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Abstract. The study on tortuosity of curvilinear structures in medical
images has been significant in support of the examination and diagnosis
for a number of diseases. To avoid the bias that may arise from using
one particular tortuosity measurement, the simultaneous use of multi-
ple measurements may offer a promising approach to produce a more
robust overall assessment. As such, this paper proposes a data-driven
approach for the automated grading of curvilinear structures’ tortuosity,
where multiple morphological measurements are aggregated on the basis
of reliability to form a robust overall assessment. The proposed pipeline
starts dealing with the imprecision and uncertainty inherently embed-
ded in empirical tortuosity grades, whereby a fuzzy clustering method
is applied on each available measurement. The reliability of each mea-
surement is then assessed following a nearest neighbour guided approach
before the final aggregation is made. Experimental results on two corneal
nerve and one retinal vessel data sets demonstrate the superior perfor-
mance of the proposed method over those where measurements are used
independently or aggregated using conventional averaging operators.
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1 Introduction

Tortuosity of curvilinear structures in ophthalmic images can be used as indi-
cators to a number of diseases. For example, the tortuosity of corneal fibers
shown in in vivo confocal microscopy images can be used to explain the nerve
degeneration and subsequent regeneration [10], which is correlated with diabetic
neuropathy, retinopathy of prematurity [9], and keratitis [11]. The assessment
of curvilinear structures’ tortuosity level could be utilised for early diseases pre-
vention of further complications. In several studies, the tortuosity of curvilinear
structures has been manually graded in the band of 3–5 levels [12] or ranked by
ophthalmologists based on their clinical experiences. However, the imprecision
and uncertainty inherently embedded in the subjective empirical assessment may
lead to substantial inter-observer and intra-observer variability [2].

In the literature, the tortuosity grading may also be conducted using various
measurements of curvilinear structures such as the angle [5], length [7], and cur-
vature [8]. A fully automated pipeline on the basis of these measurements that
takes raw images as inputs and outputs assessment results may be devised for
tortuosity estimation. Typically, such automated methods employ segmentation
algorithms to replace manual tracing of curvilinear structures. However, many
of the existing tortuosity measurements are based on mathematical definitions,
which are sensitive to pixel-level calculation. The jagged and inaccurate bound-
aries embedded in the automated segmentation, easily result in low performance
of tortuosity estimates. On the other hand, hand-crafted tortuosity definitions
only provide fixed models of subjective perception, which limits the generalisa-
tion ability of individual measurements across different tasks. The automated
tortuosity assessment of curvilinear structures in ophthalmic images is therefore
still a challenging problem.

As such, it is still prevalent to use different measurements of curvilinear
structure to grade the tortuosity. To our best knowledge, there is no universal
agreement as to which standard or measurement to apply. Recent studies sug-
gest to simultaneously use multiple relevant measurements, in order to produce
a robust overall assessment of tortuosity [2,14]. Indeed the use of multiple mea-
surements may avoid the bias that may arise from using one particular tortuosity
measurement. Inspired by this observation, This paper proposes a novel unsu-
pervised pipeline for the automated grading of curvilinear structures’ tortuosity,
whereby multiple morphological measurements are aggregated on the basis of
data-driven reliability to form a robust overall assessment. Experimental anal-
ysis on three data sets demonstrates the superior performance of the proposed
method over those where measurements are used independently or aggregated
using conventional averaging operators.

2 Method

2.1 Pipeline and Preprocessing of the Proposed Method

The proposed method is named Fuzzy Clustering and Measurement Reliabil-
ity based Assessment of Tortuosity (FCMRAT). The working process starts by
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generating fuzzy clusters using fuzzy c-means algorithm [3] on each of the tor-
tuosity measurements which are preselected (and predefined) by experts. The
resultant fuzzy clusters (termed base clusters) can be associated with linguistic
labels, which facilitate readability and validation against medical knowledge by
clinicians. The reliability based aggregation operators are subsequently used to
combine the base clusters that share the same linguistic label, resulting in the
final fuzzy clusters of images. An illustrative flowchart of the proposed FCMRAT
is shown in Fig. 1 with key operations detailed in the following subsections.

Fig. 1. Pipeline of FCMRAT. Firstly, the tortuosity of nerves in each image is evaluated
by multiple measurements. Secondly, linguistic labelled fuzzy clusters are generated
based on each measurement individually; Then, all the clusters are grouped by labels.
Finally, an aggregation is applied on each group of fuzzy clusters with the same label.

Given a set of N images {Img1, Img2, · · · , ImgN} and M morphological
measurements of tortuosity mea1,mea2, · · · ,meaM , the curvilinear structures
shown on Imgi, i = 1, 2, · · · , N , can be traced and their tortuosity can be calcu-
lated by the M measurements. Typically, a measurement meaj , j = 1, 2, · · · ,M ,
is deemed to be a mapping from the set of single curvilinear structures C to
positive real-valued numbers meaj : C → R

+, where large number indicates
high tortuosity. An original image may contain a number of traced curvilinear
structures. Therefore, an image-level tortuosity may be obtained by averaging all
curvilinear structures traced in that image weighted by their length. Formally,
given that H segments ch ∈ C, h = 1, 2, · · · ,H of curvilinear structures are
traced in an image and the length of h-th structure is denoted as lh, the image-
level tortuosity can be defined as: Meaj(Imgi) =

∑H
h=1 lhmeaj(ch)/

∑H
h=1 lh

[2]. For images which contain only one single curvilinear structure c1 (as in the
RET-TORT [7]), Meaj(Imgi) = meaj(c1). Despite that the proposed FCMRAT
is tested on segmentation results of curvilinear structures, both manually and
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automated segmentation can be embedded in the pipeline. However, it is worth
noticing that in retina, certain diseases cause tortuosity alterations in portion of
the eye, or just in capillaries. In such cases, the selection of curvilinear structures
of interest is necessary in the preprocessing of images.

2.2 Generation of Fuzzy Clusters at Measurement Level

In case where there exists imprecision and vagueness that arise from the ophthal-
mologists’ subjective empirical grading of tortuosity, fuzzy set theory is regarded
as an effective means to dealing with vague concepts that are ubiquitous in nat-
ural languages and practical reasoning. It is a common practice to use fuzzifi-
cation techniques to translate real-valued measurements into linguistic terms.
In this paper, fuzzy clustering is employed for the fuzzification of each indi-
vidual measurement. Suppose that {Img1, Img2, · · · , ImgN} are evaluated with
regard to Mea1,Mea2, · · · ,MeaM . For each measurement Meaj , fuzzy c-means
is utilised to form S base clusters F̃ j

1 , F̃
j
2 , · · · , F̃ j

S on the set of images with
respect to {Meaj(Imgi)|i = 1, 2, · · · , N}, with F̃ j

s (Imgi) ∈ [0, 1] representing
the degree of Imgi belonging to an individual base cluster F̃ j

s , s = 1, 2, · · · , S,
which satisfies

∑S
s=1 F̃

j
s (Imgi) = 1 for all j = 1, 2, · · · ,M .

Linguistic terms are often used by clinicians in practice to describe the grad-
ing of curvilinear structure tortuosity in the ophthalmic images. A preference
ordering relation is usually defined to describe the grading of tortuosity on a
set of linguistic terms such as Low ≺ Medium ≺ High. In FCMRAT, labelling
base clusters is not only helpful for ophthalmologists to investigate the relative
tortuosity reflected in objective measurements, it also plays a significant role in
organising base clusters into groups for subsequent aggregation process. Since
the resulting clusters for a certain tortuosity measurement Meaj on the set of
images are totally ordered, the cluster centers F̃ j

1 , F̃
j
2 , · · · , F̃ j

S can be employed
to signify the overall relative tortuosity. Thus, given a set of S pre-defined lin-
guistic terms L = {L1, L2, · · · , LS} which satisfy that L1 ≺ L2 ≺ · · · ≺ LS ,
the fuzzy clusters F̃ j

1 , F̃
j
2 , · · · , F̃ j

S can be readily sorted in ascending order with
regard to their cluster centers and labelled with L1, L2, · · · , LS , respectively.
From this, the notation F̃ j

Ls
represents the base cluster generated by tortuosity

measurement Meaj and labelled with linguistic term Ls, s = 1, 2, · · · , S.

2.3 Consensus of Base Clusters Guided by Reliability

Having gone through the fuzzification process as described in the preceding sub-
section, a total number of M × S fuzzy clusters are generated and labelled.
They can be groupted into S sets of fuzzy sets FLs

, s = 1, 2, · · · , S, where
FLs

= {F̃ j
Ls

|j = 1, 2, · · · ,M} consists of all the base clusters with label Ls.
The base clusters in each group FLs

is further aggregated to generate a final
fuzzy cluster of images (denoted as F̃ ∗

Ls
) with their tortuosity graded into

level Ls. The membership of an image Imgi to F̃ ∗
Ls

can be computed by
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F̃ ∗
Ls

(Imgi) =
Agg( ˜F 1

Ls
(Imgi), ˜F 2

Ls
(Imgi),··· , ˜FM

Ls
(Imgi))

∑S
t=1 Agg( ˜F 1

Lt
(Imgi), ˜F 2

Lt
(Imgi),··· , ˜FM

Lt
(Imgi))

where Agg : R
M → R

is an aggregation operator.
As the effectiveness of certain measurements varies on different tasks, weight-

ing all available tortuosity measurements equally may not reflect the devia-
tions in the contribution made by individual measurements and therefore limit
the quality of overall assessment. In addition, it is practically difficult and
time-consuming for ophthalmologists to use empirical knowledge to agree on
proper weights for different tortuosity measurements. In order to automate this
complicated aggregation task, this paper employs the concept of K-Nearest-
Neighbour guided Dependent Ordered Weighted Averaging (KNNDOWA) [4,15],
in which an argument (such as a measurement in this case) whose value is
similar to its neighbours is deemed reliable and can be highly weighted. In
contrast, an argument that is largely different from its neighbours is discrim-
inated as an unreliable member. Formally, the reliability of an argument aj ,

j = 1, 2, · · · ,M , in KNNDOWA is defined as: RK
j = 1 −

∑K
k=1 d(aj ,n

aj
k )/K

max
t,t′∈{1,2,··· ,M}

d(at,at′ ) .

where n
aj

k ∈ {a1, 2, · · · , aM}/{aj} is the value of k-th nearest neighbour
(k = 1, 2, · · · ,K and K < M) of the argument aj , and the distance matric
is d(at, at′) = |at − at′ | for t, t′ ∈ {1, 2, · · · ,M}. Note that the distance met-
ric is also used to perform neighbour-searching. Having obtained the reliabil-
ity values of all arguments concerned, they are normalised to form the weigh-
ing vectors in KNNDOWA. Given the reliability value RK

j of each argument
aj , j = 1, 2, · · · ,M , the corresponding aggregation operator AggK can be speci-
fied by AggK(a1, a2, · · · , aM ) =

∑M
j=1 R

K
j aj/

∑M
j=1 R

K
j .

In FCMRAT, KNNDOWA is adopted to aggregate the memberships of
images with respect to base clusters in each labelled group. Computationally
speaking, alternative aggregation operators can also be fitted into the FCMRAT
pipeline. The advantages of selecting KNNDOWA out of alternatives are: 1) the
weights used in the aggregation are purely data-driven, which are automatically
learned from the memberships F̃ j

Ls
(Imgi), and 2) the weight assigned to each

argument w(aj) = RK
j /

∑M
t=1 R

K
t , j = 1, 2, · · · ,M , represents the reliability of

aj , which can be utilised as a meaningful indicator to ophthalmologists for fur-
ther interpreting the effectiveness of the underlying tortuosity measurements.

2.4 Tortuosity Assessment Based on Aggregated Fuzzy Clusters

The final step of the proposed FCMRAT is to assess the tortuosity based on
the aggregated fuzzy clusters. Consider an example where the set of pre-defined
linguistic terms L is {Low, Medium,High} with the preference ordering rela-
tion Low ≺ Medium ≺ High, the memberships of an image Imgi to the final
fuzzy clusters is represented as a vector such as (F̃ ∗

Low(Imgi), F̃ ∗
Medium(Imgi),

F̃ ∗
High(Imgi)) = (0.2, 0.5, 0.3), it is straightforward to defuzzify the assessment

result by assigning Imgi to the linguistic label associated with the final fuzzy
cluster that possesses the maximum membership degree among others. The final
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grade of Imgi is computed as arg maxLs∈L F̃
∗
Ls

(Imgi), i.e., the tortuosity of Imgi
is graded to Medium in this example.

To utilise all available information, an alternative method is to assign a sig-
nificance score to each of the linguistic terms and then, to sort the images with
respect to the weighted sum of the scores and memberships to the final fuzzy clus-
ters. In this paper, the significance score of Ls is set to s. Then, the ranking over
a set of images can be obtained by sorting the images in a descending/ascending
order, according to a ranking index:

∑S
s=1 sF̃

∗
Ls

(Imgi). In the previous example,
the ranking index of Imgi is 2.1.

3 Experimental Analysis

The FCMRAT is tested on two public data sets: the NERVE TORTUOSITY
(NT1) in which 30 images are graded into 3 levels [6] and the RET-TORT [7] in
which the images of arteries (Art.) and veins (Vei.) are ranked and used inde-
pendently. An in-house conrneal nerve data set (NT2) is also employed, in which
242 images are taken in the resolution of 384 × 384 pixels and are graded into
4 levels of tortuosity based on a protocol [12]. Five tortuosity measurements
including the arc Length over Chord length ratio (LC), Total Curvature (TC),
Total Squared Curvature (TSC), Inflection Count Metric (ICM) [1], and Abso-
lute Direction Angle Change (DCI) [13] are employed for generating the base
clusters of FCMRAT. An segmentation algorithm proposed in [17] is adopted on
the NT1 and NT2 data sets to trace the curvilinear structures. Depending on
whether the segmentation of curvilinear structures is implemented by automated
algorithm or by manual annotation, a suffix -A or -M is used for annotation. The
Spearman’s coefficients between individual measurements and the ground truth
of each data set are reported in Table 1, where the highest values are highlighted
in boldface. The average and median values of the coefficients on each data set
are provided as baselines.

Table 1. Spearman’s coefficients of individual measurements

Dataset Lc Tc Tsc ICM DCI Average Median

NT1-A 0.5990 0.7547 0.7924 0.4339 0.8160 0.6792 0.7547

NT1-M 0.8254 0.8018 0.7830 0.6226 0.7028 0.7471 0.7830

NT2-A 0.6316 0.6112 0.6013 0.3184 0.5210 0.5367 0.6013

Art. 0.8194 0.8945 0.9017 0.8269 0.7161 0.8317 0.8269

Vei. 0.6130 0.8143 0.8346 0.6397 0.7378 0.7279 0.7378

The Spearman’s coefficients between ranks generated by the FCMRAT rank-
ing index (the number of final clusters S is set to 5) and the ground truth are
reported in Table 2. In addition to the KNNDOWA, four aggregation operators
namely: Andness-OWA (an OWA operator with weighting vector (0.300, 0.233,
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0.167, 0.100, 0.033)), Mean, Orness-OWA (an OWA operator with weighting vec-
tor (0.033, 0.100, 0.167, 0.233, 0.300)), and Dependent OWA [16] are also imple-
mented under the FCMRAT pipeline for the consensus of base clusters to support
systematic comparisons. Since there are five measurements to be aggregated, the
number of nearest neighbours K in KNNDOWA is set to 2, which indicates the
reliability of each measurement is estimated by half (2 out of 4) of its neighbours.
The fuzzy c-means algorithm starts with random initialisation of memberships
and each reported FCMRAT result is an average of 30 runs. The standard devi-
ation of all the results are smaller than 0.0075. The performance for the NT1
and NT2 data set is also evaluated based on the weighted accuracy (wAcc) [2]
through defuzzifying final fuzzy clusters. In order to generate the grade-based
result, the number of final clusters (i.e., the number of base clusters for each mea-
surements) S in this experiments is set to the number of grades in the ground
truth (3 and 4 for NT1 and NT2, respectively).

Table 2. Results of FCMRAT with different aggregation operators

Spearman’s coefficient wAcc

NT1-A NT1-M NT2-A Art. Vei. NT1-A NT1-M NT2-A

FCMRAT+And 0.7309 0.8160 0.6156 0.9132 0.7972 0.8222 0.7333 0.5809

FCMRAT+Mean 0.7314 0.8242 0.6132 0.9119 0.7949 0.8222 0.7333 0.5831

FCMRAT+Or 0.7294 0.8279 0.6115 0.9052 0.7835 0.8222 0.7333 0.5834

FCMRAT+DOWA 0.7283 0.8174 0.6166 0.9119 0.8019 0.8222 0.7333 0.5828

FCMRAT+2NN 0.7558 0.8018 0.6167 0.9026 0.8112 0.8222 0.7333 0.5786

It can be seen from Table 1 that the most relevant single measurement, i.e.,
the one with highest Spearman’s coefficient with the ground truth (in bold-
face) varies on different data sets, which supports the observation that there
is no agreement as to which measurement to apply universally. As it is shown
in Table 2, by applying the proposed FCMRAT pipeline, the aggregation based
results are better than those obtained by averaging individual measurements
across all the data sets. The FCMRAT based results are better than the median
value of individual measurements for four out of five data sets. These observa-
tions show the effectiveness of the fuzzy clustering based aggregation of multiple
measurements for tortuosity assessment. It is also worth noticing that the FCM-
RAT based aggregations can achieve results which are better than the best result
achieved by individual measurements on the NT1-M and Art. data sets. This
further demonstrates that the proposed aggregation of multiple measurements
is effective in the tortuosity assessment for curvilinear structures. Furthermore,
the weighted accuracies of all FCMRAT based aggregations on the NT1 data set
are the same, which indicates the insensitivity and robustness of FCMRAT in
the selection of aggregation operators. The performance of the proposed method
on the in-house data set is lower than that on the public data sets, which is
mainly attributed to the low performances achieved at the level of individual
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measurements, possibly resulting from the inaccurate segmentation of curvilin-
ear structures and inconsistent grading in the ground truth.

Amongst all the tested aggregation operators, the KNNDOWA based FCM-
RAT is the only one which achieves results better than the medians of individual
measurements across all the tested data sets. In addition to the superior and sta-
ble performance of KNNDOWA in providing overall tortuosity assessment, the
linguistic term labelled base clusters and the data-driven generated reliabili-
ties during aggregation operation provide a supportive tool for ophthalmologists
to interpret and fine-tune the assessment model. For each measurement Meaj ,
its overall reliability can be evaluated by the mean of its weights in all the
aggregations as

∑N
i=1

∑S
s=1 w(F̃ j

Ls
(Imgi))/(NS). Take the NT1-A data set as

an example with the number of final clusters is set to 3, the overall reliability
of the Lc, Tc, Tsc, ICM, and DCI is 0.1969, 0.2182, 0.2238, 0.1646, and 0.1965,
respectively, with Tc and Tsc being considered more reliable than the other three
measurements in the FCMRAT.

It is worth noticing that in practice, the 3-level (low, medium, high) or 4-level
tortuosity grades may be more common in nerve fiber studies. In retinal studies,
5-level grading may be used. Theoretically, the clustering granularity can be
defined as fine as possible by allowing a large number of clusters and associated
linguistic labels. In practice, this is not encouraged, especially in cases where
clearly divided stages for tortuosity grading may not exist, or for psychological
reasons in order to linguistically interpret the labelled clusters to clinicians.

4 Conclusion and Future Work

This paper proposes a novel pipeline for the assessment of curvilinear structure
tortuosity based on fuzzy clustering and reliability-guided aggregation of mor-
phological measurements. The proposed work is verified on three real-world data
sets with superior and stable results achieved over those at the level of individ-
ual tortuosity measurements, demonstrating the efficacy and effectiveness of the
proposed method. Whist promising, the proposed pipeline could be naturally
extended to cope with a broader range of medical imaging tasks such as inves-
tigation of unsupervised methods in automated tortuosity assessment systems.
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