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Abstract

A systematic review was performed to evaluate the effectiveness of nutrition as a stand-

alone countermeasure to ameliorate the physiological adaptations of the musculoskeletal

and cardiopulmonary systems associated with prolonged exposure to microgravity. A

search strategy was developed to find all astronaut or human space flight bed rest simula-

tion studies that compared individual nutritional countermeasures with non-intervention con-

trol groups. This systematic review followed the guidelines of the Cochrane Handbook for

Systematic Reviews and tools created by the Aerospace Medicine Systematic Review

Group for data extraction, quality assessment of studies and effect size. To ensure ade-

quate reporting this systematic review followed the guidelines of the Preferred Reporting

Items for Systematic Review and Meta-Analyses. A structured search was performed to

screen for relevant articles. The initial search yielded 4031 studies of which 10 studies were

eligible for final inclusion. Overall, the effect of nutritional countermeasure interventions on

the investigated outcomes revealed that only one outcome was in favor of the intervention

group, whereas six outcomes were in favor of the control group, and 43 outcomes showed

no meaningful effect of nutritional countermeasure interventions at all. The main findings of

this study were: (1) the heterogeneity of reported outcomes across studies, (2) the inconsis-

tency of the methodology of the included studies (3) an absence of meaningful effects of

standalone nutritional countermeasure interventions on musculoskeletal and cardiovascular

outcomes, with a tendency towards detrimental effects on specific muscle outcomes associ-

ated with power in the lower extremities. This systematic review highlights the limited

amount of studies investigating the effect of nutrition as a standalone countermeasure on

operationally relevant outcome parameters. Therefore, based on the data available from the

included studies in this systematic review, it cannot be expected that nutrition alone will be
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effective in maintaining musculoskeletal and cardiopulmonary integrity during space flight

and bed rest.

Introduction

Prolonged exposure to microgravity (μg) leads to a range of adaptations affecting almost every

physiological system in the human body [1]. Musculoskeletal and cardiopulmonary de-condi-

tioning are of particular concern to spaceflight operations, since these systems are critical for

astronaut health and wellbeing and potentially even safety and mission success. Consequently,

space agencies employ in-flight exercise countermeasures as an integral part of long-duration

international space station (ISS) (typically 6 months) space missions [2,3].

In space, muscles atrophy and lose both power and strength [4,5], particularly in the so-

called ‘antigravity muscles’ such as the soleus [4,6,7] and the intrinsic back muscles [5,7,8]. As

both an increase in protein breakdown and a decrease in anabolism can lead to a decrease in

muscle mass [9], μg-induced loss of muscle mass is likely to be associated with space-related

changes of whole-body protein turnover. In fact, studies indicate that during short-duration

space flight whole body protein turnover increases, with a more pronounced increase in pro-

tein catabolism compared to protein synthesis leading to a net loss of protein [10–12]. In addi-

tion, nutritional deficiencies including a reduction in caloric intake compared to pre-flight,

commonly reported inflight, might attenuate maintenance of protein synthesis [13], thereby

exacerbating μg-induced muscle deconditioning [14]. This is supported by a long duration

study from the Mir space station where it was observed that protein synthesis was directly cor-

related with energy intake [15].

Bone loss during spaceflight is estimated to be approximately 1% per month, primarily

affecting the weight-bearing bones, although there appears significant inter-individual varia-

tion between crewmembers [16]. Interestingly, during space flight where the gravitational

forces acting on bones are absent, increased bone resorption is not offset by augmentation of

bone formation [9], which is either decreased or unchanged [9]. The relationship between

nutrition and bone is complex involving several nutrients including protein required for bone

synthesis [9]. However, studies investigating the effect of high protein intake on bone health

have been inconclusive [9,17] and it has been speculated that excess protein intake may aug-

ment bone loss due to sulphur-containing amino acids reacting with bicarbonate stored in

bone, thereby depleting its reservoirs [9,18].

When exposed to μg the hydrostatic gradient associated with upright posture in Earth’s

gravity is lost, and blood is redistributed towards the head and neck [19]. As a result, on return

to Earth astronauts can experience orthostatic intolerance, the incidence rate of which

increases with mission duration [20–22]. Orthostatic intolerance is of particular concern as it

constitutes a serious hazard for future planetary exploration missions where astronauts may

spend a prolonged period in μg before entering a gravitational field of a celestial body (e.g.

Mars) where they have to immediately perform mission-critical tasks without medical support

[23,24]. Interestingly, deficient energy intake has been correlated with cardiovascular decondi-

tioning and a decrease in plasma volume during both bed rest–a ground-based analogue of

space flight [25], and space flight [9] and has been shown to negatively affect orthostatic toler-

ance independent from bed rest [25]. Furthermore, poor nutrition during space flight might

also adversely affect cardiopulmonary outcomes by precipitating lean tissue loss leading to a

reduction in metabolically active tissue, thereby directly reducing (peripheral) aerobic capacity
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[26]. Moreover, insufficient protein intake might augment a decrease in muscle mass nega-

tively impacting exercise performance, and thus (indirectly) aerobic capacity [26]. However, it

has been suggested that cardiac mass and functional decrements associated with bed rest

might be ameliorated by nutritional countermeasures [26].

Despite the time, effort and resources consumed by current ISS exercise countermeasures

they are unable to entirely ameliorate the undesirable effects of μg-exposure upon the muscu-

loskeletal [27] and cardiopulmonary systems [28]. Furthermore, future space vehicles designed

for deep spaceflight will have limited habitable volume including that for exercise countermea-

sures [29]. Thus, in order to support crew health and wellbeing, safety, and to increase the like-

lihood of mission success, it is therefore critical to evaluate approaches to optimize both

current and novel countermeasures to maintain musculoskeletal and cardiopulmonary func-

tion inflight [30]. Typically crewmembers did not meet their recommended daily caloric

intake which plays a role in subsequent loss of body and muscle mass [9]. This persistent inad-

equate intake is concerning as its effects will become increasingly severe as exploration mis-

sions lengthen. However, frequently the negative effects of dietary imbalance can be reversed

by adequate nutrition. Interestingly when astronauts were able to meet their energy and vita-

min-D intake requirements in addition to performing regular exercise it was reported that

crewmembers returned to Earth with an unchanged body mass, increased lean tissue mass,

reduced fat mass and maintained bone mineral density (BMD) [31]. However, it is currently

unclear if any nutritional countermeasure alone can maintain integrity of the musculoskeletal

and cardiopulmonary systems when humans are gravitationally unloaded. Thus, the aim of

this systematic review was to evaluate the evidence relating to the effectiveness of any nutri-

tional countermeasures, as a standalone intervention, to ameliorate musculoskeletal and car-

diopulmonary deconditioning in gravitationally unloaded humans, either inflight or in long

term ground-based analogues.

Materials and methods

This systematic review is part of a series performed by the European Space Agency’s (ESA)

Space Medicine Team that seeks to evaluate the evidence relating to the effectiveness of active

(e.g. resistive exercise), passive (e.g. centrifugation), and nutritional countermeasures for use

in space flight, based on inflight data and ground-based analogues. This systematic review fol-

lowed the guidelines of the Cochrane Handbook for Systematic Reviews and tools created by

the Aerospace Medicine Systematic Review Group (AMSRG) [32,33] were used for data

extraction, quality assessment of studies, and effect size calculations. Furthermore, this system-

atic review followed the guidelines of the Preferred Reporting Items for Systematic Review and

Meta-Analyses (PRISMA) [34]. The review protocol is available as supporting information

(see S1 File).

Search strategy

An initial literature search was performed by Fiebig and co-workers [35] in November 2017

whom reported that resistive exercise may not always be sufficient in maintaining muscle

strength and power during bed rest. This work has led to the seeding of a series of systematic

reviews each with the objective of evaluating the evidence of a specific type of countermea-

sures, which in this case is nutrition on musculoskeletal and cardiopulmonary outcomes that

are operationally relevant to space missions. The search was performed using keywords,

grouped into three overarching categories ‘microgravity’, ‘countermeasures’ and ‘operationally

relevant outcome parameters’ (as defined by ESA’s Space Medicine Team) combined using

Boolean logic in accordance with an overall search strategy (Table 1).
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The following databases were screened for publications in English language: PubMed, Web

of Science, Embase, Institute of Electrical and Electronics Engineers (IEEE) database as well as

ESA’s ‘Erasmus Experiment Archive’, the National Aeronautics and Space Administration’s

Table 1. Search strategy.

Main category Specific category Keywords in Boolean search format Search

number

Search

mask

Microgravity Synonyms "space analogue" OR "ground-based analogue" OR "terrestrial

analogue" OR "space flight" OR space-flight OR spaceflight OR "Space

mission" OR "space station" OR “micro gravity” OR micro-gravity OR

microgravity OR spaceflight OR weightless� OR "orbital flight" OR

"zero gravity" OR "space shuttle"

1 Abstract/

Title

Methods & simulations "bed rest" OR bed rest OR "dry immersion" OR dry-immersion 2 Abstract/

Title

#1 AND #2 3

Population of interest Astronaut� OR astronaut [Mesh] OR cosmonaut� OR taikonaut� 4 Abstract/

Title

#1 OR #3 OR #4 5

Countermeasures Active countermeasures Countermeasure� OR exercis� OR exercise [Mesh] OR sport� OR

"physical activity" OR "physically active"

6 All Fields

Passive countermeasures Centrifug� OR suit� OR "lower body negative pressure" OR LBNP or

"fluid loading" OR garment OR stimulation OR "artificial gravity" OR

"axial loading" OR electromyostimulation OR "electrical muscle

stimulation" OR EMS OR "neuromuscular electrical stimulation" OR

NMES OR "whole body vibration" OR WBV

7 All Fields

Nutritional countermeasures Diet, food, and nutrition [Mesh] OR nutrition� OR diet� OR food�

OR supplement� OR protein� OR salt OR saline OR bi-phosphonate

OR phosphonate OR nucleotide� OR vitamin�

8 All Fields

#6 OR #7 OR #8 9

Operationally relevant

outcome parameters

Cardiopulmonary &

-vascular

Physical

performance

"endurance" OR Vo2 OR Vo2max OR Vo2peak OR "maximal oxygen

uptake" OR "peak oxygen uptake" OR "resting heart rate" OR "peak

power" OR "maximal work load" OR "orthostatic tolerance" OR

"orthostatic intolerance" OR "time until presyncope" OR "exercise

tolerance" OR "central fatigue" OR "threshold" OR "onset of blood

lactate accumulation" OR "OBLA"

10 All Fields

Musculoskeletal /

Biomechanical

Physical

performance

"muscle strength" OR "muscular strength" OR "muscle function" OR

"muscular function" OR "muscle power" OR "muscular power" OR

"muscle force" OR "muscular force" OR fatigability OR "fatigue

resistance" OR "peripheral fatigue" OR "joint moment" OR "joint

moments" OR "postural stability" OR posture OR "postural control"

OR balance OR sway OR motion OR locomotion OR gait OR walk�

OR run� OR jump� OR hop� OR "movement quality" OR "movement

pattern" OR "motion pattern" OR coordination OR "motor control"

OR "core stability" OR "core strength" OR "trunk stability" OR "trunk

strength" OR "lumbopelvic stability" OR "lumbo-pelvic stability" OR

"lumbopelvic control" OR "lumbo-pelvic control"

11 All Fields

Anthropo-

metrics

Anthropometr� OR "skeletal strength" OR "bone mineral density" OR

"bone density" OR "bone mineral content" OR flexib� OR "range of

movement" OR "range of motion"

12 All Fields

#10 OR #11 OR #12 13

#5 AND #9 AND #13 14

Apply human filter

Keywords were divided into main and specific categories for better survey. They were combined using the Boolean operators OR and AND. In order to not mistakenly

exclude relevant studies, the Boolean operator NOT was excluded. Medical Subject Headings [Mesh] as a controlled vocabulary thesaurus for indexing and cataloging

biomedical literature was applied.

https://doi.org/10.1371/journal.pone.0234412.t001
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(NASA) ‘Life Science Data Archive’ and ‘Technical Reports Server’ and the German Aerospace

Centre’s (DLR) database.

Criteria for included studies

Studies were included if the following inclusion criteria (PICOS) were met:

Population. Healthy male and female humans.

Interventions. Space flights and ground-based space flight analogues with a duration

of� 5 days with a nutritional countermeasure.

Control. Space flights and ground-based space flight analogues with a duration of� 5

days without any form of countermeasure.

Outcomes. Studies had to contain functional musculoskeletal or cardiopulmonary

outcomes.

Study designs. Randomised controlled trials (RCT) and controlled clinical trials (CT)

were included.

Data collection and analysis

The Rayyan web application was used to guarantee a blinded screening process throughout

[36]. Two independent reviewers performed the initial screening that evaluated a countermea-

sure (active, passive or nutrition) during space flight, or in a ground-based space flight ana-

logue. Then, two other independent reviewers screened the abstract and title for studies with a

nutritional countermeasure (see Fig 1 and S1 Fig). The full text version of the studies was then

obtained and screened, and studies were included if the inclusion criteria (PICOS) were met

(see Fig 1). In the case of discrepancy between the two main reviewers, a third independent

reviewer was employed to resolve any disagreements according to the inclusion criterion.

Data extraction. Data were extracted using the AMSRG data Extraction form v2 that is a

slightly modified version of that provided by The Cochrane Collaboration (www.cochrane.

org) [32]. For all studies containing data presented as means with standard deviations or stan-

dard errors, values of all relevant outcome measures for pre and post intervention were

extracted in order to calculate the effect sizes. For all studies containing relevant outcome mea-

sure data presented as binary outcomes, values for pre and post intervention were extracted

and evaluated separately.

Information was extracted to inform study quality assessment via the rating of risk of bias

(high, low or unclear) [37]. Method of random sequence generation and allocation conceal-

ment was extracted in order to evaluate selection bias [37]. Performance bias was evaluated by

information on participants and personnel blinding, with outcome blinding assessment (data

processing and analysis) used to evaluate detection bias. Incomplete outcome data, defined

attrition bias and evidence of selective reporting, was used to evaluate reporting bias.

Quality assessment of included studies. The risk of bias of included studies was assessed

by the lead author using the Cochrane Collaboration’s (www.cochrane.org) risk of bias analy-

sis tool Version 1 [38] with any uncertainties discussed with the senior author until a consen-

sus was reached. All included studies were scored with “?” representing unclear risk/no

information, “+” indicating low risk of bias and “-” representing high risk of bias.

Quality appraisal of technical principles of included studies. The quality of the bed rest

methodology of the included studies was assessed using the purpose-built AMSRG tool [33]

since the search yielded no studies employing any other ground-based analogue. The tool is

based on eight criteria detailing how similar a study is to modelling the conditions associated

with actual space flight–and thus the ‘quality’ of its ability to simulate the physiological effects

of prolonged μg-exposure. The AMSRG assessment tool ranks the eight criteria from one
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(poor) to eight (excellent) depending on how many of the following criteria are met: (1) Num-

ber of bed rest days stated; (2) 6 degrees head down tilt; (3) individualised and controlled diet;

(4) set daily routine with fixed wake/sleep time; (5) bed rest phases standardised for all partici-

pants; (6) uninterrupted bed rest except for test condition; (7) sunlight exposure prohibited;

(8) all measures taken at the same day and time.

Data analysis. The quality of the included studies did not allow for a full meta-analysis as

the data was too heterogeneous and would break with meta-analysis statistical assumptions.

However, in order to provide an overall summary of the data extracted, for all studies contain-

ing data presented as means with standard deviations or standard errors, values of all relevant

outcome measures effect sizes were calculated by the mean differences between the control

and intervention group of pre and post intervention values and bias corrected using the

Hedge’s G method [39] for small sample sizes, which is a common issue in studies of space

flight and ground-based space flight analogues. All calculated effect sizes were defined as small

(0.2), medium (0.5), large (0.8) or very large (1.3) as previously described by Rosenthal et al.

[40] and were presented in effect size plots with 95% confidence interval error bars. Outcomes

were pooled according into the physiological systems they reflect: ‘muscle’, ‘bone’ and ‘cardio-

pulmonary’. Muscle outcomes were sub-divided into those that reflect: ‘muscle force’, ‘muscle

power’, and ‘muscle volume’. All data representing a ‘positive’ effect in favour of the interven-

tion are depicted on the right, and all data representing a ‘negative’ effect in favour of the con-

trol group are presented on the left of the line of no effect (i.e. 0) in effect size plots. For ease of

interpretation, all outcomes were presented to show a ‘positive’ effect as being beneficial, there-

fore any original outcomes that have negative beneficial effects were inverted by multiplying

by -1 for presentation in the overall results (e.g. a drop of resting heart rate results in a negative

effect size but it is associated with better general physical fitness and thus is considered a bene-

ficial outcome). All outcomes adjusted by this method are marked with a ‘hash’ (#). For other-

wise qualified studies that did not strictly define a no intervention control group while

examining the effect of differential energy intake, the group consuming the lower number of

calories was characterized as the control group (vs. the interventional group consuming a

greater number of calories). Data that could not be used to calculate Hedge’s G values (e.g.

binary outcomes) were also extracted and are presented separately. For binary outcomes, fin-

ishing the test was considered a positive outcome, therefore more finishers in a results group

was interpreted as results favouring that group.

Results

The initial search leading to definition of the current systematic review performed by Fiebig

et al. [35] yielded a total of 4031 studies (Fig 1). After removing duplicates, 2695 studies were

left. After screening title and abstract of those 2695 studies, further 2333 studies were excluded,

resulting in 278 studies. The 278 studies were then, after another screening with two additional

reviewers who screened title and abstracts, divided into three subgroups: passive, active and

nutritional countermeasures. The subgroup of nutritional countermeasures for analysis in this

systematic review contained a total of 21 studies. After obtaining and reading the full-text ver-

sions of these 21 studies, seven studies were excluded because of the wrong study design, one

study was excluded due to being a duplicate and three studies were excluded because of incom-

plete presentation of data, resulting in a total of 10 studies suitable for inclusion.

Fig 1. PRISMA flow diagram. Summary of literature search and screening process. This figure was adapted and modified from Fiebig et al. [35].

CM = countermeasure.

https://doi.org/10.1371/journal.pone.0234412.g001
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Characteristics of included studies

Nine of the included studies were randomised controlled clinical trials (RCT) whilst a single

study was a non-randomized controlled clinical trial (CT) (S1 Table). All included studies

employed bed rest for durations of between 14 and 60 days as the ground-based analogue to

simulate the physiological effects of μg. No actual μg-study met the criteria to be included in

this systematic review. A total of 67 participants were included across the studies, 16 of whom

were women. The mean number of participants across all studies was 15 (SD = 3) with a mean

age of 31 (SD = 6). Six of the included studies incorporated data from the same WISE experi-

mental campaign in Toulouse, France [14,26,41–44]. Two of the ten studies presented binary

outcomes in the form of the amount of finishers and non-finishers of an orthostatic tolerance

test [25,42]. Across all the studies, 52 outcome parameters were reported consistent with our

inclusion strategy (see Table 1 and S1 Table). All studies had a separate control group that did

not receive any countermeasure, except for the single CT study that used the same population

for intervention and control separated by at least 5 months [25]. Six of the included studies

reported muscle, two bone [41,45] and four cardiopulmonary outcomes. Each specific out-

come was only reported once, with the exception of number of ‘finishers’ after an orthostatic

tolerance test that was reported by two independent studies employing different methods

[25,42].

A total of five different nutritional countermeasures were investigated within the 10 studies.

The details of the included nutrition interventions are presented in Table 2.

Methodological quality of included studies

The overall assessment of risk of bias of the included studies is summarized in Table 3. For the

nine RCTs, all domains of bias (selection, performance, detection attrition and reporting bias)

included by the Cochrane Risk of Bias Tool were relevant. For the one CT [46], only two

domains could be evaluated including attrition bias from incomplete outcome data and

reporting bias from selective reporting. One of the nine RCTs had a high risk of selection bias

[14], whereas the remaining eight failed to provide sufficient information to be evaluated. All

nine RCTs failed to provide sufficient details to evaluate the methods of random sequence gen-

eration, allocation concealment, blinding of participants and personnel and blinding of

Table 2. Nutritional intake.

Author + year Control group Intervention group

Arbeille et al. 2012 Beller et al. 2011 Lee et al.

2014 Scheider et al. 2007 S. Trappe et al. 2008

T.A Trappe et al. 2007

1.0 g protein�kg-1�day-1 Leucine enriched protein diet (LPD): 1.45 g protein�kg-1�day-1 of

dietary protein plus 3.6 g/day of free leucine, 1.8 g/day of free

isoleucine, and 1.8 g/day of free valine

Bosutti et al. 2016 1.2 g protein�kg-1�day-1 Protein plus potassium (KHCO3): Control diet plus 0.6 g whey

protein�kg−1�day−1 and 90 mmol KHCO3/day iso-calorically replacing

fat and carbohydrate

Florian et al. 2015 -25% of required daily energy intake (9.0±1.1

MJ/day)

Normal energy intake: Required daily energy intake (9.0±1.1 MJ/day)

Zwart et al. 2005 Required daily energy intake with protein

and carbohydrate accounting for 14% and

59%, respectively.

Amino acids plus carbohydrates: Control diet plus 16.5 g of essential

amino acids and 30 grams of sucrose three times a day

Rejc et al 2015 1.2 times resting energy expenditure with

60% of energy as carbohydrate, 25% as fat

and 15% as protein.

High energy intake: Diet containing 1.4 times resting energy

expenditure with 60% of energy as carbohydrate, 25% as fat and 15%

as protein.

Daily dietary and supplemental nutrient intake for the control and intervention groups.

https://doi.org/10.1371/journal.pone.0234412.t002
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outcome assessment. Four of the 10 included studies failed to justify or did not address incom-

plete outcome data, and four studies failed to report data for all expected outcomes.

Bed rest methodological quality

The overall assessment of bed rest methodological quality is summarized in Table 4. All

included studies employed 6 degree head down tilt bed rest and described its duration, except

for a single study that used an angle of 0 degrees in the second phase of the study [46], and one

that did not describe the angle of the bed [18]. All studies failed to declare whether exposure to

sunlight was prohibited or not. Three of the included studies met all the criteria [14,26,41]

described in the AMSRG Bed Rest Assessment Tool v1 [33], except for the prohibition of expo-

sure to sunlight, resulting in a score of seven. One study failed to address or apply all criteria

except for bed rest duration, resulting in a score of one [18]. The remaining six studies ranged

between three and six.

Main outcomes parameters

The effect sizes for the physiological systems ‘muscle’, ‘bone’ and ‘cardiopulmonary’ between

the intervention and control groups are shown in Figs 2–4, respectively. Overall, the effect of

nutritional countermeasure interventions on the investigated outcomes revealed that peak

force/cross sectional area (Po/CSA) of myosin heavy chain (MHC) I muscle fibres was ‘posi-

tive’ in favour of the intervention group, supine squat work, calf press work, peak power of

MHC IIa fibers, supine squat concentric peak power, peak force of MHC IIa fibers and HR

standing were ‘negative’ in favour of the control group (see PICOS) and 43 outcomes did not

show any effect favouring the control or intervention group.

Effects of nutritional interventions on muscle outcomes. LPD and protein plus KHCO3

had no clear effect on 26 of the 32 reported muscle outcomes. Supine squat work, supine squat

concentric peak power and peak force of MHC IIa muscle fibres showed a large negative effect

of LPD. Calf press work and peak power of MHC IIa muscle fibres showed a very large

Table 3. Quality assessment of included studies.

Author Random Sequence

generation

Allocation

concealment

Blinding of participants

and personnel

Blinding of outcome

assessment

Incomplete

outcome data

Selective outcome

reporting

Arbeille et al.

2012

? ? ? ? + -

Beller et al. 2011 ? ? ? ? + +

Bosutti et al.

2016

? ? ? ? ? +

Florian et al.

2015

? ? ? ? - +

Lee et al. 2014 - ? ? ? - +

Rejc et al. 2015 NA NA NA NA + +

Schneider et al.

2009

? ? ? ? + -

S. Trappe et al.

2008

? ? ? ? ? -

T.A Trappe et al.

2007

? ? ? ? + +

Zwart et al. 2005 ? ? ? ? + -

Assessment of risk of bias in the 10 studies included. ‘NA’ indicates that assessment was not applicable due to study type. ‘+’ indicates low risk, ‘-‘ indicates high risk and

‘?’ indicates unclear risk/no information.

https://doi.org/10.1371/journal.pone.0234412.t003
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negative effect of LPD. Po/CSA of MHC I muscle fibres demonstrated a large positive effect of

LPD (Fig 2).

Muscle volume. The total of three studies reporting muscle volume found no effect of LPD

in the intervention groups [41,43,44].

Muscle power. Trappe et al. [44] reported that LPD had a large positive effect on Po/CSA of

MHC I muscle fibres, and very large negative effect on peak power of MHC IIa muscle fibres.

In contrast, they observed no effect of LPD supplementation on Po/CSA of MHC IIa muscle

fibres, normalized power (norm. power) of MHC I and MHC IIa muscle fibres and peak

power of MHC I fibres. Trappe et al. [43] had previously reported a large negative effect of

LPD on supine squat work and concentric peak power, a very large negative effect on calf

press work, but no effect on calf press concentric peak power. Whereas, Rejc et al. [46] found

no effect of a hypercaloric diet on maximal explosive power.

Muscle force. The four studies investigating muscle force showed no effect of LPD and pro-

tein plus KHCO3 on 14 out of 15 outcomes [14,43,44,47]. However, Trappe et al. [44] observed

a large negative effect of LPD on peak force of MHC IIa muscle fibres.

Effects of nutritional interventions on bone outcomes. Beller et al. [41] found no effect

of LPD on bone mineral density (BMD). Likewise, Zwart et al. [18] found no effect of amino

acids plus carbohydrates supplementation on bone mineral content (BMC) (Fig 3)

Effects of nutritional interventions on cardiopulmonary outcomes. There were no

effects of the intervention on VO2max [L/min/kg] and VO2max [L/min] where the effect of

protein plus KHCO3 was investigated [47]. However, Schneider et al. [26] found that LPD had

a large negative effect on HR when standing, but no effect was observed when supine (Fig 4)

Table 4. Bed rest methodological quality.

Author Number of

BR days

stated

6˚ head

down

tilt

Individualised &

controlled diet

Set daily

routine with

fixed wake/

sleep time

BR phases

standardised for

all participants

Uninterrupted BR

except for test

condition

Sunlight

exposure

prohibited

All measurements

taken same day and

time

Total

score

Arbeille

et al. 2012

Y Y N ? ? ? ? ? 2

Beller et al.

2011

Y Y Y Y Y Y ? Y 7

Bosutti

et al. 2016

Y Y Y ? Y Y ? Y 6

Florian

et al. 2015

Y Y Y ? Y Y ? Y 6

Lee et al

2014

Y Y Y Y Y Y ? Y 7

Rejc et al.

2015

Y Y/N Y ? Y ? ? N 4

Schneider

et al. 2009

Y Y Y Y Y Y ? Y 7

S. Trappe

et al. 2008

Y Y Y ? ? ? ? ? 3

T.A Trappe

et al. 2007

Y Y Y ? N Y ? Y 5

Zwart et al.

2005

Y ? ? ? ? N ? N 1

Quality appraised of bed rest method to simulate microgravity to an “ideal design” in the 10 included studies. ‘Y’ indicates that the criteria was met, ‘N‘ indicates that the

criteria was not met and ‘?’ indicates unclear or no information.

https://doi.org/10.1371/journal.pone.0234412.t004
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Fig 2. Effect size plot of operationally relevant muscle outcomes. Effect size plot of operationally relevant muscle outcomes categorized into ‘muscle

volume’, ‘muscle power’ and ‘muscle force’. Effect sizes were calculated by the mean differences between the control and intervention group of pre and

post bed rest values with Hedges’ G and bias corrected for sample size with a confidence interval of 95%. All calculated effect sizes were defined as small
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Effects of nutritional interventions on orthostatic tolerance. Two of the included stud-

ies investigated orthostatic tolerance after bed rest with Florian et al. [25] employing a lower

body negative pressure (LBNP) test applying a pressure of -15, -30 and -45 mmHg for 7 min-

utes each, or until presyncope, and Arbeille et al. [42] inducing a 80 degree tilt for 10 minutes

that was then supplemented by LBNP exposure that increased by -10 mmHg every 3 minutes

until -50 mmHg (Table 5). Both studies had one more finisher in the intervention group, i.e.

five in the hypercaloric [25], and six in the LPD intervention groups [42] out of eight partici-

pants, compared to the control groups that had four and five finishers, respectively.

Discussion

The main findings of this study were: (1) substantial heterogeneity of reported outcomes

across studies, (2) the inconsistent quality of methods used to minimize risk of bias and

(0.2), medium (0.5), large (0.8) or very large (1.3). The right direction on the x-axis indicates a positive effect of the intervention and the left direction

on the x-axis indicates a negative effect of the intervention. CSA = cross sectional area; LPD = leucine protein diet; max = maximum; MHC = myosin

heavy chain; Po = peak force.

https://doi.org/10.1371/journal.pone.0234412.g002

Fig 3. Effect size plot of operationally relevant bone outcomes. Effect sizes were calculated by the mean differences between the control and

intervention group of pre and post bed rest values with Hedges’ G and bias corrected for sample size with a confidence interval of 95%. All calculated

effect sizes were defined as small (0.2), medium (0.5), large (0.8) or very large (1.3) The right direction on the x-axis indicates a positive effect of the

intervention and the left direction on the x-axis indicates a negative effect of the intervention. BMC = bone mineral content; BMD = bone mineral

density; LPD = leucine protein diet.

https://doi.org/10.1371/journal.pone.0234412.g003
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methodology of bed rest in the included studies, and (3) an absence of evidence for meaningful

effects in favour of standalone nutritional countermeasure interventions on musculoskeletal

and cardiopulmonary outcomes during 14 to 60 days of bed-rest ground-based analogues,

with a tendency towards detrimental effects on specific muscle outcomes associated with

power in the lower extremities.

The present data demonstrate an absence of meaningful effects when nutritional counter-

measures were used as a standalone intervention during bed rest to ameliorate the adverse

effects of μg on the musculoskeletal and cardiopulmonary systems. Moreover, this systematic

review was unable to find eligible in flight-data from astronauts or any other ground-based

space flight analogues than bed rest for inclusion that met the pre-specified inclusion criteria

(PICOS). As a result, only bed rest studies were included. Six of the 10 included studies

reported data from the WISE 2005 campaign investigating the effects of 60 days of 6 degrees

head down bed rest in 24 women of which only the 16 women assigned to the nutrition and

control groups were evaluated in this systematic review. The WISE 2005 campaign was

Table 5. Binary outcome data.

Author + year BR

days

Population Study

Design

Intervention Outcome

measures

Applied test/ Control group Intervention

group

Arbeille et al.

2012

60 16 RCT LPD Number of

finishers

Tilt + LBNP test after bed

rest

5 out of 8

finishers

6 out of 8 finishers

Florian et al.

2015

14 9 RCT Normal energy

intake

Number of

finishers

LBNP test after bed rest 4 out of 8

finishers

5 out of 8 finishers

Binary outcome data for orthostatic tolerance that could not be included in the effect size plots presenting the number of finishers of tilt + lower body negative pressure

test (LBNP) or standalone LBNP test. BR = bed rest; RCT = randomized controlled trial.

https://doi.org/10.1371/journal.pone.0234412.t005

Fig 4. Effect size plot of operationally relevant cardiopulmonary outcomes. Effect sizes were calculated by the mean differences between the control

and intervention group of pre and post bed rest values with Hedges’ G and bias corrected for sample size with a confidence interval of 95%. All

calculated effect sizes were defined as small (0.2), medium (0.5), large (0.8) or very large (1.3). The right direction on the x-axis indicates a positive effect

of the intervention and the left direction on the x-axis indicates a negative effect of the intervention. HR = heart rate; LPD = leucine protein diet;

VO2max = volume oxygen maximum.

https://doi.org/10.1371/journal.pone.0234412.g004
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investigating how the physiology of women might adapt to space flight and to test the ability of

nutrition as a standalone countermeasure and exercise against the expected physiological

adaptations associated with bed rest. The remaining four studies analysed in this systematic

review were highly heterogeneous in terms of sample sizes, gender composition, the nature of

the nutritional countermeasures tested, and the duration of bed rest. The investigated out-

comes across all included studies (including the WISE 2005 studies) were highly heteroge-

neous with no specific outcomes tested more than once, with the exception of orthostatic

tolerance that was investigated by two independent studies using slightly different methods

[25,42].

Quality of evidence and overall completeness

The present systematic review sought to investigate physiological outcomes in the domains of

musculoskeletal and cardiopulmonary systems with a demonstrable space flight operational

relevance (as defined by operational experts of ESA’s Space Medicine Team). However, only a

small proportion of the pre-defined operationally relevant outcomes (See Table 1 and S1

Table) were presented in the included studies. Moreover, the reporting of outcomes of the

included studies was rather poor. Every included study reported a unique set of physiological

outcomes. The absence of a standard data set across studies prevented data pooling and meta-

analysis, therefore current findings and operational space medicine recommendations are

based on single studies that could be flawed or biased, rather than a number of repeated and

standardised studies. The overall statistical power of the findings is, therefore, limited and

again could be improved by conducting repeated homogenous studies that would increase the

overall total sample size when pooled.

Bed rest methodology. Bed rest studies seek to simulate μg and its impact on human

physiology as close as possible to the actual μg environment in space and it has been concluded

that head down bed rest is a valid simulation model for most physiological effects of spaceflight

[48]. Bed rest is an established terrestrial analogue for axial unloading. Compared to actual

space flight, bed rest studies have the advantage that they have fewer confounding factors, and

bed rest provides the most common method to investigate the effectiveness of nutritional

spaceflight countermeasures [48]. The bed rest methodology of included studies was good

with most studies matching the “ideal design” of a bed rest study [49]. However, all studies

failed to address whether sunlight exposure was prohibited which is problematic as sunlight

exposure stimulates vitamin D synthesis that might itself act as a countermeasure [50], and

potentially affect the physiological systems investigated in this systematic review. However,

vitamin D supplementation has been tested in actual space flight and it was found that it was

inefficient to ameliorate bone loss in space [9]. In addition, seven out of 10 studies did not

report set daily routine with fixed wake/sleep time for all participant which might impact mus-

culoskeletal and cardiovascular outcomes as sleep affects muscle strength [51] and athletic per-

formance [52]. Overall most aspects of the assumed “ideal design” of bed rest such as stating

the number of days for bed rest and the use of 6 degree head down tilt were met and the data

can be considered transferable to actual astronauts in the μg environment of space. However,

despite the high methodological quality of the included studies, bed rest is not a perfect

method to simulate the actual space flight environment as it does not eliminate the influence

of gravity and fails to remove the loading G-vector from the chest to the back [48]. Therefore,

it is important to exercise caution when interpreting results exclusively based on bed rest stud-

ies and applying them to actual space flight situations, as it has been suggested that bed rest

might be a less reliable analogue for important physiological parameters such as spinal
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dysfunction and fluids shifts which might affect the cardiopulmonary outcomes such as ortho-

static tolerance and HR investigated in the current systematic review [48].

Risk of bias. Overall, the risk of bias of the included studies was high, with seven of the

studies reporting incomplete outcome data and/or reporting selective outcomes. Eight of the

nine included RCTs failed to sufficiently describe the randomization of the participants

[25,26,41–45,47] and Lee et al. [14] described a non-random component in the sequence gen-

eration. In addition, all included studies failed to sufficiently describe methods for allocation

concealment, blinding of participants and personnel, and blinding of outcome assessment.

The overall high risk of bias of the included studies highlights the need for a better standardiza-

tion of bed rest studies investigating nutritional countermeasures. As a result of the high risk

of bias, as well as the heterogeneous study designs and outcomes of the included studies, find-

ings of the present systematic review have to be interpreted with caution. The overall quality of

evidence of the included studies could be improved by providing more methodological infor-

mation addressing the Cochrane criteria for risk of bias [53].

For effects of nutritional interventions on muscle outcomes

In the current systematic review, LPD was the only nutritional countermeasure intervention

leading to meaningful effects on any of the investigated outcomes across the investigated phys-

iological systems. The effects of LPD on muscle parameters were limited to only one outcome

(Po/CSA MHC) showing a significant positive effect [54]. In contrast, supine squat work,

supine squat concentric peak power, peak power MHC IIa, peak force MHC IIa and calf press

work showed a negative effect of LPD. The remaining 26 outcomes showed no effect of any of

investigated nutritional countermeasure interventions at all. Interestingly, five of the six out-

comes demonstrating an effect of LPD were in the group of 11 investigated muscle power out-

comes, two of which showed a large negative effect and two which showed a very large

negative effect, whereas only one outcome showed a large positive effect of LPD. This suggests

that LPD had a negative effect on four out of the 11 specific muscle outcomes associated with

power investigated in this systematic review. However, all these data are derived from the

same participants in the 2005 WISE campaign [43,44] and, therefore, these results must be

interpreted cautiously. Overall, protein and amino acid supplementation are the most exten-

sively investigated nutritional countermeasure (LPD being evaluated in 45 of the 52 outcomes

in this study) against muscular deconditioning in unloaded humans [9,55]. The efficacy of pro-

tein and amino acid supplementation to mitigate the physiological effects on muscle integrity

and function caused by μg-exposure are inconclusive, with studies showing diverging results

with no clear effects [43,44,55]. Furthermore, some studies suggested that protein supplemen-

tation has no additional protective effect upon muscle mass and function when energy and

protein consumption are adequate [56,57]. The findings of the current systematic review go

beyond this, suggesting that leucine might have a negative effect on power and force muscle

outcomes. In fact, a recent critical review reinforced this, as the authors concluded that leucine

as a standalone countermeasure intervention is ineffective against muscle loss [58]. Interest-

ingly, however, a novel amino acid composition has shown the ability to preserve muscle mass

during muscle disuse-induced atrophy by unilateral knee immobilization in young men (43)

but has yet to be tested in actual space flight or space flight analogues. The current systematic

review does not, however, provide any support for amino acids (LPD) having a positive effect

on muscle health during unloading. In conclusion, this systematic review does not support a

beneficial effect of the tested standalone nutritional interventions to protect muscles from

deconditioning in simulated μg, in fact there is even a tendency towards detrimental effects on

specific muscle outcomes associated with power in the lower extremities.
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Effects of nutritional interventions on bone outcomes

None of the 14 investigated outcomes showed an effect of standalone nutritional countermea-

sures. However, the relatively weak effect of bed rest that was observed in the two investigated

studies on BMD and BMC [18,41] limits the sensitivity to any potential amelioration of nutri-

tional countermeasure interventions [18,41]. Hence, no conclusions of the effect of LPD or

amino acids plus carbohydrates on bone can be drawn from the included studies. In the scien-

tific literature the effect of nutritional countermeasures on bone have revealed diverging

results depending on the population and concurrent dietary intake of other nutrients [9,17].

Negative effects of protein supplementation observed on bone have been suggested to result

from sulphur-containing amino acids increasing bone resorption and/or induction of meta-

bolic acidosis depleting skeletal bicarbonate stores, and thus bone mass [9]. Therefore, it has

been proposed that high protein diets containing sulphuric acids should be provided with base

precursors to counteract the adverse effects [18]. However, the current systematic review did

not report any data supporting any protective effect of standalone nutritional interventions on

bone properties in simulated μg.

Effects of nutritional interventions on cardiopulmonary outcomes

In the study by Schneider et al. [26], LPD had a large negative effect on HR when standing, but

no effect when measured in supine position. Bosutti et al. [47] found no effect of the interven-

tion when investigating protein plus KHCO3 on VO2max [L/min/kg] and VO2max [L/min]. It

has been proposed that protein might be able to mitigate the decline in VO2peak observed

after space flight by mitigating the concurrent cardiac muscle atrophy observed after space-

flight and bed rest [26,59]. However, this finding is not supported in the results of this system-

atic review. As such, the available data do not support any protective effect of standalone nutri-

tional interventions on cardiovascular properties in simulated μg.

Overall, this systematic review found little evidence supporting the effect of any standalone

nutritional countermeasures to mitigate physiological adaptations on operationally relevant

musculoskeletal and cardiopulmonary parameters during exposure to μg.

Conclusions

The main findings of this study were: (1) the heterogeneity of reported outcomes across stud-

ies, (2) the inconsistency of the methodology of the included studies, and (3) an absence of

meaningful effects of standalone nutritional countermeasure interventions on musculoskeletal

and cardiovascular outcomes, with a tendency towards detrimental effects on specific muscle

outcomes associated with power in the lower extremities. This, however, does not mean that

nutritional countermeasures may have no effect on operationally relevant outcomes at all as

nutritional countermeasures may affect the musculoskeletal and cardiopulmonary systems dif-

ferently when combined with other countermeasures such as resistance exercise. This system-

atic review, rather, highlights the paucity of data investigating the effect of nutrition as a

standalone countermeasure on operationally relevant outcome parameters of the musculoskel-

etal and cardiopulmonary systems. Based on the evidence of the included studies, it cannot be

expected that nutrition alone will be effective in maintaining musculoskeletal and cardiopul-

monary integrity in response to gravitational unloading.
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