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Abstract



Learners often need to identify and remember recurring units in contin-
uous sequences, but the underlying mechanisms are debated. A partic-
ularly prominent candidate mechanism relies on distributional statistics
such as Transitional Probabilities (TPs). However, it is unclear what
the outputs of statistical segmentation mechanisms are, and if learn-
ers store these outputs as discrete chunks in memory. We critically
review the evidence for the possibility that statistically coherent items
are stored in memory and outline difficulties in interpreting past re-
search. We use Slone and Johnson’s (2018) experiments as a case study
to show that it is difficult to delineate the different mechanisms learn-
ers might use to solve a learning problem. Slone and Johnson (2018)
reported that 8-month-old infants learned coherent chunks of shapes
in visual sequences. Here, we describe an alternate interpretation of
their findings based on a multiple-cue integration perspective. First,
when multiple cues to statistical structure were available, infants’ look-
ing behavior seemed to track with the strength of the strongest one —
backward TPs, suggesting that infants process multiple cues simulta-
neously and select the strongest one. Second, like adults, infants are
exquisitely sensitive to chunks, but may require multiple cues to extract
them. In Slone and Johnson’s (2018) experiments, these cues were pro-
vided by immediate chunk repetitions during familiarization. Accord-
ingly, infants showed strongest evidence of chunking following familiar-
ization sequences in which immediate repetitions were more frequent.
These interpretations provide a strong argument for infants’ processing
of multiple cues and the potential importance of multiple cues for chunk
recognition in infancy.

Keywords: Statistical learning; language acquisition; word segmenta-
tion; serial memory

In many domains, we need to recognize units in continuous sequences. Among

many other examples, speech is a continuous signal, but to understand any sentence,

we need to recognize individual words within a continuous speech sequence; people

move continuously through space, but to make sense of a person’s behavior, we need to

recognize individual (goal-directed) actions within the flow of motion (e.g., Newtson,
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1973; Newtson, Engquist, & Bois, 1977; Zacks & Tversky, 2001; Zacks & Swallow,

2007); musical pieces such as symphonies or operas can be annoyingly lengthy, but

we readily recognize recurring melodic elements. While the problem of recognizing

recurring units seems daunting enough, it is exacerbated for learners who have to

identify the underlying units (e.g., words, actions or motifs) to begin with. This is

called the segmentation problem: Learners have to identify where unknown recurring

units start and end in a continuous signal, and have then to commit them to memory.

While it is uncontroversial that humans and other animals learn something from

such continuous sequences, it is debated whether what they learn is amenable to being

placed in memory as a discrete chunk of material (e.g., a word or object). (In the

following, “chunks” refer to units that are placed in memory; we refer to “segmenta-

tion” as the set of processes that individuate units and place them in memory.) The

arguably most prominent proposal for how the segmentation problem might be solved

relies on statistical learning.

Here, we critically review recent data that bears on the issue of whether statis-

tical learning allows learners to place chunks in memory, and outline some difficulties

in interpreting extant data, in particular due to the multitude of powerful learning

mechanisms that infants have at their disposal and that they might use for different

aspects of a learning problem. We conclude that statistical learning might be part of

a suite of cognitive mechanisms for chunking items into units in continuous sequences,

but that its contribution still needs to be delineated from that of other mechanisms
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that are also available to learners.

Statistical segmentation mechanisms

The arguably most prominent proposal for how the segmentation problem might

be solved relies on Transitional Probabilities (TPs) among sequence elements. TPs

are the conditional probabilities of the next element given the preceding element.

For example, after hearing the syllable whis, we can predict the next syllable with

higher certainty than the syllable following key, because TPs are thought to be higher

within units (such as words like whiskey) than across unit boundaries. Human adults,

infants, and many non-human animals are sensitive to TPs in a variety of domains

(e.g., Aslin, Saffran, & Newport, 1998; J. Chen & Ten Cate, 2015; Creel, Newport,

& Aslin, 2004; Endress, 2010; Endress & Wood, 2011; Fiser & Aslin, 2002, 2005;

Glicksohn & Cohen, 2011; Hauser, Newport, & Aslin, 2001; Saffran, Newport, &

Aslin, 1996; Saffran, Aslin, & Newport, 1996; Saffran, Johnson, Aslin, & Newport,

1999; Saffran & Griepentrog, 2001; Sohail & Johnson, 2016; Toro & Trobalón, 2005;

Turk-Browne, Jungé, & Scholl, 2005; Turk-Browne & Scholl, 2009). As a result,

learners might well use TPs to segment recurrent units from continuous sequences,

a view that is also supported by a variety of computational models that are, in

some form or another, based on similar distributional statistics (e.g., Batchelder,

2002; Brent & Cartwright, 1996; Christiansen, Allen, & Seidenberg, 1998; Frank,

Goldwater, Griffiths, & Tenenbaum, 2010; Orbán, Fiser, Aslin, & Lengyel, 2008;

Perruchet & Vinter, 1998; Swingley, 2005).
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Prediction vs. memory

While the distributional statistics of a sequence tell learners which sequence

elements are predictive of which other sequence elements, such knowledge does not

imply that mutually predictable elements are memorized together. For example, we

might well be able to predict the next syllable or word from the previous one, but this

does not imply that the predictable syllable or word combinations are segmented and

stored as single chunks in memory. After all, we can have a reasonable expectation

that the syllable after is is the article a (which occurs after 12% of the occurrence of

is; Davies, 2018), but this does not mean that isa is segmented as a word-like unit that

is stored in memory. More generally, the dissociation between the ability to predict

events and the ability to store event combinations in (declarative) memory is one of

the classic findings in the neuropsychology of procedural memory (e.g., Knowlton &

Squire, 1994; Knowlton, Mangels, & Squire, 1996; Poldrack et al., 2001). As a result,

it is an empirical question whether (1) highly predictable sequences of syllables or

other items are stored in memory (e.g., in the mental lexicon), and (2) whether the

mechanisms that learn to predict items from one another are necessarily those that

store the predictable sequences of items in memory. That is, even when it leads to

successful prediction of items, statistical learning might not consistently yield the

extraction and learning of genuine chunks that are present in the input and can be

placed in memory.
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Do statistical segmentation mechanisms lead to memories for chunks?

Theoretical arguments

Before reviewing the empirical evidence on the question of whether distribu-

tional learning mechanisms lead to memory for chunks, it is useful to outline some

theoretical desiderata for a mechanism that converts continuous sequences into mem-

ory representations for discrete chunks, using speech segmentation as a case study.

Specifically, to the extent that the function of a segmentation mechanism is to learn

words and to place them into what will be the mental lexicon, it needs to store recur-

rent syllable chunks in memory so that they can be retrieved when we try to produce

or understand a word (Endress & Mehler, 2009b; Endress & Hauser, 2010; Endress &

Langus, 2017). However, it is unclear whether TP-based learning mechanisms really

accomplish this function, for three theoretical reasons.

First, and as mentioned above, the ability to store event combinations in (declar-

ative) memory is dissociable from the ability to predict events from one another (e.g.,

Knowlton & Squire, 1994; Knowlton et al., 1996; Poldrack et al., 2001).

The second reason relates to how segmentation is usually assessed experimen-

tally. Participants need to show discrimination between high-TP units and low-TP

units, but, as mentioned above, such discriminations do not establish that the high-

TP units have been learned as genuine chunks and are thus placed in memory. For

example, adult and infant learners are sensitive to backward TPs (i.e., the conditional

probability of an item given the following item; e.g. Hay, Pelucchi, Graf Estes, & Saf-
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fran, 2011; Perruchet & Desaulty, 2008; Pelucchi, Hay, & Saffran, 2009), and adult

learners are just as good at discriminating high-TP units from low-TP units when

these units are played forward as when they are played backwards (Endress & Wood,

2011; Turk-Browne & Scholl, 2009). However, while backward TPs provide better seg-

mentation cues than forward TPs in some languages (e.g., Gervain & Guevara Erra,

2012; Saksida, Langus, & Nespor, 2017), learners clearly cannot place backward units

in memory as they have never encountered them. Mirroring the dissociations be-

tween prediction and memory (e.g., Knowlton & Squire, 1994; Knowlton et al., 1996;

Poldrack et al., 2001), successful discrimination between high-TP and low-TP units

thus does not necessarily imply that the high-TP units have been learned as discrete

chunks of material that will, eventually, populate a memory store such as the mental

lexicon.

The same conclusion follows when considering possible mechanisms by which

TPs might be tracked. For example, Endress and Johnson (under review) described a

neural network where representations of syllables form associations (through Hebbian

learning) if they are active simultaneously, and thus if they occur closely together in

time. This model recognized high-TP items better than low-TP items, irrespective

of whether the items were played forward or backward, without having a memory

representation of either type of item.

The third reason for which it is unclear whether TP-based learning mechanisms

lead to memorized chunks relates to the memory format of actual linguistic sequences.
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It is well known that sequences can be encoded in different ways, notably by encoding

the transitions between items or by encoding the positions of the different items with

respect to items in the first and the last positions (i.e., the edges; see e.g., Fischer-

Baum, Charny, & McCloskey, 2011; Henson, 1998, for reviews). While these two

coding schemes are available to human and non-human learners (e.g., S. Chen, Swartz,

& Terrace, 1997; J. Chen & Ten Cate, 2015; J. Chen, Jansen, & Ten Cate, 2016; Coye,

Ouattara, Zuberbühler, & Lemasson, 2015; Endress, Carden, Versace, & Hauser, 2010;

Marchetto & Bonatti, 2013, 2015; Seidl & Johnson, 2006, 2008; Sohail & Johnson,

2016), they seem to be independent of one another and show multiple dissociations,

including their sensitivity to temporal order, the kinds of cues they require, the speed

with which they can be learned from fluent speech, their developmental time course,

and, in vision, their tolerance of viewpoint changes (Endress & Mehler, 2009a; Endress

& Wood, 2011; Marchetto & Bonatti, 2013, 2015; Peña, Bonatti, Nespor, & Mehler,

2002; see Endress & Bonatti, 2016, for a review).

Critically, based on evidence from speech errors, reading, and deficits in brain

damaged patients, it has been argued that linguistic sequences are encoded using

the edge-based coding scheme rather than the transition-based coding scheme (e.g.,

Fischer-Baum, McCloskey, & Rapp, 2010; Fischer-Baum et al., 2011; Miozzo, Petrova,

Fischer-Baum, & Peressotti, 2016). As a result, learners might need to rely on other

cues to learn recurring units to make them compatible with those mechanisms that

will store them in memory. In the case of speech segmentation, this is not nec-
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essarily a problem, as there are a number of other cues that are available across

languages. These include mechanisms that use known words as anchors for segmenta-

tion (Bortfeld, Morgan, Golinkoff, & Rathbun, 2005; Brent & Siskind, 2001; Mersad

& Nazzi, 2012; see also Van de Weijer, 1999, but see Aslin, Woodward, LaMendola,

& Bever, 1996), mechanisms that extract items from the beginnings and endings

of utterances (e.g., Seidl & Johnson, 2006, 2008; Shukla, Nespor, & Mehler, 2007;

Sohail & Johnson, 2016) and mechanisms that rely on universal aspects of prosody

(e.g., Brentari, González, Seidl, & Wilbur, 2011; Endress & Hauser, 2010; Fenlon,

Denmark, Campbell, & Woll, 2008; Pilon, 1981; Selkirk, 1984, 1986; for an overview

see e.g., Cutler, Oahan, & van Donselaar, 1997; Langus, Marchetto, Bion, & Nespor,

2012; Shattuck-Hufnagel & Turk, 1996). Further, at least by 8 months, infants seem

to be more sensitive to these speech cues than to statistical cues (e.g., Johnson &

Jusczyk, 2001; Johnson & Seidl, 2009; Shukla, White, & Aslin, 2011).

For these reasons, one cannot take for granted that a sensitivity to TPs neces-

sarily translates to creation of memory representations for the high-TP items, and it

is critical to assess this question empirically.

Do statistical segmentation mechanisms lead to memories for chunks?

Empirical arguments

There are three literatures that seem to lead to contradictory conclusions about

whether sequences that can be segmented based on TPs are actually encoded as a set

of segmented chunks. One literature investigates the fate of high-TP items: Do high
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TP-items have a subsequent processing advantage, for example for word-learning and

memory? The second literature investigates the relative weight of the frequency of

chunks compared to the TPs among the elements within these chunks. The third

literature investigates to what extent learners are sensitive to sub-chunks once they

are presumed to have learned chunks.1 We will now discuss these literatures in turn.

Subsequent processing of high-TP items: The case of word learning

One way to address the question of whether high-TP items are memorized as

chunks is to test whether it is easier to assign meanings to high-TP items compared to

low-TP items. This line of research was initiated by Graf-Estes, Evans, Alibali, and

Saffran’s (2007) experiments. In their studies (see also Estes, 2012; Hay et al., 2011),

infants were familiarized with a continuous speech stream comprised of nonsense

words; as a result, TPs among syllables within these words were higher than TPs

between syllables that straddled word boundaries. In a subsequent word-learning

phase, infants had to associate visual images with words (i.e., high-TP units), non-

words, or part-words (i.e., low-TP units). Learning of associations between visual

images and sounds was better for high-TP units than for low-TP units.

At first sight, these results seem to suggest that the high-TP units were learned

1In the following section, we consider the frequency of chunks as a potential determinant of how
well they are learned, but many other factors influence what chunks can be learned, including when
they were last encountered (e.g., Bjork & Allen, 1970; Ebbinghaus, 1885/1913; Vlach & Johnson,
2013) and the extent to which they are similar to and interfere with other items (e.g., Berman,
Jonides, & Lewis, 2009; Endress & Szabó, 2017), which in the case of lexical acquisition might be
related to neighborhood density (e.g., Storkel & Lee, 2011). Here, we focus on chunk frequency
because this is the cue that has been manipulated in the experiments reviewed below.
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and memorized as chunks. However, there are several alternative interpretations that

relate to the predictiveness of items. For example, if infants form associations between

individual syllables and visual images, learning might be better for high-TP units, not

because the high-TP units are represented as chunks, but rather because the second

order associations between individual syllables and visual items are stronger in these

units, so that syllables and visual items are more predictive of one another without

the syllables being memorized as a coherent chunk (see Endress & Langus, 2017, for

discussion and further alternative interpretations).

Karaman and Hay (2018) followed a different approach to show that a preference

for high-TP items over low-TP items suggests that the high-TP items are retained

in memory. They asked if high-TP items are preferentially consolidated in long-term

memory compared to low-TP items. They first established that, after being familiar-

ized with passages containing both high-TP and low-TP items, 8-month-olds do not

discriminate high-TP items from low-TP items after a delay of just 10 min (though

they do not discriminate these items immediately after the familiarization either, ex-

cept in Experiment 3, where a different attention grabber was used). Critically, when

infants were first familiarized with the passage, then tested immediately afterwards

on high-TP items and low-TP items and then tested again 10 min later, discrimi-

nation is reestablished in the second, delayed test phase (though the preference for

high-TP items differed neither from that on the immediate test, nor from that on the

successful immediate test in Experiment 3).
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Karaman and Hay’s (2018) explanation for the successful discrimination in the

second test proceeds in three steps. First, infants learn the TP structure of the items

during the initial familiarization. Second, infants are exposed to both high-TP items

and low-TP items during the initial test. Third, during the retention interval, infants

preferentially consolidate high-TP items into long-term memory.

However, leaving aside the issue of whether these results are statistically reliable,

a preference for high-TP items over low-TP items does not necessarily imply that

the high-TP items are stored in long-term memory: French-learning infants prefer

non-words whose syllables have high-TPs in French compared to non-words whose

syllables have low-TPs in French (Ngon et al., 2013); unless infants have memory

representations of these items they have never heard before, this seems to suggest that

a discrimination between high-TP items and low-TP items does not imply memory

for the high-TP items even when the discrimination is supported by some form of

long-term memory.

Subsequent processing of high-TP items: Beyond word learning

Experiments inspired by Graf-Estes et al. (2007) have the drawback that the

learning advantage for high-TP items might be due to second-order TPs. Several

authors attempted to provide more direct evidence that high-TP items are memorized

in Graf-Estes et al.’s (2007) paradigm.

For example, Erickson, Thiessen, and Estes (2014) tested the influence of the sta-

tistical properties of verbal labels in Waxman and Markow’s (1995) category learning
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task. In that task, infants view some exemplars of a category (e.g., some dinosaurs)

accompanied by a common verbal label; following this, they view a novel exemplar of

the category and an exemplar of another category (e.g., a fish), and their preference

is measured. For superordinate categories (e.g., animals, vehicles), infants require

verbal labels to exhibit a novelty preference for the novel category; in contrast, for

basic-level categories (e.g., cars, dogs), infants show a novelty preference also in the

absence of verbal labels.

In Erickson et al.’s (2014) experiments, the labels were either high-TP items

or low-TP items, taken from a speech stream with which infants were previously

familiarized. Infants preferred the exemplar from the novel category when the label

was a high-TP item but not when the label was a low-TP item. Critically, when

infants were not pre-familiarized with the speech stream, they had no such novelty

preference, suggesting that infants could use only high-TP items but not low-TP

items as category labels (though these results contrast with Waxman and Markow’s

(1995), where infants showed a novelty preference for basic level categories even in

the absence of verbal labels). If so, a plausible conclusion is that the high-TP items

have been memorized.

However, this conclusion is not necessarily warranted, for two reasons. First,

infants listened longer to the high-TP items when they were presented together with

the category exemplars during training; hence, any preference for the novel category

with the high-TP items might reflect the greater exposure to the old category when it
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was accompanied by high-TP items. Second, Erickson et al. (2014) would predict an

interaction between label type (high-TP vs. low-TP item) and familiarization type

(familiarization vs. no familiarization); while they do not report this interaction, it

is unlikely to be significant.2

Critically, leaving aside the issue of whether these results are reliable, the second-

order associations between individual syllables and category representations might be

stronger for high-TP items, just as the second-order associations between syllables

and visual items might be stronger for high-TP items in Graf-Estes et al.’s (2007)

experiments, suggesting that Erickson et al.’s (2014) experiment are open to similar

alternative interpretations as Graf-Estes et al.’s (2007).

Shoaib, Wang, Hay, and Lany (2018) leveraged individual learning differences

to provide evidence that high-TP items are stored in memory. They predicted that

infants with greater vocabularies should be worse at learning words with non-native

phonotactics than infants with smaller vocabularies. (It is not entirely clear what

motivates this hypothesis: after all, phonotactic knowledge is acquired very early in

life when lexical knowledge is presumably limited (e.g., Jusczyk, 1999); further, it is

not clear how phonotactic knowledge might be used in the service of word learning if

it requires lexical knowledge to begin with.) In an experiment similar to Graf-Estes

et al.’s (2007), Shoaib et al. (2018) familiarized 20-month-old English learning in-

fants with one of two Italian passages containing high-TP words and low-TP words.

2Simulations with 10,000 Gaussian random samples based on Erickson et al.’s (2014) means and
standard deviations suggest that this interaction is unlikely to be significant (mean F (1,50) = 2.76,
p= .103; median F (1,50) = 1.08, p= .303).
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Following this familiarization, infants were presented with pictures of unfamiliar ani-

mals accompanied by a high-TP label or a low-TP label. Finally, during test, infants

viewed two animals presented side by side, accompanied by a label. Shoaib et al.

(2018) asked whether infants would look longer at the labeled animal.

Results revealed that infants preferentially looked at the labeled animal for both

high-TP labels and low-TP labels, but only when familiarized with one of the passages;

infants familiarized with the other passage showed no evidence of learning. Critically,

for high-TP labels, there was a negative correlation between vocabulary size and

preference for the labeled animal. However, inspection of their Figure 3 suggests that

this correlation is mostly driven by outliers. When infants who differ more than 2.5

standard deviations from the mean are removed (either in Accuracy, N = 1, or in Vo-

cabulary, N = 2, based on data digitized using https://apps.automeris.io/wpd/),

the initially highly significant correlation (p = .0009) is no longer significant (p =

.095).

Leaving aside questions of data reliability, there are two mutually non-exclusive

alternative interpretations of Shoaib et al.’s (2018) results. First, infants with larger

vocabularies might be faster learners. As a result, they might quickly identify the

labeled animal, and then start exploring the screen. As looks are measured in a 1.5 s

interval starting 300 ms after the onset of the label, this would lead high vocabulary

infants to appear to have a relatively low propensity to look at the matching animals.

Second, while infants were certainly unlikely to know labels for animals such as ar-
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madillos, these animals might look similar enough to other animals for which high

vocabulary infants are more likely to know labels; as a result, the mutual exclusivity

principle (e.g., Markman, 1994; Halberda, 2003) would make it harder for these in-

fants to acquire a second label on top of the one they already know. As a result, the

question of whether high-TP items are stored in memory is still open.

The relative weight of TPs and frequency

Another strategy to test if learners store the output of statistical segmentation

computations as chunks is to assess the relative importance of TPs and chunk fre-

quency. If learners memorize chunks, they should be more familiar with chunks they

have memorized than with items they have not encountered, even if they are favored

by TPs.

Endress and Mehler (2009b) followed this strategy by exposing adult partici-

pants to a speech stream consisting of a random-arrangement of six syllable triplets

(hereafter called “words”). As in other statistical learning experiments, TPs within

words were higher than TPs across word boundaries. Critically, these words were

constructed so that there were “illusory words” that had exactly the same TPs as the

words that appeared in the familiarization stream, but were never actually encoun-

tered (i.e., the illusory words had a frequency of 0).

Following this familiarization, participants had to choose between words (high-

TP syllable triplets that had occurred in the speech stream), illusory words (high-TP

syllable triplets that had not occurred in the speech stream), and part-words (low-



STATISTICAL LEARNING AND MEMORY 16

TP syllable triplets that had occurred in the speech stream but straddled a word

boundary and occurred less frequently than words).

Endress and Mehler (2009b) found three crucial results (see Endress & Langus,

2017, for a replication in the visual modality). First, participants considered illusory

words as more familiar than part-words, suggesting that they were more sensitive to

the higher TPs of illusory words than to the higher frequency of part-words. Second,

their preference for words over part-words was much more pronounced than that for

words over illusory words, suggesting again that even relatively subtle differences in

TPs count more than massive differences in unit frequency. Third, at least in Endress

and Mehler’s (2009b) study (but see below), participants had no preference for words

over illusory words at all, which would suggest that they had little sensitivity to chunk

frequency.

In a similar study, Perruchet and Poulin-Charronnat (2012) also found that

participants are more sensitive to TPs than to the frequency of chunks, but, in their

experiments, participants preferred words over illusory words, suggesting that they

had some sensitivity to chunk frequency.

These findings are consistent with a model like that of Endress and Johnson’s

(under review) model, which predicts the greater importance of TPs compared to

chunk frequency. Because it is based on pairwise associations among syllables, it

prefers illusory words to part-words, but does not discriminate between actual words

and illusory words (since it does not represent chunks in memory).
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The role of additional cues

These results do not imply that learners are never sensitive to chunk frequency;

rather they might simply need different types of cues. In fact, infants excel at ex-

ploiting multiple cues when they are available (e.g., Frank, Slemmer, Marcus, &

Johnson, 2009; Gerken, Wilson, & Lewis, 2005; Schonberg, Marcus, & Johnson, 2018;

Ter Schure, Mandell, Escudero, Raijmakers, & Johnson, 2014). Accordingly, both

Endress and Mehler (2009b) and Endress and Langus (2017) showed that adult partic-

ipants prefer words to illusory words when additional cues are given, such as prosodic

cues indicating the beginning and the end of each word. Endress and Langus (2017)

suggested that such cues established a sensitivity to chunk frequency because it en-

abled the kind of edge-based encoding thought to underlie the representation of lin-

guistic sequences (e.g., Fischer-Baum et al., 2010, 2011; Fischer-Baum & McCloskey,

2015).

This conclusion is also in line with other experiments in the visual modality. For

example, when using visual stimuli where each element was a shape/location combi-

nation rather than a syllable, Slone and Johnson (2015) reported a preference for the

visual equivalent of words over the visual equivalent of illusory words. In this case, an

extra cue might have been provided by the spatial trajectory inherent in each unit.

For example, if the visual sequence included a“word”(a high-TP three-shape/location

combination) with the shape/location combinations ABC, and if A appeared in the

upper left corner, B in the middle, and C in the upper right corner, the word ABC
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would generate a V-shaped trajectory. These trajectories might have allowed par-

ticipants to discriminate words from illusory words, as these trajectories were only

experienced for words (though TPs in words and illusory words were identical). If so,

these results would corroborate the possibility that additional cues can help learners

establish a greater sensitivity to chunk frequency. Importantly, however, the evidence

overall suggests that, when cues in addition to TPs are unavailable, learners are more

sensitive to TPs than to chunk frequency, which is highly problematic for any model

that assumes that the output of TPs is learned chunks.

Do learners recognize sub-units of units in vision?

While the literature on illusory words suggests that sequences that can be seg-

mented based only on TPs may not be stored in memory as chunks of material, the

visual statistical learning literature seems to lead to the opposite conclusion. Specif-

ically, a number of experiments suggest that, once (presumed) chunks or units are

learned, sub-units become less accessible. To use a linguistic analogy, when hearing

the word hamster, it is difficult to recognize that the first syllable is a word on its own

(i.e., ham), though, in the case of word recognition, such effects are driven at least in

part by phonetic differences between syllables that are parts of words and syllables

that are words on their own (e.g., van Alphen & van Berkum, 2010; Salverda, Dahan,

& McQueen, 2003; Shatzman & McQueen, 2006a, 2006b).

Similar effects have been observed in visual statistical learning of simultaneously

presented shapes (Fiser & Aslin, 2005; Orbán et al., 2008): Entire units are easier to
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recognize than subunits. If so, the entire units are presumably stored in memory as

chunks. Below, we will call this phenomenon the sub-unit effect.

However, it is unclear how reliable the sub-unit effect is. For example, Fiser and

Aslin (2005) observed it in their Experiments 1 and 4, but not in their Experiment 5,

and, when presenting shapes in a sequence rather than simultaneously, Slone and

Johnson (2015) also failed to find evidence for the sub-unit effect in their Experiment

2, where they directly contrasted the strength of representation of units vs. sub-units.

In fact, in unpublished results, we found that, at least with simultaneously presented

shapes, the sub-unit effect can be replicated when the sub-units happen to be those

parts of a unit that do not attract attention, but not when the sub-units come from

salient parts of the units (Endress, in preparation). As a result, the sub-unit effect

might be due to the perceptual organization of visual scenes rather than to statistical

learning per se.

Chunks vs. TPs in infancy

The discussion about the relative weight of TPs and chunk frequency and the

fate of sub-units above relied mostly on research with adults. We will now take

advantage of Slone and Johnson’s (2018) recent experiments addressing these issues

in infancy to illustrate some of the interpretative difficulties outlined above.

Slone and Johnson (2018) asked if infants would discriminate visual words from

illusory words (Experiment 1) and discriminate units from sub-units (Experiment 2 to

4). In all experiments, Slone and Johnson (2018) used sequentially presented stimuli,
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where each stimulus was a shape/location combination.

Slone and Johnson’s (2018) Experiment 1 was inspired by Endress and Mehler’s

(2009b) finding that adults have much more difficulty discriminating units that differ

only in frequency than discriminating units that differ only in TPs (Endress & Mehler,

2009b; Endress & Langus, 2017; Perruchet & Poulin-Charronnat, 2012), to the extent

that, in some experiments but not others, listeners do not appear to be sensitive to

unit frequency at all (see above).

Infants were exposed to a continuous sequence of 5 shapes where each shape

appeared at a distinct spatial location, as in Slone and Johnson’s (2015) adult study

described previously. Critically, the shape/location combinations were arranged into

three recurring units that played the role of words in speech segmentation exper-

iments, and that were presented in a random order (see Figure 1). Two of these

units were triplets (ABC and DAC, where each letter stands for a shape/location

combination) and one was a pair (BE). As a result, the TPs among shape/location

combinations were either 1.0 or .50 within units and .33 across units. Following this

familiarization, infants were presented with three types of test sequences. One was a

triplet encountered during the familiarization (ABC), one was an illusory triplet that

did not appear during the familiarization but had the same TPs as the actual triplet

(ABE), and one was a part-triplet (CBE), with weaker TPs than in the other two

trial types.

Infants looked longest to the actual triplets, followed by the part-triplets, and
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Figure 1 . Left: Schematic depiction of the spatial array and shapes presented in
Experiments 1–3 of Slone and Johnson (2018). Only one shape appeared at a time
during familiarization and test. Right: Example (A) familiarization sequence and
(B) test sequences presented in Experiment 1 of Slone and Johnson (2018). Numbers
above shapes represent TPs during familiarization. Brackets below shapes indicate
the unit structure of the familiarization sequence.

looked least to the illusory triplets. In contrast to earlier research where infants

were unable to segment words from fluent speech when the words differed in length

(Johnson & Tyler, 2010), infants thus looked longest to the sequences they were

(presumably) most familiar with. Critically, they discriminated between actual and

illusory triplets, suggesting that they might be sensitive to the chunk frequency of

the sequences.

Slone and Johnson’s (2018) Experiments 2 to 4 were inspired by earlier work

showing that learners are more sensitive to entire units than to sub-units (Fiser

& Aslin, 2005; Orbán et al., 2008; see above). In Experiments 2 and 3 (which

were replications of one another), infants were again familiarized with a sequence of

shape/location combinations. The shape/location combinations were arranged into

a triplet (ABC) and a pair (DE) that were presented in random order for 80 times

each.
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Following this familiarization, infants were exposed to three types of test se-

quences: the high-TP pair from the familiarization sequence (DE), a low-TP part-pair

that comprised two items crossing a unit boundary (CD), and a high-TP “embedded”

pair that was a sub-unit of the triplet ABC (BC). Despite the actual pair and the

embedded pair having identical TPs, infants’ looking times were shorter for the ac-

tual pair compared to either the part pair or the embedded pair, suggesting that they

were more familiar with the actual pair than with the other test sequences. Slone and

Johnson (2018) concluded that, given that participants discriminated between pairs

and embedded pairs, they must have extracted pairs (and triplets) as chunks.

Experiment 4 was similar to Experiments 2 and 3 except that two triplets and

two pairs were used; in other words, the number of units to be learned was doubled,

such that infants were exposed to each (triplet or pair) unit half as many times as

in Experiments 2 and 3. Under these conditions, infants looked longer at part pairs

than at either actual or embedded pairs, implying that the infants did learn the TP

differences among adjacent shape/location combinations but did not learn the triplet

chunks. Slone and Johnson (2018) hypothesized that the sub-unit effect did not

emerge because, with this more complex material, infants did not have time to learn

the chunk structure in the sequence.

Do infants represent statistical sequences as chunks? One interpreta-

tion of these results is that, in contrast to similar studies with adults, infants exposed

to TP-based sequences extract and learn chunks: They discriminate actual items from
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illusory items, and they show the sub-unit effect.

However, a closer look at the results reveals that infants behaved in subtly

different ways across experiments; for example, they exhibited different directions

of preference across the different experiments. Given that even the highly simpli-

fied learning situations from word segmentation experiments recruit multiple distinct

learning mechanisms (Endress & Bonatti, 2016; Peña et al., 2002), and that infants

excel at exploiting multiple cues that are presented to them (e.g., Frank et al., 2009;

Gerken et al., 2005; Schonberg et al., 2018; Ter Schure et al., 2014), it is interesting to

consider the possibility that infants deploy different learning mechanisms in different

situations.

Specifically, in Experiment 1, infants looked longer to familiar items at test,

but in Experiment 2 to 4, infants looked longer to unfamiliar items. As noted by

Slone and Johnson (2018), these different directions of preference may have stemmed

from different degrees of habituation to the familiarization stimulus across experi-

ments, as fewer infants habituated in Experiment 1 (11% of the infants) compared

to Experiments 2, 3, and 4 (56%, 35%, and 44%, respectively). That is, infants in

Experiment 1 might have been more liable to show familiarity preferences following

the familiarization sequence, as few were habituated. However, Slone and Johnson

(2018) found no correlation between the degree of habituation in individual infants

and the degree of novelty preference, and the absence of a correlation was 7.6 more

likely than its presence after correction with the Bayesian Information Criterion, 2.4
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more likely after correction with the Akaike Information Criterion (Glover & Dixon,

2004).

The role of backwards TPs. An alternative explanation for the switch from

a familiarity preference in Experiment 1 to a novelty preference in Experiments 2

through 4 is that infants track multiple cues, and that their behavior is driven by the

strongest available cue. One such cue might be backward TPs. Learners are clearly

sensitive to backward TPs (e.g., Hay et al., 2011; Perruchet & Desaulty, 2008; Pelucchi

et al., 2009), and it turns out that backwards TPs were strongest in Experiment 1,

but not in the other experiments. Specifically, and as shown in Figure 2, the backward

TPs in illusory triplets were .5 and 1.0, those in part triplets .33 and 1.0, and those

in actual triplets .5 and .5. Given that the differences in forward TPs were relatively

subtle while the differences in backward TPs were relatively strong, infants might

have adaptively chosen the strongest available cue, and learned the backward TPs.

If so, they should be most familiar with illusory triplets, followed by part triplets

and then by actual triplets, which seems to reflect the actual results, assuming that

infants look longest to the items they are least familiar with. Infants might thus have

a novelty preference in all four experiments, such that their behavior was driven by

backwards TPs when this was the strongest available cue (i.e., in Experiment 1), and

by other cues in Experiments 2 to 4.

This interpretation also explains why, in previous experiments using illusory

triplets, the discrimination based on TPs was easier than discrimination based on
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Unit Possible continuations Probability Unit Possible continuations Probability
ABC ! ABC 33.3% CBA ! CBA 33.3%

! DAC 33.3% ! CAD 33.3%
! BE 33.3% ! EB 33.3%

DAC ! ABC 33.3% CAD ! CBA 33.3%
! DAC 33.3% ! CAD 33.3%
! BE 33.3% ! EB 33.3%

BE ! ABC 33.3% EB ! CBA 33.3%
! DAC 33.3% ! CAD 33.3%
! BE 33.3% ! EB 33.3%

SLC Possible continuations Probability SLC Possible continuations Probability
A ! B 50.0% A ! (after backward triplet CBA) ! C 33.3%

! C 50.0% ! E 16.7%
B ! C 50.0% ! (in backward triplet CAD) D 50.0%

! E 50.0% B ! (in backward triplet CBA) A 50.0%
C ! A 33.3% ! (after backward pair EB) ! C 33.3%

! D 33.3% ! E 16.7%
! B 33.3% C ! B 50.0%

D ! A 100.0% ! A 50.0%
E ! A 33.3% D ! C 66.7%

! D 33.3% ! E 33.3%
! B 33.3% E ! B 100.0%

TP (1st to 2nd SLC) TP (2nd to 3rd SLC) TP (1st to 2nd SLC) TP (2nd to 3rd SLC)
Triplet ABC 50.0% 50.0% CBA 50.0%

Illusory triplet ABE 50.0% 50.0% EBA 100.0%

Part triplet CBE 33.3% 50.0% EBC 100.0%

50.0%

50.0%

33.3%

Forward items Backward items

Units

Shape/Location Combination (SLC)

Test items

Figure 2 . Forward and backward transitional probabilities in Slone and Johnson’s
(2018) Experiment 1. (Top) The top panel shows the units in the familiarization
stream and their possible transitions, for forward items (left) and backward items
(right). Each letter stands for a shape/location combination. (Middle). Possible
transitions between individual shape/location combinations during familiarization, for
forward transitions (left) and backward transitions (right). (Bottom). Transitional
probabilities among shape/location combinations in the test items.

frequency (Endress & Mehler, 2009b; Endress & Langus, 2017; Perruchet & Poulin-

Charronnat, 2012), while Slone and Johnson’s (2018) Experiment 1 seems to suggest

the opposite, as backward TPs were not informative in these earlier experiments.3

3A multiple cue integration perspective suggests another, not mutually exclusive, interpretation
of Slone and Johnson’s (2018) Experiment 1. As mentioned above, Slone and Johnson’s (2015)
(adult) participants might have preferred actual triplets to illusory triplets due to the unique spatial
trajectory of triplets as opposed to illusory triplets; this view is particularly plausible because, at
least in Working Memory, objects seem to get bound to their location in a fairly automatic way
(e.g., Makovski & Jiang, 2008; Makovski, 2016). A similar explanation might thus hold for Slone
and Johnson’s (2018) Experiment 1 as well: Infants might discriminate actual triplets from illusory
triplets because these items imply different spatial trajectories. Note that, as only the trajectory of
the actual triplets would be familiar to infants, this explanation would support the interpretation
that infants showed a familiarity preference in Experiment 1. In contrast, spatial trajectory is an
unlikely explanation for infant preference in Experiments 2 to 4, as the trajectories implied by actual
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Immediate repetitions of chunks. In Slone and Johnson’s (2018) Experi-

ments 2 and 3, infants discriminated between units and sub-units, providing evidence

for the sub-unit effect and strongly suggesting that infants extracted and learned

chunk-like units. The critical question is how they achieved this feat: Did they just

use TP-based computations, or did they resort to other strategies?

While infants might have used TP-based computations, there is one feature of

Slone and Johnson’s (2018) experiments that may lie at the heart of the ability to

chunk items: In their experiments, units occurred in immediate repetition, which

might lead infants to extract units as chunks in turn. For example, when we see the

sequence ABCABCABC. . . , interrupted by some other sequence, we are likely able

to memorize the chunk ABC, not because we compute the TPs between the A’s, B’s

and C’s (though we might do so as well), but rather because the immediate chunk

repetition aids memorization. Such repetitions occurred with considerable probability

in familiarization sequences such as Slone and Johnson’s (2018) (Weisstein, n.d.).

This interpretation is consistent with earlier results. First, it is known since

Ebbinghaus (1885/1913) that repeating items aids memorization. Second, in earlier

speech segmentation experiments, the inclusion of immediate item repetitions enabled

computations that were not available in the absence of such repetitions (Bonatti,

Peña, Nespor, & Mehler, 2005). Third, there are both empirical and theoretical

reasons to think that immediate repetitions of items might be particularly helpful

for extracting chunks (Onnis, Waterfall, & Edelman, 2008; Vlach & Johnson, 2013).

pairs and embedded pairs should be equally familiar.
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Further, once a chunk has been learned, it can be recognized in the sequence, which,

in turn, likely improves segmentation performance for the items that have not been

recognized yet (Bortfeld et al., 2005; see also Kim & Sundara, 2015; Lew-Williams,

Pelucchi, & Saffran, 2011; Shi & Lepage, 2008).

This view may also help to explain why infants in Experiment 4 did not dis-

criminate actual pairs from embedded pairs: given that Experiment 4 used more

items, these items were less likely to occur in immediate repetition, and thus may

have been less likely to be learned as chunks (see also Vlach & Johnson, 2013). In

contrast, TP-based computations seem less sensitive to the presence or absence of

immediately repeated items. As a result, infants successfully discriminated high-TP

items from low-TP items, and looked longer to part-sequences (which had lower TPs)

than to either true pairs or embedded pairs. In other words, infants are exquisitely

sensitive to chunks when presented with continuous sequences. However, like adults,

they might require specific cues such as the immediate repetition of items to extract

the relevant chunks, while TP-based computations may operate irrespective of the

presence of other cues (see Endress & Bonatti, 2016 for more results supporting this

conclusion).

Conclusions

An important question in cognitive development is how we extract and learn

chunks of recurring materials in continuous sequences. We critically reviewed evidence

that one of the most prominent candidate mechanisms — statistical learning based
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on TPs — might serve this purpose. The evidence is decidedly mixed. While some

results suggest that learners can use TPs to place chunks of recurring material in

memory, we showed that these results have alternative interpretations and are not

always statistically reliable.

Interpretation of such data is particularly difficult because learners can process

multiple cues simultaneously (e.g., Gervain & Endress, 2017; Endress & Bonatti,

2016; Frank et al., 2009; Gerken et al., 2005; Schonberg et al., 2018; Ter Schure

et al., 2014), and might rely on the most reliable (e.g., Frank & Tenenbaum, 2011;

Gerken, 2010) or the most salient cue (Endress, 2013; Gervain & Endress, 2017). A

case in point is Slone and Johnson’s (2018) Experiment 1, where backward TPs are

the strongest available cue, and the infants’ looking behavior seemed to track the

strength of backward TPs in the different test items rather than the frequency of

recurring chunks. This does not necessarily imply that forward and backward TPs

are tracked by separate mechanisms, and, in fact, a mechanism as simple as Hebbian

correlational learning can handle TPs in both directions, (Endress & Johnson, under

review). It does imply, however, that one must take care to test for and exclude

alternative mechanisms, similarly to how cognition is studied in other animals (e.g.,

van Heijningen, de Visser, Zuidema, & ten Cate, 2009; Shettleworth, 2010).

Further, learners may need multiple cues to solve a learning problem (e.g.,

Gerken et al., 2005; Endress & Langus, 2017). Slone and Johnson’s (2018) exper-

iments provide a case in point for this possibility as well. In their Experiments 2 and
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3, infants could rely on both TPs and immediate chunk repetitions during familiariza-

tion and showed evidence for extracting chunks. In contrast, in their Experiment 4,

where chunk repetitions were less systematic, no evidence for chunking was obtained.

Taken together, this discussion raises two critical questions for future studies of

statistical learning: which cues allow learners to memorize chunks from continuous

sequences, and whether these cues are available in naturalistic input.
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