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Abstract

In this thesis I discuss a series of anelastic approximations and detail the assumptions

used in the derivation. I derive an entropy and temperature formulation of the anelastic

approximation along with a simplification to the entropy formulation introduced by

Lantz (1992) and independently by Braginsky & Roberts (1995). I assess range of

applicability of the anelastic approximation, which is often used in describing the

dynamics of geophysical and astrophysical flows.

I consider two linear problems: magnetoconvection and magnetic buoyancy and

compare the fully compressible solutions with those determined by solving the anelastic

problem. I further compare the Lantz-Braginsky simplification with the full anelastic

formulation which I find to work well if and only if the atmosphere is nearly

adiabatic. I find that for the magnetoconvection problem theanelastic approximation

works well if the departure from adiabaticity is small (as expected) and determine

where the approximation breaks down. When the magnetic fieldis large then the

anelastic approximation produces results which are markedly different from the fully

compressible results. I also investigate the effects of altering the boundary conditions

from isothermal to isentropic and the effect of stratification on how some of the

parameters scale with the Chandrasekhar number. The results for magnetic buoyancy

are less straight-forward, with the accuracy of the approximation being determined by

the growth rate of the instability.

I argue that these results make it difficult to assessa priori whether the anelastic

approximation will provide an accurate approximation to the fully compressible system

for stably stratified problems. Thus, unlike the magnetoconvection problem, for

magnetic buoyancy it is difficult to provide general rules asto when the anelastic

approximation can be used. When the instability grows quickly or the magnetic field

v



is large the results do not compare well with the fully compressible equations. I outline

a method for a two-dimensional non-linear time-stepping computer program and explain

some problems with current non-linear programs.
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Chapter 1

Introduction

1.1 The Sun

The Sun has been studied for millennia with Babylonian astronomers taking some of the

first early recordings of the Sun via the naked eye. Along withmost other ancient peoples

Babylonians studied the Sun to gain knowledge about the seasons and also due to their

religious ceremonies. They applied mathematics to the collections of data recorded from

water-clocks to deduce orbital periods. They deduced that the Earth was in orbit around

the Sun and calculated the time for a sidereal year, the time for the Eath to rotate around

the Sun, within 6 minutes of the current value (Leverington,2003). Trying to understand

our nearest star is still a challenge today due to the scales involved in the problem. It is of

practical importance that we can predict solar phenomena, for instance space weather as

this can damage satellites and other equipment, but it is of greater importance to science

in investigating the natural world around us. To this end I will start by explaining some

of the observations that motivate this work.

1



1. INTRODUCTION

1.1.1 Observations

One of the earliest and easiest solar observations to make isthat of sunspots. Sunspots

are phenomena visible as dark spots compared with surrounding regions. Galileo Galilei

published the first modern description of sunspots in 1613, in response to Christoph

Scheiner who argued that sunspots were little planets. Galilei responded by tracking the

motion of sunspots across the face of the Sun and proving thatthey rotate with the Sun’s

surface (Galilei et al., 1613). His 28-day observations, made with the new instrument of

the time, the telescope, are shown in figure 1.1. Galilei evenpostulated that the spots,

irregular in nature, were clouds of cool gas.

The number of sunspots at this time was decreasing as the Sun entered a period called

the Maunder minimum during 1645 - 1715 (Eddy, 1976). The Maunder minimum was

a period when sunspot numbers decreased dramatically. The sunspots that did appear

during the minimum, 1680-1710, were confined to the southernhemisphere (Ribes &

Nesme-Ribes, 1993). This shows that the mechanism which generated the spots was

altered and although it was still capable of developing spots it did so in far fewer numbers

and in only one hemisphere.

The sunspot cycle was discovered later. In his search for inter-mercurial planets Schwabe

(1843) discovered that every ten years the number of sunspots reached a maximum.

This observation has later been corrected to the eleven yearsunspot cycle. Evidence

for these cycles can be inferred from the effect the solar wind had on the Earth in the

past. During normal solar activity the Sun produces a streamof magnetic particles,

the solar wind, which deflects many galactic cosmic rays fromreaching the Earth’s

heliosphere. Galactic cosmic rays are high energy particles and when these enter the

terrestrial atmosphere they produce unstable radioactiveisotopes, namely10Be and14C

which can be measured in polar ice core records and tree fossil records respectively

(Beer, 2000). An increase in radioactive isotopes indicates a decrease in the solar wind.

This suggests events similar to the Maunder minimum, calledGrand minima, occur

aperiodically throughout the records. The radioactive record for 10Be shows evidence of

2



1.1 The Sun

Figure 1.1: Galileo’s drawings of sunspots from ‘Letters on Sunspots’ (1613)

where Galileo, along with his student Benedetto Castelli, used a telescope to

show that sunspots moved on the surface of the Sun.
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1. INTRODUCTION

the eleven-year cycle going back over 9 000 years (Vonmoos etal., 2006).

The magnetic nature of sunspots was discovered by measuringthe Sun’s spectral lines

using the phenomena of Zeeman splitting. The splitting intodifferent polarisation

states of spectral lines, or widening, in the presences of magnetic fields is known

as Zeeman splitting and was discovered in 1896. Hale (1908) used data from Mt.

Wilson observatory, along with an understanding of Zeeman splitting, and concluded

that sunspots possessed a magnetic field. He also noticed that sunspots typically appear

in pairs of opposite polarity with the leading sunspot, i.e.the most Eastward, having

a different polarity in the northern and southern hemispheres as in figure 1.3. This

indicates that the Sun has a magnetic field which is coherent on a global scale.

A sunspot marks a region on the solar surface where a nearly vertical magnetic flux

tube emerges from the solar interior. The radial field in the centre can be measured on

magnetograms with a typical strength of the spot around3 kG. Large sunspots occur

in pairs of opposite polarity, see figure 1.2 for an emerging pair. The polarity of the

leading spot is the same for all pairs in the same hemisphere.The total solar radiance

increases when sunspot activity is highest as active regions are on average brighter due

to the additional faculae, even though they contain darker sunspots. The variation of

solar irradiance between solar minimum and maximum is about0.1% which would lead

to an expected effect on the Earth’s temperature of∼ 0.1 ◦C. For a review on sunspots

see Thomas & Weiss (2008).

Along with the temporal variation, sunspots also display a spatial evolution. At the

beginning of the sunspot cycle a small number of sunspots form at mid-latitudes∼ 30◦

then, slowly increasing in number, the regions of sunspot generation migrate to the

equator. The number of sunspots then decreases and the cyclestarts again. When the

cycle starts again it does so with a reversed magnetic field sowhat was the north pole

becomes the south pole. This magnetic field reversal means that although the sunspot

cycle is over eleven-years the magnetic solar-cycle is overapproximately twenty-two

years. The polarity of the leading sunspot in each hemisphere is reversed after the each
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1.1 The Sun

Figure 1.2: The emerging sunspot divided and became two spots over a two-day

period. Each of the spots is about the size of Earth. Courtesy of NASA/SDO and

the AIA, EVE, and HMI science teams.

Figure 1.3: A magnetic butterfly diagram showing the polarity of the sunspots for

each rotation of the Sun since 1975. Courtesy of David Hathaway at NASA.
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Figure 1.4: A butterfly diagram showing the positions of the sunspots for each

rotation of the Sun since May 1874 shows that bands develop first from mid-

latitudes, widen, and then move toward the equator as each cycle progresses.

Courtesy of David Hathaway at NASA.
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1.1 The Sun

sunspot cycle, indicating the field reversal. If this process is mapped out on a time-

latitude plot of sunspots this produces the well known ‘butterfly diagram’, first exhibited

by Maunder (1904) and shown in figure 1.4. The cycles are shownin this ‘butterfly

diagram’ where modulations can be seen in cycle strength andthe latitude at which

sunspots appear, but there is near symmetry between the two hemispheres. The solar

coronal field can be used as a measure of the radial component of magnetic field and the

coronal field reverses in the middle of the eleven-year sunspot cycle when numbers of

sunspots is at a maximum.

It is often helpful to decompose magnetic fields into two components: poloidal and

toroidal. In axisymmetric fields the toroidal component is in the same plane as the

long dimension of a torus, or the component of magnetic field parallel to latitudinal

lines. The poloidal field is outwards from the poles, and is the part of the magnetic

field that contains a radial component. The coronal, or poloidal, field is out of phase

with the magnetic field that creates sunspots, the toroidal field. This means that at solar

maximum, when the number of sunspots is greatest, the coronal field is weakest, as in

figure 1.3.

Today observations can be carried out using advanced satellites such as, Solar Terrestrial

Relations Observatory (STEREO,http://stereo.gsfc.nasa.gov/), Solar and

Heliospheric Observatory (SOHO,http://sohowww.nascom.nasa.gov/ ), and

Hinode (http://solarb.msfc.nasa.gov/) capturing many different wavelengths,

high resolution measurements of the magnetic field, and evenproducing so-called ‘three-

dimensional images’. Although satellites remove the errors introduced from the Earth’s

atmosphere there are many ground based telescopes equippedwith adaptive optics that

are trained on the Sun, such as the Swedish 1-m Solar Telescope, which produces high

resolution images, or the BiSON and GONG networks that provide an almost continual

monitor of oscillations in the Sun from locations across theEarth.

Modern telescopes have allowed a much clearer imaging of theSun and this has nurtured

the study of coronal loops, fine structure in sunspots and other solar surface phenomena.
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The telescopes have also allowed a more advanced predictionof space weather from

monitoring events such as coronal mass ejections and gamma ray bursts. Observations

of the Sun show the magnetic field is not diffuse but is insteadconcentrated into regions

of intense field, ranging from sunspots (diameters∼20 Mm and field strengths of 3 kG)

to magnetic knots (200 km, 1 kG) (see e.g. Thomas & Weiss, 2008). Images reveal a

complicated pattern of fine structures in both the penumbra and in the umbra, as shown

in figure 1.5. The umbra is the dark centre of a sunspot and it issurrounded by the

penumbra, consisting of linear bright and dark radial elements. There are bright points

that can be seen in the penumbra amongst downflows and these are clear indicators of

magnetoconvection, convection in a magnetic medium. Some of these phenomena, such

as umbral dots, can be explained by current theory and can be used to test that computer

models are capable of producing results seen in the Sun. Umbral dots have diameters of

100-200 km and bright dots can last for days. Thomas & Weiss (2008) has a review of

the features in sunspots and umbral dots can be seen in figure 1.5. Some sunspots are

symmetrical but many are highly irregular.

As well as sunspots, which are a manifestation of the large solar magnetic field, the Sun

also exhibits a small scale magnetic field on the surface. This is often referred to as

the “magnetic carpet” and can be seen in the granulation patterns which occurs at two

discrete scales: granules and supergranules. Granules arehot plumes of gas and have

a size of∼ 1, 500 km and time-scales of 15 minutes and supergranules are 20 times as

large with time-scales of∼24 hours (Thomas & Weiss, 2008).

The final piece of observational data is from measurements ofthe solar rotation profile.

The Sun is not a solid body. At the equator the Sun rotates in about 25.6 days and slower

at the poles. The rotation rate observed at the surface is a monotonic smooth transition

from the poles to the equator. It rotates counter-clockwiseif viewed from a position

above the Earth’s northern pole. The internal rotation profile of the Sun is discussed in

more depth later in this chapter.

The observational data fits together to build up a picture of the Sun but a theoretical
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1.1 The Sun

Figure 1.5: Image in visible light from the Swedish 1-m Solar Telescope showing

dark filaments around a sunspot. The dark regions are the umbra and they

are surrounded by the penumbra with a background of granulation. Penumbra

filaments with dark cores can be seen protruding into the umbra. Credit: Royal

Swedish Academy of Sciences.
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model is also required, this is where solar magnetohydrodynamics is required. The aim

of solar magnetohydrodynamics is to explain these observations and develop a coherent

picture of the physical processes which take place.

1.1.2 Solar interior

In the solar core, where temperatures are∼ 13.6 × 106 K, nuclear fusion combines

hydrogen ions together in proton-proton reactions to form helium ions. There is a small

amount of mass loss involved in nuclear fusion and that is carried away by high energy

photons, neutrinos and gamma rays. Heat is radiated out fromthe core into the radiative

interior of the Sun. At about∼ 0.7 R⊙ , where R⊙ is the radius of the Sun, the opacity

increases so that radiative processes are no longer capableof transferring the heat and

the interior becomes unstable to convection. The convection zone is unstably stratified

with highly time-dependent flows driven by vigorous thermalconvection. The radiation

and convection zones can be seen in figure 1.6 along with the transition between the

two, which is discussed in more depth later. The convection zone is surrounded by the

concentric zones of the photosphere, chromosphere and the corona respectively. A more

detailed study of the internal solar structure is found in Priest (1984).

Figure 1.6: A schematic of the radial entropy gradient, ds/dr, convective

enthalpy flux, and radiative heat flux Fr. Courtesy of Miesch (2005).
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1.1 The Sun

The convection zone is highly turbulent. This turbulence can be seen on the surface

in the form of solar granulation. The small scale magnetic dynamo, which is the self-

generation of magnetic field on a small-scale, is thought to result from the interplay

between magnetic fields and turbulent convection (see e.g. Cattaneo et al., 2003; Vögler

& Schüssler, 2007) which gives rise to the “magnetic carpet”, as previously discussed.

Figure 1.7: Computer generated image of a p-mode solar oscillation (l = 20,

m = 16 and n = 14). Courtesy of Kosovichev et al. (1997).

Until the advent of helioseismology little was known about the internal rotation profile

of the Sun. As discussed earlier, it was known that the surface rotation was non-

uniform with faster rotation at the equator than at the poles. Some results could be

deduced from the oblateness of the Sun but, beyond this, the internal rotation profile was

guesswork, with suggestions that it obeyed the Taylor-Proudman theorem of constant

rotation on cylinder (Pedlosky, 1987). There was also some debate as to how the Sun

shed its angular momentum during the initial phase of gravitational collapse before it

reached the main-sequence phase. This issue is solved, in part, by the solar wind torque

which provides a mechanism to explain the loss of solar angular momentum. How deep

this profile extends into the Sun was unknown until the mid-eighties when the field of

helioseismology started producing results.
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Helioseismology is the study of ‘sun-quakes’, i.e. of globally resonant oscillations inside

the Sun. In the Sun there are many globally resonant modes andthese can be analysed,

using Fourier transforms, and decomposed into spherical harmonics. The turbulent

convection creates a range of oscillations at the surface ofthe Sun. The acoustic or

p-modes then travel towards the centre of the Sun but are refracted when the horizontal

phase speed is equal to the sound speed. In the Sun the sound speed increases as a

function of depth so high frequency oscillations are trapped in a thin acoustic cavity

near the surface whereas low frequency oscillations can penetrate much deeper into the

solar interior, see figure 1.7.

The frequencies of the different modes depends onl, m andn, which are the angular

order, azimuthal order, and absolute number of nodes in the radial direction respectively.

The azimuthal wave number would exhibit degeneracy in a non-rotating case but the Sun

is rotating so this degeneracy is removed. Thousands of these modes are measured by

ground-based telescopes with varying frequencies and modes. The frequency depends

on all three wave numbers and the frequency splits between modes with different radial

ordern. From the frequency splitting data information can be obtained about the internal

rotation profile as a function of depth by solving the inverseproblem. The current

rotation profile is shown in figure 1.8; there is a lack of data at the poles as acoustic

modes can give no information at high latitudes. An overviewof this technique applied

to the Sun is given in Christensen-Dalsgaard (1988) and Di Mauro (2008).

It is clear from the rotation profile shown in figure 1.8 that the variation seen at the

surface between the equator and the poles extends into the solar interior with a sharp

transition at the base of the convection zone. The rotation profile is not constant on

cylinders, as previously suggested, but is more constant onradial lines. The dashed line,

which extends from the ‘Tachocline’ label in figure 1.8, marks the base of the convection

zone. There is a sharp transition from the stably stratified radiative zone, which rotates

as a solid body, to the unstably stratified turbulent convection zone, which is rotating

differentially. The transitional zone, or shear-layer, iscalled the tachocline which has
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1.2 Theoretical background

Figure 1.8: The internal rotation rate of the Sun with red for fast and blue for slow

rotation rate. Image from M. J. Thompson.

a rotation profile which matches onto solid body rotation in the radiative zone. The

tachocline is thin, helioseismology can only give an upper estimate of the thickness of

this region but it is thought to be around0.04 R⊙ (Charbonneau et al., 1999). The change

from radiation to convection as the dominant heat transfer mechanism occurs at a similar

place as the change from solid body rotation to differentialrotation, see figure 1.6. The

tachocline is the penetrative region and the thermal adjustment layer. In the thermal

adjustment layer (the slow tachocline) the atmosphere is not nearly adiabatic, unlike the

regions above it.

1.2 Theoretical background

Sunspots can be used as an indicator for large-scale magnetic field and the sunspot cycle

exhibits a large-scale pattern which suggests a dynamic solar magnetic field of a global

scale. Small scale magnetic field generation is generated bythe interaction between the

turbulent convection with the magnetic field and is reasonably well understood (see e.g.

Cattaneo & Hughes, 2001; Cattaneo et al., 2003; Vögler & Schüssler, 2007). The large-

scale field can be inferred from the solar cycle. The decay rate of the solar magnetic field

due to diffusion alone is∼1010 years which is on a similar time-scale to the lifetime of
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the Sun. The time-scales do not rule out the possibility thatthe large-scale magnetic

field is a fossil field: the decaying remnants of an initial field. Although not ruled out

by time-scales it is unlikely that the solar magnetic field isthe result of a fossil field

as it is dynamic, as shown by the ‘Butterfly diagram’ in figure 1.4 along with surface

magnetic field and Grand Minima. Along with time-variationsin the solar differential

rotation there are also oscillations called torsional oscillations, which are bands of faster

or slower rotation which migrate in latitude on the solar surface (Proctor, 2006). All

these features suggest that the solar magnetic field is not a simple oscillator.

Discarding the possibility of a fossil field the solar magnetic field must be sustained

by converting kinetic energy into magnetic energy. Understanding the processes which

drive the magnetic field generation is the goal of solar dynamo theory. Cowling (1933)

proved that no steady axisymmetric magnetic field could be maintained by dynamo

action. This means it is impossible to capture dynamo actionin simple systems, unless

additional assumptions are made e.g. in mean field theory (Krause & Rädler, 1980).

The simplistic theoretical picture for the solar dynamo is that an initial poloidal field is

wound up, due to differential rotation, into a toroidal field. Parker (1975) showed that the

large-scale magnetic field cannot be generated within the convection zone because it will

rise to the surface too quickly, thus not allowing sufficienttime for amplification. Before

the discovery of the tachocline Parker predicted a dynamo, deep-seated in the Sun, where

the solar interior is stable so that magnetic fields could remain stored for a time longer

than convective time-scale. This would allow amplificationby dynamo action before the

fields rise, due to the magnetic buoyancy instability, through the turbulent convection

zone and arrive at the surface as a pair of sunspots. For a review of rising flux in the

convection zone see Fan (2009). To complete this theoretical picture the toroidal field

needs then to be turned into poloidal field via another mechanism, such as proposed by

Parker (1955a) and later by Steenbeck & Krause (1966), but this is beyond the scope

of this thesis. For reviews on dynamo theory see (Ossendrijver, 2003; Tobias & Weiss,

2007; Charbonneau, 2010). Part of this theoretical pictureis the winding-up of magnetic
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1.2 Theoretical background

field lines, this requires a strong shear flow. From the internal rotation profile the region

with the largest shear is the tachocline. As the tachocline is a likely site for generation

of the large-scale toroidal magnetic field modelling this region correctly is important for

the understanding of the dynamo.

The reason the tachocline is so thin has been the subject of research for some time with

early suggestions from Spiegel & Zahn (1992) who pose the problem by setting an initial

condition then, as time advances, allow the system to spin-down. They maintain that a

meridional flow, driven by baroclinic instabilities, wouldcarry the differential rotation

into the radiative zone over the lifetime of the Sun. In orderto counteract this flow

they suggest that stratified turbulence will mix the angularmomentum in such a way

as to make movements on a sphere more efficient than radial ones. The nature of the

turbulence then plays a large role in keeping the tachoclineso thin as a strong preference

for horizontal motions can keep radiative effects from diffusing the tachocline. Spiegel

& Zahn claim that the stratification in the tachocline will engender a two-dimensional

turbulence over a three-dimensional turbulence.

Spiegel & Zahn (1992) did not consider the effects of magnetic fields in the horizontal

turbulence but Gough & McIntyre (1998) suggest it is inevitable that the radiative interior

has a large-scale magnetic field. A field as low as10−2G is all that is required for the

radiative zone to rotate as a solid body. In the limit where viscous effects are ignored

Ferraro’s law of isorotation states that fluid angular velocity is constant on a surface

mapped by rotating a magnetic field line. Although this goes some way to explaining the

thin tachocline it leaves the question of how the magnetic field in the interior does not

transport the differential rotation from the convection zone inwards through magnetic

coupling. For a review of the tachocline see Tobias (2005); Gough (2007); McIntyre

(2007).

There are two processes which are fundamental to a solar dynamo model:

magnetoconvection and magnetic buoyancy. I will give a brief introduction to both these

processes.
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1.2.1 Background to Magnetoconvection

Convection is the process of transferring fluid heat by motion. Warm fluid is less dense

and, in a gravitationally stratified atmosphere, becomes buoyant. A parcel of warm

rising fluid will occupy an increasing volume as it rises which will smooth outany

perturbations present in the parcel. Conversely, a parcel of cold fluid is denser and so it

will descend and occupy a decreasing volume, which willintensifyany variations present

in the parcel. Magnetoconvection is the study of how a convecting hydrodynamic system

responds in the presence of magnetic fields, and how the two interact. The reviews

of magnetoconvection by Hughes & Proctor (1988); Proctor & Weiss (1982); Proctor

(2005) give a wide and detailed introduction to the field.

To understand magnetoconvection requires an understanding of how magnetic fields

evolve in a conducting fluid. Magnetic fields obey Maxwell’s equations and, assuming

that the displacement current can be neglected, the evolution of magnetic fields is

governed by the induction equation

∂B

∂t
= ∇× (u ×B) −∇× (η∇× B) , (1.1)

whereη is the magnetic diffusivity, andB, u are the magnetic field and velocity field

respectively. The magnetohydrodynamic equations will be further developed in§2.1.2.

A non-dimensional number for measuring the importance of the magnetic advection

to magnetic diffusion is the magnetic Reynolds numberRm = usd/η whereus, d are

relevant velocity and length scales. In the astrophysical contextRm ≫ 1 so advection

is dominant therefore the magnetic field lines move with the fluid and are wound up

until they are on a length scale where diffusion is again important. For the tightly

wound-up field the effective length-scale decreases so the local magnetic Reynolds

number becomes smaller allowing reconnection to occur locally. Reconnection is where

magnetic field lines from different domains are spliced together changing the magnetic

topology of the system (see e.g. Priest & Forbes, 2000). Magnetic fields also have a

force on the fluid flow, called the Lorentz force.
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Early numerical studies of magnetoconvection were carriedout using the Boussinesq

approximation, where density stratification is ignored. For a longer discussion of the

Boussinesq approximation see§2.2.1. The numerical results by Weiss (1966) show that

in rising convective cells flux is expelled to the edge of the cell. Inside a cell the scale

of flux variations decreases and resistive effects dominate, this phenomena is called flux

expulsion. The total pressure, that is the thermal and magnetic pressure combined, must

be nearly equal or a flow would develop to equalise the pressure imbalance. In flux tubes

near the surface of the Sun the magnetic pressure is almost equal to the un-magnetised

surroundings so the flux tube must be almost evacuated. The flux seen at the surface

exceeds equipartition and around the tube is a strong downwelling of fluid as the tube

emerges on the surface (Galloway et al., 1977). The strong magnetic fields impede

convection via the Lorentz force, so the temperature in the flux tube will be less than

the surrounding temperature. Simulations and observations show broad diffuse up-flows

surrounded by cool dense flux tubes, with the minimum size of the downwellings limited

by dynamical effects of the magnetic field. In a system with convective flows steadily

overturning then magnetic fields will be advected into converging regions. This leads

to flux stretching, which transfers energy from the velocityto magnetic field. This is

important for dynamos.

Nonlinear Boussinesq magnetoconvection has been studied in great detail, with

an overview in Proctor & Weiss (1982). There are limitationswith using

the Boussinesq approximation for magnetoconvection such as modelling evacuated

regions or a changing plasmaβ. Magnetic pressure is not correctly modelled in

Boussinesq magnetoconvection as evacuated regions cannotdevelop. The Boussinesq

approximation has an up-down-symmetry which tends to favour hexagonal convective

cells.

Using a fully compressible linear stability analysis Cattaneo (1984) studied two-

dimensional modes. He found that when the plasma betaβ, which is a ratio of the

thermal pressure to the magnetic pressure, wasβ ≈ 1 then fast and slow modes conspire
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to make atmospheres, which are stable when un-magnetised, become convectively

unstable. As this thesis is focused on the anelastic approximation the differences in

fully compressible and Boussinesq convection are of interest to see where the anelastic

approximation fairs better at modelling these phenomena.

1.2.2 Background to Magnetic Buoyancy

The Lorentz force can be split into a magnetic pressure and a curvature force. For an

element of flux to be in dynamical equilibrium with its surroundings the sum of the

thermal pressure and the magnetic pressure must be equal both inside and outside the

element. If the element is magnetised and the surroundings are not then the external

thermal pressure will exceed the internal thermal pressure. If the element is sufficiently

thin, or for other reasons, the temperature in the element isequal to the surrounding

temperature then the element will be less dense than its surroundings. In a gravitationally

stratified atmosphere lighter elements will rise.

The term magnetic buoyancy was coined by Parker (1955b) to explain the formation of

sunspots. In the review by Hughes (2007) he noted there are three different mechanisms

referred to as magnetic buoyancy.

(i) In an isolated magnetic flux tube there is internal magnetic pressure so the internal

thermal pressure will be less than the external pressure andso the density is lower

inside the tube than out. Gravity will thus cause the tube to become buoyant and

rise. This is more a lack of equilibrium than an instability.

(ii) A similar case where there is an isolated flux tube coolerthan its surroundings so

the pressure is in equilibrium but not overall mechanical equilibrium.

(iii) The buoyancy effect of a magnetic field can act as an instability mechanism in a

magnetized atmosphere in equilibrium. The simplest being an atmosphere with
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1.2 Theoretical background

the horizontal field component only dependent on height as studied by Newcomb

(1961).

I will only investigate the last mechanism and from now onwards, this is the mechanism

I will be referring to by the term ‘magnetic buoyancy’.

In magnetic buoyancy two-dimensional instabilities, where the magnetic field lines

are not bent, are called interchange modes because one magnetic field line exchanges

position with another. Early theoretical work by Newcomb (1961) looked at the stability

of interchange and three-dimensional modes in ideal plasmas using the energy principle

of Bernstein et al. (1958).

An interesting feature of magnetic buoyancy is that three-dimensional modes can be

more destabilising than interchange modes. The extra work done by three-dimensional

modes against magnetic tension is often less than the extra work interchange modes must

do to overcome thermal pressure and magnetic pressure to create a density perturbation

(Hughes & Cattaneo, 1987).

The effect of shear flows on magnetic buoyancy was investigated by Tobias & Hughes

(2004) who looked at the stability of a flow withB = B(z)x̂,U = U(z)x̂. Their

analysis found that shear ultimately had a stabilising effect, but for certain modes the

effect could be initially destabilising. Vasil & Brummell (2008) extended the work to

the non-linear regime and found a very strong shear was required to cause a layer to

become unstable to magnetic buoyancy although it is not shown if this is still true for

sufficiently long time-scales, a recent update of this work is in Silvers et al. (2011).

It is still not clear if the concentrated flux that appears at the surface can be a result of

the magnetic buoyancy instability alone, as non-linear effects of the Kelvin–Helmholtz

instability occur on strongly buoyant fields wrapping them up so no large-scale flux

escapes. Cattaneo & Hughes (1988) consider the nonlinear evolution of an interchange

mode of a uniform magnetic field in an otherwise non-magneticatmosphere. The

instability develops as a usually Rayleigh-Taylor ‘mushroom’ instability but then there is
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a second stage where the motion is dominated by interactionsof vortices of opposite sign

from neighbouring mushrooms. This leads to a fairly rapid break-up of the rising layer

and so little flux escapes. Wissink et al. (2000) extended thetwo-dimensional model and

investigated three-dimensional modes and noted the importance of twisting the flux tube

to retain coherence as the tube rises.
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Chapter 2

Mathematical Modelling

In this section I discuss the sets of equations that are used to model the physical

system in this thesis. I also introduce the dimensionless parameters that are used. The

physical systems of interest are compressible electrically conducting plasmas that can be

modelled using a single fluid version of the magnetohydrodynamic equations.

2.1 Mathematical formulation of the problem

One set of equations that I will use to model the magnetic buoyancy and the

magnetoconvection instabilities in the Sun are the magnetohydrodynamic equations. The

magnetohydrodynamic equations are a combination of Maxwell’s equations and Ohm’s

law along with the equations used in hydrodynamics. These equations are commonly

used for solar modelling. A complete derivation is lengthy and unnecessary here but can

be found in most text books on the subject, such as Davidson (2001).

2.1.1 Maxwell’s Equations

It is useful to begin with Maxwell’s equations and explain the set of assumptions that

are required to derive the magnetohydrodynamic equations.The Maxwell’s equations
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describing the evolution of electro-magnetic fields are

Gauss’ law: ∇ · E = ̺µ0c
2, (2.1a)

Gauss’ law of magnetic fields:∇ · B = 0, (2.1b)

Faraday’s law: ∇× E = −∂B
∂t
, (2.1c)

Ampère’s law: ∇× B = µ0J +
1

c2
∂E

∂t
, (2.1d)

whereE is the electric field,̺ the charge density,µ0 is the permittivity of free space,

andc is the speed of light in a vacuum,B is the magnetic field,t is time, andJ is the

electric current density.

Along with Maxwell’s equations another relation is required to derive the

magnetohydrodynamic equation: Ohm’s law,

E + u× B =
J

σe
, (2.2)

where u is the velocity relative to the magnetic fieldB and σe is the electrical

conductivity of the medium. This is only valid in the reference frame of the plasma.

When the particles are moving at non-relativistic speeds, i.e.u ≪ c whereu is a typical

velocity in the system, then the∂E/∂t in Ampère’s law (2.1d) is negligible with respect

to the other terms. This can be seen from a simple dimensionalanalysis. This allows

equations to be combined and simplified given that

(i) the phenomena under consideration are slow compared to the plasma frequency so

that the plasma is quasi-neutral, i.e. the number of electrons and ions in a volume

is equal;

(ii) the plasma is collision dominated so it obeys a Maxwell-Boltzmann distribution

of energy;
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(iii) the length-scales must be large compared with the Debye length, which is the

length over which a charge particle is screened, and the Larmor radius, which is

the radius of the helical motions an electron makes about a field line.

With these assumptions in place the Navier-Stokes equations can be combined with the

Maxwell equations to give the magnetohydrodynamic equations. In the Sun the scales of

interest are large and the fluid is relatively slow and dense so these assumptions (i)-(iii)

are met. This allows (2.1) to be combined to produce an equation describing the time

evolution of the magnetic field and (2.2) give the Laplace / Lorentz force.

2.1.2 The Magnetohydrodynamic Equations

I consider a plasma governed by the evolution equations for the mass densityρ, velocity

field u = (u, v, w), magnetic fieldB, thermal pressurep and either temperatureT

or entropys. The fully compressible equations of magnetohydrodynamics (see e.g.

Hurlburt et al., 1996) are given by

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.3a)

ρ

[

∂u

∂t
+ (u · ∇)u

]

= −∇p + ρg +
1

µ0
(∇× B) ×B + µ∇ · τ , (2.3b)

∂B

∂t
= ∇× (u× B) + η∇2B with ∇ · B = 0, (2.3c)

cvρ

[

∂T

∂t
+ u · ∇T

]

= −p∇ · u + k∇2T + µ
∂ui

∂xj

τij +
η

µ0

(∇×B)2 , (2.3d)

where τij =

(

∂ui

∂xj

+
∂uj

∂xi

− 2

3

∂uk

∂xk

δij

)

, (2.3e)

p = (cp − cv)ρT, (2.3f)

wherecp andcv are the specific heats at constant pressure and volume respectively; g

is gravity;µ is the dynamic viscosity;η = 1/ (eta0σe) is the magnetic resistivity;k is

the coefficient of thermometric conductivity (or thermal conductivity) and is related to

thermal diffusivity byκ = k/(ρcp); µ0 is the magnetic permeability of free space. I
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will assume that all of these parameters are constant. This assumption is valid only if

the height of the domain of interest is much smaller than the gravity length scale and

diffusion length scales, the variations in the non-radial (or in a Cartesian representation,

horizontal) direction in the Sun are suitably small, and theSun behaves as an ideal gas.

The assumption of constantg means that self-gravity is ignored so that any motion of

fluid should not be so large as to alter the local gravity. The assumption that the Sun

behaves as an ideal gas is valid even at high pressures experienced in the solar interior;

the high temperatures ensure that the gas is a charged plasmaof H and He ions, which

are orders of magnitude smaller in volume than H and He atoms,and so the gas can still

be modelled as ideal point-like ideal gas.

2.1.3 The Lorentz Force

The momentum equation (2.3b) shows how the magnetic field effects the fluid. The

magnetic field interacts with the velocity field via the Lorentz force, which can be written

as

(∇× B) ×B

µ0
=

B · ∇B

µ0
−∇

( |B|2
2µ0

)

, (2.4)

whereµ0 is the magnetic permeability of free space. From this it is clear the Lorentz

force has two distinct parts: a curvature force,B · ∇B and a magnetic pressure12µ0
|B|2.

The curvature force acts to straighten curves in magnetic field lines by exerting a force

with a component normal to the direction of the curvature of the field. This is what gives

the magnetic field lines a restoring force so that the field lines can act like a string. It

is this restoring force that allows the propagation of Alfv´en waves. These waves are

dispersionless wave that propagates in a similar manner to sound waves in that they

cause no flow perpendicular to the direction they travel in. The magnetic pressure acts in

a similar way to the thermal pressure but has a magnetic, rather than thermal, origin. For

two neighbouring elements to be in total pressure equilibrium the magnetic and thermal

pressure must sum to the same value in both elements.
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2.1 Mathematical formulation of the problem

2.1.4 A Discussion on Modelling Approaches

In the later chapters I shall predominantly be using equations in dimensionless form in

which the dimensionless numbers show the relative dominance of various terms, e.g.

the Reynolds numberRe = UL/µ is the ratio of inertial forces to the viscous forces,

whereU is a typical speed andL is a typical length. At low values of the Reynolds

number the flow is laminar and small scale motions are heavilydamped by viscosity so

that disturbances to the mean flow will dissipate over time. This is the case if the flow

is in a small domain, slowly moving or highly viscous. At highvalues of the Reynolds

number the flow is turbulent and this is a much harder flow to model. The small scale

motions are not heavily damped, so, to accurately model the flow small scales must be

included. These small scale motions may effect the large scale flow through non-linear

interactions, an inverse cascade, or through creating a type of anisotropy in the flow.

The Reynolds number is a standard dimensionless number in the dimensionless

momentum equation and in magnetohydrodynamics there is a magnetic equivalent: the

magnetic Reynolds numberRem = UL/η, which is in the dimensionless induction

equation. This dimensionless number measures the effect ofadvection compared to

magnetic diffusivity. In the case of a large magnetic Reynolds number the magnetic field

is advected along with the fluid motions with minimal diffusion. At infinite magnetic

Reynolds number the field is ‘frozen in’ which means that the field lines move with

the fluid and do not diffuse (Alfvén, 1943). In the Sun’s atmosphere the magnetic

Reynolds number is large and so without a dynamo the magneticfield would take

∼ 1010 years to decay away. The range of parameters required to model the Sun is

given in table 2.1. From the Reynolds number it is possible toestimate the range

of physically relevant length scales from Kolmogorov’s dissipation length to global

oscillations on the scale of the Sun. This estimate gives a range of length-scales∼1010

and three-dimensional computer modelling would require∼ 1030 grid points, which

is far greater than∼ 1011 points that is around the current upper bound available in

state-of-the-art super-computers. Making progress on computational modelling of the

25



2. MATHEMATICAL MODELLING

Sun requires a tactic other than developing more efficient algorithms for the currently

available computers.

Attempts have been made to parametrise the effects of the small scales or use mean

field theory so they do not need to be explicitly resolved. Reynolds (1895) developed

an important theory for modelling turbulence by averaging the Navier-Stokes equations.

The problem with this approach is that averaging and parametrising motions introduces

more unknowns than there are equations. The additional unknowns will require

additional assumptions in an attempt to close the system. Subgrid-scale closure is a way

of parametrising effects that are thought to exist on a scaleunresolved in the simulation.

The earliest paper using a subgrid-scale closure is Smagorinsky (1963) which relates

the stresses to strains using an eddy viscosity. All these parametrisations rely on various

additional assumptions which will be correct in certain instances but the range of validity

is not known.

For this reason I have used relatively simple models so I can alter parameters

computationally cheaply. Here simple means not including the whole range of physical

processes in order to focus on relevant or essential mechanisms. The aim was to allow

insight into how each parameter affects the system. This runs the risk of ignoring a

physical process that may be fundamental to understanding the system e.g. a depth

dependent diffusivity, but has the benefit that the equations I am solving are the correct

equations to use e.g. there are no terms from a turbulence closure model. The benefits of

having a simple system is that many simulations can be run cheaply to survey parameter

space so that robust features are clearly identified. If the diffusivities were set to values

expected from observations of the Sun then small structurescould develop, which would

be under-resolved in most models, so for the most part the values of the dimensionless

numbers used in this thesis are not values expected in the Sun, this is to make the problem

computationally tractable. This leads to a possible compromise where is it possible to

use the correct equations with the wrong parameters or the wrong equations but at the

observed parameter values. In this thesis I am using the correct equations but with the
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2.1 Mathematical formulation of the problem

wrong parameter values with the hope of finding trends that can be extrapolated into the

correct parameter value regimes.

2.1.5 Non-dimensional form

The equations (2.3a-d) can be written in non-dimensional form. It is convenient to work

with the equations in non-dimensional form as it reduces thenumber of parameters to

a minimum. I will assume that the region of plasma that is to bemodelled has a depth,

d, which will be the unit of length and the dynamical time,
√

d/g, is the unit of time;

the units of magnetic field, temperature and mass density,B0, T0 andρ0 respectively, are

their values at the top boundary of the domain. The unit of pressure from dimensional

analysis is thenp0 ∼ gρ0d. The dynamics of the problem is set not by the value of the

individual diffusivities and flows but by their relative importance in the equations. From

the relative importance of some parameters one can see when terms in the equations are

dominant or not which may give an insight into what is drivingcertain instabilities.

Using similar dimensionless numbers as in Tobias et al. (1998) I define the following set

of non-dimensional numbers

Ck =
k

d2ρ0cp

√

d

g
, Pr =

µcp
k
, ζ =

ηcpρ0

k
, R =

gcpd
3ρ2

0

kµ
, and F =

B2
0

gdρ0µ0
,

(2.5)

whereCk is the non-dimensional thermal conduction of the system — itis also the

ratio of the thermal relaxation time (d2ρcp/k) to the sound crossing time (d/
√

p0/ρ0);

the Prandtl number,Pr, is the ratio of momentum diffusivity to thermal conductivity;

the inverse of the Roberts number,ζ , is the ratio of magnetic diffusivity to thermal

conductivity;R is a non-dimensional measure of the strength of gravityg to diffusion,

and F is the non-dimensional strength of the magnetic field — it is proportional

to the inverse of the plasmaβ. (The magnetic Prandtl number can be obtained by

Prm = Pr /ζ .) The range of these parameters in a solar context is given intable 2.1

where the Mach numberM = u/us appears, withu representing a typical velocity
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Base of convection zone Photosphere

R =
gcpd3ρ2

0

kµ
1020 1016

ζ 10−4 10−1

Pr 10−7 10−7

F 10−5 . . . 10−7 100

Ck 10−11 10−5

M 10−4 100

Table 2.1: Values of relevant non-dimensional numbers from Ossendrijver

(2003).

and us the sound speed. Relations between these dimensionless numbers and other

commonly utilised ones is given in Appendix C .

Using these non-dimensional numbers the governing equations become

∂ρ

∂t
+ ∇ · (ρu) = 0, (2.6a)

ρ

[

∂u

∂t
+ (u · ∇)u

]

= −∇(ρT ) + ρĝ + F (∇× B) × B

+

(

Pr

R

)1/2

∇ · τ , (2.6b)

∂B

∂t
= ∇× (u× B) + Ckζ∇2B with ∇ · B = 0, (2.6c)

ρ

[

∂T

∂t
+ (u · ∇)T

]

= −(γ − 1) ρT∇ · u + (γ − 1)C2
k

(

Pr3R
)1/2 ∂ui

∂xj

τij

+
γ

(PrR)1/2
∇2T

+ (γ − 1)C2
k (PrR)1/2 ζF(∇× B)2, (2.6d)

p =
1

C2
k PrR

ρT, (2.6e)

whereγ = cp/cv is the ratio of the specific heats.
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2.2 Convective Approximations

2.2 Convective Approximations

In many astrophysical and geophysical situations, although some effects of

compressibility are essential for modelling the dynamics appropriately, not all are

relevant. In particular, it is often the case that the dynamics of sound waves (and fast

magneto-acoustic waves in magnetised domains) are secondary to the evolution of the

system. It is also the case that focusing on the small fluctuations only and ignoring a

static background state can make interpreting results fromanalytical and computational

simulations easier. In the Sun estimates of sound speeds are∼ 0.1 Mm.s−1 in the solar

interior (Christensen-Dalsgaard, 1985) and so sound wavesare the fastest waves in the

system. The convective approximations were developed to make the analysis of the

system easier. In fully compressible codes most of the computational power is going

into correctly modelling the fast magneto-acoustic and sound waves, both of which are

not thought to play a role in many instabilities in the Sun’s interior. This is inefficient

and it would be preferable to filter such fast waves.

A way to remove the fast waves and therefore simplify the system is to use a convective

approximation. Both the Boussinesq and anelastic approximations are convective

approximations and are not applicable to all systems. They both require velocities to be

far smaller than the speed of sound. The system modelled mustalso be steadily driven,

i.e. not fast (on convective time-scale) changes in the boundary conditions or from any

heat sources. Convective approximations treat the pressure and buoyancy forces in a

linear manner, whilst advection is still non-linear. They also remove a large stationary

state and focus on the fluctuations which can make the analysis of the system easier.

2.2.1 Background to the Boussinesq equations

The Boussinesq approximation is the oldest convective approximation to the

magnetohydrodynamic equations (see Spiegel & Veronis (1960) or Chandrasekhar

(1961)). The Boussinesq approximation assumes that the typical depth of the layer
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modelledd is small compared with the pressure scale height of the fluid,dp where

d≪ dp =

∣

∣

∣

∣

1

p

dp

dz

∣

∣

∣

∣

−1

, (2.7)

wherez is depth. The other assumption is that density fluctuations are due to temperature

changes, with the pressure remaining relatively unchanged. In general, relative density

and temperature fluctuations will be of the same order. In a gas the density fluctuation is

the driver of a convective instability and therefore this term is retained when it is coupled

with the acceleration due to gravity. This term must remain or the approximation will

remove the driver of the system. These assumptions have beenused by Rayleigh to study

Bénard convection and in many systems since (Rayleigh, 1916).

It is helpful to lay some mathematical ground-work for why the pressure fluctuations can

be ignored. I will express each variableξ as

ξ (x, t) = ξ (z) + ξ∗ (x, t) , (2.8)

whereξ is the horizontally averaged quantity, andξ∗ is a small fluctuation to that state.

Here I am using a Cartesian geometry. The horizontal averageused is time independent

and so the decomposition ofξ above will not be able to model time dependent vertical

boundary conditions. Starting with hydrostatic balance

∂p

∂z
= gρ, (2.9)

where gravity is pointing in the positivêz-direction so thatz increases with depth. The

pressure fluctuations are driven by the flow,|u|

|u|2ρ ≈ p∗, (2.10)

whereas for the density fluctuation the kinetic energy of theflow can be balanced with

the gravitational energy

|u|2ρ ≈ gdρ∗,

where the layer depth isd. This leads to

p∗

p
≈
(

d

dp

)

ρ∗

ρ
,
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which from (2.7) shows that the relative pressure fluctuations are far smaller than the

relative density fluctuations.

If only linear calculations are being done then the only assumption required is for the

layer depth to be much smaller than the stratification scale,but for non-linear work

a further assumption is required namely that the density fluctuations do not become

larger than the variations in the horizontally averaged density (Spiegel & Veronis, 1960).

The assumptions made about density and temperature are thatthey vary only slightly

in the fluid but the flow is essentially buoyancy driven. This is the case in an almost

incompressible fluid but, unlike in an incompressible fluid,the density fluctuations are

retained, as previously mentioned. Spiegel & Veronis (1960) showed that the Boussinesq

approximation is formally equivalent to the incompressible system when the temperature

gradient is replaced with the departure from the adiabatic temperature gradient. Since

density perturbations are only kept in the buoyancy term then the conservation of mass

(2.3a) is reduced to

∇ · u = 0, (2.11)

and, as pointed out by Lilly (1996), this means that the system conserves volume

rather than mass. The energetics of the Boussinesq approximation is discussed in

Chandrasekhar (1961).

When it is possible to separate the fast processes (e.g. acoustic) from the slow processes

(e.g. convection), the Boussinesq approximation filters out the fast processes. The aim

of the approximation is to retain only the minimum required complexity in the system

but to still capture the essential physics.

Magneto-Boussinesq equations

Spiegel & Weiss (1982) extended the Boussinesq approximation to include varying

magnetic fields which allows magnetic buoyancy to be investigated. They found

that the magnetic buoyancy instability is captured within this magneto-Boussinesq
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approximation. In the standard Boussinesq approximation the fluctuation pressure

is neglected in the equation of state and so if a magnetic fieldis added then it

must not create a large magnetic pressure or this would alterthe thermal pressure.

In the standard Boussinesq equations the pressure fluctuation is ignored which, if

magnetic fields are introduced, would mean that the field profile must be slowly

altering at most or the field to be sufficiently weak. In the magneto-Boussinesq

equations magnetic fields are allowed to exert a significant magnetic pressure. The total

pressure fluctuations, made from the magnetic pressure fluctuations and thermal pressure

fluctuations, are still considered small in the magneto-Boussinesq approximation. The

thermal pressure fluctuations can no longer be ignored, as isdone in the standard

Boussinesq approximation, and must be modelled. Also the way the induction equation

is altered in the Boussinesq approximation means that the magnetic field is not kept

exactly solenoidal. This can be seen by substituting∇·u = 0 into the induction equation.

When the divergence of the induction equation is taken it is clear that the condition

∇ · B = 0 is not satisfied exactly. This should not be a problem for modelling magnetic

buoyancy as Spiegel & Weiss (1982) show that the departure ofthe magnetic field from

being solenoidal is proportional to the scale variations ofthe vertical velocity parallel

to magnetic field. For magnetic buoyancy the scale variations of the vertical velocity

remain small so the magnetic field will remain mostly solenoidal. When the length

scale of the variations is of the order of the layer depth thenthe magneto-Boussinesq

approximation is no longer valid.

2.2.2 Background to the Anelastic Approximation

In early computational simulations of convection the Boussinesq approximation was

used for simplicity (see e.g. Durney, 1970; Deardorff, 1964). In many situations

of geophysical and astrophysical interest it is important to include some effects of

stratification and compressibility, which are outside the scope of the Boussinesq

approximation, which neglects both of these features. These situations include the
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interior of stars and giant planets, characterised by a large number of density scale

heights (Glatzmaier, 2005). The strong variation in density is believed to play an

important role in determining the dynamics of these systemsand there is interest in

modelling situations where in some regions the fluid is stable to convection while in

other regions the fluid is not. For example, modelling of the deep solar interior often

focuses on the behaviour of both the unstably stratified convective zone and the stably

stratified tachocline with the radiative zone below (and sometimes the transition between

the two) (see e.g. Gough & McIntyre, 1998; Tobias et al., 2001; Brummell et al., 2002;

Brun & Toomre, 2002; Garaud, 2002; Rogers & Glatzmaier, 2005; Miesch, 2005; Rogers

et al., 2006). Not including effects of stratification may introduce symmetries such as

an up-down symmetry i.e. the fluid in the lower half of the domain is equivalent to

the fluid in the upper half on average, provided that the fluid identities are reversed

and that the boundary conditions at the top and bottom are equivalent. Clearly the

Boussinesq approximation is not ideal in modelling the transition between stably and

unstably stratified regions as the background atmosphere isfixed.

An intermediate approximation between the fully compressible equations and the

Boussinesq approximation is then appropriate. The anelastic approximation is exactly

such an approximation; it retains some effects of compressibility whilst filtering out the

sound waves and in the magnetic case fast-magnetoacoustic waves. In the Boussinesq

equations there was an assumption that the typical scale height was small compared to

the pressure scale height; this constraint is relaxed in theanelastic approximation. The

anelastic approximation has been heavily used to model astrophysical and geophysical

fluids (see e.g. Glatzmaier & Roberts, 1996; Miesch et al., 2000; Fan, 2001; Anufriev

et al., 2005; Rogers & Glatzmaier, 2005; Clune et al., 1999).Various forms of

the anelastic approximation have been derived, using different small parameters for

the asymptotic expansion leading to the constitutive equations and different physical

assumptions to filter out the sound waves. The features that hold these various forms

of the anelastic approximations in common is that they attempt to retain stratification

whilst removing sound waves. I will look at the validity of some of these anelastic
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approximations in later chapters.

The anelastic equations were originally derived by Batchelor (1953) in a meteorological

context where the pressure and density are assumed to be close to their adiabatic values.

This was motivated by an investigation of flows with a low Richardson number, which is

the ratio of potential to kinetic energy, and resulted from the consideration of dynamical

similarities in such flows. Low Richardson number means the fluid is weakly stratified

and buoyancy is unimportant in the flow. A more formal scale analysis was performed

by Ogura & Phillips (1962). They constructed an asymptotic expansion using a small

parameter defined as the departure from adiabaticity and used a time-scale built upon the

Brunt-Väisälä frequency in order to separate the dynamics of gravity and acoustic waves.

The Brunt-Väisälä frequency is the characteristic rising time of a convective element or

the frequency of a gravity wave. It is the frequency which separates high frequency

acoustic waves from low frequency waves. Ogura & Phillips also assumed adiabatic

motion and state the advantage of filtering sound waves in numerical computations. This

filtering is a consequence of choosing a time-scale based on the Brunt-Väisälä frequency;

from this choice in time-scale the fluid velocity must be small compared to the sound

speed.

A complementary approach was used by Gough (1969), who derived the anelastic

equations using a small parameter based on temperature fluctuations from the convective

heat flux. This results in equations that are the same as thosederived by Ogura & Phillips

only when the atmosphere is perfectly adiabatic. Gough alsoallowed for the possibility

of external forcing and a time-dependent reference state. Gough’s small parameter

arises from assuming that the temperature flux throughout the stratified atmosphere is

the convective flux minus the lateral temperature flux. Goughargues that this allows

the assumption that the atmosphere remains close to adiabatic to be relaxed; however

the assumption about the dynamical time-scale, and so smallMach number, remains.

Although not mentioned in Gough’s paper the assumption about the atmosphere being

allowed to depart from adiabatic stratification is only slightly relaxed or this would
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introduce inconsistencies. Magnetic fields can be includedin the anelastic equations if

the local Alfvén speed scales as the convective speed (Glatzmaier, 1984). The equations

in Gilman & Glatzmaier (1981) extend those in Ogura & Phillips (1962) to a spherical

geometry and with dissipative effects included. The spherical magnetohydrodynamics

code ASH (Clune et al., 1999; Miesch et al., 2000) is based upon the set of anelastic

equations in Gilman & Glatzmaier (1981) but evolves the reference state. The ASH code

is in wide use e.g. convection in B-type stars (Augustson et al., 2010), wreath-building

dynamos (Brown, 2009), and rapidly rotating stars (Brown etal., 2007).

An additional common assumption made in anelastic models, originating from

Glatzmaier (1984) and Glatzmaier (1985), is that the diffusion of heat is proportional

to the entropy gradient. This assumption comes from sub-grid-scale turbulent-eddy

arguments. The molecular temperature diffusion acts on a length scale derived from the

mean free particle path but, as the systems of interest are turbulent, it is argued that the

mixing of eddies is more important. Simulations do not extend down to molecular level

so molecular thermal diffusion is already modelled incorrectly with inflated diffusion

parameters; entropy diffusion is an attempt to parametrisethe diffusion in a turbulent

domain more realistically. This is explained more in§3.2.

The fully compressible and anelastic equations have non-linearities, such as the magnetic

non-linearities as well as the more familiar hydrodynamic non-linearity of advection,

which require extra computational resources to be solved correctly. For computational

simplicity the anelastic approximation aims to make the system as simple as possible

whilst retaining the complexity required to capture the dynamics of interest. The

hydrodynamic and magnetic advection terms are the cause of much of the interesting

dynamics and should not be removed. There are, however, thermodynamic non-

linearities which are removed in the anelastic approximation with the consequence

that the thermodynamics will be less accurately modelled insome cases, such as

when the fluctuation is too large or the atmosphere is far frombeing adiabatically

stratified. Removal of the non-linearities is done in the same way as in the Boussinesq
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approximation, namely that an average (reference) state istaken and that thermodynamic

fluctuations are taken about that reference state. As the thermodynamic terms are all

related by an equation of state then a term such as a temperature multiplying a pressure

is a non-linear term. The thermodynamic non-linearity is removed by replacing most

instances of density with this slowly, if at all, varying reference state density. For

example when (2.3d) is divided byρ then there are pressure and temperature terms

that are divided by the density, from the equation of state these are linked and this

is the type of non-linearity that the anelastic approximation removes. This allows

the thermodynamic relations to be linearised but other non-linearities in the system to

remain.

Finally, Lantz (1992) and, independently, Braginsky & Roberts (1995) made a further

simplification by writing the thermodynamic variables in terms of entropy and pressure,

with the pressure term becoming negligible when the atmosphere is nearly adiabatic.

This allows for the thermodynamics to be written in terms of entropy alone, leading

to further computational savings. Even though the anelastic approximation relies on

the atmosphere being nearly adiabatic the Lantz-Braginskysimplification will only be

equivalent to the anelastic approximation derived in Gilman & Glatzmaier (1981) in the

limit of a perfectly adiabatic atmosphere (Berkoff et al., 2010).

Assumptions used in the Anelastic Approximation

The anelastic approximation is formulated using a number ofassumptions. The

dynamics are treated as the superposition of a reference state atmosphere and fluctuations

about that reference state. In order for the approximation to be valid the reference

state may only evolve at a slower rate than the convective time-scale. Moreover the

fluctuations of the thermodynamic variables of temperature, pressure and density must

be small compared with the reference state. The relative density, temperature, and

pressure fluctuations are of the same order of magnitude, unlike in the Boussinesq

approximation. Lantz & Fan (1999) suggest similarities between mixing length theory
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and the anelastic approximation, in so much that both are derived from a reference state

background and in both the reference state is adiabatic, which assumes only a weakly

super-adiabatic atmosphere in the Sun. To produce the luminosity observed at the surface

of the Sun only a weakly super-adiabatic solar atmosphere isrequired.

In the anelastic approximation the dynamical time-scale ofmotion is the inverse of the

Brunt-Väisälä frequency. For this time-scale to capture the dynamics of the problem

the Mach number of the flow must be small and the fastest wave motion relevant to the

problem to be slow compared to the Brunt-Väisälä frequency; any dynamics which occur

due to high frequency motions will not be included. For the system to be accurately

modelled then the high frequency modes that are filtered out must not be physically

important to the dynamics. If the reference atmosphere is not adiabatic then it is also

difficult to ensure that the flows remain strongly subsonic, as argued in Lantz & Fan

(1999). In a strongly convective atmosphere, even if buoyancy is inhibited by diffusion,

the wave motion has a high frequency; conversely in a very stable atmosphere gravity

waves again have high frequencies. In either the highly sub-adiabatic or super-adiabatic

stratification the anelastic approximation would be inappropriate. The problem will be

illustrated with the temperature equation in the anelasticapproximation in§3.7.2.

When magnetic fields are included the Alfvén waves must evolve on the slow dynamical

time-scale, and the magnetic field must be weak enough so as not to upset hydrostatic

balance. Although it may be possible to formulate magnetic fields into leading order the

Alfvénic frequency associated with large magnetic fields would not then be captured in

the approximation.

In the remaining chapters I shall derive the anelastic approximation and I shall examine

the range of applicability of the anelastic approximation in both stably stratified and

convectively unstable atmospheres. The arguments in the formulation of the anelastic

approximation were developed with convection in mind so therelevance to magnetic

buoyancy in stably stratified atmospheres is less clear. In Rogers & Glatzmaier (2005)

the anelastic approximation was used in a stable atmospherebut they experienced some
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problems with an inward turbulent heat flux in stable regions. The limit of how far from

stably stratified an atmosphere can be and be accurately modelled within the anelastic

approximation is still a matter of debate.
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Chapter 3

The Mathematics of the Anelastic

Approximation: Formal Scale Analysis

3.1 Physical Balances

In the derivation of the anelastic approximation I chiefly follow the procedure described

in Gough (1969) and in Lantz & Fan (1999). To make the anelastic approximation I

decompose all variables into a reference state and fluctuations about the reference state,

i.e.

ξ(x, y, z, t) = ξ(z) + ξ∗(x, y, z, t).

The choice of what qualifies as a reference state is an issue, Ogura & Phillips (1962)

used an isentropic state, Gough (1969) used a non-adiabaticstratification and Clune

et al. (1999) used a reference state that is a slowly varying spherically averaged mean.

Nordlund (1982) appears not to have used a reference state atall. I am using a Cartesian

geometry and take gravity to point in the positiveẑ-direction so thatz increases with

depth, as in the Boussinesq discussion. Using Cartesian coordinates, when the Sun itself

is an oblate sphere, is valid only if the curvature force can be neglected, which imposes

some limits on layer width and aspect ratio of the domain.
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From the first law of thermodynamics

T ds = cp dT − δp
ρ

dp, (3.1)

where the thermal expansion coefficient isδp = −(∂ ln ρ/∂ lnT )p which is unity for an

ideal gas. One can see that the adiabatic temperature gradient is

dT

dz

∣

∣

∣

∣

adb

=
δp
ρcp

dp

dz
.

For now I will also use the entropy formulation of the energy equation

ρT

[

∂s

∂t
+ (u · ∇) s

]

= ∇ · k∇T + µ
∂ui

∂xj

τij +
η

µ0

(∇×B)2 , (3.2)

with s = cv ln
(

pρ−γ
)

(3.3)

in this derivation, instead of the temperature formulation.

Assuming the gravity length scale is much larger than the layer depth, then hydrostatic

balance gives
dp

dz
= ρg.

It is now time to introduce a small parameterǫ. The standard method is for the small

parameter to measures the departure from adiabaticity of the reference state, i.e.

ǫ =
d

H

∣

∣

∣

∣

d lnT

d ln p
− d lnT

d ln p

∣

∣

∣

∣

adb

∣

∣

∣

∣

=
d

T

∣

∣

∣

∣

dT

dz

∣

∣

∣

∣

ref

− g

cp

∣

∣

∣

∣

=
d

cp

∣

∣

∣

∣

ds

dz

∣

∣

∣

∣

ref

(3.4)

where subscriptref means evaluated at a reference point in the layer, in this case taken

to be the top (z = 0); d is the layer depth; subscriptadb means evaluated for adiabatic

values; andH is the pressure scale height defined as

H =
dz

d ln p
=

p

gρ
. (3.5)

As previously mentioned, I assume that the relative density, temperature and pressure

fluctuations are of similar order

|ρ∗|
ρ

≈ |T ∗|
T

≈ |p∗|
p

≈ |ǫ|, (3.6)
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which maintains the assumption that fluctuation terms are ofmuch smaller amplitude

than in the reference state. Unlike in the Boussinesq approximation where the pressure

is ignored, in the anelastic approximation it is retained. In a similar ansatz to the

Boussinesq approximation, pressure fluctuations are balanced with the vertical flow

(2.10), it is the vertical motion in the fluid that causes a change in pressure. Gough

(1969) introduced an additional parameter to his anelasticexpansion

δ =











d

H
if d < H,

1 if d ≥ H,
(3.7)

which will be used to relate the anelastic approximation to the Boussinesq

approximation. To leading order (i.e. neglecting viscous forces) the characteristic parcel

speed can be estimated by balancing the gravitational energy stored due to the buoyancy

forces acting over the pressure scale height with the kinetic energy

ρ|u|2 ≈ −gδHρ∗. (3.8)

The buoyancy force approximation is done overδH and not simply the layer depth as

when the layer depth is much greater than the pressure scale height then pressure forces

overwhelm the buoyancy forces. If, on the other hand, the pressure scale height is larger

than the layer depth then (3.8) will be true except that now itis the layer depth which

is a typical length scale. Typical velocities in a layer are driven by the buoyancy forces

over a length-scale of: the layer ifd < H or the pressure scale height ifd > H. The

cumulative effect of the pressure fluctuations is to reduce vertical motion. Therefore it

is assumed that the relative pressure fluctuations are of thesame order as the relative

density and temperature fluctuations, see (3.6). In the Boussinesq case the layer depthd

is much smaller that the pressure scale heightH. If the layer is much larger thanH then

pressure fluctuations will be very efficient at inhibiting the vertical flow.

It is useful to relate (3.8) to the Mach speedM = u/cs where the sound speed is

c2s =

(

∂p

∂ρ

)

s

= γ
p

ρ
= γgH.
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so the Mach number can be expressed as

M2 ≈ ρ∗

ργ
≈ ǫ

γ
. (3.9)

The difference between the actual temperature gradient andthe adiabatic temperature

gradient is the super-adiabatic (or sub-adiabatic if the atmosphere is stable) temperature

gradientβ defined to be

cpβ = −T ds

dz
. (3.10)

When a parcel rises due to convection it will transfer heat toits environment. The amount

of heat it transports will be proportional to the super-adiabatic temperature gradient

across the layer depthd

θ̂ =

∫ d

0

|β| dz ≈ d

∣

∣

∣

∣

δp
cp ρ

dp

dz
− dT

dz

∣

∣

∣

∣

= d

∣

∣

∣

∣

T

cp

ds

dz

∣

∣

∣

∣

.

The convective heat flux will then be

Fcv ≈ ρcpθ̂w. (3.11)

There are other ways the small parameterǫ can be defined. Gough (1969) argues that the

heat flux will be the convective heat flux minus temperature fluctuations. He uses this,

combined with the equation (3.8), to build a small parameter. I will explore this more in

§3.7.1.

3.2 Energy Diffusion

I will make a quick digression into entropy diffusion modelswith the aid of Jones et al.

(2009). In many astrophysical bodies, such as in stars, small-scale turbulence will

lead to a diffusion of entropy which will normally be much larger than the molecular

conductivity. The diffusion parameters are artificially high in most astrophysical fluid

simulations to stop the flow developing a structure too fine tobe resolved, given the
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3.2 Energy Diffusion

limited ability to model many spatial scales in one simulation. Prandtl’s mixing-length

theory states that turbulent elements travel over a mixing-length before releasing their

entropy and joining the ambient background state. This suggests that the turbulent

entropy flux is proportional to the entropy gradient, not thetemperature gradient. In

Boussinesq convection the turbulent thermal diffusion is often modelled as similar to

the molecular thermal diffusion, but with a much larger diffusivity, in a compressible

flow this is not the case. The sub-grid model proposed by Gilman & Glatzmaier (1981)

assumes the diffusive flux is due to small-scale eddies in thesuperadiabatic convection

zone and so proportional to∇T−∇Tadb , i.e. proportional to potential temperature rather

than actual temperature. The essential assumption is that there is a turbulent velocityuT

which gives rise to a turbulent entropy fluctuationsT , where these have averages〈ξT 〉
of zero on a short length-scale, but where〈ρuT sT 〉 has a non-zero result. The turbulent

entropy diffusion is then assumed proportional to∇s. This turbulent entropy diffusion

creates a source term in the entropy formulation of the energy equation so that (3.3)

becomes

ρT

[

∂s

∂t
+ (u · ∇) s

]

= ∇ · k∇T + ∇ · T kT

cp
∇s+ µ

∂ui

∂xj
τij +

η

µ0
(∇× B)2 , (3.12)

where the new term containskT , the turbulent thermal conductivity. Equation (3.12) is

taken from Braginsky & Roberts (1995).

The source of entropy is chosen so that it is not a source of energy, which can be seen as

it appears as a divergence. DefiningλT = kT/k and takingλT ≫ 1 then the turbulent

entropy diffusion alone has been used in numerous papers (see e.g. Glatzmaier, 1984;

Braginsky & Roberts, 1995; Clune et al., 1999; Lantz & Fan, 1999), as both assumptions

have been used in previous works for now I will keep both termsin this work.

The turbulent diffusive flux is from unresolved eddies. Glatzmaier (1984) pointed out

that having turbulent diffusive energy flux is preferable incases where the anelastic

approximation is modelling the base of the convection zone.Here the superadiabatic

temperature gradient,(∇T −∇Tadb) jumps from a small positive value in the convection

zone to a large negative value below. As turbulent diffusivities are used then when
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turbulent convection penetrates into the subadiabatic region below the convection zone

then the turbulent eddies will cause a smoother transition.It can be argued that having

a diffusion based on the atmosphere being turbulent, when incomputer models the

atmosphere is often initially quiescent, is somewhat dubious. The atmosphere cannot

diffuse entropy via turbulent eddies when it is quiescent. It may be safer to start with

molecular temperature diffusion at high resolution, show that an instability exists and

then repeat the calculation with turbulent entropy diffusion predicted from the molecular

diffusion results but this would be outside the scope of thiswork. The models used in

this work only account for isotropic diffusion and so anisotropic diffusion is outside the

scope of this thesis also. In this work the coefficients of diffusionk andkT are constant

but this is an oversimplification, Glatzmaier (1984) cited private communication with

Gilman for suggesting thatkT should decrease with depth. The argument is thatkT is a

model for sub-scale diffusion by unresolved eddies. Near the top of convection zone the

pressure scale height is very small suggesting that eddies will also be small. Lower down

the pressure scale height increases so more of the turbulenteddies will be resolved, so

the sub-grid is modelling less unresolved motion and the diffusion should decrease.

There is another reason that the diffusion of entropy has been preferred in the literature.

In the appendix of Lantz & Fan (1999) is a discussion as to why entropy diffusion is

preferred as when temperature diffusion is used then the reference state temperature is

overdetermined. This can be seen from the energy equation atleading order,

∇ · k∇T = 0, (3.13)

and, from the first law of thermodynamics (3.1) applied to an adiabatic process in

hydrostatic equilibrium, the other condition onT is

dT

dz
=

gr

cp,r

d

Tr
. (3.14)

Parts of this thesis are looking at when the reference atmosphere departs from being

perfectly adiabatic so although the equation (3.13) will always hold, the same cannot be

said about equation (3.14). The overdetermined system has one important solution, that

of a polytrope.
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It is possible to look at how the two different diffusivity terms are related using (3.12)

∇∗s∗ − ∇∗T ∗

T
∝ 1

p
(∇∗p∗ − ρ∗ẑ) , (3.15)

which is interaction between the pressure and density fluctuations and is an important

driving term for large scale convective motions.

3.3 Preliminary Scalings

I decompose the variables into a steady, stationary, non-magnetised reference state plus

fluctuations, denoted by a superscript∗, which may or may not have a mean component.

Guided by this we can write the preliminary scalings where subscripts denotes a scaling

factor, which may depend onǫ,

ρ = ρs (ρ+ ǫρ∗) , T = Ts

(

T + ǫT ∗) , p = ps (p+ ǫp∗)

u = usu
∗, B = BsB

∗,

g = gs, cp = cp,s, cv = cv,s, µ0 = µ0,s,

k = ks, kT = kT,s, η = ηs, µ = µs.

The aim of this is to develop the anelastic scalingsξr which are independent ofǫ and

δ, whereξ represents any variable, these scaling terms are thereforeO(1). ThekT term

is a turbulent diffusion term which is explained in§3.2. The turbulent diffusivity term

appears as

∇ · kTT∇s

in the energy equation, see equation (3.12).

The reference state is nearly adiabatic so the reference andfluctuating entropy will enter

in at the same order

s = sscp,s + sscp,s (s+ s∗) ,
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where thecp,s is included to be dimensionally consistent. The small parameterǫ is based

on the departure of adiabaticity of the atmosphere and must be small. The first term on

the right-hand-side,sscp,s, does not enter into any equations so will be neglected. The

time and velocity scale are given by (3.8)

us =
√

ǫδHrgr,
∂

∂t
=

√

ǫgr

Hrδ

∂

∂t∗
,

which shows the velocity is scaled using the Brunt-Väisälä speed.

If the reference state is allowed to evolve it must do so on a time scale much larger

than the convective time-scale. Gough (1969) derived an equation for a time-varying

reference state although it is more common to take a time-independent reference state.

In the following derivation the reference state is taken to be time-independent so the

time derivatives of the reference state are zero. There are two length scales, the layer

depthd and the pressure scale heightH. The Boussinesq approximation assumes that

δ = d/H ≪ 1 but in the anelastic case this restriction is not required.

The Boussinesq approximation can be obtained by takingǫ, δ ≪ 1. To show how the

two approximations are relatedδ will be retained. The anelastic approximation can be

derived by using the layer depth as the only length scale - ignoring the difference between

layer depth and the pressure scale will include unnecessaryterms whenδ ≪ 1 but will

not neglect important terms. In this derivationds = Hrδ, the layer depth or the pressure

scale height depending on whether the layer depth is smalleror larger than the pressure

scale height.

Some terms must enter at leading order which makes thermodynamic scalings:ρs = ρr

andTs = Tr. Any change in gravity, including self-gravity, is ignoredso with hydrostatic

equilibrium at leading order this suggestsgs = gr. The pressure scaling must be

consistent with (3.5) which suggests the pressure scale height ps = Hrgrρr but this

scale is only relevant to the reference state pressure; for the fluctuating pressure the

scale is over the layer depth and sop = Hrgrρr (p+ ǫδp∗). The gas constant does not

fluctuate socp,s = cp,r andcv,s = cv,r. The permittivity of free spaceµ0 is also treated as

a constant that should not scale onǫ or δ soµ0,s = µ0,r.
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The vertical derivatives will have different dependencieson δ for the reference and

fluctuating states. It is natural to use the pressure scale height (3.5) when considering

derivatives of the reference state pressure, density or temperature. The vertical entropy

derivative(ds/dz)s scales with aδ dependence from thermodynamic relationships or the

definition of the small parameter (3.4). This leads to the scaling factors on the derivatives

to be

∇ =











1/Hr∇∗ operating onp, ρ, T , s,

1

δHr
∇∗ otherwise.

The∇ could be replaced by the vertical derivative of the reference state as in this work

the reference state is a function ofz only.

The compressible equations are expanded using these preliminary expansions to

determine how the diffusive terms scale.

Mass conservation becomes

ǫ
∂ρ∗

∂t∗
= − [ρ∇∗ · u∗ + δu∗ · ∇∗ρ] − ǫ∇∗ · (ρ∗u∗) ,

where the Boussinesq limit of∇·u can be recovered by takingǫ, δ → 0. The momentum

equation (2.6b) with the preliminary scaling becomes

ǫρrgr (ρ+ ǫρ∗)

[

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗

]

= −ρrgr∇∗ (p+ ǫp∗)

+ ρrgr (ρ+ ǫρ∗) ẑ +
B2

s

Hrδ

(∇∗ × B∗) ×B∗

µ0,r

+

[

µs (ǫgrδHr)
1/2

δ2H2
r

]

∇∗ · τ ∗.

When the layer is shallow theδ−1 factor in front of the Lorentz force would unbalance

the equation. The Lorentz force must also not upset hydrostatic balance but should be

included at the next order suggesting the scaling

Bs =
√
ǫδBr.

A similar argument for the viscous forces not to upset hydrostatic balance gives

µs = (ǫδ3)
1/2
µr.
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Expanding the induction equation (2.6c), using the preliminary scalings, results in

ǫ
∂B∗

∂t∗
= ǫ∇∗ × (u∗ ×B∗) + ηs

(

ǫ

grδ3H3
r

)1/2

∇∗2B∗, (3.16)

and, if magnetic diffusion is to be included in this equation, thenηs = (ǫδ3)
1/2
ηr which

is similar to the viscosity scale dependence onǫ andδ.

Finally the energy equation when expanded using the scalings developed is

ρr (ρ+ ǫρ∗)Tr

(

T + ǫT ∗)
(

ǫgr

δHr

)1/2

cp,rss

[

∂s∗

∂t∗
+ (u∗ · ∇∗) (δs+ s∗)

]

=
ksTr

H2
r

∇∗2
(

T +
ǫ

δ2
T ∗
)

+
kT,sTrcp,r

H2
r

∇∗ ·
(

T +
ǫ

δ
T ∗
)

∇∗ǫ

(

s+
s∗

δ

)

+
ǫ3/2ηrδ

1/2B2
r

µ0,rH2
r

(∇∗ × B∗)2 +
µr

2

ǫ3/2δ1/2gr

Hr

τ ∗2.

For theǫδ−2∇∗2T ∗ andǫ∇∗ · T∇∗ (s+ δ−1s∗) terms to effect the evolution of entropy

in a shallow layer thenks = (ǫδ3)
1/2

kr andkT,s = (ǫδ3)
1/2
kT,r, which is the same

dependence as the other diffusivities. The dependence onδ may seem arbitrary but this

means that entropy diffuses in the lowδ limit and that bothk andkT have the same

dependence onǫ andδ. For the left-hand-side to be in balancess = ǫ; there is no need

for a sr scaling factor as that can be incorporated intocp,r. Thess dependence onǫ is

expected from the definition ofǫ in equation (3.4) due to the reference state atmosphere

being nearly adiabatic.

3.4 The Anelastic Scalings

From these preliminary scalingsξs I now develop the anelastic equations which are

independent ofǫ, whereξ represents any variable. I now use

ρ = ρr (ρ+ ǫρ∗) , T = Tr

(

T + ǫT ∗) , p = Hrgrρr (p+ ǫδp∗)

s = ǫcp,r (s+ s∗) , u =
√

ǫδHrgru
∗,

∂

∂t
=

√

ǫgr

Hrδ

∂

∂t∗
,
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B = ǫ1/2BrB
∗, g = gr,

k =
(

ǫδ3
)1/2

kr, kT =
(

ǫδ3
)1/2

kT,r, η =
(

ǫδ3
)1/2

ηr,

µ =
(

ǫδ3
)1/2

µr, ∇ =











1/Hr∇∗, operating onp, ρ, T , or s

1

δHr
∇∗, otherwise

where againξ denotes a stationary, non-magnetised reference state andξ∗ denotes

a fluctuating term which may or may not have a mean. The scalings ξr are now

independent ofǫ and δ. Where relevant the scalingsξr are defined at the top of the

domainz = 0.

I will start from the equations (2.3a-c), together with the evolution equation (3.12) for

the entropys = cv ln(pρ−γ).
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The equations (2.3a-c) expanded using the anelastic scalings yield

ǫ
∂ρ∗

∂t∗
+ ρ∇∗ · u∗ + δu∗ · ∇∗ρ+ ǫ∇∗ · (ρ∗u∗) = 0, (3.17a)

ǫρrgr (ρ+ ǫρ∗)

[

∂u∗

∂t∗
+ (u∗ · ∇∗)u∗

]

= +ρrgr (ρ+ ǫρ∗) ẑ

+ ǫ
B2

r

Hr

(∇∗ × B∗) ×B∗

µ0,r

− ρrgr∇∗ (p+ ǫp∗) + µrǫ

(

gr

H3
r

)1/2

∇∗ · τ ∗, (3.17b)

∂B∗

∂t∗
= ∇∗ × (u∗ × B∗) + ηr

(

1

grH3
r

)1/2

∇∗2B∗, (3.17c)
√

gr

Hr
(ρ+ ǫρ∗)

(

T + ǫT ∗) ǫ

[

∂s∗

∂t∗
+ (u∗ · ∇∗) (δs+ s∗)

]

=
δ2

ρrcp,rH2
r

[

kr∇∗2
(

T +
ǫ

δ2
T ∗
)

+ kT,r∇∗ ·
(

T +
ǫ

δ
T ∗
)

∇∗ǫ

(

s+
s∗

δ

)]

+
ǫδ

cp,r

[

ηrB
2
r

µrH2
r

(∇∗× B∗)2 +
µrgr

2Hr

τ ∗2

]

. (3.17d)
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3.4 The Anelastic Scalings

With the introduction of the scaling factors the dimensionless numbers defined in (2.5),

along with some related dimensionless numbers, are

Pr =
µrcp,r

kF

, ζ =
ηrcp,rρr

kF

, F̃ = ǫ−1F =
Br

2

grHrρrµr

C̃k = ǫ−1/2Ck =
kF

Hrcp,rρr

√

(cp,r − cv,r)Tr

, and |R̃| =
grcp,rH

3
r ρ

2
r

kFµr

, (3.18)

where

kF =











kT,r if kr < kT,r

kr if kr ≥ kT,r

From (3.17a) the lowδ limit recovers the Boussinesq approximation at leading order. It

is now possible to define equations for the reference state. As previously mentioned the

reference state considered here is time independent so evenif the fluctuations generate

a mean then the reference state will not be updated. This should not present a problem

as the assumptions about scaling factors and the atmosphereshould prevent this. The

equations to be satisfied by an anelastic reference state are

0 = ρ∇∗ · u∗ + δu∗ · dρ

dz
, (3.19a)

dp

dz
= ρ, (3.19b)

0 = kr
d2T

dz2
+ kT,r

d

dz

(

Tǫ
ds

dz

)

. (3.19c)

The energy equation reference state (3.19c) has two terms that are of a different order

in ǫ. This is not inconsistent as entropy diffusion will not be used in conjunction with

temperature diffusion in this thesis for modelling purposes. For clarity the superscript∗

will be dropped on the fluctuating terms. Now that the reference state is clear the

equations (3.17) can be non-dimensionalised so that fluctuations about the reference
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state are given as

ρ∇ · u + δu · ∇ρ = 0, (3.20a)

ρ

[

∂u

∂t
+ (u · ∇u)

]

= −∇p + ρẑ + F̃ [(∇× B) ×B] (3.20b)

+

(

Pr

R̃

)1/2

(∇ · τ ) , (3.20c)

∂B

∂t
= ∇× (u× B) + C̃kζ∇2B (3.20d)

with ∇ · B = 0, (3.20e)

ρT

[

∂s

∂t
+ (u · ∇) (δs+ s)

]

=
1

(Pr R̃)1/2

(

∇2T + ∇ · T∇s
)

+
γ − 1

γ
δC̃2

k

(

PrR̃
)1/2

F̃ζ (∇×B)2

+
γ − 1

γ
δC̃2

k

(

Pr3R̃
)1/2 ∂ui

∂xj

τij , (3.20f)

with
p

p
=
ρ

ρ
+
T

T
, (3.20g)

and s =
1 − γ

γ

p

p
+
T

T
. (3.20h)

The equations (3.19) and (3.20) are the non-linear anelastic equations that describe a

reference state and the fluctuations about that state.

3.4.1 A note on Non-dimensional Numbers

The dynamical time and the resultant non-dimensional numbers are chosen so they have

any factor ofǫ explicitly shown in them. The explicit nature ofǫ can act as a warning

as to when the values of the parameters will invalidate the approximation. For example,

the leading order balance in the momentum equation is hydrostatic equilibrium, which

is still true if ǫ is small andF large but whenǫ andF are both large, i.e.̃F is large,

then the leading order balance may not be valid. This may makediagnosing when the

parameters are liable to invalidate the anelastic assumptions easier to noticea priori.
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That said, whetherǫ is implicit or otherwise it is not known, and it may not be possible

to know, when the values of the parameters will invalidate the approximation.

3.4.2 Reference State

The reference state must satisfy (3.19). In this thesis the reference state is not considered

to be time dependent and is a function of depth only. As mentioned Clune et al. (1999)

considered a reference state that is updated. This can lead to problems unless the state

is not allowed to depart from being almost adiabatic as although updating the reference

state makes the fluctuating terms small it can mean thatǫ, i.e. the departure from an

adiabatic atmosphere, is large so invalidating neglectinghigher orderǫ terms, such as

∂ρ/∂t.

Dimensional Reference State

The reference state that will be used in this thesis is a polytrope. It is useful to go

back to dimensionful equations so that the value of gravityg can be followed explicitly.

Assuming the atmosphere to be in hydrostatic equilibrium equation and an ideal gas then

dp

dz
= gρ and p = (cp − cv) ρT.

A simple solution to this is to use the polytrope ansatzp = Kρ1+1/m, wherem is

the polytropic index andK is an arbitrary constant. Putting this into the hydrostatic

equilibrium results in

K

(

m+ 1

m

)

ρ1/m−1dρ = gdz

ρ =

(

g

K (m+ 1)
z + c

)m

.

From the polytrope ansatz the pressure must therefore be

p = K

(

g

K (m+ 1)
z + c

)m+1

.
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I am assuming the plasma is an ideal gas so from the equation ofstate the temperature is

K

(

g

K (m+ 1)
z + c

)m+1

= (cp − cv)

(

g

K (m+ 1)
z + c

)m

T

1

cp − cv

(

g

m+ 1
z +Kc

)

= T.

It is useful to define the thermal gradient at the bottom of thelayer asdT/dz
∣

∣

z=1
= β

whereβ is consistent with the definition given in equation (3.10).

Dimensionless Reference State

It now makes sense to use dimensionless numbers so

d
(

T + ǫT
)

dz
= θ at z = 0, (3.21)

whereθ = βHr/Tr is the dimensionless thermal gradient. The introduction ofnew

dimensionless numbers,m andθ, leads to the relation

θ =
Hr

Tr

gr

(cp,r − cv,r) (m+ 1)
. (3.22)

Expressing the reference state in dimensionless form results in

T = (1 + θz) (3.23a)

ρ = (1 + θz)m (3.23b)

p = (1 + θz)m+1 (3.23c)

ǫs =
ǫ

θ
ln (1 + θz) , whereθ 6= 0 (3.23d)

where in (3.23d) the definition ofǫ from (3.4) is used, along with the thermodynamic

relation

s =
1

γ
ln
(

p ρ−γ
)

. (3.24)

Some of the dimensionless numbers defined in (3.18) can be expressed in terms of the

new dimensionless numbers including, in particular, the Rayleigh number, which can be

written as

R̃ = ǫR =
θ2(m+ 1)2

γC2
kPr

(

1 − mγ

m+ 1

)

, (3.25)
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using equation (3.4) together with the relation

C2
kPrR = (m+ 1)θ, (3.26)

which again shows that the non-dimensional parameters of the model are not all

independent. Note that, forγ = 5/3, R̃ is positive ifm < 3/2 (for example in convective

instabilities) and negative ifm > 3/2 (as it is in the magnetic buoyancy instability).

3.5 Layer Width

θ1
ρ Tz

d

d

dT/dz = θ0

(a)

θ1
ρ Tz

d1

d0

dT/dz = θ0

(b)

Figure 3.1: The effect of varying θ, or the depth of the layer within the Sun, with

a) constant depth and b) constant mass.

To be consistent in defining the basic state at different depths within the Sun an additional

assumption is required about the layer widthd. When modelling layers of plasma at

different depths inside the Sun nothing has been said about how the layer width should

be chosen. To model layers at different depths inside the Sunθ is altered which also

alters the total mass within the layer. In figure 3.1θ0 is a value corresponding to a

temperature flux near the surface andθ1 corresponds to a temperature flux deeper in the

Sun soθ1 > θ0. There are many ways of imposing an additional condition ond and

I will discuss two with strong physical motivations. One additional condition is to set

ρ(0) = 1, which corresponds to a layer of constant width as in figure 3.1 (a). In this

case to model a layer close to the surface of the Sun a small value of θ is chosen, and

this also sets the layer width. It is also equally valid to have the additional condition of
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∫ 1

0
ρ.dz = 1 which corresponds to fixing the total mass, as in figure 3.1 (b), where the

layer width changes whenθ changes. I choose to keep the width of the layer constant to

compare with results from other works. The algorithm developed in Chapter 4 is capable

of both constant width and constant mass.

3.5.1 Energetics

It can be shown that the anelastic equations are energetically consistent. This means that

the total energy balance (the kinetic, internal plus potential) can be written in a closed

form so that it does not depend on terms of higher order than the system of equations

in (3.20). Gilman & Glatzmaier (1981) produced an equation similar to that derived

by Gough (1969). Wilhelmson & Ogura (1972) points out that Gough’s energetics

calculations cannot be written in closed form without another further approximations

as Gough’s reference state was not necessarily isentropic,whereas Gilman’s was. I

will not derive the total energy balance but it is worth noting that there are possible

inconsistencies if the reference state is allowed to departfrom being adiabatic.

3.6 Different Formalisms

In the literature there have been many ways to derive the anelastic equations. This can

involve different small parameters about which the asymptotic expansion is made. There

is also a difference depending on whether the temperature orentropy formulation of the

energy equation is used. First I will describe the differences in the small parameters

used. As mentioned in the previous section most asymptotic expansions take the small

parameter to be the departure from adiabaticity. Lantz & Fan(1999) argue that if the

reference state atmosphere departs strongly from being adiabatic then it is not cleara

priori that the velocities will remain small enough for the approximation to be valid.

This seems reasonable in a convective atmosphere and also for magnetic buoyancy in
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a strongly sub-adiabatic atmosphere. If the atmosphere is strongly sub-adiabatic then a

slow convective instability can be expected but the gravity-wave speed would be very

high which may negate the slow convective instability growth.

Gough (1969) uses a different small parameter. He assumes the total heat fluxFt is the

the convective heat flux minus fluctuations. These fluctuations will seek to minimise

any temperature gradients laterally. The actual heat flux will then be the convective flux

minus diffusion

ρcpwT ≈ ρcpwθ − k |∇T |

cpρw (θ − T ) ≈ kT

δH
. (3.27)

Gough (1969) defines the small parameterǫ from (3.27) and (3.8) as

ǫkrTr

δHr

= ρrcp,r (grδHrǫ)
1/2 (θ − ǫTr)

=⇒ ǫ

(

krTr

δHr

)2
1

gδHr

(

1

ρrcp r

)2

= (θ − ǫTr)
2

=⇒ T 2
r ǫ

2 −
(

2θTr +
Trθ

S

)

ǫ+ θ2 = 0

=⇒ ǫ =
θ

4STr

(√
4S + 1 − 1

)2

(3.28)

=
θ

Tr

ψ(S), (3.29)

where

S =
gδ3H3

r θρ
2
rcpr

k2Tr

= S θ

Tr

,

and the negative root of the quadratic inǫ was taken. This is plotted in figure 3.2 for

two values ofS and compared with the case whereǫ is the departure from an adiabatic

atmosphere as in

ǫ =
d

cp

ds

dz

=
θ

Tr
.

As the atmosphere departs from being adiabatic figure 3.2 shows that Gough’s small

parameter remains smaller than the standard small parameter but the expansion is only
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Figure 3.2: Comparison of different small parameters

formally valid asǫ→ 0. This does not fundamentally change equations but it may allow

the anelastic approximation to be used in slightly less adiabatic atmospheres, which may

be useful in the stably stratified limit. The only way to be sure thatǫ is small enough to

give good agreement with the fully compressible results is to take an almost adiabatic

atmosphere.

3.7 A Significant Simplification

Lantz (1992) and, independently, Braginsky & Roberts (1995) made a further

simplification by writing the thermodynamic variables in the momentum equation in

terms of entropy and pressure, with the pressure term becoming negligible when the

atmosphere is nearly adiabatic.

The simplification essentially relies on the reference state atmosphere being nearly

adiabatic whereas the anelastic approximation required the atmosphere to be nearly

adiabatic, it is still a matter of debate whether these are equivalent or not. To show clearly
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how this simplification can be done I will start with a thermodynamic relationship

ρ =
dρ

dp

∣

∣

∣

∣

s

p +
dρ

ds

∣

∣

∣

∣

p

s,

so
ρ

ρ
=

1

ρ

[

(

dρ

dz

)

s

(

dz

dp

)

s

p +

(

∂ρ

∂T

)

p

(

∂T

∂s

)

p

s

]

=
p

ρ2

(

dρ

dz

)

s

− s, (3.30)

where some of the partial differentials on the right-hand-side are unity for an ideal gas.

I also require the definition of entropy (3.20h)

ρ

ρ
=

p

γp
− s. (3.31)

Equating the equation (3.30) with (3.31) gives

p

ρ2

(

dρ

dz

)

s

=
p

γp

p

ρ2

(

dρ

dz

)

s

=
1

γ
. (3.32)

Equation (3.20b) divided byρ contains the terms

− ∇p
ρ

+
ρ

ρ
ẑ, (3.33)

which involve p and ρ. It would be far easier if terms which containp could be

eliminated. Re-writing the equation (3.33) using equation(3.31) leads to

−∇p
ρ

+
ρ

ρ
ẑ = − ∇p

ρ
+ ẑ

(

p

γp
− s

)

= −∇
(

p

ρ

)

− sẑ +
pẑ

p

(

1

γ
− p

ρ2

dρ

dz

)

, (3.34)

where the final term in brackets is zero if the reference atmosphere is adiabatic, from

equation (3.32), and small if the atmosphere is nearly adiabatic. If the final term in

equation (3.34) is removed then this equation can be curled to remove the fluctuating

pressure term. Another effect is that if entropy diffusion is used then removing the

final term leaves entropy as the only remaining fluctuating thermodynamic variable in

the system. This leads to fewer equations to solve and greatly simplifies the problem.
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Braginsky noted that the resemblance of the equations to theBoussinesq equations is

very strong but in this case the atmosphere is allowed to havestrong density contrasts

without violating any assumptions. The buoyancy force due to departure from the

adiabatic reference atmosphere is now captured by entropy fluctuating term so that the

Lantz-Braginsky momentum equation is

[

∂u

∂t
+ (u · ∇u)

]

= −∇
(

p

ρ

)

− sẑ +
F̃
ρ

[(∇×B) × B]

+

(

Pr

R̃

)1/2
1

ρ
(∇ · τ ) . (3.35)

Formally, the Lantz-Braginsky simplification is equivalent to the equations (3.20) when

the atmosphere is perfectly adiabatic. As the atmosphere departs from being adiabatic

both the anelastic approximation with and without the Lantz-Braginsky simplification

will deviate from the fully compressible results; importantly both will do so in a different

manner, as terms that are being neglected in one and not the other will become larger,

but the difference will be of orderǫ2. There are many other higher orderǫ terms that are

being neglected, namely the∂ρ/∂t in the continuity equation, so including one and not

including others is not increasing the accuracy of the equations. Likewise if one set of

equations appears to be including more higher orderǫ terms than another it is not more

accurate, unless it includes all the higher orderǫ terms as these may cancel each other

out rather than increasing the accuracy by a small amount foreach higher order term

included.

In §3.2 I discussed the entropy diffusion, when this is combinedwith the Lantz-

Braginsky simplification then the non-linear computation becomes far simpler as it

removes the need for the pressure to be calculated. To calculate the pressure involves

solving an elliptic equation with boundary conditions thatare based on the previous

time-step. Solving elliptic equations in a parallel environment is challenging as this

is a global problem so all the processors need to combine solutions in order to solve

global problems which can create a bottleneck. In massivelyparallel calculations the

performance of the code is greatly reduced for global problems.
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3.7.1 Gough’s Energy Equation

Although in the temperature formulation the energy equations appear the same, there

is a difference in the entropy formulation. As mentioned theonly differences between

Gough’s equations and the more standard ones is in the energyequation. I will take

Gilman & Glatzmaier (1981) as the comparison. To aid comparison I will ignore all the

heating terms so the magnetic field is ignored. First I will rewrite Gilman & Glatzmaier

(1981, equation (53))

ρθ

[

∂s

∂t
+ v · ∇s

]

− wρΓ = 2FPρν

(

eijeij −
∆2

3

)

+ ∇ · (ρ κ∇θ) (3.36)

where in Gilman and Glatzmaier’s notationeij is the symmetric rate-of-strain tensor

equal to∂ui/∂xj ; θ is temperature equal toT ; v the velocity equal tou; Γ is the

superadiabatic temperature-gradient profile equal toβ; F = κ2
0/(ǫcpT0d

2) is the Froude

number; P is the Prandtl numberPr; ν is the kinematic viscosityµ/ρ; ∆ is the

divergence of the velocity field∇ · u.

If the atmosphere is nearly adiabatic thenβ = cp∂T/∂z so that, expressed in the notation

used in the rest of this thesis, Gilman and Glatzmaier’s equation is

ρT

(

∂s

∂t
+ u · ∇s

)

+ wρ

(

cp
∂T

∂z
+ g

)

= R.H.S. (3.37)

where R.H.S. refers to equation (3.36). Equation (3.37) is similar to equation (3.20f). I

will transform equation (3.37) into a form similar to the conservation of energy used in

Gough (1969) by substituting (3.20h) into (3.37) and, alongwith the ideal gas law, this

gives

ρ̄T̄

[

cp

T

∂T

∂t
− cp − cv

p

∂p

∂t
+ cp

Tu · ∇T − Tu · ∇T
T̄ 2

− (cp − cv)
pu · ∇p− pu · ∇p

p2

]

+ wρ̄

(

cp
∂T

∂z
+ g

)

= R.H.S.

This can be further simplified using the assumption that the basic state atmosphere is in
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hydrostatic balance so that

cpρ
∂T

∂t
− ∂p

∂t
+ wρ

[

cp

(

1 − T

T

)

dT

dz
−
(

1 − p

p

)

1

ρ

dp

dz

]

+ u · (ρcp∇T −∇p) = R.H.S. (3.38)

This is now in a format where a comparison can be made with Gough (1969, equation

(4.17)), except that̂z is defined in the opposite manner in Gough’s paper than in this

thesis so I have removed a minus sign from the term involvingg. Correcting for the

definition of ẑ Gough’s energy equation is

ρcp
∂T1

∂t
− δ

∂p1

∂t
− cpβm3 +mk

(

∂h1

∂xk
− 1

ρ

∂p1

∂xk

)

+
gρ1m3

ρ
=

τik
∂

∂xk

(

mi

ρ

)

+Q+Q1 −
∂

∂xk

(

F k + F1k

)

(3.39)

where in Gough’s notationm is the momentumρu andmi is one of the three components

of m so thatm3 is the vertical momentum;p1 is the fluctuation pressurep; ρ1 is the

fluctuation densityρ; h1 is the fluctuation enthalpy;δ = −(∂ ln ρ/∂ lnT )p which is

unity for an ideal gas;β is the superadiabatic temperature gradient defined in (3.10); τik

is equal to

µ

(

∂ui

∂xk
+
∂uk

∂xi
− 2

3

∂uj

∂xj
δik

)

,

and so equal toτµ from equation (2.3e);Q is any internal heat source (e.g. viscous or

Ohmic heating);F is the combined heat flux from radiation and conduction withF k

being a component of the reference state heat flux andF1k being a component of the

fluctuating heat flux. Converting to the notation used elsewhere results in

cpρ
∂T

∂t
−∂p
∂t

+wρ

(

cp
∂T

∂z
− 1

ρ

∂p

∂z

)

+u·(ρcp∇T −∇p)+gρw = R.H.S. Gough, (3.40)

where R.H.S. Gough refers to equation (3.39). The difference between (3.38) and (3.40)

is connected to how the two expansions treatds/dz in different ways. In Gilman &

Glatzmaier (1981), before any scaling assumptions are made, they have

− ǫ3/2 (ρ+ ǫρ)
(

T + ǫT
)

[

∂s

∂t
+ u · ∇s+ w

ds

dz

]

= R.H.S. (3.41)
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as the atmosphere is nearly adiabatic thends/dz is of orderǫ. If the termds/dz was of

order 1 then the terms

w
(

Tρ+ Tρ
) ∂s

∂z
= w

(

Tρ+ Tρ
)

(

cp

T

dT

dz
− cp − cv

p

dp

dz

)

= wρcp
dT

dz
+ wρcp

T

T

dT

dz
− w

p

p

dp

dz
,

should be included in (3.38). If they are included then the equation (3.38) becomes

cpρ
∂T

∂t
− ∂p

∂t
+wρ

(

cp
dT

dz
− 1

ρ

dp

dz

)

+u · (ρcp∇T −∇p)+wρcp
dT

dz
= R.H.S. (3.42)

but it also is now inconsistent asρTds/dz would be un-balanced. C. A. Jones (personal

communication) showed that (3.38) and (3.40) are equivalent if the atmosphere is

adiabatic. For the two equations to be equivalent then

p

p

dp

dz
− ρcpT

T

dT

dz
= gρ. (3.43)

This can be shown by starting with the entropy formulation ofthe energy equation

ds

dz
=
cv − cp
cpp

dp

dz
+

1

T

dT

dz
, (3.44)

but taking an adiabatic reference stateds/dz = 0 so (3.43) can be expressed as
(

p

p
− ρ(cv − cp)T

p

)

dp

dz
= gρ

(

p

p
− T

T

)

dp

dz
= gρ

ρ

ρ

dp

dz
= gρ

which is simply stating the reference state is in hydrostatic balance. It is clear that the

two formalisms of Gough’s and Gilman’s are equivalent in theadiabatic limit but it is not

clear if one would perform better when the atmosphere departs from being adiabatically

stratified.

3.7.2 The Temperature Formulation

The use of the energy or temperature formulation of the energy equation is equivalent in

the fully compressible magnetohydrodynamic equations. Inthe compressible case this
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can be done by combining the first law of thermodynamics (3.1)and the time derivative

of the equation of state (2.3f),

∂T

∂t
=
T

cp

∂s

∂t
+
cp − cv
cpρ

T
∂ρ

∂t
. (3.45)

and then using conservation of mass (2.3a) the pressure timederivative can be written in

terms of temperature. Also required is a combination of the conservation of mass in the

fully compressible case (2.3a) and the gradient of (3.12) sothat

∇s = cv
∇T
T

+ (cv − cp)
∇ρ
ρ
. (3.46)

I can now use equations (3.45) and (3.46) to rewrite the L.H.S. of the energy equation

cvρ

[

∂T

∂t
+ u · ∇T

]

+ p∇ · u = k∇2T + µ
∂ui

∂xj

τij +
η

µ0

(∇× B)2 . (3.47)

The energy equation can then be written in terms of entropy

ρT

[

∂s

∂t
+ (u · ∇) s

]

= k∇2T + µ
∂ui

∂xj

τij +
η

µ0

(∇× B)2

where the diffusion can be temperature or energy diffusion even though only temperature

is shown, see§3.2 for a discussion on diffusion terms.

In the anelastic case this is not possible as the conservation of mass (3.17a) has no time

derivative. The anelastic scalings derived in§3.4 used an entropy formulation of the

energy equation but there is an equivalent temperature formulation in the compressible

case. To be able to compare and contrast with the entropy formulation an anelastic form

of the temperature formulation of the energy equation will be derived.

Starting again with the fully compressible temperature formulation of the energy

equation (2.3d) and using an asymptotic expansion similar to that used in the anelastic

scaling previously except now dimensions are kept so thatT = T + ǫT , ρ = ρ + ǫρ,

p = p + ǫp, B = ǫ1/2B, andu = ǫ1/2u. The diffusion coefficients scale asǫ1/2. The

possibility of a thin layer is ignored for simplification. Keeping the dimensions in the
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energy equation (3.47), but using this expansion, gives

cvǫ
3/2 ∂T

∂t
+ cvǫ

1/2u · ∇
(

T + ǫT
)

=

− p+ ǫp

ρ+ ǫρ
ǫ1/2∇ · u + ǫ1/2 k

ρ+ ǫρ
∇2
(

T + ǫT
)

+ ǫ3/2 µ

ρ+ ǫρ

∂ui

∂xj

τij +
ǫ1/2η

µ0 (ρ+ ǫρ)

(

∇× ǫ1/2B
)2
. (3.48)

It is also useful to note that
1

ρ+ ǫρ
=

(

1

ρ
− ǫρ

ρ2

)

.

In (3.48) most of the terms are similar to the terms in the entropy formalism except there

are two extra terms at leading orderǫ1/2, namely

cvu · ∇T +
p

ρ+ ǫρ
∇ · u − k

ρ+ ǫρ
∇2T . (3.49)

From the reference state∇2T = 0 and, usingρ∇·u = −w dρ/dz, it is possible to show

the other two terms from (3.49) should enter the equations athigher order. Dropping the

ǫ1/2 the terms in (3.49) can be rewritten as

cvu · ∇T +
p

ρ+ ǫρ
∇ · u = cvρw

dT

dz
− pw

ρ

dρ

dz

(

1

ρ
− ǫρ

ρ2

)

= wcp

(

dT

dz
− 1

cpρ

dp

dz

)

+ (cp − cv) ǫ
Tρw

ρ2

dρ

dz

= wcpβ + (cp − cv) ǫ
Tρw

ρ2

dρ

dz
,

where the final term on the right then combines withp∇ · u and can be simplified. To

scaleβ I look to the definition (3.2) which suggestsβ = βθ/d andǫ = θ/Tr which is an

equivalent definition to (3.4). At leading order∇2T = 0 and atǫ3/2

cv

(

∂T

∂t
+ u · ∇T

)

+ wcpβ = (cp − cv)
Tw

ρ

dρ

dz
+ k

1

ρ
∇2T

+
µ

ρ

∂ui

∂xj

τij +
η

µ0ρ
(∇× B)2 , (3.50)

which is similar to Gough’s anelastic energy equation. In the literature it is less

common to use the temperature formalism with the anelastic approximation but Rogers
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& Glatzmaier (2005) take this approach. In Rogers and Glatzmaier’s paper equation (3),

the energy equation, is

∂T

∂t
+ (v · ∇)T = −vz

(

∂T

∂z
− (γ − 1)

)

Thρvz + γκ

[

∇2T + (hρ + hκ)
∂T

∂z

]

+ γκ

[

∇2T + (hρ + hκ)
∂T

∂z

]

+
Q̄

cv
, (3.51)

where in Rogers and Glatzmaier’s notationv in the velocity field equal tou andvz is

the velocity in the vertical directionw; hρ is the density scale highthρ = d/dz ln ρ; hκ

is the thermal diffusivity scale highthκ = d/dz lnκ; andQ is the heating rate which

maintains the reference state profile.

When ignoring variations in thermal diffusivity,hκ = 0, and removing the reference

state, which is represented in the last two terms, then in thenotation used in this thesis

equation (3.51) becomes

cvρ

[

∂T

∂t
+ (u · ∇)T

]

+ wcpρβ = wT
dρ

dz
(cp − cv) + k∇2T ′. (3.52)

The two equations (3.50) and (3.52) are the same as Gough’s energy equation. This

suggests that the temperature formulation of the energy equation is independent of the

small parameter used but this is not fully clear as in Rogers &Glatzmaier (2005) the

equations are not justified by a full asymptotic expansion.

However, it is clear that the anelastic conservation of energy written in terms of

temperature (3.50) is not equivalent to when it is written interms of entropy (3.20f).

It is possible that if higher order terms were kept in the anelastic conservation of mass

then there would be a way to express the density time derivative and so a conversion

from an entropy formulation of the energy equation to a temperature formulation would

be possible. The anelastic conservation of mass with higher-order-terms included is

ǫ3/2 ∂ρ
∗
1

∂t
= ǫ1/2∇ · u∗

1ρ+ ǫ3/2∇ · u∗
2ρ+ ǫ3/2∇ · u∗

1ρ
∗
1, (3.53)

where the decompositionu =
√
ǫδHrgr (u1 + ǫu2) andρ = ρr (ρ+ ǫρ∗ + ǫ2ρ∗2) and

u∗
1, ρ

∗
1 are the first order fluctuations, the same as dealt with in§3.4 on the anelastic
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scalings, andu∗
2, ρ

∗
2 are an order ofǫ smaller. Keeping higher-order-terms would stop

the system from being closed. One important thing to note about this derivation is

that when the atmosphere is not close to being adiabatic thenthe terms withβ will not

be small and there is no reason that they should be excluded from the leading order

balance. This would lead to a reference state that depended on the fluctuating velocity

and so invalidate the approximation. In a state far from adiabatic then this would clearly

make the anelastic equations not energetically consistent. Put in a different way, when

the atmosphere is not close to being adiabatic thenθ/Tr is not small and theβ term in

the temperature formulation of the energy equation (3.50) will act as a spurious source

of energy, as noted by Durran (1989).
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Chapter 4

Linear Algorithm

Insight into how the anelastic approximation deals both with the magnetic buoyancy and

magnetoconvection instabilities can be gained by investigating linear problems. It is

possible to look at small perturbations to a stable basic state of the anelastic equations

(3.20) and then linearise these equations. Linearising means finding an equilibrium,

perturbing the variables, and then, as the perturbations are small, neglecting non-linear

perturbation terms. This requires a reference state, whichis described in§3.4.2, and will

also require a basic state about which to perturb the equations. The reference state is

the state about which the fluctuating anelastic equations were derived. The basic state is

equivalent to an initial condition if the system were solvedas an initial value problem.

I have studied the same problem for anelastic and for compressible cases with the

aim of comparing and contrasting the results. This was done for both the magnetic

buoyancy and magnetoconvection instabilities. I have thenattempted to find the range

of parameters for which the anelastic approximation works and where it does not.

In all cases described henceforth, I follow a similar ansatzto determine the stability of a

plane parallel layer. In the anelastic case the fluctuating variables are all expanded as

ξ∗(x, y, z, t) = ξ∗b (z) + ξ̂(z) exp(σt+ ikxx+ ikyy), (4.1)

whereξ∗b (z) is the anelastic basic state;ξ̂(z) is a perturbation to the basic state with az

69



4. LINEAR ALGORITHM

dependence only;σ is the (possibly complex) growth rate of the instability; andkx andky

are the wavenumbers in thêx andŷ horizontal directions respectively. The perturbation

is much smaller than the basic state (unless the basic state is identically zero) sôξ ≪ ξ∗b .

In the compressible case the full variables are expanded in asimilar manner except the

variables were not split into reference and fluctuating parts so

ξ(x, y, z, t) = ξb(z) + ξ̂(z) exp(σt+ ikxx+ ikyy), (4.2)

whereξb(z) is the compressible basic state. The basic state was calculated numerically

for the magnetic buoyancy problem in both the compressible and anelastic cases. The

linear equations for the perturbation variables are given in Appendix A and B.

4.1 Finite Difference Scheme

The continuous problem was solved by describing the system of ordinary differential

equations usingN evenly spaced grid points. The differential operators acting on the

variables were replaced with the fourth-order accurate finite difference representations

with appropriate representations at each boundary, given by the boundary conditions.

A finite difference scheme is a way of approximating derivatives in a domain divided

into discrete points and is based on the Taylor expansion of awell behaved function

f(x0 + ∆x) = f(x0) +

n
∑

i=1

f (i)(x0)

i!
(∆x)i +Rn(x), (4.3)

wheref is the function,x0 the point about which the function is being expanded,∆x is

the distance between discrete points, andRN the remainder if the function is expanded

to thenth derivative. It is then possible to write thenth derivative in terms of the function

at different grid points with the accuracy of this given by the reminder function.

My domain had uniform grid width∆x and my finite difference stencils were fourth-

order accurate in space. The representation of annth derivative of any variable will have
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identical internal matrix points, e.g. the matrix representing the first derivative off is
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(4.4)

where B.P. are the boundary points which will be discussed later, fi is the value of the

function at theith grid point,N − 2 is the total number of internal points, andDfi is the

first derivative of the function at theith grid point. The matrix term on the left-hand-side

of equation (4.4) is an example of a fourth-order accurate matrix representation of the

first derivative. The central difference stencils, which represent the internal points, for

the function itself and the first four derivatives are
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2
(∆x)4
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,

(4.5)

where the third and fourth derivatives were only used for testing purposes.

To be able to model the third derivative requires seven grid points in the central difference

scheme. This means there will be three rows at the top and bottom of the matrix that will

depend on the boundary condition. In the boundary regions tokeep the fourth-order

accuracy then eight grid points are required. The boundary finite difference stencils are

given for a free boundary condition, i.e. one where nothing is imposed on the function,

wherel represents which row of the matrix the boundary stencil refers to, for example

in equation (4.4) the first row would bel = 1 andl < 0 represents the boundary stencils
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l = 3
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The other boundary condition such as Dirichlet and Neumann boundary conditions have

different boundary stencils which are not shown here. The Dirichlet boundary condition

stencil is similar to the free boundary condition stencils shown previously but where the

value of the function at the point just outside the domain is zero.

Using the notation Dnbc
l (m) wheren is the derivative;l is the samel as described

previously; bc is the type of boundary i.e. f(ree), D(irichlet), or N(eumann); andm

is the column in the matrix. An example would be D4f
2(3) = 127/3, from the stencil in

equation (4.6b).

The Dirichlet condition can be derived from the free condition wherel < 4 by

DnD
l (m) = Dnf

l+1(m+ 1), (4.7)

and whenl > N − 4 by

DnD
l (m) = Dnf

l−1(m− 1). (4.8)

For example withl = 1, the first row in the derivative matrix, the fourth derivative of a

function with a Dirichlet boundary is

D4D
1 =

(

−56
3(∆x)4

127
3(∆x)4

−162
3(∆x)4

125
3(∆x)4

−60
3(∆x)4

16
3(∆x)4

−2
3(∆x)4

0
)

. (4.9)

Neumann boundary conditions are more involved but make use of the first row l = 1

from the first order derivative of the function

D1f
1 =

(

−1089
420(∆x)

7
(∆x)

−441
42(∆x)

35
3(∆x)

−35
4(∆x)

21
5(∆x)

−49
42(∆x)

3
21(∆x)

)

. (4.10)

A Neumann condition means that when the stencil in equation (4.10) is applied to the

function at the boundary grid point, which is just outside the domain, the result will be

zero by definition. The Neumann boundary condition stencilsfor l < 4 are created by

DnN
l (m) = −Dnf

l+1(1)

D1f
1(1)

D1f
1(m+ 1) + Dnf

l+1(m+ 1),

with a similar expression for thel > N − 4 stencils.
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4.2 Numerical Procedure

As can be seen from the previous section the result of the finite difference representation

of the system is a banded matrixA, and the algorithm takes advantage of this. TheN

eigenvaluesσN and corresponding eigenvectorsxN of matrixA were found using the

inverse iteration method described by Fearn (1985). An initial guess for the eigenvector

y was made, which can be expressed asy =
N
∑

i=1

αixi, whereαi are the coefficients of

the eigenvectors. An initial guess̟for the eigenvalue was also made. It is then possible

to formulate an expression that converges toσj , the closest eigenvalue to̟,

(A−̟I)−m
y =

N
∑

i=1

αi (σi −̟)−m
xi, (4.11)

where the right hand side will tend towards thej th eigenvalue asm increases. This can

be expressed in an iterative scheme

ym+1 =
(A−̟I)−1

ym

ymax
. (4.12)

At each iteration the guess for the eigenvector was normalised to have the element with

the largest modulusymax set equal to one. The convergence ofy on the closest actual

eigenvector depends on the distance between̟ andσj relative to the distance between

̟ and the other eigenvalues. The operation to find the inverse is computationally

expensive so although it is possible to recalculate(A−̟I) with an improved guess

for the eigenvalue̟ 2 this is not efficient. The process was restarted with̟2 as an

improved guess for the eigenvalue only if|̟1 − ̟2| > 0.75 and then the algorithm

recalculated the matrix inverse from the updated eigenvalue guess̟ 2. The inverse was

calculated using LU decomposition which takes advantage ofthe banded form of the

matrix. The iteration performed in equation (4.12) was considered complete whenym

andym+1 were parallel to within a tolerance of10−9 or smaller. The eigenvalue was
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then found from

|ym|
|ym+1|

=
αj (σj −̟)−m |xj|

αj (σj −̟)−(m+1) |xj|
,

σj = ̟ +
|ym|
|ym+1|

.

In the compressible case then temperature rather than entropy was used. In the

compressible case there is an evolution equation for the pressure so the variables were

set-up using

A
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so thatA is in banded form.

In the anelastic case instead of aσ multiplying the pressure perturbation there is a

zero as the pressure responds instantaneously to changes inthe fluid. This can be seen

when the divergence of the anelastic momentum equation (3.20b) is taken to get another

relationship which is based on pressure

∇ · [ρ (u∗ · ∇∗u∗)] = −∇∗2p∗

+ F̃∇ · [(∇∗ × B∗) × B∗] +

(

Pr

R

)1/2

∇ ·
[

1

ρ
(∇∗ · τ ∗)

]

, (4.13)

which shows that pressure responds instantly to changes inu∗ andB∗. The anelastic

continuity equation (3.20a) can now be seen as an diagnosticequation for the pressure,
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as in Kersalé et al. (2004). This is equivalent to sound waves travelling instantaneously

over all space so the pressure effects are also instantaneous as equation (4.13) shows.

This leads to a generalised eigenvalue problem of

A
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so the problem can be formulated as

Ax = σBx. (4.14)

The generalised eigenvalue problem can be solved in much thesame way except with

the equation (4.11) being replaced with

(A−̟B)−mBy =

N
∑

i=1

αi (σi −̟)−m
xi, (4.15)

so that the iteration scheme (4.12) is now

ym+1 =
(A−̟B)−1Bym

ymax
. (4.16)

4.2.1 Validation of Anelastic Algorithm

The anelastic code was validated by first comparing with the analytical results given

in Chandrasekhar (1961). The validation also gives a justification for the number of
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grid points by comparison to the Boussinesq case where a result can be analytically

derived, as shown in Chapter 2. It is possible to recover the Boussinesq limit in the

anelastic equations by takingθ = 0 which sets all the thermodynamic reference states to

be constant. In the Boussinesq case Chandrasekhar has an analytical equation for vertical

magnetoconvection (for a more detailed introduction to Boussinesq magnetoconvection

see§5.1)

R̃c =
[

(π2 + k2)2 + π2Q
]

(4.17)

wherek2 = k2
x + k2

y; Q the Chandrasekhar numberQ = B2
0d

2/(µ0µη), see appendix C

for details on howQ relates to the other dimensionless numbers; andR̃c is the critical

Rayleigh number. The critical Rayleigh numberR̃c is the lowest Rayleigh number

required for the system to be unstable, i.e. atR = R̃c thenσ = 0. The critical Rayleigh

number can be minimised overk to find the minimum critical Rayleigh number̃Rm

c

which happens when

Q = π2

(

2

(

k

π

)6

+ 3

(

k

π

)4

− 1

)

. (4.18)

This can then be compared to the value that the computer program finds in the

anelastic case to give a fractional difference. This fractional difference in the Rayleigh

number for the analytical Boussinesq and numerical anelastic equations is defined as

|R̃Bouss. − R̃an.|/|R̃Bouss.|; a similar definition is used for the fractional differencesin

other parameters. Figure 4.1 shows the fractional difference as a function of resolution

for the anelastic code. Figure 4.1 shows there is a steep decrease in the difference up to

600 points, where the difference is under0.001%. Then at numbers of grid points higher

than1500 the difference begins to increase. This increase is due to fourth derivative

terms which, when represented in the fourth-order accuratefinite difference scheme,

involve division by the grid-spacing to the fourth power. When the number of grid points

increases above1500 then the numbers involved are small enough for machine precision

to become a limitation. This suggests that the number grid points should be between

800 − 1200 which is the range used in this thesis. TheR̃m

c values are independent of
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the diffusion parametersPr and ζ as well as being independent of the magnetic field

F . I will still give the parameters used in the following figures for completeness,

Pr = 1.0, ζ = 1.0, γ = 5/3, θ = 0, andm is not used so could remain undefined.

Figure 4.2 shows the difference of the numerical results in the Boussinesq case for a

range ofk values and shows that the difference remains relativity unchanged and are less

than0.005%. This shows the fractional difference is independent of thewavenumber, as

expected.
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Figure 4.1: The fractional difference between the computational and the

analytical Boussinesq results showing the fractional difference as function of the

number of grid points for a fixed R = 1761.8 and k = 3.27.

4.2.2 Validation of Compressible Algorithm

The compressible code was adapted from a code written by Evy Kersalé and tested

against that code. This validation was only done for cases with a constant magnetic field

as in magnetoconvection. The validation that the anelasticcode was correctly modelling

magnetic buoyancy was made through comparisons with the compressible code.
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800 grid points were used in the computational case.
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Chapter 5

Linear Magnetoconvection Results

5.1 An Introduction to Boussinesq Magnetoconvection

Some magnetoconvection linear theory is useful to help understand the computational

results presented later in this chapter.

From Proctor & Weiss (1982) and Chandrasekhar (1961), I willconsider a Boussinesq

plasma between two horizontal layers at a distanced apart. Energy lost to magnetic

dissipation leads to a source term in the energy equation (2.3d) in the form of Ohmic

heating, but this is small and will be ignored for rest of the discussion on convection. The

constituent equations of magnetohydrodynamics in the Boussinesq approximation are

then non-dimensionalised using the length scaled, thermal relaxation timed2/(ρ0cpk),

velocityu with ρ0cpk/d, and pressurep with µcpk/d2. Then the magnetic field is written

B = B0 (ẑ + B∗) and temperatureT asT = T0 (1 + θ(1 − z) + T ∗) whereB0, θ are

the dimensionless magnetic and thermal gradients respectively andT0 is the background

temperature. Dropping the superscript∗ the magnetohydrodynamic equations, in non-
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5. LINEAR MAGNETOCONVECTION RESULTS

dimensional form, are then

1

Pr

(

∂u

∂t
+ u · ∇u

)

= −∇p+RT ẑ +Qζ

(

∂B

∂z
+ B · ∇B

)

+ ∇2u, (5.1a)

∂T

∂t
+ u · ∇T = θu · ẑ + ∇2T, (5.1b)

∂B

∂t
+ u · ∇B =

∂u

∂z
+ B · ∇u− ζ∇× (∇×B) , (5.1c)

∇ · u = ∇ · B = 0, (5.1d)

wherePr = µcp/k is the Prandtl number;ζ = ηcpρ0/k is a diffusivity ratio (or inverse

Roberts number);R = gcpαθd
3ρ2

0/(kµ) is the Rayleigh number which is a ratio of the

buoyancy forces to the viscous forces, whereα is the thermal coefficient of expansion,

andQ = B2
0d

2/(µ0µη) is the Chandrasekhar number, see Appendix C for how these

related to the dimensionless numbers in (2.5). Unlike elsewhere in this thesis, here

z = 0 is the bottom of the domain andz = 1 is the top. The boundary conditions at

z = 0, 1 are isothermal, stress-free with a vertical magnetic field so B · x̂ = B · ŷ = 0.

It is often helpful to decompose fields into two components: poloidal and toroidal. In

axisymmetric fields the toroidal component of field is parallel to latitudinal lines. The

poloidal field is outwards from the poles. I now separate the fields into poloidal and

toroidal components,u = ∇× (∇× φẑ) +∇× ψẑ andB = ∇× (∇× ξẑ) +∇× χẑ.

The components decouple with the toroidal component describing solutions that decay

and so will be neglected. Substituting the poloidal terms into (5.1a-c), linearising, and

taking thêz component of the curl leaves

1

Pr

∂

∂t
∇2φ = −RT +Qζ

∂

∂z
∇2ξ + ∇4φ, (5.2a)

∂T

∂t
= −∇2

Hφ+ ∇2T, (5.2b)

∂ξ

∂t
=
∂φ

∂z
+ ζ∇2ξ, (5.2c)

where∇H is the horizontal derivative. On assuming a normal mode solution for the

perturbations of the formf(z) exp(ik · x + σt) and its complex conjugate, where

k = (kx, ky), the system reduces to one containing only ordinary differential equations.
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5.1 An Introduction to Boussinesq Magnetoconvection

This leads to the dispersion relation, cubic in the growth rateσ, of

̟2
(

σ +̟2
) (

σ + Pr̟2
) (

σ + ζ̟2
)

+ ζ PrQ̟2π2
(

σ +̟2
)

−RPr k2(σ + ζ̟2) = 0, (5.3)

where̟2 = k2 + π2 andk = |k|. There is a steady-state bifurcation (exchange of

stabilities) atσ = 0 where the critical Rayleigh number, the minimum Rayleigh number

required for convection to onset, is

Rc = k−2
(

̟6 +Qπ2̟2
)

. (5.4)

The critical Rayleigh number can be minimised overk. Taking a step back to see how

this relates to magnetoconvection is useful at this point. The minimum critical Rayleigh

numberRm

c is an increasing function ofQ. As magnetic fields become stronger then

more energy is required to displace field lines and so convection onsets proportionally

later for higherR. For sufficiently largeQ thenRm

c ∼ π2Q.

A Hopf bifurcation is also possible in this system when (5.3)has purely imaginary roots,

σ = ±iω, and occurs when

Roc = k−2
(

A̟6 +BQπ2̟2
)

, (5.5)

whereA = 1 +
ζ

Pr
(1 + Pr +ζ) , B =

ζ (Pr +ζ)

1 + Pr
.

The frequencyω must satisfy

ω2 = −ζ2̟4 +
Pr ζ(1 − ζ)

1 + Pr
π2Q. (5.6)

No Hopf bifurcation is possible ifζ > 1 as thenω2 < 0. The limiting case isω = 0 and

substituting (5.6) into (5.5) and comparing with (5.4) shows that if a Hopf bifurcation is

possible then it will occur at a lower Rayleigh number than the steady-state bifurcation.

If the system is in the regime where a Hopf bifurcation will occur then, as the Rayleigh

number is increased steadily, the system will transition smoothly from a stable state to

oscillatory convection. The Takens-Bogdanov (TB) point iswhere the Hopf bifurcation
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coincides with the steady state (or pitchfork) bifurcationand the frequency tends to zero.

Near the TB point the frequency at the Hopf bifurcation is small. In liquid-metalsζ ≫ 1

but in astro- and geophysical situationsζ < 1 so it initially appears likely that oscillatory

convection sets in first. This is somewhat of an over-simplification as in the Sunζ is

proportional to density and passes through unity from the surface to the bottom of the

convection zone.

5.2 Linear Code modelling Magnetoconvection

I will now explain the set-up of the linear problem. This was done for the anelastic

case and then compared with the compressible case where I have assumed that in the

compressible case the problem was solved exactly. It is thenpossible to compare and

contrast the anelastic equation with and without the Lantz-Braginsky simplification to

the compressible equations. The fully compressible equations are in equation (2.3) and

the anelastic equations without the Lantz-Braginsky are given in (3.20) with the Lantz-

Braginsky approximation given in§3.7.

Owing to the inherent symmetry of the linear problem the results do not depend on the

separate horizontal wavenumbers and so I proceed by calculating the critical Rayleigh

number as a function ofk wherek2 = k2
x + k2

y. The critical Rayleigh number̃Rc is

defined as that Rayleigh number for whichℜ{σ} = 0 andR̃m

c is then the lowest value

of R̃c when optimised overk. For simplicity, I denote the wavenumber at which this

minimum occurs ask in the figures following. This procedure is formally equivalent to

solving an eigenvalue problem for̃Rc, optimised overk, with all other parameters fixed

apart fromCk, which is related tõR by equation (3.25); this in turn can be thought as an

eigenvalue problem forCk.

The systems of full anelastic, Lantz-Braginsky approximation, and fully compressible

linear equations, together with the appropriate boundary conditions, were solved in the

form of generalised eigenvalue problems.
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5.2 Linear Code modelling Magnetoconvection

5.2.1 Boundary Conditions

The boundary conditions are consistent with boundary conditions on full variables, but

were imposed on the perturbation terms, and are that the top and bottom boundaries were

impermeable, stress free and isothermal so

ŵ =
∂

∂z
û =

∂

∂z
v̂ = T̂ = 0 at z = 0, 1

where the velocity components areu = (u, v, w) and the terms such aŝw terms are

from the expansion in (4.1) in the anelastic case and (4.2) inthe compressible case.

This was true even in the anelastic case where I used the entropy equation rather than

the temperature equation and this will be further investigated in § 5.3.6. Stress free

boundary conditions were chosen as these are easier to implement in the non-linear case

so comparisons would be simpler. The temperature boundary condition is non-physical

as there is no area in the Sun where the fluctuations to a time-independent profile are

always zero and was chosen for mathematical convenience. Although it is non-physical

it is relevant to the Sun and other temperature boundary conditions, such as fixed flux,

have similar issues.

I also imposed the illustrative boundary condition suggested by Chandrasekhar (1961)

on top and bottom of the magnetic field, i.e.

B̂x = B̂y =
∂B̂z

∂z
= 0, (5.7)

where magnetic field components areB = (Bx, By, Bz). This guaranteed a vertical field

whilst satisfying the solenoidal condition (2.1b).

5.2.2 Basic State

The basic state in the anelastic equations is not equivalentto the basic state in the

compressible equations. In the anelastic case, the reference state is a non-magnetic

polytrope and the magnetic field enters only in the basic state. In the compressible case
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there is no reference state so the basic state is that of a polytrope, but in the presence of

a weak magnetic field with a strength consistent with the anelastic approximation.

The basic state of the compressible equations (2.3) is denotedξb, whereξ can represent

any variable. I consider a steady, stationary basic state given by a polytropic solution

together with a uniform vertical magnetic fieldBb = (0, 0, 1). Thus,Tb = (1 + θz) and

ρb = (1 + θz)m wherem is the polytropic index as explained in§3.4.2. For a polytropic

atmosphere the density contrast is defined as

χ =
ρb(1)

ρb(0)
= (θ + 1)m . (5.8)

Although there is a magnetic field in the basic state it has no gradient and does not

alter the polytrope. Figure 5.1 shows the compressible basic state for typical parameter

values used in the computations later and it shows that the compressible basic state is a

polytrope.
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Figure 5.1: The compressible basic state density (a) and the temperature (b) for

a typical case with γ = 5/3, m = 1.495, θ = 0.5, Pr = 1.0, ζ = 5 × 10−2, and

F = 5 × 10−4.

In the anelastic approximation the basic stateζ∗b is also simple. For magnetoconvection

the field in the basic state is uniform and verticalB∗
b = (0, 0, 1). Imposing a constant

vertical field causes no Ohmic heating and no Lorentz force. Iconsider a basic

state which is a stationary and steady solution of the equations (3.20a-d), given by
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5.3 Linear Magnetoconvection Results

s∗b = T ∗
b = p∗b = ρ∗b = u∗

b = 0. This simplicity is in contrast to the magnetic buoyancy

instability which is discussed later in§6.2.3.

5.3 Linear Magnetoconvection Results

The numerical algorithm determines the growth rates (eigenvalues) of the perturbation

terms as a function of the input parameters and the wavenumbers. For historical reasons

the critical diagnostic in convection problems has been themarginal Rayleigh number

(Chandrasekhar, 1961) and I choose to retain this diagnostic. Starting from a stable state

I slowly increase the Rayleigh number from a starting point until the system becomes

unstable. This bifurcation defines the critical Rayleigh numberR̃c, where the growth

rate is zero, as in the Boussinesq case.

In setting the polytropic indexm so that the atmosphere is super-adiabatic then

convection may occur. Forγ = 5/3 super-adiabaticity requiresm < 1.5. I fix the

following parameters as

γ = 5/3, m = 1.495, Pr = 1.0, ζ = 5 × 10−2 and F = 5 × 10−4,

unless otherwise stated in the figure captions. The value ofm was chosen so the

atmosphere was unstable to convection but the departure from an adiabatic atmosphere

was small. This is required so thatǫ, defined in (3.4), is kept small. In computations

wherem is not altered, if there are differences between the fully compressible and

anelastic equations then it is not due to a largeǫ. The fractional difference is defined

with regard to the compressible equations for example the fractional difference in

the wavenumber is defined as|kcomp. − kan.|/|kcomp.|; a similar definition is used for

the fractional differences in other parameters. When I compared the full anelastic

with the Lantz-Braginsky simplification the fractional difference was defined as

|kan. − kLantz-Braginsky.|/|kan.| as this produced clearer plots. This has the disadvantage

that when the full anelastic approximation produces a different result from the fully
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compressible equations then it does not show if the Lantz-Braginsky simplification

is increasing or decreasing the difference. It was always the case that the fractional

difference between the Lantz-Braginsky simplification andthe compressible case was

larger than between the full anelastic and compressible case.
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c
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k

(a)

Figure 5.2: For χ = 1.5, (θ = 0.311) variations in the marginal or critical Rayleigh

vs. the wavenumber.

Figure 5.2 shows a typical̃Rc dependence onk, the lowest eigenvalue optimised overk

has already been defined as the minimum critical Rayleigh numberR̃m

c .

5.3.1 The effect of alteringθ

The temperature gradientθ is related to other dimensional numbers from equations

(3.22) and (3.26). The anelastic equations are formally equivalent to the Boussinesq

equations in the limitθ → 0; so the Boussinesq results from§5.1 should be recoverable.

Figure 5.3(a) shows the critical Rayleigh number dependence on θ (with m fixed so

that χ varies) for the fully compressible problem. As the temperature gradient is

normalised inR̃c, increasingθ stabilises the layer, leading to a largerR̃m

c in agreement

with earlier studies (see e.g. Gough et al., 1976; van Ballegooijen, 1982). Increasing

the stratification of the atmosphere causes a steep increasein the minimum critical
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Figure 5.3: For m fixed, variations vs. θ of (a) the minimum value of the

critical Rayleigh number, R̃m

c , and the corresponding wavenumber, k, for the

compressible model; (b) the fractional differences in R̃m

c between compressible

and anelastic models, and between anelastic models with the Lantz-Braginsky

simplification and the anelastic equations, denoted An. R̃m

c . The An. R̃m

c points

denote the fractional difference between the full anelastic equations and the

Lantz-Braginsky simplification. Here ǫ lies in the range 10−4 − 3 × 10−2.
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Rayleigh number but this increase then levels off at higher stratification. Figure 5.3(b)

shows the fractional difference in the critical Rayleigh number and wavenumber for the

anelastic approximation and the fully compressible equations. It is clear that the anelastic

approximation gives an accurate representation of the fully compressible solutions, with

errors of less than3%, even for the most stratified cases whereθ = 15 andχ = 60.

This is not unexpected since, withm = 1.495, the atmosphere is chosen to be very

close to adiabatic and so one might expect the anelastic approximation to perform well.

Figure 5.3(b) also shows the fractional difference inR̃m

c between the anelastic equations

solutions and the solutions calculated using the Lantz-Braginsky approximation. The

fractional difference of the difference between the anelastic approximation with and

without the Lantz-Braginsky simplification is also shown infigure 5.3(b). As the

atmosphere is exceptionally close to being adiabatic, the Lantz-Braginsky approximation

performs well. The Lantz-Braginsky approximation is exactfor m = 1.5 and should be

very good for smallm. Figure 5.4 has both the full anelastic and compressible results

which shows that thẽRm

c in the full anelastic equations is larger than in the compressible

equations.

 2.2

 2.3

 2.4

 2.5

 2.6

 0  5  10  15
 8

 10

 12

 14

 16

θ

R̃m

c comp.

R̃m

c an.

k comp.

k an.

k

R̃
m c
×

10
2

(a)

Figure 5.4: The same as figure 5.3(a) except now showing the compressible

along with the anelastic results on the same plot.

Figure 5.5 also shows a similar plot as figure 5.3 but with a stronger magnetic field of

F = 0.2. At low values ofθ the instability is oscillatory and at larger values it becomes
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Figure 5.5: As for figure 5.3 but here F = 0.2 and ζ = 2 × 10−2. Also the

imaginary part of the eigenvalue is plotted, denoted ℑσ.

steady. At the TB point the wavenumber is discontinuous, as the oscillatory instability

and the steady instability occur at different wavenumbers,but R̃m

c is continuous. A

sketch of how the critical Rayleigh number is altered aroundthe TB point is given in

figure 5.6. The fractional difference in figure 5.5 is slightly larger than in figure 5.3

even thoughǫ is the same because of the larger magnetic field the Alfvénictime-scale

decreases, upsetting the anelastic ordering.

5.3.2 The effect of alteringm

The polytropic indexm measures the stratification of the atmosphere with an adiabatic

atmosphere havingm = 1.5. The anelastic equations are only valid when the atmosphere

is nearly adiabatic and the Lantz-Braginsky simplificationis equivalent to the full

anelastic equations only if the atmosphere is adiabatic, see §3.7 and later discussions.

The effect of varying the polytropic index on the critical Rayleigh number and

wavenumber is shown in figure 5.7(a). Herem is varied along withθ to keep the

density contrast constant. The equation (3.22) shows that altering the polytropic index

also alters the gravity of the system. Asm is decreased the atmosphere becomes more
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Figure 5.6: A sketch of the steady and oscillatory critical Rayleigh number for

(a) parameter values below the TB point and (b) parameter values above the TB

point.
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Figure 5.7: As for figure 5.3 but variations vs. m for χ = 8 fixed; m is decreasing

to the right. In addition (b) shows the fractional difference in k between

compressible and anelastic models. Here ǫ lies in the range 6 × 10−3 − 10.
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unstable but, asm is also in the gravity term, the minimum critical Rayleigh number

increases, although the wavenumber at which the system becomes critical remains

largely unaffected. Again, figure 5.7(b) shows how well the anelastic approximation

reproduces the fully compressible results by presenting fractional differences. Somewhat

surprisingly the anelastic approximation performs well onthe linear problem even when

m differs significantly from1.5, the adiabatic value. Asm is decreased the anelastic

approximation becomes less accurate, but it is still well within 2% atm = 0.7 where

ǫ ∼ 10. Berkoff et al. (2010) believed this accuracy was an artifact of the linear

problem. The Lantz-Braginsky simplification is equivalentto the anelastic equations

in an adiabatic atmosphere and the two differ in terms of order ǫ2. In figure 5.7(b) when

m becomes small thenǫ becomes large causing differences of up-to7% with the anelastic

equations. The Lantz-Braginsky approximation is not capturing this instability as well as

the anelastic equations, but this may be another artifact ofthe linear problem. When the

density contrast is reduced fromχ = 8 toχ = 3 (not shown) there is a slight decrease in

the fractional differences. It therefore seems probable that the anelastic approximation

performs better when the density contrast is lower.
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Figure 5.8: As for figure 5.7, for χ = 3 and F = 0.5. In addition, (a) shows the

imaginary component of σ vs. m and (b) shows its fractional difference between

compressible and anelastic models.
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Figure 5.8 shows a similar comparison between the anelasticand compressible models

when the imposed field is stronger, as the polytropic indexm is once again moved

away from1.5. Interestingly, both the anelastic equations and the Lantz-Braginsky

approximation perform worse than in figure 5.7, although theanelastic equations are

still accurate to 7%. The Lantz-Braginsky simplification compared with the anelastic

equations has a15% difference atm = 0.8 in contrast to when the magnetic field is

weaker, where the difference is under 2% (not shown). This again suggests that when

m is far from its adiabatic value the Lantz-Braginsky anelastic approximation performs

less well. The mode is oscillatory and the anelastic approximation is able to capture this

accurately. The oscillations have a higher frequency when the atmosphere is further from

adiabatic. The anelastic model also captures the oscillation frequency less accurately

when the atmosphere is far from adiabatic.

5.3.3 The effect of alteringF

Altering the dimensionless parameterF changes the strength of the magnetic field.

The anelastic approximation is only valid for a weak field i.e. where the Alfvén waves

can be captured by the slow dynamical time-scale. Strong magnetic fields violate the

assumptions used in Chapter 3 on the time-scale of the evolution of the fluctuation terms

and so it is expected that instabilities with strong magnetic fields will be not be accurately

captured by the anelastic approximation.

The effect of a strong magnetic field in reducing the accuracyof the anelastic

approximation can be seen clearly in figure 5.9. Magnetic fields inhibit convection

but this process only becomes noticeable forF larger than∼ 0.01. This threshold

is sensitive to whether the fully compressible or anelasticapproximation is used. As

m is fixed near to its adiabatic value, the anelastic approximation does perform well,

but performs less well asF is increased; the magnetic field may become sufficiently

large so that the Alfvénic time-scale approaches the dynamic time-scale, breaking one

of the assumptions of the anelastic approximation. As expected for a nearly adiabatic
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Figure 5.9: As for figure 5.7 but variations vs. F with ǫ = 2 × 10−3. F on the x

axis is scaled logarithmically.

atmosphere, the Lantz-Braginsky approximation is a good approximation of the anelastic

equations.
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Figure 5.10: The same as figure 5.9(a) except now showing the compressible

along with the anelastic results on the same plot.

It can be seen more clearly how the anelastic approximation differs from the fully

compressible model in figure 5.10 which shows the anelastic results alongside the

compressible results. In the compressible results the minimum critical Rayleigh number

and the corresponding wavenumber increase whenF > 0.08 whereas in the anelastic

results the minimum critical Rayleigh number and the corresponding wavenumber do
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not show the same increase.

The figures in 5.11 show the absolute value of the eigenfunctions which correspond to

the pointF = 0.001 in figure 5.9. AtF = 0.001 in figure 5.9 the fractional difference

between the anelastic approximation and the compressible equations is small. In the

compressible case the eigenfunction shown in figure 5.11 (a)for the horizontal magnetic

field peaks just below the middle of the domain and is shown inBx. The vertical

magnetic field is not symmetric about the middle of the domainwith a peak closer to

the top. This is similar to the anelastic case without the Lantz-Braginsky simplification

shown in figure 5.11 (b). The horizontal velocity, shown in figure 5.11 (c), passes

through the origin in the lower half of the domain whereas thevertical velocity has

its peak in the middle of the domain. The anelastic case, shown in figure 5.11 (d), is

almost identical to the compressible case shown in 5.11 (c).The eigenfunctions for the

thermodynamic variables are shown in figure 5.11 (e).T is almost a sine curve but the

other variables have more complex shapes. The anelastic case in figure 5.11 (f) shows

that even when the eigenvalues agree well, as whenF = 0.001, then there are still

differences in the eigenfunctions as maximum values of the thermodynamic variables

are all different between the two cases by around2%. The shapes of the thermodynamic

eigenfunctions appears similar in the anelastic and compressible cases.

Slightly unexpectedly figure 5.12 gives almost the same results as figure 5.11 even

though it hasF = 0.05 rather thanF = 0.001 . The compressible eigenfunctions shown

on the left in figure 5.12 are very similar to those in figure 5.11, except that in figure 5.12

the thermodynamic variables have slightly larger maximum values. WhenF = 0.05 then

the fractional difference between the compressible and anelastic approximation is3%,

as shown in figure 5.9. Although the magnetic field is50 times stronger it is still a weak

field and so not creating much difference in the eigenfunctions of the instability, as shown

in the compressible case in the left panels of figures 5.11 and5.12. The eigenfunctions

in the anelastic approximation still compare very well to the compressible case with a

fractional difference of3%.
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Figure 5.11: The absolute values of the eigenfunctions corresponding to

minimum critical Rayleigh number shown in figure 5.9 with F = 0.001. The

left and right panels correspond to the compressible and anelastic (without

the Lantz-Braginsky simplification) models respectively. The values in the

compressible case are k = 2.27, R = R̃m

c = 772 and in the anelastic case

k = 2.28, R = R̃m

c = 773. (a)-(b) Magnetic field ; (c)-(d) components of the

fluid velocity ux, uy and uz; (e)-(f) thermodynamic variables p, ρ, T and s.
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Figure 5.12: As for figure 5.11 except with F = 0.05. The values in the

compressible case are k = 2.29, R = R̃m

c = 783 and in the anelastic case

k = 2.27, R = R̃m

c = 775.
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5.3.4 The effect of alteringζ
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Figure 5.13: As for figure 5.3 with variations vs. ζ with F = 0.1, χ = 1.1, and

θ = 0.0658. The line marked TB is the Takens-Bogdanov point; for ζ values

above this then ℑ{σ} = 0.

The magnetic diffusivity proportional to the dimensionless numberζ . From the

assumptions made in Chapter 3 alteringζ should not effect the accuracy of the anelastic

approximation.

Whenζ is varied in figure 5.13 (a) a TB point occurs. For low values ofζ the solution

which becomes unstable at the lower Rayleigh number has an eigenvalue with an

imaginary component and so is an oscillatory instability. There may also be a steady

instability with no imaginary component, but it must occur at a higher Rayleigh number.

The oscillatory solution undergoes a Hopf bifurcation whenthe Rayleigh number passes

through critical. This is expected from the Boussinesq theory shown in equation (5.3).

As ζ is increased the oscillatory solution becomes unstable at larger Rayleigh numbers

whereas the dependence of the steady solution on Rayleigh number appears constant for

all ζ values in the results. Whenζ is large enough then the steady solution will become

unstable before the oscillatory solution. The steady mode bifurcates as the Rayleigh

number passes through critical via a pitchfork bifurcation.
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Capturing the TB point was numerically awkward as the solution had the tendency to

jump onto the wrong branch, i.e. near the TB point there is a steady solution that is

only slightly sub-critical (e.g. using an illustrative case then atR̃ = R̃c − 10 then

σst = −0.01 + 0i and atR̃ = R̃c + 10 then σst = −0.01 + 0i) and this has the

largest real eigenvalue for most Rayleigh numbers below critical. There is also a second

solution, which is oscillatory, with a real component whichgrows rapidly when the

Rayleigh number increases (e.g. using an illustrative caseagain then at̃R = R̃c − 10

thenσoc = −0.2 + 3i and atR̃ = R̃c + 10 thenσ = +0.1 + 3i) making this oscillatory

solution the first to become unstable. The algorithm often latched onto the steady

solution even after the oscillatory solution became unstable. When the algorithm found

an eigenvalue that decreased when the Rayleigh number increased then the algorithm

restarted the inverse iteration but starting with an initial guess of the eigenvalue with a

much larger real component, first with and then without an imaginary component. The

algorithm then proceeded with the initial guess of the eigenvalue which was closest to

the actual eigenvalue with the largest real component. Alsowhen the algorithm had

selected what might be the lowest minimum critical Rayleighnumber the wavenumber

was increased by large steps to check that there was no lower critical Rayleigh number

at higher wavenumber, figure 5.6 shows how large changes in the wavenumber may find

a lower critical Rayleigh number.

The value ofF in figure 5.13 is higher than in other figures so that the oscillatory solution

is visible for a large enough value ofζ . For low values ofζ the diffusion reduces the scale

of the instabilities and introduces boundary layers that cannot be accurately modelled

without running into issues of round-off error.

In the anelastic case I have tracked the TB point over a range of values for the polytropic

index, as done in figure 5.14, and showed that asm increases, and soθ increases, the TB

point occurs at lowerζ values and higher Rayleigh numbers.

Figure 5.15 shows the effect of increasingζ at larger stratification than in figure 5.13.

This figure shows a similar trend as figure 5.13 except that theoscillatory instability
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Figure 5.14: Tracking the TB bifurcation whilst altering θ.
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Figure 5.15: As for figure 5.13 with χ = 8.0, and θ = 3.02.
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is more unstable than the steady instability for a smaller range of ζ values. The

fractional differences between the anelastic and compressible models are slightly larger

in figure 5.15 than in figure 5.13 which is expected from the results investigating when

θ was altered as in figure 5.7.

5.3.5 The effect of alteringPr
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Figure 5.16: The parameter Pr is altered in (a) the compressible case and (b)

the difference between the compressible and anelastic Lantz-Braginsky.

The viscosity is proportional to the parameterPr and, as with magnetic diffusion,

altering the thermal diffusion should not effect the accuracy of the anelastic

approximation.

The effect of altering the Prandtl number is shown in figure 5.16. At very low Prandtl

numbers the instability is hard to drive, but as the Prandtl number increases the minimum

critical Rayleigh number decreases. The solution also passes through the TB point. The

dimensionless numbers used in this section are not the same as used in the linear analysis

of Chandrasekhar (1961) but equation (5.6) shows that the Prandtl number effects when

an oscillatory mode can occur. The fractional difference shown in figure 5.16 (b) is

below0.5% and, as the atmosphere is nearly adiabatic, it is expected that the anelastic
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approximation will preform well. The large fractional difference on the first point is

most likely due to the difficulties in calculating the critical Rayleigh number near the TB

mentioned previously.

5.3.6 Isothermal to Isentropic Boundary Condition

The equations have so far been solved with an isothermal boundary condition. It is

also equally valid to use an isentropic one as neither is particularly relevant physically

however they are illustrative. Changing the boundary condition can be done using a

continuation method and setting the thermodynamic boundary condition to be

0 = λs+ (1 − λ)T,

whereλ ∈ [0, 1] is a new parameter to allow continuity when changing from one

boundary condition to another. In the anelastic case the entropy equation was used and

so the isothermal boundary condition is obtained using equation (3.20h), that is

s =
1 − γ

γ

p

p
+
T

T
. (5.9)

This means the isothermal boundaries condition, in terms ofthe entropy, can be

expressed as

s =
1 − γ

γ

p

ρT
, (5.10)

on the boundary, with pressure being extrapolated so that its value can be calculated

outside the domain.

Figure 5.17 shows how magnetoconvection is affected byλ. As the boundary condition

changes from isothermal (λ = 0) to isentropic (λ = 1) then the growth-rate decreases

and so the layer is becoming more stable. This means that it isharder to excite modes of

the magnetoconvection instability in a layer with an isentropic boundary condition than

a layer with an isothermal boundary condition. The effect the boundary conditions have

on the Rayleigh number, corresponding wavenumber, and the imaginary component of
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Figure 5.17: Showing the continuous change for k = 3.02 from the s = 0 to

T = 0 boundary condition with ζ = 0.01, θ = 3.01, and R = 1650. These are the

parameters at the most unstable mode in the isentropic case.

the eigenvalue are shown in figures 5.18 to 5.20, herePr = 1.0, Q = 20 and other

dimensionless numbers are in the captions.

Figure 5.18 shows there is a fairly rapid change in the minimum critical Rayleigh number

at lowλ values fromR̃m

c = 1000 atλ = 0 to R̃m

c = 1300 atλ = 0.2. The rapid change at

low λ values is more pronounced at largerζ values; figure 5.18 (a), withζ = 0.5, has a

range600 of the minimum critical Rayleigh numbers whereas in 5.18 (b), with ζ = 0.01,

the range is only300. The wavenumber corresponding to the most unstable mode also

has a rapid change at lowλ values. Increasingζ , whilst holding the other dimensionless

numbers constant, is equivalent to increasing the magneticdiffusivity. At the higherζ the

solution is oscillatory and for the lowerζ value the solution is steady with the imaginary

component of the eigenvalueℑ{σ} = 0 for all λ values in figures 5.18 (a), 5.19 (a), and

5.20 (a).

In figure 5.19 the atmosphere is less stratified than in figure 5.18 and the effect of altering

the boundary condition from isentropic to isothermal is reduced. For the two values
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of ζ , the difference in the minimum critical Rayleigh number between the isothermal

and isentropic boundary condition is shown in figure 5.19 (a)and (b). Figure 5.20

shows a nearly Boussinesq case withχ ∼ 1 and θ ≪ 1 and the different boundary

conditions have no effect on the imaginary component of the eigenvalue and almost no

effect on the critical Rayleigh number and corresponding wavenumber. This is expected

as in the Boussinesq case there are no pressure fluctuation sotemperature and entropy

are proportional so a change from isentropic to isothermal boundaries would make no

difference to the equations.
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Figure 5.18: The change from the isentropic to isothermal boundary condition

with χ = 8, θ = 3.01, and ζ = (a) 0.5 and (b) 0.01. The minimum critical Rayleigh

number R̃m

c and corresponding wavenumber are shown along with the imaginary

component of the eigenvalue ℑ{σ}.

5.3.7 Chandrasekhar Exponent Dependences

I also investigated some of the parameters dependence on theChandrasekhar number

Q = B2
0d

2/(µ0µη) and how the exponents altered as the atmosphere became more

stratified [see appendix C for the relation between commonlyused dimensionless

numbers in this thesis]. The power law scaling obtained in Chandrasekhar (1961) are
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Figure 5.19: As figure 5.18 but with χ = 3, θ = 1.08, and ζ = (a) 0.5 and (b) 0.01.
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Figure 5.20: As figure 5.18 but with χ = 1.1 and θ = 0.065 and ζ = (a) 0.5 and

(b) 0.01.
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for the Boussinesq limit. The analytical Boussinesq results for sufficiently largeQ are

thatk ∝ Q1/6, R̃c ∝ Q0.976, andℑ{σ} ∝ Q0.5. Figure 5.21 shows that with a low value

of θ then the exponents are similar to the analytical results in Chandrasekhar (1961). To

confirm the exponents an oscillatory and steady instabilitywere studied, in practice this

meant using a small value and large value ofζ so the TB point was in between the two

ζ values. In figure 5.23,θ was larger than in figure 5.22 and the difference between the

analytical and computed exponents became larger, which wasexpected as the analytical

exponents are forθ = 0. Whenθ increased the exponent of the wavenumber dependence

onQ increased and the exponent of the minimum critical Rayleighnumber dependence

onQ decreased. Asζ increased then the exponents of both instability parametersR̃m

c and

k dependence onQ increased, e.g. in figure 5.22 (a) whereζ = 0.05 the dependence was

k ∝ Q0.175 but whenζ = 0.5 as in figure 5.22 (b) then the exponent for the wavenumber

dependence onQ increased tok ∝ Q0.177. The line of best fit was only calculated when

the data lay close to a straight line, for example in figure 5.22 (a) the best fit line was

calculated from pointsQ > 104.
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Figure 5.21: The dependencies on Q, the Chandrasekhar number. This is on a

log-log plot with θ = 0.0658, (χ = 1.1). The lines of best-fit and the exponents

are also plotted. In (a) ζ = 0.1 so the solution oscillated, and in (b) ζ = 0.5 so

the solution did not oscillate.
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Figure 5.22: Same as figure 5.21 except with θ = 1.08 (χ = 3.0). In (a) ζ = 0.05

so the solution oscillated, and on (b) ζ = 0.5 so the solution did not oscillate.
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Figure 5.23: Same as figure 5.21 except with θ = 3.01, (χ = 8.0). In (a) ζ = 0.01

so the solution oscillates, and in (b) ζ = 0.5 so the solution does not oscillate.
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5.3.8 Tilted Field

So far I have only considered the case of a vertical magnetic field whereB∗
b = (0, 0, 1).

It is also possible to have a tilted field whereB∗
b = (sinφ, 0, cosφ) andφ is the angle of

the magnetic field from the vertical, withφ = 0 corresponding to case being previously

discussed in this chapter. The basic state is the same in the tilted field case as in§5.2.2

and the boundary conditions are the same as those in§5.2.1 except for the magnetic field

boundary condition. The magnetic boundary condition becomesBz sin φ+Bx cos φ = 0

at z = 0, 1 . This was only investigated in the anelastic case and the linear equations are

given in Appendix B.

The interest in inclined fields is due to sunspots as it is thought that inclined fields may

be responsible for some of the features seen. With an inclined field the symmetry of

clockwise and anti-clockwise oscillations is broken. The perturbation terms, which

result from a decomposition of the formf(z) exp(ik · x + σt), are calculated to find

the eigenvalue. As time increases ifℜσ > 0 andℑσ 6= 0 then the solution will increase

and, if plotted on an Argand diagram, the instability will rotate around the origin with

a clockwise or anti-clockwise as the solution spirals outwards. Figure 5.24 shows that

instabilities which oscillate clockwise, whereℑσ < 0, occur at lower Rayleigh number

and are more unstable than those which rotate anti-clockwise, whereℑσ > 0, when

φ = 45◦. Figure 5.24 shows a plot of the critical Rayleigh number forthe two rotation

directions atφ = 45◦ and as the wavenumber is altered there is a minimum critical

Rayleigh number at which the system becomes unstable.

Figure 5.24 shows how the critical Rayleigh number changes as the

wavenumber is increased. This compares well with the compressible

results in Matthews et al. (1992). The parameter values usedare:

Pr = 1, m = 1.495, ζ = 0.05, γ = 5/3, θ = 1.09 (to 3 s.f.), χ = 3, Q = 20.

An Argand diagram of eigenvalues as the Rayleigh number increases is shown in

figure 5.25. In both the figures 5.25 (a) and (b) at a low Rayleigh there are two branches,
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φ = 45◦, green dashed for i > 0 and red for i < 0

one with positive and the other with a negative imaginary part. As the Rayleigh number

is increased then both branches in figure 5.25 (a) become unstable, in that the real part

of both branches becomes positive. The positive branch thenturns back and becomes

stable again at higher Rayleigh numbers whereas the negative branch remains unstable.

The branch which remains stable changes ask is increased as shown in figure 5.25 (b)

where now it is the positive branch which remains unstable. This change of stability

in the branches is called ‘stability reversal’ and is discussed in Hurlburt et al. (1996)

where they find that the stability reversal is very sensitiveto boundary conditions. The

results in Roxburgh (2007) are not the same as shown in figure 5.25 but this discrepancy

has been put down to the sensitivity of the stability reversal. Roxburgh found that the

stability reversal occurred atk = 4.2 whereas I found the reversal to occur atk = 4.8.

5.4 Summary

The anelastic approximation accurately captures the magnetoconvection instability when

the atmosphere is nearly adiabatic, the magnetic field is weak, and the temperature flux
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Figure 5.25: An Argand diagram of the eigenvalue (a) k = 3.0 and (b) k = 4.9

with φ = 60◦. The arrows point in the direction of increasing Rayleigh number.

gradientθ is small. This is true for the Lantz-Braginsky approximation as well as the

full anelastic approximation.

When the atmosphere departs from being adiabatic then the full anelastic approximation

is able to reproduce the instability more accurately than the Lantz-Braginsky

approximation. The term that is neglected in the Lantz-Braginsky is small if and

only if the atmosphere is nearly adiabatic. When the temperature flux gradient is

large the anelastic approximation produces results with a larger fractional difference

compared to the fully compressible results and the term neglected in the Lantz-Braginsky

simplification is small so the difference between the two anelastic approximations also

remains small. A strong magnetic field also causes large fractional differences between

the anelastic and fully compressible cases.

Changing between isothermal and isentropic boundary conditions makes the

magnetoconvection instability onset at higher Rayleigh numbers and wavenumbers. This

effect is more pronounced when the temperature flux gradientis larger.

Various parameters dependencies onQ, obtained analytically in Chandrasekhar (1961)

for the Boussinesq limit, were investigated in the anelastic approximation. As the

temperature flux gradient increases, departing from the Boussinesq limit, then there are

deviations from the analytical dependencies but these are small.
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Chapter 6

Linear Magnetic Buoyancy Results

6.1 Linear Theory of Magnetic Buoyancy

It is possible to set out, in a general way, an argument based on density of how the

magnetic buoyancy instability operates. If an element of fluid was lifted a small distance

vertically in a stably stratified atmosphere then it would beheavier than its surroundings

and would sink, overshooting and, subsequently, oscillating about its initial point at

the Brunt-Väisälä frequency. In investigating the magnetic buoyancy instability it is

helpful to use a simple parcel argument to understand the nature of the instability which

was considered, in the absence of dissipation, by Acheson (1979) and later by Hughes

(2007). I will consider a gravitationally stably stratifiedatmosphere in equilibrium with a

horizontal magnetic field. I will simplify matters by considering a simple case where no

field lines are twisted or bent, this is called an interchangemode which will be discussed

in more depth later. A parcel is vertically displaced fromz to z + dz, so that the parcel

properties change fromφint to φint + δφint and the external properties change fromφext to

φext + dφext.

For a fully compressible fluid without magnetic diffusion itcan be shown thatB/ρ is
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advected with the fluid
(

∂

∂t
+ u · ∇

)(

B

ρ

)

=

(

B

ρ

)

· ∇u, (6.1)

but this is not true in the anelastic equations or with the addition of diffusion. In the

parcel argument the atmosphere is diffusionless and compressible so the mass per unit

length and the flux are conserved, the quantityB/ρ is thus conserved

B + δB

ρ+ δρ
=
B

ρ
, i.e.

δB

B
=
δρ

ρ
. (6.2)

Assuming that the parcel is adiabatically displaced then the specific entropy is conserved

δp

p
= γ

δρ

ρ
. (6.3)

If the parcel is displaced slowly it will remain in pressure equilibrium with the

surroundings

δ

(

p+
B2

2µ0

)

= d

(

p+
B2

2µ0

)

⇒ δp+
BδB

µ0
= dp +

BdB

µ0
(6.4)

For the magnetic buoyancy instability to occur the parcel density must be less than that

of the new surroundings,δρ < dρ. This condition is combined with (6.2 - 6.4) to become

an instability inequality
(

B2

µ0ρ
+
γp

ρ

)

δρ = dp+
BdB

µ0
, (6.5)

which can be divided byρdz to get

γp

ρ2

δρ

δz
− 1

ρ

dp

dz
=

B

µ0ρ

dB

dz
− B2

µ0ρ2

δρ

δz
(6.6)

or
B2

µ0γp

d

dz
ln

(

B

ρ

)

>
−g
γ

d

dz
ln
(

pρ−γ
)

= N2, (6.7)

whereN is the Brunt-Väisälä frequency, andγ = cp/cv is the ratio of the specific heats.

An important feature of (6.7) is that a magnetic field that decreases sufficiently rapidly

with height can destabilise a convectively stable atmosphere.
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The initial assumptions stipulated that the field lines werenot bent so (6.7) is valid for

two-dimensional modes called interchange modes occurringwhen one magnetic flux

tube exchanges position with another. Another mode which may occur is a three-

dimensional mode where the flux tubes bend. Early theoretical work by Newcomb

(1961) looked at the stability of interchange and three-dimensional modes in ideal

plasmas using the energy principle of Bernstein et al. (1958). He showed that a necessary

and sufficient condition for the atmosphere to be stable to interchange modes was, after

some manipulation,

c2

ρ

dρ

dz
− c2

γp

dp

dz
>
a2

B

dB

dz
− a2 dρ

dz
wherea2 =

B2

µ0ρ
, c2 =

γp

ρ
(6.8)

or

−dρ

dz
>

ρg

a2 + c2
. (6.9)

which is an equivalent result to that obtained by the parcel argument.

An interesting feature of magnetic buoyancy is that three-dimensional modes can be

more destabilising than interchange modes. Newcomb (1961)and, re-written explicitly

showing the role of the magnetic field, Thomas & Nye (1975) showed that three-

dimensional modes occurred if and only if the following inequality was satisfied

somewhere in the fluid:

−g
c2

d

dz
lnB > kx

(

1 +
kz

ky

)

+
N2

a2
, (6.10)

where kx, ky, and kz are wavenumbers in thêx, ŷ, and ẑ directions respectively.

Simplistically, it would seem that three-dimensional modes must do extra work against

magnetic tension but for interchange modes, work is done against thermal pressure and

magnetic pressure to create a density perturbation. In three-dimensional instabilities the

long variations in direction of the field allow the work done against magnetic pressure to

be minimised. As the variations in the direction of the field are so long the benefits

of minimising the work against the magnetic pressure outweigh the negligible extra

work done against magnetic tension. The condition is necessary but not sufficient for

instabilities to form (Hughes & Cattaneo, 1987).
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Introducing diffusion adds complexity to the parcel argument. Acheson & Gibbons

(1978) included the role of diffusivity which extends (6.10) to give

−ga2

c2
d

dz
lnB >

kx

γ

(

1 +
kz

ky

)

+ ζN2, (6.11)

where ζ = ηcpρ0/k is the diffusivity ratio, the inverse of the Roberts number.By

considering a parcel argument it appears beneficial to the instability to have small

magnetic diffusion,η (which helps maintain the destabilising field), and large thermal

conductivity,k (to reduce the stabilising entropy gradient). The laminar values in the

Sun satisfyη ≪ k so the stability is greatly reduced, although it can be argued that the

laminar values are inappropriate and the diffusion rates are all of order 1.

Diffusion can change the equations for interchange instabilities to be the same as the

thermosolutal convection in the double diffusive case. I will treat the addition of

diffusion in two cases: where the magnetic field decreases with height so thatζ ≫ 1,

and the case where the field increases with height so thatζ ≪ 1.

In a decreasing field a rising parcel moves to a region with weaker magnetic field,

assuming thatζ ≫ 1, then the magnetic field diffuses but the temperature does not.

A decrease in flux means a decrease in magnetic pressure will be compensated by an

increase in thermal pressure and density. The parcel is now denser than its surroundings

so will sink and repeat a similar process. This can result in asituation where an increase

of stabilising gradients can cause the instability to become stronger by matching the

natural frequency of this overshooting process of repeatedrising and sinking (see e.g.

Hughes, 2007).

In the case where the field increases with height, andζ ≪ 1, then a rising parcel is

compressed by the pressure of the new background. The compression causes the element

to be hotter than its surroundings. As the thermal diffusivity is much larger it loses its

temperature, but not its magnetic field, so when it returns itwill have lost heat and will

consequentially be denser and so overshoot.
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6.2 Linear Code Modelling Magnetic Buoyancy

Using the algorithm described in Chapter 4, I investigated the magnetic buoyancy in the

fully compressible and anelastic (with and without the Lantz-Braginsky approximation)

cases for a plasma in a layer using a Cartesian geometry. I then compared the anelastic

cases with the compressible case to see in which parameter regimes the anelastic

approximation fails to capture the compressible results. Iam assuming that the plasma

is modelled perfectly by the compressible system. The parameters used do not invalidate

the assumptions used to derive the compressible equations and so the algorithm should

be able to model this well. The fully compressible equationsare in (2.3), the anelastic

equations without the Lantz-Braginsky are given in (3.20),and with the Lantz-Braginsky

approximation are given in§3.7.

6.2.1 Boundary Condition

The boundary condition in the magnetic buoyancy case is similar to that used in

magnetoconvection described in§5.2.1 where the top and bottom boundaries were

impermeable, stress free and isothermal so

ŵ =
∂

∂z
û =

∂

∂z
v̂ = T̂ = 0 at z = 0, 1

where the hat terms are from the expansion in (4.1). I also imposed the top and bottom

magnetic field boundary conditions of

∂B̂x

∂z
=
∂B̂y

∂z
= B̂z = 0, (6.12)

which corresponds to a horizontal field whilst satisfying the solenoidal condition

(2.1b). The basic state is different for the anelastic and fully compressible equations

as mentioned in§5.2.2. The basic state used to study magnetic buoyancy instabilities is

more involved then the basic state used in magnetoconvection.
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6.2.2 Basic State for the fully Compressible Equations

In the compressible case there is no reference state so the basic state is that of a polytrope,

but under the influence of a weak magnetic field. The basic state of the compressible

equations (2.3) is denotedξb, whereξ can represent any variable. I consider a steady,

stationary basic state given by a polytropic solution together with an imposed magnetic

field, given byBb = (Bxb(z), 0, 0) whereBxb = 1 + Hbz and is a linear function of

depth with gradientHb. So, from equation (2.6d), ohmic heating leads to a departure of

the temperature distribution from a polytrope, such that

Tb = −(γ − 1)

γ
FζC2

k PrR

(

dBxb

dz

)2
(

z2 − 2z
)

+ θz + 1, (6.13)

whereθ is the temperature flux gradient at the bottom boundary,z = 1. Then, from

the vertical momentum balance, see equation (2.6b), I obtain the basic state density; the

solution of the equation

dρb

dz
+

(

dTb

dz
− 1

)

ρb

Tb
= −FBxb

Tb

dBxb

dz
(6.14)

is computed numerically using a Runge-Kutta solver. It is assumed that the horizontal

magnetic field is weak enough not to alter significantly the density stratification which

is still accurately represented by equation (5.8).

In the magnetic buoyancy instability the basic state, for a typical case withF < 0.001,

is still very similar to that of a polytrope, shown in figure 6.1 (a). Figure 6.1 (b) shows

that for stronger magnetic fields the basic state is distorted and it also shows that as

the magnetic field increases there can be a situation where the basic state can be top-

heavy. Top-heavy means that denser fluid is sitting atop lighter fluid. Top-heavy states

were not included in the study of the magnetic buoyancy instability as the Rayleigh-

Taylor instability would also be occurring which, althoughan interesting instability, is

not relevant to the solar interior. The temperature profile changes only slightly from a

polytrope due to ohmic heating as shown in figure 6.2 where, for even the top-heavy

state in figure 6.2 (b), there are only minor deviations from apolytrope.
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Figure 6.1: The compressible basic state density profile for a typical case where

γ = 5/3, m = 1.505, θ = 0.5, Ck = 0.01, Hb = 10,Pr = 0.5 and (a) F = 0.001 and

(b) F = 0.02 which is top-heavy.
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Figure 6.2: As for 6.1 but now showing the compressible basic state temperature

profile.
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6.2.3 Basic State for the Anelastic Equations

As there is no magnetic field in the anelastic reference state, the field only appears in the

basic state. Imposing a field and not altering the entropy basic state would mean there

would be no equilibrium so any results would be affected by the initial adjustment to

the imposed field. For magnetic buoyancy the fieldB∗
b = (B∗

xb(z), 0, 0) is horizontal and

varies linearly with depth asB∗
xb = 1+Hbz. The solution of the entropy equation (3.20f)

gives the basic state temperature

T ∗
b = −γ − 1

γ
F̃ζC̃2

kPrR̃

(

dB∗
xb

dz

)2(
z2

2
− z

)

, (6.15)

satisfyingT ∗
b = 0 atz = 0 anddT ∗

b /dz = 0 atz = 1. For stationary solutions, which are

functions of depth only, thez-component of the momentum equation (3.20b) reduces to

dp∗b
dz

− ρ

p
p∗b = − ρ

T
T ∗

b −FB∗
xb

dB∗
xb

dz
with p∗b = 0 atz = 0. (6.16)

The basic state pressure is obtained by integrating numerically the above equation using

a Runge-Kutta solver. (From equation (3.20g) the boundary condition forp∗b is consistent

with ρ∗b = T ∗
b = 0 at z = 0.) The basic state entropy,s∗b , is found algebraically using

equation (3.20h), with typical profiles shown in figure 6.3 where it can be seen that

s∗b ∝ F .

6.3 Linear Magnetic Buoyancy Results

The algorithm described in Chapter 4 was used to investigatethe magnetic buoyancy

instability. In magnetic buoyancy the algorithm finds the maximum growth rate overkx

andky space. For historical reasons the diagnostic for magnetic buoyancy problems is

the growth rate of the instability, rather than a critical parameter, and this is the diagnostic

which I will use in the following discussion (Acheson, 1979).

For magnetic buoyancy, the polytropic index is fixed to subadiabatic values, so that the

layer of fluid is weakly stable to thermal convection. However, in a stratified atmosphere
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Figure 6.3: As for 6.1 but showing the anelastic entropy basic state profile for (a)

F = 10−5 and (b) F = 0.001.

the basic state magnetic field, horizontal and increasing with depth, can be unstable to

the magnetic buoyancy instability. The growth rate is scaled using sound crossing time-

scale,d/
√

p0/ρ0. I selected this because using a dynamical time means that the scaling

applied to time varies whenθ or m are altered. To convert the growth-rate from sound

crossing to dynamical time-scale multiply the growth-rateby Ck

√

θ(m+ 1). For all

plots, unless otherwise stated, the following parameters are fixed as

γ = 5/3, m = 1.505, θ = 0.5, Ck = 0.01, Pr = 0.5,

ζ = 5 × 10−4, Hb = 10.

6.3.1 The effect of alteringF

The presence of a magnetic field in thex-direction differentiates between the two

horizontal directions; a distinction between the two-dimensional interchange modes,

with kx = 0, and three-dimensional modes can be made (see e.g. Hughes, 2007). For

a given profile of field, and with all the other parameters fixed, I therefore calculate the

maximum value ofℜ{σ} when optimised overkx andky and compare both the value of

ℜ{σ} and the wavenumbers at which this growth rate is achieved, for the compressible

and anelastic cases.
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Figure 6.4: Variations with F of (a) the growth rate, ℜ{σ}, and corresponding

wavenumber, kx and ky, of the most unstable mode for the compressible model;

(b) the fractional differences in ℜ{σ}, kx and ky between compressible and

anelastic models, and the fractional difference in ℜ{σ} between anelastic models

with and without the Lantz-Braginsky simplification, noted An. R̃m

c . The value of

ǫ = 10−3.

Figure 6.4 shows the effect of the magnetic field strength on the instability. Increasing

the magnetic field increases the growth rate of the instability as it is magnetically

driven. For the largest and weakest field strengths interchange modes are preferred,

whereas in the intermediate regime the preferred mode becomes three-dimensional for

both the anelastic and fully compressible systems. As the magnetic field is increased

the fractional difference in all the parameters also increases. The fractional difference

in kx can only have a non-zero value for the region where three-dimensional modes

are preferred. It is interesting that, even for these cases where the system is close to

adiabatic, the anelastic approximation performs badly when the field is strong and the

instability has a large growth rate.

Next, I examine the difference between the eigenfunctions for compressible and the

full anelastic equations. The eigenfunctions shown in figure 6.5 correspond to the most

unstable modes (interchange) found for the same parameter values as figure 6.4 with

a fixedF = 0.001, where the anelastic approximation gives a 20% difference in the
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Figure 6.5: The absolute value of the eigenfunctions corresponding to the

mode of maximum growth rate in figure 6.4 (kx = 0 and ky ≃ 4.276) for

F = 0.001; left and right panels correspond to the compressible and anelastic

models respectively. (a)-(b) Magnetic field Bx (By and Bz are zero for an

interchange mode); (c)-(d) components of the fluid velocity ux, uy and uz; (e)-

(f) thermodynamic variables p, ρ, T and s.
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real eigenvalue compared with the compressible equations.For both the compressible

and anelastic models, I use the same normalisation,max(Bx) = 1, to facilitate the

comparison of the eigenfunctions. The significant difference in figure 6.5 (c) and (d)

is the amplitude of the flows. The differences in the thermodynamic variables are,

however, more significant. The relative amplitude of the thermodynamic variables has

changed place and the profiles have been altered with the eigenfunctions passing through

zero at a different depth. In the anelastic model the densitydoes not have a hyperbolic

evolution equation and I expect the thermodynamic variables to be the most affected by

the approximation. The Lantz-Braginsky approximation wasnot used in the plot as the

atmosphere was very close to being adiabatic it showed very little difference to the full

anelastic equations.

6.3.2 The effect of alteringm
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Figure 6.6: As for figure 6.4 but for variations vs. m. θ = 0.5 is held fixed and

F = 10−3. Here ǫ lies in the range 10−3 − 4 × 10−1.

In increasing the polytropic indexm the atmosphere is becoming more stable and

the parameterǫ is becoming larger. The small parameter was used in the asymptotic

expansion to derive the anelastic approximation in Chapter3 and so whenǫ becomes

large the assumptions are violated. In this subsection I assess when the assumptions

underpinning the anelastic approximation are no longer valid.
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Figure 6.7: As for figure 6.6 but for χ held constant, again with F = 10−3.

Figure 6.6(a) shows the maximum growth rate and wavenumberskx and ky for the

compressible case whenm is altered withθ fixed, so the density stratificationχ changes.

χ is defined in equation (5.8). Asm is increased, so that the layer becomes more stably

stratified, the maximum growth rate decreases, as might be expected. Also, there is

a transition from two-dimensional modes to three-dimensional modes being preferred,

although for all casesky remains much larger thankx. Figure 6.6(b) shows how the

anelastic system compares with the fully compressible system as the system moves

away from being adiabatic. Counter-intuitively, the anelastic system starts off as a poor

approximation to the fully compressible system but the fractional difference decreases as

m is increased and the growth rate decreases. The anelastic approximation also captures

the transition from two-dimensional to three-dimensionalmodes, though this occurs at a

different value ofm.

For figure 6.7m is altered with a fixedχ = 1.84 (so thatθ decreases asm increases).

Figure 6.7 shows a similar trend to figure 6.6, but whereχ is held constant. The

instability is an interchange mode when the atmosphere is close to being adiabatic. The

anelastic approximation has a large error of greater than 20% for most values ofm.

As the polytropic index increases the gravity decreases (asχ is held constant) and the

instability is weakened so that the growth rate decreases. The decreasing growth rate

coincides with a reduced error in the anelastic approximation. The Lantz-Braginsky
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approximation diverges from the anelastic equations (3.20) asm is increased.
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Figure 6.8: As for figure 6.6 for F = 10−5 where ǫ lies in the range 10−3−2×10−1.

Figures 6.8(a) and (b) show similar behaviour as in figures 6.6(a) and (b) but with

a weaker field. Note that the anelastic approximation is moreaccurate at these low

magnetic field values. Figure 6.8(b) shows that the Lantz-Braginsky simplification,

which requires the layer to be nearly adiabatic, agrees exactly with the anelastic

approximation atm = 1.5 and has a fractional difference of40% compared to the full

anelastic approximation bym = 2.5.

6.3.3 The effect of alteringCk

The thermal conduction and viscosity are proportional toCk and, from the derivation in

Chapter 3, alteringCk should not effect the accuracy of the anelastic approximation.

Figure 6.9 shows how the instability depends uponCk. At low values ofCk the instability

grows more rapidly than at higherCk values as diffusion of heat (which leads to a

loss of buoyancy) takes a long time. For an intermediate range of values ofCk the

mode of maximum growth rate is three-dimensional, but for largerCk an interchange

mode becomes dominant. The anelastic approximation captures these transitions in

wavenumber; however it does better asCk is increased when the growth rate of
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Figure 6.9: As for figure 6.4 but variations vs. Ck with ǫ = 10−3 and m = 1.505.

the instability decreases. Because the model is nearly adiabatic the Lantz-Braginsky

approximation reproduces the anelastic equations (3.20) results very well.

6.3.4 The effect of alteringθ
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Figure 6.10: As for figure 6.4 but variations vs. θ, for F = 10−3 and Hb = 1. Here

ǫ lies in the range 10−4 − 1.2 × 10−2.

The temperature flux at the bottom of the layer is controlled by the dimensionless number

θ. So far in this section it has appeared that, when the growth rate of the instability

increases, the anelastic approximation performs worse in reproducing the compressible

results. This impression is confirmed by figure 6.10 which compares the results for a
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series of calculations where the thermal gradient, and thusthe stratification, is changed

whilstm is held fixed.

On the one hand, large thermal gradients produce large density gradients which suppress

the instability; on the other hand, for very low values ofθ, the gravity is weak (see

equation (3.22)) and so the destabilising effect of magnetic fields is also reduced.

Consequently, as demonstrated in figure 6.10(a), the growthrate first increases and then

decreases withθ — and, as shown in figure 6.10(b), so does the accuracy of the anelastic

approximation. It therefore appears as though the relativeaccuracy is controlled by

the growth rate of the instability. This growth rate can be thought of as providing a

time-scale for the evolution of the instability and so, if this is long, then the anelastic

approximation performs well; if, on the contrary, the instability develops rapidly then

the anelastic approximation is less accurate.

6.3.5 The effect of alteringζ
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Figure 6.11: As for figure 6.4 but variations vs. ζ , for F = 0.01 and ǫ = 10−3.

The magnetic diffusivity is proportional to the parameterζ but alteringζ should not

effect the accuracy of the anelastic approximation.

For low ζ values figure 6.11(a) shows the instability is three dimensional and changes

to an interchange mode asζ passes through unity whereupon the growth rate of the
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6.3 Linear Magnetic Buoyancy Results

instability increases rapidly for largerζ values. Figure 6.11(b) shows that the fractional

differences in this case are very large and it would not be valid to use the anelastic

approximation. This is an extreme case where the magnetic field is large and so is

the growth rate of the instability. Asζ increases the growth rate in the compressible

approximation increases, as shown in figure 6.11(a), but in the anelastic case the growth

rate decreases. This explains the large and increasing fractional difference asζ is

increased. The wavenumbers coincide atζ ∼ 0.1 but this is not significant as they

diverge again atζ values around this point.

6.3.6 The effect of alteringHb
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Figure 6.12: As for figure 6.4 but variations vs. Hb, for F = 0.1, Ck = 0.025 and

ǫ = 10−3.

The basic state magnetic field isBxb = 1 +Hbz. AlteringHb will effect the strength of

the magnetic field and so from the assumptions used in Chapter3 it is likely to effect the

accuracy of the anelastic approximation.

Figure 6.12 shows the effects of varying the magnetic field gradientHb. For large field

gradients, interchange modes are preferred and the instability grows faster. The anelastic

approximation again fails when the growth rate becomes large, but interestingly, whereas

the growth rate increases in a concave manner, the fractional difference increases in a
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6. LINEAR MAGNETIC BUOYANCY RESULTS

convex manner. This demonstrates that there is not a simple direct relationship between

the growth rate of the instability and the accuracy of the anelastic approximation.

6.4 Summary

The derivation of the anelastic approximation depends on a parameterǫ, the departure

from an adiabatic atmosphere, being small. It also depends on the time-scale being slow.

When the atmosphere is nearly adiabatic then the magnetic buoyancy instability grows

quickly, or there are waves travelling quickly, so the time-scale used in the anelastic

approximation is inadequate. When the atmosphere departs from being adiabatic then

the parameterǫ increases, violating one assumption in the anelastic approximation, but

the growth-rate of the instability slows, satisfying one ofthe assumptions in the anelastic

approximation. From the results it is clear that asm increases from its adiabatic value

of 1.5 the anelastic approximation performs better, suggesting that violating the time-

scale assumption has a larger effect than violating the assumption of a nearly adiabatic

atmosphere.
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Chapter 7

Non-linear Anelastic Codes

To investigate fully how the anelastic approximation differs from the fully compressible

equations requires a non-linear comparison of the two sets of equations. Studies from

a meteorological perspective list some of the limitations of the anelastic approximation

(see e.g. Nance & Durran, 1994). The conclusion Nance and Durran drew was that

using a version of the anelastic approximation similar to equations (3.20), but without

magnetic field, produces results with errors, “significantly less than the errors generated

in real world models”. Meteorological studies do not include magnetic field and are

focused on different types of instability to those that occur in the Sun. Therefore it

would still be useful to have non-linear models and work out arange of parameters

where the anelastic approximation performs well in the context of the Sun’s convection

zone, radiative interior, and tachocline. It is also important to characterise any artefacts

introduced by the anelastic approximation.

7.1 Anelastic Time-Stepping

Even using a simple model, the range of spatial scales in modelling the Sun is

astronomical and added complexity comes from time-stepping. With a finite-difference

time-stepping numerical code the domain is discretised using a distance∆x and the time
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7. NON-LINEAR ANELASTIC CODES

is discretised using step∆t. A spectral code does not use the spatial discretization∆x

but for the purpose of this argument it can be considered thatthis is true. An explicit

finite-difference method will not capture correctly a wave of speedc if, in one time step,

the wave crosses more than the distance∆x. This argument is also true for advection

as well as for waves. This leads to the Courant-Friedrichs-Lewy (CFL) condition for

stability

C ≡
∣

∣

∣

∣

c∆t

∆x

∣

∣

∣

∣

≤ 1, (7.1)

This is a necessary but not sufficient condition for stability. The ratioC is termed the

Courant number (Courant et al., 1967). It is very clear from (7.1) that reducing the fastest

wave speed in the system by a factor of ten will lead to a factorof ten improvement in the

size of time-step that can be taken. This is important as someinstabilities develop over

a long time so there can be a sacrifice in resolution and accuracy to stop the simulation

becoming too computationally expensive. It is often the case that, to counter the small

time-step, the instability will be driven harder with less realistic parameters so that it

develops on a faster time-scale. Driving a system harder maymean an increase in the

Reynolds number and turbulence which requires a smaller∆x if the system is to be

accurately modelled.

An explicit time-stepping method is where the variable at time n + 1 can be written

in terms of the variable at timen whereas in an implicit method the variable atn + 1

is written in terms of the variable at timen, n + 1, and maybe other time-steps. The

CFL condition is a limiting factor when the equations are time-stepped explicitly but if

the time-stepping is done in an implicit manner then the CFL condition is less limiting,

in the sense that (7.1) is no longer a strict inequality. In astrophysical fluid dynamics

turbulence is thought to play a crucial role and the advection term, which generates

much of the turbulence, is not dealt with as satisfactorily in the implicit case. It is also

hard to evolve the non-linear terms implicitly. This means that the turbulence would not

be correctly modelled and so the wrong dynamics and turbulent transport coefficients

would be obtained. Taking large time-steps in an implicit scheme could lead to a stable
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but inaccurate solution.

7.2 Non-linear Formulation

A full three-dimensional set of equations (3.20) is expensive to run in terms of computer

resources. For reasons of simplicity and for the purpose of illustration of methods I will

outline a two-dimensional reduction of the full three-dimensional set of equations (3.20).

The two-dimensions are (x, z) wherez is the direction of gravity andx is homogeneous

and periodic.

The velocity components of any two-dimensional divergence-free flow can be

represented by a stream-function, which reduces the numberof equations that need to be

solved. Each variable is decomposed usingξ(x, t) = ξ(z) + ξ∗(x, z, t), whereξ is any

variable,ξ is the variable in a reference state, andξ∗ is the fluctuation variable. I will

drop the superscript∗ on the fluctuation variables. A well constructed stream-function

will also ensure that the flow evolves whilst obeying the anelastic continuity equation

(3.20a). A stream-functionψ satisfying this is

ρu = ∇× (ψŷ) + ρvŷ = ρ(u, v, w). (7.2)

Since∇ · B = 0 a similar technique can be used for the magnetic field to reduce the

number of unknowns and also to ensure the field evolution obeys the solenoidal condition

(3.20e). The field potentialA is thus

B = ∇× (Aŷ) + βŷ, (7.3)

whereβ is theŷ component of the magnetic field. It is also useful to define thevorticity

ω as

ω · ŷ = ω = −
[∇2

ρ
+

d

dz

(

1

ρ

)

d

dz

]

ψ, (7.4)

and the Laplacian of the field potentialH, which is theŷ component of the current

densityJ , defined as

H = ∇2A = (B · x̂)z − (B · ẑ)x , (7.5)
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where(B · ẑ)x is thex partial derivative of thez component of the magnetic field. With

these defined, I can go on to develop equations for a two-dimensional Cartesian non-

linear anelastic code using the Lantz-Braginsky approximation.

7.2.1 Non-linear Anelastic Equations

Taking the curl of the simplified Lantz-Braginsky momentum equation (3.35), with

entropy diffusion and no temperature diffusion, gives

∂ω

∂t
= −∇× (u · ∇u) −∇× (sẑ) + F̃∇ ×

[

1

ρ
(∇× B) × B

]

+

(

Pr

R̃

)1/2

∇×
(

1

ρ
∇ · τ

)

. (7.6)

This is in vector form but for solving the system numericallyonly theŷ component is

needed, which is given by

∂ω

∂t
= − (wz + ux)ω − wωz − uωx + sx

+ F̃
[

HzAx −HxAz

ρ
+

d

dz

(

1

ρ

)

(AxH − ββx)

]

+

(

Pr

R̃

)1/2 [
d

dz

(

1

ρ

)(

ωz +
4

3
[wxz + uxx]

)

+
ωxx + ωzz

ρ

]

. (7.7a)

This is the evolution equation for the vorticity. The streamfunctionψ can be obtained

by solving equation (7.4) and the velocity componentsu andw can be obtained fromψ

using equation (7.2). Thêy component of the velocity fieldv requires another evolution

which is theŷ component of equation (3.35), i.e.

∂v

∂t
=
vxψz

ρ
− vzψx

ρ
+

F̃
ρ

[βzAx − βxAz] +
1

ρ

(

Pr

R̃

)1/2

(vxx + vzz) . (7.7b)

The induction equation

∂B

∂t
= ∇× (u× B) + Ckζ∇2B,
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is solved in a similar manner to the momentum equation; only the ŷ component of the

curl of the induction equation is required. Theŷ component of the curl of the induction

is

∂H

∂t
= −uHx − wHz + Ax (ωz + wxz + uxx) + 2wzAzz

+ 2 (uz + wx)Axz + 2uxAxx + Az (wzz + wxx) + Ckζ (Hxx +Hzz) , (7.7c)

which is the evolution equation forH. The potentialA can then be found using

equation (7.5). To findβ, theŷ component of the induction equation is required,

∂β

∂t
=
βψxρ

′ + ρ (ψzβx − βzψx)

ρ2 + vzAx −Azvx + Ckζ (βxx + βzz) . (7.7d)

The energy equation written in terms of entropy is

ρT

[

∂s

∂t
+ (u · ∇) (s+ s)

]

=
1

(Pr R̃)1/2
∇ · T∇s

+
γ − 1

γ
C̃2

k

[

(

Pr3R̃
)1/2 ∂ui

∂xj

τij +
(

PrR̃
)1/2

F̃ζ (∇× B)2

]

,

which can be written in terms ofu, v, w,H andβ as

∂s

∂t
= −usx − wsz − w

ds

dz
+

1
√

Pr R̃

1

ρ

(

sxx + szz +
dT

dz

sz

T

)

+
γ − 1

γ
C̃2

k

(

PrR̃
)1/2

F̃ζ 1

ρT

[

H2 + β2
x + β2

z

]

+
γ − 1

γ
C̃2

k

√

Pr3R̃
1

Tρ

[

4

3

(

wz [wz − ux] + u2
x

)

+ (uz + wx)
2 + v2

x + v2
z

]

. (7.7e)

Means

In this chapter all terms are assumed to have periodic boundary conditions in thêx

direction. From the definition of the velocity componentw = ∂xψ there are no terms in

w that are a functions ofz only as terms such asψ = xf(z), which corresponds tow

being a function ofz only and are not periodic in̂x. This turns out to not be a problem
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as the taking the horizontal average of the anelastic continuity equation (3.20a) shows

that this average will equal zero, in that

∫ L

0

∂ψ

∂x
dx = 0,

asψ is periodic with periodL. The same argument can be given forB · ẑ.

7.2.2 Hybrid Spectral Methods

In this outline of a possible non-linear code thex̂ direction is periodic and solved

in Fourier space, allowing the use of spectral methods, and so the error decays

exponentially as the resolution increases (Canuto, 2006).Spectral methods, or hybrid

spectral methods where only some of the terms are solved in spectral space, are used

in many non-linear anelastic codes (see e.g. Clune et al., 1999; Jones & Kuzanyan,

2009; Glatzmaier, 1984). In this outline I will leave thez direction in real space where

z ∈ [0, 1] and only thex direction will be in Fourier space withx ∈ (0, L], whereL

defines the aspect ratio of thêx to ẑ dimension. It is a discrete Fourier transform which

is performed in thêx direction which can be done using e.g. the FFTw library (Frigo &

Johnson, 2005). In a discrete Fourier transform all the variables are represented in arrays

and if the Fourier transform is taken in thex̂ direction from the real arrayX of sizeN

the result is a Hermitian arrayY via

Yi =

N−1
∑

j=0

Xje
2πij/N

√
−1.

The periodic boundary condition in thêx direction is implemented naturally in Fourier

space. Thêz direction is solved in real space using finite difference methods as

each variable has different boundary conditions and implementing these in Fourier

space would not be spectrally accurate and removes the banded structure of a matrix

representation of a derivative, see§4.1 for more detailed explanation of representation

of finite difference differential operators. To make the code stable the linear terms are
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solved using an exponential integrating factor and so are solved exactly. The equations

in the ẑ direction are solved using Crank-Nicolson method (Crank & Nicolson, 1947).

The non-linear terms are calculated using an Adams-Bashforth time-stepping method.

To calculate the right-hand-sides of equations (7.7) requires calculating convolutions of

some terms in Fourier space. Working out the convolutions ismore computationally

expensive than converting the terms that are in Fourier space into real space, multiplying

them, and then converting back into Fourier space. A convolution requires two matricies

to be multiplied so will require∼N2 operations where as converting into real space and

back requires∼N lnN operations.

Aliasing errors in numerical models occur when the high frequencies become too small

to be resolved allowing them to interact with low frequency modes. This high to low

frequency transfer of energy causes the model to blow-up. Orszag (1971) showed

that filtering out the highest13 of the wavenumbers is sufficient to stop aliasing errors

associated with quadratic non-linearities in Fourier space.

7.3 Boundary Conditions

For the magnetic buoyancy case and magnetoconvection casesto implement stress free

boundaries requires
∂u

∂z
=
∂v

∂z
= w = 0, (7.8)

and using (7.2) this translates to

ψ = 0 and − ψzz

ρ
− ψz

d ln ρ

dz
= 0 at z = 0, 1. (7.9)

The boundary conditions onω are therefore

ω = ŷ · ∇ × u = uz − wx = 0 (7.10)

For the magnetic buoyancy (or horizontal field) case

∂Bx

∂z
=
∂By

∂z
= Bz = c, (7.11)
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where thec is a constant due to the imposed field ofBx = Hbz + 1. Similarly toψ, the

boundary condition is

A(z=0) = 0, A(z=1) = − (2 +Hb) /2, andH = 0.

In the magnetoconvection (or a vertical field) case

Bx = By =
∂Bz

∂z
= 0 so

∂A

∂z
=
∂H

∂z
= 0. (7.12)

The flow is isentropic so the boundary condition iss = 0 on z = 0, 1.

7.3.1 Pressure Term

Without using the Lantz-Braginsky approximation the anelastic equations (3.20) contain

a pressure term in the momentum equation (3.20b). In the compressible equations there

is an evolution equation for the pressure but in the anelastic case the pressure responds

instantaneously, as shown in equation (4.13). The divergence of the momentum equation

is required to advance the pressure fluctuations via the equation

(

∇2 +
p′ − p ρ′

p2 − 1

p

d

dz

)

p =

− ρ
[

(〈w〉z + wz)
2 + u2

x + 2uzwx + (〈w〉 + w)(〈w〉zz + wzz + uxz) + u(wxz + uxx)
]

− T

T
ρ′ − dρ

dz
[(〈w〉 + w)(〈w〉z + wz) + uwx] + ρ

(

TT
′

T
2 − Tz

T

)

+ F̃
(

−H2 + AzHz +HxAx − β2
z − ββzz − β2

x − ββxx+

)

+

(

Pr

R̃

)1/2


−7

3

d

dz

(

1

ρ

)

ωx +
8

3ρ

d2

dz2

(

1

ρ

)

ψxz −
4
(

8
(

dρ
dz

)3 − 7ρdρ
dz

d2ρ
dz2 + ρ2 d3ρ

dz3

)

3ρ5



 .

(7.13)

This is an elliptic equation where the right-hand-side is known from the hyperbolic

evolution equations. A typical way to solve the equation (7.13) would be to use an LU-

decomposition of the operator acting onp on the left-hand-side e.g. using the LAPACK
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(Anderson et al., 1999) algorithm GBTRF for the banded matrix operator. The top and

bottom boundary conditions are applied by replacing the representation of the operator

with the appropriate boundary condition at the first and lastrow of the matrix, e.g. for a

Dirichlet boundary conditionp = a, b on z = 0, 1 then the matrix would be











1 0 · · ·
∇2 + p′−p ρ′

p2 − 1
p

d
dz

· · · 0 1











p =











a

R.H.S

b











,

where R.H.S. is the right-hand-side of (7.13), and the operator would fill the internal

points in the matrix. The LU-decomposition only needs to be done once at the start of

the simulation since the linear differential operator is constant.

The problem in solving equation (7.13) comes from the boundary conditions. The

boundary conditions involve the velocity which comes from the momentum equation and

will be from the previous time-step and it is non-trivial to apply a boundary condition

that is based on the current time-step. In the Anelastic Spherical Harmonic (ASH) code

Clune et al. (1999) take the horizontal divergence of the momentum equation so that the

pressure is calculated based on the previous time-step, as seen in Clune et al. (1999)

equation (A.4). As the equation solved to calculate the pressure is elliptic then the

boundaries effect every point in the domain. Although so farthe difficulties have been

framed with regards to the anelastic equations (3.20), a similar problem occurs in the

simplified Lantz-Braginsky equations if the temperature diffusion is used rather than the

entropy diffusion. This gives strong arguments to use the Lantz-Braginsky simplification

and entropy diffusion together where only the entropy is required.

7.4 The Non-linear Algorithm

This is an outline of the operations a two-dimensional Cartesian non-linear code

undertakes in one time-step. The initial condition is equivalent to the basic state used in
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the linear code but now the code is advancing in time. To causethe simulation to grow

from a stable basic state then a small amount of noise may needto be added.

• A Fourier transform is taken in thêx direction.

• The derived variables (ψ,A, u, w) are calculated, these are used in equations (7.7a

- d). In a similar method as used to solve the elliptic equation discussed in§ 7.3.1,

ψ can be calculated from equation (7.2) andA can be calculated from (7.5). Then

from equation (7.4)u andw can be calculated fromψ.

• Thex derivatives of all the variables are calculated, along withhigherx derivatives

where required. The variables are in Fourier space so calculating theN th derivative

is equivalent to multiplying the variable by(2πik/L)N .

• In addition thez derivatives are calculated for all the variables. The variables in

the ẑ direction are in real space and soz derivatives are calculated using a finite

difference representation of a derivative, see§ 4.1 for more on finite difference

schemes and§ 7.3 for the boundary conditions to be applied.

• An inverse Fourier transform is taken in thex̂ direction so that all the variables

are in real space. This means that no convolutions are required to calculate the

right-hand-side of equations (7.7) as these are more computationally expensive

than inverse Fourier transforms.

• The equations (7.7) are in the form∂tξ = L(ξ) + N , whereL is a function of

the linear terms andN represents all the inhomogeneous and non-linear terms.

N can be calculated by multiplying the correct terms togetherfrom the previous

time-step.

• The non-linear terms and inhomogeneous terms on the right-hand-side of

equations (7.7), denotedN , can be calculated for any given time-step using the

Euler method, i.e. the value of the right-hand-sides of equations (7.7) is found and

then multiplied by the time-step size. A more accurate way todeal withN is
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through an explicit multi-step method such as the Adams-Bashforth method (see

e.g. Hairer et al., 1993). The Adams-Bashforth method is an extension of the

Euler method and uses information about previous steps so the next time-step can

be calculated more accurately, e.g the fourth-order Adams-Bashforth method is

ξn+1 = ξn +
∆t

24

(

55N n − 59N n−1 + 37N n−2 − 9N n−3
)

,

whereN (z, n∆t) = N n. In the non-linear codes mentioned in this section it

much more common for an Adams-Bashforth method to be used. This is used in

preference to an Euler method as it increases the stability and is used in preference

over a Runge-Kutta as calculating the non-linear terms is numerically expensive

and a Runge-Kutta method requires multiple calculations atmid-steps.

• Using an Euler or multi-step time-stepping method for the homogeneous linear

terms on the right-hand-sides of equations (7.7a - d) can be unstable (see e.g.

Burden & Faires, 2005). Terms dependent on thez derivative can be dealt with

using the Crank-Nicolson time-step algorithm (Crank & Nicolson, 1947). For a

partial differential equation such as

∂ξ

∂t
= L(ξ), (7.14)

whereξ is the variable to be advanced in time then the Crank-Nicolson algorithm

is

ξn+1 − ξn

∆t
=

1

2

[

Ln+1

(

ξ, z, t,
∂ξ

∂z
,
∂2ξ

∂z2

)

+ Ln

(

ξ, z, t,
∂ξ

∂z
,
∂2ξ

∂z2

)]

, (7.15)

where∆z is the spatial discretization width, andξ(z, n∆t) = ξn. Given the

equation
∂ξ

∂t
=
∂N ξ

∂zN
+ N , (7.16)

the Crank-Nicolson algorithm would be

(2I − ∆tDN) ξn+1 = (2I + ∆tDN ) ξn + 2∆tN , (7.17)
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where the I is the identity matrix andDN the finite difference matrix

representation of∂N/∂zN . This can be solved using LU-decomposition described

in § 7.3.1.

• An exponential integrating factor can solve exactly the homogeneous linear terms

involving x derivatives on the right-hand-side equations (7.7a - d). For example,

the equation
∂ξ

∂t
= −a∂

2ξ

∂x2
+ N , (7.18)

can be advanced in time exactly using

ξn+1
k = e−∆t(2aπik/L)2 (ξn

k + N n
k ) , (7.19)

whereξ(k, n∆t) = ξn
k .

• Combining the methods above for a hybrid-spectral time-step using the example

equation
∂ξ

∂t
=
∂Nξ

∂zN
− a

∂2ξ

∂x2
+ N , (7.20)

then the time-step, using Euler’s method forN , would be

(2I − ∆tDN ) ξn+1
k = e−∆t(2aπik/L)2 [(2I + ∆tDN ) ξn

k + 2∆tN n
k ] (7.21)

7.5 The Current Non-Linear Codes

There is a an attempt under-way to create a set of anelastic benchmarks by Jones et al.

(2011). The aim is to compare the currently available magnetic spherical anelastic codes

by developing a standard benchmark against which the codes can be validated. The

codes included so far are the Anelastic Spherical Harmonic (ASH) code (Clune et al.,

1999), the Leeds code (Jones & Kuzanyan, 2009), Gary Glatzmaier’s code (Glatzmaier,

1984), and a code in development from Johannes Wicht and Thomas Gastine.

Glatzmaier’s code is based on a spherical harmonic expansion of the variables in the

anelastic system equivalent to equations (3.20). The Lantz-Braginsky approximation
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has not been made and so to update the pressure Glatzmaier uses an additional boundary

conditions onψ from the stress free condition. The stress free boundary condition in

equation (7.9) gives two boundary conditions onψ, namely

ψ = 0 for z = 0, 1

which is the boundary condition applied toψ, and

−ψzz

ρ
+

dρ

dz

ψz

ρ
= 0 for z = 0, 1

which can be substituted into the vorticity equation (7.7a)to give a boundary condition

for the pressure. This means that the pressure boundary is calculated based on thestream-

function from the previous time-step. In Glatzmaier’s codethe reference state is time-

independent, which is compatible with the anelastic approximation.

The Anelastic Spherical Harmonic (ASH) code was developed from Glatzmaier’s code

and the equations (3.20). Unlike in Glatzmaier’s code the ASH code updates the

reference state and this allows the reference state to have large departures from an

adiabatic atmosphere. The reasoning is that so long as the Mach number of the flow

is small then the results are valid and updating the reference state ensures that the

fluctuation terms will be small in comparison to the reference state. Updating the

reference does indeed make
ρ

ρ
≪ 1

but it also makes the small parameterǫ used in the asymptotic expansion large. The

approximation is only valid when the∂ρ/∂t is much smaller than the other terms and

can be neglected. When the reference state is far from adiabatic then a source of energy is

introduced into the temperature equation, this can be seen clearly from the derivation of

the temperature equation in§3.7.2. This spurious energy source is due to inconsistencies

with the model when the atmosphere is far from adiabatic. TheASH code also does

not use the Lantz-Braginsky simplification and to update thepressure the velocity at the

previous time-step is used as a boundary condition.
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Rogers & Glatzmaier (2005) developed a non-linear code based on the anelastic

equations but where the temperature, rather than entropy, equation was used, see§3.7.2

for more on the temperature equation. Here the reference state is updated periodically

by adding the horizontal mean. In the paper the reference state is not shown separated

out from the fluctuation state, both appear in Rogers & Glatzmaier (2005) equation (3).

The code in Lantz & Fan (1999) is in a Cartesian geometry and has a time-

independent reference state. It also uses the Lantz-Braginsky approximation, explained

in §3.7, so the pressure is de-coupled from the system and entropy is the only

remaining thermodynamic variable. All the equations are solved in real space using

a finite-difference representation of the differential operators, except for the elliptic

equation (7.4) forψ where the horizontal direction is solved in spectral space.

The Leeds code, used in Jones & Kuzanyan (2009) is similar to the code developed

by Lantz. It too uses the Lantz-Braginsky approximation. Itsolves the equations in

a spherical geometry and is pseudo-spectral using Legendrepolynomials and Fourier

modes for the non-radial derivative and a non-uniform finite-difference mesh in the radial

direction.
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Chapter 8

Conclusions

8.1 Discussion of New Results

There are many sets of equations that are in the anelastic ‘family’, such as the anelastic

equations (3.20) derived in Gilman & Glatzmaier (1981), theset of anelastic equations

derived in Ogura & Phillips (1962), the Lantz-Braginsky simplification as derived in

§3.7, and the anelastic equations derived in Gough (1969). I have used an asymptotic

expansion to develop the anelastic temperature equation given in §3.7.2. All of these

sets of equations are equivalent, if the same type of diffusion is used and magnetic fields

neglected, when the atmosphere is perfectly adiabatic and differ at higher orders ofǫ

when the atmosphere is not adiabatic. The definition ofǫ, which is a measure of the

departure from the atmosphere being adiabatic, is given in (3.4). There are situations

where one set of equations will give results that are closer to the fully compressible

than some of the other sets, as demonstrated in Chapters 5 and6, but this is also when

the validity of making the anelastic approximation itself is in doubt, such as when the

Alfvénic time-scale becomes small or the growth rate of theinstability is large.

In Chapter 4 I developed the linear code I used to test the anelastic approximation

and in Chapters 5 and 6 I have investigated the range of validity of the anelastic
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approximation by solving linear stability problems in boththe fully compressible and

anelastic models. I calculated either the critical Rayleigh number for magnetoconvection

or the largest growth rate of a magnetic buoyancy instability; I then determined the

fractional difference between the fully compressible results and those calculated using

the anelastic approximation.

For the problem of magnetoconvection in Chapter 5, the results are not surprising. The

anelastic approximation performed well where expected andnot so well (though still

reasonably well) when pushed beyond its range of formal validity. The only slightly

surprising result is that the inclusion of a stronger field orlarger thermal flux gradient

can lead to a decrease in the accuracy of the anelastic approximation. With a strong

magnetic field the Alfvénic time becomes small; this is inconsistent with the time-

scale assumption made in the anelastic approximation. In the studies presented in this

thesis the magnetic field is imposed but in the Sun the field is likely to be the result

of dynamo action and so the magnetic energy would be comparable to the kinetic

energy. This would mean in low Mach number flows the field wouldobey the weak

field assumptions. In Chapter 5 the Takens-Bogdanov point inthe magnetoconvection

instability was captured by the anelastic approximation with no substantial difficulties.

When altering the boundary condition from isentropic to isothermal then the growth rate

for the magnetoconvection instabilities reduced, with thereduction more pronounced at

largeθ values and lowζ values. When studying magnetoconvection in a tilted field then,

in agreement with Matthews et al. (1992), I found that the stability reversal, described

in §5.3.8, is very sensitive. The results for stability reversal in this work differ from

the results in Roxburgh (2007), which is presumed due to the sensitivity. These results

should be contrasted with those of the magnetic buoyancy instability.

For magnetic buoyancy, even when the expansion parameterǫ is small (i.e. the

atmosphere is nearly adiabatic), it is possible to break theanelastic approximation; on

the contrary, slowly growing magnetic buoyancy modes appear to be captured accurately

even for largeǫ. It would seem that in the case when the atmosphere is subadiabatic
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the accuracy of the approximation is controlled by the growth rate of the magnetically

driven instability. It has previously been assumed that theapproximation is valid so long

as the Mach number is sufficiently small (see e.g. Gough, 1969; Miesch, 2005) and the

Alfvénic time sufficiently large (see e.g. Glatzmaier, 1984; Lantz & Fan, 1999). There

are a number of possible reasons why the approximation may break down. It may be

that the Mach number is too large but this is not applicable tothe linear case. Another

possible reason is that hydrostatic balance is assumed at leading order and when the

magnetic fields become large this balance may be upset. This seems unlikely for the

cases considered here as the magnetic pressure is only1% of the terms in the hydrostatic

balance. Here the strong magnetic field, and the correspondingly fast Alfvén waves, or

a fast growth rate leads to a violation of the assumption about the scalings used on the

unit of time. This leads to the situation whereǫ can be increased but, as the growth rate

decreases, the approximation becomes more accurate. In themagnetic buoyancy case,

the full anelastic approximation appears to be more sensitive to the time-scales than to

the departure from an adiabatic state. As this instability is magnetically driven, when

the magnetic field becomes large it is hard to distinguish if the growth of the instability

or the increased magnetic field strength causes the anelastic approximation to become

inaccurate.

I also consider the accuracy of the Lantz-Braginsky simplification and demonstrate that,

as expected, the Lantz-Braginsky simplification appears accurate (i.e. close to the results

of the full anelastic approximations) when the atmosphere is nearly adiabatic. This

remains true even in cases with large magnetic fields. To reiterate the Lantz-Braginsky

approximation only differs from the full anelastic approximation by orderǫ, i.e. the

difference is of the same order as the∂ρ/∂t term which is neglected in the anelastic

continuity equation. This would suggest that both the Lantz-Braginsky simplification

and the anelastic equations (3.20) are equally valid. The linear results show that

the terms that the Lantz-Braginsky approximation is neglecting make a significant

contribution when the atmosphere departs from adiabatic stratification. There are also

arguments given in§7.3.1 in favour of using the Lantz-Braginsky simplificationwith
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the entropy diffusion in time-stepping non-linear codes assolving the elliptic equation

for the pressure requires boundary conditions which are based on the previous time-

step. Chapter 7 also briefly gives an argument that evolving the reference state is not

compatible with the anelastic approximation.

I conclude by reiterating that care must be taken when performing calculations based on

the anelastic approximation in stably stratified regime. Itremains to be seen how well

the anelastic approximation performs in fully nonlinear simulations of these instabilities

but the validity of updating the reference state is called into question.

8.2 Where the Anelastic Approximation is used

It is important to our understanding of dynamo theory to be able to model the interior

of the Sun. Understanding how magnetic fields are generated and rise to the surface is a

problem that requires large-scale and high resolution simulations.

The initial rise of magnetic field through the convection zone is due to the magnetic

buoyancy instability. Understanding how magnetic fields rise in a stably stratified

atmosphere is important as the likely generation site for large-scale magnetic field is

in the stably stratified Tachocline. Above the Tachocline isthe weakly superadiabatic

convection zone and so magnetic buoyancy simulations whichare capable of modelling

both regions accurately are important.

Sunspots can be seen at the surface of the Sun. Sunspots are sites of localised

strong magnetic field. The mechanism which generates such a strong field is still

debated. To model the flux tubes rise through the convection zone an understanding of

magnetoconvection is important. Studies of magnetoconvection can help to explain the

structure of sunspots and the interaction between a strongly magnetized rising element

in a convecting plasma.

The anelastic approximation is used in many nonlinear codesthat model the Sun and
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other stars. Anelastic codes are also used in atmospheric modelling (see e.g. Barranco

& Marcus, 2006; Delden, 1992; Ashworth et al., 1997). The anelastic approximation is

used as it greatly reduces the required time-step and simplifies interpreting the results

compared with solving a fully compressible system. The anelastic approximation is also

used in theoretical work as it can simplify the analytics of the problem. The anelastic

approximation has advantages over the Boussinesq approximation in that the anelastic

equations allow density fluctuations and a stratified background state.

Which version of the anelastic equations used is important as it effects the types of

equation that any computer program will have to solve. It is known in the case of a

perfectly adiabatic atmosphere all of the versions of the anelastic approximation will be

equivalent. The results presented in this thesis may be of help in understanding when

one version is more appropriate than another; i.e. in the linear case when the atmosphere

departs from adiabatic then the Lantz-Braginsky approximations produces less accurate

results whereas in a nearly perfectly adiabatic simulationin a nonlinear code then the

process for solving for the pressure could create inaccuracies and so the Lantz-Braginsky

approximations maybe more appropriate.

8.3 Extensions

The work presented in this thesis can be extended by buildingthe two-dimensional

nonlinear code outlined in Chapter 7; then simulations withthe fully compressible, the

full anelastic, and the Lantz-Braginsky approximation could be compared over a range

of parameters. Particular attention should be given to whenthe magnetic field is strong

or when the atmosphere departures from being adiabatic as these are the cases where the

differences were most marked in the linear results of Chapters 5 and 6. Furthermore the

potential problem with how the pressure term is solved, expanded on in§7.3.1, could

be further explored by having a code using the Lantz-Braginsky approximation which

solves for the pressure and uses this in the next time-step against one that does use the
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pressure explicitly in the next time-step. A nonlinear investigation into the different

diffusivities used in the energy or entropy equation could also be interesting as entropy

diffusion has becoming increasingly common since proposedin Gilman & Glatzmaier

(1981).

It would also be useful to include other aspects such as rotation. Rotation breaks

some of the symmetries in the magnetoconvection problem andso would make the

simulations more realistic. Although the Sun is not a rapid rotator this does not

preclude rotation from playing a crucial role. It may have aneffect on how well

the anelastic approximation performs and it will certainlyeffect the results for the

magnetoconvection and magnetic buoyancy instabilities. Extending the code from

two-dimensional to three-dimensional would help in modelling the magnetic buoyancy

instability. Magnetic buoyancy tends to favour three-dimensional modes and so

restricting it to two-dimensions means that these modes cannot be investigated.

There are other approximations which are of interest in solar modelling such as

the sound-proof approximations which have been compared against the anelastic

approximation, albeit without a magnetic field, in Nance & Durran (1994). It would

also be possible to develop implicit solvers for the fully compressible equations and

compare these against the anelastic approximation. A full non-dimensional parameter

study would allow the most suitable approximation for each type of problem to be known

before the precise problem of interest was tackled.
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Appendices

A Compressible Linear Equations

The compressible equation may be linearised. On assuming a normal mode solution

for the perturbations about a basic stateξb, in which all variables take the form

ξ(x, y, z, t) = ξb(z) + ξ̂(z) exp(σt + ikxx + ikyy) whereξ is the full variable and̂ξ

is the perturbation. The linear equations in the compressible model (equations (2.6a-d))

may be expressed as

σρ̂ = −ikxρbûx − ikyρbûy − ρb
′ûz − ρbûz

′, (A.1)

σûx = −ikxT̂ −
(

Pr

R
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(
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′
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B Anelastic Linear Equations

The linear perturbation equations of the anelastic approximation are similar to the

linear compressible equations, except there is a referencestate ξ about which the

anelastic approximation is derived. I again assume a normalmode solution of the form

ξ(x, y, z, t) = ξ∗b (z) + ξ̂(z) exp(σt + ikxx + ikyy) whereξ is the fluctuation variable

and ξ̂ is the perturbation about the basic stateξ∗b (z). Using this normal mode form the

linear equations fors,u,B andp in the anelastic model (equations (3.20a-f) but where

temperature diffusion is dominant so entropy diffusion is ignored) may be expressed as
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In the Lantz-Braginsky simplification equation (B.12) is
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C Relations Between Dimensionless Numbers

In this thesis the following dimensionless numbers are used:
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The Chandrasekhar number is
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Roxburgh (2007) uses a parameterP defined at mid-layer
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The Chandrasekhar number andP are related to the dimensionless numbers used in this

work via
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where the last equation made use of the relation
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The Froude number is
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and it is related toCk via
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