of FurB from R. equi are reminiscent of those observed in FurB 

from M. tuberculosis; (pdb no:2o03; sequence chain view shown in Figure 4-48). Upon performing 

a sequence alignment (Figure 4-27), the three metal coordinating sites appear to be inherently 

conserved. 

 
Figure 4-48: Chain Sequence View for the Entity PDB 2o03.  
Protein secondary structure was identified by DSSP and variations are listed in the DSSP legend 
(Kabsch and Sander, 1983). Structural features including ligand binding sites are listed on by Site 
Record and Protein modification and variations are listed in the Legend (Golovin et al., 2005; 
Montecchi-Palazzi et al., 2008) 

  



 

 169 

FurB(R.equi)      MTENVTDPTDQRERAGRAVVGVRSTKQRSAISALLDDITEFRSAQELHDELRRRGQGIGL 60 

FurB(M.tb)        ----------------MSAAGVRSTRQRAAISTLLETLDDFRSAQELHDELRRRGENIGL 44 

                                   :..*****:**:***:**: : :***************:.*** 

 

FurB(R.equi)      TTVYRTLQTLAEAGTVDVLRTDTGESVYRRCSSGHHHHLVCRACGFTVEVDGPAVEQWSQ 120 

FurB(M.tb)        TTVYRTLQSMASSGLVDTLHTDTGESVYRRCSEHHHHHLVCRSCGSTIEVGDHEVEAWAA 104 

                  ********::*.:* **.*:************. ********:** *:**..  ** *:  

 

FurB(R.equi)      TIADTNGFTDVSHTVEIFGTCRDCAQAR 148 

FurB(M.tb)        EVATKHGFSDVSHTIEIFGTCSDCRS-- 130 

                   :* .:**:*****:****** ** .   

Figure 4-49: Sequence alignment of FurB proteins from Rhodococcus equi (R. equi) and 
Mycobacterium tuberculosis (M.tb) respectively.  
Metal binding sites identified for FurB were annotated using relevant binding domain analyses from 
Figure 4-48 and FurB binding sites were extrapolated accordingly. Metal binding coordinating 
groups are clustered by colour. 

Analysis of the first metal binding site for FurB (2o03) identified a zinc(II) atom in a tetrahedral 

coordination configuration located in the hinge region between the dimerisation and the DNA-

binding domain (Lucarelli et al., 2007). The metal ion is coordinated using protein side-chain ligands 

of the N-terminal DNA binding domain Asp62 and Cys76, as well as the C-terminal dimerisation 

domain ligands His81, and His83 (Figure 4-50).  

 

Figure 4-50 Metal binding site 1 of FurB 2o03 from M. tuberculosis occupied by a Zn(II) ion. 

It is therefore logical to assume that this metal binding site is essential for protein activation, as the 

hinge is likely to provide the flexibility required to bind in a tetragonal coordination forming the 

binding pocket. The metal selectivity of each binding site is anticipated to be based around the 

coordination, with a preference for zinc arising from the preference for tetragonal geometry, further 
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confirmed by metal exchange with Co(II) ions that possess the same geometric binding preferences, 

unlike Fe(II) which typically adopts an octahedral coordination. Although the DNA-binding 

interactions of this protein are currently uncharacterised, it would be rational to hypothesise that 

protein activation occurs by wrapping around the metal ion connecting the N- and C- termini to 

facilitate DNA binding as previously identified for PerR from B. subtilis (Traoré et al., 2006). 

Analysis of the first metal binding site for the protein FurB in R. equi appears to coordinate a metal 

ion in an analogous mechanism to the site observed earlier for the M. tuberculosis FurB utilising 

protein side chain-ligands Asp77, Cys91, His96, and His98 (Figure 4-51). However, as the FurB 

predicted model was constructed without integration of metal co-factors, the orientation of the two 

domains appears to be significantly relaxed as a result of the hinged binding pocket being 

unoccupied, and is further highlighted in the structural comparisons of Figure 4-47C . The flexion 

observed is likely to account for the high rsmd value identified for FurB due to the comparison of 

apo- and holo-protein homologues. 

 

Figure 4-51 Putative metal binding site 1 of the homology-based model of FurB in R. equi, in 
apo-form.  

Analysis of the secondary metal binding site in FurB identified a Zn(II) ion coordinated in a 

tetrahedral configuration using two canonical CXaa2C motifs for protein stability(Lucarelli et al., 

2007). The metal ion is coordinated using the sulphydryl side-chain ligands of Cys86, Cys89 and 

Cys126 and Cys129 to connect the N- and C- termini (Figure 4-52). 



 

 171 

 

Figure 4-52: Metal binding site 2 of FurB 2o03 from M. tuberculosis occupied by a Zn(II) ion. 

Analysis of the secondary metal binding site in the putative FurB model from R. equi implies that 

metal coordination is achieved in a comparable mechanism of tetrahedral coordination utilising 

sulphydryl side chain ligands Cys101, Cys104, Cys140 and Cys145 (Figure 4-53). Although this domain 

does not superpose with the FurB from crystal structure 2o03, the architecture is analogous, and 

variation is likely due to the comparison of apo- and holo- protein forms, therefore without co-factor 

binding in the primary metal binding site, the hinge region is not orientated appropriately. Given the 

sequence conservation between the FurB proteins, and the preservation of the CXXC binding motif, 

it is likely that this secondary binding site functions in protein stability. 

 

Figure 4-53: Putative metal binding site 2 of the homology-based model of FurB in R. equi, in 
apo-form.  

The crystal structure 2o03 for FurB also was identified to contain third metal-coordinating site, where 
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an additional zinc ion was complexed using side chain ligands of three histidine residues (His80, 

His82 and His118) and a glutamate residue (Glu101). Concealed within the dimerisation domain, it 

is plausible that this metal binding site functions as an additional structural coordination site, 

supported by previously structural zinc binding site studies (Auld, 2001). Alternatively, the site and 

bound metal could be a by-product of the crystallisation process, but interestingly the conservation 

between R. equi and M. tuberculosis FurB sequences also includes this third metal binding pocket. 

Without further analysis we can only make inferences on these metal binding sites, and their 

significance. 

4.7 Concluding remarks for this chapter 

The initial aims of this chapter were to build on the bionformatic analysis performed in Chapter 3 to 

ideally characterise the native metal-binding sites of the metalloregulatory proteins of interest.  

The project initially started by taking the four metal regulatory genes of interest and designing 

constructs that could be used for heterologous gene expression in E. coli to facilitate physico-

chemical binding analysis using ICP-OES.  

Originally, protein purification was attempted by using heparin affinity chromatography to retain 

DNA-binding proteins, without success. Upon reflection this may have been unsuccessful due to 

having inactive apo-protein forms, as often co-factor binding can stabilise DNA-binding domain 

architecture.  

The project was re-designed to incorporate a GST-fusion tag to facilitate a fast, convenient one-step 

purification of the metalloregulatory proteins of interest. This process was achieved for IdeR-GST, 

for both heterologous protein production and subsequent purification, however the other three 

proteins require further expression optimisation. 

Due to a change in circumstances at this stage, the research project aims were altered to focus on -

omic analysis of R. equi under iron limitation (consequently discussed later in the thesis), and 

mutagenic studies of the metalloregulatory genes. To provide suitable project closure for this chapter, 

a compromise of performing predictive analyses of the putative metal regulators of R. equi 103S by 

in silico protein scaffolding, providing an indication to the metallo-preference for the binding sites 
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of interest based upon homology studies with other closely related structures.  

The in-silico predictions for the R. equi metalloregulatory proteins show homology to proteins 

responsible for different transition metal coordination. IdeR does appear to coordinate Fe(II) ions 

based on the octahedral coordination geometry, with a very significant sequence similarity to the 

IdeR protein from M. tuberculosis. These results also corroborate with the findings of the genomic 

survey and the Iron-box sequences identified in the operator sequence of iron-responsive genes 

including siderophore biosynthesis, transport and iron storage genes, which are also prevalent in 

mycobacterial species.  

The in-silico prediction for DtxR however appears to coordinate Mn(II) ions based upon the 

conservation of the liganding residues and high overall sequence and structure conservation to that 

of MntR in M. tuberculosis . 

Canonically, Fur proteins are characterised as global iron regulators, however, as IdeR has been 

predicted to function in this capacity, it seems redundant to have Fur proteins function in the same 

manner. The R. equi FurA protein sequence has significant homology to the FurA from M. 

tuberculosis and PerR in B. subtilis, both Gram-positive organisms, which unlike Gram-negative 

bacteria utilise DtxR-family proteins to regulate intracellular iron. Both of the Gram-positive 

homologues appear to function as catalase/peroxide repressors; R. equi furA is located in a gene 

cluster with a catalase gene which would be consistent with a function as a metal-dependent peroxide 

sensor accordingly. This is further explored in subsequent mutagenic studies later in the thesis. 

R. equi FurB has significant sequence homology to the FurB protein of M. tuberculosis with the 

conservation of the coordination ligands in a tetragonal geometric pattern characteristically 

favourable to zinc ions, supported by the crystal structure 2o03 with multiple zinc ions bound. 

Furthermore, it has been previously identified that the furB gene is co-transcribed with an additional 

zinc-dependant regulator, this appears to also be preserved in the rhodococcal genome as furB shares 

a predicted operon with REQ_29120. This additionally co-transcribed gene share 73 % sequence 

homology with the mycobacterial co-transcribed equivalent Rv2358, therefore it is logical to 

presume that furB operates as a zinc uptake regulator. 

As previously alluded, it would be biologically redundant to maintain a multitude of genes encoding 
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proteins that have the same function, given that the gene annotations were performed autonomously, 

the analyses performed in this chapter develop the working hypothesis for the complex divalent metal 

regulatory systems employed by Rhodococcus equi as shown in Figure 4-54, that assigns regulatory 

roles for multiple divalent cations based upon homologous metal-binding capacities. Specifically, 

the protein IdeR can be assigned a role for regulating the response to iron starvation, and the protein 

FurA can be assigned a role for regulating oxidative stress. The other candidate proteins DtxR and 

FurB are likely to be involved with coordination with manganese and zinc respectively.  

Going forward, this in-silico driven hypothesis could be advanced by completion of the IdeR metallo-

preference by ICP-OES as well as optimisation of the expression and the subsequent binding analysis 

for the other proteins. It would also be interesting to perform crystallisation studies on the four 

regulatory proteins and compare between the in-silico scaffolding models produced here; and the 

associated homologous protein templates used. Furthermore, site-directed mutagenesis on the key 

liganding residues of these metallo-regulatory proteins could identify if either metal-coordination or 

ultimately DNA-binding can be impaired, thereby altering the characteristics of metal homeostasis 

in the bacterium.
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Figure 4-54: The updated R. equi iron homeostasis network map (after chapter 4) 
Data generated from the preliminary genomic survey and comparison of in silico metalloregulatory protein metal binding capacities. Here functional candidates are 
shown in red that warrant further investigation of the predicted roles.  
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5 Generation and in vitro characterisation of 

Rhodococcus equi 103S mutants in four putative 

metal-dependent transcriptional regulators: ideR, 

dtxR, furA and furB. 
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5.1 The construction of unmarked in-frame deletion mutants in Rhodococcus 

equi 

A strategy was established to investigate the regulatory influence of each of the four metal-dependent  

transcription regulators via generation of unmarked in-frame gene deletion using the pSelAct suicide 

vector developed by  van der Geize et al. (2008). The system produces isogenic mutants varying by 

carefully defined nucleotide deletions without alteration of circumambient genes or their expression. 

Mutagenesis is achieved by constructing a vastly truncated ORF within pSelAct flanked by 1.5kb of 

DNA directly copied from the chromosomal context of the modified gene in both the upstream and 

downstream directions.  Ultimately this truncated DNA sequence replaces the native DNA sequence 

in the chromosome.  These pSelAct constructs are assembled and replicated within E. coli 

(methodology described in Figure 5-1).  

 

Figure 5-1: Gibson assembly style methodology utilised to produce gene mutations in the 
vector pSelAct.   
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The pSelAct plasmid lacks a valid origin of replication for Rhodococcus and is unable to replicate 

within these bacteria. Stable transformation of rhodocococci with the pSelAct-based deletion 

constructs will produce clones that can be selectively identified based on apramycin resistance 

encoded by AAC(3)-IV (van der Geize et al., 2008), as a result of homologous recombination in either 

of the 1.5kb upstream or downstream regions relative to the gene of interest that are defined during 

plasmid assembly (Figure 5-2(1a)). 

 

The generation of the mutant requires two independent homologous recombination events to take 

place; one within each of the two DNA sequences defined by the upstream and downstream PCRs 

used in constructing the mutagenic plasmid (Figure 5-2(1b)).  Growing the strain carrying the 

integrated vector without selective pressure allows a further round of homologous recombination to 

occur.  Cells undergoing such an event will lose the integrated plasmid, which also contains a 

counter-selection mechanism based on the metabolic activation of 5-fluorocytosine (5-FC).  The 

counter-selective agent 5-FC is not toxic to R. equi but, when acted upon by cytosine deaminase 

(CD) and uracil phosphoribosyltransferase (UPRT) enzymes, the 5-FC is converted to 5-fluoro-

deoxyuridinyl monophosphate which exerts a strong a cytotoxic effect (van der Geize et al., 2008).  

Here 5-FC permits only the growth of bacteria that have lost the pSelAct vector and its counter 

selection gene coda::upp encoding the fusion protein of CD/UPRT.  If the second homologous 

combination happens in the same flanking region as the insertional event, then a wild-type organism 

is regenerated. However, the occurrence of the second homologous recombination in the opposite 

flank generates the gene deletion, unmarked through simultaneous AAC(3)-IV loss, conveying 

apramycin sensitivity. The nature of counter-selection survivors was ascertained through a diagnostic 

PCR to distinguish between the native gene and the truncate generated by the mutagenesis process 

(Figure 5-2(2a/2b)). 
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Figure 5-2: An example of homologous recombination to incorporate an in-frame silent gene mutation in Rhodococcus equi using the vector pSelAct. 
i) Incorporation of the pSelAct-mutant containing plasmid into the R. equi 103S chromosome. 1a) A representation of a single-crossover homolgous recombination 
event. 1b) Identification of the two potential secondary crossover homologous recombination steops that may occur. 2a) an unmarked in-frame deletion mutant. 2b) A 
wildype gene revertant.  
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5.2 Chapter aims 

As previously alluded, the main objective of this study is to construct in-frame deletion mutants for 

the iron-responsive regulatory proteins in R. equi 103S, IdeR, DtxR, FurA and FurB that were 

previously considered in the genomic survey and the subsequent in silico metal binding analysis in 

Chapters 3 and 4 respectively. Production of aforementioned mutants will ideally help further define 

the regulatory mechanisms associated with divalent metal cations in this understudied veterinary 

pathogen, through the identification of any phenotypic changes, or subsequent effect in gene 

transcription. 

5.3 Generation of mutagenic constructs 

Gene knockout constructs were produced by ligation of upstream and downstream PCR products 

using a Gibson assembly style methodology. The PCR products were produced by amplification of 

an overlapping region (10 in-frame codons and stop codon) and 1.5 kb either side of the target gene. 

Both the start of the upstream and the end of the downstream product contained additional 

nucleotides for a SmaI restriction enzyme site to facilitate pSelAct vector ligation.  

 

The PCR products required to form the mutagenic constructs were produced by 2-step PCR using 

standard conditions for Q5 polymerase and oligonucleotide primers listed in sections 2.3.3 and 2.4.6 

respectively. All of the amplicons were successfully produced with exception to ideR-upstream and 

furA-downstream. The amplification of ideR-upstream was subsequently achieved using a longer 

PCR extension period (Figure 5-3). 
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A 

 
B 

 

Figure 5-3: PCR products generated for R. equi 103S mutagenesis.  
All product sizes were expected to be 1500 bp. A) The PCR reaction featured two-step cycling 
without a primer annealing temperature, using NEB Q5 Polymerase. B) The PCR reaction featured 
an extended 72 °C primer extension temperature, using NEB Q5 Polymerase. Samples were analysed 
by electrophoresis on a TAE-buffered 1.0 % agarose gel and their migration compared to M [NEB 
100 bp molecular marker]. 

5.3.1.1 Alternative furA-downstream design 

The furA-downstream oligonucleotide primer was re-designed due to many unsuccessful PCR 

optimisation attempts. The failure to produce this amplicon was hypothesised to be the result of either 

a hairpin structure formation or a potential self-dimer within the furA-dwnlo primer. Consequently, 

the furA-dwnlo primer was modified to incorporate an extra 500 base pairs (section 2.4.6, highlighted 

grey), and PCR optimised (Figure 5-4). 
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Figure 5-4 ΔFurA-downstream (2) optimisation  
The PCR reaction featured three-step cycling using a range of primer annealing temperature, and 
supplementation with MgCl2. Samples were analysed by electrophoresis on a TAE-buffered 1.0 % 
agarose gel and their migration compared to A [Hyperladder 1kb molecular marker]. 

5.4 Assembly of mutagenic constructs into pSelAct 

 

The successful PCR amplicons and the linearised vector pSelAct were purified by gel extraction and 

drop dialysis methods (section 2.3) to remove any contaminants that may impair the assembly 

process. The purified vector and amplicons were analysed using agarose gel electrophoresis (Figure 

5-5). The respective DNA was quantified by analysis on a Nanodrop microvolume 

spectrophotometer. 

 

Figure 5-5 Purified mutagenic amplicons and vector required for HiFi assembly. 
A: 100 bp ladder (NEB), B 1kb ladder (Bioline). 1: ΔideR-upstream, 2: ΔideR-downstream, 3: ΔdtxR-
upstream, 4: ΔdtxR-downstream, 5: ΔfurA-upstream, 6: ΔfurA-downstream(2), 7: ΔfurB-upstream, 8: 
ΔfurB-downstream, 9: pSelAct vector (SmaI cut). Samples were analysed by electrophoresis on a 
TAE-buffered 1.0 % agarose gel and their migration compared to A Hyperladder 1kb molecular 
marker. 

 

 

The Gibson assembly style of plasmid construction was performed using a NEBuilder® HiFi DNA 
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Assembly kit to ligate the linearised vector and mutagenic PCR amplicons together as described in 

(section 2.7.3). The assembly mixture was subsequently transformed into competent E. cloni®10G 

cells (Lucigen) and plated on antibiotic-containing agar plates. Four overnight cultures of each 

recombinant E. coli were setup, plasmid DNA was isolated using a Plasmid MiniPrep kit (QIAGEN) 

and DNA concentrations were also quantified by Nanodrop analysis. 

 

 As a diagnostic method of DNA analysis, the recombinant plasmids were digested with SpeI 

according the manufacturer’s instruction to excise the 3/3.5 kb insert containing the truncate of the 

gene of interest, analysed by agarose gel electrophoresis (Figure 5-6) prior to confirmation by Sanger 

sequencing, These preliminary results indicated at least one successful assembly per mutagenic 

plasmid construct. 

A B 

Figure 5-6: Diagnostic restriction digest of plasmids using SpeI 
Successful digestion indicated in isolate 3 of pSelAct-ΔideR (Gel A well 3), isolates 1:4 of pSelAct-
ΔdtxR (Gel A wells 5-8), isolates 1, 3 and 4 of pSelAct-ΔfurA2.0 (Gel B wells 1, 3 and 4) and isolates 
3 and 4 of pSelAct-ΔfurB (Gel A well 11 and 12). Samples were analysed by electrophoresis on a 
TAE-buffered 1.0 % agarose gel and their migration compared to A Hyperladder 1kb molecular 
marker. 

 

To confirm successful assembly of the desired gene truncation into the pSelAct vector, 20 µl of each 

plasmid previously used in the SpeI restriction digest was sent for Sanger sequencing (GATC 

biotech) against the pSelAct primers (section 2.4.4) which were designed to identify nucleotides 

present in the insertion region. 
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5.4.4.1 Sequencing results 

All 16 plasmids that were used in the SpeI digest were sent for Sanger sequencing (GATC Biotech), 

using pSelAct primers, the chromatograms are summarised in Table 5-1. 

Table 5-1 pSelAct-Δmutant sequencing results  
Table identified the plasmid isolates were sent, if sequencing was done, and/or reverse complement 
sequencing for confirmation and if subsequent transformation was performed. 
 ideR dtxR furA furB 
Isolate 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
pSelAct_for vec poor ü poor ü ü ü ü ü poor ü ü vec poor ü ü 
pSelAct_rev Nd nd ü nd ü nd nd nd ü nd nd nd nd nd ü ü 
Transform   ü  ü    ü      ü  
Complete seq   ü  ü    ü      ü  

 

5.5 Transfer of mutagenic constructs into R. equi 103S 

The recombinant plasmids (pSelAct-ΔideR, pSelAct-ΔdtxR, pSelAct-ΔfurA and pSelAct-ΔfurB) 

were used to transform R. equi 103S chromosomal DNA. Positive selection for single crossover 

transformants was based upon growth on 80 µg/µl Apramycin LB agar plates. R. equi 103S without 

plasmid incorporation was used as a negative control due to a lack of apramycin resistance. 

5.6 Selection of the double crossover 5-FC resistant phenotype 

Single crossover transformants were grown without selection overnight, 100 µl culture aliquots were 

serial diluted from 1:10 – 1:1000 using acetate minimal media (MMAc) adjusted to 10 g acetate per 

litre as recommended for increased selectivity (Van de Geize, R., personal communication) and 

plated onto MMAc agar supplemented with 100 µg/ml 5-FC and incubated for 3 days at 37 °C.  

When selecting for the 5-FC resistant phenotype, every colony was recovered on both non-selective 

media as well as 80 µg/µl Apramycin LB agar plates indicating that all of colonies retained 

apramycin resistance. Several other groups had indicated that this counterselection method had 

proven difficult, even with acetate media amendments.  Our interpretation of the vector synthesis 

(van der Geize et al., 2008), suggested that the crucial codA::upp  gene fusion that converts 5-FC to 

5-FU, the counter selective active,  was associated with an E.coli derived promoter which might be 

poorly active in rhodococci.  A strategy based on replacing this promoter with a strong constitutive 

rhodococcal promoter (pgroES) to drive production of the critical CD/UPRT fusion. 
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The incorporation of a paralogous R. erythropolis PR4 groES  promoter was expected to increase the 

downstream effect of improving 5-FC counter-selection for mutants, whilst avoiding homologous 

recombination of the groESL promoter itself in to R.equi 103S (Figure 5-7). 

Rhodococcus equi 103S chromosome 
Sequence ID: FN563149.1Length: 5043170 Number of Matches: 1 
Related Information 
Range 1: 3722387 to 3722851GenBankGraphicsNext MatchPrevious Match 
Alignment statistics for match #1 
Score Expect Identities Gaps Strand 
416 bits(225) 3e-120 391/470(83%) 15/470(3%) Plus/Minus 
Features: 
chaperonin GroES 
Query  74       CCTTGAGGGTTGGCACTCTCACGTATAGAGTGCCAATTGGCGCTGATCGAGTTCCGGCAC  133 
                ||||||| | |||||||| || ||||||||||| | | | | |||| ||||| ||||||| 
Sbjct  3722851  CCTTGAGTGCTGGCACTCGCATGTATAGAGTGCTAGTCGACACTGAGCGAGTCCCGGCAC  3722792 
 
Query  134      CCGCGACGACGGG--AC-TGCAGTGACGCGCCGTAAACGGCATACCCAAACAGCTGTCCG  190 
                |||||||||||||  || ||  | | | ||  ||  || | | | |  | | |  ||||| 
Sbjct  3722791  CCGCGACGACGGGGCACGTGAGGGGTCACGTGGT-GACTG-A-A-CTGATC-GTGGTCCG  3722737 
 
Query  191      AGGATC-GCCTCGGACGC-ACATACCCC--AAAGTGGAGGGCTCATCGTGGCGAGCGTCA  246 
                |||| | ||||||| | | ||  |||||  |||||||||||||||||||||||||||| | 
Sbjct  3722736  AGGAACAGCCTCGGGCCCAACGAACCCCTGAAAGTGGAGGGCTCATCGTGGCGAGCGTGA  3722677 
 
Query  247      ACATCAAGCCGCTCGAGGACAAGATCCTCGTCCAGGCCAACGAGGCTGAAACGACGACGG  306 
                |||||||||||||||||||||||||||||||||||||||||||||| || |||||||| | 
Sbjct  3722676  ACATCAAGCCGCTCGAGGACAAGATCCTCGTCCAGGCCAACGAGGCCGAGACGACGACTG  3722617 
 
Query  307      CTTCCGGCCTGGTCATTCCTGACACAGCCAAGGAAAAGCCCCAGGAGGGCACCGTCGTTG  366 
                | |||||||||||||| || ||||| || ||||| ||||||||||||||||||||||| | 
Sbjct  3722616  CCTCCGGCCTGGTCATCCCCGACACGGCGAAGGAGAAGCCCCAGGAGGGCACCGTCGTCG  3722557 
 
Query  367      CAGTCGGCGAAGGCCGCGTCAACGAGCAGGGC-A-AC-CGCATCCCGGTCGACGTCAAGG  423 
                | ||||||   ||||||    ||||| | ||| | |  ||||||||  | |||||| ||| 
Sbjct  3722556  CCGTCGGCCCCGGCCGCTGGGACGAGGATGGCGAGAAGCGCATCCCCCTGGACGTCCAGG  3722497 
 
Query  424      AGGGTGACACGGTCATCTACTCCAAGTACGGCGGAACCGAGATCAAGTACGCCGGCCAGG  483 
                |||||||||| |||||||||  |||||||||||||||||||||||||||||||||||||| 
Sbjct  3722496  AGGGTGACACCGTCATCTACAGCAAGTACGGCGGAACCGAGATCAAGTACGCCGGCCAGG  3722437 
 
Query  484      AATACCTGATCCTGTCGGCACGCGACGTGCTGGCTGTCGTCTCCAAGTAA  533 
                | ||||||||||||||||| |||||||| |||||||||||| | |||||| 
Sbjct  3722436  AGTACCTGATCCTGTCGGCTCGCGACGTTCTGGCTGTCGTCGCGAAGTAA  3722387 

Figure 5-7 Blastn aligment of groESL from R. equi 103S to R. erythropolis PR4 for production 
of the chaperonin to increase the efficiency of the 5-FC selection process.  

The PCR amplicons required to form the new mutagenic constructs were produced by 2 step PCR 

using standard conditions for Q5 polymerase, using primers (section 2.4.3) designed to produce a 

homologous overlapping region with the vector pSelAct. A diagnostic 1% agarose gel was performed 

to identify successful PCR reaction (Figure 5-8). 
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Figure 5-8: PCR amplicon for generation of PR4 groESL  

The PCR was designed to amplify up to 2 bases away from the ATG start codon of the native gene 

and incorporates the CC dinucleotide required to introduce a NcoI restriction site, while preserving 

the distance between the ribosome binding site and the start codon. To confirm the promoter was 

amplified correctly, the PCR product was ligated into the shuttle vector pUC18 (as previously 

described), transformed into E. Cloni 10G competent cells and screened for α-complementation of 

β-galactosidase before being confirmed via Sanger sequencing (GATC Biotech) corroborated using 

NCBI Blastn alignment tool with R. erythropolis PR4 genome (data not shown). 

5.7 pLongJon - Generation of a plasmid for improved 5-FC selection  

 

To facilitate the incorporation of the newly designed pGroESL promoter, the vector pSelAct and 

mutant equivalents, were cut using the restriction enzymes BstBI and NcoI and combined together 

with pGroESL promoter amplicon using the NEBuilder® HiFi DNA Assembly kit.The assembly 

mixtures were subsequently transformed into competent E. cloni®10G cells (Lucigen) and plated on 

antibiotic-containing agar plates as previously performed. 

The new plasmid pLongJon (map shown in Figure 5-9) was produced to promote the recovery of 

mutants that have undergone the secondary homologous recombination step by improving protein 

expression of the downstream 5-FC selection marker. The pLongJon-mutant assembly is shown in 

Figure 5-10. 
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Figure 5-9: pLongJon vector map 
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Figure 5-10 A flowchart detailing the molecular strategy employed to produce pLongJon deletion mutants 



 

 190 

 

5.7.2.1 Diagnostic colony PCR 

Due to the potential for incorrect plasmid assembly, the mutagenic plasmids with the newly 

incorporated GroESL promoter were examined. The transformed clones in E.cloni 10G cells were 

used as template DNA in a diagnostic PCR to amplify the PR4 GroESL promoter. The results 

indicated presence of the promoter in all bar one of the plasmids as pLongJon-ΔfurB did not generate 

bands indicative of pGroESL incorporation (Figure 5-11), therefore to be time-efficient the project 

advanced using the other plasmids, the GroESL diagnostic amplicons ligated into pUC18 and 

sequenced for confirmation. 

 

Figure 5-11: Colony PCR of pLongJon plasmids to identify incorporation of pGroESL 
promoter 

5.7.2.2 pUC18-GroESL plasmid sequencing 

The diagnostic pUC18-GroESL plasmids generated above were sequenced (Table 5-2) as previously 

described and queried using the Blastn alignment tool. The plasmids, if assembled correctly, were 

subsequently transformed into R. equi 103S as described for pSelAct above.  

Table 5-2: pSelAct-Δmutant sequencing results 
 showing the plasmid isolates sent, if sequencing was done, confirmation of Blastn results, and if 
subsequent transformation was performed. The sequencing primer used M13-FP is also listed. 

 pLongJon pLongJon-ΔideR pLongJon-ΔdtxR pLongJon-ΔfurA pLongJon-ΔfurB 

isolate 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 
M13-FP ü ü nd nd ü ü nd nd ü poor nd nd ü ü nd nd nd nd nd nd 
Blastn 
confirm 

ü ü nd nd ü ü nd nd ü nd nd nd ü ü nd nd nd nd nd nd 

R. equi 
103S 

transform 

- - - - ü nd nd nd ü nd nd nd ü nd nd nd nd nd nd nd 

M13-FP TGTAAAACGACGGCCAGT 
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Further to the promoter analysis, a multi-enzyme restriction digest was performed on the successfully 

transformed plasmids, which could be compared to an in-silico digestion of the respective plasmid. 

This detailed analysis further indicated correct plasmid assembly of both pLongJon and the 

mutagenic inserts selected, based on corresponding band sizes.  

 

Figure 5-12: In silico digestion of pLongJon and mutant plasmids compared to in vitro 
digestions. 
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5.8  Incorporation of mutagenic constructs into R. equi 103S (V2) 

The recombinant plasmids (pLongJon-ΔideR, pLongJon-ΔdtxR and pLongJon-ΔfurA) were used to 

transform R. equi 103S by electroporation. Positive selection for single crossover transformants was 

based upon growth on 80 µg/µl Apramycin LB agar plates. R. equi 103S without plasmid 

incorporation was used as a negative control due to a lack of apramycin resistance. 

5.9 Selection of the double crossover 5-FC resistant phenotype (V2) 

As before, single crossover transformants (this time all four pSelAct mutants and the three pLongJon 

mutants) were grown without selection overnight, 100 µl culture aliquots were serial diluted from 

1:10 – 1:1000 using acetate minimal media (MMAc) adjusted to 10 g acetate per litre as 

recommended for increased selectivity (Van de Geize, R., personal communication) and plated onto 

MMAc agar supplemented with 100 µg/ml 5-FC and incubated for 3 days at 37 °C.  

Even after attempting to optimise the selection process by incorporation of a new promoter, selection 

of the 5-FC resistant phenotype, in excess of 1500 colonies were screened by replica plating on both 

non-selective media as well as on the 80 µg/µl Apramycin LB agar plates indicating that all of 

colonies retained apramycin resistance.  

 

Figure 5-13: An example of replica plating for R.equi-ΔideR on LB agar and LBapr80 using 
colonies from a 100 µg/ml 5-FC plate. 

 

The non-selective replica streaks were screened using colony PCR for mutants, however when 

analysed the gel, the results were difficult to interpret due to an inconsistent bias of amplicon bands 

(Figure 5-14). Ideally the PCR should show both wildtype and truncate copies of the amplicon in the 
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single cross over and the appropriate amplicon for the double crossover dependent on route of 

homologous recombination.  

 

Figure 5-14: Colony PCR to identify secondary homologous recombinant mutants 

The PCR was eventually optimised by alteration of PCR extension times from 30 seconds up to 60 

seconds. This modification produced a vastly superior screening method, of which the robustness 

was further tester by amplification of at least eight single-crossover colonies that were proven to 

amplify both wildtype and truncate variants (Figure 5-15). 

  

  

Figure 5-15:Optimised PCR screening to identify both wild type and truncate gene variants.  

 

Given the number of colonies screened, it became apparent that the current methodology for selection 

of double-crossover mutants using 5-FC as a negative selection marker was severely ineffective. 

Significantly, a paper by Dubeau et al. (2009) describes the use of cytosine deaminase as a negative 
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selection marker in actinobacteria and in particular how resistance to CD in actinobacteria is 

common, with MIC ranges of in excess of 800 µg/ml. Although R. equi was not explicitly mentioned 

within the scope of the work, other closely related bacteria were detailed as needing concentrations 

between 400 and 800 µg/ml to inhibit growth on minimal media, and therefore it was hypothesised 

that using a concentration of 100 µg/ml in R. equi may be too low, and could be the reason for 

inefficient counter selection. 

 

With a new methodology in mind, single crossover transformants using the pSelAct strategy were 

grown again overnight, and 100 µl culture aliquots were serial diluted from 1:10 – 1:1000 using 

acetate minimal media (MMAc) as before, and plated onto MMAc agar supplemented with the 

increased 200 µg/ml 5-FC and incubated for 3 days at 37 °C. Single colonies were selected and 

replica plated onto both non-selective media as well as on 80 µg/µl Apramycin LB agar plates. 

Remarkably, the replica plating indicated an increased efficiency due to a reduction in colony 

formation on the Apramycin LB agar plates (Figure 5-16).  

 

Figure 5-16: Replica plating for R.equi-ΔideR on LB agar and LBapr80 using colonies from a 
200 µg/ml 5-FC plate after 3 days growth 

However even with this refined methodology, some of the double crossover’s PCR lanes still show 

both PCR variant bands, this could be due to a mixed colony collection of single and double crossover 

recombinant mutants. As a result, the selection process was further repeated with an increased 5-FC 

concentration of 400 µg/ml; as expected, the increase in 5-FC concentration resulted in a significantly 

lower number of single colonies observed, even at lower cell density dilutions. Colonies that did 
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successfully grow were streaked onto the replica plates as before, with a remarked improvement, 

showing absolutely zero growth on Apramycin LB agar for both R.equi-ΔideR, R.equi-ΔfurA and 

R.equi-ΔdtxR (Figure 5-17), and at least one streak of and R.equi-ΔfurB with no growth. 

 

Figure 5-17: Replica plating for R. equi-ΔdtxR on LB agar and LBapr80 using colonies from a 
200 µg/ml 5-FC plate after 3 days growth 

 

5.10 Molecular confirmation of the generation of R. equi 103S Δmetal 

regulatory genes 

With the refined methodology now producing consistent counter-selection, indicated using 

apramycin sensitivity, the replica plated colonies of interest were screened using the diagnostic PCR 

screen optimised earlier. 

 

To identify the route of the secondary homologous recombination event in R. equi-ΔideR, ten of the 

colonies that showed apramycin sensitivity were screened by colony PCR, in parallel with a single-

crossover mutant of R. equi-ΔideR.  

The modification of the diagnostic PCR earlier provided a robust method of confirming both gene 

variants for the single crossover, producing a wildtype band of ideR at 1413 base pairs and a truncated 

ΔideR band at 783 base pairs whilst also providing satisfactory conditions to identify single bands 

produced by double-crossover mutants in a single thermocycling run. Significantly, the PCR screen 

in Figure 5-18 indicates that all of the apramycin sensitive colonies tested underwent a secondary 
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homologous recombination event, of which, seven reverted to wildtype and three contained only the 

truncated gene mutation. 

 

Figure 5-18: Colony PCR for R. equi-ΔideR to identify secondary homologous recombination 

 

 

To identify the route of the secondary homologous recombination event in R. equi-ΔdtxR, only three 

out of twelve colonies showed absolute apramycin sensitivity, these were screened by colony PCR, 

parallel with a single-crossover mutant of R. equi-ΔdtxR.  

As previously mentioned, diagnostic PCR provided a robust method of confirming both gene variants 

for the single crossover, producing a wildtype band of dtxR at 1517 base pairs and a truncated ΔdtxR 

band at 917 base pairs whilst also providing satisfactory conditions to identify single bands produced 

by double-crossover mutants in a single thermocycling run.  

Similar to the R. equi-ΔideR mutants, Figure 5-19 indicates that all of the apramycin sensitive 

colonies tested underwent a secondary homologous recombination event, of which, two reverted to 

wildtype and one contained only the truncated gene mutation having lost the wildtype chromosomal 

copy of the gene. 
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Figure 5-19: Colony PCR for R. equi-ΔdtxR to identify secondary homologous recombination 

 

 

To identify the route of the secondary homologous recombination event in R. equi-ΔfurA, over thirty 

colonies were identified to have apparent absolute apramycin sensitivity, these were screened by 

colony PCR, as described previously for the other mutants.  

As previously mentioned, diagnostic PCR provided a robust method of confirming both gene variants 

for the single crossover, producing a wildtype band of furA at 892 base pairs and a truncated ΔfurA 

band at 400 base pairs whilst also providing satisfactory conditions to identify single bands produced 

by double-crossover mutants in a single thermocycling run (Figure 5-20).  

Similar to the other mutants, under the refined methodology a significant number of colonies 

appeared to undergo a secondary homologous recombination event, and yet some remained as single-

crossover mutants even with apramycin sensitivity. This may have been as the result of a 5-FC 

resistant phenotype from an infrequent recombination event excluding coda::upp but not aac(3)IV, 

or through acquiring apramycin resistance, this theory was further explored by previous researchers 

(L. Dover, pers. comms) working on in-frame mutants in R. equi. 

However, due to the improved methodology associated with counter-selection and screening, twenty-

three of the colonies appear to have undergone a secondary homologous recombination event 

resolving to wildtype, and only one truncated gene mutation having lost the wildtype chromosomal 

copy of the gene (Figure 5-20). 
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Figure 5-20: Colony PCR for R. equi-ΔfurA to identify secondary homologous recombination 

Considering there is no selection process for the in-frame deletion gene over the wildtype revertant 

secondary homologous recombination event, it seems logical that the selection may be driven by the 

biological significance of the gene. The recombination ratio of R. equi-ΔfurA appears preferentially 

favoured towards resolving by wildtype and presents the question is this as a result of conditional 

survivability, with regards to a lack of a functional oxidative stress response. 

In the bacterial homologue M. tuberculosis, it is clear that the furA gene equivalent is responsible for 

regulation of both mycobacterial physiology and intracellular survival controlling oxidative stress 

response (Zahrt et al., 2001).		

The genetic locality of the furA gene may harbour the desired answers; sharing an operon with a 

catalase gene, it is likely that the operon functions in a homologous way to that of M. tuberculosis, 

which has a furA gene responsible for negative regulation of the catalase-peroxidase gene KatG, 

suggesting that the furA operon in R. equi may be responsible for regulation of an oxidative stress 

response. 

 

To identify the route of the secondary homologous recombination event in R. equi-ΔfurB, only two 

out of twenty-eight colonies showed absolute apramycin sensitivity, these were screened by colony 

PCR, parallel with a single-crossover mutant of R. equi-ΔfurB. The previously optimised diagnostic 

PCR confirmed both gene variants for the single crossover, producing a wildtype band of furB at 

1235 base pairs and a truncated ΔfurB band at 853 base pairs whilst also providing satisfactory 

conditions to identify single bands produced by double-crossover mutants in a single thermocycling 

run.  
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When screened using the diagnostic PCR method, the results indicate that the apramycin sensitive 

colonies underwent a secondary homologous recombination event, of which, one reverted to 

wildtype and one contained only the truncated gene mutation  

 

Figure 5-21: Colony PCR for R. equi-ΔfurB to identify secondary homologous recombination 
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5.11 Colony morphology and phenotypic characterisation 

The mutant phenotypic appearances and growth of R. equi 103S-ΔideR; ΔdtxR; and ΔfurB appear 

normal comparative to the wildtype strain, displaying salmon pink circular mucoid colonies, with 

further orange pigment developed over a series of days. Comparatively, the mutant phenotypic of R. 

equi 103S-ΔfurA varies after 24 hours growth, as the rate of growth is reduced, and while the colony 

shape and surface are similar, the pigment colour is a darker orange-brown (Figure 5-22). 

WT

 

Figure 5-22: BHI agar plates showing colony morphology of R. equi 103S wildtype and 
mutant variations. 
Mutant strains ΔideR; ΔdtxR; and ΔfurB show no observable phenotypic variantion compared to the 
wildtype, strain ΔfurA showed an impaired growth and developed with a darker pigment. 

 

No changes in cellular morphology was observed for any of the four mutants, comparative to the 

wild-type strain, with all strains consistently showing bacillus morphology when cultivated in broth, 

as previously described for R. equi (Goodfellow et al., 1990). 

5.12 Protein profiling of R. equi mutants 

To understand the proteomic effect of mutagenesis on the R. equi genome, total protein profiles 

(Figure 5-23) were compared using a 12 % SDS-PAGE gel as described in section 2.9.4. The profiles 

generally look consistent to the wildtype, apart from a highly overexpressed band present in R. equi 

103S-ΔfurA between the 50 – 60 kDa range when compared with the molecular standards (Figure 
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5-23).  

 

Figure 5-23 A 12 % SDS-PAGE total protein load for R. equi 103S wildtype compared to R. 
equi 103S mutants. 

5.13 R. equi-ΔfurA – De-repression of an essential catalase gene 

 

The protein band of interest from R. equi- ΔfurA was excised (Figure 5-24A), subject to trypsinolysis 

and analysed via LC-MS for identification. The data file was processed using a MS/MS ion search 

on the local MASCOT server (methods section 2.13.3), identifying the most significant protein match 

as a catalase protein (Table 5-3, highlighted yellow), with a corresponding mass of ~55 kDa, 

consistent with the migration of the band in SDS-PAGE. A protein score of 16340 was attained.  The 

peptide score distribution ion scores > 16 indicates identity or significant homology (p < 0.05) 

(Figure 5-24C), supported by a protein sequence coverage of 77 % by matched peptides (Figure 

5-24B). 

Table 5-3: MASCOT protein hit output detailing the top 5 protein families, and their 
associated members.  
Table is ranked on total family significance, incorporating protein score, matches and distinct 
sequences. Protein identifications given in the description. 

↑Family M Accession Score Mass Matches Match(sig) Sequences Seq(sig) emPAI Description 
1 1 gi|311887293 16340 55009 554 507 37 33 27.24 catalase  
1 2 gi|311891095 928 57487 64 57 4 2 0.18 catalase  

2 1 gi|311890529 3337 56506 95 86 26 26 7.76 chaperonin 
GroEL2  

2 2 gi|311890174 3317 55868 86 78 26 22 5.41 chaperonin 
GroEL  

3 1 gi|311890841 3177 60416 117 104 29 28 17.01 urocanate 
hydratase  

4 1 gi|311888517 3170 52193 98 83 23 21 8.58 
ATP synthase 

beta chain 
AtpD  
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5 1 gi|311888515 2554 58499 73 69 26 25 6.51 
ATP synthase 

alpha chain 
AtpA  

As previous alluded, and in conjunction with this new proteomic evidence, it seems highly likely that 

R. equi FurA functions as a homolog to its mycobacterial counterpart by negatively regulating the 

upstream catalase gene Cat.  

A B 

C 

Figure 5-24: Protein identification of the hyper-expressed band in R.equi 103S-FurA. 
A) detailed excision site for the band of interest. B) Protein sequence coverage. C) Peptide score 
distribution. Ions score is −10log(P), where P is the probability that the observed match is a random 
event. There are 4,229 peptide matches above identity threshold and 4,278 matches above homology 
threshold for 24,615 queries. Histogram score range is (0, 164). On average, individual ions scores 
> 16 (beyond green shading) indicate identity or extensive homology (p<0.05). 

 

The ubiquitous clustering of furA and a downstream catalase–peroxidase gene katG and their role in 

coordination of an oxidative stress response has been well documented  in mycobacteria (Milano et 

al., 2001; Pagan-Ramos et al., 1998; Pym et al., 2001; Zahrt et al., 2001), leading us to hypothesise 

that a homologous oxidative stress response is similarly coordinated in R. equi.  

To determine if the in-frame deletion mutant R. equi-ΔfurA exhibited a phenotype typical of 
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oxidative stress, susceptibility testing with hydrogen peroxide (H2O2) was carried out. Given the 

previous literature on the effect of mycobacterial furA disruption on peroxide susceptibility, the 

results for R. equi-ΔfurA clearly conform to a homologous regulatory system, proving to be 

significantly more resistant to H2O2 in comparison to the parental wildtype strain R. equi 103S 

(Figure 5-25) using one-way ANOVA with Dunnett's Multiple Comparison Test (P ≤ 0.001). This 

further highlighted that FurA is responsible for negative regulation of a catalase for detoxification of 

hydrogen peroxide, in an attempt to prevent formation of reactive oxygen species. 

 

Figure 5-25: A zone of inhibition assay for breakdown of hydrogen peroxide by catalase.  
Zones of inhibition (n = 3) were measured after 72 hours. Data was plotted as mean +/− SEM. 
Statistical significance was determined using one-way ANOVA with Dunnett's Multiple Comparison 
Test. Wildtype vs. ΔideR : * p ≤ 0.05, Wildtype vs. ΔfurA : *** p ≤ 0.001. 

Interestingly, the H2O2 sensitivity testing also highlighted a significant difference for the R. equi-

ΔideR mutant when compared to the parental strain (P ≤ 0.05). This could likely arise due to the 

inherent association of oxidative stress and iron metabolism; this result however, is contradictory to 

a similar study in M. smegmatis, where inactivation of ideR resulted in an increased peroxide 

sensitivity and de-repression of siderophore synthesis under iron sufficiency (Dussurget et al., 1996). 

Given the interlinked relationship between oxidative stress and iron metabolism, and the sequence 

similarities to other fur genes, the R. equi mutants were studied to identify whether gene inactivation 

by in-frame deletion affected siderophore production, in comparison to wildtype. The wildtype and 

mutant strains of R. equi were grown in lactate minimal media both with and without iron 

supplementation; there was no observable difference regarding siderophore secretion, even when 
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bacterial supernatant was added to CAS agar plates. 

Although this is consistent with the wildtype R. equi displaying CAS-negative results, it is 

contraindicated to our hypothesis, and surprising that impairment of the iron regulatory system by 

mutation of the gene ideR does not promote overproduction of siderophores, as predicted with the 

genomic survey of iron regulatory mechanisms (as described in earlier chapters). This could suggest 

a much more complex iron regulatory network that may rely on other methods of iron sequestration. 

Furthermore, given the complex regulation and control of oxidative stress response genes, it is highly 

unlikely that FurA is involved in siderophore secretion within R. equi and rather, is almost certainly 

an essential component in redox sensing, consistent with other bacterial Fur homologues.   

5.14 Concluding remarks for this chapter 

The aim of this project was to produce a selection of in-frame gene deletion mutants predicted to 

encode iron-responsive regulatory proteins in R. equi 103S, IdeR, DtxR, FurA and FurB. The 

mutagenesis process proved particularly challenging and frustrating given the methodology had been 

previously optimised. Even with substitution of a superior promoter the selection was not adequate, 

resulting in an optimisation of the cytosine deamination selection by increasing the 5-FC 

concentration. Having previously replica plated over 1500 colonies without successful counter-

selection, this alteration to the methodology provided a significant improvement in selecting cells 

that had undergone the secondary homologous recombination event and achieving in-frame gene 

deletion mutants for all four targets. 

The success of the regulator mutagenesis experiment further develops the working hypothesis 

regarding the iron regulatory mechanisms within R. equi, as described in Figure 5-26. The subsequent 

phenotyping of mutants identified a noteworthy change for R. equi-ΔfurA, which displayed a 

remarked resistance to peroxides, leading us to hypothesise that it is responsible for coordinating an 

oxidative stress response in R. equi by transcriptional repression of catalase. The other mutants did 

not produce any identifiable phenotypic changes even under iron limitation, and it would be valuable 

to identify transcriptomics changes comparative to the parental wild type strain. Contrary to our 

working hypothesis, the production of R. equi-ΔideR did not lead to a hyperexpression of 

siderophores, suggesting that this bacterium has a much stronger control over the iron starvation 
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response mechanisms than previously hypothesised. 

The genomic survey and the subsequent in silico metal binding analysis completed earlier, associated 

each of the remaining mutants with a different divalent cation; going forward it would be useful to 

impose metal limitations for the mutants on R. equi 103S, R. equi-ΔdtxR and R. equi-ΔfurB as well 

as subsequent phenotyping and transcriptomic analysis under these conditions  
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Figure 5-26 An updated R. equi iron homeostasis network map (after chapter 5) 
Data generated from the preliminary genomic survey, developed using in silico metal binding capacities, and production of metal regulator mutants. The FurA candidate 
is displayed in green to indicate successful prediction with the mutant phenotyping identifying an oxidative stress response. The IdeR candidate is displayed in orange, 
to indicate incomplete results regarding iron regulatory mechanisms that are to be further explored in future work. Siderophore candidates at this stage are given in red 
as at this predictions have yet to be made. 
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6 An analysis of the Rhodococcus equi 103S 

metabolome under iron limitation: An insight into 

siderophore mediated iron metabolism 
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6.1 Introduction 

 

Metabolomics is the extensive analysis of small molecules (also known as metabolites) in a 

biological sample, of which metabolites and their interactions within a biological system are 

collectively recognised as the metabolome. The term ‘metabolomics’ was first coined by Fiehn 

(2002) to describe the synthesis of end-products manufactured by cellular regulatory processors, 

however the concept of a metabolic profile was first described as early as the 1940’s (Gates and 

Sweeley, 1978). Critically, the study of a metabolome and as such, the creation of a metabolic profile 

can provide a snapshot of the cellular processes occurring at a given time in response to the 

physiological conditions. 

Often produced as a by-product of cellular metabolism, metabolites can include hydrophobic lipids, 

hydrophilic carbohydrates, ketones, amino and non-amino organic acids, and complex natural 

compounds such as antibiotics, pigments, non-ribosomal peptides, cofactors (often termed secondary 

metabolites) that can influence the way a cell can transfer energy, or sequester important minerals to 

survive (Mussap et al., 2018; Tang, 2011). Changes in metabolite composition and abundance within 

a biological system can occur in response to either therapeutic treatments or physiological stresses. 

Current metabolomic technologies vastly exceed the capacity of standard biochemical methods and 

consequently are proficient in the accurate analyses of thousands of metabolites. Therefore, 

metabolomic studies can often deliver comprehensive characterisation of metabolic phenotypes, 

characterisation of metabolic disorders that can often be the fundamental cause of disease, as well as 

discovery of biomarkers and therapeutic targets (Clish, 2015). 

Metabolomics is often termed as a top-down analytical technique, designed to produce broad and 

integrative results to identify effects in a given biological system; there is a drive within the systems 

biology to collaborate with the customary bottom-up methodology techniques (genomics, 

transcriptomics and proteomics) to assemble a more complete picture of the biological processes 

occurring and associated cellular regulation (Tang, 2011). Integration of metabolomic data is 

considered to be key in deciphering the pathways involved in cellular signalling, as metabolites can 



 

 209 

act as intermediates of these biochemical reactions. 

In contrast to the aforementioned bottom-up analyses (genomics, transcriptomics and proteomics), 

compounds produced from metabolic reactions can vary significantly in their chemical structures 

and associated properties thereby making determination of a given metabolome under a specific 

physiological condition exceptionally challenging (Garcia et al., 2008). 

The experimental methodologies for metabolomics primarily use liquid or gas chromatography 

coupled to a mass spectrometer or High-resolution 1H nuclear magnetic resonance spectroscopy for 

identification. Both of these methods are well established in investigation of complex analytes for 

measurement of an array metabolites in a single run (Rochfort, 2005). 

The application of metabolomics can be performed using either targeted or untargeted approaches, 

each possessing their own advantages. Firstly, untargeted metabolomics can be classified as a 

comprehensive investigation of all analytes within a sample under a given condition (often termed a 

snapshot) including chemically undetermined metabolites that might represent potential novel 

biomarkers (Ribbenstedt et al., 2018; Roberts et al., 2012). Due to the size and complexity of 

untargeted metabolomic datasets, it is frequently paired with chemometric analysis methods 

including multivariate analysis to moderate the large datasets generated into more manageable 

subgroups, often to further investigate statistically significant variation in metabolite abundance. 

Comparatively, targeted metabolomics often termed metabolite profiling is the collection and 

investigation of a particular group of metabolites and can often involve quantitative or semi-

quantitative analysis to focus on the effects of external factors or environmental conditions on 

specific pathways or biosynthesis routes of the metabolites of interest.  Furthermore, optimisation of 

sample preparation can also be advantageous for targeted analysis by isolation and purification 

techniques, alternatively depletion techniques can be utilised to reduce the pre-eminence of highly 

abundant metabolites.  
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6.2 Chapter aims and hypothesis 

This chapter is apportioned to addresses three fundamental aims:  

(1) To establish the growth conditions for R. equi that can elicit a defined a biological response to 

iron starvation. It was hypothesised that optimisation of media conditions to induce iron starvation 

would produce a physiological response including the secretion of two potential R. equi siderophores 

consistent with the bioinformatic analyses described here and elsewhere (Chapter 3). Additionally, 

these growth conditions would subsequently be used consistently in a range of -omics studies in this 

thesis; including this comparative analysis of secreted metabolites (metabolomics), a comparative 

analysis of cell-wall associated iron-regulated protein mechanisms (proteomics) and characterisation 

of global regulation of gene expression under iron starvation (transcriptomics). 

(2) An untargeted metabolomics study to compare the R. equi 103S metabolome under iron 

limitation. It is hypothesised that a list of candidate metabolites secreted exclusively under iron 

starvation would be produced, of which some candidates may correlate with the predicted mass sizes 

of the siderophores predicted earlier.  

(3) A targeted metabolomics approach to identify R. equi 103S siderophores, using the candidate list 

produced in chapter aim 2. It was hypothesised that if candidates were identified in (2), it would be 

possible to use chromatography to isolate metabolites of interest and subsequently characterise by 

MS fragmentation methods. 
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6.3 Media and growth conditions for R. equi 103S 

Previous literature describing growth of R. equi under iron starvation is limited, but it has been 

consistently reported that iron is essential for growth (Jordan et al., 2003; Miranda-CasoLuengo et 

al., 2008). R. equi strains were maintained on Luria-Bertani (LB) or Brain Heart Infusion (BHI) 

medium or on minimal medium supplemented with 20 mM lactate (LMM) at 37 °C as previously 

described (Kelly et al., 2002; Miranda-CasoLuengo et al., 2005). Iron starvation was induced using 

a variant of the trace element solution devoid of ferrous sulphate as described in Section 2.2. 

Interestingly, previous work performed by Miranda-CasoLuengo et al. (2008) identified that after 

growth in low iron conditions R. equi produces a chromophore when supplemented with an iron-

containing trace elements solution.  This chromophore also occurred during growth of R. equi α5, a 

strain containing a transposome insertion in iupABC, encoding a siderophore uptake system in iron 

sufficient conditions. This chromophore was hypothesised to be as a result of formation of an Fe3+-

siderophore complex given the red pigmentation of the medium supernatant.  

According to Miranda-CasoLuengo, the observed chromophore was not present when analysing 

growth of wild-type strain in iron sufficient medium or when the trace element solution lacking 

FeSO4 was added as a supplement to the iron deplete cultures. 

The initial experiment attempted growth of R. equi 103S under iron limitation using LMM-Fe media, 

of which the culture reached stationary phase after 24 hours (data not shown). Unlike the experiment 

performed by Miranda-CasoLuengo the chromophore was not observed after 72 hours growth even 

after supplementation of the supernatant with an ferric chloride solution. The cultures were also 

aliquot onto a Chromazurol S containing agar plate to detect siderophore production through a dye-

assisted chelatory mechanism, however the the cultures failed to grow likely due to toxicity 

associated with hexadecyltrimethylammonium bromide noted in Gram-positive organisms (Louden 

et al., 2011). An alternative method was also attempted using culture supernatant aliquot into wells 

within a Chromazurol S agar plate, without development of a halo indicative of siderophore presence. 

This result was suprising given siderophore-producing bacteria typically exhibit an exaggerated 

response in vitro. 



 

 212 

 

To ensure that the growth limiting factor for this series of experiments was the iron concentration, a 

variety of media modifications was performed by supplementation of LMM (section 2.2.2) with 

either Riboflavin, a double concentration of the carbon or nitrogen sources, , as well as substitution 

of the sodium L-lactate for sodium acetate. 

The growth curve (Figure 6-1) indicated that R. equi cultured in LMM without supplementation grew 

slower than other supplemented media conditions but still achieved a roughly similar stationary 

phase optical density. The media supplemented with double of the nitrogen source ammonium 

sulphate appeared to show the best growth rate overall, and the double carbon source LMM exhibited 

exceptional growth in the first 24 hours in comparison to others. Furthermore, it was determined that 

to ensure the results were comparable, the acetate supplemented media should not be used for further 

studies.  

 

Figure 6-1: Identification of optimal growth conditions to induce an iron starvation response 

in R. equi 103S. 

Growth was performed at 37 °C, 180 RPM. Optical density measured every twenty-four hours. LMM 
= Lactate minimal media; 

Growth analyses were repeated using two supplemented LMM conditions (x2 Carbon, and x2 

Nitrogen), but imposing different iron regimens to elicit iron starvation (LMM-Fe) and iron-replete 

(LMM+Fe) phenotypes (Figure 6-2). Iron-replete growth of R. equi was greater than iron-starved 

growth, but remarkably the final yields (as estimated by optical density) were comparable and 

consistent with previous studies (Miranda-CasoLuengo et al., 2008). 
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Figure 6-2: Refined growth conditions in R. equi 103S imposing different iron regimens to 

elicit an iron starvation response. 

Growth was performed at 37 °C, 180 RPM. Optical density measured every twelve hours. LMM = 
Lactate minimal media; +/- Fe = iron supplemented/iron deficient conditions.  

6.3.1.1 Modified CAS agar to detect siderophore production  

Previous attempts to identify siderophore production using CAS agar had been unsuccessful, likely 

due to the inherent toxicity of hexadecyltrimethylammonium bromide (HDTMA) preventing growth 

of Gram-positive organisms on the agar (Louden et al., 2011). However, this toxicity should not 

prevent siderophore detection of an iron-starved culture supernatant; however, the colour change 

associated with extraction of iron from the dye complex was not detected consistent with the findings 

of Fiss and Brooks (1991) that identified the genus Rhodococcus as having variable siderophore 

activity, and R. equi as siderophore negative.. This suggested that R. equi does not generate the 

exaggerated siderophore yields commonly observed with many microorganisms. 

A more-sensitive modified microtitre CAS method (Arora and Verma, 2017) was assessed and 

significant colourimetric changes were generated in culture supernatants derived from iron depleted 

and iron supplemented bacteria (Figure 6-3).  This outcome indicated that under iron starvation R. 

equi does synthesise and secrete iron-chelating compounds, given the complete sequestration of the 

metal from the dye (Figure 6-3, columns 1:3; 7:9).  The partial extraction of iron from the dye under 

iron supplemented conditions (Figure 6-3, columns 4:6; 10:12) may indicate that the iron was 

becoming depleted at this time point. 
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Figure 6-3: A microtitre CAS assay to detect siderophore production in R.equi 103S. 

In a 96 well plate 100 µl culture supernatant aliquots from Figure 6-2 were mixed with 100 µl 
modified CAS solution and left to incubate for 3 hours before analysis. Colour change from blue to 
orange is indicative of siderophore production 

 

As Fiss minimal media (FMM) had previously been successfully used for siderophore identification 

in other rhodococci (Vellore, 2001) a similar trial design to that described above was employed using 

FMM.  In these trials, three different medium compositions, including FMM containing no iron, 

FMM containing low iron (0.5 µM FeSO4) and FMM containing high iron (20 µM FeSO4).  

However, marked inconsistency in yields indicated that FMM medium should not be considered as 

the foundation for ongoing experiments.  R. equi appears to preferentially use carbon sources such 

as lactate and acetate over glucose, as the latter was recently shown to be both inefficient and to lead 

to variable outcomes (Anastasi et al., 2016; Vázquez-Boland and Meijer, 2019) which is consistent 

with the findings here. 

 

With the inconsistencies of FMM, the decision was made to return back to using lactate minimal 

media, for direct comparisons with previously published R. equi studies (Miranda-CasoLuengo et 

al., 2012; Miranda-CasoLuengo et al., 2005; Miranda-CasoLuengo et al., 2008). Additional measures 

were made to more reproducibly impose iron limitation, including using acid-washed glassware and 

Chelex-100 treatment of the liquid medium to sequester traces of iron. 

The initial experiment was repeated using these modified LMM (+/- Fe) conditions, in an attempt to 

replicate the chromophore observed by Miranda-CasoLuengo et al. (2008). After 120 hours, a 
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noticeable red pigment developed in the iron-limited culture only, with the iron supplemented culture 

remaining an off-white colour and the uninoculated negative control displaying no growth at all 

(Figure 6-4). This is unlikely to be the chromophore reported by Miranda-CasoLuengo et al. (2008) 

as no metal supplement was required to generate the colour.  The development of such a colour based 

on binding of surplus iron in the medium is inconsistent with the elaboration of siderophores.  

An additional set of otherwise identical cultures were incubated further and harvested after 300 

hours, to monitor the effect of longer starvation periods. All cultures were streaked on LB agar to 

confirm culture purity, observed colony morphology was entirely consistent with R. equi. 

 

Figure 6-4: Visual inspection of R. equi 103S cultures after 120 hours growth under different 

iron regimes. 

Conditions - Left: 3x iron sufficient LMM(+Fe), Right: 3x iron starved LMM (-Fe), and an 
uninoculated LMM flask. 

The cellular material and supernatant were separated by centrifugation, the red pigment was observed 

in both supernatant and pellets of iron-deficient samples (Figure 6-5).  

 

Figure 6-5: Visual inspection of R. equi 103S culture supernatants after 120 hours growth 

under different iron regimes. 

Conditions - Left: 3x iron sufficient LMM(+Fe), Right: 3x iron starved LMM (-Fe). 

Aliquots of the bacterial supernatants were taken and complexed with 1 % ferric chloride (Figure 

6-6AB) to promote formation of ferri-siderophore complexes that might be detected 

colourimetrically or by mass spectrometry. Surprisingly, upon complexation a precipitate formed in 

both sets of cultures, more noticeably in the iron-limited supernatants; the precipitates were then 

collected by centrifugation. Significantly, the red pigment associated with the precipitate pellet, 
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leaving a notably paler supernatant (Figure 6-6CD). Therefore, the analysis was expanded to profile 

the metabolites from both the original iron-starved and iron sufficient conditions, and also to 

investigate the effect of ferric chloride supplementation prior to LC-MS analysis and identify if 

production of siderophores was evident. 

A 

B 

 

C 

 

D 

Figure 6-6: Visual inspection of R. equi 103S culture supernatants aliquots under different 

iron regimes with additional iron supplementation. 

A) 1 ml supernatant aliquots of R. equi 103S: Left: 3x iron sufficient LMM(+Fe), Right: 3x iron 
starved LMM (-Fe). B) 1 ml supernatant aliquots of R. equi 103S: Left: 3x iron sufficient LMM(+Fe) 
supplemented with 1 % FeCl3, Right: 3x iron starved LMM (-Fe) supplemented with 1 % FeCl3. C) 
Precipitation from B collected by centrifugation. D) Culture supernatant counterparts to the 
precipitation observed in C.  
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6.4 Untargeted metabolite profiling using MS1 Analyses 

The bacterial supernatant samples were prepared, and separated using both a Reversed Phased (RP) 

methodology with a C18 column and a HILIC methodology using an amide analytical column linked 

to an UHPLC-MS, producing chromatograms shown in Figure 6-7 and Figure 6-8 respectively.  

 

Figure 6-7: Metabolite profiles of R. equi 103S using RP (C18) chromatography, positive 

ionisation mode.  

Conditions used to elicit a biological response were iron-limited lactate minimal media (LMM-Fe) 
(black; D5D, D5E and D5F) and iron-sufficient lactate minimal media (LMM+Fe) (red; D5A, D5B 
and D5C) 

 

Figure 6-8: Metabolite profiles of R. equi 103S using HILIC (amide) chromatography, 

positive ionisation mode.  

Conditions used to elicit a biological response were iron-limited lactate minimal media (LMM-Fe) 
(black; D5D, D5E and D5F) and iron-sufficient lactate minimal media (LMM+Fe) (red; D5A, D5B 
and D5C) 
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The RP chromatograph was analysed further using Compound Discoverer 3.1 as described in section 

2.14.2. The dataset peak intensity tables were organised into rows of unpaired samples with the aim 

of identifying the metabolomic profile of each of the samples and how significantly they vary; to do 

this the “Statistical Analysis” module of MetaboAnalyst 4.0 (http://www.metaboanalyst.ca) was 

utilised. Data uploading was performed as described in section 2.14.3, including missing values, 

filtering, normalisation, transformation and scaling of the datasets. The data normalisation was 

essential to reduce systematic bias within the data set and to improve overall data consistency so that 

meaningful biological comparisons can be made (Figure 6-9) (Mizuno et al., 2017). 

 

Figure 6-9: Box plots and kernel density plots before and after normalization.  

The boxplots show at most 50 features due to space limit. The density plots are based on all samples. 
Selected methods: Data transformation: Log Normalisation; Data scaling: Pareto Scaling.  
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The Principle Component Analysis algorithm was used as an unsupervised method to visually 

determine if a distinct class separation was achieved in the multivariate data (Figure 6-10). 

 

Figure 6-10: 2D Principal component analysis for unsupervised variance analysis between 

sample classes of R. equi 103S 

Red: iron limited samples; Green: iron limited samples with FeCl3 supplementation Dark Blue: iron 
sufficient samples; Light Blue: iron sufficient samples with FeCl3 supplementation. 

It was clear that even using an unsupervised method that there was a distinct metabolic variation 

between the four sample classes, with the first three principal components accounting for 89.3 % of 

variance within the dataset. As expected, the PC1 accounts for 54.6 % variance observed, and is 

likely related to the biological differences occurring during growth in the different medium 

conditions. PC2 however, accounts for 22.2 % of variance observed and appears to be derived from 

the addition of FeCl3 to the bacterial supernatants and the associated molecular interactions and 

substance precipitations (refer to Figure 6-6). 
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Prior to any further statistical analysis, a rationale was established to scout the dataset to identify if 

any metabolites conform to expectations for a siderophore-based biological response, specifically 

providing evidence for a secreted compound generated under iron-limited conditions, that is not 

present under iron-replete conditions, that after addition of iron the metabolite abundance changes 

due to metal complexation and as a result a mass change (56 Da) occurs. 

This initial manual data analysis was performed by sorting the average peak intensity table by 

abundance in the iron-deplete conditions (LMM) where we would expect to see the metabolites of 

interest; special interest was paid to masses made earlier in the thesis regarding putative rhequibactin 

and rhequichelin structures. 

Table 6-1 details the top 25 most abundant metabolites detected in spent LMM; of these 18 do not 

follow expected trends and were discarded. The remaining 7 metabolites (highlighted in Table 6-1) 

all appear to be more abundant in the LMM conditions than in LMM+Fe.  

Table 6-1:Peak intensity table for the metabolite profiling of R. equi 103S using RP LC-MS 

methodology; ranked by average intensity in LMM conditions. 

   Sample AVERAGE AVERAGE AVERAGE AVERAGE 
Molecular Weight  Class LMM+Fe_Sup LMM+Fe LMM_Sup LMM 
M [M+H] RT [min] Metabolite        

562.21514 563.22242 1.626 M0537     16,454,485      33,335,196    160,510,104    180,853,188  
273.26706 274.27434 6.895 M1758   123,295,570      54,458,475    104,097,665      48,209,431  
166.08566 167.09294 0.945 M0154     97,261,581    101,874,029      51,455,463      39,819,122  
562.21526 563.22254 1.485 M0496       1,881,814        1,961,948      28,729,896      35,209,407  
434.12633 435.13361 2.857 M0872              2,701               4,063        1,549,688      32,262,119  
286.14194 287.14922 6.981 M1770     24,810,184      37,393,016      27,132,311      31,566,796  

180.1013 181.10858 1.068 M0222     26,596,747      40,127,412      31,573,921      29,910,706  
201.1731 202.18038 1.165 M0288     20,379,552      39,898,627      23,892,009      27,849,386  

563.21788 564.22516 1.632 M0539       1,412,771        2,703,450      15,670,614      23,900,299  
301.18903 302.19631 2.903 M0898     14,740,921      34,370,931      15,712,678      23,368,754  
317.29246 318.29974 6.942 M1762     39,039,465      31,351,414      36,551,378      22,089,356  
245.23574 246.24302 6.021 M1681     24,026,918      26,767,137      22,614,555      20,490,974  
299.18492 300.1922 2.904 M0899       8,394,651      14,207,560        9,700,305      19,702,877  
253.15415 254.16143 1.553 M0518     28,522,533      31,779,363      15,659,620      18,025,740  
562.21555 563.22283 1.558 M0520       1,051,625        3,134,061      39,783,881      17,484,282  
234.11177 235.11905 1.165 M0289       8,840,640      10,898,204      14,328,157      16,891,531  
148.05268 149.05996 2.254 M0706     30,995,327      38,594,736      14,897,822      16,529,527  

165.0792 166.08648 2.256 M0709     30,737,316      38,296,265      14,761,273      16,370,176  
136.0387 137.04598 1.068 M0223     34,525,718      26,056,880      24,751,873      15,706,430  

212.11628 213.12356 1.235 M0335     14,681,444      19,932,152      20,663,397      14,941,861  
262.08922 263.0965 1.817 M0585     27,688,971      32,791,190      15,669,046      14,786,760  
264.10485 265.11213 3.381 M1169       2,287,912        2,371,950      10,476,412      14,472,399  
484.35202 485.3593 3.083 M0990     16,468,703      30,759,197      12,789,806      13,934,894  
462.13268 463.13996 3.199 M1067              7,425               6,421      19,264,297      11,413,071  
219.11084 220.11812 2.615 M0766     13,489,118      14,624,645        9,748,333      10,144,174  

 

  



 

 221 

 

Interestingly, metabolites M0537 (Figure 6-11), M0496 and M0520 are likely to be the same 

compound being detected at different retention times (i.e. exhibiting a broad elution profile) given 

the minor  difference in observed masses (< 1 ppm).  These generally follow the inclusion critieria 

in that they are detected at 5.4-, 17.9- and 5.6-fold higher abundance in LMM over LMM+Fe.  

Additionally, a similar observed metabolite M0539, has an 8.8-fold increase in abundance under the 

same conditions, however it exhibits a mass increase of 1.00233, that is likely to have arisen from 

formation of an [M+2H] adduct.  

 

Figure 6-11: Loading values of mass spectral feature M0537.  

The bar plots on the left show the original values (mean +/- SD). The box and whisker plots on the 
right summarise the normalised values. This feature was upregulated in both iron limited conditions. 

 

Another metabolite that meets the inclusion criteria is M1169 which exhibits a 6.1-fold increase for 

LMM over LMM+Fe, however given the low mass observed (265.11213 [M+H]), it is unlikely to 

represent a siderophore. Lastly, metabolites M0872 (Figure 6-12) and M1067 (Figure 6-13) both 

represent clear siderophore candidates given their marked increase in abundance in LMM over 

LMM+Fe, being approximately 7940 and 1777-fold respectively. 
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Figure 6-12: Loading values of mass spectral feature M0872.  

The bar plots on the left show the original values (mean +/- SD). The box and whisker plots on the 
right summarise the normalised values. This feature was upregulated predominantly in iron limited 
conditions without supplementation. 

 

Figure 6-13: Loading values of mass spectral feature M1067.  

The bar plots on the left show the original values (mean +/- SD). The box and whisker plots on the 
right summarise the normalised values. This feature was upregulated in both  iron limited conditions. 
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6.4.2.1 Extracted ion chromatographs 

Extracted ion chromatographs (XIC) were generated for each of these siderophore candidates using 

the Compound Discoverer 3.1 output to confirm their legitimacy.  

The first analysis indicated that M0496, M0520 and M0537 are the same metabolite given the similar 

column retention times and masses as shown in Figure 6-14. Similarly, M0539 appears to be an 

additional compound due to the increased mass size of 1.00322, however analysis of the XIC 

indicates that this metabolite is likely the same compound (as M0537), differentiated due to different 

adducts formed relating to the mass to charge (m/z) ratio observed on-column for a different isotopic 

variation.  

Although, metabolite M1169 appeared to follow the expectations of a siderophore, this was also 

excluded given a misrepresentation of data as an additional compound of equivalent mass was 

present at a different retention time displaying increased abundance levels in iron-sufficient 

conditions (data not shown). 

The metabolite M0872 was explored further, and also appeared to follow expectations for a 

siderophore; the XIC is consistent with the secretion of this metabolite under iron limited conditions, 

and is not present under replete conditions (Figure 6-15). Furthermore, the abundance of this 

metabolite appears to diminish upon addition of ferric chloride, this could be accounted to either 

ferri-siderophore complexation that would be expected to be seen elsewhere on the chromatograph 

or the precipitation observed. 
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Figure 6-14: Extracted ion chromatographs for M0537  

Spectral peaks identified for mass 563.22223 [M+H] at different m/z ratios at a retention time of 1.4 
and 1.6 minutes for the top and bottom spectral analysis respectively.  
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Figure 6-15: Extracted ion chromatographs for M0872 

Spectral peak identified for mass 435.13376 [M+H]  under iron limited conditions, at a retention 
time of 2.86 minutes. 

A similar observation was made for M1067; it appeared to be secreted under iron limited conditions 

and not present under replete conditions. However, unlike M0872, M1067 appears to be 

unresponsive to the ferric chloride supplementation. The difference in observed masses between 

M0872 and M1067 is 28.00635, which does not correspond to any known positive-mode ionisation 

adducts but could be consistent with a biosynthetic relationship and modification of M1067 by an 

acyl chain extended by inclusion of an additional [CH2]2. It could be postulated that this may improve 

metabolite solubility allowing it to avoid precipitation. 
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Figure 6-16: Extracted ion chromatographs for M1067 

Spectral peak identified for mass 463.13998 [M+H]  under both iron limited conditions, at a retention 
time of 3.229 minutes. 

 

With over 2000 metabolites detected; it was logical to reduce the complexity to facilitate further 

analysis, this was performed by identifying the most significant features and corroborating that the 

results follow the same variance trend. 

6.4.3.1 Significance Analysis of Microarray (& Metabolites)  

The Significance Analysis of Microarray (SAM) test is a well-established statistical test to identify 

differentially expressed genes, or in this case – metabolites. Although LC-MS analyses predictably 

differ vastly from the DNA microarray investigations for which it was developed, some statistical 

methods for data analysis including SAM can be used in analogous approaches (Roxas and Li, 2008; 
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Xia et al., 2009). For differential expression determination, the metabolite abundance data can be 

analysed identically to both protein and gene abundance data. 

The SAM plot was developed to address sample false discovery rate issues when performing multiple 

tests on high-dimensional data. Firstly, a significance score is assigned to each variable based on its 

change relative to the standard deviation of repeated measurements, then the algorithm chooses 

variables with scores greater than the adjustable ‘Delta’ threshold and compares their relative 

difference to the distribution estimated by random permutations of the class labels. For each defined 

threshold value, a certain amount of the variables in the permutation set will be found to be significant 

by chance (Xia et al., 2009; Xia and Wishart, 2016). Furthermore, SAM plots can be used in multi-

class analyses, where metabolites will be indicated if there are significantly differences in abundance 

across some combination of the groups, with scores being based on F-statistics (Tusher et al., 2001). 

An extremely conservative delta value selected (D= 1.2) was based upon parameter adjustment to 

minimise the degree of false discovery rates given per dataset (data not shown) as suggested by Xia 

and Wishart (2016), where the given delta value indicates 409 significant metabolites with a false 

discovery rate of 0.001, with 1 (1.01) false positive. The metabolites were ranked according to their 

SAM d value correlating with the coordinates displayed in Figure 6-17, of which the top 50 

metabolites are represented in Table 6-2. 
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Figure 6-17: Significant features identified by SAM.  

The green circles represent features that exceed the specified threshold, where the more a variable 
deviate from the observed = expected line (centre diagonal line) the more likely it is to be significant. 

The most significant features identified by SAM appeared to correspond to the initial candidates 

identified, of which the most significant appear to be M0872 (Figure 6-12) and M1067 (Figure 6-13) 

ranking first and second respectively. Additionally, ranking metabolites 3, 4 and 5 appear to be 

isotopic variations with slightly differing column retention times, but importantly all follow the 

expected trends, being more abundant in deplete media conditions over replete media conditions.  

While no other metabolites of interest are common between the two datasets, corresponding masses 

may be present for SAM-ranked metabolites 29 (M1483, m/z 564.15563 [M+H], RT: 4.117) and 45 

(M1507, m/z 563.19251 [M+H], RT: 1.198) to the metabolites M0539 (m/z 564.22516 [M+H], RT: 

1.632)  and  M0537 (m/z 563.22242 [M+H], RT: 1.626) which are the most abundant metabolite 

overall in LMM media conditions that may be eluting broadly.  
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Other statistically ranked metabolites of interest identified here that do not correlate with the initial 

peak intensity table (Table 6-1) potentially include M0994 (SAM ranked 6th), M1350 (SAM ranked 

10th), M0924 (SAM ranked 19th), M0667 (SAM ranked 31st) and M0968 (SAM ranked 46th), however 

these metabolites appear to exhibit have considerably lower fold changes for observed expression 

levels between LMM and LMM+Fe than the main candidates M0872 and M1067. 

Table 6-2: Peak intensity table for the metabolite profiling of R. equi 103S using RP LC-MS 

methodology; significant features ranked by SAM.  

Top 50 significant features and average abundance of samples presented due to space limitations. 

     Sample AV (S1:3) AV (S4:6) AV (S7:9) AV (S10:12) 
SAM Molecular Weight 

RT [min] 
Class LMM+Fe_Sup LMM+Fe LMM_Sup LMM 

Rank d value M [M+H] Metabolite         
1 4.401 434.12633 435.13361 2.857 M0872              2,701               4,063        1,549,688      32,262,119  
2 4.2878 462.13268 463.13996 3.199 M1067              7,425               6,421      19,264,297      11,413,071  
3 3.8728 463.11321 464.12049 3.111 M1006                 934               1,368           892,302        1,612,502  
4 3.8191 462.13262 463.1399 2.754 M0816              3,310               3,844        3,488,342        3,113,432  
5 3.441 463.11525 464.12253 3.131 M1015              2,842               3,623        1,147,146        1,889,884  
6 3.4227 445.10599 446.11327 3.088 M0994              6,442               9,499        4,477,684        2,967,142  
7 3.3683 511.49714 512.50442 10.341 M2076              3,431        2,620,710               3,569           808,815  
8 3.348 376.14931 377.15659 1.342 M0400       4,831,635        7,486,824               4,234           188,396  
9 3.3198 644.1872 645.19448 1.434 M0469       2,789,779        2,700,425               6,421               7,594  

10 3.2907 760.25693 761.26421 3.745 M1350              7,147               8,467        2,934,581        2,607,648  
11 3.2641 439.16818 440.17546 4.311 M1539              1,120           632,278               1,143           301,094  
12 3.2558 229.13296 230.14024 2.707 M0792       1,139,552        1,497,370               3,186               3,270  
13 3.2446 411.13653 412.14381 4.232 M1519              1,168        1,407,978                  639             42,145  
14 3.1263 481.14273 482.15001 4.117 M1484              2,780           422,293               1,347           612,374  
15 3.1041 362.14133 363.14861 2.982 M0934              2,929               3,309           780,573           822,849  
16 3.0908 357.11223 358.11951 2.079 M0668              3,629               4,763           590,277        1,984,953  
17 3.0719 230.11696 231.12424 3.006 M0947            16,061             17,284        3,883,520        4,161,851  
18 3.0276 554.14786 555.15514 3.392 M1180              3,490               3,722           351,590        1,503,123  
19 2.9699 654.20424 655.21152 2.959 M0924              8,661             10,273        2,707,843        1,260,378  
20 2.8936 435.13672 436.144 3.703 M1330          693,567               3,350        1,107,352               7,557  
21 2.8618 789.40633 790.41361 4.875 M1595              3,641               2,478           538,549           581,595  
22 2.861 205.0853 206.09258 1.578 M0525              7,276               9,311        1,236,405        1,635,812  
23 2.8607 419.12644 420.13372 3.005 M0945              3,563               6,953           504,076        1,219,413  
24 2.8564 872.30554 873.31282 4.111 M1479              1,447             94,312                  732           331,588  
25 2.8525 538.15303 539.16031 3.961 M1427              2,523               3,017           537,669           371,128  
26 2.8418 576.20122 577.2085 4.547 M1574              1,264               1,223           181,932           223,028  
27 2.8101 453.14485 454.15213 4.121 M1485                 569               7,574                  261           197,588  
28 2.7691 606.22447 607.23175 3.031 M0956          603,662           728,735               4,200               4,265  
29 2.7474 563.14835 564.15563 4.117 M1483              2,708               3,108             90,683        1,038,898  
30 2.7454 632.22008 633.22736 2.322 M0718              3,355               3,465           356,372           654,888  
31 2.7326 714.22505 715.23233 2.079 M0667              7,338               9,630           558,905        2,281,629  
32 2.7302 467.43443 468.44171 9.444 M1984              3,982           632,514               2,362           294,316  
33 2.7233 436.15276 437.16004 4.113 M1480              2,520           125,824               1,223           398,481  
34 2.7202 337.11718 338.12446 4.528 M1570                 822                  743           352,889               4,621  
35 2.7104 698.24139 699.24867 2.827 M0852              7,566               9,587           825,877        1,545,828  
36 2.7102 469.14248 470.14976 3.417 M1191          487,957               3,815           913,188               8,126  
37 2.7041 261.18461 262.19189 3.245 M1089          426,936           577,701               4,190               3,772  
38 2.666 237.05723 238.06451 1.239 M0338       1,222,677               7,349           309,475               4,604  
39 2.6594 437.13714 438.14442 1.356 M0409              6,550               7,267           793,968           801,302  
40 2.6479 219.10093 220.10821 2.513 M0746              6,704        1,360,744               2,666           108,236  
41 2.6467 414.2042 415.21148 7.611 M1854              4,982        1,526,833             28,007        1,319,901  
42 2.6362 396.10994 397.11722 1.505 M0504            13,442               6,650        2,126,672           345,803  
43 2.6321 413.19527 414.20255 4.768 M1591          110,741           114,471               1,058                  915  
44 2.6206 724.14381 725.15109 1.437 M0472       1,165,007        1,249,503             10,746             10,522  
45 2.6051 562.18523 563.19251 4.198 M1507              1,781               2,249           183,173           267,775  
46 2.5958 699.22561 700.23289 3.055 M0968            21,809             59,802        3,431,617        3,620,427  
47 2.5854 208.09615 209.10343 1.171 M0297          573,468             16,645        2,682,273             11,804  
48 2.5837 387.63384 388.64112 3.526 M1240              7,944               8,447        1,066,314           619,251  
49 2.5767 610.18511 611.19239 4.575 M1575                 838               1,026             86,164           102,855  
50 2.5684 437.15254 438.15982 4.122 M1488              2,515           109,862               1,161           238,562  

 



 

 230 

 

The aforementioned metabolites have potential to be used as biomarkers when utilising a targeted 

approach to identifying and characterising the R. equi siderophores. Both peak intensity tables would 

serve as a candidate screening list for confirmation of successful chromatographic separations. 

Of particular interest, is the metabolite M0872 (Figure 6-12) as the reduced peak intensities after iron 

addition appears to correlate with the precipitation observed in Figure 6-6C, reminiscent of the 

heterobactins that displayed very low aqueous solubility and were initially isolated in their native 

des-ferri forms (Carrano et al., 2001). These heterobactin characteristics are resonant with M0872, 

given the observed precipitation event occurring upon addition of ferric chloride, further implying 

this candidate to be the potential catecholate siderophore observed by Miranda-CasoLuengo et al. 

(2008). Moreover, given that this metabolite has an unusual red chromophore, it is logical to assume 

that it would be possible to track the metabolite through various purification stages, if adequately 

concentrated, with subsequent MS confirmation.  This is an unusual feature of a potential 

siderophore, as they would be expected to develop a red colour on iron complexation only.  The red 

colour of the more soluble, uncomplexed molecule would likely facilitate progress. 

6.5 A targeted approach to characterise the Rhodococcus equi 103 

siderophores 

 

As previously noted, the level of siderophores synthesised by R. equi was not detectable by 

conventional assay methods but was achieved with the application of the microtitre CAS assay. 

Consequently, given the tenuous siderophore production it was clear that large-scale production of 

iron-limited culture would be necessary for subsequent characterisation. 

Therefore, the iron-limited conditions (LMM-Fe) identified earlier were replicated and scaled up 

accordingly, to produce 1 litre of bacterial culture. The culture was harvested after 5 days, when the 

red chromophore was apparent (Figure 6-18). Cellular material was separated by centrifugation and 

discarded, while the supernatant was retained and concentrated to 50 ml under vacuum via rotary 
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evaporation; this concentrated supernatant was then retested via microtitre CAS assay (Figure 6-18B 

and C respectively). 

A B 

C 

 

Figure 6-18: Visual stages of the large-scale production of iron limited R. equi 103S 

A) 1 litre of LMM-Fe culture ready for harvesting indicated by the red pigment. B) Rotary 
evaporation of the iron-limited supernatant. C) Modified CAS assay of supernatants before and after 
concentration and acidification. 

The microtitre CAS assay indicates that the method of supernatant concentration was effective in 

improving detection of siderophore production. The addition of hydrochloric acid to the concentrate 

produced a red pigment that impairs the detection; however, acidification was performed to facilitate 

downstream column retention, and the pH level was altered upon column washing and elution. 

 

As a first stage purification, the R. equi 103S supernatant was adjusted to pH 2.0 to aid column 

retention. The acidified supernatant was loaded on to Amberlite XAD-2 adsorption resin pre-

equilibrated with H2O at a rate of 4.0 ml / min. The column was washed copiously with H2O to 

remove any unbound material and the flow through was collected in 50 ml fractions. After sufficient 

washing, retained materials were eluted using 50 / 50 % (v/v) methanol/water followed by 100 % 

methanol. 
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Figure 6-19: Chromatograph of FPLC purification of bacterial supernatant using XAD-2 

polymeric resin.  

Displaying the UV and conductivity for the sample loading, elution and corresponding fractions. 

Interestingly, during the loading of the column, the resin appeared to retain the pigment, that was 

eluted in 50 % MeOH along with UV absorbing material (Figure 6-19).  Fraction 8 onwards suggest 

an elution of target compounds, including the apparent chromophore of interest given the pigment 

transfer (Figure 6-20).  

 

Figure 6-20: Fractions eluted from the XAD-2 resin purification of iron limited R. equi 103S 

Fractions retaining the red pigment correlating with the peak observed in Figure 6-19  

Thus, the fractions of interest were tested using the microtitre CAS assay (Figure 6-21), of which 

fractions 8 - 13 displayed a clear positive reaction in iron extraction from the dye that in fractions 

associated with corroborate with the primary UV absorbing eluants observed in Figure 6-19. It is 
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also noteworthy that the secondary peak observed in fractions 22-25 also exhibit a reaction when 

complexed with CAS solution, therefore these fractions required further scrutiny. 

 

Figure 6-21: Microtititre CAS assay for fractions of interest from the XAD-2 resin 

purification of iron limited R. equi 103S 

A visual examination of fraction 8 prior to and after supplementation with 1/10th volume of 1% FeCl3, 

suggested the formation of a ferri-siderophore complex, as a further dark-grey pigment became 

evident that also produced a precipitant (Figure 6-22). Next, an aliquot of both fraction 8 and the iron 

supplemented fraction 8 were resuspended in a variety of solvents to identify if the pigments and 

thus the siderophore metabolites, could be extracted in the solvent phases (Rane et al., 2005), without 

success. The composition of both samples was examined using LC-MS to identify siderophore 

candidates in both ferri- and desferri- forms. 

A B 

Figure 6-22: Visual examination of Fraction 8 from the XAD-2 resin purification of iron 

limited R. equi 103S 

A) Fraction 8. B) Fraction 8 + 1/10th volume of 1% FeCl3, 
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Figure 6-23: Attempted solvent extractions for hypothetical ferri- and des-ferri siderophore 

fractions.  

Solvent extractions performed combining 0.5 ml solvent phase with 0.5 ml fraction of interest. 
Solvents used include chloroform, methanol, petroleum ether (60-80°C boiling point), H2O and 2:1 
chloroform: methanol. 
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LC-MS analysis of the bacterial supernatants was performed, including the LMM supernatant, the 

concentrated LMM supernatant and concentrated acidified LMM supernatant. The positive 

ionisation mode profiles appeared to be consistent throughout, including the acidified supernatants 

which were analysed to identify if the acidification process altered the chromatography, however no 

major peak changes were observed. 

The flow through fractions were analysed to identify any compounds of interest that did not bind to 

XAD-2 resin; these mainly consisted of low molecular weight metabolites outside of the range of 

interest (data not shown). 

The LC-MS analysis of Fraction 8 identifies one predominant peak that had a column retention time 

of ~2.8 minutes, and a corresponding mass of 435.1346 [M+H]+ (Figure 6-25), this ion is found in  

subsequent fractions in decreasing abundance, which correlates with the siderophore activity in the 

microtitre assay in Figure 6-21. Rationally, given the retention of this mass in the fraction of interest, 

the pigment transfer and CAS activity for this fraction, it is likely that this metabolite previously 

identified as the candidate M0872 acts as a siderophore compound. 

 

Figure 6-24:Total ion chromatograph for LC/MS analysis of Fraction 8. 

TIC fixed normalised abundance level to the highest chromatograph for comparison Peak of interest 
detected at the retention time 2.84 minutes 

 



 

 236 

 

Figure 6-25: Extracted ion chromatograph and MS spectra in Fraction 8. 

Peak of interest detected at the retention time 2.83 minutes and mass detection of 435.1346 [M+H] + 
and 417.12366 [M+H-H2O]+ 

 

When FeCl3 was added to a sample of Fraction 8, the LC-MS chromatography profile was altered by 

removal of the significant peak at 2.84 mins, previous identified to have the mass of 435.1346 

[M+H]+ (Figure 6-26). This outcome of this experiment is wholly consistent with that described in 

Chapter 4. 
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Figure 6-26: Total Ion Chromatograph comparison of Fraction 8 and Fraction 8+FeCl3.  
TIC fixed normalised abundance level to the highest chromatograph for comparison. Fr8 shown in 
Blue, Fr8+ shown in Red. 

Although it is unconventional for a siderophore candidate to precipitate upon complexing of iron, 

however this metabolite should not be excluded solely on this basis given that it has been previously 

established that the heterobactin siderophores have very low aqueous solubility for iron complexes 

at neutral to acidic pH (Carrano et al., 2001). Furthermore, addition of an iron solution at this 

concentration in vitro is not representative of the conditions observed in a natural microbial 

environment. 

Further exploration of this candidate included MS2 fragmentation pattern analysis, but this 

experiment did not produce useable data. While the compound achieved sufficient chromatographic 

separation for MS2 analysis, the analysis was restricted due to limitations of the LC-MS system 

utilising an outdated version of software. As a result, identification and characterisation methods of 

these metabolites were not considered feasible, as the software available performs fragmentation 

using ThermoScientific’s proprietary normalised collision energy (NCE) ionisation setting rather 

than the more widely utilised electron volts (eV) methodology, therefore analyte fragmentation 

would predominantly not be comparable to fragmentation of other compounds in the more widely 

used spectral databases online which is considered standard practice (Kind and Fiehn, 2010). This is 

significant as NCE fragmentation takes into account the increased ability of larger molecules to 

absorb energy when compared to those with lower molecular weights, whereas a low energy eV 

methodology would result in a greater observed fragmentation for a small molecular weight 

metabolite compared to a large molecular weight compound. 
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Rather than database comparisons, other attempts for fragmentation pattern analysis were 

considered, including the use of a de-novo interpretation software for metabolite mass spectra, 

SIRIUS (Böcker et al., 2008); this software seeks to find the sum formula of the molecule, whose 

isotopic pattern best matches the fragmentation input. Interestingly however, the authors (Böcker et 

al., 2008) comment that “this method cannot be used as-is to identify peptides or amino acid 

compositions, because certain sum formulas correspond to multiple peptides”. 

Going forward, it may be useful to collaborate with other departments familiar with definition 

of siderophore structures that would be able to help decipher the MS2 fragmentation patterns of 

future candidates. 

 

In order to identify any other potential siderophore candidates the large-scale iron-limited culture 

production was performed as described earlier, until the red chromophore was detected. Cellular 

biomass was discarded after centrifugation, and supernatant was concentrated as previously 

described. At this stage, the concentrated supernatant was complexed with 1% FeCl3 acidified with 

HCl then clarified to remove precipitants.  

The rationale for complexation at this stage was to partly saturate the siderophore candidates, in an 

attempt to preferentially remove the metabolite M0872 that was previously identified to have 

somewhat low aqueous solubility when complexed with an iron solution. 

The complexed supernatant was subsequently loaded on the AKTA FPLC controlled Amberlite 

XAD-2 column as previously described, using the same wash and elution procedures, the 

chromatogram is shown in Figure 6-27. 
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Figure 6-27: XAD-2 column load, wash and elute for secondary candidate identification 

Every eluted fraction from the purification was tested via microtitre CAS assay to determine 

siderophore activity. Interestingly, enough activity appears to correlate with chromatogram UV 

absorbance peak (Figure 6-27). Furthermore, even with previous partial iron-complexation to 

hypothetically precipitate M0872, there appeared to be sufficient siderophore activity to facilitate a 

positive colorimetric change in this sensitive microtitre form of the CAS assay (Figure 6-28) .   

 

Figure 6-28: Microtitre CAS assay for the second candidate identification  

Assay-positive fractions were pooled together, and tested using the less sensitive CAS agar method, 
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however this yield only a very slight colour change. To improve detection of potential siderophore 

compounds, the pooled sample was concentrated via rotary evaporation as described earlier. The 

pooled fractions and pool concentrate were re-tested via CAS agar, producing a significant detectable 

colorimetric change Figure 6-29 that had not previously been observed. This also likely confirms our 

previous intention of only partial saturation of iron to facilitate removal of the M0872 metabolite. 

 

Figure 6-29: CAS agar test for siderophore detection 

Left: Pooled microtitre CAS positive fractions, Right: Concentrated pooled microtitre CAS positive 
fractions 

The concentrate was chromatographically separated further using P2 BioGel Gel Filtration column 

equilibrated with water; a flow rate of 0.3 ml/min was applied, collecting eluates in 4.5 ml fractions. 

Each of the fractions was then tested by microtitre CAS assay from which two fractions (Fr41/42) 

appeared to indicate siderophore activity.  

 

Figure 6-30: P2 Microtitre CAS assay for siderophore detection of Gel filtration fractions. 

The microtitre plate of fractions was subject to a UV-Vis absorbance spectrum analysis between 200-

800 nm before and after addition of CAS for confirmation (Figure 6-31 and Figure 6-32 respectively). 
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Both graphs clearly demonstrate an increase in absorbance at 395nm for fractions 40-42, with 41 

generating the greatest change, with the CAS assay further confirming iron extraction from the blue 

dye indicated by a marked reduction in absorbance between 650 and 700 nm. 

 

Figure 6-31: UV-visible spectral analysis of Gel filtration fractions. 

Spectral range 280 nm – 700 nm. Blank reduced. Fraction 41 is shown in red.  

 

 

Figure 6-32: UV-visible spectral analysis of Gel filtration fractions using CAS assay solution. 

Spectral range 280 nm – 700 nm. Blank reduced. Fraction 41 is shown in red. 

The supernatant and fractions of interest from all stages of purification were tested via thin layer 

chromatography using an n-butanol: acetic acid: water (12:3:5) solvent mix.  Interestingly, between 

the XAD-2 concentrated pool sample and Fraction 41/42, there appears to be a conservation of bands 

detected using UV light highlighted in red (Figure 6-33). For siderophore detection, the TLC silica 
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plate was dried and then sprayed using a 0.1N Ferric chloride solution, that upon complexation with 

siderophore typically develops a wine colour. While development of a greyish pigment can be 

observed for the XAD-2 pool concentrate, was not replicated in the fractions of interest. This may 

be as a result of the sample dilution caused by the gel filtration chromatography. 

 

Figure 6-33:TLC analysis of XAD-2 CAS positive pool and gel filtration fractions 41 and 42. 

Ran using n-butanol: acetic acid: water (12:3:5) solvent mix and visualised under UV light (left) and 
developed with 0.1N Ferric chloride solution. 

Consequently, a 1 ml of Fraction 41 was lyophilised, and resuspended in 50μl H2O checked for 

siderophore activity on the less sensitive CAS agar, with a significant positive reaction (Figure 6-34), 

implying that the metabolites were successfully followed through the chromatography to reduce 

sample complexity, and identify other siderophore candidates.  

 

Figure 6-34: Analysis of a gel filtration Fraction 41concentrate on CAS agar for siderophore 

detection. 

Each of the samples of interest were subsequently analysed using LC-MS as previously described 
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using RP (C18) with both positive and negative ionisation modes. Candidates from the CAS positive 

concentrated Fraction 41 sample were selected based on approximate mass pairing and expressed 

under iron-limited conditions when cross correlated with the metabolite profile of R. equi 103S using 

RP LC-MS result table.   

Table 6-3: Siderophore candidate list from Fraction 41.  

Corresponding 
Metabolite from initial 
Experiment 

Molecular 
Weight RT [min] 

M0872 434.12434 3.154 
M1067 462.13078 3.498 
M0537 562.21478 2.985 
M0537 562.21483 2.191 
M0780 658.23714 2.997 
M0646 660.21339 3.082 
M01039 682.19653 3.364 
M01039 682.19771 3.116 
M0852 698.24006 3.053 
M0968 699.22319 3.279 
M0667 714.22359 2.804 
M0667 714.22359 3.129 

 

The candidate list for alternative siderophores produced a collection of compounds that were 

previously identified as over-produced under iron-limited conditions. While the attempts to remove 

the candidate M0872, that previously dominated the mass spectra, by precipitation were largely 

successful, it is apparent that not all of the compound was removed, therefore it would be impossible 

at this stage to differentiate assume that the other candidates are siderophoric compounds without 

further chromatographic separation.  

Interestingly however, other candidates namely M1067 and M0537 are both present in this list as 

well as selected as siderophore candidates in the initial candidate screening experiment, further 

refining the evidence that these compounds may function as siderophores. 

Other newly identified candidates include M0646, M0667, M0780, M0852, M0968 and M1039, all 

of which follow the general trend of significantly greater metabolite abundance in iron-limited 

culture supernatants (Figure 6-35), while also appearing roughly within the expected molecular 

compound mass range of the siderophores predicted for the biosynthetic gene clusters identified in 

Chapter 3. 
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Figure 6-35: Loading values of Alternative candidates - mass spectral feature M0646, M0667, 

M0780, M0852, M0968 and M1039.  

The bar plots on the left show the original values (mean +/- SD). The box and whisker plots on the 
right summarise the normalised values. These feature was selected based upon their upregulation 
under iron limited conditions. 
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6.6 Concluding remarks 

The primary goal was to establish a reliable method of imposing iron limitation on R. equi.  

Ultimately, modified LMM was chosen and the visual cue of the developing red-chromophore 

adopted as a biomarker for iron-limitation. An untargeted metabolomics study clearly demonstrated 

an adaptation in the metabolome in response to iron-starvation, suggested two strong siderophore 

candidates (M0872 and M1067) and expedited a targeted strategy to characterise the R. equi 

siderophores that have been suggested in previous literature (Miranda-CasoLuengo et al., 2012; 

Miranda-CasoLuengo et al., 2008), yet remain uncharacterised.  The behaviour of M0872 and its 

apparent iron complex is reminiscent of the heterobactins of Rhodococcus erythropolis (Bosello et 

al., 2013). 

Moreover, these same culture parameters were used for studies into changes that occur in the 

proteome and transcriptome profiles planned to further define the iron-limitation response of R. equi. 

The elaboration of the red chromophore is puzzling as it develops without introduction of additional 

iron, which is not compatible with the findings of Miranda-CasoLuengo et al. (2008) and the 

expectations of most siderophores.  The continued overproduction of a siderophore when significant 

quantities of a ferri-siderophore are available in the culture supernatant would be counterintuitive.  

Moreover, the chromatography employed here has not been able to separate the chromophore and 

the siderophore-like activity exhibited in the CAS-based assay. Coloured desferri-siderophores have 

been observed previously, notably the yellow-green pyoverdine of Pseudomonas fluorescens which 

adopts a red-brown colouration on iron complexation (Meyer and Abdallah, 1978). 
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Figure 6-36: An updated R. equi iron homeostasis network map (after Chapter 6) 
Data generated from the preliminary genomic survey, developed using in silico metal binding capacities, and production of metal regulator mutants. Siderophore 
candidates were identified via untargeted and subsequent targeted metabolomic analyses. The FurA candidate is displayed in green to indicate successful prediction 
with the mutant phenotyping identifying an oxidative stress response. The IdeR candidate is displayed in orange, to indicate incomplete results regarding iron regulatory 
mechanisms that are to be further explored in future work. Siderophore candidates at this stage are given in orange as at this predictions have been made, but further 
characterisation is needed. 
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7 A comparative proteomic analysis of the 

composition of the rhodococcal cell wall under iron 

limitation 
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7.1 Introduction 

Proteomics, was first defined in 1995 as the large-scale characterisation of the entire protein 

complement of a given cell-line or organism, termed the proteome (Wilkins et al., 1996). The field 

has since developed to accommodate a variety of proteomics: Firstly, most project objectively look 

to characterise the proteome of a given organism for which will reflect the immediate environment 

in which it is studied, with the aim of not only to identify the complement of proteins, but also to 

perform quantitative differences between two or more physiological states of a biological system 

(Graves and Haystead, 2002). 

Alternatively, a branch of Structural proteomics and Functional proteomics focus on  analyses of the 

associated biological protein function, regulation and expression, protein-protein interaction and 

protein modifications (Figure 7-1). 

 

Figure 7-1: A spider diagram exploring the field of proteomics (Graves and Haystead, 2002).  

 

Due to the inherent complexity of a proteome, there are multiple sample preparation methods that 

can be utilised for mass spectrometry analysis. These can vary depending on experimental aims, 

sample types and the analytical equipment available. Multiple factors should be considered when 

designing proteomic studies including sample complexity, protein abundance, physical properties 

and subcellular localisation. Preparation of biological samples prior to LC-MS/MS analysis can often 

include enhanced cell lysis, subcellular fractionation techniques for isolation of proteins in specific 

cellular locations, as well as depletion and or protein enrichment steps. 
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Some of the main challenges associated with proteomic analysis include ensuring sample complexity 

is within the detection rate of analyser, and the subsequent ability to assign protein identity once 

adequately separated. Typically, these techniques are performed using polyacrylamide gel 

electrophoresis and liquid chromatography, the result, being an analyte separated into manageable 

fractions that each can be investigated, thereby reducing sample complexity and increasing the 

chance of detection by mass spectrometry.  

The strategy employed is often termed as a Bottom-up Proteomics approach, referring to the 

characterisation of proteins by analysis of peptides digested by proteolysis and subject to LC-MS/MS 

analysis. The protein samples prior to analysis are reduced, alkylated and digested in situ, often using 

the endoproteinase trypsin, which  specifically cleaves at arginine and lysine amino acid residues 

(Paulo, 2016). The peptides are then extracted from the gel and prepared for LC-MS/MS analysis 

(Zhang et al., 2013) (Figure 7-2). 

 

Figure 7-2: An overview of a Bottom-up proteomic analysis. 

 

For decades mass spectrometry has been the gold-standard for small molecule analysis. Its accurate 

mass measurements for charged ions, differentiating closely related species to generate a peptide 

mass fingerprint. Further isolation and fragmentation of the molecular ions can be achieved using 

tandem mass spectrometry to reveal potential structural information (Patterson and Aebersold, 2003). 

To accurately measure mass / charge ratio using a mass spectrometer, the analyte undergoes 
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ionisation before entering the vacuum system of the mass analyser. The ionisation process utilised 

within this project was an electrospray type. Given the usage as an analytical method, major 

advantages of using this soft electrospray ionisation include investigation of biological analytes that 

may be defined by non-covalent interactions, and without major fragmentation of molecular ions. 

The use of an electrospray ionisation (ESI) quadrupole mass analyser further facilitates structure 

deduction with reasonable accuracy, and given the excellent sensitivity of the apparatus, is a well-

established method in both qualitative and quantitative measurements.   

Peptide identification is attained by comparing the tandem mass spectra from the extracted peptide 

with theoretical tandem mass spectra generated using in silico digestion located in an online protein 

database. 

7.2 Project workflow 

To understand the effect of iron limitation on the proteome, the project workflow involves harvesting 

cells and utilising a GeLC-MS/MS approach, where the sample is manual fractionated after SDS-

PAGE analysis, with digested peptides processed by reversed phased UPLC chromatography and 

identification performed using Tandem-Mass Spectrometry (). Peptide detection is performed using 

label-free quantification based upon relative protein quantities observed in multiple conditions. This 

can be attained by combining quadruple precursor ion selection with high-resolution, accurate-mass 

(HRAM) Orbitrap detection. This arrangement can then facilitate traced tracing peptides by retention 

time and allows reconstruction of a chromatographic elution profile of the monoisotopic peptide 

mass.  The extracted peptide signals can be mapped across multiple LC-MS runs using mass-to-

charge and retention-time coordinates to facilitate label-free quantification (Bridges et al., 2007). 

Data analysis was performed using bottom-up analysis using MASCOT to generate un-interpreted 

MS/MS data and was used Progenesis LC-MS software to identify statistically significantly 

differences in protein expression between iron-deplete and iron-replete cultures of Rhodococcus equi 

103S. 

7.3 Rhodococcal cell wall 

Bacterial cells have variable cell wall architectures, often relating to the depth of peptidoglycan layer, 
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which facilitates a method of differential variation based upon the cell penetrating Gram-staining 

technique. The rhodococcal cell wall, due to the mycolate-containing cell wall resembles aspects of 

both Gram positive and Gram-negative cell envelopes, due to the inherent thickness of the 

rhodococcal peptidoglycan layer, in conjunction with the hydrophobic mycolate layers, and must be 

further distinguished using an acid-fast staining technique (Wanger et al., 2017). The complex 

rhodococcal cell envelope is important for survival within challenging environments, providing some 

protection from noxious chemicals such as antibiotics and the killing mechanisms of macrophages 

(Riess et al., 2003). Primarily comprised of lipids, glycolipids and secreted proteins, the rhodococcal 

cell wall is defined by the presence of mycolic acids covalently attached to the underlying 

arabinogalactan component of the arabinogalactan–peptidoglycan layer (Figure 7-3) (Schaechter, 

2009) that form an outer wall permeability barrier often described as a mycomembrane (Bayan et al., 

2003).  

 

Figure 7-3: Cell envelope architecture of Gram-positive, acid-fast and Gram-negative 
bacteria (Maitra et al., 2019). 
AG, arabinogalactan; GL, glycolipid; LAM, lipoarabinomannan; LP, lipoprotein; LPS, 
lipopolysaccharide; LTA, lipoteichoic acid; MA, mycolic acid; MAP, membrane-associated protein; 
OM, outer membrane; PG, peptidoglycan; PM, plasma membrane; TA, teichoic acid. 

While ABC transporter systems have been considered to facilitate cytoplasmic translocation, 

mechanisms associated with translocation of the hydrophobic mycolate layer is greatly 

underexplored. A small number of proteins are hypothesised to interact with the mycolic acid layer 

of the rhodococcal cell wall, the first of which is a porin, which would provide pathways for 

hydrophilic solutes to traverse the mycolic acid layer (Maitra et al., 2019; Singh et al., 2015). 

Additionally, lipoproteins may be anchored to the outer mycolic acid layer (Takai et al., 2000), 

producing a surface-exposed protein perhaps in a complex with other bacterial factors or surface 

glycolipids contained within the cell wall. 



 

 252 

7.4 Hypothesis 

While the extant literature considers how R. equi uses a range of strategies to overcome iron 

limitation through proposed mechanisms associated with siderophore production and ferri-

siderophore import across the cytoplasmic membrane via ABC transport systems (Miranda-

CasoLuengo et al., 2012; Miranda-CasoLuengo et al., 2005; Miranda-CasoLuengo et al., 2008), no 

consideration has been made with regards to the mycomembrane. 

The proposed mechanism of iron transport in M. tuberculosis, is that the iron from ferri-

carboxymycobactin is transferred to mycobactin in the cell envelope region (Ratledge, 2004), with 

the protein HupB functioning as an iron transporter (based on its surface localisation; the ability to 

bind Fe3+, and the potential to interact with both ferricarboxymycobactin and ferrimycobactin). At 

this stage, the iron is transferred from the ferrimycobactin to a ABC transporter to facilitate transfer 

across the cytoplasmic membrane (Sritharan, 2016). 

Unlike M. tuberculosis, the R. equi genome does not appear to have the required biosynthetic 

machinery to produce siderophores analogous to the mycobactins, however it does contain a gene 

predicted to encode for a histone-like bacterial DNA-binding protein (HupB) identified using a 

BlastP search for the mycobacterial HupB protein against the R. equi 103S genome (Figure 7-4).   
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Sequences producing significant alignments: 
                                                                  Max    Total Query   E   Per.                   
Description                                                       Score  Score cover Value Ident  Accession         
histone-like bacterial DNA-binding protein HupB [Rhodococcus...   174    174   49%   2e-55 85.71  CBH49137.1        
 

Alignments: 

>histone-like bacterial DNA-binding protein HupB [Rhodococcus hoagii 103S] 

Sequence ID: CBH49137.1 Length: 242  

Range 1: 1 to 105 

 

Score:174 bits(440), Expect:2e-55,  

Method:Compositional matrix adjust., Identities:90/105(86%), Positives:100/105(95%), 

Gaps:0/105(0%) 

 

Query  1    MNKAELIDVLTQKLGSDRRQATAAVENVVDTIVRAVHKGDSVTITGFGVFEQRRRAARVA  60 

            MNKAELIDVLT+KLG+DRR A+ AVE+VVDTIVRAVH G+SVTITGFGVFEQRRRAARVA 

Sbjct  1    MNKAELIDVLTEKLGTDRRTASEAVEHVVDTIVRAVHAGESVTITGFGVFEQRRRAARVA  60 

 

Query  61   RNPRTGETVKVKPTSVPAFRPGAQFKAVVSGAQRLPAEGPAVKRG  105 

            RNPRTGETVKVKPTSVPAFRPGAQFKA+++G Q+LP+ GPAVKRG 

Sbjct  61   RNPRTGETVKVKPTSVPAFRPGAQFKALIAGGQKLPSSGPAVKRG  105 

Figure 7-4: BlastP search for the mycobacterial HupB protein against the R. equi 103S 
chromosome 

However, HupB also has a cytoplasmic role  as a nucleoid-associated protein with an ability to 

modulate chromatin structure and is proposed to work in a growth phase-dependent manner (Gupta 

et al., 2014), interestingly it has also been shown to influence (carboxy)mycobactin biogenesis 

positively (Pandey et al., 2014).  The multiple roles and locations of HupB define it as one of the 

emerging groups of ‘moonlighting’ proteins (Huberts and van der Klei, 2010).  To date, 399 

moonlighting proteins from both prokaryotes and eukaryotes have been described in the dedicated 

database Moon Prot (Chen et al., 2018) (http://www.moonlightingproteins.org/proteins/).  The 

process for extracellular localisation of such proteins is poorly understood and cannot be predicted.  

As the external function its homologue plays in M. tuberculosis may not be relevant in R. equi, then 

the possession of a HupB homologue should not be over interpreted. 

To further explore the mechanisms utilised by R. equi to facilitate iron transport across the cell 

envelope, the experiment should focus on two key questions: 1) “Is it possible to identify proteins 

associated with isolated cell wall material from R. equi?” and 2)  “from this dataset can we identify 

any potential outer membrane receptors that may facilitate transport of iron across the 

mycomembrane”.  Production of a candidate list will allow for further characterisation studies to be 

performed in the future. 
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7.5 Experimental design 

To perform a comparative analysis into iron regulated protein profile changes associated with the 

rhodococcal cell wall, first the methodology for isolation of cell wall material was to be optimised. 

The experimental methodology required a design that would best isolate components associated with 

the cellular envelope as well as allow for further characterisation of predicted mechanisms such as 

putative siderophore transport mechanisms.  

Traditionally, isolation of the mycomembrane envelope region was performed using density gradient 

centrifugation, however development of bioinformatics prediction tools over the last decade has 

facilitated a process of performing a consensus prediction of membrane protein topology signal 

peptides. 

Three methods were used and compared here (Figure 7-5). In each case, cells were lysed by 

sonication and particulate material was recovered by centrifugation, thus the cytoplasmic fraction 

and a proportion of the cytoplasmic membrane fraction would be removed in the supernatant and 

mycomembrane would be enriched in the deposited particulate material.  Proteins were extracted 

from this material either directly using SDS or after density gradient centrifugation in Percoll at 60 

% (v/v) to differentiate between intact cells and lysed cellular wall material after centrifugation at 

27,000 x g. Proteins associated with the buoyant phase of cell wall-containing material were then 

solubilised by SDS or the non-ionic detergent Triton X-114  

To determine the most optimal methodology, a comparison these techniques was performed for 

identification of upregulated non-cytoplasmic proteins ; with the methodology with the greatest 

impact being experimentally upscaled for the main analysis (Figure 7-6). 
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Figure 7-5: Flowchart detailing comparison of planned fractionation methods.  

 

Figure 7-6 Methodology comparison analysis needed prior to final study.
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7.6 Results 

 

Initially, a small-scale comparison was performed to identify any differences at the proteome level 

between the previously optimised lactate minimal media growth conditions for iron limitation, 

identified in Chapter 6. The proteomic analysis was performed on Rhodococcus equi 103S cellular 

material harvested from the centrifugation step in Section 6.3.3, facilitating a multi-omics analysis 

on the effect of iron limitation. Cellular material isolated from 10 ml culture aliquots were re-

suspended in 30 µl 6x SDS-loading buffer, of which 10 µl was analysed via SDS-PAGE (Figure 

7-7), fractionated and treated with trypsin prior to LC-MS/MS analysis.  

  

Figure 7-7: 12 % SDS-PAGE gel for initial proteomic analysis of R. equi 103S cellular 
material under iron limitation. 
M = NEB broad range protein ladder, D = R. equi 103S grown using modified lactate minimal media 
without iron supplementation. R = R. equi 103S grown using modified lactate minimal media with 
iron supplementation. Gel fractionation performed according the grid pattern provided. 

The proteomic workflow for identification of biologically relevant changes in protein abundance was 

performed using the software Progenesis LCMS (Nonlinear Dynamics) and MASCOT (Matrix 

Science) as described in Sections 2.13.3 and 2.13.4. 

Given the crude sample complexity, the GeLC-MS approach incorporated gel fractionation and 

independent horizontal comparisons. The six partial fraction analyses were recombined in-silico 

using Progenesis LCMS (Nonlinear Dynamics), with the output taking into account the experimental 

design of ‘iron deplete vs iron replete’ conditions; for the initial analyses the ANOVA (p) values 
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were excluded due to the sample numbers for each condition (n = 1). 

The protein statistics for initial unfractionated analysis identified a total of 1693 proteins, which 

represents 36 % of the entire genome with R. equi 103S having 4598 coding sequence (CDS) 

locations manually annotated. Importantly mid-analysis using Progenesis LC-MS, peptides are 

screened based upon their reliability score with < 40 being excluded, this value is generally 

considered exceptionally reliable for reducing incorrect identification, therefore the observed protein 

count is likely resulting from the high sensitivity of the mass spectrometer. Further to this, refinement 

of the protein report indicated that differential expression was observed for 1021 proteins having met 

the threshold of >2 peptide matches and ³ 2 max fold change. 

With regards to the aim of this study, 523 proteins were identified as meeting the desired threshold 

of having > 2 peptide matches; ³ 2 max fold change and ‘iron-deplete’ highest mean value to be 

considered upregulated in iron-deplete conditions.  The report produced (Chapter 8 Appendices) 

identifying differentially expressed proteins under iron starvation was further examined, exploring 

the putative cellular localisation of each candidate.  

For each detected protein, its expected cellular location was considered using a consensus strategy 

involving prediction of transmembrane topology and signal peptides using the online bioinformatic 

tools TOPCONS (Tsirigos et al., 2015), PredLIPO (Bagos et al., 2008), SignalP (Almagro 

Armenteros et al., 2019) and Phobius (Kall et al., 2007). The outputs of these analyses were 

assembled into a single spreadsheet and a consensus was established based upon majority. An 

abridged ‘non-cytoplasmic protein’ subset is shown in Table 7-1. 
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Table 7-1: Abridged in silico protein localisation results for the initial unfractionated 
proteomic analysis 

Accession Peptides Fold Description Consensus 
CBH46933.1 2 148.94 putative MFS transporter   Membrane 
CBH46930.1 7 119.11 putative substrate binding lipoprotein   Lipoprotein 
CBH46486.1 16 114.99 putative substrate binding lipoprotein   Lipoprotein 
CBH50056.1 2 99.25 putative ABC transporter integral membrane subunit   Membrane 
CBH48875.1 10 73.31 putative ABC transporter substrate binding lipoprotein   Secreted 
CBH50642.1 13 64.93 putative ABC transporter substrate binding lipoprotein   Lipoprotein 
CBH47947.1 13 62.84 putative integral membrane protein   membrane 
CBH48109.1 14 53.84 putative ABC transporter substrate binding lipoprotein   Lipoprotein 
CBH47948.1 7 50.76 putative membrane protein   membrane 
CBH49190.1 8 38.56 putative substrate binding lipoprotein   Lipoprotein 
CBH48366.1 2 31.42 putative lipoprotein   Lipoprotein 
CBH46613.1 6 15.72 putative substrate binding lipoprotein   Lipoprotein 
CBH46973.1 2 13.42 putative secreted protein   Lipoprotein 
CBH49471.1 6 12.58 putative cation transporter ATPase P-type   membrane 
CBH47928.1 5 12.42 putative beta-lactamase   membrane 
CBH49489.1 2 10.67 putative fasciclin-like lipoprotein   Lipoprotein 
CBH48506.1 10 9.04 putative secreted protein   Membrane 
CBH47544.1 2 8.97 putative ABC-type glycine betaine transporter substrate binding lipoprotein   Lipoprotein 

CBH50002.1 7 8.57 
putative branched-chain amino acid ABC transporter substrate binding 
lipoprotein   Lipoprotein 

CBH49009.1 8 8.52 putative substrate binding lipoprotein   Secreted 
CBH46872.1 8 8.43 putative ABC transporter integral membrane subunit   Membrane 
CBH46625.1 15 8.34 putative secreted short chain dehydrogenase   Secreted 
CBH47529.1 4 8.06 putative twin-arginine translocation protein TatA   membrane 
CBH47276.1 3 7.79 putative integral membrane protein   Lipoprotein 
CBH48545.1 2 7.07 putative lipoprotein   Lipoprotein 
WP_041674135.1 10 6.59 signal peptidase I  membrane 
CBH48968.1 15 (14) 5.67 sulfate/thiosulfate ABC transporter substrate binding lipoprotein CysP1   Lipoprotein 
CBH46351.1 7 5.63 putative secreted cutinase   Secreted 
CBH47587.1 2 5.54 putative lipoprotein   Lipoprotein 
CBH46743.1 2 5.49 putative secreted protein   Membrane 
CBH48307.1 14 5.45 putative secreted protein   Secreted 
CBH48336.1 6 5.33 putative ABC transporter substrate binding lipoprotein   Lipoprotein 
CBH49708.1 4 4.72 putative secreted protein   Lipoprotein 
CBH46276.1 19 4.43 secreted short chain dehydrogenase   Secreted 
CBH48258.1 5 4.28 putative secreted tyrosine phosphatase   Secreted 
CBH48798.1 10 4.21 UDP-muramoylpentapeptide beta-N-acetylglucosaminyltransferase MurG   membrane 
CBH46208.1 2 4.16 putative secreted cutinase   Secreted 
WP_041673883.1 2 4 membrane protein [Rhodococcus equi] membrane 
CBH46459.1 7 3.99 putative secreted protein   Membrane 
CBH49231.1 5 3.98 putative secreted protein   Membrane 
CBH46518.1 2 3.97 putative secreted protein   Secreted 
CBH48555.1 2 3.92 putative ABC transporter substrate binding lipoprotein   Lipoprotein 
CBH48883.1 3 3.91 secreted alpha/beta hydrolase   Secreted 
CBH50085.1 16 3.78 putative membrane protein   Membrane 
CBH46341.1 14 3.74 putative mannosyl-glycoprotein endo-beta-N-acetylglucosaminidase LytB   Secreted 
CBH46210.1 3 3.67 putative secreted protein   Secreted 
CBH47452.1 2 3.64 putative secreted phosphoglycerate mutase family protein   Secreted 
CBH49330.1 8 3.62 putative lipoprotein LpqB   Lipoprotein 
CBH46357.1 2 3.56 putative indolylacetylinositol arabinosyltransferase   Membrane 
CBH49202.1 4 3.5 putative lipoprotein   Lipoprotein 
CBH48658.1 2 3.44 putative integral membrane protein   Membrane 
CBH48154.1 4 3.4 putative secreted peptidyl prolyl isomerase   Membrane 
CBH46464.1 6 3.39 putative integral membrane protein MmpL1   membrane 
CBH48786.1 2 3.16 putative lipoprotein   Lipoprotein 
CBH47932.1 8 3.15 putative ABC transporter substrate binding lipoprotein   Lipoprotein 
CBH48148.1 5 3.11 putative preprotein translocase subunit SecD   Lipoprotein 
CBH48926.1 3 3.09 putative membrane protein   Membrane 
CBH47412.1 4 3.07 putative lipoprotein   Secreted 
CBH46270.1 4 3.06 putative copper transporter   membrane 
CBH48796.1 4 2.96 cell division protein FtsQ   Lipoprotein 
CBH46555.1 3 2.86 putative integral membrane protein   membrane 
CBH48374.1 4 2.85 putative 20S proteasome beta subunit PrcB   Secreted 
CBH46350.1 3 2.83 putative lipoprotein   Membrane 
CBH47545.1 6 2.76 putative ABC-type glycine betaine transporter substrate binding lipoprotein   Lipoprotein 
CBH49026.1 25 2.68 putative aminopeptidase   Lipoprotein 
CBH50448.1 3 2.65 putative substrate binding protein   Secreted 
CBH47957.1 5 2.63 putative secreted protein   Secreted 
CBH48153.1 4 2.61 putative secreted peptidyl prolyl isomerase   Lipoprotein 
CBH48491.1 2 2.61 putative membrane protein   Membrane 
CBH49638.1 3 2.61 putative secreted protein   Secreted 
CBH48182.1 2 2.58 putative secreted metallopeptidase   Secreted 
CBH48489.1 4 2.56 putative membrane protein   Lipoprotein 
CBH46207.1 5 2.53 putative secreted protein   Secreted 
CBH47492.1 2 2.5 putative high affinity substrate binding lipoprotein   Lipoprotein 
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Accession Peptides Fold Description Consensus 
CBH48150.1 6 2.48 putative high affinity substrate binding lipoprotein   Lipoprotein 
CBH48965.1 2 2.47 sulfate/thiosulfate ABC transporter integral membrane subunit CysT   membrane 
CBH46206.1 2 2.44 putative secreted protein   Secreted 
CBH49639.1 3 2.42 putative lipoprotein   Lipoprotein 
CBH50256.1 2 2.3 putative high affinity substrate binding lipoprotein   Lipoprotein 
CBH48899.1 5 2.28 putative integral membrane protein   membrane 
CBH47306.1 7 2.27 putative high affinity substrate binding lipoprotein   Membrane 
CBH49243.1 6 2.26 cell division integral membrane protein FtsX   membrane 
CBH46868.1 2 2.25 putative Mce associated protein Mas2B   Membrane 
CBH46920.1 5 2.22 putative ABC transporter substrate binding lipoprotein   Lipoprotein 
CBH49418.1 2 2.16 putative secreted metallopeptidase   Lipoprotein 
CBH50664.1 4 2.08 putative molybdate ABC transporter substrate binding lipoprotein   Lipoprotein 
CBH46976.1 7 2.07 putative phosphate transporter substrate binding lipoprotein   Lipoprotein 
CBH48149.1 4 2.04 putative preprotein translocase subunit SecF   Membrane 
CBH48813.1 2 2.03 putative membrane protein   Membrane 

7.6.1.1 Analysis of initial unfractionated results 

The initial results identified a diverse range of proteins that were upregulated under iron limitation 

which provided a sound foundation for analysis under these conditions. Preliminary identification of 

1693 proteins (36 % of R. equi 103S CDS regions) suggest that the gel fractionation and subsequent 

peptide extraction, fragmentation and identification were both successful and sufficient.  However, 

this number of proteins represents a very large proportion of potential genome products to be 

associated with the cell envelope fraction. It likely reflects both the sensitivity of the instrumentation 

and the obvious scope for cross-contamination of the mycolyl-arabinogalactan-peptidoglycan matrix 

with materials from other cellular compartments on lysis that can persist through subsequent 

manipulations.  Further refinement using statistical analysis identified that identities ascribed to 523 

proteins were both statistically sound and these were upregulated under iron limitation. Analysis of 

these upregulated proteins indicates that the iron-limiting conditions selected for analysis are suitable 

given the prevalence of predicted iron-regulated proteins (identified earlier in Chapter 6) associated 

with siderophore synthesis and siderophore-related functions. These include non-ribosomal peptide 

synthetases, isochorismatase, 2,3-dihydroxybenzoate-AMP-ligase, numerous putative siderophore 

binding proteins and HupB an iron-regulated protein in M. tuberculosis that arbitrates transfer from 

the iron-bound carboxymycobactin to the mycobactin (Yeruva et al., 2006). 

Additional data refinement was performed to exclude likely cytoplasmic contamination, as the 

project aims relate to identification of wall located iron-regulated proteins that may participate in 

trans-mycolate siderophore transport mechanisms. The bioinformatic protein localisation pipeline 

applied indicated that 89 proteins with statistically significant IDs were non-cytoplasmic and 

upregulated in iron-limited conditions. 
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As expected, the most highly upregulated proteins identified appear to be transport components that 

would typically be associated with siderophore import/export mechanisms. The presence of multiple 

ABC transporter components including substrate-binding lipoproteins and integral membrane 

subunits also appears to suggest multiple complex transport mechanisms utilised simultaneously by 

this bacterial pathogen. The only research to date regarding siderophore transport in R. equi identified 

that the ABC transporter system iupABC was required for growth under iron limitation (Miranda-

CasoLuengo et al., 2005). The iupABC system closely resembles the hydroxamate siderophore ABC 

transport system cchCDE utilised by S. coelicolor (discussed earlier in Section 3.6) therefore is likely 

to be associated with internalisation of the hydroxamate siderophore ferri-rhequichelin. Given that 

only one siderophore transport system has previously been discussed for R. equi, it is logical to 

assume that additional transport systems may be employed to facilitate multiple ferri-siderophore 

cytoplasmic translocation. The presence of multiple gene clusters encoding for putative ABC 

transporter substrate binding lipoproteins and putative ABC transporter integral membrane subunits 

is encouraging and may to be associated with internalisation of ferri-rhequichelin and ferri-

rhequibactin relating to xenosiderophore piracy, a common feature of bacterial iron-stress responses 

that reflects their natural existence in competitive and complex communities (Arias et al., 2015; 

Challis and Hopwood, 2003).   

In vitro fractionation is also explored to compare the best strategy for isolation and characterisation 

of cell-wall associated proteins and may be useful in identification of novel protein architecture for 

understanding structure-function relationships in the gram-positive cell envelope region, a typically 

understudied area of microbial physiology.   

 

In order to explore whether data quality could be improved by attempting to remove potentially intact 

cells from the particulate fraction analysed, density gradient centrifugation in 60% Percoll was 

introduced.  Here cell wall fragments would be buoyant but intact cells (containing cytoplasmic and 

cytoplasmic membrane contaminants) would be deposited as a pellet.  In practice, the vast majority 
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of the cell wall material was buoyant indicating a very effective lysis. 

Removal of contaminating cytoplasmic material was performed with multiple wash steps throughout 

the protocol before suspension in an SDS extraction buffer. After removing insoluble material by 

centrifugation, proteins extracted from the isolated cell-wall fraction were analysed by SDS-PAGE 

(Figure 7-8a), with the loading adjusted for comparison between conditions. The subsequent GeLC-

MS approach incorporated a brief electrophoresis to ensure migration into the resolving gel, 

fractionation (Figure 7-8b) and independent comparisons as previously described. The two partial 

fraction analyses were recombined in-silico using Progenesis LCMS (Nonlinear Dynamics), with the 

output taking into account the experimental design of ‘iron-deplete vs iron-replete’ conditions; as 

before the ANOVA (p) values were excluded due to the sample numbers for each condition (n = 1). 

   

Figure 7-8: 12 % SDS-PAGE gel for cell wall material fractionated by density gradient 
centrifugation of Rhodococcus equi 103S. 
Fractionation of the unstained gel (right) was performed according the grid pattern indicated. M = 
NEB broad range protein ladder, D = LMM-Fe. R = LMM+Fe. 

This analysis identified 1104 proteins, of which 295 were identified as meeting the desired 

thresholds± to be considered upregulated in iron-deplete conditions. The report identifying 

differentially expressed proteins under iron starvation indicates a reduction of sample complexity by 

43.8 %. As there was no evidence for the survival of intact cells then this decrease in complexity is 

likely related to the extra washing steps.  

Further examination of this dataset by in silico exploration of the putative cellular location of each 

 
± > 2 peptide matches; ³ 2 max fold change and ‘iron deplete’ highest mean value. 
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candidate, using the localisation pipeline described earlier, revealed that the density gradient 

separation was not as effective as initially projected, as only 53 out of 294 proteins identified were 

predicted to be non-cytoplasmic proteins. These proteins of interest were compiled into an abridged 

‘non-cytoplasmic protein’ index listing the accession number, peptide count, fold change, description 

and consensus is shown in Table 7-2. 

Table 7-2: Abridged in silico protein localisation results for the proteomic analysis of the cell 
wall material fractionated by density gradient centrifugation 

Accession Peptides Fold Description Consensus 
CBH49161.1 3 85.95 putative integral membrane protein   Membrane  
CBH47679.1 2 81.04 putative ABC transporter substrate binding lipoprotein   Lipoprotein 
CBH50218.1 6 31.78 putative secreted osmotically inducible protein   Secreted 
CBH50021.1 4 9.8 putative integral membrane protein   Secreted 
CBH49731.1 3 8.22 cytochrome c assembly protein   Lipoprotein 
CBH49471.1 2 5.25 putative cation transporter ATPase P-type   Membrane  
CBH47403.1 4 5.18 putative secreted protein   Lipoprotein 
CBH48374.1 3 5.09 putative 20S proteasome beta subunit PrcB   Membrane  
CBH49272.1 2 5.09 putative secreted protein   secreted 
CBH46625.1 12 4.9 putative secreted short chain dehydrogenase   Secreted 
CBH48477.1 2 4.63 putative secreted protein   Membrane  
CBH49661.1 2 4.63 putative Mce family lipoprotein Mce4E   Lipoprotein 
CBH49848.1 2 4.58 putative secreted protein   Secreted 
CBH46208.1 10 4.38 putative secreted cutinase   Secreted 
CBH50604.1 2 4.37 PadR family transcriptional regulator   Secreted 
CBH48968.1 16 3.88 sulfate/thiosulfate ABC transporter substrate binding lipoprotein CysP1   Lipoprotein 
CBH48875.1 10 3.78 putative ABC transporter substrate binding lipoprotein   Lipoprotein 
CBH46176.1 4 3.65 putative secreted lipase   Secreted 
CBH46703.1 2 3.65 cell division related ATP-dependent protease FtsH   Membrane  
CBH49663.1 4 3.5 putative Mce family protein Mce4C   Membrane  
CBH48366.1 2 3.47 putative lipoprotein   Lipoprotein 
CBH48350.1 6 3.41 putative secreted chitinase   Secreted 
CBH48109.1 3 3.3 putative ABC transporter substrate binding lipoprotein   Lipoprotein 
CBH48891.1 3 3.22 sodium/dicarboxylate symporter   Membrane  
CBH47054.1 3 3.12 putative integral membrane protein   Membrane  
CBH48926.1 2 3.12 putative membrane protein   Membrane  
CBH50055.1 4 3.06 putative ABC transporter substrate binding subunit   Membrane  
CBH47021.1 2 3.05 putative high affinity substrate binding lipoprotein   Lipoprotein 
CBH47957.1 4 3.01 putative secreted protein   Secreted 
CBH48906.1 4 2.93 putative secreted protein   Membrane  
WP_005514445.1 2 2.93 membrane protein [Rhodococcus equi] Membrane  
CBH47057.1 4 2.82 putative resuscitation-promoting factor rpfA   Secreted 
CBH50015.1 3 2.8 putative membrane protein   Membrane  
CBH49211.1 2 2.61 putative purine catabolism regulatory protein   Secreted 
CBH48885.1 2 2.58 putative lipoprotein   Lipoprotein 
CBH47276.1 2 2.54 putative integral membrane protein   Membrane  
CBH47586.1 2 2.48 putative ABC transporter integral membrane subunit   Membrane  
CBH50017.1 4 2.47 conserved hypothetical protein   Secreted 
CBH48090.1 4 2.43 putative integral membrane protein   Membrane  
CBH46868.1 2 2.42 putative Mce associated protein Mas2B   Membrane  
CBH46459.1 5 2.33 putative secreted protein   secreted 
CBH47948.1 15 2.33 putative membrane protein   Secreted 
CBH48096.1 3 2.3 putative potassium binding protein   secreted 
CBH47529.1 2 2.27 putative twin-arginine translocation protein TatA   Membrane  

CBH50002.1 2 2.27 
putative branched-chain amino acid ABC transporter substrate binding 
lipoprotein   Lipoprotein 

CBH49938.1 2 2.25 putative substrate binding lipoprotein   Lipoprotein 
CBH47928.1 3 2.17 putative beta-lactamase   Lipoprotein 
CBH48418.1 3 2.03 putative secreted protein   Secreted 

7.6.2.1 Discussion of cell wall material fractionated proteomic analysis 

Although the introduction of density gradient fractionation using 60 % (v/v) Percoll reduced the 

complexity of the sample, the number of cytoplasmic proteins identified still exceeds the number of 

non-cytoplasmic proteins identified. The post-analysis in silico filtering of results to remove 
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cytoplasmic proteins significantly reduces the index from 295 to 53 proteins. 

As hypothesised and similar to the previous experiment, the most highly upregulated proteins 

identified proteins observed are predicted to be transporter components. The significant upregulation 

of a putative integral membrane protein CBH49161.1 (encoded by REQ_31600) and putative ABC 

transporter substrate-binding lipoprotein CBH47679.1 (encoded by REQ_16020) at 85.95- and 

81.04-fold respectively was observed. Both are representatives of protein families expected to be 

significantly upregulated under the iron-deplete conditions as a they represent routes for iron 

importation (Henderson and Payne, 1994). 

Compared to the previous experiment, the fold changes of upregulated proteins observed here is 

substantially lower with exception of the examples above, this is likely due to the additional 

experimental procedures for isolation of the cell-wall associated material and associated wash steps.  

 

In this trial, 2 % Triton X-114 (v/v) was used in place of SDS for extraction and biphasic separation 

of proteins based upon hydrophobicity adapted from methods listed by Tan et al. (1995). A solution 

of this non-ionic detergent is homogeneous at 0°C but a bi-phase develops with distinct aqueous and 

detergent phases above 20°C. Proteins partition during this phase separation; hydrophilic proteins 

are found exclusively in the aqueous phase, and integral membrane proteins in the detergent phase 

(Bordier, 1981). This phase separation was adopted to determine if cytoplasmic containments could 

be more adequately excluded.  The isolated cell wall proteins were subject to acetone precipitation 

and resuspended in SDS-loading buffer before electrophoretic analysis. 
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Figure 7-9: 12 % SDS-PAGE gel for proteomic analysis of Triton X-114 extracted R. equi 
103S cellular material under iron limitation. 
M = NEB broad range protein ladder, D = LMM-Fe. R = LMM+Fe. Clear differences in protein 
loading were seen for initial analysis (left), protein load of R was adjusted to compensate in the 
unstained peptide extraction gel (right). Fractionation of the unstained gel (right) was performed 
according the grid pattern indicated. 

 The subsequent GeLC-MS approach incorporated partial electrophoresis to ensure migration into 

the resolving gel, fractionation and independent comparisons as described for the previous 

experiment. The two partial fraction analyses were recombined in-silico using Progenesis LCMS 

(Nonlinear Dynamics), with the output taking into account the experimental design of ‘iron deplete 

vs iron replete’ conditions; as before the ANOVA (p) values were excluded due to the sample 

numbers for each condition (n = 1). 

This approach identified a total of 644 proteins, of which 145 were identified as meeting the desired 

thresholds of > 2 peptide matches; ³ 2 max fold change and ‘iron deplete’ highest mean value to be 

considered upregulated in iron deplete conditions. The report predicting differentially expressed 

proteins under iron starvation indicated a reduction of sample complexity by 72.3 % and 50.7 % 

compared to the unfractionated analysis and the cell wall material fractionated by density gradient 

centrifugation respectively.  

To further explore the efficacy of the isolation technique used, the putative cellular localisation of 

each candidate protein was predicted using the localisation pipeline as previously described. As for 

seen in the previous experiment, it was apparent that while sample complexity was significantly 

reduced, the percentage of non-cytoplasmic to cytoplasmic proteins comprised just 10 % of proteins 

isolated using Triton X-114 extracted cell wall methods. While the pipeline indicated substantial 

cytoplasmic contamination, 15 proteins were compiled into an abridged ‘non-cytoplasmic protein’ 

index (Table 7-3).  
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Table 7-3: Abridged in silico protein localisation results for the Triton X-114 extracted cell 
wall material  

Accession Peptides Fold Description Consensus 
CBH48968.1 14 5.96 sulfate/thiosulfate ABC transporter substrate binding lipoprotein CysP1   lipoprotein 
CBH47948.1 12 5.22 putative membrane protein   membrane 
CBH50021.1 4 4.59 putative integral membrane protein   secreted 
CBH46276.1 6 4.29 secreted short chain dehydrogenase   Secreted 
CBH47531.1 3 4.26 putative secreted protein   secreted 
CBH48366.1 2 4.2 putative lipoprotein   lipoprotein 
WP_041674135.1 5 3.97 signal peptidase I membrane 
CBH49471.1 2 3.89 putative cation transporter ATPase P-type   membrane 
CBH48875.1 5 3.27 putative ABC transporter substrate binding lipoprotein   lipoprotein 
CBH50557.1 10 3.04 putative secreted cutinase   membrane 
CBH46625.1 10 2.73 putative secreted short chain dehydrogenase   Membrane 
CBH47021.1 2 2.67 putative high affinity substrate binding lipoprotein   lipoprotein 
CBH46208.1 5 2.62 putative secreted cutinase   Secreted 
CBH49061.1 2 2.26 putative secreted protein   secreted 
CBH47947.1 10 2.17 putative integral membrane protein   membrane 

 

7.6.3.1 Discussion of Triton X-114 extracted cell wall proteomic results 

The adaptation to the methodology described above appears to generate similar experimental 

shortcomings as the previous experiment regarding cytoplasmic contamination, with the quantity 

cytoplasmic proteins identified greatly outweighing the number of non-cytoplasmic proteins 

identified. The use of the post-processing in silico filtering stage to remove cytoplasmic proteins 

significantly reduces the index from 145 to 15 proteins. 

Analysis of the 15 remaining non-cytoplasmic proteins, yielded a selection of putative membrane 

proteins, lipoproteins and secreted proteins that may be of interest. Interestingly, from this dataset 

the highest differential protein expression appeared to be a 5.96-fold increase of sulfate/thiosulfate 

ABC transporter substrate binding lipoprotein (CysP1), while this protein might not be directly 

related to iron-regulatory mechanisms, it does highlight a significant reduction in both protein 

appearance and abundance, likely as a result of the stringent experimental methodology associated 

with isolation of amphiphilic cell envelope proteins. 

The outcomes of all three initial methodological trials should be considered to identify the optimal 

method for detection of cell wall-associated proteins, before initiating the large-scale analysis. 

 

A comparison of the three preliminary extraction methodologies described in this chapter was 

performed to identify the strategy that would be used for a more rigorous analysis of iron-regulated 



 

 266 

envelope-associated proteins.  Firstly, a Venn diagram was produced to summarise the candidate 

lists (Figure 7-13), of which 30 proteins were consistently detected (Table 7-4).  

 

Figure 7-10: Venn diagram detailing the quantity of identified proteins for each given 
fractionation method.  

Analysis of the isolated proteins common to all trials (Table 7-4) emphasised the presence of cell 

envelope-associated proteins that would be characteristically produced under iron-limited condition, 

including putative ABC transporter substrate-binding lipoproteins, putative membrane proteins, 

however there is also clear evidence for considerable cytoplasmic contamination by the presence of 

putative siderophore binding proteins, and siderophore production components such as putative 2,3-

dihydroxybenzoate-AMP ligase and putative isochorismatase.  
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Table 7-4: Conserved proteins between all 3 methodologies. 
Accession Protein Description 

CBH46934.1 putative siderophore binding protein   
CBH48968.1 sulfate/thiosulfate ABC transporter substrate binding lipoprotein CysP1   
CBH46970.1 thiosulfate sulfurtransferase   

CBH47948.1 putative membrane protein   
CBH46625.1 putative secreted short chain dehydrogenase   
CBH50218.1 putative secreted osmotically inducible protein   
CBH46927.1 putative short chain dehydrogenase   
CBH46925.1 putative isochorismatase   
CBH46208.1 putative secreted cutinase   
CBH48875.1 putative ABC transporter substrate binding lipoprotein   
CBH48005.1 secreted metallo-beta-lactamase superfamily protein   
CBH48881.1 glutamate-ammonia-ligase adenylyltransferase GlnE   

CBH46926.1 putative 2,3-dihydroxybenzoate-AMP ligase   
WP_041674435.1 acyl-CoA synthetase  
CBH48871.1 putative alkanesulfonate monooxygenase   
CBH46285.1 putative PadR family transcriptional regulator   
CBH49482.1 putative IMP dehydrogenase/GMP reductase   
CBH50452.1 conserved hypothetical protein   
CBH48986.1 gamma-glutamyl kinase-GP-reductase multienzyme complex ProA   
CBH47350.1 ribose-phosphate diphosphokinase PrsA   

CBH49471.1 putative cation transporter ATPase P-type   
CBH49605.1 aldehyde dehydrogenase   
CBH47837.1 conserved hypothetical protein   
CBH49733.1 glutamate-1-semialdehyde 2,1-aminomutase HemL   
CBH48366.1 putative lipoprotein   
CBH48550.1 putative dephospho-CoA kinase   
CBH50234.1 acyl-CoA dehydrogenase   
CBH48119.1 putative chlorite dismutase   

CBH49907.1 putative FMN-dependent monooxygenase   
CBH48156.1 histidine-tRNA ligase HisS   

Of greatest interest were proteins without detailed annotations, principally secreted hypothetical 

proteins, that may represent a novel class of mycolate-associated proteins.  An interesting example 

from the set was the hypothetical protein CBH50452.1 encoded by the gene REQ_44910, however 

upon exploration of the protein-protein interaction network and functional analysis using STRING 

Version 11 (Szklarczyk et al., 2019),  this appeared to be clustered with a range of ribosomal proteins 

and therefore is unlikely to contribute to any cell envelope-related mechanisms.  

 Node Predicted Annotation 
selB CBH47333 
rpsB 30S ribosomal protein S2 RpsB 
rplO 50S ribosomal protein L15 
rpsE 30S ribosomal protein S5 RpsE 
rplR 50S ribosomal protein L18 
rplF 50S ribosomal protein L6 
rplE 50S ribosomal protein L5 
rpsC 30S ribosomal protein S3 RpsC 
rpsJ 30S ribosomal protein S10 RpsJ 
rpsG 30S ribosomal protein S7 RpsG 
REQ_44910 CBH50452 

Figure 7-11: STRING analysis for the hypothetical protein CBH50452.1 encoded by the gene 
REQ_44910.  
Annotations provided in the included table, with node interactions identified by colour.  
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Also, another protein of interest was the hypothetical protein CBH47837.1 encoded by the gene 

REQ_17680. Exploration of the protein-protein interaction network and functional analysis using 

STRING Version 11 (Figure 7-12) identified potential co-expression with a DNA gyrase subunit B 

protein and co-occurrence with a group of integral membrane proteins. Further investigation of this 

protein by considering conserved domain architecture suggested that it is likely a coiled-coil protein 

given the prediction of coiled-coil regions by the COILS program. While coiled-coil proteins can 

often have functions relating to membrane sensors, channels and regulation of influx/export as well 

as protein trafficking and quality control (Rose et al., 2005), in this instance it is likely that the 

hypothetical protein CBH47837.1 is involved in DNA repair given the likely co-expression with the 

DNA gyrase subunit B protein, comparative to the co-occurrence with the integral membrane 

proteins.  

 node Predicted Annotation 
gyrB DNA gyrase subunit B;  
REQ_01230 conserved hypothetical protein 
REQ_09740 conserved hypothetical protein 
REQ_17680 conserved hypothetical protein 
REQ_20990 Putative integral membrane protein 
REQ_22200 conserved hypothetical protein 
REQ_33790 Two component system sensor kinase 
REQ_34880 Putative integral membrane protein 
REQ_34950 Putative membrane protein 
REQ_46520 Putative integral membrane protein 
REQ_47060 Putative integral membrane protein 

Figure 7-12: STRING analysis for the hypothetical protein CBH50452.1 encoded by the gene 
REQ_17680. 
Annotations provided in the included table, with node interactions identified by colour. 

While the complexity of the samples appears to reduce through the in vitro methodologies, 

implementation of the in silico subcellular localisation suggests that the ratio of cytoplasmic to non-

cytoplasmic does not change as initially predicted, as 89 non-cytoplasmic (17% of 523 total) proteins 

were reduced to 53 (18% of 295 total) and 15 (10% of 145 total) for unfractionated compared to 

Percoll-SDS and Percoll-Triton X-114 methods respectively. To visually compare the combination 

of in vitro fractionation and the additional in silico protein localisation methods, an additional Venn 

diagram was produced to compare the candidate lists (Figure 7-13), that emphasises that only 7 non-

cytoplasmic proteins appear to have been common between methods. 
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Figure 7-13: Venn diagram detailing the quantity of identified proteins for each given 
fractionation method, reinforced by the in-silico prediction methodology.  

An in-depth analysis of the 7 non-cytoplasmic proteins (shown in Table 7-5), suggested conservation 

of: 1) a putative secreted short chain dehydrogenase (CBH46625.1) that may be functionally involved 

with proteins including KasA, a fatty acid synthase and other short chain dehydrogenases. 

Table 7-5: Conserved non-cytoplasmic proteins between all 3 study methods, as predicted 
using a consensus approach to bioinformatic subcellular localisation  Unfractionated Percoll Triton X-114   

Accession peptide fold peptide fold peptide fold Description location 
CBH46625.1 15 8.34 12 4.9 10 2.73 putative secreted short chain dehydrogenase Membrane 
CBH47948.1 7 50.76 15 2.33 12 5.22 putative membrane protein  Membrane 

CBH48968.1 15 5.67 16 3.88 14 5.96 
sulfate/thiosulfate ABC transporter substrate binding 
lipoprotein CysP1  

Lipoprotein 

CBH48875.1 10 73.31 10 3.78 5 3.27 
putative ABC transporter substrate binding 
lipoprotein 

Lipoprotein 

CBH46208.1 2 4.16 10 4.38 5 2.62 putative secreted cutinase Secreted 
CBH48366.1 2 31.42 2 3.47 2 4.2 putative lipoprotein  Lipoprotein 
CBH49471.1 6 12.58 2 5.25 2 3.89 putative cation transporter ATPase P-type  Membrane 

 

2) a putative membrane protein (CBH47948.1), that appears to be functionally uncharacterised.  

3) a sulfate/thiosulfate ABC transporter substrate binding lipoprotein that is likely produced to 

regulate the rhodococcal sulphur metabolism pathway, including transport of extracellular sulphate 

across the cell envelope (KEGG pathway: req00920).  

4) A putative ABC transporter substrate binding lipoprotein CBH48875.1 (encoded by REQ_28560) 

that is likely to be attached to the cytoplasmic membrane to facilitate transfer to a nearby transport 

system, or perhaps the outer leaflet of the rhodococcal cell wall, however the intricacies regarding 

interaction with the mycolate-layer have not yet been characterised. The STRING functional analysis 
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network (Figure 7-14) implies a deep-rooted functional relationship with predicted iron transport 

system IupABC as well as a host of other ABC transport systems. 

 Node Predicted Annotation 
REQ_08030 putative ABC transporter ATPase subunit 
REQ_08040 putative ABC transporter integral membrane subunit 
REQ_11540 putative ABC transporter ATPase subunit 
REQ_11550  putative ABC transporter integral membrane subunit 
REQ_22890 putative ABC transporter integral membrane subunit 
iupA putative ABC transporter integral membrane subunit IupA 
iupC Putative ABC transporter ATPase subunit IupC 
REQ_28560 Putative ABC transporter substrate binding lipoprotein 
REQ_28570 putative ABC transporter integral membrane subunit 
REQ_28580 Putative ABC transporter ATPase subunit 
REQ_28590 Hypothetical protein 

Figure 7-14: STRING analysis for the putative ABC transporter substrate binding 
lipoprotein (CBH48875.1) encoded by the gene REQ_28560. 
Annotations provided in the included table, with node interactions identified by colour. 

5) a putative secreted cutinase (CBH46208.1), although there is currently little information regarding 

bacterial cutinases (Chen et al., 2008; Nikolaivits et al., 2018), the enzyme family containing 

cutinases are well established and have been characterised within the fungal community for a number 

of years, being responsible for hydrolytic activity and degradation of plant cell walls. The detection 

of this cutinase may be of significance as recently Verma et al. (2015)  identified a range of 

mycobacterial cutinases, of which Cut5b was found to be present in the cell wall, membrane and 

cytosol subcellular fractions, with on-going studies to evaluate its role in mycobacterial physiology 

and pathogenesis.  Given the similarity between these related genera, there may also be of 

significance within R. equi, interestingly, the ubiquitous detection of the cutinase in mycobacterial 

cellular fractions emphasises the technical issues relating to the accurate fractionation of the 

components of the Corynebacteriaceae. 

6) a putative lipoprotein (CBH48366.1) that appears to be functionally uncharacterised.  

7) a putative cation transporter ATPase P-type (CBH49471.1) that may function as a mechanism for 

regulation of metal homeostasis and prevention of metabolic stress (Waldron et al., 2009) by 

facilitating transport of a range of transition or heavy metals (Smith et al., 2014). This example of a 

P1B-ATPase may be functionally relevant for regulation of oxidative stress, given that the STRING 

functional analysis network predicted that the ATP-ase was associated with a secreted ferroxidase 

and putative heavy-metal detoxification protein, further exploration of these two linked proteins 
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identified conservation of a multicopper oxidase domain and a Copper chaperone domain 

respectively. Given the biological conditions of iron-limitation in these experiments it would be 

unusual to encounter an efflux pump mechanism for exportation of iron, therefore perhaps a 

biological stress response to metal nutrient limitation include efflux of surplus metals to prevent 

nonspecific binding intracellularly, promoting a more efficient metal utilisation system.  

7.6.4.1 Method optimisation  

Comparison of the three methodologies employed here highlighted a range of positive and negative 

attributes that were considered for the experimental design of the large-scale proteomic study. 

It is apparent at this stage that significant cytoplasmic/cytoplasmic membrane contamination is 

unavoidable.  It appeared that the most appropriate methodology to utilise for the large-scale study, 

was a simple recovery of buffer-washed particulate material after lysis as the density gradient 

centrifugation analyses had demonstrated there to be no significant recovery of unbroken cells.  

Application of inclusion criteria relating to at least 2-fold up-regulation in iron-deplete conditions 

and to have been identified by detection of multiple peptides, in combination with the in-silico 

cellular location consensus methodologies outlined earlier would be expected to provide an inclusive 

candidate list that avoids significant losses of proteins as false negatives during the more extensive 

processing.  
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The experiment was designed to incorporate experimental robustness by including technical and 

biological replication in triplicate. Using the consensus methodology for protein fractionation, the 

cellular material was harvested and processed according to the clarified lysate analysis described in 

Figure 7-5. Due to limitations regarding polyacrylamide gel peptide extraction (discussed later) and 

to take into account the crude sample complexity, the GeLC-MS approach was utilised by performing 

gel fractionation. Prior to LC-MS analysis the fractions were combined and resuspended in the 

loading buffer, this was advised due to the high performance and excellent resolving power of the 

LC-MS/MS system, this also permitted technical replicates of each sample to be performed. 

The raw data was processed using Progenesis LC-MS (Nonlinear Dynamics), with the output taking 

into account the experimental design of ‘iron deplete vs iron replete’ conditions; with each condition 

represented by biological and technical replicates in triplicate. Data analysis was performed using 

bottom up proteomic analysis using MASCOT to generate un-interpreted MS/MS data in tandem 

with the Progenesis LC-MS software to identify statistically significantly differences in protein 

abundance between iron-deplete and iron-replete cultures of Rhodococcus equi 103S. 

7.6.5.1 Peptide analysis 

Initially, features (peptides) identified were un-interpreted, with the total count calculated at 72,687 

features, Figure 7-15 demonstrates the variability between sample classes using principal component 

analysis. Peptide refinement¹ was performed to screen for statistically significant differences at the 

peptide level, resulting in a reduction of complexity by 61.8%. Incorporation of statistical refinement 

at this stage improved assurance that differential expression could be determined at the protein level. 

 

 
¹ Peptide statistical refinements: ANOVA p-value £ 0.05 and Max fold change ³ 2 
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Figure 7-15: Principle Component Analysis for total features (peptides) identified in the 
large-scale proteomic survey. Total feature count: 72687. 
Top panel: Unfiltered data. Lower panel: Features filtered by ANOVA p-value £ 0.05 and Max fold 
change ³ 2, Filtered feature count: 27797 Protein Accession numbers are listed in grey. Protein 
conditions are coloured blue (iron replete) and pink (iron deplete). 

 

7.6.5.2 Protein analysis  

Refined peptides features were mapped at the protein level, with conflicting peptide matches resolved 

by manual interpretation, from which the protein statistics identified a total of 680 statistically 

significant differentially expressed proteins (Figure 7-16). The differentially expressed proteins are 

distinctively clustered relative to the samples which as expected are grouped tightly in threes, with 

biological replication offering the greatest degree of variability within sample groupings, and much 

tighter grouping within technically replicated samples. The principal component analysis revealed 

that 88.28 % of the total variance likely resulted from the effect of different medium composition, 

and that the secondary dimension accounted for just 5.64 % of the variance, likely arising from the 

biological replications performed. 

 

Figure 7-16: Principal Component Analysis generated by Progenesis for significant and 
differentially expression proteins in the large-scale proteomic survey.  
Proteins filtered by ANOVA p-value £ 0.05 and Max fold change ³ 2 and peptide count > 2. 
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Further analysis indicated that 445 proteins achieved the desired thresholds± to be considered 

upregulated in iron deplete conditions, from which the dataset in  Figure 7-17 visibly isolates the 

differentially expressed proteins of interest as well as presenting the standardised expression profiles 

for the selected group, highlighting evident upregulation under iron limited conditions.  

 

Figure 7-17: Principal Component Analysis and Standardised Expression profiles generated 
by Progenesis for significant and upregulated proteins under iron limited conditions in in the 
large-scale proteomic survey.  
Proteins filtered by ANOVA p-value £ 0.05 amd Max fold change ³ 2 and peptide count > 2. 

  

 
± Protein statistical refinements: ANOVA (p < 0.05), > 2 peptide matches; ³ 2 max fold change and ‘iron 
deplete’ highest mean value. 
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The report detailing R. equi proteins upregulated under iron limitation was exported and further 

scrutinised, exploring the putative cellular localisation of each candidate using the previously 

described in silico pipeline for prediction of transmembrane topology and detection of signal 

peptides. The analysis outputs were assembled into a single spreadsheet and a consensus was 

established based upon majority. An abridged ‘non-cytoplasmic protein’ version is displayed in 

Table 7-6. 
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Table 7-6: Abridged results for protein localisation of in the large-scale proteomic survey 
Gene Accession Peptides Fold Description Consensus 
REQ_18820 CBH47948.1 12 75.95 putative membrane protein Membrane 
REQ_28560 CBH48875.1 13 58.56 putative ABC transporter substrate binding lipoprotein Lipoprotein 
REQ_18810 CBH47947.1 11 41.31 putative integral membrane protein Membrane 
REQ_39540 CBH49938.1 5 22.75 putative substrate binding lipoprotein Lipoprotein 
REQ_08150 CBH46930.1 10 22.47 putative substrate binding lipoprotein Lipoprotein 
REQ_12100 CBH47307.1 3 21.52 putative cation transporter ATPase P-type Membrane 
REQ_31890 CBH49190.1 12 18.96 putative substrate binding lipoprotein Lipoprotein 
REQ_03550 CBH46494.1 7 16.39 putative substrate binding lipoprotein Lipoprotein 
REQ_03460 CBH46486.1 15 13.81 putative substrate binding lipoprotein Lipoprotein 
REQ_28570 CBH48876.1 2 13.39 putative ABC transporter integral membrane subunit Membrane 
REQ_12110 CBH47308.1 5 13.16 putative secreted protein Secreted 
REQ_22900 CBH48336.1 6 10.93 putative ABC transporter substrate binding lipoprotein Lipoprotein 

REQ_21450 CBH48198.1 2 10.67 putative oligopeptide/dipeptide ABC transporter substrate binding 
lipoprotein Lipoprotein 

REQ_31600 CBH49161.1 2 9.62 putative integral membrane protein Membrane 
REQ_07560 CBH46872.1 4 9.17 putative ABC transporter integral membrane subunit Membrane 

cysP1 CBH48968.1 15 8.72 sulfate/thiosulfate ABC transporter substrate binding lipoprotein 
CysP1 Lipoprotein 

REQ_47000 CBH50642.1 12 7.99 putative ABC transporter substrate binding lipoprotein Lipoprotein 
REQ_40830 CBH50055.1 4 7.78 putative ABC transporter substrate binding subunit membrane 
REQ_34800 CBH49471.1 7 7.74 putative cation transporter ATPase P-type Membrane 

REQ_40020 CBH49983.1 2 7.74 putative branched-chain amino acid ABC transporter substrate 
binding lipoprotein Lipoprotein 

REQ_22890 CBH48335.1 2 7.62 putative ABC transporter integral membrane subunit Lipoprotein 
iupA CBH48450.1 2 7.33 putative ABC transporter integral membrane subunit IupA Membrane 
REQ_23200 CBH48366.1 3 7.18 putative lipoprotein Lipoprotein 
REQ_40440 CBH50021.1 3 6.62 putative integral membrane protein Secreted 
REQ_00480 CBH46208.1 8 6.25 putative secreted cutinase Secreted 
REQ_16020 CBH47679.1 3 5.21 putative ABC transporter substrate binding lipoprotein Lipoprotein 
iupB CBH48451.1 2 5.12 putative ABC transporter integral membrane subunit IupB Membrane 

REQ_01910 CBH46341.1 3 4.96 putative mannosyl-glycoprotein endo-beta-N-
acetylglucosaminidase LytB Secreted 

REQ_03191 CBH46459.1 5 4.24 putative secreted protein Membrane 

cysP2 CBH48966.1 11 4.04 sulfate/thiosulfate ABC transporter substrate binding lipoprotein 
CysP2 Lipoprotein 

ftsI CBH48804.1 4 3.93 penicillin-binding protein FtsI secreted 
REQ_28170 CBH48836.1 3 3.57 putative secreted peptidase Secreted 
REQ_18620 CBH47928.1 4 3.44 putative beta-lactamase Lipoprotein 
mce4C CBH49663.1 6 3.39 putative Mce family protein Mce4C membrane 
mce2C CBH46863.1 2 3.33 putative Mce family protein Mce2C Membrane 
gpdA2 CBH49133.1 5 3.24 NAD-dependent glycerol-3-phosphate dehydrogenase GpdA2 Secreted 
REQ_20510 CBH48109.1 8 3.17 putative ABC transporter substrate binding lipoprotein Lipoprotein 
REQ_34780 CBH49469.1 2 3.16 hypothetical protein REQ_34780 Membrane 
REQ_29940 CBH49009.1 7 3.15 putative substrate binding lipoprotein Lipoprotein 
mce4E CBH49661.1 3 3.15 putative Mce family lipoprotein Mce4E Lipoprotein 
REQ_40430 CBH50020.1 2 3.02 putative secreted peptidase Secreted 
REQ_23040 CBH48350.1 4 2.94 putative secreted chitinase secreted 
REQ_00150 CBH46176.1 5 2.93 putative secreted lipase Secreted 
REQ_28660 CBH48885.1 2 2.89 putative lipoprotein Lipoprotein 
mce2D CBH46864.1 2 2.86 putative Mce family protein Mce2D Membrane 
REQ_37330 CBH49720.1 3 2.76 putative secreted protein Secreted 
REQ_09520 CBH47057.1 3 2.69 putative resuscitation-promoting factor rpfA Secreted 
REQ_23870 CBH48429.1 4 2.62 putative secreted lipase Secreted 
REQ_07760 CBH46891.1 2 2.58 putative secreted protein Secreted 
mce2E CBH46865.1 6 2.56 putative Mce family lipoprotein Mce2E Lipoprotein 
mce4B CBH49664.1 4 2.49 putative Mce family protein Mce4B Secreted 
REQ_40400 CBH50017.1 2 2.48 conserved hypothetical protein membrane 
REQ_27950 CBH48813.1 2 2.47 putative membrane protein Lipoprotein 
REQ_14510 CBH47531.1 2 2.44 putative secreted protein Secreted 
REQ_46060 CBH50557.1 6 2.43 putative secreted cutinase membrane 
REQ_01250 CBH46276.1 8 2.4 secreted short chain dehydrogenase Secreted 
REQ_13230 CBH47412.1 2 2.36 putative lipoprotein Lipoprotein 
REQ_18910 CBH47957.1 2 2.36 putative secreted protein secreted 
mce4D CBH49662.1 4 2.35 putative Mce family protein Mce4D membrane 
REQ_04950 CBH46621.1 5 2.31 putative secreted protein Secreted 
REQ_18060 CBH47874.1 5 2.26 putative serine peptidase Membrane 
cysT CBH48965.1 3 2.19 sulfate/thiosulfate ABC transporter integral membrane subunit CysT Membrane 
REQ_18660 CBH47932.1 3 2.16 putative ABC transporter substrate binding lipoprotein Lipoprotein 
REQ_33700 CBH49366.1 2 2.15 putative LytR family transcriptional regulator membrane 
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7.6.5.3 Discussion of results from the large-scale proteomic survey 

The in-silico analysis of the final dataset was performed to remove cytoplasmic contamination as the 

project aims were relevant to identification of iron-regulated proteins associated with the rhodococcal 

cell wall that might be involved in aspects of trans-mycolate transport. The bioinformatic protein 

localisation pipeline indicated that 64 proteins were likely to occupy a non-cytoplasmic location, 

further reducing the dataset complexity by 86 %.  Examination of the proteins listed in Table 7-6 

yielded an assortment of proteins that was submitted to STRING v11.0 for a multi-protein analysis 

to predict networking based upon current interactions within the dataset (Figure 7-18). 

The non-cytoplasmic proteins isolated produce a number of visible clusters; the most extensive being 

an apparent iron-siderophore importation system that displays a tight bundle of putative ABC 

transporter integral membrane subunits that include the IupA and IupB proteins connected with a 

number of putative ABC transporter substrate binding lipoproteins. This is reinforced by the study 

performed by Miranda-CasoLuengo et al. (2005) that presented an R. equi iupA transposome mutant 

that failed to grow at low iron concentrations. 

Another evident functional protein cluster is the collection of putative Mce family proteins, that are 

typically a large group of secreted or surface-exposed proteins that confer virulence under stress by 

facilitating entry into mammalian cells and survival within macrophages.  This is entirely consistent 

with iron-dependent regulation of virulence gene expression in many bacterial systems (Meena and 

Rajni, 2010) The third notable protein cluster is a triad of sulfate/thiosulfate ABC transporter proteins 

that are involved with regulation of rhodococcal sulphur metabolism, including transport of 

extracellular sulphate across the cell envelope. The fourth protein cluster of potential interest 

involves a putative LytR family transcriptional regulator; signal peptidase and a penicillin-binding 

protein that are likely involved with cell wall biogenesis. The final protein cluster of interest arranges 

in a loose octahedral functional nexus linking two putative secreted cutinases with both lipoproteins 

and integral membrane proteins. The remaining nodes in Figure 7-18 were not predicted to be 

functionally related to other proteins identified in this study, however these may be of particular 

interest regarding cellular response to iron limitation within R. equi regarding transportation across 

the mycolate layer, therefore proteins that are predicted to be secreted or contain lipid anchors should 
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be explored further. 

 

Figure 7-18: Evidence based STRING analysis for the multiple non-cytoplasmic proteins 
identified by the large-scale proteomic survey and in silico correlation methods.  
Protein identification is mapped to the gene identity listed in Table 7-6. Predicted interactions are 
listed in the legend. 
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7.6.5.4 Identification of potential iron transport systems 

The non-cytoplasmic proteins in Table 7-6, upon network analysis via STRING (Figure 7-18), 

clustered  four putative ABC transporter integral membrane subunits (Table 7-7) connected with  ten 

putative ABC transporter substrate binding lipoproteins ( 

Table 7-8). 

Table 7-7: Putative ABC transporter integral membrane subunits. 
Gene ID Accession Description 

iupA CBH48450.1 putative ABC transporter integral membrane subunit IupA 
iupB CBH48451.1 putative ABC transporter integral membrane subunit IupB 
REQ_28570 CBH48876.1 putative ABC transporter integral membrane subunit 

REQ_22890 CBH48335.1 putative ABC transporter integral membrane subunit 

 

Table 7-8 Putative ABC transporter substrate binding. 
Gene ID Accession Description 

REQ_03460 CBH46486.1 putative substrate binding lipoprotein   

REQ_03550 CBH46494.1 putative substrate binding lipoprotein   

REQ_08150 CBH46930.1 putative substrate binding lipoprotein   

REQ_20510 CBH48109.1 putative ABC transporter substrate binding lipoprotein   

REQ_22900 CBH48336.1 putative ABC transporter substrate binding lipoprotein   

REQ_28560 CBH48875.1 putative ABC transporter substrate binding lipoprotein   

REQ_29940 CBH49009.1 putative substrate binding lipoprotein   

REQ_31890 CBH49190.1 putative substrate binding lipoprotein   

REQ_39540 CBH49938.1 putative substrate binding lipoprotein   

REQ_47000 CBH50642.1 putative ABC transporter substrate binding lipoprotein   

 

The identification of the proteins IupA and IupB that are predicted to be ABC transporter components 

responsible for translocation of iron-bound complexes of the R. equi catecholate siderophore 

rhequibactin across the cytoplasmic membrane as predicted by Miranda-CasoLuengo et al. (2005) is 

an excellent indication that the correct experimental conditions were used. Interestingly, the authors 

of this paper describe an accumulation of catecholates within an iupABC transposon-mutant 

containing strain. Given that R. equi is predicted to synthesise two putative siderophores, it stands to 

reason that an alternative ABC transport system may be utilised for rhequichelin. The functional 

STRING analysis clustered two additional ABC transport membrane proteins each within a distinct 

operon, these may provide excellent targets for mutagenesis to characterise siderophore specific 

cytoplasmic translocation mechanisms. While the researchers above predict the mechanisms 

associated with siderophore-mediated cytoplasmic membrane translocation, they fail to discuss the 

implications of the rhodococcal cell-envelope region as a whole, and how the iron-siderophore 
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complexes translocate through the mycolate layer. 

Unusually the putative ABC transporter integral membrane subunit protein encoded by REQ_22890 

appears to contain a lipid -anchor yet is also contained within an operon that contains a putative ABC 

transporter substrate binding lipoprotein. This could provide a future avenue for exploration, relating 

to iron transport. The other proteins of interest include the ten putative substrate binding lipoproteins 

listed in  

Table 7-8 and their function. The literature associated with Gram-positive bacteria denotes that lipid-

modified substrate binding proteins anchored to the outer side of the cytoplasmic membrane 

facilitates translocation through the ABC transport system (Miethke and Marahiel, 2007), for 

example B. subtilis utilises five lipid-anchored substrate binding proteins as exclusive gateways for 

extracellular iron-siderophore-complex recognition prior to uptake into the cytoplasm (Ollinger et 

al., 2006). 

For this study, there was no identification of the putative R. equi HupB protein that functions as a 

siderophore-complex transporter mechanism within the mycolate layer of M. tuberculosis, therefore, 

the remaining putative secreted and lipid-anchored proteins were compiled for further analysis (Table 

7-9). 

Table 7-9: A list of candidates identified to contain a secretory signal or lipid anchor signal 
Gene Accession Description 

REQ_00150 CBH46176.1 putative secreted lipase 
REQ_00480 CBH46208.1 putative secreted cutinase 
REQ_01250 CBH46276.1 secreted short chain dehydrogenase 
REQ_04950 CBH46621.1 putative secreted protein 
REQ_07760 CBH46891.1 putative secreted protein 
REQ_09520 CBH47057.1 putative resuscitation-promoting factor rpfA 
REQ_12110 CBH47308.1 putative secreted protein 

REQ_13230 CBH47412.1 putative lipoprotein 
REQ_14510 CBH47531.1 putative secreted protein 
REQ_16020 CBH47679.1 putative ABC transporter substrate binding lipoprotein 
REQ_18620 CBH47928.1 putative beta-lactamase 
REQ_18660 CBH47932.1 putative ABC transporter substrate binding lipoprotein 
REQ_18910 CBH47957.1 putative secreted protein 
REQ_21450 CBH48198.1 putative oligopeptide/dipeptide ABC transporter substrate binding lipoprotein 
REQ_22890 CBH48335.1 putative ABC transporter integral membrane subunit 

REQ_23040 CBH48350.1 putative secreted chitinase 
REQ_23200 CBH48366.1 putative lipoprotein 
REQ_23870 CBH48429.1 putative secreted lipase 
REQ_27950 CBH48813.1 putative membrane protein 
REQ_28170 CBH48836.1 putative secreted peptidase 
REQ_28660 CBH48885.1 putative lipoprotein 
REQ_37330 CBH49720.1 putative secreted protein 
REQ_40020 CBH49983.1 putative branched-chain amino acid ABC transporter substrate binding lipoprotein 

REQ_40430 CBH50020.1 putative secreted peptidase 
REQ_40440 CBH50021.1 putative integral membrane protein 
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These potential proteins of interest were analysed using STRING Co-occurrence analysis to the gene 

family pattern across a selection of relevant Corynebacteriales taxa (Figure 7-19). Co-occurrence 

was predicted by gene alignment; score graded by intensity. Interestingly, there is a significant 

difference between mycobacterial species and the R. equi gene selection, with many genes not 

present, this may perhaps refine the proteins of interest further if R. equi is to utilise an analogous 

mycolate transport system. 

 

Figure 7-19: Gene co-occurrence between the candidate list generated in Table 7-9 from R. 
equi against other closely related bacterium from the order Corynebacteriales. 
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7.7 Discussion 

The aims of the project were to explore the mechanisms utilised by R. equi to facilitate iron transport 

across the cell envelope, by firstly identifying proteins associated with isolated cell envelope and 

subsequent identification of any potential outer membrane receptors that may facilitate transport of 

iron across the mycolate. 

The project was developed using the iron limiting conditions outlined in chapter 6; the subsequent 

proteomic analysis of the rhodococcal cellular material was performed to enhance the understanding 

of uptake mechanisms within acid-fast bacteria especially under nutritional stress. 

 

A significant amount of the project was dedicated to identifying the most suitable fractionation 

conditions for isolation of the rhodococcal mycolate-containing cell wall region, comparing the 

unfractionated clarified lysate analysis with in vitro fractionation using the density gradient medium 

Percoll at 60 % (v/v) with the buoyant cell wall-containing phase solubilised using either SDS-buffer 

or Triton X-114 before downstream proteomic analysis. Comparison of these methodologies 

produced a range of positive and negative attributes that were considered for the experimental design 

for the final proteomic study. Utilisation of in vitro fractionation methods provided an enhanced view 

of retained hydrophobic proteins with a reduction of cytoplasmic contamination the fraction, 

however there was clear indication of false negative results resulting from transfer and recovery 

losses during sample processing, signifying that the more aggressive the isolation technique, the 

more limiting the analysis would be. Therefore, exploratory in silico localisation methods were 

employed to identify proteins relevant to cell envelope region through the use of a protein localisation 

pipeline to predict transmembrane topology and signal peptides using the bioinformatic tools 

TOPCONS (Tsirigos et al., 2015), PredLIPO (Bagos et al., 2008), SignalP (Almagro Armenteros et 

al., 2019) and Phobius (Kall et al., 2007). 

The final large-scale study was performed using a whole-cell analysis with subsequent in silico 

fractionation to target proteins that may be involved with iron uptake mechanisms. The study 

identified presence of predicted cytoplasmic membrane-associated iron ABC transporter 
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components, although not relevant to the mycolate-associated mechanisms, their presence reinforces 

that correct experimental parameters regarding iron limitation were achieved, corroborating with 

previous literature (Miranda-CasoLuengo et al., 2005). 

 

There are a number of technical limitations associated with this project, firstly arising from the 

GeLC-MS/MS approach; while this approach is typically synonymous with protein identification in 

both qualitative and quantitative methods, several associated limitations should be considered. 

Firstly, artefactual peptide modifications may arise from in-gel proteomic methods, these can 

typically arise from incomplete gel polymerisation and may interact with cysteine residues present 

to reform disulphide bridges; to counteract this, both reduction and alkylation steps are performed 

when extracting peptides (Müller and Winter, 2017). Moreover, methionine residues are often 

susceptible to oxidation, likely due to excess persulphate within the gel. Both of these issues are 

partially mediated through indication of fixed and variable peptide modifications, in the form of 

carbamidomethylation and oxidation respectively when database searching for MS/MS ions. 

However, the most prevalent issue relates to sample loss in GeLC-MS/MS experiments, ranging 

from incomplete protein solubilisation prior to electrophoretic separation and inadequate peptide 

following digestion (Paulo, 2016). Comparative to in-solution extraction methods, recovery of 

peptides can range from between 70 – 90 % (Havlis and Shevchenko, 2004), however the in-solution 

methodology was not yet established as a robust peptide extraction option at the institution. Other 

opportunities for peptide loss could occur from absorption to surfaces including pipette tips and 

microcentrifuge tubes; drying of samples in a vacuum concentrator, and during the electrospray 

ionisation. These occasions were hopefully mitigated by accurate and careful manipulation of the gel 

and peptide mixtures, and the utilisation of both biological and technical replications. 

The utilisation of an unfractionated approach provided the opportunity to analyse the most significant 

proportion of peptides available, without potential loss through in vitro fractionation methods, 

however the subsequent in silico fractionation pipeline methodology excludes proteins based upon 

their predicted subcellular localisation. This methodology as a whole effectively circumvents 
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analysis of potential moonlighting proteins, that may be relevant to the cellular region of interest. If 

moonlighting proteins were to be explored in the future, a proteomic approach should be explored 

without risking cytoplasmic contamination throughout by cell lysis methods. 

 

While no obvious candidates for iron transport across the mycolate region were identified in 

rhodococci, this chapter aims to raise the issue of the lack of discussion and subsequent investigation 

regarding the mycolate-related pathogenicity and survivability mechanisms associated with 

nutritional stress. 

 In contrast, mycobacteria have the ability to synthesise salicylate-containing siderophores known as 

mycobactins; carboxymycobactin, a water-soluble secreted siderophore and the hydrophobic 

mycobactin that is cell-surface associated (Snow and White, 1969), from which it is proposed that 

HupB, a 28-kDa iron-regulated cell wall-associated protein in M. tuberculosis arbitrates transfer from 

the iron-bound carboxymycobactin to the mycobactin (Yeruva et al., 2006). 

As a result of no clear identification of an analogous HupB-like protein during this proteomic study, 

in combination with the siderophore predictions identified in chapter 3, it is highly unlikely that R. 

equi utilises a similar approach to iron uptake. Regardless of this, the acid-fast bacterium still requires 

a method of translocation of ferri-siderophores across the mycolate region. Given the dearth of 

evidence at this stage, it is proposed that R. equi utilises facilitated diffusion via a simple porin route 

for ingress of ferri-siderophore complexes into the periplasmic space (Figure 7-20), from where a 

substrate binding lipoprotein may facilitate transfer through an ABC transporter system such as the 

previously identified iupABC complex.  Thus, the system found in R. equi might resemble that of a 

canonical Gram-positive active transporter of a ferri-siderophore, with all of the specific recognition 

events occurring in the relatively protected environment of the periplasm.  The proposed system 

would be unusual in that the high-affinity receptor protein expected of such a transport system 

(Ratledge and Dover, 2000) would not be found at the outer surface of the bacterium.  The 

periplasmic ferri-siderophore binding proteins of Gram-negative bacteria often have broader 
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specificities and poorer affinities for their ligands than their high affinity outer membrane receptor 

counterparts (Ratledge and Dover, 2000); biochemical analysis of ligand binding kinetics and 

comparison with their Gram-negative and Gram–positive functional counterparts might be 

informative in understanding whether these lipoproteins operate as primary high-affinity receptors 

or ancillary transport proteins.
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Figure 7-20: An updated R. equi iron homeostasis network map (after Chapter 7) 
Data generated from the preliminary genomic survey, developed using in silico metal binding capacities, and the production of metal regulator mutants. Siderophore 
candidates were identified via untargeted and subsequent targeted metabolomic analyses. Transport mechanisms were targeted using in in silico and in vitro 
fractionation coupled with proteomic analysis, shown in orange as further chracterisation is needed Specific transport components are displayed in red as no viable 
candidates were identified in this study.
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8 Method optimisation for RNA isolation for use in 

RNA-Seq analysis of Rhodococcus equi 103S 

global gene expression under iron starvation 
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8.1 Introduction  

Transcription, being the first stage of gene expression where RNA is produced from a DNA template 

by RNA polymerase is the fundamental intermediary linking the genome and proteome. 

Transcriptional studies have become a cornerstone of systems biology, facilitating quantification of 

gene expression. Since the completion of the Human Genome Project, transcriptomics has quickly 

become one of the most developed fields, with hopes of pulling back the veil on how genome 

expression and cellular function are intertwined(Dong and Chen, 2013). Transcriptomic analysis is 

performed by studying the transcriptome of an organism, in effect, the totality of its RNA transcripts 

under a certain physiological condition. (Dong and Chen, 2013; Lowe et al., 2017). 

Initial gene expression studies were performed using low-throughput single transcript measurement 

methods such as Northern blotting and quantitative PCR, however transcript analysis has progressed 

to incorporate genome-wide quantification of gene expression (Kukurba and Montgomery, 2015), 

initially from expressed sequence tags and subsequent serial analysis of gene expression (SAGE) 

(Velculescu et al., 1995) through microarray analyses and more recently high-throughput RNA-

sequencing (RNA-seq) (Nagalakshmi et al., 2010). 

The development of microarrays facilitated the measurement of gene transcript abundance by 

hybridisation of fluorescently labelled transcripts to short immobilised oligonucleotide probes. The 

ability to multiplex array probes facilitated thousands of transcripts to be read simultaneously, 

thereby reducing associated time and labour costs. The microarray methodology encountered a range 

of limitations including a requirement of priori knowledge of the sequences in question, potential for 

cross-hybridisation events occurring between homologous sequences and difficulty in quantification 

of transcripts at both very low and very high expression levels (Kukurba and Montgomery, 2015). 

Ultimately, transcriptomic profiling was performed using spotted oligonucleotide arrays (Shalon et 

al., 1996) and high density Affymetrix GeneChip arrays (Irizarry et al., 2003) until the late 2000’s 

with the surfacing of the genomic era when RNA-seq methods was considered a viable option 

(Kukurba and Montgomery, 2015). 

The rapid development of high-throughput sequencing technologies transformed the field of 
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transcriptomics by facilitating RNA analysis through sequencing of complementary DNA (cDNA), 

from which the calculated abundance was derived from the number of counts from each transcript. 

The first use of RNA-seq methodology in research was published by Bainbridge et al. (2006) with 

over 100,000 transcripts analysed using the ‘sequencing by synthesis’ methodology of Roche’s 454 

pyro-sequencer to quantify relative transcript abundance. As previously alluded, the RNA-Seq era 

began in the late 2000’s with the competition between Solexa and Illumina facilitating the 

determination of over 1,000,000,000 transcripts (Kukurba and Montgomery, 2015; Ozsolak and 

Milos, 2011). 

Development of the RNA-sequencing technologies have improved the knowledge of both qualitative 

and quantitative aspects of transcriptomics, including a deeper understanding of transcript initiation 

sites, detection of alternative splicing and gene fusion transcripts as well as identification and 

indexing both sense and antisense transcripts (Kukurba and Montgomery, 2015). 

 

As for eukaryotic organisms, analysis of the bacterial transcriptomes was instigated through 

development of the microarray technology, of which, high-density tiling arrays were at the forefront 

of bacterial transcript analysis to globally quantify gene expression without needing to account for 

genome annotations (Toledo-Arana and Solano, 2010).  With the introduction of RNA-seq and the 

associated deep sequencing of cDNA, the shortcomings of microarray methodologies can be 

circumvented; with sequencing resolution down to single bases; and improved signal-noise ratios, a 

higher dynamic range can be achieved (Vivancos et al., 2010).  

Stemming from the genomic era revolution and the race for completion of the human genome project, 

the developments within and access to sequencing technologies have resulted in the significant 

decrease in cost for next-generation sequencing far below the expected values portrayed by Moore’s 

Law (Muir et al., 2016). This in combination with the freely available, open source bioinformatic 

analysis tools presents RNA-seq technology as an appealing method of bacterial transcript analysis 

(Haas et al., 2012). 

The utilisation of RNA-seq in bacterial transcriptomics has been paramount in generation of deep 
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and comprehensive transcriptome profiles, as the relative abundance of individual transcripts can 

vary by up to several orders of magnitude (Haas et al., 2012). Sufficiently deep profiling facilitates 

detection of quantification of low abundance transcripts, this is typically achieved through increasing 

the total read count per library generated, thereby producing sufficient reads to detect the biologically 

relevant transcripts that constitute a minority in the cDNA library. Secondly, the depletion of 

abundant transcripts by rRNA depletion prior to cDNA generation can be utilised to enrich the 

mRNA levels for quantification of rarer or lower expressed transcripts downstream (Giannoukos et 

al., 2012).  

Ensuring that a transcriptome can be mapped both efficiently and effectively is essential for the 

majority of RNA-seq projects; and as such, the experiments must incorporate a balance of sequencing 

depth with the quantity of samples sequenced. Haas et al. (2012) discusses this approach in detail, 

indicating that use of RNA-seq for transcriptome mapping should utilise approaches focussing on 

depth that can detect rare transcripts for full coverage, with breadth of coverage (biological 

replicates) perhaps becoming more relevant than sequencing depth (reads per sample) for 

applications comparing gene expression levels under specific growth conditions or strain variants, 

with indication that a balance is between these parameters is essential for experimental design.  

8.2 Aims of the chapter 

The aim of this chapter is to reveal the genetic response to iron starvation; the elucidation of gene 

transcription under these conditions will provided a snapshot of total transcripts present in a cell. The 

resulting transcriptomic analysis will corroborate with other omics analysis methods in 

characterising the global iron regulatory mechanisms utilised in the veterinary pathogen 

Rhodococcus equi 103S. 

8.3 Experimental Design 

Given the funding and time limitations within this project, the experimental design was constructed 

to achieve a significant transcriptome coverage without exceedingly high numbers of transcript reads 

and the associated costs.  

Initial consultation with in-house RNA-seq experts (Dr D Smith & Dr A Nelson, pers. comm), 
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resulted in a recommendation of ~10 million reads per sample for accuracy and sufficient depth for 

an appropriate level of transcript coverage (Haas et al., 2012).   

The findings from a systematic analysis of RNA-seq profiling in bacterial transcriptomics performed 

by Haas et al. (2012) were consistent with this recommendation stating that their analysis identified 

that 5 – 10 million reads would typically be sufficient to detect the vast majority of expressed genes 

under a wide variety of experimental conditions apart from those genes that are expressed at 

extremely low levels. Furthermore, if RNA-seq analysis can be performed incorporating biological 

replicates, differential expression of genes can be detected with high statistical significance, with 

reads per sample reduced to as low as 2 – 3 million (Haas et al., 2012). 

In order to define the recommended number of reads required for this experiment, a targeted search 

for RNA-seq transcript profiling was performed restricted to the taxon Rhodococcus. At the time of 

writing, R. equi transcription does not appear to have been analysed via RNA-seq in any capacity, 

although there are a number of studies that focus on other rhodococci.  , While studying regulation 

of plasmid-encoded isoprene metabolism in Rhodococcus sp. ACPA1, ACPA4 and ACS1,(Crombie 

et al., 2015) , scrutinised isoprene-related gene expression using a time-course starvation experiment 

in an analogous manner to the iron-starvation experiments determined in chapter 6. Changes in gene 

expression were mapped by transcriptome sequencing using RNA-seq, wherein 475 million reads 

were performed in total; accounting for biological replicates resulted in a sequence read depth of 

between 3 and 5 million reads (and no less than 2 million reads) per sample, with the study citing the 

systematic analysis by Haas et al. (2012). 

Given the stringent limitations associated with this project outlined previously, and the information 

available, the experiment was designed to map the transcriptome of wild-type R. equi 103S under 

iron limiting conditions and iron-replete conditions, with sufficient biological replicates. 

Furthermore, the scope also facilitated transcriptomic analysis of one of the four R. equi mutants 

(generated in Chapter 5) under iron replete conditions.  

The mutant selected for transcriptomic analysis was selected based upon which would likely 

contribute the most to understanding the iron regulation within R. equi. Using the predictions from 

Chapter 4, the mutant R. equi-DideR was selected based upon the regulatory responses predicted 
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under iron starvation over the other predicted iron-regulatory mutant R. equi-DfurA, given the limited 

phenotypic and proteomic changes already observed for the latter. The other two mutants R. equi-

DdtxR and R. equi-DfurB were not selected based upon their predicted binding with the other divalent 

cations, manganese and zinc respectively. 

Using the relevant literature and calculation of the desired experimental conditions, the 

transcriptomic sequencing was to be performed on RNA harvested from: 1) Wildtype R. equi 103S, 

2) Wildtype R. equi 103S under iron limitation, and 3) Mutant R.equi-DideR. With the experimental 

design incorporating three biological replicates and two technical replicates for each sample, totalling 

18 runs which is the maximum viable runs based on the reagents available at 2.5 million reads per 

sample.  

8.4 Results 

 

Typically, 10 mL of logarithmic phase cultures in a rich medium such as LB or BHI would achieve 

0.5–1 x 109 cells, however the transcriptomic analysis performed was to identify differential 

expression resulting from iron limitation in the growth media or caused by gene knockouts under 

iron limitation. 

Therefore, samples collected were expected to be a stressed stationary phase culture, harvested after 

~5 days growth, identical to harvest conditions in the metabolomics and proteomics analyses. The 

cellular harvest was performed upon the visual cue of production of the red chromophore as a 

convenient biomarker for iron limitation. 

 

Initial isolation and purification of R. equi total RNA was performed as described in the methods 

2.15 using the RiboPure Bacteria RNA isolation kit (Ambion, Life Technologies), from which the 

RNA integrity was assessed using a Prokaryotic Bioanalyzer RNA 6000 Nano Assay yielding a score 

of 0 for all samples. 

The lack of detectable RNA or even degraded material was a potential indicator that either the 
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rhodococcal cells were not lysing, likely as a result of the thick waxy mycolic acid-containing cell 

wall, or if lysing, they may have a particularly short RNA half-life. Extensive studies have been 

performed highlighting these issues within the Gram-positive mycolate-containing bacteria (Akhtar 

et al., 2011). Therefore, to improve isolation of intact high-quality RNA, the methodology was 

modified to incorporate an aggressive cell lysis procedure using a FastPrep FP120 Cell Disrupter. 

The isolation step was repeated and the RNA integrity subsequently analysed (Table 8-1). 

Table 8-1: Prokaryote Total RNA Nano Series II Assay  
to detect RNA concentration, rRNA ratio and RNA integrity in R. equi samples using an Agilent 
Bioanalyzer 2100 (Version B.02.08.SI648). For sample identification: WT – wildtype R. equi 103S; 
IDER – R.equi- DideR; D – iron deplete conditions; R – iron replete conditions; numbers indicative 
of biological replicate. Ladder – A proprietary molecular marker 

Sample RNA Concentration: rRNA Ratio [23s / 16s]: RNA Integrity Number (RIN): 

WT1-D 85.40598 0 5.2 (B.02.08) 

WT2-D 38.49717 0.8934986 5 (B.02.08) 

WT3-D 95.82452 0 5.4 (B.02.08) 

WT1-R 203.358 0.9472562 6.9 (B.02.08) 

WT2-R 245.9775 0.9842288 6.9 (B.02.08) 

WT3-R 128.4064 0.9812167 6.5 (B.02.08) 

IDER1-R 234.5266 1.160092 6.6 (B.02.08) 

IDER2-R 269.706 1.233795 N/A (B.02.08) 

IDER3-R 192.7845 1.339374 7.5 (B.02.08) 

Ladder 150 N/A N/A (B.02.08) 

Although a marked improvement was achieved on previous attempts, the RNA integrity here was 

still lower than the minimum level generally considered sufficient (RIN ³ 7) (Jahn et al., 2008), with 

RIN values of between 9 and 10 considered ideal to accurately quantify gene expression; crucially, 

although RNA degradation may not result in complete loss of transcripts, it can significantly affect 

the associated estimated relative gene expression levels (Gallego Romero et al., 2014). 

Analysis of the RNA electropherograms, using WT1-R (R. equi 103S, iron-replete) (RIN 6.5) as an 

example (Figure 8-1) suggests partial degradation of the RNA. The presence of multiple peaks in 

both the inter region and in the fast region is indicative of degradation of the 13S and 26S rRNA to 

an intermediate scale, correlating to examples provided by Agilent (Mueller et al., 2004), and a RIN 

value below the desired threshold. Given the apparent degradation at this stage of the rRNA, it is 

unlikely that the transcripts will be of sufficient quality to infer gene expression levels by RNA-seq. 
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A 

RIN 6.5 

B 

Figure 8-1: Electropherogram analysis of RNA integrity. 
A: Wildtype R. equi 103S grown in iron replete minimal media conditions, harvested after 5 days 
growth. B: Examples of different RNA integrity levels (small subunit [16s/18s], large subunit 
[23s/28s]) (Mueller et al., 2004). 

The method development for analysis of RNA integrity by the Agilent Bioanalyzer 2100 has 

facilitated a quality control procedure regulating an industry standard of best practice. With 

previously established acceptable RIN cut off values available, (which can vary depending on the 

type of downstream experiment) the incorporation of this quality control test can ensure that the 

downstream analysis is performed on RNA of validated acceptable quality above the threshold value, 
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and if the value falls below this threshold, the samples should be discarded and isolation repeated as 

demonstrated in the flowchart below (Figure 8-2; adapted from Mueller et al. (2004)). 

 

Figure 8-2: Quality control flowchart for RNA integrity analysis. Adapted from (Mueller et 
al., 2004)  

8.5 Future methodology 

Advancement of this project requires a significant improvement in quality yielded from the initial 

RNA isolation step given above. Incorporation of a RIN quality control parameter at this stage is 

essential in downstream analysis of RNA transcripts (Vermeulen et al., 2011). 

 

Intriguingly, RNA extraction from mycolic acid-containing bacteria has been well documented over 

the last 25 years, and isolation of pure, intact RNA has consistently proved challenging (Jahn et al., 

2008)  through utilisation of both Trizol (Cheung et al., 1994; Payton and Pinter, 1999) and Hot 

Phenol (Barry et al., 1992; Monahan et al., 2001; Rustad et al., 2009) extraction methods. 

Recently, (Venkataraman et al., 2013) performed a comparison of RNA isolation methods in the 

similarly mycolic acid-containing organism Mycobacterium tuberculosis, from which they discuss 

how the use of Trizol resulted in extensive smearing and RIN comparable with methods used in this 

chapter, with the conclusion of extensively degraded RNA. Hot Phenol extraction produced 

significantly higher RIN values (between 8.0 and 8.6), through the extensive use of toxic chemicals 

at high temperatures. This method was excluded for the R. equi extractions, given the inherent risks 

associated. 
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An additional method was also performed for extraction of mycobacterial RNA, this ‘Method 3’ was 

an optimised technique using an RNeasy RNA isolation kit (QIAgen) with a modified protocol, 

utilising an enhanced cellular lysis step, RNeasy spin column purification and two-step DNase 

digestion. The resulting QA analysis identified that this method could reproducibly isolate high 

yields of RNA, both pure and intact, with RIN values between 9.5 and 9.9; and was further confirmed 

to successfully isolate RNA from another mycolate-containing bacteria Mycobacterium smegmatis 

and the Gram-negative organism Escherichia coli. 

8.5.2.1 Modified RNeasy methodology for isolation of R. equi RNA 

In this optimised method described by Venkataraman et al. (2013), culture harvesting and 

centrifugation was performed as for previous methods; the cell pellet was then suspended in 100 µl 

of TE buffer (10 mM Tris pH 7.5, 1 mM EDTA pH 8.0) containing 20 mg/ml lysozyme (USB Corp., 

USA) and 10 µl Proteinase K (1 U/µl; Qiagen Inc., USA).  

The cell lysis suspension was resuspended thoroughly and incubated at room temperature for 10 

minutes with intermittent vortexing, after which 700 µl of RLT buffer (RNeasy kit, Qiagen Inc.) was 

added and further resuspended. The suspension was transferred to a RNase free 1.5 ml 

microcentrifuge tube containing 400 µl of acid-washed zirconia beads and lysed via bead-beating for 

10 pulses of 20 seconds, each with intermittent chilling on ice. 

The cell lysate was centrifuged at 12,000 x g for 20 seconds at room temperature to pellet cellular 

material and debris, and the supernatant was transferred to a fresh microcentrifuge tube, mixed with 

590 µl of 80% ethanol and transferred to RNeasy spin column. The column was then centrifuged at 

12,000 x g for 15 seconds and the flow-through discarded, then 350µl of RW1 buffer was added to 

the column filter and the column was centrifuged again for 15 seconds at 12,000 x g.  

To streamline the process further, 10µl of RNase-free DNase diluted in 70µl of RDD buffer was 

added to the column filter and incubated at room temperature to facilitate on-column DNase 

digestion, removing any genomic DNA contamination. After 15 minutes incubation, 350µl of RW1 

buffer was added to the column filter and centrifuged for 15 seconds at 12,000 x g, with two 
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subsequent column washes using RPE buffer. Finally, the RNA was eluted in 50 µl of RNase-free 

water.  

To ensure complete removal of genomic DNA, the RNA samples were subjected to a second 

decontamination using an in-solution DNase treatment using DNA-Free (Ambion, Life 

Technologies, USA) as per manufacturer's instructions. 

 

Significantly, Venkataraman et al. (2013) also explored the isolation of mycobacterial RNA under a 

range of sub-optimal growth conditions, including pH stress, oxidative stress, medium starvation, 

antibiotic stress and latency. The utilisation of the modified RNeasy kit isolation method resulted in 

successful isolation of RNA under all conditions, with QA testing indicating isolation of highly pure 

and intact RNA using a Bioanalyzer 2100, akin to QA methods used in this chapter. RIN values 

reliably scored between 9.2 and 9.9, further highlighting that this modified methodology would likely 

be suitable for isolation of R. equi RNA under the desired media starvation conditions, without 

degredation 

Furthermore, this research group also investigated downstream RNA methods including rRNA 

depletion for mRNA enrichment (Venkataraman et al., 2013), this is of particular importance, given 

the objective of expression profiling by RNA-seq. Their isolated rRNA from the modified RNeasy 

method, was depleted via subtractive hybridisation, with complete rRNA-depletion observed as well 

as acquisition of high-quality mRNA suitable for downstream RNA-seq transcript analysis for 

expression profiling. 

8.6 Concluding remarks 

Although this project did not advance as quickly as anticipated, it was determined that the utilisation 

of appropriate quality assurance methods would be paramount for impact when publishing the 

results, and to prevent the depletion of the valuable and limited resources. The methodology in this 

chapter for RNA isolation was the use of a RiboPure™-Bacteria Kit that used a Trizol based reagent 

(RNA-WIZ), although many attempts were made to improve cell lysis and prevention of degradation, 

the RNA integrity was comparable with other Trizol isolation methods described in the literature.  
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As the RNA integrity did not meet the assigned threshold, the project was not able to advance; with 

focus altered on identification of a refined method of isolation of intact RNA from mycolic acid 

containing bacteria. The identification of a refined methodology in the literature (Venkataraman et 

al., 2013) should prove useful for advancement of the project. The decision was made to not attempt 

the use of a hot phenol-based extraction given the associated risks, however going forward the 

modified RNeasy kit protocol should be explored for isolation of pure, intact R. equi rRNA, this in 

turn will facilitate procurement of mRNA for transcript analysis in gene expression profiling using 

RNA-seq. 

Although not discussed at this stage, it will be important to maintain a high degree of quality 

assurance throughout the project stages including integrity checks after mRNA enrichment, and 

quality assessment of adapter-ligated DNA libraries as well as quality control during bioinformatic 

analysis, regarding read alignments and transcript assemblies, consideration of these variables, and 

maintenance or associated thresholds will ensure maximum impact can be achieved and will 

coordinate with other projects for the multi-omics approach to characterisation of the iron-regulated 

homeostatic mechanisms with the veterinary pathogen R. equi. 
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9  - General discussion  
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9.1 The importance of a Multi-Omics experimental approach 

Multi-omics studies are becoming increasingly popular as researchers strive to achieve the magnum 

opus of Systems Biology: the ability to produce a comprehensive description of the complex 

interactions between biomolecules (Breitling, 2010). Datasets from genomic, transcriptomic, 

proteomic and metabolomic profiling experiments are integrated to generate a more holistic 

understanding of the relationships between cells, organisms, and communities.  In the context of 

infection, these datasets specifically relate to pathogen growth, environmental adaptation, 

development and survival through utilisation of virulence factors, and ultimately, disease progression 

(Cho et al., 2006; Pinu et al., 2019; Yugi et al., 2016). 

The competition of the post-genomic era has facilitated significant technological advancements in 

omics-related analytical techniques such as next-generation sequencing and high resolution tandem 

mass spectrometric analysis. Development of these technologies provided higher throughput data at 

significantly lower cost in a fraction of the time (Park and Kim, 2016). That, in turn, has facilitated 

larger-scale omics projects to become widely-accessible to the research community (Pinu et al., 

2019), and naturally the instigation of multi-omics project are becoming an increasingly desirable 

practice to answer complex biological networking questions. 

The challenges associated with omics integration is a pressing issue as, unsurprisingly, many of the 

techniques require an appropriate experimental design and specific analytical equipment; and as such 

are often not adequate to perform comparative studies as a result; successful implementation of more 

than two omics datasets is exceptionally rare (Biswapriya et al., 2019) due to the inherent differences 

associated with the datasets. 

 

It is evident at this stage that to facilitate integration of multi-omics data careful consideration must 

be taken for experimental design firstly for the individual -omics experiment, but also how the data 

integration will occur. To enable this integration step, it is imperative that the experimental design 

considers selection process as well as preparation, and storage of the biological samples suitable for 

the wide variety of analytical methods (Pinu et al., 2019). Ideally the results should be generated by 
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analysis of the same sample group to facilitate direct comparison under identical conditions, 

principally because omics analysis is considered a cellular snapshot of the physiological status of the 

cell (Peng et al., 2015). Moreover, sample cohort size is directly relevant to the expected hypothesis 

and should be incorporated into the experimental design; for example, investigation of a vague 

disease phenotype likely requires a large sample cohort given the small effect size, comparative to a 

strong disease phenotype that is likely to require a much smaller cohort. 

It appears at this stage, the prevalent challenges faced when designing an experiment suitable for a 

multi-omics approach relate to the biological sample type. Interestingly, the review by Pinu et al. 

(2019), identified that metabolomics studies are the most versatile, offering the most compliance 

with other omics requirements, including genomic, transcriptomic and proteomic analyses. For 

example, metabolomic studies frequently require sample storage at −80 °C, this is typically also 

beneficial for other studies given that storage under these conditions maintains both protein and RNA 

integrity for proteomics and transcriptomics respectively (Day and Stacey, 2008; Haas et al., 2017). 

 

Despite the significant technological advancements in individual -omics fields and the particularly 

important growth seen in readily-accessible omics databases, the identification of novel biological 

pathways appears to be bottlenecked by the data integration steps of the multiple omics approaches 

(Broadhurst and Kell, 2006; Haas et al., 2017). This has been attributed to the input and data 

interpretation steps required by specialist researchers (Pinu et al., 2019), however providing the data 

integrity achieves the desired threshold, a selection of integration methods can be utilised.  

Firstly, individual omics can be independently analysed, with key features networked to stipulate a 

post-analysis data integration methodology. This facilitates the production of a biomolecular 

pathway based upon interactions with the aforementioned key features. This method of integration 

has been successful for a range of investigations including a multi-omics approach to characterise 

the microbial biota of sewage sludge and their metabolism in anaerobic digesters under operational 

shocks (Beale et al., 2016), as well as a multi-omics approach to assess the surface water quality of 

an Australian river system (Beale et al., 2017).  
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Alternatively, omics data can be integrated prior to analysis and interpretation to identify statistical 

algorithm-derived connections between datasets using without reliance on human interpretation 

(Huang et al., 2017; Kuo et al., 2013; Pinu et al., 2019). This methodology is typically used in clinical 

studies where well-annotated databases are available (Rantalainen et al., 2006). Similarly, data 

integration can also be performed using a systems biology modelling approach, this methodology is 

most appropriate when investigating a well-defined biological network, with previous 

comprehensive omics data available and the aim of comparing novel experimental data to prediction 

models (Manninen et al., 2018; Wierling et al., 2007). 

9.2 Initial Project Aims 

As described in the introduction, the main research focus was to improve the understanding of the 

complex iron regulatory network within the veterinary pathogen Rhodococcus equi. The principal 

aims of the research was focused on iron homeostasis and uptake mechanisms.  

The initial scope of the project was generated by utilisation of a genomic survey for metal regulation 

with R. equi. Any metalloregulatory genes of interest that may be responsible for transcription of 

essential virulence factors, were to be explored by recombinant gene expression studies and 

production of in-frame deletion mutations to address a hypothesis that complete deregulation might 

generate a phenotypic change and stimulate hyper-production of siderophores. 

R. equi is predicted to synthesise two siderophores under iron starvation; a catecholate-hydroxamate 

mixed type-siderophore termed rhequibactin (Miranda-CasoLuengo et al., 2008) and a hydroxamate 

siderophore termed rhequichelin (Miranda-CasoLuengo et al., 2012), however they currently remain 

uncharacterised, likely due to low yielding synthesis complicating isolation of the siderophores. 

Furthermore, very little research has been presented for cellular transport mechanisms for essential 

nutrients such as iron in R. equi. Frequently, there is no consideration for the presence of the barrier 

to materials transfer represented by the mycomembrane, the structure that is often attributed to 

resistance to antimicrobials and pathogenicity of other better studied related organisms. Often the 

focus for transport studies are the mechanisms associated with translocation across the cytoplasmic 

membrane. As it currently stands, both regulation and uptake of these siderophores are 

uncharacterised. 
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To address these issues another project was instigated where R. equi was grown under iron-limiting 

conditions, to facilitate 1) identification of the R. equi siderophores, and ideally characterise them 

using a metabolomics approach. 2) identify the means associated with ferri-siderophores uptake 

across the mycomembrane using a proteomic approach. 3) Map global gene expression of R. equi 

under the given conditions, to infer a network of interactions associated with iron homeostasis. 

9.3 Genomic survey of iron homeostasis with Rhodococcus equi 103S 

The aim of this chapter was to audit the requirements for siderophore-mediated iron-acquisition by 

R. equi 103S, with this survey aiding transcriptome, metabolome and proteome data analysis. 

Initially, functional candidates for regulation, biosynthesis and export, and ferri-siderophore uptake 

were assembled using a text-based genome mining approach. The bioinformatic investigation 

revealed that the R. equi genomic contains four putative genes predicted to encode putative iron 

regulator proteins: ideR (REQ_20130), dtxR (REQ_19260), furA (REQ_04740), furB (REQ_29130).  

While very little is known regarding R. equi iron regulation, previous literature highlights that iron 

regulatory proteins are responsible for controlling siderophore biosynthesis and transport, however 

it was interesting to understand the biological significance of four analogous regulatory components. 

In order to determine whether this apparent redundancy in iron-dependent transcriptional regulators 

was a conserved feature of genus Rhodococcus or an unusual feature of R. equi 103S, each candidate 

gene product sequence was queried using a BLASTP approach with outputs being restricted to 

Rhodococcus. In summary, 27 genomes were investigated, of which 25 appear to possess 

homologues of all four putative iron-dependent transcriptional regulator proteins, with none 

possessing less than three of them. 

It is therefore unlikely that all of these proteins co-repress their regulons with ferrous iron, but rather 

exhibit interactions with other metals, and each protein is likely to possess a discrete independent 

physiological role. Furthermore, possession of two each of the Fur and IdeR/DtxR families, appears 

to be consistent with other related genera, of which the best characterised organism is M. tuberculosis 

H37Rv, which also has a complement of four such regulators (Rodriguez and Smith, 2003).  

Each of these four regulators from R. equi, were targeted for molecular cloning and expression 

techniques, in order to facilitate regulator-binding site analysis, discussed in Chapter 4. Additionally, 
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each of the regulator genes were targeted to produce unmarked in-frame gene deletions to establish 

their influence on rhodococcal physiology independently, as discussed in Chapter 5.  

 

As previously discussed, R. equi is predicted to synthesise two siderophores under iron starvation; 

rhequibactin (Miranda-CasoLuengo et al., 2008) and rhequichelin (Miranda-CasoLuengo et al., 

2012), both of which are currently uncharacterised. An early research study that identified that R. 

equi does not produce sufficient siderophore under iron limitation to be detected in a Chromazurol S 

assay (Fiss and Brooks, 1991), yet subsequent bioinformatic analysis has undoubtedly displayed that 

R. equi has the capacity to produce multiple siderophoric compounds. However, production of the 

strain R. equi α5 (Miranda-CasoLuengo et al., 2005), containing a transposome insertion in iupABC, 

induced a siderophore-like effect under iron sufficient conditions predicted to be due to the formation 

of an Fe3+-siderophore complex given the red pigmentation of the medium supernatant.   

Therefore, bioinformatic analysis of putative biosynthetic gene clusters was performed with the aim 

of producing putative structures and associated masses that can be used in a targeted metabolomic 

approach for siderophore characterisation. 

Firstly, to explore the strategies utilised by R. equi 103S to sequester iron from the extracellular 

environment the genome was investigated using a text-based genome mining approach similar to the 

regulator search. It is well established that siderophores can be synthesized by both non-ribosomal 

peptide synthetase (NRPS)-dependent and NRPS-independent pathways therefore functional 

candidates were identified by related genome annotation text. 

 In silico secondary metabolite structure predictions were produced based on nonribosomal peptide 

biosynthetic pathways retrieved from R. equi 103S DNA sequence data, which were compared with 

the output of the bioinformatic tool antiSMASH. The analysis identified NRPS clusters similar to 

Erythrochelin, and Heterobactin (57 % and 54 % similar respectively), providing evidence to support 

NRPS sysnthesis of both rhequichelin and rhequibactin. The remaining clusters appeared to be 

responsible for antibiotic synthesis. 

Analysis of the rhequibactin biosynthetic gene cluster via the bioinformatic tool antiSMASH, in 
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combination with the previous literature, highlights that rhequibactin utilises a 2,3-hydroxybenzoic 

acid moiety for iron coordination, given the proximity of the upstream 2,3-DHB biosynthetic 

machinery, and previous experimental verification of catecholates moieties (Miranda-CasoLuengo 

et al., 2008). Utilising a stable version of antiSMASH v4.2.1 facilitated a consensus prediction 

method using the SANDPUMA ensemble (Blin et al., 2017), The assembly of the hypothetical 

structure for rhequibactin was performed with direction from Dr. D. Tetard, following the orthodox 

linear peptide assembly, producing a catecholate-hydroxamate mixed ligand model of the 

siderophore rhequibactin using the peptide monomers; 2,3-dihydroxybenzoic acid, lysine, ornithine 

(x2), and a cyclised δ-N-hydroxy-ornithine. 

Similarly, the antiSMASH analysis for rhequichelin biosynthetic gene cluster corroborates the 

predicted domains identified in the literature (Miranda-CasoLuengo et al., 2012), hypothesising that 

the hydroxamate siderophore rhequichelin is comprised of the peptide monomers:N5-formyl-N5-

hydroxyornithine -serine - N5-hydroxyornithine - N5-acyl-N5-hydroxyornithine. Due to the prediction 

of a N5-acyl-N5-hydroxyornithine peptide monomer, elucidation of an accurate mass clearly becomes 

inherently more challenging, therefore non-exclusive selection of potential acylation groups and their 

predicted masses were compiled.  

Although molecular characterisation of the R. equi siderophores remains unsolved, the predictions 

made within this chapter assisted production of a refined candidate list for the identification of 

rhequichelin and rhequibactin. 

9.4 Predicted Metal-binding capacities for the putative metal-dependent 

regulators of Rhodococcus equi 103S  

At the outset, the aims relating to the Fur and DtxR superfamily members of R. equi 103S identified 

in Chapter 3 were to characterise these proteins by molecular cloning to support in vitro analysis of 

metal and DNA binding to establish their respective regulons.  

Initially, the research project started by designing constructs for the four metal regulatory genes ideR, 

dtxR, furA and furB for heterologous gene expression in E. coli to facilitate physico-chemical binding 

analysis using ICP-OES.  
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Protein purification was attempted using heparin affinity chromatography to retain the predicted 

DNA-binding proteins, rather than the commonly used poly-histidine tag approach so as to not impair 

or influence the resulting metal-binding analysis. Unfortunately, this methodology was unsuccessful 

therefore the project methodology was amended to utilise a GST fusion tag to generate a readily 

purifiable fusion proteins. This was successfully achieved for the protein IdeR-GST; however, 

heterologous gene expression was unsuccessful for the other regulator fusions. While measurement 

of the IdeR protein metal-binding capacity would potentially infer a preference for a range of divalent 

cations, without the other three metalloregulatory proteins, the scope of the project unfortunately 

becomes rather limited, as ideally the metal-binding capacities would be performed as a comparative 

exercise.  

Consequently, the project aims were compromised to infer metallo-preference for the binding sites 

of interest based upon homology studies with other closely related structures. This was performed 

by use of a in silico homology-based protein scaffold; significantly, all four putative 

metalloregulatory proteins in R. equi 103S were successfully modelled to the proteins from the 

closely related M. tuberculosis with a high degree of sequence similarity. Furthermore, each of the 

four proteins are likely responsible for discrete regulatory functions as indicated by their coordination 

preference for different transition metals.  

Firstly, the in-silico protein model for R. equi IdeR produced a significantly high sequence template 

homology of 78 % to 1FX7-C(iron-dependent regulator (IdeR) from M. tuberculosis; with local 

sequence alignments identifying a clear conservation of the metal-coordinating residues, it is likely 

that IdeR preferentially coordinates Fe(II) ions based on the identified octahedral coordination 

geometry of IdeR from M. tuberculosis. This conclusion further corroborates the findings of the 

genomic survey and the iron-box sequences identified in the operator sequence of iron-responsive 

genes including siderophore biosynthesis, transport and iron storage genes, which are also prevalent 

in mycobacterial species. 

The in-silico protein model for R. equi DtxR also produced a significantly high sequence template 

homology to the crystal structures 5ZR4-B and 5ZR6 (manganese regulator – MntR, M. tuberculosis, 

apo and holo forms); with one-to-one threading of 5ZR6 yielded a 73 % identity match. Upon 
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performing local sequence alignments R.equi DtxR clearly demonstrates a conservation of the metal-

coordinating residues, of which there is a pentavalent bi-nuclear metal ion cluster that has been 

shown to be a specific coordination cluster asscoaited with Manganese(II) and Magnesium in 

biological systems (Liu et al., 2007). The combination of this evidence, and the high overall sequence 

and structure conservation strongly infers that R. equi DtxR functions as a manganese regulatory 

protein homologous to MntR in M. tuberculosis. 

The in-silico protein model for R. equi FurA was generated using the crystal structure 2FE3-B 

(peroxide operon regulator (PerR) from Bacillus subtilis); the percentage identity between the 

sequence and template was only 24 %, feasibly indicating a core structure. Therefore, a local 

sequence alignment was performed to compare R. equi FurA with both FurA from M. tuberculosis 

and PerR in B. subtilis. Interestingly, the metal-coordinating sites of FurA from R. equi also appear 

to be conserved these proteins; in all cases the proteins appear to function as repressors of 

catalase/peroxidase, it is therefore reasonable to hypothesise that R. equi FurA could represent a 

metal-dependent peroxide sensor, in addition to the supporting evidence of gene clustering between  

furA to the catalase gene cat. 

Finally, the in-silico protein model for R. equi FurB has significant sequence homology to the crystal 

structure 2O03-A (zinc uptake regulator (Zur/FurB from M. tuberculosis); the percentage identity 

between the query sequence and template was 69 % suggesting high model accuracy. As for all of 

the other metalloregulatory proteins of interest, a local alignment of sequences between R. equi FurB 

and M. tuberculosis FurB identified a clear conservation of the metal-coordinating residues; the 

coordination ligands were arranged in a tetragonal geometric pattern characteristically favourable to 

the binding of zinc ions.  

As previously discussed, the designation of four analogous regulatory genes would be biologically 

redundant and would likely contribute to the bacterium being outcompeted based upon unnecessary 

energy consumption. The original gene annotations listed were produced as an autonomous process, 

however the analysis performed here appears to show that the veterinary pathogen R. equi utilises a 

range of different divalent metal regulatory genes to maintain adequate transition metal homeostasis; 

therefore the combination of evidence available strongly suggests R.equi utilises ideR as an iron 
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regulator; furB as a zinc regulator, dtxR as a manganese regulator and furA as an oxidative stress 

response regulator. 

9.5 Generation and in vitro characterisation of Rhodococcus equi 103S mutants 

for four putative metal regulatory genes: ideR, dtxR, furA and furB. 

Building on the results of the genomic survey in chapter 3, and the predicted metal-binding capacities 

in chapter 4, the aim of this project was to further characterise the Fur and DtxR superfamily 

members of R .equi 103S by investigation of the regulatory influence via generation of unmarked in-

frame gene deletions using the pSelAct suicide vector developed by van der Geize et al. (2008). 

The mutant gene knockout constructs were successfully generated utilising a Gibson assembly style 

methodology and replicated in E. coli without issue. The recombinant plasmids were independently 

incorporated into R. equi chromosomal DNA, using apramycin resistance as positive selection screen 

for single-crossover homologous recombination event. 

Efficient selection for a double-crossover homologous recombination event leading to excision of 

the plasmid from the chromosome proved particularly challenging despite following the previously 

optimisation described by van der Geize. Subsequently, a range of method optimisation attempts 

were made, and ultimately a four-fold increase of 5-flurocytosine concentration facilitated successful 

counter selection.  

The counter-selected second homologous recombination event can resolve in two ways; the reversion 

to a wild-type parental genotype or the generation of the unmarked in-frame deletion.  Rigorous 

testing with a diagnostic colony PCR with the integrated pSelAct transformant produced by the first 

homologous recombination event demonstrated that assay design could be biased by extension time 

that could entirely obscure the signal from the parental gene.  In the event of recovery of such a 

transformant in counter-selection screening, the assay must be capable of identifying both possible 

amplicons.  These diagnostic assays were optimised to ensure that the larger amplicon was reliably 

detected.  Significantly, secondary recombination events identifying the truncated gene mutations 

were successfully achieved for all four targets. 

Subsequent phenotype characterisation identified a noteworthy change for R. equi-ΔfurA, which 
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exhibited an impaired growth rate and altered colony pigmentation. This gene shares a locus with 

another encoding a putative catalase; its gene product was markedly upregulated in the mutant strain, 

which was coincidentally hyper-resistant to hydrogen peroxide, which is consistent with its 

annotation as a catalase and its transcriptional repression by FurA. Surprisingly, the other mutants 

did not produce any identifiable phenotypic changes, and analysis of siderophore production using 

the Chromazurol S chelation assay indicated that no marked deregulation of siderophore synthesis 

occurred for any of the mutants. 

Although it is surprising that functional de-repression of the IdeR regulon by gene deletion did not 

result in maximal production of siderophores akin to the exaggerated in vitro iron starvation 

responses characteristic of many microorganisms, this outcome suggests that siderophore 

biosynthesis in R. equi is heavily repressed by another regulatory mechanism.  Three possibilities 

are evident: firstly, IdeR is the primary repressor of siderophore biosynthesis and export in R. equi 

but the mutagenesis process has generated another mutation(s) that has compromised siderophore 

biosynthesis; this will be resolved by whole genome sequencing of the mutant and also in recovery 

of another mutant from the integrated pSelAct transformant for comparison. Secondly, the in-silico 

analysis of repressor metal specificity described herein might be faulted and IdeR may not be an 

orthologue of M. tuberculosis IdeR. However, this seems unlikely due to the consistent pattern of 

metal ligand conservation across all of the four regulators when compared to their closest 

characterised homologues. Additionally, mutants in the other regulator genes did not result in de-

repression of the siderophores so a case of mistaken identity seems unlikely. Arguments relating to 

additional, unintended mutations are equally as valid for this second scenario; whole genome 

sequencing will also address this possibility.  Thirdly, another regulatory mechanism may influence 

the production of siderophores in R. equi and the other rhodococci that present a CAS-negative 

phenotype characterised by a muted response to iron limitation.  The exaggerated responses exhibited 

by many bacteria may be counter-productive in nature.  In an iron-limited environment subject to 

competition for iron within a community of microorganisms, the use of other nutrient resources on 

extensive siderophore biosynthesis may place the producing organism at a disadvantage if iron is not 

returned by the investment.  The likelihood of success will be influenced by the absolute availability 

of the metal in that environment and the identity and number of the producing organisms’ 
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competitors. Given the common ability of bacteria to engage in ferri-siderophore piracy, secreted 

siderophores ultimately become a community resource.  The preservation of resources until a point 

at which return of iron is significant may provide an ecological advantage to R. equi and other CAS-

negative rhodococci.  This scenario is partly reminiscent of observations of the hyper-repressed 

production of (carboxy)mycobactins and the inability to culture new isolates of Mycobacterium 

avium subsp. paratuberculosis and Mycobacterium avium, which can be relieved by addition of ferri-

mycobactin. Repeated culture in lab media led to the loss of this mycobactin-dependence and 

promoted siderophore biosynthesis suggesting a phenotypic / regulatory mechanism rather than a 

genetic lesion in siderophore biosynthesis was responsible (Barclay and Ratledge, 1983).  

If a conserved regulatory mechanism were to override IdeR in some of the Corynebacteriaceae, it 

seems plausible that this might be addressed and identified by deploying random mutagenesis in 

appropriate mycobacteria and R. equi to relieve the inhibition and to identify affected sequences by 

mapping genetic changes by whole genome sequencing. 

9.6 An analysis of the Rhodococcus equi 103S metabolome under iron 

limitation: An insight into siderophore mediated iron metabolism 

The precursor for the multi-omics approach was to establish bacterial growth conditions that 

facilitate a biological response to iron starvation, that can be compared to iron-replete bacterial 

growth conditions. It was hypothesised that optimisation of these media conditions would induce a 

physiological response by secretion of siderophores, as predicted in the bioinformatic study 

performed earlier that hypothesised that R. equi has the capability to synthesis two distinct 

siderophores. Ultimately, this experimental design facilitated the multi-omics approach for analysis 

of secreted metabolites (metabolomics), a comparative analysis of cell-wall associated iron-regulated 

proteins (proteomics) and identification of global gene expression under iron starvation 

(transcriptomics). 

The experimental conditions for iron limitation utilised lactate minimal media as previously 

described (Miranda-CasoLuengo et al., 2012; Miranda-CasoLuengo et al., 2005; Miranda-

CasoLuengo et al., 2008), with further treatment conditions to sequester trace elements. The initial 
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experiment was performed using the modified conditions comparative to iron supplemented 

conditions, in an attempt to replicate the observed chromophore identified by Miranda-CasoLuengo 

et al. (2008). After a period of 120 hours a noticeable red pigment developed in the iron-limited 

culture, with the iron supplemented culture remaining a creamy-white pigment. The development of 

this pigment was used as an indication of an appropriate harvest time, given that R. equi does not 

appear to produce sufficient siderophore to be detected via the Chromazurol S assay.  

Cellular material was separated by centrifugation, with the supernatant used for metabolomic 

analysis and cell pellets frozen for subsequent transcriptomic and proteomics analysis. In an attempt 

to detect ferri-siderophore complexes, aliquots of the supernatants were supplemented with ferric 

chloride, this however resulted in a precipitation event for the iron-limited supernatant and also 

transfer of the pigment from the supernatant into the precipitant. The experimental parameters were 

adjusted as a result, to incorporate analysis of the iron-supplemented supernatants to profile both the 

metabolome differences and the effect of iron supplementation. 

The aforementioned samples were subject to an untargeted metabolite profiling strategy using both 

reversed phased methodology with a C18 column and a HILIC methodology using an ethylene bridge 

hybrid amide analytical column coupled with a heated electrospray ionisation - mass spectrometry, 

with observable differences between conditions. The positive ionisation mode reverse phased 

chromatography was further analysed with metabolomic profiles compared using chemometric 

analysis, confirming that 54.6 % of variance between samples was produced by biological 

differences occurring during growth in the different medium conditions, with 22 % of variance 

derived from the addition of ferric chloride to the bacterial supernatants and likely the changes caused 

by the precipitation. Siderophore candidates were selected based upon their comparative abundance 

in the conditions, firstly using a by-eye approach, that was reinforced by a ranking of statistical 

significance using a significance analysis of microarray method, with key candidates M0872 and 

M1067 having a corresponding mass of 435.13361 [M+H]+ and 463.13996 [M+H]+ respectively.  

These identified candidates have potential to be used as biomarkers when utilising a targeted 

approach to identifying and characterising the R. equi siderophores. The metabolite M0872 is of 

particular interest as the loss of peak intensity when supplemented with ferric chloride appears to 
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correlate with the observed precipitation event, this also appears reminiscent of the heterobactins that 

were shown to have very low aqueous solubility (Carrano et al., 2001). Given that this metabolite is 

likely the chromophore, it should be possible to track the metabolite through various purification 

stages if adequately concentrated. 

To facilitate this targeted approach, the iron-limited conditions identified earlier were replicated and 

scaled up accordingly, then harvested after the development of the red pigment. Cellular material 

was separated by centrifugation as before, with the bacterial supernatant concentrated via rotary 

evaporation, that tested positive using the Chromazurol S assay, further confirming the hypothesis 

that R. equi does in fact produce siderophores, but not at sufficient levels normally under iron 

limitation to be detected in a Chromazurol S assay. 

The Chromoazurol S assay- positive concentrated bacterial supernatant was purified by passage 

through an Amberlite XAD-2 adsorption resin packed chromatography column; during the loading 

of the column the resin appeared to retain the pigment, that was transferred to the elution buffer 

correlating with a sharp observable UV peak. The fraction of interest suggested elution of target 

compounds including the apparent chromophore, which further tested positive using the 

Chromoazurol S assay. 

The LC-MS analysis of the purified fraction of interest identifies one predominant peak that had a 

column retention time of ~2.8 minutes, and a corresponding mass of 435.1346 [M+H]+  therefore it 

is likely that this metabolite previously identified as the candidate M0872 is a siderophore . Further 

exploration of this candidate by MS2 fragmentation pattern analysis, was unsuccessful but provides 

excellent scope for future characterisation studies. 

In addition to this, a candidate list for alternative siderophoric metabolites was produced based upon 

a collection of compounds that were previously been identified as upregulated under iron limited 

conditions. While the attempts to remove the candidate M0872, that previously dominated the mass 

spectra were largely successful with the addition of an ferric chloride solution to precipitate the 

metabolite, it is apparent that not all of the compound was removed, therefore it would be difficult 

at this stage to assert that the observed siderophore activity was related to these other candidates  

without further chromatographic separation.  



 

 313 

9.7 A comparative proteomic analysis of the composition of the rhodococcal 

cell wall under iron limitation  

The aim of this project was to explore the mechanisms used to facilitate iron transport across the cell 

envelope in R. equi. This was to be achieved by firstly isolating cell envelope-associated proteins 

and subsequent identification of any potential outer membrane receptors that may facilitate transport 

of iron across the mycolic acid-containing cell wall. Similarly to the other omics research projects 

listed in this thesis, this project utilised the cellular material produced from the iron limiting 

conditions outlined in the metabolomics study; the subsequent proteomic analysis of the rhodococcal 

cell wall was performed to develop the literature associated with transport mechanisms within acid-

fast bacteria especially under sub-optimal growth conditions such as nutritional stress. 

As for the other omics projects, a large proportion of this project was dedicated to experimental 

design, in this instance identification of the most appropriate fractionation methodology for isolation 

of the rhodococcal mycolate-containing cell wall region to allow for further characterisation of 

predicted mycolate-layer transport mechanisms. Traditionally, isolation of the mycolate-containing 

cell envelope region was performed using in vitro density cellular fractionation methods and 

solubilisation of hydrophobic proteins using specific non-ionic detergents such as Triton X-114. 

However, development of bioinformatics prediction tools over the last decade has facilitated a 

process of performing a consensus prediction of membrane protein topology signal peptides without 

fractionation, thereby reducing the potential for sample loss through experimental procedures. 

In this research a preliminary study was performed to identify a strategy that would provide the 

greatest scope for identification of potential iron transporters through a combined in-vitro and in 

silico comparative approach. The preliminary results indicated that while usage of in vitro 

fractionation methods may provide an enhanced view of retained hydrophobic proteins there is 

significant risk of false negative results due to transfer and recovery losses during sample processing. 

While this in vitro methodology may identify novel mycomembrane protein architecture, it is highly 

unlikely given none were identified during the preliminary stages. 

 The large-scale analysis was performed using an unfractionated protein isolation methodology on 
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the previously optimised growth conditions to promote iron limitation in combination with the in-

silico bioinformatic pipeline to predict subcellular localisation based upon transmembrane topology 

and detection of signal peptides.  

Proteomic analysis was performed using a GeLC-MS/MS approach, with fraction recombination 

prior to analysis to facilitate both technical and biological replicates. Proteome data analysis was 

implemented using MASCOT to generate un-interpreted MS/MS data; in tandem with the Progenesis 

LC-MS software to identify statistically significantly differences in protein expression between iron-

deplete and iron-replete cultures, of which 445 were identified to meet the desired threshold to be 

statistically significant and upregulated under iron limitation. After in silico processing the protein 

complexity was reduced by 86 %. Although cytoplasmic contamination was removed, there still 

remained membrane-associated components such as iron ABC transporters and while not relevant 

for identification of mycolate-cell wall associated mechanisms, their presence strengthens the 

judgement that iron limitation was achieved through the experimental parameters. 

The lack of either a rhodococcal carboxymycobactin-like or mycobactin-like siderophore infers that 

the importation methods utilised by R. equi may differ substantially to M. tuberculosis. Interestingly, 

M. tuberculosis arbitrates transfer from the iron-bound carboxymycobactin to the mycobactin using 

an iron-regulated cell wall-associated protein HupB (Yeruva et al., 2006); while a BLASTP search 

identified an R. equi homologue, this was not found to be upregulated under the given conditions, 

further suggesting that R.equi utilises an alternative approach to ferri-siderophore uptake. 

From the dataset no obvious candidates for mycolate-associated iron transport were identified, 

therefore it is likely that R. equi utilises a simple porin strategy for accumulation of ferri-siderophore 

complexes in to the pseudoperiplasmic space, from which a substrate binding lipoprotein is likely to 

transfer the siderophore complex through an ABC transporter system.  
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9.8 Method optimisation for RNA isolation for use in RNA-Seq analysis of 

Rhodococcus equi 103S global gene expression under iron starvation  

The aim of this project was to reveal the genetic response to iron starvation, the elucidation of gene 

transcription under these conditions will corroborate with other omics analysis methods in 

characterising the global iron regulatory mechanisms utilised in the veterinary pathogen 

Rhodococcus equi 103S. To facilitate this integrated omics analysis, the experimental parameters 

were designed to utilise the same cultures as used in the metabolomics study. 

Furthermore, due to funding and time limitations within this project, the experimental design was 

constructed to achieve a significant transcriptome coverage without exceedingly high amounts of 

transcript reads and the associated costs. The transcriptomic sequencing was to be performed on 

RNA harvested from:  Wildtype R. equi 103S both under iron limitation and iron sufficiency (as 

performed in the other omics projects) and also R.equi-DideR under iron sufficiency to identify any 

potential dysregulation to iron-responsive genes including siderophore biosynthesis, transport and 

iron storage genes. Furthermore, to ensure adequate coverage, and statistical robustness the 

experimental design incorporated three biological replicates and two technical replicates with 2.5 

million reads per sample. 

The experimental isolation of R. equi total RNA performed as described in the manufacturer’s 

protocol, however upon performing the quality assurance, the RNA integrity was significantly below 

the required threshold. Unfortunately, multiple attempts to improve cell lysis and prevention of RNA 

degradation were made, but the RNA integrity was still below the desired threshold.  

RNA extraction from mycolic acid-containing bacteria has been well documented over the last 25 

years, and isolation of pure, intact RNA has consistently proved challenging (Jahn et al., 2008) and 

interestingly the integrity results in this research are comparable with other Trizol isolation methods 

described in the literature (Akhtar et al., 2011; Payton and Pinter, 1999; Venkataraman et al., 2013). 

Although time limitations impacted further progress, an ongoing literature survey identified that an 

optimised method for RNA isolation of mycolic acid-containing bacteria was established by 

Venkataraman et al. (2013) utilising a modified RNeasy kit protocol that was successful under a 
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range of sub-optimal growth conditions, including pH stress, oxidative stress, medium starvation and  

antibiotic stress.  This methodology should be explored for isolation of pure, intact R. equi RNA, 

evidenced principally by the integrity of the rRNA, for transcript analysis in gene expression 

profiling using RNA-seq. 

9.9 Data integration of the multi-omics study  

Overall, the main objective for the research project was to start to map the complex iron regulatory 

network within Rhodococcus equi. Considering the availability of important analytical techniques 

such as next-generation sequencing and UPLC-MS/MS analysis, the use of an integrated multi-omics 

study appeared to be excellent choice to understand the complex biological network questions 

relating to how R. equi both regulates iron homeostasis and the methods employed to sequester iron 

in response to starvation. 

Fundamentally, three main stages were considered essential to the success of the project: Firstly, the 

genomic survey of iron homeostasis within R. equi was critical as it provided precedence for 

understanding the transcriptional control of iron-responsive genes, as well as identification of the 

biosynthetic machinery responsible for the production of the putative R. equi siderophore with 

potential candidate masses generated. Secondly, with the genomic survey in-mind, the experimental 

parameters could be established, for which the foundation of the multi-omics approach was to 

establish medium conditions that promoted a biological response to iron starvation by secretion of 

low molecular weight chelatory peptides – siderophores. Finally, the decision was made to perform 

the post-analysis data integration methodology, this facilitated individual omics experiments to be 

designed, performed and analysed independently. With the assumed complexity associated with the 

iron regulatory network, the individual omics projects would each be responsible for analysis of 

different aspects of R. equi iron homeostatic mechanisms.  These were a comparative analysis of 

secreted metabolites using metabolomics, a comparative proteomic investigation of cell-wall 

associated iron-regulatory mechanisms and identification of global gene expression under iron 

starvation using RNA-seq transcriptomics. 

The outcomes of each individual omics study portrayed varying degrees of success; however, it is 

clear that the use of a post-analysis data integration methodology was effective, with clear predictions 
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made regarding the mechanisms R. equi utilises to regulate metal homeostasis. Figure 9-1- directly 

assigns putative identities for the transcriptional regulators identified during the genomic survey of 

iron homeostasis, collaborating with the in-silico homology-based models produced for each, from 

which the putatively iron transcriptional regulators explored further. Interestingly, the gene furA was 

predicted to be an essential component in redox sensing which was confirmed by the in-frame 

deletion mutant produced, and subsequent proteomic analysis and susceptibility testing with 

hydrogen peroxide. The other significant gene of interest ideR, was predicted to regulate to iron-

responsive genes including siderophore biosynthesis, transport and iron storage genes, based upon 

the presence of a specific iron-box sequence in the operator sequence of these genes. It was expected 

that under iron starvation, the iron responsive genes would facilitate de-repression the 

aforementioned genes. The metabolomics analysis does distinguish discreet differences between the 

biological conditions, and further facilitated putative masses for the R. equi siderophores. 

Furthermore, the proteomic analysis also indicated the utilisation of an iron starvation response, 

however identification of a putative mechanism for siderophore transport across the mycolate-

containing cell wall was not successful, therefore one potential hypothesis for this may be the use of 

a channel forming porin to facilitate accumulation of siderophores at the surface of the cytoplasmic 

membrane.  

Ideally, the transcriptomics project would have further informed the regulatory network of iron 

homeostasis within R. equi by mapping the global gene expression levels, however it remains 

essential that a high degree of quality assurance is maintained for this work to achieve maximum 

impact.  On this basis, it was excluded from the multi-omics integration at this stage but will provide 

excellent grounds for future study. 
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Figure 9-1-: An R. equi iron homeostasis network map generated from the results in this thesis.  
Experimental procedures identified by red-bordered boxes; blue-bordered boxes indicate predictions. Green text indicates results with a successful experiments or 

characterised candidate. Orange text indicates further work is needed to fully characterise candidates. Red text indicates uncharacterised components or no candiadates 

available.
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9.10 Future work 

Although the work presented here contributes to the fundamental knowledge surrounding iron 

homeostasis within R. equi, there is clear grounds for exploration to develop and explore the 

hypotheses described throughout.  

 

With the success of the in-silico homology-based modelling, and the prediction of metal binding 

capacities, this project has scope for further expansion to complete in vitro heterologous expression, 

purification and metal binding capacities of the regulatory proteins. The initial work produces a 

working hypothesis that can be further explored for accurate characterisation of these proteins. 

Further to this, when successful the production of these recombinant proteins would be suitable for 

subsequent macromolecular structure determination, such as X-ray crystallography analysis, again 

this would further develop the predictions made within this thesis. 

 

As all four regulators were successfully produced, further mutant characterisation would be useful. 

Whole genome sequencing will confirm successful mutagenesis, while ensuring other off-site 

mutagenic events have not occurred to effect regulation. Priority should be given to ideR given the 

predicted iron-regulatory involvement, with furA being the least important, given the expected 

phenotype developed in collaboration with hyper expression of catalase. 

In addition, an exploration of the concept of the super-repression of iron transport components by an 

orthologous system would be an interesting focus. Repeated culture of mutants (with and without 

UV-treatment to generate random mutations) and wild type may allow for mutation and relaxation 

of this system as seen in other lab conditioned strains of other bacteria.  Candidate genes involved in 

this putative regulatory system would be revealed by polymorphisms on WGS. Omic analyses 

described hereafter would be enhanced by using this approach. 
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Further attempts at siderophore purification should be explored, perhaps via preparative HPLC using 

a range of alternative adsorption resins as described by other papers to identify the best resin to retain 

these siderophore compounds. The apparent production of a chromophore chelator should reinforce 

the results with a visual colorimetric change in the eluant. 

Downstream of the collection, the use of an Orbitrap ID-X Tribrid mass spectrometer system would 

facilitate identification of unknown metabolites, through an automated process that can select 

precursor ions for subsequent fragmentation and structural elucidation. 

 

For overall project impact transcriptomics is essential; detecting changes in gene expression levels 

will inform us of the essential components utilised in regulation of iron homeostasis within R. equi. 

Issues regarding collection of high-quality RNA has prevented this analysis from being performed 

within the timescale predicted. Therefore, identification of best practice and process optimisation 

was performed, by using the modified methodology with a RNeasy isolation kit (Qiagen) with 

subsequent analysis and confirmation of appropriate RNA integrity. If the RNA integrity at this point 

is above the required threshold then the downstream processing should be commenced facilitating 

transcriptome analysis under iron limitation. 
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