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Pe3JOMe: 06cb>K.D.a ce cp)'H.LJ.aMeHTaJIHaTa TeopeMa Ha KoywbH H lllneKbp (1967) 

B KBaHTOBaTa MeXaHHKa BbB cpHnOCOcpCKH KOHTeKCT. l13XO)J,Ha TOYKa Ja OTKpORBaHe Ha 

HeHHH51 CMHCbn e aH<UlOrHYHaTa npe.D.XO)J,Ha TeOpeMa Ha cpOH Hoi1MaH (1932) Ja OTCbC­

TBHe Ha CKpHTH napaMeTPH B KBaHTOBaTa MeXaHHKa. JJ:oKaTO IIOCne)J,HaTa 06Bbp3Ba OT­

CbCTBI1eTO Ha TaKHBa C HaJ1HYI1eTO Ha HeKOMyrHpall\H OIIepaTOpH 11 CbC CbOTBeTHHTe 

HM CIIperHaTH cpH3HYeCKJ1 BenHYI1HH, TO )J,BaMaTa aBTOpH IIOKaJBaT, ye He06XO)J,I1MO 11 

)J,OCTaTbYHO ycnOBHe 3a TOBa e CaMaTa .LJ.YaJJHOCT Ha BbnHa H YaCTHU,a B KBaHTOBaTa Me­

xaHI1Ka. 0611Yai1Ho e paJrne>K.D.aHeTo Ha TeopeMaTa KaTo o6o6ll\eHHe Ha TaJH Ha .Den 

( 1964 ). IJo TaKbB HaYHH KBaHTOBHTe KOpenaU,HH, KOHTO cne)J,BaT OT TeOpeMaTa Ha oen, 

MOraT )J,a Ce H3Be)J,aT OT .D.YaJJHOCTTa Ha BbnHa 11 YaCTHU,a. 06Cb)I()J,a Ce Henocpe.D.CTBeHO­

TO CJle)J,CTBHe OT TeopeMaTa B KOHTeKCTa Ha KBaHTOBaTa HHcpOpMali,H51 KaTO HeBb3MO>KHO­

CTTa KJ06HT )J,a Ce npe)J.CTaBI1 eKBHBaJleHTHO KaTO KpaHHO MHO>KeCTBO OT 611TOBe H OT­

TYK- 3all\O KBaHTOBH51T KOMIIIOTbp e HenOpHHl'OBa Ma!llHHa. JJ:pyra J1HHH51 Ha Bb3MO>K­

Ha HHTepiipeTaU,H51 Ha TeOpeMaTa e KaTO 0606ll\eHHe Ha Ai1Hlll,aHHOBH51 06lll IIp11HllHII 

Ha OTHOCHTeJ1HOCTTa(1916-J918): OT )J.HcpeOMOpcpH3MHTe, 3a KOI1TO TOH e BaJlH)J,eH,KbM 

)J,HCKpeTHH MOpcp113MH, TbJ1KyBaHI1 KaTO KBaHTOBH )J.BH>KeHH51, np11 K011TO CKOpOCTTa He 

MO>Ke )J,a Ce )J,ecpHHHpa KaTO e)J,H03HaYHa Kpai1Ha BeJ1HYHHa.IJo T03H HaYHH KBaHTOBaTa 

MeXaHHKa MO>Ke )J,a ce TbnKyBa KaTO 0606ll\eHHe Ha o6maTa TeOpH51 Ha OTHOCI1TeJ1HOCT­

Ta Ja .D.HCKpeTHH MopcpH3MH, T.e. Ja KBaHTOBH .D.BH)f(eHH51. OT IIO.D.06Ha no3HU.HR MO>Ke 

)J,a Ce npe)J,J10)f(J1 HeCTaH)J.apTHO TbJ1KysaHHe Ja CbOTHO!lleHHeTO Ha 06ll\aTa H CIIeU,HaJl­

HaTa TeOpH51 Ha OTHOCHTeJ1HOCTTa, IIpH KOeTO IIbpBaTa e HHTepnpeTali,H51 Ha 0606ll\eHJ-t51 

MaTeMaTHYeCKH cpopMaJ1H3bM Ha BTOpaTa 3a CKOpOCTI1, Ha)J,BI1WaBall\H TaJH Ha CBeTJ1l1-

HaTa BbB BaKyyM.TOBa Hanara OCMHCJ151He Ha BepORTHOCTTa KaTO cpH3HYeCKa BeJ111YHHa 

B KOHTeKcTa Ha cKopocrra. IIpocneMBa ce HaYI1HbT, no Koi1To KoyrnbH H lllneKbp HH­

TepnpeT11paT HeCbH3MepHMOCTTa Ha cp11311YeCK11 BeJ1H'li1HI1 B KBaHTOBaTa MeXaHHKa Ma­

TeMaTHYeCKH, KaTO OTCbCTBI1e Ha 06ll\a M51pKa, KaKTO 11 npeXO)J,HTe Me>K.D.Y XHJ16epTOBO 

H cpaJoso npocTPaHCTBO, JanemanH BbB cp)'H.D.aMeHTaJJHHTe pa6oTI1 Ha Bai1n (1927), 

B11mep (1932) H MoiDI (1947), spb3KaTa Me>K.D.Y o6o6meHH51 Ha IIOH51THeTo Ja sepoRT­

HOCT 11 OTCbCTBI1eTO Ha CKp11TI1 IIpOMeHJ1HBI1. CneU,HaJlHO BHHMaHHe e 06bpHaTO Ha 

np11Mepa B §6 Ha CTaTH51Ta OT )J,BaMaTa aBTOp11 3a pa3J1HKaTa Me)I()J.y TeopeMaTa Ha cpOH 

HOHMaH J1 TRXHaTa C06CTBeHa, KaKTO H Ha CJle)J,CTBHeTO Ja ,KJ1aCI1'leCKaTa TaBTOJ101H51, 

K051TO e HeBRpHa, aKO ce 3aMeCTH C TBbp)J.eHH51 Ja CbH3MepHMH KBaHTOBO-MeXaHHYHH 

senH'lHHH". OrryK ce npe.D.nara noMTHe Ja nori1YeCKH CKp11TI1 npoMeHJ1HBI1. 3ac51ra ce 

BbiipOCbT 3a npe.D.CTaBHMOCTTa Ha IIp11YI1HOCTTa 'lpe3 CJlyYaHHOCTTa. 
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I. The Kochen-Specker Theorem and Its Context: 
At first glance, the work ofKochen and Specker reiterates well-known results: 

The main aim of this paper is to give proof of the nonexistence of hidden vari­
ables. This requires that we give at least a precise necessary condition for their ex­
istence (Kochen, Specker 1967: 59). 
In fact, their work was revolutionary, fundamentally new in regard to the proof and 

the foundation of the claim given initially by von Neumann. Before it, the non-existence 
of the hidden parameters in quantum mechanics had been attributed to non-commuting 
operators and observables (e.g. in Dmitriev,2005:435, who summarizes the premises of 
von Neumann's theorem). Kochen and Specker demonstrated the impossibility of hid-
den parameters even with regard to commuting operators in quantum mechanics. Re-
spectively, in the case of statements about commuting, and therefore commensurable, 
quantum-mechanical observables, classical logic is not always applicable, because in 
quantum mechanics its tautologies might prove refutable and even identically false. 

Furthermore, after a more detailed look at their proof, we underline the fact that, 
according to their interpretation, the absence of hidden parameters is due to the neces-
sity of common considering discrete and continual morphisms, i.e. to wave-particle 
duality in the last analysis. 

Thereupon, they tacitly understand the hidden parameters as local ones, since the 
Lorentz in variance still remains in force, restricting the generalization of the continuous 
functions as Borel functions, and this enables the precise translation of the commen-
surability of quantum-mechanical observables into mathematical language as a common 
measure in the rigorous mathematical meaning of the concept 'measure' . Thus non-
local hidden parameters - which are left outside the range of Kochen and Specker's 
article - are completely and implicitly ignored, on the grounds that their Lorentz non-
invariance implies their mathematical and physical incommensurability with the quan-
tities to whose functions they should serve as arguments. 

On the other hand, Dirac delta functions or Schwartz distributions (generalized 
functions), which have long been involved in the apparatus of quantum mechanics, do 
not require such mathematical commensurability of the areas of the argument and the 
values of the generalized function. At times the local (Lorentz invariant) hidden pa-
rameters are unduly confused with hidden parameters in general (including the violation 
of Bell's inequalities opposite to Kochen and Specker's results), but this confusion does 
not evolve either explicitly or implicitly from their article. 

Kochen and Specker's text - both rigorous and precise, heuristic, and containing 
radically new ideas and approach, not only gives rise to a great number of subsequent 
studies, but has still not exhausted its intrinsic potential. In the beginning of their article 
the authors present their conception concisely; it can be summed up as follows: if we 
look at the previous attempts to introduce hidden variables (e.g. the Bohm theory, 1952, 
or the description of the general model made by von Neumann - see Penchev 2009, 
ch.4), the paradigm of classical statistic mechanics appears: 
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The proposals in the literature for a classical reinterpretation usually 
introduce a phase space of hidden pure states in a manner reminiscent of 
statistical mechanics. The attempt is then shown to succeed in the sense that the 
quantum mechanical average of an observable is equal to the phase space 
average (Kochen, Specker 1967: 59). 

Yon Neumann used to underline quite explicitly that the halfofthe 2k variables of 
the configuration space of k micro-objects are ,superfluous". redundant and simultane-
ously fully adequate to describe again the same micro-system if the other half of the 
same variables, k in number, used in the first description are now left aside as redun-
dant. The two descriptions are incompatible, complementary, or dual in the intention of 
Bohr, but they both give the same probabilistic description of the micro-system, which, 
as Schrodinger (1935: 827) highlighted, is all that can be possibly known of it. 

Hence the phase space must be modified, in order to be applicable in quantum me-
chanics: one modification was made by Wigner (1932) and Moyal (1949) on the base of 
the preceding fundamental work of Weyl (1927): e.g. the basic cell in the classical 
phase space is the product of quantities - position and momentum - which are non-
commuting in quantum mechanics; therefore each cell is duplicated in order in which 
the quantities are multiplied. As this is independently valid for each of the cells in the 
phase space, the variants of the phase space that have to be referred to the same quan-
tum system are found to be 2k as a number instead of the only single one in classical 
consideration. 

Since the observables in the two sets are conjugated, each with the one to which it 
is relevant, and their operators do not commute (e.g. position and momentum for every 
particular micro-object according to the uncertainty relation), there may be propounded 
the hypothesis by analogy, unlawful as a strict logical inference, that the non-
commutability of the operators (or the observables in quantum as contrasted to classical 
mechanics) is the premise, the precondition for the absence of hidden parameters. 
Hence it becomes obvious that, if hidden parameters exist, the physical quantities would 
commute with each other in the same way as in classical mechanics. As the non-
commutability does not allow a physically relevant interpretation of the product and 
even the sum of two such non-commuting quantities (demonstrated in the Hermann 
( 1935) - Bell (1966) argument), ,the back door" of our ignorance, behind which the 
cherished ,true" hidden variables could be found eventually, remains. Notice that we 
speak of another (second!) heuristic hypothesis by analogy. 

Kochen and Specker showed categorically and unambiguously (i.e. by a counter-
example) that the non-commutability of the observable variables is not the premise for 
the absence of hidden parameters: Commutability is not an indispensable condition for 
hidden variables, and thus they clear their way for formulating a logically strict indis-
pensable condition, instead of the ,heuristic", and in fact wrong, hypothesis based on a 
misleading analogy to classical statistic mechanics. 
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Their interpretation of the commensurability of physical quantities in quantum me-
chanics by the mathematical concept of ,commensurability" (and thereby of , measure") 
is a decisive step. The measure of a function does not require the latter to be continuous, 
but only almost continuous, i.e. the measure of the set of points where it is discontinu-
ous must be zero. Two quantities of a common measure are commensurable and com-
mutable. 

The algebraic structure to be preserved is formalized .. . in the concept of a 
partial algebra. The set of quantum mechanical observables viewed as operators on 
Hilbert space form a partial algebra if we restrict the operations of sum and 
product to be defined only when the operators commute (Kochen, Specker 1967: 
59-60). 
Nevertheless, although commensurable and commutable, they do not allow hidden 

parameters, as Kochen and Specker show, since the indispensable condition for their 
presence is not fulfilled: the embeddability of ,partial algebra" (according to the con-
cept of the two authors, by which they formalise commensurable quantities) of quan-
tum-mechanical quantities in commutative algebra. Respectively the statements on such 
quantities - so-called partial Boolean algebra- is not embeddable in Boolean algebra; 
in other words, to put it more contemporarily, one qubit is not embeddable in one bit, a 
quantum computer is not a Turing machine. 

A necessary condition then for the existence of hidden variables is that this 
partial algebra be embeddable in a commutative algebra (such as the algebra of all 
real-valuedfunctions on a phase space) (Kochen, Specker, 1967: 60). 
Then 
it is shown that there exists a finite partial algebra of quantum mechanical 

observables for which no such embedding exists. The physical description of this result 
may be understood in an intuitive fashion quite independently of the formal machinery 
introduced (Kochen, Specker 1967: 60). 

So it comes natural to ask how one can explain the different behaviour of physical 
quantities in classical and in quantum mechanics - the determinism of the former and 
the indeterminism of the latter - if the demarcation "commutability .'... non-
commutability" no longer has meaning. Obviously the only difference left is the con-
tinuality of the quantities in classical physics and their discrete character as a rule in 
quantum mechanics, or in other words - the validity of its field of the principle of 
quantum-mechanical duality. The real premise for the absence of hidden parameters 
could be formulated as invalidity of Einstein's principle of relativity (Einstein, 1918: 
241) and, resulting from it, the suspension of Mach ' s principle (ibid.): the concepts of 
speed or resp., of diffeomorphism are not universal in regard to mechanical as well as 
physical movement. 

Along with this, the requirement for the Lorentz invariance may remain in force , 
whereas the discontinuities appear to be in space-time and it corresponds to the velocity 
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confined to the same maximum, which is defined by the fundamental constant of the 
velocity of light in free space. This is precisely the implicit model with which Kochen 
and Specker comply, suggesting the ordinary consideration of hidden variables as local 
ones. That is the reason why their statement regarding the absence of hidden variables 
concerns only local ones and does not affect either the type of investigation made by 
Bell or the possibility of violating the inequalities introduced by him. 

Here we should raise again the question of ineradicable insolubility, which faces 
any profound philosophical discussion of quantum mechanics. Because of the Skole-
mian relativity of the discrete and continual , the absence of hidden parameters also 
seems to be Skolemian relative, including the manner of their exposition in Kochen and 
Specker ' s article . After proving their famous theorem and its implications, they gave a 
counter-example introducing hidden parameters limiting their consideration to two-
dimensional Hilbert space and a model of a single electron spin, emphasizing that it is 
completely artificial and even invalid in the case of two electrons in a potential field , 
according to their words. However, their intention was thus to show that von Neu-
mann's theorem requires in that case the absence of hidden parameters, while their own 
consideration would demonstrate the possibility of introducing such parameters. 

In tum, we may easily show that this counter-example is isomorphic to a qubit, 
since it represents a sphere in three-dimensional Euclidean space, and because of 
the qubit additivity, it can be transferred and consolidated for the whole Hilbert space. 
In other words, this is also a counter-example regarding their main theorem and is in 
direct contradiction to the immediate corollary. That is why the theorem should obtain 
the statute of yet another unsolvable claim in quantum mechanics - the one side of a 
complementary, dual relation whose other side is precisely its negation. Together, they 
demonstrate the same, suggesting that it is only one special case; on the basis of 
Skolemian-type relativity we can talk about a special kind of quantum duality : absence 
- presence of hidden parameters. But how then should we interpret the hidden 
parameter? According to the illustration that Kochen and Specker have given, this is a 
random position on a disc, i.e. on a large circle of the sphere. In the general case of 
ordered sum of qubits representing Hilbert space, the hidden parameter will be the 
angle formed from the , axes" of Hilbert space, which represent an infinite number of 
decreasing oscillators embedded into one another. That angle may be interpreted as an 
initial moment in time : for example, ifwe have chosen a zero point in time for all 
oscillators, then Hilbert space as an ordered set of qubits will be displayed in a 
simple and determined manner by the hidden parameters as an infinite strip. That is 
also a respectively ordered set of zeros and ones according to the following (not the 
only possible) rule: 0 , if the hidden parameter determines a past moment 
in time corresponding to the chosen zero benchmark; and 1 , if it determines present or 
future moment. In addition, , curved" Hilbert space can be compared in a simple manner 
with pseudo-Riemannian space and thus be so interpreted. Therefore the parameter can 
be construed as gravity. These two interpretations of the hidden parameter - temporal 
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and gravitational - again prove to be dual, which turns out to be a normal expectation in 
quantum mechanics. 

At the end of their article, in the last § 7, the authors suggest that their considera-
tion may be logically demonstrated as the impossibility of embedding (resp. weak em-
bedding - homomorphism) the partial Boolean algebra of quantum-mechanical observ-
ables in Boolean algebra. 

It is proved there that the embedding problem we considered earlier is equivalent 
to the question of whether the logic of quantum mechanics is essentially the same as 
classical logic (Koch en, Specker 1967: 60). 

Thence they deduce that there is a classical tautology, 'P, which is false even in 
meaningful substitution, i.e. the substitution with statements concerning commensurable 
quantum-mechanical variables: 

Roughly speaking a propositional formula 1/J(xi, ... , Xn) is valid in quantum me­

chanics if for every , meaningful" substitution of quantum mechanical propositions P; 
for the variables Xi this formula is true, where a meaningful substitution is one such that 

the propositions P;, are only conjoined by the logical connectives in 'l/J(P 1, ••• , Pn) if 
they are simultaneously measurable. It then follows from our results that there is a 

formula 1/J(xi, ··· , Xn) which is a classical tautology but is false for some meaningful 

substitution of quantum mechanical propositions. In this sense the logic of quantum 
mechanics differs from classical logic (Kochen, Specker, 1967: 60) . 

And they immediately give a simple example of such a tautology. According to our 
principle position we will pay attention once again to the alleged relativity of this 
statement, i.e. from what kind of dual, complementary, but also quite legitimate, posi-
tion the opposite is true: the non-existence of such a classical tautology or no substitu-
tion of the quantum mechanical observables, which makes that classical tautology false. 

For this purpose the concept of hidden parameter should be transferred to a prop-
erly logical consideration. Such would be the presence of a hidden unsolvable state-
ment, in other words, a hidden axiom. Thus, whether it or its negation is accepteq will 
determine whether the statement on quantum mechanical observable is true or false. 
Embeddability (weak embedment, homomorphism) is the necessary condition for the 
existence of such a logical hidden parameter. Respectively the absence of such em-

beddability ensures its non-existence. Then our propositional formula W, which is a 
classical tautology, will appear to also be true in substitution for commensura-

ble quantum-mechanical observables. Therefore, the very formula W is of the de-
sired type of unsolvable statement or a logically hidden parameter. In this case, any 
propositional formula that is true in a classical sense and false in a quantum-mechanical 
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substitution, as stated above, is such a logically hidden parameter, an unsolvable state-
ment. 

There emerges a common and fundamental hidden parameter of such logical type-
an unsolvable statement: whether a randomly given formula will be considered classical 
or quantum-mechanical. That cannot surprise us at all, as it is built in the very founda-
tion, in the structure and mathematical formalism of quantum mechanics as a theory 
about the system of a classical device and a quantum object. Accordingly, such insolu-
ble, dually true propositions about the system can be solved when referred either only to 
the apparatus, or only to the micro-object. But the second reference itself contains an 
element of insolubility and its being a theory of the micro-object does not in itself seem 
possible. 

With a similar reservation reducing the mere statement about the existence of hid-
den parameters to insolubility, however, the opposition or the duality between device 
and quantum object may be assumed and therefore interpreted in any special case as a 
universal hidden parameter in the logical sense. 

Finally, the same situation can be demonstrated by the counter-example given by 

them, in which a sphere, as a qubit, will be compared to the propositional formula 't./J of 
quantum-mecharucal observables; and a usual bit, i.e. a binary unit, to the true value of 

the propositional formula 1./J, classically interpreted. 
Kochen and Specker's conclusion indicates the significance of their work to the 

overall development of thought in quantum mechanics, which we have already tried to 
sketch briefly: 

This way of viewing the results of Sections 3 and 4, seems to us to display a new 
feature of quantum mechanics in its departure from classical mechanics. It is of 
course true that the Uncertainty Principle, say, already marks a departure from 
classical physics. However, the statement of the Uncertainty Principle involves two 
observables which are not commeasurable, and so may be refuted in the future with 
the addition of new states. This is the view of those who believe in hidden variables. 
Thus, the Uncertainly Principle as applied to the two-dimensional situation 
described in Section 6 becomes inapplicable once the system is imbedded in the clas­
sical one. The statement, we have constructed deals only in each of the steps of its 
construction with commeasurable observables, and so cannot be refuted at a later 
date (Kochen, Specker 1967: 86). 

Let us start our detailed discussion of the work of Kochen and Specker by pro-
ceeding from the possibility, the difficulties, and the ways to use the phase space of 
classical mechanics and thermodynamics, as it acts as a bridge between the statistical 
interpretations of the latter by the former, and thus sets a successful example for the 
introduction of ,hidden parameters. Therefore, any confirmation of such impossibility 
must clarify precisely what exactly is the difference between classical and quantum me-
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chanics that deters us from following this method. We also have the major works of 
Weyl (1927), Wigner (1932), Groenewold (1946) and Moyal (1949), which show with 
mathematical rigor the degree of correspondence between Hilbert and phase space. 
They demonstrate how and by what necessary generalizations of the classical phase 
space in the latter may be present and deployed by the standard formalism of quantum 
mechanics based on Hilbert space. 

The work of Wigner is fundamental. As for the study of Wei!, it is historically the 
earlier ( 1927) and is based on the theory of groups, some of the simplest and most fun-
damental objects of abstract algebra, equipped with a single binary operation, a reverse 
element to any, and a single neutral element coinciding with its reverse element. The 
theory of representations 1 is also interesting - Hermann Wei! should be considered 
its founder2 

- and the study in question clarifies the meaning of such an abstract 
mathematical theory for quantum mechanics as well. 

The main idea of the theory of representations - the identification under certain 
conditions, namely the availability of representation in general, of the groups and of 
(the transformations of) Hilbert space, will allow us to make a decisive step forward in 
studying the relativity of the continuous and discrete in a mathematical and in a physi-
cal, and in a philosophical sense as well. If the group is not only continuous but also 
smooth, i.e. differentiable, such as Lie groups are, we could equate it, at least mathe-

matically, by its presentations, to Hilbert space of 1Ji -functions, i.e. of quantum, there-

fore discrete, states. If the Lie group itself embodies Einstein's principle of general co-

variance (relativity), we should clarify how exactly (or namely) 1Ji -function presents a 

quantum, discrete state. It will help us to move forward from a merely qualitative rela-
tivity of continuity and discreteness to a quantitative (in a broad sense, by mathematical 
structures) description of their unity and the transition between them. 

1Ji -function presents the discrete by the random as follows. It is always a function 

of arguments consisting of exactly half the parameters in the configuration space as are 
in the classical case and those parameters may be considered as continuous ones. The 
other half- according to Heisenberg's uncertainty- prove to be completely vague, ran-
dom, and discrete . Since there is a quantum leap (discreteness), that second half of the 
parameters appears to be a set of random variables, which may assume one value or 
other with different probability. 

Then we will interpret 1Ji-function, in the spirit of Bartlett's approach (1945), as the 

characteristic function of the discrete and therefore random coordinates in configuration 
space. The other half of the coordinates in configuration space simply do not need a 

description by 1Ji-function, since, being continuous, they are not random. 
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From this point of view ,the problem of hidden parameters" appears to be a result 

of misunderstanding: qi'-function does not summarize, but only complements 

the continual description of classical physics with its discrete ,mate", where the discrete 
is represented by the accidental. The other ,half'. i.e. the continual description itself, is 
given by the presence - inevitable in quantum mechanics - of classical device. 
Hence the importance of the theory of representations for interpreting or creating the 
ontology of quantum mechanics: it provides the possibility, unity and quantitative 
equivalence of the discrete description of quantum phenomena in terms of micro-
object, and their continual description in terms of device. 

In such ,translations" between both languages, we should pay special attention to 
the consubstantiality and the equivalent transformation of the speed from a smooth de-
scription (i.e. not only mathematically continual but also differentiable) in the probabil-
ity from a discrete description. There comes the conclusion that Lorentz invariance (and 
respectively the postulate of no exceeding the speed of light in free space) is a direct 
result of a principle already involved in the previous sentence, which is valid for the 
imposed generalisation of Einstein's relativity principle for discrete motions: since 
gravity and inertia are treated equally in general relativity, velocity and probability 
should coincide as to the sketched more general view. However, this would be possible 
only if there is a fundamental constant of maximal velocity, in relation to which 
any velocity is converted to a dimensionless number that for all less or equal to the 
maximal velocity is respectively less than or equal to one and can therefore be inter-
preted as a standard probability. 

If, however, we use Bartlett's approach and introduce negative probabilities (and 
hence those which are greater than one), then the speeds exceeding that of light should 
also be discussed, according to a principle of equivalence of velocity and probability. 
Conversely, the complex speed or other kinematic physical quantities, emerging from 
the mathematical formalism of special relativity, which get complex values, are imme-
diately interpreted as the complex probabilities explained above or the physical quanti-
ties of entangled systems studied by quantum information. The tachyons theory devel-
oped in the second half of last century could be identified with quantum information or, 
more precisely, with its translation into the diffeomorphism language of classical phys-
ics. So the Wigner function (Wigner, 1932: 750) is in fact interpreted as the corre-
sponding and earlier translation into the classical language of smooth transformation 
from the previously postulated discreteness of quantum mechanics. 

On the one hand, our world, well-described by classical physics, allows an equiva-
lent quantum description towards a sufficiently massive mega-object losing its causal­
ity, equivalently replaced by randomness. On the other hand, we could extrapolate the 
situation regarding micro-objects studied by quantum mechanics and information in 
hypothetically introducing an analogous classical physical description for them (by dif-
feomorfisms , causal, using as a hidden parameter the moment of time within the almost 
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eternity of their own present). A similar hidden parameter, of course, can nowise be de-
fined in terms (quantities) of the massive object. That is why we can generalize in the 
spirit of Skolemian relativity that both following statements are valid: there is and there 
is not a 'hidden parameter' in quantum mechanics: the latter is from the viewpoint of 
the appliance, the former from that of the micro-object. In classical physics, in science 
or even in knowledge in general, the empirical and the objective never come to such 
direct impact between each other. The objective is also interpreted as the hidden, non-
empirical, also as the random, non-causally impacting on the practical world, also as the 
ideal, non-material, and also as the numinous, sacral, non-profane.;; 

NOTES 
1 And in particular, Lie groups in the automorphisms of Hilbert space. 
2

. A work (Peter, Weyl 1927) co-authored with his student, dating from the same 
year, should be mentioned in a properly mathematical aspect. Its main theorem 
essentially ensures that any group fulfilling certain broad conditions can be juxtaposed 
with one or even one-one Hilbert space determined by its orthonormal basis, if the 
group has a representation into it: In other words, representation is the condition (its 
boundaries of necessity or sufficiency could be investigated in different cases) for 
identifying a group with (a) Hilbert space. 
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