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Abstract

The Graphical Processing Unit is a specialised piece of hardware that contains many

low powered cores, available on both the consumer and industrial market. The original

Graphical Processing Units were designed for processing high quality graphical images,

for presentation to the screen, and were therefore marketed to the computer games

market segment. More recently, frameworks such as CUDA and OpenCL allowed the

specialised highly parallel architecture of the Graphical Processing Unit to be used for

not just graphical operations, but for general computation. This is known as General

Purpose Programming on Graphical Processing Units, and it has attracted interest from

the scienti�c community, looking for ways to exploit this highly parallel environment,

which was cheaper and more accessible than the traditional High Performance Com-

puting platforms, such as the supercomputer. This interest in developing algorithms

that exploit the parallel architecture of the Graphical Processing Unit has highlighted

the need for scientists to be able to analyse proposed algorithms, just as happens for

proposed sequential algorithms.

In this thesis, we study the abstract modelling of computation on the Graphical

Processing Unit, and the application of Graphical Processing Unit-based algorithms in

the �eld of bioinformatics, the �eld of using computational algorithms to solve biologi-

cal problems. We show that existing abstract models for analysing parallel algorithms

on the Graphical Processing Unit are not able to su�ciently and accurately model all

that is required. We propose a new abstract model, called the Abstract Transferring

Graphical Processing Unit Model, which is able to provide analysis of Graphical Pro-

cessing Unit-based algorithms that is more accurate than existing abstract models. It

does this by capturing the data transfer between the Central Processing Unit and the

Graphical Processing Unit. We demonstrate the accuracy and applicability of our model

with several computational problems, showing that our model provides greater accuracy

than the existing models, verifying these claims using experiments. We also contribute

novel Graphics Processing Unit-base solutions to two bioinformatics problems: DNA
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sequence alignment, and Protein spectral identi�cation, demonstrating promising levels

of improvement against the sequential Central Processing Unit experiments.
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Chapter 1

Introduction

Well known English proverbs such as `many hands make light work', and `a problem

shared is a problem halved' aim to teach how teamwork can accelerate the completion

of a task, or can make a problem that initially seems di�cult or daunting appear

more manageable. Families exhibit workload sharing or concurrent working, in order

to complete the day's errands quicker; Alice collects the children from school, taking

20 minutes, whilst Bob buys groceries from the shop next door, taking 30 minutes. By

working together, Alice and Bob completed the day's tasks in 30 minutes, which is an

improvement on the 50 minutes it could have taken, if only one person completed both

tasks in sequence.

The above example is indeed simple, yet demonstrates how sharing the workload be-

tween workers can bring about improvement in running time; it demonstrates a principle

that is also present in computing: it is sometimes possible to break down a computing

task into smaller independent parts to be computed concurrently, thus improving the

running time.

In computing, a Central Processing Unit (CPU) is the component that executes

program instructions, which can include arithmetic operations, logic operations, and

memory accesses. The CPU contains various other controllers and cache memory spaces,

as well as connections to the rest of the computer system. The unit which performs

the arithmetic and logic operations is often referred to as a core. A CPU with a single

core performs a single task at a time and switches between tasks in order to multitask

- yet multitasking is not considered as truly parallel computing. In fact, multiple cores

are required to perform tasks in parallel, which mirrors our introductory example � we

required two people to be able to complete both tasks concurrently.

Over time, as the operational speed of the CPU has plateaued, parallel processing

1
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has become more prevalent in the quest of improving the running time of computational

tasks. In addition to improvement of running time, other bene�ts of parallel processing

have been sought, including greater energy e�ciency and better temperature control.

There have been many pieces of specialist computing hardware released that are capa-

ble of parallel processing, such as the multicore CPU, the Field Programmable Gate

Array (FPGA) and the supercomputer. In this thesis, we investigate the specialised

parallel hardware of the Graphics Processing Unit (GPU), which was initially designed

for graphical applications, yet has also found widespread adoption in general purpose

programming applications, including scienti�c application. We examine the theoretical

analysis of parallel algorithms and how this applies to computer programs that are run

on the GPU. We then study algorithms that use computational approaches to solve

problems which occur in biology, in a �eld known as Bioinformatics; we see how the

e�ective use of the GPU can improve running time, when a large amount of data is

required.

1.1 The Graphics Processing Unit

The GPU is a type of parallel processing hardware on which groups of low-powered

cores work concurrently. The GPU was born out of the graphics pipeline, and so was

originally purposed for presenting graphical images to the screen. Available in both

consumer- and commercial-grade versions, the GPU is widely used as a co-processor

in many High Performance Computing (HPC) applications (known as General Purpose

Programming on GPU (GPGPU)) in addition to their original use in computer gam-

ing. The nVidia Compute Uni�ed Device Architecture (CUDA) GPU framework [66] is

widely used for scienti�c computing. Advanced Micro Devices, Inc. (AMD) is another

major manufacturer of GPU devices, who champion the Open Computing Language

(OpenCL) [37] heterogeneous computing framework. GPUs are commonly utilised in

either of two settings: either as a discrete device in a workstation (the workstation

may have 1 or more discrete GPU devices connected to the CPU by the Peripheral

Component Interconnect Express (PCIe) bus), or as part of a cluster.

The massively parallel architecture of the GPU has proven to be useful in acceler-

ating many di�erent types of tasks, and has produced some very impressive speed-up

results, when comparing to sequential implementations.

However, due to the specialised and unique nature of the GPU architecture, there is

a large learning curve to be overcome, when a programmer �rst starts to learn how to

use these pieces of hardware. This means that the implementation of e�cient algorithms
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on the GPU can be challenging, and there is a need for abstract models to aid in the

design of these e�cient algorithms.

1.2 Analysis of Parallel Algorithms

When scientists design an algorithm, there is a desire to theoretically analyse it before

any work on implementation takes place. They would look to answer questions per-

taining to the expected running time and the expected storage space required, and in

particular how this compares to existing algorithms. A common way to analyse a se-

quential algorithm would be to count the total number of operations required, memory

accesses, or the amount of storage used, and then observe the trend as the input size

increases. This would then give a fair way to compare two algorithms. However, parallel

programs are split between multiple cores, often running on specialised architectures,

meaning that simply counting the total number operations, the total memory accesses,

or the total amount of storage used, in the same way as if it was run sequentially, would

not always give a truly accurate analysis of the algorithm's performance.

There are many parallel abstract models in existence, making it possible for scien-

tists to theoretically analyse and model an algorithm as if running in a parallel environ-

ment. Well known examples include the Parallel Random Access Machine (PRAM) [25],

the Bulk Synchronous Parallel Machine (BSP) [83] and the Parallel External Memory

Machine (PEM) [4], yet none of these parallel abstract models capture all elements

required to e�ectively model program execution on the GPU, as the GPU has a special

architecture and execution pattern . There are also several parallel abstract models

that are designed speci�cally for analysis of GPU, namely the Abstract GPU Model

(AGPU) [39] and Sitchinava Weichert GPU Model (SW-GPU) [77], which both capture

di�erent elements of GPU execution, but there are still elements of the execution that

are missing from one or both of these models, namely the data transfer between the

CPU and GPU. This means, that there is currently no parallel abstract model that

captures all elements required to theoretically analyse GPU execution in its entirety

(see Chapter 2 for more details).

1.3 Bioinformatics Problems

The Bioinformatics �eld looks to use algorithms and computational thinking to solve

problems that occur in biology. In this thesis, we study two such problems: the sequence

alignment problem, and the protein spectral alignment problem. More speci�cally,
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we investigate the design and application of bioinformatics algorithms on the GPU.

Parallelism is exploited by nature everyday, and we are looking to exploit the many-core

and highly parallel computational nature of the GPU to accelerate the computation.

1.3.1 DNA Sequence Alignment

The problem of �nding alignment between two biological sequences (such as Deoxyri-

bonucleic acid (DNA)) has been extensively studied, with the two most famous align-

ment algorithms being the Smith-Waterman algorithm [79] and the Needleman-Wunsch

algorithm [65]. An alignment allows highlight of common areas between sequences, on

the premise that homology between two sequences can show some sort of connection,

or in the case of an unknown gene sequence, can indicate what gene the sequence is

most related to. Roughly speaking, aligning a short pattern sequence to a longer text

sequence is to determine whether the pattern exists in the text and if so the positions

where it occurs.

With the advances in sequencing technologies, the amount of data that requires

alignment has increased drastically. These DNA sequences are obtained using equipment

known as sequencers. Sequencers take physical DNA samples, analyse them, and output

the sequences of nucleobases of the DNA samples as character strings. The Illumina

HiSeqX Ten sequencer is an example of a modern sequencer that can produce three

billion reads (sequences) of length 250 bp (base pairs) in less than three days.

The re-sequencing problem is to assemble short reads produced by the sequencer

into a genome sequence by referring to a reference genome, requiring �mapping� or

�aligning� short reads back to reference sequences. The task is challenging due to the

vast amount of data and the large genome sizes.

There is a wide range of short-read alignment tools available, e.g., Bowtie [44],

BWA [46], GenomeMapper [74], MAQ [47], SOAP2 [48], SHRiMP [73], Stampy [57],

REAL [28], addressing di�erent aspects of the problem. Due to the data size, faster

tools are needed. This asserts not just speed requirements on the processors but also

leads to high power/energy requirements; furthermore, this potentially causes too high

temperature that may damage the processors. To solve this problem, it is nowadays

common to exploit multiprocessors such as the GPU. There are many alignment tools

available, which use the GPU in order to achieve increase in speed and SOAP3 [52] is

currently among the best GPU-based short-read alignment tools available.

Because of mutations and other biological mechanisms, it is common that sequences

in comparison may not be exact match but may have some mismatches or gaps. It is im-
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portant to take into account mismatches or gaps, otherwise some vital information may

be missing. However, allowing mismatches or gaps greatly increases the complexity of

the problem and algorithms detecting mismatches or gaps are signi�cantly slower than

their counterparts that detect exact matches. Existing short-read alignment tools in-

cluding those mentioned above usually only allow at most a small number of mismatches

or gaps because of this.

Therefore, there is a need for a short read alignment tool that utilises the GPU

e�ectively, which allows mismatches and gaps in the computed alignments.

1.3.2 Protein Spectral Alignment

The problem of aligning two protein spectra is di�erent to that of aligning two protein

sequences, as a protein spectra is made up of numerical masses, as opposed to singular

bases. Tandem Mass Spectroscopy (MS/MS) is routinely used in proteomic studies to

measure sample protein data or sample peptide data, generating spectra (lists of mass

peaks corresponding to the weight of fragments of the sample protein, which is broken

up and measured in a mass spectrometer) which are then analysed by software tools in

order to identify the input sample.

In MS/MS spectral identi�cation, the spectrum of the sample data is searched

against a database, computing similarity scores for the sample against each item in

the database.

Within the life cycle of the protein modi�cation can occur whereby molecules will

attach onto the protein; this is known as Post Translational Modi�cation (PTM), of

which there are over 200 known types. PTM a�ects many areas of cell and protein

functionality, such as tagging proteins for destruction, and altering cell metabolism.

A simple comparison of the modi�ed spectrum against the unmodi�ed form is not

su�cient, as the sample has undergone the PTM process, which adds molecules to part

of the protein, thereby a�ecting the resulting spectrum data. PTMs therefore make

identi�cation of proteins and peptides more challenging.

As with sequence alignment, the amount of data that is created is ever increasing,

yet there has been relatively little study into the e�ective use of GPU for the protein

spectral alignment problem; there has been some work towards using GPU to accelerate

some scoring schemes for the spectral alignment problem [6] [61], but e�orts have more

generally geared towards heuristic methods to reduce the search space, as opposed to

looking to parallelise the calculations. There is therefore scope to study the e�ective

use of GPU in computing the protein spectral alignment database search.
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1.3.3 Research Questions

In this thesis we seek to answer the following two research questions:

1. Are we able to create a parallel abstract model that gives improved and accu-

rate complexity analysis and predicted running time trend for GPU programs,

compared to the analysis given by existing models?

2. Can new GPU-based algorithms improve on existing solutions to bioinformatics

tasks within the Sequence Alignment problem and the Protein Spectral Alignment

problem?

1.4 Contribution of Thesis and Author's Published Work

The contribution of this thesis �ts into three areas:

1. A new parallel abstract model for GPU computation.

2. The proposal and study of a GPU-based sequence alignment tool called GPUGapsMis.

3. The proposal and study of GPU-based algorithms for the protein spectral align-

ment problem.

1.4.1 Abstract Transferring GPU Model

Our contribution consists of an abstract model, called Abstract Transferring GPU (AT-

GPU), which is an extension of previous models. We introduce new components to

capture data transfer between the CPU and GPU.

We extend the SWGPU and AGPU architectures, introducing a size constraint on

global memory, making the model more realistic. We extend the pseudocode of AGPU to

capture data transfer, and we extend the SWGPU cost function to model data transfer

and to simulate the cost on a particular GPU. To our knowledge, ATGPU is the �rst

abstract model with this comprehensive array of analysis and design capabilities, and

the �rst abstract GPU model to capture data transfer.

We demonstrate the use of ATGPU and evaluate several computational problems

using the model. We show via experiments that existing models are not able to su�-

ciently model the actual running time in all cases, as they do not capture data transfer.

We show that by capturing data transfer using our model, we are able to obtain more

accurate predictions of the actual running time.
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The model, along with the analysis and veri�cation of vector addition, matrix mul-

tiplication, and reduction appears in the following published paper:

• Thomas C Carroll and Prudence W H Wong. An Improved Abstract GPU Model

with Data Transfer. In Proceedings of the International Conference on Parallel

Programming Workshops, pages 113�120. IEEE, 2017. doi: 10.1109/ICPPW.2017.

28

1.4.2 Sequence Alignment Problem

Our contribution is a study of our proposed data-parallel GPU-based algorithm for the

pair-wise sequence alignment problem with multiple gaps. The algorithm, which we call

GPUGapsMis, is based on the GapsMis and GapsPos algorithms in [5]. GapsMis uses a

dynamic programming approach to compute the gapped alignment of two sequences, by

looking for the best gap insertion point at each step. GapsPos uses the information from

GapsMis to then compute the optimal alignment of the sequences. We give analysis

of GPUGapsMis on the Abstract Transferring GPU Model (ATGPU) model, and give

analysis of of observed results with respect to the di�erent approaches.

To achieve greater improvement over the CPU, we try to maximise the amount of

parallelism by using appropriate data structures to store the data and hence decrease

the I/O to shared and global memory, which could cause a bottleneck in performance.

To allow �exibility of dealing with real data, we also extend the algorithm to allow the

use of scoring matrix (which is a table allowing for customised scores by biologists) in

addition to the Hamming distance that is considered in GapsMis [5]. We implement our

algorithm and a modi�ed version of the sequential algorithm GapsMis with the scoring

matrix; we call the extended algorithm CPUGapsMis. We also enable the functionality

to compute the optimal alignment, as in GapsPos [5], and investigate using a Hybrid

backtracking method and a GPU backtracking method. Further to this, we investigate

allowing a single text and multiple text sequences to be aligned on the device at one

time, with di�erent batching methods.

We compare the performance of GPUGapsMis and CPUGapsMis and the peak empir-

ical speedup achieved on our system (detailed in Table A.1) is 11× in computing the

alignment score matrix, and 10.4× when backtracking is also computed (this peak result

is achieved for a particular input size, with more details in Chapter 5). We show that by

lowering the amount of communication and data transfer between the GPU and CPU,

we are able to yield the most improvement. We also show that despite the backtracking

being sequential and ine�cient on the GPU (when compared to performing the back-
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tracking on the CPU), it is more bene�cial to perform this on the GPU, rather than

returning to the CPU for performing the backtracking.

The GPU-based algorithm GPUGapsMis, along with analysis on the AGPU model

and comparison against sequential results appears in the following published paper:

• Thomas C Carroll, Jude-Thaddeus Ojiaku, and Prudence W H Wong. Pairwise

Sequence Alignment with Gaps with GPU. In 2015 IEEE International Confer-

ence on Cluster Computing, pages 603�610. IEEE, 2015. doi: 10.1109/CLUSTER.

2015.10

The extended study, incorporating the backtracking and the various batching ap-

proaches appears in the following accepted journal manuscript:

• Thomas C Carroll, Jude-Thaddeus Ojiaku, and Prudence WH Wong. Semiglobal

Sequence Alignment with Gaps using GPU. IEEE/ACM Transactions on Com-

putational Biology and Bioinformatics, 2019. doi: 10.1109/TCBB.2019.2914105.

(To Appear)

Further to this, we also give analysis on the ATGPU model, showing that it is able

to distinguish between two similar GPU-based approaches, which di�er only in the data

transfer requirements. We show that this is not shown on existing models, and that the

ATGPU model gives a more accurate analysis of the algorithm.

1.4.3 Protein Spectral Identi�cation

We investigate using the GPU to accelerate and solve the Match Score Identi�cation

problem, which computes similarity between a database of theoretical known spectra,

and a set of experimental modi�ed spectra. This particular algorithm has been shown to

perform well against existing tools, maintaining accuracy levels and decreasing running

time for identi�cation of spectra.

We discuss how the best performing CPU implementation of this algorithm is not

the best performing on the GPU as it does not use the GPU resources e�ectively, and

how modi�cation of a di�erent sequential approach is required in order to e�ectively

exploit the GPUs resources. We propose the algorithm GPU-MSI, which solves the

match spectral identi�cation on the GPU. We give theoretical analysis of GPU-MSI and

verify performance of GPU-MSI using experiments, showing that GPU-MSI achieves

promising level of speedup, with upto 22× speedup (for a particular input size) compared

to the best performing CPU implementation on our system. (see Chapter 3 for more

detail).
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In addition to the protein spectral identi�cation problem, the Match Spectral Iden-

ti�cation algorithm is also suited to be used as a �lter for heuristic approaches to the

spectral alignment problem, which means that this tool can also be built into a pipeline

to further speed up other existing tools.

1.5 Thesis Outline

The outline of the rest of the thesis is as follows:

In Chapter 2, we discuss and review the GPU architecture and execution of programs

on the GPU. We then proceed to review areas where GPU acceleration has proven to be

useful. We discuss classical parallel abstract models and GPU-speci�c parallel abstract

models, comparing them, and discussing how well suited they are to analysing execution

of programs on the GPU. We then review other analytical tools designed to provide

predictive information on how an existing GPU program should run, before reviewing

how GPU-CPU data transfer can a�ect the running of programs, and the e�orts towards

its analysis.

In Chapter 3 we begin by discussing the background of DNA sequence alignment,

introducing the reader to the common forms of alignment, and discussing the tools

available. We then proceed to review the use of parallel processing within the sequence

alignment problem, before introducing and reviewing the Semi-global sequence alignment

with bounded number of gaps problem, which the work in Chapter 5 is based upon.

The chapter then moves the discussion toward the protein spectral alignment problem,

introducing the reader to the alignment of protein spectra obtained from MS/MS. We

review the methods used for spectral alignment, and introduce the reader to the heuristic

methods and the pipe-lining that is used to speed up the process when dealing with large

amounts of data, as well as discussing the existing e�orts that use the GPU to improve

running time. Finally, we introduce the reader to the match spectrum identi�cation

problem, on which the work in Chapter 6 is based.

Chapter 4 introduces our newly proposed GPU abstract model, called the ATGPU.

The chapter starts by highlighting the scope within the existing literature for an im-

proved GPU parallel abstract model. We then introduce the architecture of the model,

followed by the components of analysis that are included in the model, drawing compari-

son against the existing models from the literature. We then demonstrate the usefulness

of the model compared to existing models with theoretical analysis and empirical results

of several di�erent algorithms.

Chapter 5 presents a study into the DNA sequence alignment problem, where we
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propose a new GPU algorithm for the semi-global sequence alignment with multiple gaps

problem. The chapter �rst highlights the need for an improved GPU-based algorithm for

this problem from within the literature, before giving the theoretical problem de�nition.

We then introduce the GPU-based algorithm, followed by theoretical analysis of the

proposed algorithm on the AGPU and ATGPU models. The experimental setting,

along with the approaches that are used for the experiments are then given, before the

analysis of empirical results, comparing to existing GPU and CPU implementations are

discussed.

Chapter 6 presents a study into the match spectral identi�cation problem. The

chapter �rst gives analysis of the existing sequential approaches for solving this problem.

After that, it proceeds to consider how these sequential solutions would map onto the

GPU, showing why particular solutions are not feasible for the GPU, despite them

being faster on the CPU. Then, the algorithm GPU-MSI is introduced; analysis is given

on the ATGPU model. We then verify performance and the ATGPU analysis is using

experiments, showing that GPU-MSI outperforms all sequential implementations.

Finally, Chapter 7 gives concluding remarks and directions of future work.



Chapter 2

Graphics Processing Units and

Parallel Architectures

2.1 Introduction

In this chapter, we begin by describing the nVidia Compute Uni�ed Device Architec-

ture (CUDA) framework (consisting of the GPU hardware architecture, memory access

model, execution model, and programming model) which is implemented on nVidia

GPUs, which are used in this thesis. We then review the many di�erent ways in which

Graphics Processing Units (GPUs) have been e�ectively used as an accelerator, demon-

strating its applicability to many real-world problems. We then proceed to discuss

the di�erences between sequential algorithms and parallel algorithms, in the theoretical

sense, and review several parallel abstract models. With these parallel abstract models,

we demonstrate that they are not suitable for the e�ective and accurate modelling and

analysis of algorithms designed for the GPU. In light of this, we review two parallel

abstract models that are designed speci�cally with the analysis of GPU algorithms in

mind, and we refer back to the CUDA framework to demonstrate that these models

also miss key elements of the GPU execution model, meaning that they are unable to

provide a full and accurate picture for analysis. We then look at another class of GPU

algorithm analysis tools, namely predictive analytic tools, which are software based,

requiring program code to be written and interpreted or compiled, in order for analysis

to take place. We argue that these tools are often complicated and that the usefulness

of these particular tools is apparent at a later stage in the software development cycle,

than the stage when we look to use abstract models, meaning that they are compli-

mentary to any abstract model, but not a replacement for them. Finally, we focus our

11
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attention on data transfer between the CPU and the GPU, which is one of the �rst

steps of the GPU execution model. We argue that ignoring the data transfer between

the CPU and GPU can provide inaccurate experiment results, as they are some of the

most expensive operations in the whole GPU execution model, and that by optimising

the data transfer between CPU and GPU (in addition to the kernel code), can a GPU

program garner much improvement.

2.2 Graphics Processing Units (GPU)

The GPU is a specialised piece of hardware that contains many low-powered cores de-

signed for parallel processing of high-quality graphical images, for example in computer

games and photo editing software. The nVidia Compute Uni�ed Device Architecture

(CUDA) framework consists of numerous libraries, an Application Programming Inter-

face (API) and a programming language, which allows general purpose programming

and solving of many computational non-graphical problems on nVidia GPUs, which are

used for experimental work within this thesis. In this section we describe the nVidia

GPU hardware architecture [66] 1. In addition to the GPU hardware architecture, we

describe the CUDA framework with regards to the execution model, the memory access

model, and the programming model.

2.2.1 GPU Hardware Architecture

The GPU sits as a discrete peripheral device on the machine, connected to the Central

Processing Unit (CPU) by the Peripheral Component Interconnect Express (PCIe) bus.

The GPU is made up of many low powered cores, arranged in groups on Streaming

Multiprocessors (SMs), of which each GPU has several. The GPU will run many threads

in parallel on the cores, which is discussed further in Section 2.2.2. The GPU has a

large amount of slow o�-chip memory, known as global memory ; Global memory is

accessible by threads on all cores on the GPU and by the CPU; it is normally in the

order of gigabytes in size, and organised in �xed size memory blocks. All data allocated

on the global memory are aligned to a memory block, and all memory requests from

global memory are served at the memory block level, i.e: a request for a single value

would return the whole memory block in which the value resides. Memory requests

from threads within the GPU are queued globally and served by one of the memory

controllers.
1other GPU manufacturer's architectures (such as those by Advanced Micro Devices, Inc. (AMD),

and competing APIs such as Open Computing Language (OpenCL) are similar
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Figure 2.1: Conceptual view of the GPU architecture

Each SM contains a small amount of fast on-chip memory, known as shared memory,

accessible only to cores on that particular SM, and in the order of kilobytes in size. The

shared memory is split into several banks, the size of each bank corresponding with the

memory block size. Each bank can serve one memory request in unit time, meaning

that if threads request values from distinct banks, then the request will complete in

unit time, yet if they request values from non-distinct banks, this is known as a bank

con�ict, and the requests are serialised. Part of the shared memory is reserved as

private register space for the cores. Part of the global and shared memory is reserved

for constant memory, which is heavily cached by the hardware and designed for quick

access to program constants. Figure 2.1 demonstrates the GPU architecture.

2.2.2 GPU Programming and Execution

A programmer writes kernels (analogous to functions) in the CUDA C programming

language, and uses the CUDA API to send both the compiled kernel instructions and

the required data to the GPU. A programmer �rst speci�es the launch con�guration of
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the kernel, as a grid of blocks of threads on the GPU. First, the program data and input

data is sent to the GPU over the PCIe bus. These data transfers are often the slowest

and most costly operations of the entire program. After the data and kernel have been

transferred, the execution of the kernel will begin.

A thread block is a collection of threads which work in cooperation and are run on

a single SM, in a single instruction multiple data (SIMD) fashion, with inter-thread

communication only possible via shared memory, accessible only to the threads of the

thread block. The thread block conceptually runs concurrently, yet in reality is divided

into warps, which are arrays of 32 threads, each run in lock step with one another. The

instructions of the kernel for each warp are placed in an instruction queue, and are

scheduled for execution on lanes of CUDA cores. Once the instruction has executed,

there may be the need to wait on a shared memory request or a global memory request.

Once the request has been serviced, the next instruction is ready to be scheduled for

execution. When a shared memory request is placed by a warp, it is serviced in unit

time should each address be within distinct banks. If this is not the case, then a bank

con�ict occurs, and the request is serialised by the hardware into as few non-con�icting

requests as possible. When a global memory request is placed by the warp, then it

is put into as few memory-block-wide transactions as possible. If all requests by the

warp are for addresses within the same memory block, then this is serviced by a single

transaction, this is known as memory coalescing. Accessing global memory is very

expensive, taking up to 800 cycles per memory block requested, therefore it is wise to

access global memory with as much coalescing as possible, otherwise the global memory

access can throttle a program's performance.

Once an operation has been executed by a warp, the next instruction (possibly from

a di�erent warp) in the instruction queue is then scheduled for execution. It is possible

to have multiple thread blocks resident on a single SM, provided there are enough shared

memory resources for them to execute, with each GPU having also an upper limit to the

amount of concurrent thread blocks on an SM. If a program is able to hold the maximum

number of blocks on each SM, it is said to have full occupancy. Full occupancy ensures

there is an increased number of warps available to execute whist other long-latency

operations (such as global memory requests) are being serviced, which will go to hide

the latency of these said long latency operations. Due to the way that the instruction

queue is populated with ready-state instructions, it is important to ensure that each

warp is independent of the rest. It is possible to synchronise the threads within the

thread block, using barrier operations. Likewise, blocks must be independent of one

another; currently the best way to synchronise blocks is to terminate and then relaunch
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Table 2.1: CUDA thread indexing example

Block ID 0 1 2
Local ID 0 1 2 3 4 ... 31 0 1 2 3 ... 31 0 ...
Global ID 0 1 2 3 4 ... 31 32 33 34 35 ... 63 64 ...

the kernel.

2.2.3 Applications of The GPU

We discuss later in Chapter 3 the application of GPU to bioinformatics problems, but it

is also important to note that the GPU has been applied to many types of computational

problems, a few examples of which are given here.

The authors in [10] study a dynamic programming method for knapsack problems,

achieving a 15× speed-up with experiments using a single GPU, and 30× speed-up

with experiments using 2 GPU devices, when compared to CPU control experiments.

The authors in [11] develop a GPU-based Markov clustering algorithm for operations

on sparse matrices, with application to bioinformatics. The authors in [19] develop a

GPU-based dynamic programming algorithm for robot path planning in a multiagent

environment, with speed-up of an order of magnitude. The authors in [21] develop

a GPU algorithm to compute graph diameter, demonstrating experiments achieving

21× speed-up, compared to CPU control experiments. CAMPAIGN [38] is a library

of GPU-optimised clustering algorithms. The authors in [63] design e�cient sorting

algorithms for the GPU, publishing the fastest merge sort GPU algorithm, at the date

of publication. The authors in [80] develop a GPU tool for generic parallelization of

certain algabreic dynamic programming tasks, such as RNA folding. They demonstrate

experiments which achieve speedup of between 6×−25×, dependant on the application.

2.3 Classical Abstract Parallel Models

When scientists design algorithms, they often write pseudocode and will perform the-

oretical analysis on the algorithm, to �nd out how the performance of the algorithm

will handle an increase in input size. This analysis ususally focusses on Big-Oh nota-

tion, with regards to running time and storage space required. An algorithmic model

helps us to therefore formalise this process; the RAM algorithmic model can help us

to encapsulate the fundamental aspects of computing, such as arithmetic operations,
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Figure 2.2: Conceptual diagram of the Parallel Random Access Machine (PRAM) and
the Bulk Synchronous Parallel Random Access Machine (BSPRAM) machines showing
the processors with the shared memory unit.

loops, memory operations, and so forth. Using Big-Oh notation with the RAM model

assumes that each operation takes unit time, and that the number of operations then

relates directly to the run time. However, when we start to consider parallel architec-

tures with multiple processors, the RAM model loses its usefulness. When we consider

what is required of a abstract parallel model, we look for usability, portability, and

predictability; is it easy to use? do the algorithm analyses hold on multiple hardware?

can the model predict performance? The RAM model is unable to capture concurrent

execution of parallel architectures, therefore can not correctly model the performance of

a parallel algorithm. There have been many parallel algorithmic models, some of which

we review below.

2.3.1 Parallel Random Access Machine (PRAM)

The Parallel Random Access Machine (PRAM), proposed by Fortune et al. [25] is a

shared memory model, containing synchronous processors with their own private mem-

ory, and shared memory which is accessible to all (Figure 2.2). As the processors are

synchronous, they all run on a common clock, i.e. in lockstep with one another. Com-

munication between the processors is only possible by read and write operations to the

shared memory unit.

When read/write operations occur in the PRAM, there is the chance that multiple

processors attempt to access the same memory address at the same time. This is known

as a simultaneous read/write; there are several variants of the PRAM that dictate how

this situation is handled:

Exclusive Read Exclusive Write PRAM (EREW) does not allow simultaneous
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access to a distinct memory location.

Concurrent Read Exclusive Write PRAM (CREW) allows multiple processors

to concurrently read the same location, but only allows a single processor to write

to a memory location at one time.

Concurrent Read Concurrent Write PRAM (CRCW) allows multiple processors

to read and write to a single memory location at the same time. The way the

multiple write operations are handled is dictated by three sub-variants:

Common CRCW concurrent writes can only occur if all processors attempt to

write the same value.

Arbitrary CRCW allows an arbitrary processor to succeed in writing to the

memory location.

Priority CRCW allows the processor with the lowest ID to succeed in writing

to the memory location.

Analysis of algorithms on the PRAM are similar to that of the RAM model, involv-

ing the counting of work, processors, and communication. E�ciency and speed-up of

algorithms on PRAM can be calculated when comparing the relationship between the

best sequential time complexity, the time complexity on one PRAM processor, and the

total work carried out by the PRAM for a particular algorithm.

The PRAM is a well adopted and well studied parallel algorithmic model, which

captures many important parameters of parallel programs, such as allocating work to

processors and counting work at each time step.

When we consider the sub-variants of the PRAM, the GPU accesses memory in

an Arbitrary CREW manner, where in the case of multiple cores reading an address

simultaneously, a broadcast occurs; in the case where multiple cores write to the same

address simultaneously, then an arbitrary core will succeed.

The PRAM models computation in many ways di�erently to how a GPU executes

in reality. Firstly, the architecture of the processors does not match the GPU, as

the streaming multiprocessor is not captured. Secondly, the memory architecture does

not match, meaning bank con�icts and coalesced memory operations would not be

captured. The concept of a warp is not captured on the PRAM, meaning that latency

hiding operations can not be captured, and �nally, data transfer and synchronisation

operations between the CPU and GPU are not captured. This means that the PRAM

does not capture everything that is needed to accurately model GPU computation.
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Figure 2.3: Conceptual diagram of the BSP machine, with processors p0, ..., pn−1.
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Figure 2.4: Execution model of the BSP and BSPRAM machines, showing the com-
munication (input/output), computation and synchronisation (between rounds) steps.
Each arrow represents a computational thread on a processor, and related memory
transactions.

2.3.2 Bulk Synchronous Parallel Machine (BSP)

The Bulk Synchronous Parallel Machine (BSP), proposed by Valiant [83], is a distributed

memory model, consisting of a machine and a cost function. The machine contains

interconnected processors with their own private memory. A processor accesses its own

memory with low latency, and accesses another processor's memory with higher latency.

Algorithms are executed in rounds consisting of steps of computation, communication,

and synchronisation. Algorithms are analysed with a cost function, which is a function

taking the longest running processor at each computation round, the number and size

of communications at each communication step, and the cost of synchronisations at

synchronisation steps.

The BSP's concept of steps and rounds works in a similar way to how a warp

functions on a GPU: all threads in the warp do some computation and wait until all
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are complete, however, computation is asynchronous between processors and processors

can run distinct programs. In a similar way to the computation step, all processors

perform memory access operations and wait until all are complete, as happens in a GPU

warp. Synchronisation operations function in a similar way, except with a GPU, the

synchronisation is across all threads in the block. Global synchronisation is only possible

by termination of execution and kernel relaunch. It is also the case that synchronisation

must happen on the BSP in every round, whereas it is not the case when we consider

GPU execution.

The memory structure of the BSP is quite di�erent from that of the GPU. The BSP

allows direct communication between processors by means of accessing memory contents

of another processor, whereas the GPU does not allow direct one-to-one communication

between processors; threads must communicate via the shared memory, which is not

present on the BSP, neither is a global memory unit present of the BSP.

The rounds and steps of the BSP mean that it captures something of GPU execution

that the PRAM did not, yet the memory structure of the BSP as well as the intra-

processor communication means that it is unable to e�ectively capture elements required

to model a GPU. Additionally, the authors in [8] examine the original BSP cost function

and show that the predictability of the cost function can be improved.

2.3.3 Bulk Synchronous Parallel Random Access Machine (BSPRAM)

Tiskin [82] proposed the BSPRAM, which is an extension of the BSP with elements of

the PRAM. The machine consists of processors with fast private memory, and shared

memory accessible to all. The architecture is identical to the PRAM, as shown in Fig-

ure 2.2. The execution runs in rounds, similar to BSP, as shown in Figure 2.4. The

di�erence between the BSP and the BSPRAM is that the communication between pro-

cessors happens in the shared memory unit, rather than via the interconnect, meaning

each round begins with input from the shared memory, ending in output to the shared

memory.

The BSPRAM is closer to the GPU than the PRAM and the BSP, in that there is a

round-based execution and communication between processors via memory, as opposed

to explicit intra-processor communication. However, the BSPRAM has asynchronous

processors (as with the BSP) and each processor can run a di�erent program (as with

both the BSP and PRAM), meaning that the processors working in cooperation in a

warp is not captured here in the BSPRAM. Additionally, access to memory does not

follow the same particulars as the GPU, in that the memory architecture does not match,
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Figure 2.5: The Parallel External Memory Machine

and coalesced access or bank-con�icts are not modelled in the BSPRAM. Therefore, the

BSPRAM is not suitable for modelling GPU computation.

2.3.4 Parallel External Memory Machine (PEM)

The Parallel External Memory Machine (PEM), proposed by Arge et. al. [4], contains

processors and a formal memory hierarchy; each processor has private memory, and

there is main memory accessible to all. Both memories are partitioned into equal sized

memory blocks. Figure 2.5 demonstrates this architecture.

Processors cannot directly communicate in the PEM, and must communicate via

read and write operations to the main memory. Memory transactions transfer entire

memory blocks from the main memory to the private memory of a processor, and pro-

cessor cannot use the data until it is in their private memory. The complexity analysis

of algorithms on the PEM is by their I/O complexity. Algorithms are analysed not on

the raw number of memory transactions from main memory to the private memories,

but on the number of parallel memory transactions, i.e. n processors each transferring

a single distinct block from main memory to their individual private memories has an

I/O complexity of O(1), rather than O(n).

The two level memory hierarchy of a private memory and global memory, together

with the memory transfers having the granularity at the memory block level is the same

as how the GPU manages transactions between global memory and shared memory

of the SM. However, attached to each of these private memories is a single processor,

whereas the SM of a GPU has multiple processors working in cooperation, meaning

that the SIMD operation of an SM is not captured by the PEM. Further to this, each
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processor in the PEM can execute a di�erent program, which is not possible on the

GPU. Therefore, the PEM is not able to capture everything needed to e�ectively model

computation on the GPU.

2.4 Modelling and Analysing GPU Computation

As detailed in Section 2.3 there are no classical parallel models that capture everything

required to model computation on the GPU. There has been considerable recent ef-

fort towards modelling computation on the GPU. Recent progress on modelling GPU

computation has come in two main areas: analytical or predictive tools, and abstract

models. Abstract models look to analyse pseudocode before any actual computer code

has been written, providing information on how the pseudocode is expected to run if it

is to be implemented. On the other hand, the software aided analytic and predictive

tools analyse code that has already been written and compiled, meaning that the two

categories of e�ort occupy di�erent areas of the software design process.

2.4.1 Abstract Models

Two prominent abstract models for GPGPU are the Abstract GPU Model (AGPU) [39],

and an unnamed model proposed by Sitchinava and Weichert [77], which we refer to as

the Sitchinava Weichert GPU Model (SW-GPU). Both models share the same abstract

architecture, which is shown in Figure 2.6, and the same execution model; the di�erence

in the two models comes in the design and analysis of algorithms. We now discuss both

the AGPU and SW-GPU in detail.

The models capture a host (CPU) and a device (GPU). The device contains a

conceptually unlimited amount of global memory (split into memory blocks of b) and

k Multiprocessors (MPs). Each MP contains b cores and M words of shared memory

capacity, which is split evenly into b memory banks. The global memory can be accessed

by the host and by all cores on the device. The shared memory is accessed only by cores

on the SM.

A GPU-based algorithm runs in parallel on the cores of MPs; cores within an MP all

perform the same instructions at the same time (i.e. in lockstep), therefore modelling the

concept of a warp. Global memory requests transfer an entire memory block between

global memory and the shared memory of the particular MP. If requested addresses

are within the same memory block, this completes as a single operation, otherwise,

multiple operations are required; this therefore models coalesced global memory access.
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Shared memory requests complete in constant time provided requested addresses are

in distinct banks, otherwise the requests are serialised; this models bank con�icts in

shared memory. Shared memory requests are assumed to be bank con�ict free, as bank

con�icts are di�cult to analyse. The MP waits until all memory requests by the cores

have been resolved before proceeding to the next instruction.

Abstract GPU (AGPU) Model

Koike and Sadakane [39] proposed a theoretical model for GPUs called the AGPU.

Using the AGPU, it is possible to design algorithms using the speci�c pseudocode and

to analyse the asymptotic computational complexity of GPU algorithms. We discuss

the speci�c pseudocode as part of the Abstract Transferring GPU Model (ATGPU) in

Chapter 4, and we discuss the analysis of algorithms on the AGPU below.

In the AGPU model, GPU algorithms are measured by the following metrics:

• Time complexity

• I/O complexity

• Global memory space complexity

• Shared memory space complexity

The time complexity measures the number of instructions each multiprocessor exe-

cutes. Should there be thread divergence within a multiprocessor, all paths are counted

for the time complexity. Where the time complexity of multiple multiprocessors vary,

the largest complexity is used, meaning the time complexity is not a sequential measure,

but a parallel measure of the time complexity.

The I/O complexity measures the total number of global memory blocks accessed

by all multiprocessors. Because the amount of parallelism for memory requests to be

ful�lled is dependent on the bandwidth of the architecture, the I/O Complexity is

de�ned as the summation of all global memory block requests from all multiprocessors.

The global memory space complexity measures the global memory usage, in words,

of the algorithm. Likewise, the shared memory space complexity measures the shared

memory usage, in words, of the algorithm. If the amount of shared memory used varies

amongst the MPs, the largest value is taken.

The AGPU does not explicitly capture synchronisation (though analysing multiple

AGPU algorithms in succession would go some way to capture this metric), and disallows

algorithms where shared memory used exceeds capacity. Occupancy is measured as
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a function of shared memory usage and shared memory capacity. The AGPU gives

pseudocode for designing algorithms on the model.

The AGPU was successfully used to design new GPU-based algorithms that were

faster than the CUDA library implementations, meaning the AGPU is shown to be a

well suited model for designing and analysing GPU algorithms; the pseudocode gives

the designer a direct link to the architecture, making it easier to appreciate how the

operations will a�ect the running of the program, and allowing for easier translation

into CUDA or OpenCL code. However, the AGPU does not convey the true cost of

accessing the global memory on the GPU, which is often orders of magnitude more

expensive than a regular compute operation, in terms of clock cycles until completion.

Likewise, the model does not take into account any host device communication, which

is an important and often overlooked aspect of using the GPU as a coprocessor for

accelerating a computational task.

SW-GPU Model

Sitchinava and Weichert proposed an abstract GPU model[77], which we refer to as

the SW-GPU model. The SW-GPU does not provide a pseudocode, but analyses algo-

rithms using a cost function. The SW-GPU models execution in rounds, delimited by

explicit synchronisation with the host. The cost function uses metrics very similar to

the ATGPU:

• Number of rounds

• Number of operations performed by the MPs

• Number of memory requests

• Synchronisation with host

In a GPU algorithm on the SW-GPU, there are R rounds. For a given round i,

The number of operations performed by the MPs is denoted as ti. Should there be

thread divergence within a multiprocessor, all paths are counted. Where the number of

operations by multiple MPs vary, the largest is used, meaning the number of operations

is not a sequential measure, but a parallel measure. The number of memory requests

measures the total number of global memory blocks accessed by all MPs in round i,

and is denoted as qi. The memory access operations on a GPU are very expensive, so

each operation is assigned the cost λ. Finally, synchronisation with the host is also a

costly operation, which is assigned the cost σ.
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Therefore, the cost of a GPU algorithm on the SW-GPU model is given by Equa-

tion 2.1.

R∑
i=1

(ti + qiλ+ σ) (2.1)

The SW-GPU is e�ective for modelling GPU computation, which is demonstrated in

Chapter 4. However, like the AGPU, not every element of GPU execution is captured.

For someone to be able to e�ectively design and analyse a GPU algorithm, then a

pseudocode, such as that provided by the AGPU is useful - as it stands, the SW-GPU

focusses purely on the analysis of an algorithm, and does not help with the design

aspect. We discuss in Chapter 4 the scope for an improved abstract model for GPU

computation.

2.4.2 Analytical or Predictive Tools

The abstract models discussed in Sections 2.3 and 2.4.1 analyse algorithms as they are

designed on paper, not requiring the implementation of any code; This is useful for

comparing two ideas. The analytical and predictive tools that are now described in this

section analyse code that has already been implemented, and look to make conclusions

on the performance or expected performance of the code on the GPU.

Hong and Kim [34] create a predictive tool which can be built into compilers. The

tool predicts kernel latency at compile time by analysing the compute and memory

access operations of the compiled code, yet the model is not simple, as many calculations

are required. Their model predicted the observed latency to within a 5.14% error.

Konstandinidis et al. [40] propose a method to predict performance of compute

bound or memory bound kernels, using the Quadrant-split method as a visualisation

technique. The model is for use on developed kernels, and uses the pro�le of the device

and the operations within the kernel to predict the performance on a particular device.

Once the execution on one GPU has been pro�led, the model is then successfully used

to predict the performance on other GPUs, reporting a di�erence between predicted

and observed results within 25.8%, averaging an error of 10.1%.

The authors in [41] propose a GPU time prediction model that is shown to give good

and accurate results, however it does not have a de�ned pseudocode, is complicated (as

in it needs very exact program instructions), and does not take into account the data

transfer between GPU and CPU.

These tools are able to provide extra insight into developed GPU programs, however
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they are of little use during the early design stage, and therefore do not compete with

or remove the need for abstract models for modelling GPU computation.

There have also been e�orts that look to improve GPU performance on-the-�y for a

running program, yet this is beyond the scope of this thesis. GPU programs execute in

lockstep, yet if-statements can cause branch divergence, where some threads evaluate

to true and some evaluate to false, so causing two branches of execution. The authors

in [30] identify that branch divergence causes performance degredation and develop

a system that recon�gures the warps of the execution on the �y, to then reduce the

divergence that was introduced.

2.5 CPU GPU Data Transfer

When a GPU program executes, once the environment has been set up, the �rst step is

to transfer program data and input data from the CPU to the GPU. When a GPU kernel

has �nished executing, signalling either the end of a particular stage of the program,

or the end of the program all together, there must be synchronisation operations and

data transfer operations that take place, either transferring intermediate data between

the CPU and GPU, or transferring �nal output data. The size of this data transfer can

be very large for some applications, for instance in a matrix multiplication application

where two n×n matrices are multiplied into a single n×n matrix; For su�ciently large

values of n, this data transfer requirement could reach into the gigabytes in size.

Data transfer between the CPU and GPU has been shown to a�ect the performance

of a GPU program under normal usage. Gregg and Hazelwood [32] demonstrate that

data transfer between CPU and GPU can a�ect reported performance, and argue that

when reporting results, the GPU speed-up should include time taken for data transfer

operations. Martin et. al. [60] study an n-body simulation on the GPU, with rela-

tion to the impact that data transfer between CPU and GPU has on the applicaiton

performance. They conclude that it would be helpful to scientists to be able to quan-

tify and estimate beforehand how much of an impact the data transfer would have on

performance of GPU applications. The authors in [35] demonstrate that CPU-GPU

communication can be detremental to the performance of the GPU program, and de-

velop a tool that automatically optimises the communication between the two.

A bottleneck was experienced in [36] transferring data between CPU and GPU. The

authors demonstrate that reducing the overhead of copying data between the CPU and

GPU can signi�cantly improve the perfomance of the application. In their paper, they

demonstrated a performance increase of 33% by mapping the system memory to that
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of the GPU, thereby reducing the overhead.

Several techniques have been proposed to �nd the best technique for transferring

data between CPU and GPU. Fujii et al. [29] identify that direct memory access, where

the GPU and CPU share a uni�ed address space, o�ers the best performance for large

amounts of data transfer.

There has been many attempts to model CPU GPU data transfer using both software

based tools and cost functions, yet to our knowledge, there are no existing works which

look to model CPU GPU data transfer and execution in the same tool. Van Werkhoven

et al. [85] produce an analytical tool modelling the data transfer and predicting the

best data transfer technique for a given GPU program, as it is generally not feasible to

program and test all techniques of data transfer between the CPU and GPU. Boyer et

al. [9] propose a function to predict latency of data transfer operations. Their function

lowered the di�erence between predicted and observed speed-up from 255% to 9%.

2.6 Conclusion

In this chapter, we review the architecture of the GPU, the way that programs execute

on the GPU, and we discuss areas where the GPU has been used as an accelerator.

We then review several classic parallel abstract models, highlighting ways in which they

do not capture everything that is required to accurately model computation on the

GPU. Following that, we reviewed some existing GPU-speci�c abstract models, yet we

see that both models miss data transfer between the CPU and GPU, as well as seeing

how the models seek to capture di�erent aspects of the GPU computation. Finally

we highlight why data transfer between the CPU and GPU is important, and review

the di�erent e�orts that have been made towards analysing these operations. In this

chapter, we therefore identify scope for an improved abstract model that is speci�c to

GPU computation, which captures more than the individual GPU abstract models, and

that also captures the data transfer between GPU and CPU.
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Figure 2.6: Abstract architecture of the GPU, which is shared by the AGPU and the
SW-GPU models.



Chapter 3

DNA Sequence Alignment and

Protein Spectral Identi�cation

3.1 Introduction

In this chapter, we introduce two speci�c bioinformatics problems, namely DNA Se-

quence Alignment and Protein Spectral Identi�cation. Both of these problems are cen-

tred around computing a similarity score between two items, building this similarity

calculation into a database or library search, in order to determine the best �tting can-

didate. The chapter begins by discussing the DNA Sequence alignment problem and

reviewing algorithms and research e�orts that look to solve this particular problem,

as well as algorithms designed to take advantage of parallel architectures, such as the

GPU. The chapter then proceeds to discuss of Protein Spectral Identi�cation by re-

viewing existing algorithms for this process, including those which take advantage of

parallel architectures, such as the GPU, before introducing the Match Score Identi�ca-

tion problem, which is a version protein spectral identi�cation problem which we study

further in Chapter 6.

3.2 DNA Sequence Alignment

Deoxyribonucleic acid (DNA) is the backbone to life; it encodes all the genes of an

organism (the genome). DNA is made up of a string of bases: adenosine, cytosine,

guanine, and thymine, with each human having a unique genome. A sequencer is able

to analyse DNA samples and obtain the code that represents an organism's genome. It

is then of use to biologists and clinicians to analyse this data to �nd gene mutations and

28
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other conditions, using a process called alignment, which looks for similarity between

sequences. The premise is that homology between two sequences can signal a connection

between them, or in the case of an unknown gene sequence, can indicate which gene the

sequence is most related to.

Computing alignment between two biological sequences (be that DNA sequences of

bases, or protein sequences of amino acids) has been extensively studied, with the two

most famous alignment algorithms being the Smith-Waterman algorithm [79] and the

Needleman-Wunsch algorithm [65], both of which use a dynamic programming approach

to compute a similarity score in a pairwise manner. Sequence alignment is an application

of the string matching problem, whereby a short pattern sequence is compared to a

longer text sequence to determine whether the pattern exists in the text, and if so, the

positions where it occurs. When aligning two sequences, there are several variations of

alignment that can be computed:

Global Alignment Attempts to align the entirety of the two sequences end-to-end

(such as in the Needleman-Wunsch algorithm [65])

Local Alignment Looks to align local regions of the sequences that have high simi-

larity (such as in the Smith-Waterman algorithm [79])

Semi-Global Alignment Looks to align the entirety of one of the sequences, with a

pre�x of the other (such as GapsMis [5]).

Because of mutations and other biological mechanisms, it is common that sequences

in comparison may not be exact match but may have some mismatches. It is important

to take into account mismatches otherwise some vital information may be missing.

However, allowing mismatches greatly increases the complexity of the problem and

algorithms detecting mismatches are signi�cantly slower than their counterparts that

detect exact matches. Existing short-read alignment tools only allow a small number

of mismatches (or disallow mismatches altogether) because of this.

Di�erences may also appear in the form of a gap, which is a consecutive region that

appears in the text but not in the pattern or vice versa (i.e., a consecutive sequence of

insertions or deletions of letters in the text or the pattern). Gaps may occur because

of mutation event that a segment of DNA sequence is copied or inserted, replication

process that a segment is missing, or genetic transposition that a segment changes

position on chromosomes.
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T C G T T A
| | � �
T C T A

(a) 0-gap alignment, score 10

T C G T T A
| | | |
T C * * T A

(b) 1-gap alignment, score 16

T C G T T A
| | | |
T C * T * A

(c) 2-gap alignment, score 14

Figure 3.1: Examples of valid alignments for text TCGTTA and pattern TCTA.

3.2.1 The Sequence Alignment Problem

A string a is a substring of string b if there exist two (possibly empty) strings s1 and s2
such that s1s2 = b. Furthermore, a is a pre�x (su�x resp.) of b if s1 (s2 resp.) is an

empty string.

Consider an alphabet consisting of the four DNA bases Σ = {A,C, T,G}. Let ∗
represent the gap character and Σ′ = Σ∪ {∗}. An aligned pair is a pair of letters (x, y)

such that (x, y) ∈ Σ′ × Σ′ \{∗, ∗}. In other words, an aligned pair may involve at most

one gap character. An alignment of two strings T and X is a string of aligned pairs

(t1, x1), (t2, x2), · · · , (t`, x`) such that removing all the gap characters ∗ from t1t2 · · · t`
gives T (similarly for X). Note that there are `− |T | gap characters in the alignment.

In the alignment of T and X, we say that ti matches xi if ti = xi; ti is substituted by

xi if ti 6= xi and both are not ∗; xi is inserted if ti = ∗; ti is deleted if xi = ∗.
A sequence of ` aligned pairs (t1, x1), (t2, x2), · · · , (t`, x`) is called a gap sequence

if either all ti equal ∗ or all xi equal ∗. The sequence is called a gap-free sequence

if none of the ti nor xi equals to ∗. In other words, an alignment can be viewed as

z0g0z1g1...zα−1gα−1zα where z0 is a possibly empty gap-free sequence, z1...zα are non-

empty gap-free sequences, and g0...gα−1 are gap sequences. In this case, the alignment

has α gaps.

Figure 3.1 demonstrates the following example: suppose we have two sequences

TCGTTA and TCTA. If we do not allow a gap, we can align TCGT with TCTA with two

matches. If we allow a gap of any length, we can align TCGTTA with TC**TA with four

matches, where * represents a gap character. If we allow two gaps, we can align TCGTTA

with TC*T*A, also with four matches.

For each possible alignment of two sequences, they must be quanti�ed in a way that

communicates their similarity, where the most suitable alignment will have the highest

(lowest) score, in the case of a maximising (minimising) score function. Given two

strings T and X, we can measure the quality of an alignment of T and X by a score

function δ(·). The score of an alignment is calculating by adding the scores of all gap

sequences and gap-free sequences in the alignment. Scoring functions are discussed in
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greater detail in Section 3.2.2.

When the sequence alignment problem is applied to a database or library search,

the problem is to report the best scoring database reference sequence (text) for a given

sample sequence (pattern). With the advances in sequencing technologies, the amount

of data that requires alignment has increased drastically. For example, the GenBank

public database contains over 162,000,000 sequences and the Illumina HiSeqX Ten se-

quencer can produce three billion reads (sequences) of length 250 bp (base pairs) in

less than three days. The re-sequencing problem is to assemble short reads produced

by the sequencer (an equipment that takes a physical biological sample and outputs

the sequence of nucleobases as a character string) into a genome sequence by referring

to a reference genome, requiring �mapping� or �aligning� of the short reads back to a

database of reference sequences. The task is therefore challenging due to the increasing

amount of data and the large genome sizes.

3.2.2 Scoring Functions

The way in which an alignment is scored, and how the algorithm deals with the given

score, has a huge e�ect on the accuracy of the alignments that are produced. There are

several ways in which an alignment can be scored; some are taken from stringology (such

as the edit distance), and others have been created to maximise biological accuracy.

The alignment scoring scheme can be separated from the alignment algorithm, and an

alignment algorithm can be adapted to use each particular scoring scheme.

As set out in Section 3.2.1 scoring function is represented as δ(x, y), where x, y ∈
Σ′ = Σ∪{∗}. This function will map to a scoring matrix, which is |Σ′|2 and maps each

possible combination of characters to a score value. Additionally, factors within the

alignment such as gaps will change the scoring function. The scoring function chosen

will dictate the values within δ()̇, with some common scoring functions described below.

The Levenshtein distance is de�ned as the minimum number of operations required

to transform string T into string X. These operations can be to substitute an existing

character, to insert a new character, or to delete a character. The Levenshtien distance

is a minimising function, that is strings with a higher degree of similarity will have a

lower Levenshtein distance.

The Hamming distance between two strings of equal length is de�ned as the number

of mismatching characters. For example, the strings aabaa and aacaa have a hamming

distance of 1; the strings abbaa and aaabb have a hamming distance of 4. As with the

Levenshtein distance, the Hamming distance is a minimising function, where strings



Chapter 3. DNA Sequence Alignment and Protein Spectral Identi�cation 32

with a high degree of similarity have a lower Hamming Distance.

The use of specialist biological scoring matrices, such as the BLOSUM series, and the

PAM series are substitution matrices that contain scores to accurately re�ect alignments

in biology. These matrices reward alignment that is good and biologically accurate

alignment, penalising either bad alignments or those which are biologically inaccurate.

As a result of this, the values in the scoring matrices are much more varied (BLOSUM62

has a range of −4 − 11) than the substitution matrices used when calculating either

Hamming or Levenshtein distances, which would typically comprise of 0s and 1s. It is

also the case, that when using such scoring matrices, the scoring function is amaximising

function, and that two sequences with good alignment have a higher score.

Scoring for Gaps Up until now, we have seen that substitution matrices can score an

alignment based upon the matched character pairs. We now discuss how the alignment

scoring schemes can account for gaps.

By adding scores for a gap character into the substitution matrix, substitution

matrices can account for gaps using a constant gap penalty i.e. a gap character would

be assigned a particular cost. This means that two gaps of length 3 would score the

same as one gap of length 6, yet It has been claimed that it can be desirable to penalise

the occurrence of gap as a whole instead of individual alternations [24].

The a�ne gap cost is one of the most popular gap scoring functions, which heavily

penalises the opening of a gap, whilst penalising less severely for extending a gap. This

favours fewer, longer gaps in the �nal alignments that are reported. A�ne gap penalty

scores are shown to increase the sensitivity of detecting biological relationships and

constructing biologically accurate alignments[2].

A study [87] into the accuracy of a generalised a�ne gap penalty (allowing a gap

sequences to occur in both sequences) as opposed to a traditional a�ne gap penalty

shows that generalised a�ne gap cost will produce shorter but more accurate alignments,

and that traditional a�ne gap penalty costs will provide slightly less accurate, but longer

alignments, when aligning protein sequences.

There are several other gap scoring functions in the literature, such as logarithmic

scoring and log-a�ne scoring.

Some have argued that non-a�ne gap scoring increases biological accuracy of the re-

sulting alignments: The authors in [31] argue for logarithmic gap penalty when aligning

protein sequences, and the authors in [62] produced a gapped local sequence alignment

tool that uses a non-a�ne gap penalty, which increases the likelihood of �nding a good

alignment containing a large gap. PLANAR [7] is a sequence alignment tool for RNA
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that also takes into account the RNA secondary structure (therefore a more complex

problem than regular sequence alignment) using trees and linked lists, with a non-a�ne

gap cost. The authors in [58] propose a variable gap penalty function that is sensitive to

the structure of proteins, which is shown to increase accuracy of generated alignments

when aligning protein sequences.

However, it has been shown in [15] that logarithmic gap costs decrease the accuracy

of computed alignments, despite the distribution of gap sizes being shown to follow a

power law, which lead some scientists to use a logarithmic gap cost when constructing

alignments. The authors show that logarithmic gap costs actually decrease the accuracy

of the constructed alignments. They studied three types of gap costs and found that

Log-A�ne gap cost was the most accurate, followed by a�ne gap cost, and lastly

by logarithmic gap cost. They show that a�ne gap costs (the most popular type

used) produce a good approximation of biological alignments, and could be used with

con�dence. The authors later produced a sequence alignment tool called �Ngila�[16]

which uses log-a�ne gap costs to score alignments.

In addition to more specialised scoring for gaps, there has been some limited e�ort

to incorporate the quality of the experimental data and the quality of the equipment

used into the scoring of the alignment in general.

RMAP[78] is a tool that uses quality scores and longer reads to improve the map-

ping of read to reference alignments, and [27] demonstrates how DNA sequence quality

scoring can be incorporated into sequence alignment tools. They shows that this can

improve the quality of the alignment results obtained, increasing correctly mapped reads

of a real data set from 49% to 66%.

3.2.3 Existing CPU-based Sequence Alignment Tools

There is a wide range of existing CPU-based alignment tools available; some are de-

signed for serial execution, some are designed to take advantage of multicore CPUs, and

others are designed to run at scale on a cluster or a supercomputer. Each addresses

di�erent challenges of the sequence alignment problem. A large amount of tools use

a dynamic programming approach, yet there are other methods used which employ

hashing, Burrows-Wheeler transformation, and graphs.

The Basic Local Alignment Search Tool [3] is a widely used local alignment tool

that uses a dynamic programming approach to produce local alignment library search.

It heuristically reduces the search space from all entries in the library, down to those

that are most likely to provide a region with high similarity to the sample sequence, but



Chapter 3. DNA Sequence Alignment and Protein Spectral Identi�cation 34

scanning for segments within the library that exceed a particular scoring threshold.

Crochemore et al.[20] utilise text compression (using LZ78 technique) is used to

successfully speed up the Smith Waterman alignment between two sequences with an

additive gap penalty. The repeating structure and the potential of unrestricted in-

dels/substitutions of the Smith Waterman algorithm allow for this optimisation to work.

Farrar et al.[23] developed an SIMD-based implementation of the Smith-Waterman al-

gorithm, with experiments achieving up to 8× speed up over existing SIMD implemen-

tations.

FOGSAA[17] is a sequence alignment tool that uses a branch and bound method

to accelerate the sequence alignment task. It is shown to give an improvement of

70− 90% for highly similar sequences, 54− 70% for those of mid-range similarity, and

terminates with an approximate score for sequence pairs of minimal similarity. Protein

sequences are shown to obtain an improvement of 23 − 53% against existing heuristic

global alignment methods. This tools performance is dependant on the content of

the sequences, and in some cases will only provide an approximation of the similarity

score. Therefore it does not provide a reliable and repeatable improvement level against

existing tools.

SOAP [47] looks to e�ciently align large sets of sequence data, which other alignment

tools had struggled to do. It uses a seed-and-hash technique to accelerate alignment of

upto two reads to a reference sequence, allowing either a limited number of mismatches,

or a single gap of upto length 3 in the alignment. It was shown that in addition to the

speed improvement on existing tools, the option to allow restricted gaps increased the

accuracy of the alignments, whereas previous tools would only calculate with or without

gaps (not both).

The BOWTIE[44] short read sequence alignment tool which uses Burrows-Wheeler

transformation (which prepares strings for compression by reversibly-rearranging them

in order to be easier to compress, whilst having a lower memory footprint when com-

pared to hashing fragments of strings). It does not support insertions or deletions

(gaps), but provides speed-up against existing tools like SOAP and Maq, and can be

run on a regular desktop computer because of lower memory footprint and the ability

to be parallelised over a number of threads on the CPU. SOAP2 [48] further improves

upon SOAP by using Burrows-Wheeler Transformation. The Burrows-Wheeler Align-

ment (BWA) short read alignment tool [46] uses Burrows-Wheeler Transformation to

align short reads to long references, allowing mismatches and gaps. Experiments car-

ried out as part of the study show 10×−20× improvement on MAQ, retaining similar

accuracy of alignments. SOAPdenovo[49] is an extension of SOAP2 that successfully
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assembles the human genome in a supercomputer. REAL[28] is a short-read alignment

tool, allowing for at most k mismatches, based on the signature of various sequence

fragments which outperforms SOAP2. SHRiMP [73] uses a mix of a hashing tech-

nique along with a vectorised implementation of Smith-Waterman algorithm and an

alignment technique that takes advantage of output from particular equipment. They

demonstrated the accuracy of their approach, and that the majority of speed-up against

existing tools occurred during the vectorised implementation of the Smith-Waterman

algorithm. GenomeMapper [74] uses a hash based graph approach to simultaneously

align short reads against multiple genomes, by indexing the multiple genomes before

aligning the reads against the index. Stampy [57] is a tool which aligns short reads with

a hashing technique and incorporates statistical analysis with high accuracy and speed.

[76] Parallelised Short-read sequence denovo assembler using distributed debrijn graph

method on a cluster.

Because of the importance of gaps, the alignment problem has been considered in

the presence of gaps [24, 1, 5]. In addition to allowing mismatches in the form of

edit distance or score, the problem also allows for a bounded number of gaps (of any

length). Usually the number of gaps allowed is a small constant independent of the

length of the text or pattern. Dynamic programming algorithms have been proposed

to �nd the alignment with the best alignment �score� with a bounded number of gaps.

In [24, 1], a single gap is allowed and the algorithm GapMis is proposed; while in [5],

multiple gaps are allowed and the algorithm GapsMis is proposed. The algorithms

GapMis and GapsMis have been implemented and are shown to perform well against

other approaches like EMBOSS water [72] and EMBOSS needle [72].

3.2.4 Existing GPU-based Sequence Alignment Tools

Due to the ever-increasing data size, faster sequence alignment tools are needed. This

asserts not just speed requirement on the processors but also leads to high power/energy

requirements; furthermore, this potentially causes the processors to reach too high a

temperature, potentially damaging them. To solve this problem, it is nowadays common

to exploit multi-processors such as the GPU. There are many alignment tools available,

which use the GPU in order to achieve increase in speed.

Various sequence alignment problems have been tackled using GPU-based algo-

rithms, including BLAST (the Basic Local Alignment Search Tool) [84, 89], the Smith-

Waterman global alignment algorithm [59, 51, 56, 81], Needleman-Wunsch local align-

ment [22, 71] ([75] studies GPU implementation of Smith-Waterman and Needleman-
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Wunsch with focus towards a hybrid model).

SOAP3 [52] is currently among the best short-read alignment tools available, adapt-

ing the Burrows-Wheeler Transformation technique of SOAP2. CuHMMer [86] is CPU-

GPU hybrid tool for calculating sequence similarity using hidden Markov models. It

load-balances the tasks on both CPU and GPU, so that the CPU does not sit idle whilst

the GPU is computing. CuHMMer claims upto 45× speed-up over CPU control experi-

ments, and outperforms existing GPU-only implementations. Zhang et al.[88] develop a

GPU-based pairwise statistical signi�cance estimation tool, which determines whether

a particular local alignment (produced by an alignment tool) can occur by chance alone.

claiming 180× speed-up against the CPU.

For Semi-global sequence alignment with a single gap, a tool called libgapmis [1]

has been developed, which uses a task-parallel GPU-based method, for which an 11×
speed-up over CPU control experiments has been reported. With multiple gaps, there

is a data parallel implementation [68] of GapsMis, for which a 5× speed-up over the

CPU has been reported, yet this implementation does not use the GPU to compute the

backtracked optimal alignment and uses sequential techniques for �nding the optimal

gap insertion point.

3.3 Protein Spectral Identi�cation

Proteins provide function, structure, and repair to biological cells. Proteins are created

during translation, where Ribonucleic acid (RNA) is traversed by a ribosome, stringing

together amino acids that correspond to the sequence of the RNA. Strings of amino

acids form peptides, a string of which forms each protein. After translation occurs,

various chemical modi�ers can attach themselves to points along the protein, which

could provide di�erent functionality to the protein. This is known as Post Translational

Modi�cation (PTM).

It is of interest to biologists and clinicians to be able to identify a protein from a

given sample, and to also identify any PTM present. Understandably, PTM can make

this problem more challenging and complex, meaning that a challenge is to identify a

protein that contains PTM. There are over 300 di�erent types of PTM which are known

to occur, so it is also of interest to be able to characterise these modi�cations and to

discover new ones.

Mass Spectrometry is a technique in examining the chemical make-up of a sample,

whereby the sample is fractured and each part measured, outputting a Spectrum of

peaks which corresponding to the molecular masses of parts found within the sample.
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Tandem Mass Spectroscopy (MS/MS) attaches two mass spectrometers together and

gives �ner detail to the mass spectrometry process and is often used in the sampling of

proteins and peptides.

There are several large public databases containing spectra corresponding to known

proteins and peptides, against which it is possible to compare spectra obtained from

protein or peptide samples in order to identify them. However, a simple value-by-value

comparison of a sample against a library of known proteoform spectra is normally not

su�cient, as the sample has undergone Post Translational Modi�cation (PTM), which

changes molecular weight of some peptides within the protein, therefore a�ecting the

whole sample spectrum.

Spectral Alignment (often solved using dynamic programming) is used to compare

the query spectrum and a set of target spectra (the library), allowing unexpected PTM.

A similarity score for each spectral pair is computed, under the premise that the higher

similarity two spectra posses, the more likely they are to be related. These similarity

scores are generally centered around counting the number of similar mass peaks in the

two spectra, allowing for modi�cations. This similarity score is then used in database

search, in order to identify the sample protein.

Matching the spectrum of a sample protein against a database of known protein

spectra has become a point of bottleneck in many modern mass spectrometry exper-

iments [6]. To alleviate this bottleneck, there has been lots of study into reducing

the search space of the database, and into speeding up the computation, using serial

computer programs.

3.3.1 Sequential Approaches to Spectral Alignment and Library Search

There are many CPU-based tools that compute spectral alignment, using di�erent meth-

ods and scoring schemes.

Mascot[69] is a well regarded protein spectral identi�cation tool that uses a probabil-

ity based scoring function. Pevzner et al [70] propose a dynamic programming method

for PTM-tolerant spectral alignment, which computes a spectral similarity score, shown

to be e�ective for upto two PTMs. The approach looks to make switches between diag-

onals through a spectral graph (that is, insert a PTM between aligned sections of the

spectral pair). This approach has found itself to be quite popular for other tools to be

based upon.

ProsightPTM [45] is a well regarded web-based top-down protein spectral alignment

tool which uses sequence tag search and probability based scoring.
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Frank et al. [26] present a study that shows how spectral alignment is able to identify

PTMs in samples of intact proteins that are generated by higher resolution instruments,

using a top-down approach called MS-Top-Down, as opposed to the bottom-up approach

that was more commonly used. The advantage of protein identi�cation using top-down

approach is that it is possible to characterise the proteins exact form, as opposed to

merely identify the protein as in the bottom-up approaches.

A tool called PSAwEL [18] presents a spectral alignment algorithm that allows

unexpected PTM (that is, the user does not need to specify them beforehand), which

uses a new scoring function to improve on their previous work.

The alignment of spectra with a PTM has been accelerated using linked lists [53]

in order to characterise the values within a set of spectra. Here, the authors show how

by breaking away from the commonly used dynamic programming methods, and by

indexing in linked lists which particular spectra have a peak at a given value, can the

alignment be accelerated, requiring only traversal of relevant linked lists. In addition to

performing the spectral alignment task with a single PTM, this approach is also used as

a �ltering technique for other protein spectral alignment tools, such as [54]. We study

this particular approach in further detail in Chapter 6.

MS-Align+ [54] is a spectral alignment algorithm that �lters the search space by

characterising each diagonal crossing through the spectral grid (possible using the

method in [53]), using a similar alignment method to [26]. If a candidate protein has

low scoring diagonals, then it is not likely to match, and is discarded. For the well

scoring candidate proteins, only the top scoring diagonal crossings are then used for the

alignment, which is shown to both accelerate the alignment process and retain a high

level of accuracy.

MS-Align-E [55] overcomes the limitation that is encountered with unexpected

PTMs, which is that a good scoring diagonal to serve as evidence for the PTM may

not exist in the spectral graph, which is common when histones occur ultra-modi�ed

proteins. The tool overcomes this limitation by considering diagonal fragments and

using a list of expected PTMs to construct directed edges in the spectral graph, solving

the problem by scoring paths from the source to the sink in the graph.

Raw output from the mass spectrometry equipment is processed into XML and then

transformed into monoisotopic mass lists (an ascending list of numbers which correspond

to the mass peak values of the obtained spectrum), using spectral deconvolution tools

such as MS-Deconv+ [42], before performing spectral alignment on the mass lists as a

scoring for database search. Thus, the MS/MS pipeline is assembled.

TopPIC [43] is a protein spectral identi�cation tool that improves on MS-Align+ [54],
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which heuristically �lters out unsuitable candidate proteins, before performing spectral

alignment, and �nally performing statistical analysis on the reported alignments. They

reduce the memory requirement of the database by using an indexing method.

3.3.2 Spectral Alignment and Library Search on GPU

Whilst the GPU has been used extensively in sequence alignment, to our knowledge

there has been relatively little work on using the GPU to accelerate spectral alignment

for identi�cation of proteins or peptides.

To our knowledge, the �rst attempt to implement a protein spectral library search on

the GPU was that by Baumgardner et.al. [6]. They develop a tool called FastPaSS (Fast

Parallelized Spectral Searching), which implements in CUDA the SpectraST spectral

searching algorithm. There are three scoring metrics that are used by SpectraST (and

therefore also by FastPaSS): the dot product, the ∆-dot, and the F-value. The ∆-dot

and F-value are performed on the CPU, and the dot product is performed on the GPU.

The dot product uses matrix multiplication, which lends itself well to the GPU, as

matrix multiplication is easily parallelisable, being a common student exercise when

learning General Purpose Programming on GPU (GPGPU). FastPaSS successfully uses

the GPU to accelerate a computationally intensive part of the spectral library search

using the GPU, with experiments demonstrating an improvement of up to 26×, when
compared to CPU control experiments.

Milloy et. al. develop a GPU-based peptide matching tool called Tempest [61].

Tempest computes the digestion of candidate proteins (into candidate peptides) on the

CPU, and the computes the similarity score between sample peptide spectrum and

selected candidate spectra on the GPU. This is in contrast to [6], which only computes

some of the similarity score on the GPU, and does not perform in-silico digestion of

proteins. The similarity score used by Tempest is a dot-product type scheme, based

upon the SEQUEST XCorr scoring metric. The GPU uses a single thread to compute

the similarity score between a single candidate peptide and the sample peptide serially,

computing in batches until all scoring is complete, before reporting the highest scored

matches. By accelerating the scoring using the GPU, experiments show that Tempest is

able to achieve speed-up of up to 15× against single-threaded control CPU experiments.

Li et al. [50] design an e�cient GPU-based spectral dot product scoring module

and demonstrate experiments which achieve up to 60× speed-up against CPU control

experiments on a single GPU, and also demonstrate favourable speed-up when deployed

at scale on a GPU cluster of four nodes.
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T ′ = 010101010000
T = 2, 4, 6, 8, 12

Figure 3.2: Example of Spectrum as mass-list and as vector.

3.3.3 Match Score Identi�cation Problem

We now describe the Match Score Identi�cation problem, introduced in [53], which we

study in Chapter 6.

A spectrum T = t1 < t2 < ... < tn is a list of pre�x residue masses. That is, each

element ti ∈ T represents the cumulitve mass of the �rst i fragment ions within T ,

with tn representing the mass of the entire sample, known as the precursor mass. T

can be represented as a mass-list of integers, being t1, t2, ..., tn, or as a 0-1 vector T ′.

T ′ = t′1, t
′
2, ..., t

′
tn where ∀t′i ∈ T ′ : t′i = 1 if i ∈ T and 0 if otherwise meaning if there is

a peak in the spectrum at mass `, then there is a 1 in the vector at position `.

Consider two spectra T = t1, t2, ..., tn and X = x1, x2, ..., xm. A mass pair (ti, xj) is

matched if and only if:

• ti = xj

• ti 6= tn

• xj 6= xm

A post translational modi�cation (PTM) can occur to a protein, changing the spec-

trum from its previous unmodi�ed form, changing the precursor mass of the spectrum,

the values of the peaks within the spectrum, and possibly even adding new peaks to the

spectrum. In the 0-1 vector representation of an unmodi�ed spectrum, the modi�cation

would manifest itself as insertion of a string of 0s and 1s. A spectrum T can be shifted

by an integer value δ > 0, denoted as T (δ). The shifted spectrum T (δ) is generated as

T (δ) = t1+δ, t2+δ, ..., tn+δ, inserting δ 0s at the start and shifting the entire spectrum

δ places to the right in the 0-1 vector operations.

The Match Score Identi�cation Problem

We investigate using a scoring scheme called the match counting score, which is then

used in the Match Score Identi�cation Problem.

Match Counting Score The match counting score is the number of matched mass

peaks between two spectra T and X, where T is the spectrum of a modi�ed protein
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0 0 1 0 1 0 [0 0 0] 1 0
| |

0 0 1 0 1 0 1 0

(a) CT,X) = 2

0 0 1 0 1 0 [0 0 0] 1 0
|

0 0 0 0 0 1 0 1 0 1 0

(b) C(T,X(3)) = 1

Figure 3.3: Calculating match score for T = {2, 4, 9, 10}, X = {2, 4, 6, 7}, where δ =
10− 7 = 3. The PTM in T is surrounded by square brackets.

containing a PTM and X is the spectrum of the unmodi�ed form of the protein. The

PTM has inserted a mass of value δ = tn− xm into T . The mass pairs containing tn or

xm are never matched, because by inserting a shift of δ into T , the mass pair (tn, xm)

will always be matched, therefore not providing useful information about the similarity

of the two spectra T and X.

C(T,X) is the number of matched pairs between the spectra T and X, excluding

the precursor masses. C(T,X) therefore gives the number of matched mass pairs to the

left of the PTM, yet not to the right. C(T,X(δ)) gives the number of matched mass

pairs to the right of the PTM.

The match counting score for two spectra T,X is calculated as C(T,X)+C(T,X(δ)).

An example is given in Figure 3.3.

Problem 1. The Match Score Identi�cation Problem (MSI) is to calculate the match

score between each spectrum Ti ∈ T and a set of spectra X and to return the spectrum

in X with the maximum match score, where T = T0, T1, ..., Tq−1 , Ti = t0, ..., tn−1 and

X = X0, ..., Xr−1, where Xj = x0, ..., xm−1. That is, we wish to �nd Xα ∈ X : α =

maxrj=1(C(Ti, Xj) + C(Ti, Xj(δ)) for each Ti ∈ T .

3.4 Conclusion

In this chapter, we reviewed DNA sequence alignment algorithms and protein spectral

alignment algorithms. We began by reviewing sequential solutions to the problems,

before reviewing solutions to the problems which take advantage of the GPU. Finally,

we identi�ed scope for two particular problems for us to study further the acceleration

using GPU: the sequence alignment problem (we study this problem in Chapter 5), and

the match score identi�cation problem (we later study this problem in Chapter 6).



Chapter 4

The Abstract Transferring GPU

Model

Introduction

GPUs are commonly used as coprocessors to accelerate a compute-intensive task, tak-

ing advantage of their massively parallel architecture. There is study into di�erent

abstract parallel models, which allow researchers to design and analyse parallel algo-

rithms. However, most work on analysing GPU algorithms has been software based

tools for pro�ling a GPU algorithm. Recently, some abstract GPU models have been

proposed, yet they do not capture all elements of a GPU. In particular, they miss the

data transfer between CPU and GPU, which in practice can cause a bottleneck and

reduce performance dramatically. In this chapter, we propose a comprehensive model

called ATGPU which to our knowledge is the �rst abstract GPU model to capture data

transfer between CPU and GPU. We show via experiments, that existing abstract GPU

models cannot su�ciently capture all of the actual running of a GPU algorithm time in

all cases, as they do not capture data transfer. We show that by capturing data transfer

with our model, we are able to obtain more accurate predictions of the GPU algorithm

actual running time. It is expected that our model helps improve design and analysis of

heterogeneous systems consisting of CPU and GPU, and will allow researchers to make

better informed implementation decisions, as they will be aware how data transfer will

a�ect their programs.

42
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4.1 Introduction

We observe in Chapter 2 that the SW-GPU and the AGPU model di�erent aspects

of the GPU execution; SW-GPU models the trend of overall running time, whereas

AGPU has focused on design and analysis of individual elements of the kernel. Both

are equally important, so there is scope for a more comprehensive model combining

all elements. Using GPU as a coprocessor requires data transfer between CPU and

GPU and this can lower performance if not properly considered. To our knowledge,

this is not captured in any abstract GPU model, though it has been well studied in

software based tools. Our contribution consists of an abstract model, called Abstract

Transferring GPU (ATGPU), which is an extension of previous models. We introduce

new components to capture data transfer between CPU and GPU.

We extend the SWGPU and AGPU architecture, introducing a size constraint on

global memory, making the model more realistic. We extend the pseudocode of AGPU to

capture data transfer, and we extend the SWGPU cost function to model data transfer

and to simulate the cost on a particular GPU. To our knowledge, ATGPU is the �rst

abstract model with this comprehensive array of analysis and design capabilities, and

the �rst abstract GPU model to capture data transfer. A comparison of models is

provided in Table 4.1.

We demonstrate the use of ATGPU and evaluate several example computational

problems using the model. We show via experiments that existing models are not able

to su�ciently model the actual running time in all cases, as they do not capture data

transfer. We show that by capturing data transfer using our model, we are able to

obtain more accurate predictions of the actual running time.

The remainder of the chapter is organised as follows: Section 4.2 discusses our

Table 4.1: Comparison of GPU abstract models

Item AGPU[39] SW-GPU[77] ATGPU

Pseudocode 3 3

Time Complexity 3 3 3

I/O Complexity 3 3 3

Space Complexity 3 3

Shared Memory Limit 3 3

Synchronisation 3 3

Cost Function 3 3

Global Memory Limit 3

Host/ Device Data Transfer 3
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model, and Section 4.3 describes how algorithms are analysed in our model. Section 4.4

analyses and evaluates computational problems using our model, and Section 4.5 gives

concluding remarks on the chapter.

4.2 The Model

We now describe the architecture, execution, and usage of the ATGPU model.

Architecture. The architecture of ATGPU (depicted in Figure 4.1) is similar to

SWGPU and AGPU, with an additional constraint on global memory size. The model

captures a host (CPU) and a device (GPU). Let ATGPU(b, k,M,G) be an instance of

the model with b cores on k Multiprocessors, giving bk cores in total,shared memory

of M words per MP, and global memory of G words.

LetMP = {mp1,mp2, ...,mpk} be the set of MP. Let Ci = {ci,1, ..., ci,b} be the set of
cores of mpi ∈MP . All ci,j ∈ Ci execute the same set of instructions in lockstep. The

shared memory of each mpi ∈MP is split into b memory banks, such that b successive

words reside in distinct banks. Only Ci can access the shared memory of mpi. The

global memory is divided into memory blocks of b words. The host and all mpi ∈MP

can access global memory.

Execution of Algorithms on the Model. ATGPU executes algorithms in rounds,

similar to SWGPU. A round begins by the host transferring data to the device global

memory. The kernel is then run on all (or a subset of) mpi ∈ MP , and on all cores

ci,j ∈ Ci. Instructions are executed on Ci in lockstep. If execution paths diverge, all

paths are executed. Data must be moved from global memory to shared memory in

order for Ci to access it. Upon a memory access instruction, Ci waits until all cores

have their memory request resolved.

In a global memory access instruction, if Ci requests words within the same memory

block, instructions coalesce and complete as a single transaction. If requested words

are in l separate memory blocks, l separate transactions occur. This is depicted in

Figure 4.2.

In a shared memory access instruction, if all ci,j ∈ Ci access words in distinct

memory banks, the request completes in constant time. If there is access to words in

the same memory bank, a bank con�ict occurs and requests are serialised. We assume

that bank con�icts do not occur, as these are di�cult to analyse. It is worth noting,

that the existing models (AGPU and SW-GPU) also assume that execution of the GPU

program is bank con�ict free, and do not capture bank con�icts for the same reason.
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ci,0 ci,1 ci,b−1

0 1 b− 1

b b + 1 2b

M − 1

Shared Memory

Cores Ci

(a) Multiprocessor of our model. Note the b banks (shown as columns in the shared
memory) and the b cores.

Host

Device

Global Memoryb words

mp0 mp1 mpk−1

Multiprocessor

G

(b) Device view of our model, with the k = p
b
multiprocessors, and the global

memory of size G, in blocks of b words

Figure 4.1: Abstract architecture of the ATGPU Model

The round ends with output data being transferred from global memory to the host.

Synchronisation operations occur, and the subsequent round commences.

Notation for Pseudocode. We extend the pseudocode from the AGPU model,

allowing for explicit data transfer. Each GPU kernel is placed inside a wrapper loop, to

execute the instructions on MP . If instructions are to be run on only a subset of MP ,

then this is speci�ed within the wrapper loop.
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Cores

Cores

Block i Block i+ 1

Block i Block i+ 1

Figure 4.2: Examples of coalesced global memory access, where all cores request memory
locations from the same memory block and thus completes in a single transaction (top),
and non-coalesced global memory access, where cores request memory locations from
two di�erent blocks and thus completes in two transactions (bottom).

Algorithm 1 ATGPU Wrapper Loop

for all mpρ ∈MP [mp0, ...,mpb−1] in parallel do
for all cρ,ε ∈ Cρ in parallel do

Instructions ....

In our model, any primitive data type, with vectors and arrays thereof, are allowed

as variables. Our model de�nes three types of variable scope. Host variables reside in

host memory, only accessible to the host, and their names begin with capital letter.

Global variables reside in global memory, accessible by the host and all MPs, and their

names begin with lower case letter. Shared variables reside in shared memory, accessible

only by Ci for shared variable on mpi, and their names begin with an underscore.

Memory access syntax is <destination><operator><source>. Data transfer between

host and device uses the W operator, global memory access uses the ⇐ operator, and

shared memory access uses the ← operator. The if-statement can also be used as an

if− then−else statement, but it is important to note that all branches of program �ow

will be executed where any of the cores enter the branch, therefore it is very important

to reduce diverging execution paths.



Chapter 4. The Abstract Transferring GPU Model 47

4.3 Analysing Algorithms on ATGPU

Our model de�nes the metrics below for an algorithm running on ATGPU. Asymptotic

complexity can be measured both on a per-round basis and across the entire algorithm.

Number of Rounds R. The number of rounds R in the program de�nes how many

rounds are required. As data transfer and synchronisation take a non trivial amount of

time, we look to minimise this value. This is from SW-GPU.

Time ti. The maximum number of operations across all MPs executed in round i.

This is from both AGPU and SW-GPU. In the case of an if − then− else statement,

all branches of the statement must be counted, as the cores will execute all branches

that any one of the cores enter.

I/O qi. The total number of global memory blocks accessed in the round, by all

MP. This is from both AGPU and SW-GPU. In the case of an if−then−else statement,

all branches of the statement must be counted, as the cores will execute all branches

that any one of the cores enter.

Global Memory Space Used. The number of words stored in global memory for

each round i. If there is di�erence between rounds, then the largest value is taken. If

this is greater than G, the algorithm cannot be run on our model.

Shared Memory Space Used. The maximum number of words stored in shared

memory across all MPs in round i. If there is di�erence between rounds, then the largest

value is taken. If this is greater than M , the algorithm cannot be run on our model.

Data Transfer. We introduce analysis of data transfer to the model. For round i,

let Ii (Oi resp.) be the number of words transferred from the host to device (device to

host resp.) at the start (end resp.) of the round, referred to as inward (outward resp.)

transfer. The total amount of words transferred between the host and device for all

rounds can be measured as:
R∑
i=1

(Ii +Oi).

Cost Functions. The cost function is adapted from the SW-GPU, with modi�ca-

tions of data transfer, operation rate, and a GPU-cost.

Operation Rate γ. The cost for a multiprocessor to execute instructions is rep-

resented by the variable γ. This variable corresponds to the number of instructions

executed by the device in a time-cost unit, hence why the cost function divides by

this, as opposed to multiplying. We see that this corresponds to the clock rate of the

GPU. The operation rate γ can be set to a value corresponding to a particular GPU

for calculating the cost.



Chapter 4. The Abstract Transferring GPU Model 48

Global Memory Access Cost λ. The cost to access a memory block in global memory

is non-trivial; accessing shared memory, when no bank con�icts occur can take 4 cycles,

whereas global memory can take in the region of 400− 800 cycles. We denote by λ this

cost, being the number of cycles to access a global memory block.

Fixed Synchronisation Cost σ. The �xed cost synchronisation tasks that need to

take place, such as resetting the device, de-allocating and reallocating of data structures,

clearing queues, etc. take a non-trivial amount of time. This is represented by σ.

Host Device Data Transfer. Boyer et al. [9] gave a function to determine the time of

data transfer between CPU and GPU. We use this to assign cost to data transfer stages.

Let α represent the initial overhead of a data transfer transaction, β represent the cost

of sending a word, and Îi (Ôi resp.) represent the number of data transfer transaction

of inward (outward resp.) transfer in round i. The function Tii gives the cost of inward

data transfer for round i: Tii = Îiα + Iiβ. Likewise, the function Toi gives the cost

outward data transfer for round i: Toi = Ôiα+ Toiβ.

Cost Function. We say that the cost of an algorithm is upper bounded by Expression

(4.1):
R∑
i=1

(
Tii +

ti + λqi
γ

+ Toi + σ

)
. (4.1)

GPU-Cost Function. Expression (4.1) gives the cost as ran on a �perfect GPU� � a

GPU with su�cient resources to concurrently run every thread block in the algorithm.

This is an impossible machine, with an unlimited amount of memory and multiproces-

sors. Like how the AGPU allows a k multiprocessor machine to simulate w > k MPs,

we can alter the ATGPU cost function so that it simulates a GPU with k′ < k MPs.

Each MP on a GPU can accommodate ` = min(bMm c, H) blocks concurrently, where m

represents the shared memory usage by a GPU program, and H represents a hardware

imposed limit. The GPU cost function is given as shown in Expression (4.2), which

captures the concept of occupancy:

R∑
i=1

(
Tii +

d kk′`eti + λqi

γ
+ Toi + σ

)
. (4.2)

4.4 Evaluation of Our Model

We evaluate our model using several computational problems: vector addition, reduc-

tion, pre�x scan, and matrix multiplication. These algorithms have been well studied
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in the past, and we use our model to focus on the e�ect of data transfer on their actual

running times. We measure the e�ect on overall running time when the data transfer

is included, compared to when the data transfer is not included. We scrutinise the

e�ectiveness of our model in capturing data transfer and providing a more accurate

prediction of overall running time than the SW-GPU, which does not capture data

transfer.

To do this, we examine the trends of the SW-GPU cost function, the ATGPU cost

function, the observed total running time, and the observed kernel running time as the

input size increases. We use the GPU cost function of our model as the ATGPU cost,

and the GPU cost function of our model minus the data transfer as the SW-GPU cost.

Our model can be shown as useful in cases where the rate of growth for the ATGPU

cost function is closer to the actual running time than the SW-GPU cost function.

4.4.1 Vector Addition

For two vectors A = (a1, a2, ..., an), B = (b1, b2, ..., bn), the addition is given as A+B =

(a1 + b1, a2 + b2, ..., an+ bn). We implement a simple GPU kernel that adds two Vectors

of n integers. An element of the answer vector ci is independent, making this an

embarrassingly parallel problem. We assign n threads, with each thread i calculating

the value ci = ai + bi.

ATGPU Analysis. We give pseudocode in Algorithm 2, with analysis on the

ATGPU model below. The for all loop on lines 3-11 is executed once, therefore the

number of rounds is 1. The cores each execute 13 operations with no divergence, so the

parallel time complexity isO(1). Global memory access operations on lines 5,6, and 9 are

coalesced meaning only a single block per instruction is accessed by the multiprocessor.

As there are k multiprocessors, the I/O complexity is O(λk). There are 3n words stored

in global memory, meaning the global memory complexity is O(n). Each core stores

one value in shared memory, so the shared memory complexity is O(b). There are 3

transfer operations of 3n words in total, giving a transfer complexity of O(α+βn). The

cost is O
(
α+ βn+ 1+λk

γ + σ
)
. The GPU-cost is O

(
α+ βn+ k

k′`
1+λk
γ + σ

)
.

We plot the GPU-cost function in Figure 4.3a.

Experimental Setting. We run the Vector Addition kernel on randomly generated

data sets, from n = 1,000,000→ 10,000,000 with results shown in Figure 4.3b.

Discussion. Figure 4.3b shows that the growth of total running time is much

steeper than the kernel running time. Data transfer takes an average of 84% of the

total time, meaning data transfer between CPU and GPU has signi�cantly a�ected



Chapter 4. The Abstract Transferring GPU Model 50

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

1 2 3 4 5 6 7 8 9 10

C
os

t (
x1

06 )

n (x106)

ATGPU
SWGPU

(a) Predicted results.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(m

s)

n (x106)

Total
Kernel

(b) Observed results.

 0

 0.2

 0.4

 0.6

 0.8

 1

1 2 3 4 5 6 7 8 9 10

C
os

t /
 T

im
e

n (x106)

ATGPU
SWGPU

Total
Kernel

(c) Normalised results.

Figure 4.3: Results for vector addition.

the running time of the algorithm. We compare this to Figure 4.3a, where we see

that ATGPU function grows at a much quicker rate than the SW-GPU function. In

Figure 4.3c, we normalise all data on a 0→ 1 scale. We see that the SW-GPU function

has a much slower rate of growth than the total running time, and that the ATGPU

function has a rate of growth which is much closer to the actual total running time.

This means that by capturing the data transfer, the ATGPU is able to better predict

the total running time of this algorithm than the SW-GPU, which does not capture
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Algorithm 2 Vector Addition on ATGPU
Input: Two vectors A,B of length n
Output: C = A+B

1: a W A . Transfer data to Device
2: b W B
3: for all mpi ∈MP [mp0, ...,mpk−1] in parallel do . Start GPU
4: for all ci,j ∈ Cρ in parallel do
5: _a[j]⇐ a[ib+ j]
6: _b[j]⇐ b[ib+ j] . Work in shared memory
7: _c[j]← _a[j] + _b[j] . Output to
8: Global memory
9: c[ib+ j]⇐ _c[j]

. Transfer output to Host
10: C W c

data transfer.

4.4.2 Matrix Multiplication
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Figure 4.4: Results for matrix multiplication.

We now investigate matrix multiplication. For two matrices A,B, we multiply them

into the matrix C. The matrix multiplication AB = C, where A,B are n× n matrices,

is given in Equation 4.3 .



Chapter 4. The Abstract Transferring GPU Model 52

ci,j =
n−1∑
k=0

ai,kbk,j (4.3)

We give ATGPU pseudocode and analysis below. We use a well known GPU method

for matrix multiplication in shared memory (introduced in CUDA Programming Guide

[67]), modi�ed for the single warp per multiprocessor of our model.

Algorithm 3 Matrix Multiplication on ATGPU
Input: Two n× n matrices of integers, A and B.
Output: C = A×B Assert:
W is n rounded to the highest b (padded side length)
T = W

b (num tiles in each dimension)
k = T 2 (each MP calculates a single tile)
x = ρ

T (x coordinate of tile)
y = ρ mod T (y coordinate of tile)

1: _A W A . Transfer input data to Device
2: _B W B
3: for all mpρ ∈MP [mp0, ...,mpk−1] in parallel do
4: for all cρε ∈ Cρ in parallel do
5: for i = 0→ b do . Partial answer must be initialised to 0
6: _c[ib+ ε] = 0

7: for t = 0→ T − 1 do . Calculate a tile at a time
8: for i = 0→ b− 1 do . Copy a b× b block of _A and _B to Shared

Memory
9: _a[ib+ ε]⇐ _A[(x+ i)W + tb+ ε]
10: _b[ib+ ε]⇐ _B[(tb+ i)W + y + ε]

11: for i = 0→ b do . Calculate this part of the solution
12: for j = 0→ b do
13: _c[ib+ ε]← _c[ib+ ε] + (_a[ib+ j] ∗_b[jb+ ε])

14: for i = 0→ b do . Copy _c to _C in Global Memory
15: _C[(x+ i)W + yb+ ε]⇐ _c[ib+ ε]

16: C W _C . Transfer answer data from Device to Host

ATGPU Analysis. The for all loop on lines 3-15 executes only once, meaning the

number of rounds is 1 The loop on lines 7-15 runs for O(T ) = O(nb ) time. The inner

loops on lines 8-10 and 11-13 run for O(b) time, meaning the code inside these loops

run for O(n) time. The loop on line 12 runs O(nb × b × b) = O(nb) time, meaning the

parallel time complexity of the algorithm is O(nb). The I/O complexity for a single

multiprocessor is O(n) (from lines 9 and 10), yet as the number of multiprocessors
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k = O(n2), the I/O complexity of the program is therefore O(λn3). The global memory

used is O(n2). The shared memory used is O(b2). The transfer complexity is O(α+βn2).

The cost is O
(
α+ βn2 + nb+λn3

γ + σ
)
. We plot the GPU-cost in Figure 4.4a.

Experimental Setting. We run the matrix multiplication kernel on randomly

generated square matrices of side length n = {32, 64, ...., 1024}. We plot the observed

results in Figure 4.4b.

Discussion. We can see from Figure 4.4b that there is little di�erence between

the kernel running time and the total running time. This means that the data transfer

does not a�ect the running time of this algorithm, and is a re�ection of the analysis

given on the ATGPU model. This particular application is an example where the

ATGPU model gives analysis that is accurate, though no more useful than the existing

AGPU and SW-GPU models. This is due to where the work of the algorithm is most

heavily weighted; by considering the ATGPU analysis given, it can be seen that the

I/O complexity (global memory access) is the fastest growing of all metrics, which is

also captured by the existing models.

4.4.3 Reduction

The reduction of a n-sized vector A, for some operator ⊕, is calculated as ⊕ni=1ai.

We implement a reduction kernel [33] using the addition operator, to sum an array of n

integers, using a tree-based method. The reduction kernel which we use has two distinct

parts: the local reduction part, and the global reduction part. We implement each part

as a separate kernel, which we describe below and demonstrate in Figures 4.5 and 4.6 .

The local reduction kernel initially creates a number of partial reduction values by

reducing values as if they are arranged in a table, each core of the MP reducing a

single column of data. The result of this is b partial reduction values within the shared

memory of each MP. The kernel then proceeds to use a parallel tree-based method to

reduce the b values to a single value, which is placed into global memory. The kernel

then terminates.

The global reduction kernel is then executed, which uses multiple rounds to execute

successive tree-based reduction kernels upon the contents of the memory, until a single

value remains. This answer is then transferred back to the host.

ATGPU Analysis. The algorithm runs as in the �Reduction� pseudocode, each

round using the output from the previous round as input.

The number of rounds is O(log k), the global memory complexity is O(n), the shared

memory complexity is O(b), the parallel time complexity is O(log k log b), the transfer
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...

0 1 2 3 b− 1

Figure 4.5: Demonstration of Local reduction kernel (green arrows represent threads).

Figure 4.6: Demonstration of Global reduction kernel, where k values from the local
reduction kernel are further reduced (red lines represent synchronisation operations).

complexity is O(α+ βn) and the I/O complexity is O
(
λnb
)
. The cost is:

O

(
α+ βn+

(log k log b) + λ(nb )

γ
+ σ log k

)
.
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Algorithm 4 Reduction on ATGPU
Input: n integers allocated on GPU.
Output: ⊕ni=1A[i]

1: _A W A . Transfer input data
2: for all mpρ ∈MP [mp0, ...,mpk−1] in parallel do . Start GPU Local reduction

3: for all cρε ∈ Cρ in parallel do
4: _ans[ε]← 0 . Initialise Reduction for column
5: for i = 0→ dnp e do . Each core reduces a column of input
6: _ans[ε]← _ans[ε]⊕_A[ρb+ ε+ ip]

7: for i = 0→ log2 b do . Reduce b values using Tree method
8: if ε < b

2i
then

9: _ans[ε]← _ans[ε]⊕_ans[ε+ b
2i

]

10: if ε == 0 then
11: _A[ρ]⇐ _ans[ε] . Place calculated reduction value into Global memory

12: for i = 0→ log2b k do . Start GPU Global reduction
13: for all mpρ ∈MP [mp0, ...,mp(k( 1

2b
)i)− 1] in parallel do

14: for all cρε ∈ Cρ in parallel do
15: _ans[ε]⇐ _A[ρ2b+ ε]⊕_T [ρ2b+ b+ ε]
16: for j = 0→ blog2 bc do
17: if ε < b

2j
then

18: _ans[ε]← _ans[ε]⊕_ans[ε+ b
2j

]

19: if ε == 0 then
20: _A[ρ]⇐ _ans[ε]

21: Ans W _A[0] . Transfer answer

The GPU-cost is:

O

(
α+ βn+

(d n
bk′`e log k log b+ λ(nb )

γ
+ σ log k

)
.

We plot the GPU cost in Figure 4.7a.

Experimental Setting. We run the reduction kernel on randomly generated vec-

tors of 0/1 values, being sizes n = {216, 217, ..., 226}. This range of input sizes was chosen
to create a large enough amount of data transfer and computation so that the di�er-

ences in run time can be reliably observed, whilst not exhausting the GPU resources.

We plot the observed results in Figure 4.7b.
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Discussion. Figure 4.7b shows that the growth of total running time is steeper than

the kernel running time,though there is not as stark a di�erence as in vector addition.

On average, the data transfer takes 35% of the total running time. We compare this

to Figure 4.7a, where we see that ATGPU function grows at a quicker rate than the

SWGPU function. We see in Figure 4.7c that the ATGPU function has a rate of growth

closer than the SWGPU function to the actual total running time. Therefore, as in the

vector addition example, capturing the data transfer gives a more accurate prediction

of the actual running time.
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Figure 4.7: Results for reduction.
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Table 4.2: Comparison of asymptotic complexity of various components for the ATGPU
analysis of several algorithms.

Component Vector Addition
(Algorithm 2)

Matrix Multiplica-
tion (Algorithm 3)

Reduction (Algo-
rithm 4)

Parallel Time Com-
plexity

O(1) O(nb) O(log k log b)

I/O Complexity O(λk) O(λn3) O(λnb )

Transfer Complexity O(α+ βn) O(α+ βn2) O(α+ βn)

Dominant Function Transfer Complexity I/O Complexity Transfer Complexity

4.4.4 Summary

We now give a summary of the experimental results which evaluate the ATGPU model.

We do this by considering the ATGPU cost functions in �ner detail, and analysing how

each component contributes to the trend of observed running time. We also demonstrate

the accuracy of our model by comparing the proportion of time taken for the GPU CPU

data transfer with that which was predicted using the ATGPU cost function.

In the computational problems studied, we see that for vector addition and reduc-

tion, it is not su�cient to simply capture the kernel execution for predicting the actual

running time. We show that by capturing the data transfer in addition to the kernel,

it is possible to obtain a trend that is much closer to the actual running time, than if

the data transfer was not captured. We also show a case where our model useful in

predicting the trend of running time, yet proves to be no more useful than the existing

models; in matrix multiplication, there is little di�erence between the kernel and total

running times, so the kernel can provide an accurate prediction of the total running

time in this case.

When we consider the ATGPU cost function analyses for these problems in more

detail, we can see that in each case, the dominating complexity metric (Transfer com-

plexity, I/O complexity, Time complexity) dictates whether or not the data transfer

between CPU and GPU has a signi�cant e�ect upon the true running time of the GPU

program. This is demonstrated in Table 4.2.

The ability to distinguish a computational problem as transfer bound is a new ca-

pability that distinguishes the ATGPU from the existing models, and allows algorithm

designers to further focus their e�ort on optimising particular parts of their code. The

ability to compare the trend of the data transfer against that of time and I/O is also

important in cases where the trends of all metrics are similar, distinguished only by

the parameters related to transfer operations and memory access costs. In cases like

this, the data transfer between CPU and GPU would be dominant because the values
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of α and β (memory transaction staging cost and transfer cost for a single word) are

typically much larger than the cost associated with accessing a global memory block

(λ). The ATGPU model is therefore able to distinguish between these cases (this is

demonstrated in Chapter 5), where existing models can not.

To demonstrate the accuracy of our model, we have also calculated the relative

proportions of time/cost allocated to data transfer, and we see that our model has a

good level of accuracy, as seen in Figure 4.8. We see that the predicted proportions of

cost allocated to data transfer are on average to within 1.5% of observed proportions

for vector addition, to within an average of 0.76% for matrix multiplication, and to

within an average of 5.49% for reduction. We also calculate that the SWGPU captures

on average only 16% of the actual running time for the vector addition example, and

only 58% of actual running time for the reduction example, with 89% of the actual time

being captured in the matrix multiplication example.

4.5 Conclusion

In this chapter, we introduce a model called Abstract Transferring GPU (ATGPU), ap-

plicable to design and analysis of GPU algorithms. The model is an extension of existing

abstract models. ATGPU is, to our knowledge, the �rst GPU abstract model contain-

ing data transfer between host and device as an integral part. The model contains an

architecture, a pseudocode and cost functions, allowing an algorithm to be analysed on

a �perfect GPU" and simulated on a real GPU. We show via experiments that existing

models cannot su�ciently capture all of the actual running time of a GPU algorithm in

all cases, as they do not capture data transfer. We show that by capturing data transfer

with our model, we are able to obtain more accurate predictions of the GPU algorithm

actual running time. We demonstrate two cases where capturing both the kernel and

data transfer in our model is useful for better predicting the actual running time, and

one case where capturing only the kernel running time is su�cient.
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Chapter 5

Semi-global Sequence Alignment

with Gaps with GPU

5.1 Introduction

In this chapter we consider the pair-wise semiglobal sequence alignment problem with

gaps,which is motivated by the re-sequencing problem that requires assembly short read

sequences into a genome sequence by referring to a reference sequence. The problem has

been studied before for single gap and bounded number of gaps. For single gap, there is a

GPU-based algorithm proposed [5]. In this chapter we propose a GPU-based algorithm

for the bounded number of gaps case, called GPUGapsMis. We implement the algorithm

and compare the performance with the CPU-based algorithm, called CPUGapsMis; The

algorithm has two distinct stages: the alignment phase, and the backtrack phase. We

investigate several di�erent approaches, in order to determine the most favourable for

this problem, by means of a Hybrid model or a wholly-GPU based model, as well as

the alignment of single text sequences or multiple text sequences on the GPU at a

time. We show that the alignment phase of the algorithm is a good candidate for

parallelisation, with peak speed up of 11 times achieved on our system. We show that

although the backtracking phase is sequential, it is more bene�cial to perform it on the

GPU, as opposed to returning to the CPU and performing the operation there. When

performing both phases on the GPU, GPUGapsMis achieves a peak speed up of 10.4

times on our system against CPUGapsMis. Our data parallel GPU algorithm achieves

results which are an improvement on those reported by an existing GPU data parallel

implementation [68]. Further to this, we give analysis on both the AGPU model and

the ATGPU model, showing that the ATGPU model is able to more accurately predict

60
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the best performing GPU approach, thanks to the ability to capture data transfer.

Organisation of Chapter

This chapter is organised as follows: Section 5.2 provides the notations required and the

problem de�nition; Section 5.3 details our proposed solution; Sections 5.4 and 5.6 detail

experimental evaluation and discuss the results obtained; Finally, Section 5.7 concludes

the chapter.

5.2 Problem De�nition and Preliminaries

5.2.1 Problem De�nition

Given the preliminary discussion in Section 3.2.1, we are ready to de�ne the pair-wise

sequence alignment with bounded number of gaps problem.

De�nition 1. Given a text T of length n, a pattern X of length m < n, and an inte-

ger z > 0, the problem is to �nd all pre�xes T ′ of T where the corresponding alignment

of T ′ and X in the form z0g0z1g1...zα−1gα−1zα satis�es the property that α ≤ z and the

score is the maximum.

We are required to �nd the pre�xes of text T which satisfy the properties described,

because we use the seed and extend strategy [3] for alignment, whereby a high quality

alignment seed (at the start of the sequences) is matched, and the alignment is then

extended. This involves aligning pre�xes of the text T with the entirety of the pattern

X, known as a semi-global alignment. This is as opposed to a global alignment, which

aligns the entirety of T andX, and opposed to a local alignment, which aligns substrings

of both T and X.

5.2.2 Dynamic Programming Algorithm

Adapting the dynamic programming algorithm in [5] to allow general score function, our

algorithm is based on the following dynamic programming framework. We keep a matrix

Gq[i, j], which stores the maximum alignment score between the pre�xes t1t2 · · · ti of
the text T and x1x2 · · ·xj of the pattern X, allowing up to q gaps, where 0 ≤ q ≤ z. We

assume that the gap extension penalty is the same regardless of which letter is aligned

with the gap character, i.e., there exists a constant δE such that δ(x, ∗) = δ(∗, x) = δE

for all x ∈ Σ.
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Note that the restriction on the number of gaps can be observed by calculating the

matrix up to Gz.

G0[i, j] =

G0[i− 1, j − 1] + δ(ti, xj) if i == j

−∞ otherwise

Gq[i, j] = max



δO +
j−2∑
l=0

δ(∗, xl) if i == 0

δO +
i−2∑
l=0

δ(tl, ∗) if j == 0

j−i
max
r=1

(Gq−1[i, j − r] + δO +
j∑

l=j−r+2

δ(∗, xl))

if i < j

i−j
max
r=1

(Gq−1[i− r, j] + δO +
i∑

l=i−r+2

δ(tl, ∗))

if i > j

Gq[i− 1, j − 1] + δ(ti, xj) otherwise

A naïve implementation of the dynamic programming recurrences could result in

an algorithm of O(znm(n + m)) time, yet it was demonstrated in [5] that storing the

information of the gap insertion points (the value of r which maximises the scores on

lines 3 and 4 of the recurrence) would make the look-up possible in O(1) time, giving

an improved time complexity of O(znm).

We keep a matrix Hq which stores information on gap length and placement (at

which position and in which sequence does the gap occur), for the alignment up to

and including the pair (ti, xj) which includes at most q gap sequences, for 0 ≤ q ≤ z.

The cells are populated as shown in the recurrence, with Hq[i, j] being populated after

Gq[i, j] has been calculated.

Hq[i, j] =


0 (ti, xj) in alignment

r > 0 (ti, ∗) in alignment, gap of r

r < 0 (∗, xj) in alignment, gap of r

The alignment is retrieved using the linear time algorithm GapsPos [5]. Starting

from the position of the alignment score reported by GapsMis, the alignment is built

backwards, moving towards the start of the sequences. The value within each cell of Hq

dictates how the row and column indices are adjusted; either both are decremented by
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Gq-1 Gq

Figure 5.1: The dependencies whilst calculating cell Gq[i, j] (hatched) are shown in
solid �lled cells.

Gq-1 Gq

Figure 5.2: The dependencies whilst calculating the row Gq[i, ∗] (hatched) are shown
in solid �lled cells.

one in the case of no gap, or the column index (row index) is decreased by the absolute

value of the cell to give a gap in the pattern (text).

5.3 Our Solution

In the following section we describe GPUGapsMis, our solution to the semi-global se-

quence alignment with bounded gaps problem. We also give theoretical analysis of

the proposed solution on the AGPU model in Section 5.3.2 and the ATGPU model in

Section 5.5.

5.3.1 Idea of Parallelisation

As the recurrence in Section 5.2.2 shows, the dependencies for the cell Gq[i, j] lie within

the cell Gq[i − 1−, j − 1] and the range of cells Gq−1[0...i, 0...j], where 0 < q ≤ z.

Therefore as shown in Figures 5.1 and 5.2, we are able to express parallelism along each

row of the dynamic programming matrix in order to create a data-parallel solution. As

the dependencies required for calculating cells within Gq all lie either in Gq or Gq−1,

we only require the current and previous one G matrix for computation to be stored.

We keep the following data in the global memory: text sequence data, pattern

sequence data, score data and matrices Gq, Gq−1, H data for each sequence pair being
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aligned. Pointers kept in private memory, which point to Gq and Gq−1 in global memory,

are updated at each iteration of the number of gaps calculated, and the H matrix is

only used on the �nal iteration, as for q gaps, only the data in Hq is required when

computing the optimal alignment.

The shared memory space contains the pattern data, the text character for cur-

rent matrix row i, and the bu�ers required for our aggressive double bu�er tech-

nique. This double bu�er technique is laid out as follows: currRow, prevRow hold

rows i, i − 1 of Gq, prevGprevRow, prevGcurrRow hold rows i, i − 1 of Gq−1, along

with maxIV al, maxILoc, maxJV al, maxJLoc hold the information relating to opti-

mal gap insertion points from Gq−1. As with the global memory pointers, currRow,

prevRow,prevGprevRow, prevGcurrRow are updated at each row iteration, and �lled

with any required data. The double bu�er technique allows us to re-use the same two

allocated memory locations for any number of gaps when solving the sequence align-

ment problem. It not only allows us to reliably calculate the memory footprint, but

enables the GPU to be used for aligning with any number of gaps. If the double bu�er

technique was not used, then the memory footprint would become very large for even

small numbers of gaps, meaning the GPU resources would be exhausted and therefore

unable to be used. In order to maximise use of global memory access bandwidth, we

need to use vectorised memory access operations. In order for vectorised memory ac-

cesses to be made possible, we pad with dummy data the shared memory row caches,

the patterns, and the matrix rows.

We now explain the intuition behind the parallelisation for a single sequence pair,

executed by a single thread block on the GPU. This is repeated for additional sequence

pairs in a separate thread block per sequence pair. Initially, the pattern sequence is

fetched from global memory into the shared memory. We calculate matrix G0 followed

by G1, G2, ..., Gz, Hz, for up to z gaps. Each matrix is calculated in a row-wise, data

parallel fashion, with parallelism being expressed along each row. As each matrix is

being calculated, the row number is iterated, and the number of gaps is iterated.

To calculate a row of Gq, we fetch the text character from the global memory, and

the relevant gap insertion data relating to Gq−1 . We then initialise the �rst cell of the

row, and proceed to iterate across the row for all threads in a tiling fashion. The data

required for the calculation is held in shared memory. At the end of row calculation,

we copy the values to global memory and retain in shared memory for the next row,

discarding the previous row. At the end of a matrix calculation, the pointers to the

current G matrix and previous G matrix are updated, so we are using a double bu�er

approach on several levels.
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For a number of gaps 0 < q ≤ z, we calculate the matrices Gq (Hq) in the following

way, which is explained visually in Figure 5.3:

• Initialise the �rst row (Gq[0, ∗]) by storing the values into shared memory previousRow, hRow,

with each warp of the block taking a tile.

• Store data of previousRow, hRow in global memory.

• Fetch data of Gq−1[0, ∗] from global memory into shared memory prevGprevRow,

in preparation for calculating the subsequent rows of Gq

• Loop for each row 1 ≤ i ≤ n

a. Fetch Gq−1[i, ∗] into shared memory prevGcurrRow.

b. Calculate the best gap insertion point into the pattern, for each position

0 ≤ j ≤ m, in O(logm) time. We use a tree-based method for �nding

the maximal gap insertion point from prevGprevRow. The maximal gap

insertion point for Gq[i, j] exists in the range Gq−1[i, 0, ..., j − 1]. We are

able to calculate the maximal insertion points for an entire row in the same

routine. We calculate, for each position 0 < j < m the alignment score

and location of the best point, up to but not including j itself. We modify

a parallel pre�x scan algorithm to use the max operator as opposed to the

summation operator to calculate this.

c. Update the gap insertion points into the text, if this is required, by comparing

maxIV al, maxILoc, prevGprevRow.

d. Compare values in shared memory, for the three options of alignment: con-

tinue the current alignment (prevRow), insert gap in text (maxIV al,maxILoc),

or insert gap in pattern (maxJV al,maxJLoc). Place optimal value into

currRow and relevant gap value into hRow. Now place currRow, hRow

into Global Memory.

e. Update the pointers of (prevGcurrRow, prevGprevRow) (prevRow, currRow)

in preparation for calculating row i+ 1

The algorithmGapsPos calculates the optimal alignment path for the two sequences,

which we refer to as backtracking. GapsPos is performed sequentially using a single

thread.

Di�erence from existing data-parallel implementation. Ojiaku [68] proposed

a data-parallel solution to this problem, reporting experimental results of a 5 times speed
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Figure 5.3: Idea of parallelisation for GapsMis. (a) Best gap insertion points in pattern
are found. (b) Best gap insertion points in text are updated, if needed (c) Best score is
calculated, and placed into global memory.

up against a single thread of the CPU. We evaluate GPUGapsMis using a similar envi-

ronment as that used in [68]. Our solution di�ers in that we reduce the amount of

host device communication by running for all z gaps in a single kernel run, therefore

not requiring any global synchronisation or data transfer between subsequent gap num-

bers. We also use a parallel tree-based method for �nding the optimal gap insertion

point, where as [68] uses a sequential method. Further to this, we investigate several

approaches to calculating the backtracking, by performing this on the GPU. This is

opposed to calculating the backtracking on the CPU only, as in [68].

5.3.2 AGPU Analysis

We now give analysis of GPUGapsMis using the AGPU model [39] which has been dis-

cussed in Chapter 2. We present AGPU Pseudocode in Algorithm 5 for GPUGapsMis

aligning one sequence pair on a single multiprocessor. This is replicated for all qr

sequence pairs in the input set (hence the qr multiprocessors), with Algorithm 5 corre-

sponding to code run by a single CUDA thread block. Theoretical results are presented

in Theorem 1.

Let CORE[1, ..., b] be the set of cores within each multiprocessor, T = T1, T2, ..., Tq

be the set of texts - each of length n, X = X1, X2, ..., Xr be the set of patterns - each of
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length m, where n ≥ m, z > 0 be max number of gaps, δO be the gap opening penalty,

and δE be the gap extension penalty.

Theorem 1. The performance of GPUGapsMis on the AGPU model satis�es the follow-

ing properties.

(i) The time complexity is O(znmb ).

(ii) The I/O complexity is O(zqrnmb ).

(iii) The global memory usage is O(qrnm).

(iv) The shared memory usage is O(m).

Proof. We now give a proof of the claims in Theorem 1, with line references to Algo-

rithm 5.

(i) We see that the �Gaps" loop (lines 5-42) iterates z times in total with an addi-

tional procedure for initialising G0. We see that the �row" loop (lines 15-41) is iterated

n times in total, for all matrices G0 → Gz. When we examine the contents of the

�row" loop, we see that there are several smaller loops each with O(mb ) iterations,

and the procedure of �nding the best gap insertion point takes time O(logm). The

variable b corresponds to the number of cores present in the AGPU multiprocessor, is

dictated by the architecture in use, and is typically much smaller than m. Therefore

O(mb ) ≥ O(logm), meaning the �row" loop interior is O(mb ).

Thus, a single multiprocessor executes in O(znmb ) time.

(ii) We see that a multiprocessor accesses the entire pattern, meaning m
b blocks

are accessed. Further, for each individual row, we see that there are 4mb + 1 blocks of

global memory accessed (for the text character, for fetching prevGCurrRow, for storing

currRow and for storing hRow). Therefore, we see that each multiprocessor accesses

zn4mb + zn blocks of global memory. Across the entire algorithm aligning qr sequence

pairs, qrzn4mb + qrzn = O(qrznmb ) global memory blocks are accessed.

(iii) We see that for a multiprocessor aligning a sequence pair, the amount of global

memory used is 2(n+ 1)(m+ 1) for the two G matrices, plus n integers for the text and

m integers for the pattern, therefore for qr multiprocessors aligning qr sequence pairs,

the amount of global memory used is O(qrnm).

(iv) We see that for the shared memory data structures, no index over the value of

m is ever read or written in any multiprocessor, this makes the complexity of shared

memory used to be O(m).
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Algorithm 5 GPUGapsMison AGPU
1: for all MPρ ∈MP [0, ..., qr − 1] do in parallel

2: for all coreε ∈ CORE[0, ..., b− 1] do in parallel

3: Initialise G0 matrix into previousG
4: // Calculate G Matrices for up to z gaps
5: for q = 1→ z do

6: // Initialise row 0 of Gq
7: if ε == 0 then

8: prevRow[0]← 0

9: for j = {ε+ 1, b+ ε+ 1, b+ ε+ 1, .....} ≤ m do

10: prevRow[j]← δE(j − 1) + δO

11: // Place prevRow into currG
12: for j = {ε+ 1, b+ ε+ 1, 2b+ ε+ 1, .....} ≤ m do

13: currG[j]⇐ prevRow[j]

14: // Calculate each row i of Matrix q
15: for i = 1→ n+ 1 do

16: t⇐ t[i] //Get Text Char
17: // Fetch PrevGCurrRow
18: for j = {ε+ 1, b+ ε+ 1, 2b+ ε+ 1, .....} ≤ m do

19: prevGcurrRow[j]⇐ prevG[i, j]

20: // Calculate MaxILoc and MaxIVal from PrevGPrevRow
21: for j = {ε+ 1, b+ ε+ 1, 2b+ ε+ 1, ...} ≤ m do

22: p[ε]← (i−maxILoc[j]− 1) ∗ δE
23: if maxIV al[j] + p[ε] < prevGprevRow[j] then
24: maxIV al[j]← prevGprevRow[j]
25: maxILoc[j]← i− 1

26: // Calculate MaxJLoc and MaxJVal from PrevGCurrRow
27: for j = {ε+ 1, b+ ε+ 1, 2b+ ε+ 1, .....} ≤ m do

28: maxJLoc[j]← j
29: maxJV al[j]← prevGcurrRow[j]

30: Use Tree based method to calculate the Max values
31: // Now calculate the Values to place into the cells
32: Initialise cell Gq [i, 0]
33: if ε == 0 then

34: currRow[0]← ((i− 1) ∗ δE) + δO

35: for j = {ε, b+ ε, 2b+ ε, .....} ≤ m do

36: Look in prevRow[j − 1] to continue alignment
37: Look in maxJV al for Gap in Pattern, applying penalty
38: Look in maxIV al Gap in Text, applying penalty
39: Place max in currRow[j]
40: Calculate hRow[j]

41: Copy currRow to currentG[i, ∗], hRow to H[i, ∗]
42: Update currRow and prevRow pointers
43: Update prevGprevRow and prevGcurrRow pointers

44: Update currentG and previousG pointers

45: end parallel for

46: end parallel for

47: Report alignment score: max0≤γ≤nGz [γ,m]
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5.4 Experimental Setting

Sequence alignment tools are typically used to search databases of known sequences, in

order to �nd the best match for a query sequence, or set of query sequences.

Multiple Pairwise Sequence Alignment. In order to simulate a database search

for the most optimal alignment for a set of query sequences, we align a set of query

(pattern) sequences with a set of target (text) sequences.

Let T = T1T2, ..., Tq be the set of text sequences, and X = X1, X2, ..., Xr be the

set of pattern sequences. We want to simulate searching in a database for the text

sequence which gives the best alignment score for each individual pattern sequence. Let

S = s1, s2, ..., sqr be the set of sequence pairs, that is S = T × X . For each si ∈ S,
we solve the Semiglobal Sequence alignment with a bounded number of gaps problem,

with either GPUGapsMis or CPUGapsMis - a sequential implementation of GapsMis on a

single CPU thread.

Input Data. The sequence data used is taken from the NCBI DNA sequence

database GenBank [64]. From the database, we choose from a selection of genomic

data, namely e.coli and Ralstonia solancearum. We randomly select sequences from the

database and further process each sequence by randomly removing some bases such that

the length of the sequence becomes the length of the speci�c experiment sequence pair.

This process produces synthetic data, yet since it is taken from real data, it is more

realistic than that which is randomly generated (it is much more di�cult to generate

accurate and realistic patterns). The synthetic data used will give a good view of the

performance of GPUGapsMis with real sequence data, as all data is treated identically

by the algorithm.

For our experiments, we consider di�erent input sets of text sequences and pattern

sequences and for each set of sequences, we measure the performance of aligning all

the sequence pairs in the set. E.g., for an input set of q text sequences and r pattern

sequences, we align all q × r sequence pairs.
The sequences are stored in text �les containing one sequence per line. There are

eight input �les for text sequences; each �le contains 16, 32, 64, ..., 2048 sequences, and

each text sequence is 250bp in length. There are four input �les for pattern sequences;

the length of pattern sequences in each �le is 50, 100, 150, 200 bp, and each pattern �le

contains 100 pattern sequences. Each input set is formed by taking one text sequence

�le and one pattern sequence �le.

Approaches. For evaluating the most e�ective way to use the GPU device as a
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co-processor for GPUGapsMis, we use several approaches detailed below, summarised in

Table 5.1. We run control experiments with two versions of CPUGapsMis; CPU-A com-

putes the alignment scores only, and CPU-B computes the alignment with backtracking.

There are in total six distinct approaches used in experiments with GPUGapsMis.

The approaches for GPUGapsMis consist of a batching method and, where appropriate,

a backtracking method. GPU-A computes the alignment scores only. Two approaches

are considered for the batching method used when computing the alignment; single

text batching method denoted by -S, and multiple text batching method denoted by -M.

There are two approaches considered when we compute backtracking: GPU-B computes

alignment with backtracking entirely on the GPU (we refer to this as the GPU back-

tracking method), and GPU-H computes the alignment scores on the GPU and computes

backtracking on the CPU (we refer to this as the Hybrid backtracking method).

Single Text Batching Method. In the single text batching method, single text

sequence is sent to the GPU, along with all pattern sequences. It is then aligned with all

pattern sequences, before the next text is sent to the GPU for alignment with all pattern

sequences. More precisely, the text data for Ti ∈ T is sent to the GPU, along with all

pattern data. The kernel is run, and any output data is returned to the host. This is

repeated for subsequent text sequences, meaning sequence data requires O(qrm) words

transferred to the GPU, and O(rm) space allocated on the GPU. Single text batching

method is denoted by (s) against the algorithm name.

Multiple Text Batching Method. In the multiple text batching method, we

send multiple text sequences, along with all pattern sequences to the GPU, then allocate

space in the GPU memory for ` sequence pairs to be aligned. The sequence data requires

O(qn+rm) words transferring to the GPU and O(qn+rm) space allocated on the GPU.

The qr alignment tasks required for aligning all sequence pairs in S are executed in d qr` e
batches to ensure enough global memory is available to store the required matrices. The

kernel is run for each batch, returning any output data to the host.

GPU Backtracking Method. In the GPU backtracking method, the backtracking

algorithm GapsPos is performed on the GPU inside the same Kernel as the alignment

scores calculation, by a single thread. The calculated data of sizeO(qrz) is then returned

to the host.

Hybrid Backtracking Method. In the hybrid backtracking method, the align-

ment score calculation is performed on the GPU. The backtracking H matrices of size

O(qrnm) are returned to the host asynchronously at the end of the kernel execution for

each thread block, and GapsPos is performed on the CPU.
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Table 5.1: Summary of approaches.

Batching Backtracking

CPU-A - -
CPU-B - On CPU
GPU-S-A Single Text -
GPU-M-A Multiple Text -
GPU-S-H Single Text Hybrid
GPU-M-H Multiple Text Hybrid
GPU-S-B Single Text GPU
GPU-M-B Multiple Text GPU

Veri�cation of Correctness. Testing was carried out, whereby output matrices

were compared between the CPU and GPU in order to verify the correctness of the

calculations. This veri�cation was done using 16 text sequences of length 250bp and

100 pattern sequences of each available length.

Performance Measurement. To evaluate the performance, we compare three

measurements. Latency is measured as the total time taken. Throughput is a measure

of how fast the data matrices are �lled and is measured in Mega Cell Updates per

Second (MCUPS), that is how many millions of cell updates per second occur. Precise

throughput is calculated by dividing the total number of cells of G and H matrices to be

updated in the entire execution, by the time taken to compute them. Improvement ratio

is calculated as CPULatency
GPULatency , yet as this compares the performance of CPUGapsMis and

GPUGapsMis, it could be calculated using throughput to obtain identical values. If this

improvement ratio value is greater than 1, then GPUGapsMis has yielded an improvement

against CPUGapsMis.

5.5 ATGPU Analysis of Di�erent Approaches

In Section 5.3.2, we used the AGPU model to give theoretical analysis of GPUGapsMis.

We highlighted in Chapter 2, and demonstrated in Chapter 4 that existing GPU ab-

stract models do not capture everything that is required to give a fully accurate analysis

of GPU computation; between the AGPU and the SW-GPU, none measured the data

transfer between the CPU and GPU. Therefore, we now extend the existing AGPU

analysis from Section 5.3.2 by analysing GPU-S-A and GPU-M-A on our ATGPU model,

which we introduced in Chapter 4, comparing the resulting cost function for each ap-

proach. We analyse these two particular approaches as both contain only GPU execu-
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tion, meaning we can fully analyse them using the ATGPU model. It is currently not

possible to analyse CPU execution using the ATGPU model, therefore we are unable

to fully analyse approaches that perform signi�cant work on the CPU.

We note that both approaches perform a similar amount of work on the GPU (they

align the same amount of sequence pairs) yet have di�ering data transfer requirements

between the CPU and GPU. It is expected that there is a di�erence shown between

the two approaches, which would lead a developer to the decision of which approach

is best to use. It is also hoped that this di�erence would either not be evident, or be

less evident, in the SW − GPU cost function i.e. the ATGPU cost function without

the data transfer, as in Chapter 4. For the analysis, we assume that all data that is

required can �t onto the GPU memory.

GPU-S-A The approach of GPU-S-A has q rounds, and on each round, must transfer a

single text (n words) and all pattern data (rm words ), followed by the score data (r

words) at the end of the round. Therefore, for each of the q rounds, the data transfer

cost results to: 3α+ β(n+ r + rm).

By taking elements of the AGPU analysis from Section 5.3.2, the resulting cost

function for GPU-S-A is given in Expression 5.1, where α is the ATGPU cost to stage

a Host Device memory transaction, β is the cost of transferring a single word to the

device, b is the number of cores on each multiprocessor of the device, λ is the cost

for accessing a block of global memory on the device ,γ is the operation rate (i.e. the

number of operations completed per time-cost unit), and σ is the cost for synchronisation

operations at the end of a computation round.

O

(
αq + β(qrm) +

qznmb + λ(zqrmb )

γ
+ σq

)
(5.1)

GPU-M-A Conversely, the approach of GPU-M-A has a single round, in which it transfers

all text data (qn words), all pattern data (rm words) and the score data (qr words).

Therefore the data transfer cost for this single round is 3α + β(qn + rm + qr) . By

taking elements of the AGPU analysis from Section 5.3.2, the resulting cost function for

GPU-M-A is given in Expression 5.2, where α is the ATGPU cost to stage a Host Device

memory transaction, β is the cost of transferring a single word to the device, b is the

number of cores on each multiprocessor of the device, λ is the cost for accessing a block

of global memory on the device ,γ is the operation rate (i.e. the number of operations

completed per time-cost unit), and σ is the cost for synchronisation operations at the

end of a computation round.
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O

(
α+ β(qn+ rm+ qr) +

qznmb + λ(zqrmb )

γ
+ σ

)
(5.2)

Discussion From our analysis using the ATGPU cost functions, we can see that

both approaches have the same amount of computation and global memory access,

both growing in a linear fashion, yet the GPU-S-A approach has a greater amount of

synchronisation and data transfer by a factor of q, when compared to the GPU-M-A

approach. We therefore expect to see in our experimental results, that the GPU-M-A

approach outperforms the GPU-S-A approach and that both approaches have a linear

trend in running time.

If we were to compare the two cost functions without the data transfer (so as to

simulate the SW-GPU), then we would still see that the GPU-M-A approach is better

performing, due to the lower amount of synchronisation that is required, however the

synchronisation cost is negligible when compared to data transfer.

We discuss this particular hypothesis with regards to experimental results in Sec-

tion 5.6.2.

5.6 Results

In this section, we present and discuss results from experiments carried out as described

in Section 5.4. Following from the AGPU analysis in Section 5.3.2, and the we expect

that the latency of GPUGapsMis is lower than CPUGapsMis, that latency increases lin-

early as input size increases, and that the improvement ratio of GPUGapsMis against

CPUGapsMis decreases as the pattern length increases, because the amount of shared

memory used corresponds with the pattern length, thereby a�ecting the occupancy

level on the GPU.

We look to evaluate the performance change of GPUGapsMis as the input size in-

creases, and to validate the AGPU analysis given in Section 5.3.2. We carry out all

experiments described in Section 5.4, with all results presented in the supplementary

material. In order to look closely at the trends, we focus in this section discussion on two

settings: (i) increasing number of sequence pairs with pattern length �xed at 200bps;

and (ii) increasing pattern length with number of sequence pairs �xed at 204800. Both

settings investigate the e�ect of increasing data size. The results presented here appear

in Tables in Appendix Chapter B as either the �nal rows, or the bottom-right sub ta-

bles. These results are representative of all other experiment results obtained. We also

compare the performance of GPUGapsMis against the algorithm presented in [68].
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Each �gure in this section is made up of three sub�gures; (a) latency results; (b)

calculated throughput; (c) calculated improvement ratio.

5.6.1 Single Text Batching Method Results

First, we investigate results achieved by GPUGapsMis using the single text batching

approach. We begin by discussing results obtained computing the alignment scores

only, including comparison of our results against those obtained by the existing work

in [68]. We then proceed to discuss the results obtained by computing alignment scores

together with backtracking, before giving a summary of results obtained.

Alignment Scores Only

Results. Figures 5.4 and 5.5 show that the latency of CPU-A (black solid curve) and

GPU-S-A (red dotted curve) increase linearly with the increase in size of input data.

GPU-S-A has smaller latency than CPU-A in all cases and therefore outperforms CPU-A

in all cases.The rate of increase in latency is 7.3 higher for CPU-A than for GPU-S-A.

This agrees with the AGPU analysis given in Section 5.3.2.

Figure 5.4 shows that the throughput of CPU-A stays constant while the improvement

ratio and the throughput of GPU-S-A decrease as the pattern length increases. The

throughput drops from 86.3 MCUPS at pattern length 50, to 74.5 MCUPS at pattern

length 200, with improvement dropping from 8.4 to 7.3 times. Figure 5.5 shows that

for increasing number of sequence pairs, the throughput (around 74 MCUPS) and the

improvement ratio (around 7.6) of GPU-S-A remain stable.

Discussion. We see that the throughput and improvement ratio of GPU-S-A relative

to CPU-A is sensitive to increasing pattern length, yet not sensitive to increasing number

of sequence pairs to align. These performance metrics are less stable for increase in

pattern length because shared memory use increases with pattern length, lowering the

occupancy rate. This means less warps are available for hiding the latency of global

memory access operations. In turn, input sets will take longer to process as the number

of sequence pair alignment tasks concurrently run on the SM is decreased.

Comparison against existing work. The blue dotted curve in Figures 5.4 and 5.5

show the performance of the algorithm proposed in [68], GPU-O. We see that for some

smaller pattern lengths, there is no improvement achieved, however as the pattern

length is increased, we see that the performance level of GPU-O drops. GPU-S-A is less

sensitive to increase in pattern length and for pattern lengths 150 or greater, GPU-S-A
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Figure 5.4: Result for GPU-S-A and GPU-O, for input sets containing 204800 sequence
pairs.

out performs GPU-O. Figure 5.4a shows the trend of GPU-S-A latency is the less steep

of all. At its peak, GPU-S-A achieves throughput 23MCUPS higher than GPU-O, and a

greater speed up of 7.59 against 5.29 of GPU-O.
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Figure 5.5: Result for GPU-S-A and GPU-O, for input sets containing patterns of length
200.

Alignment Scores with Backtracking

Results. Figures 5.6 and 5.7 show that when backtracking is also calculated, similar

trends occur.

When we compare GPU-B and GPU-H, we see that the GPU backtracking approach

(GPU-B) always outperforms the hybrid backtracking approach (GPU-H). In more details,

Figure 5.6 shows when the pattern length increases, GPU-H achieves an improvement
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ratio of about 3.1 times while GPU-B achieves 7.0-7.8 times. With increasing number

of sequence pairs, Figure 5.7 shows the improvement ratios of GPU-H and GPU-B are 3.1

times and 7.2 times, respectively.
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Figure 5.6: Result for GPU-S-B and GPU-S-H, for input sets containing 204800 sequence
pairs.

Discussion. We note that when backtracking is included, the throughput achieved

is higher; see GPU-S-A vs GPU-S-B in Figures 5.5b and 5.7b and CPU-A vs CPU-B in

Figures 5.4b and 5.6b. This is because the additional requirement to populate the H
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Figure 5.7: Result for GPU-S-B and GPU-S-H, for input sets containing patterns of
length 200.

matrices require less work per cell than when populating the G matrices. Each row

of the G matrices requires O(logm) computation by the multiprocessor, yet only O(1)

additional computation is required to calculate the values for each row of theH matrices.

The improvement ratio achieved by GPU-S-B was slightly lower than GPU-S-A, as

shown in Figure 5.8. The backtracking algorithm GapsPos is a serial computation

which has not been parallelised, and is not e�cient on the GPU. Therefore it is faster

on the CPU than on the GPU, giving rise to the lower improvement ratio exhibited by
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Figure 5.8: Comparison of improvement ratio between GPU-S-A and GPU-S-B.

GPU-S-B compared to GPU-S-A.

Figures 5.6 and 5.7 show that GPU-S-H achieved lower throughput than all other

GPUGapsMis approaches, and exhibit lower sensitivity to increasing pattern length. The

reason for this is the higher amount of data transfer between the CPU and the GPU.

The cost associated with data transfer between CPU and GPU is very high, and can

create a bottleneck in a GPU program.

Summary

In summary, taking into account of all experimental results presented in the supple-

mentary material, GPU-S-A is on average 7.7 times faster than CPU-A. The peak im-

provement ratio is 8.4 times, when the pattern length is 50 and number of sequence

pairs is 204800. Note that the throughput achieved in this setting is 86.4 MCUPS. On

the other hand, when backtracking is considered, the peak throughput is increased to

121 MCUPS, though the improvement ratio is 7.8 times which is lower than the 8.4

times without backtracking. This peak occurs at the same input setting as above. This

higher throughput but lower improvement ratio is due to less work required to calcu-

late the additional cells during the backtracking phase, and the sequential backtracking

algorithm being ine�cient on the GPU.

On average, over all experiment settings we see that the throughput increases by

33.4 MCUPS when backtracking is considered, compared to the alignment scores only

counterpart. The improvement ratio of GPU-S-B decreases by 0.4 on average, when



Chapter 5. Semi-global Sequence Alignment with Gaps with GPU 80

compared to GPU-S-A. The improvement ratio of GPU-S-H decreases by 4.3 on average,

when compared to GPU-S-B.

5.6.2 Multiple Text Batching Results

We now investigate results achieved by GPUGapsMis using the multiple text batching

approach.

Alignment Scores Only

As shown in Figures 5.9 and 5.10, there are similar trends in latency, throughput and

improvement ratio exhibited by GPU-M-A to those exhibited by GPU-S-A discussed in

Section 5.6.1.

By examining Figures 5.9b and 5.10b closer, we see that GPU-M-A achieves greater

throughput than GPU-S-A. This is because GPU-M-A requires less host device commu-

nication than GPU-S-A. In Section 5.6.1 GPU-S-H was negatively a�ected by increased

host device data transfer and therefore exhibited lower sensitivity to increasing pat-

tern length with �xed number of sequence pairs, being shown as a �atter and lower

trend in throughput and improvement ratio when compared to GPU-S-B. This is a

similar scenario, as GPU-S-A has a greater host device data transfer requirement than

GPU-M-A. This is ampli�ed by the lower number of host device synchronisations required

by GPU-M-A compared to GPU-S-A.

Discussion of ATGPU Analysis In Section 5.5, we used the ATGPU model to

analyse the GPU-S-A and GPU-M-A approaches, by extending the existing AGPU analysis

and comparing the resulting cost functions, which take into account the data transfer

requirements of each approach. Our analysis showed that both approaches had the same

amount of computational work and the same amount of global memory accesses, yet

they di�ered in the amount of synchronisation and data transfer, with GPU-S-A having

up to a factor of q more data transfer and synchronisation to complete. Our analysis

predicted that the GPU-M-A approach would therefore outperform the GPU-S-A approach.

By examining Figures 5.9 and 5.10, it can bee see that our hypothesis is con�rmed.

This shows us that the ATGPU can show di�erence between two GPU approaches that

require the same amount of computation, but di�erent amounts of data transfer, and

that it is able to help in the decision of which solution should be implemented, giving

a fuller picture of the execution when compared to the other existing abstract models.
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Figure 5.9: Result for GPU-M-A, performing alignment scores phase only with multiple
text batching, for input sets containing 204800 sequence pairs.

Alignment Scores with Backtracking

We see in Figures 5.11 and 5.12 that GPU-M-B and GPU-M-H exhibit trends similar to

their respective single text batching counterparts, GPU-S-B and GPU-S-H.

Similar to Section 5.6.2, the multi text batching GPU-M-B and GPU-M-H perform con-

sistently better than the single text counterpart GPU-S-B and GPU-S-H, respectively.

This is because each of the multi text approaches require less host device communica-
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Figure 5.10: Result for GPU-M-A, performing alignment scores phase only, with multiple
text batching, for input sets containing patterns of length 200.

tion and data transfer than their single text counterpart. As previously explained, the

data transfer between host and device is very expensive and can be detrimental to the

performance, therefore reducing the amount of this type of data transfer as much as pos-

sible would bene�t the improvement ratio against the CPU, as has been demonstrated

here.

An interesting result is the throughput and improvement ratio of GPU-M-H, which

monotonically increases as pattern length is increased, as shown in Figures 5.11b and 5.11c.
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Figure 5.11: Result for GPU-M-B and GPU-M-H, with multiple text batching, for input
sets containing 204800 sequence pairs.

This is the only GPU approach to exhibit such a characteristic. GPU-M can schedule at

most qr threadblocks on the GPU in a single batch, whereas GPU-S is more limited and

can only schedule up to r threadblocks in a single batch. Therefore when H matrices

are returned asynchronously to the host upon termination of the kernel, there are more

threadblocks ready for execution in GPU-M-H than GPU-S-H, meaning GPU-S-H is not

able to hide the latency of asynchronous data transfer as e�ectively as GPU-M-H.
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Figure 5.12: Result for GPU-M-B and GPU-M-H, with multiple text batching, for input
sets containing patterns of length 200.

Summary

In summary, taking into account of all experimental results presented in the supplemen-

tary material, we see that the peak performance of GPU-M-A and GPU-M-B occur in the

same setting; when pattern length is 50, for 204800 sequence pairs. GPU-M-A is on aver-

age 10.1 times faster than CPU-A and increases the improvement ratio on average by 2.3

compared to GPU-S-A. The peak improvement ratio is 11 times, when the pattern length
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is 50 and number of sequence pairs is 204800. Note that the throughput achieved in this

setting is 113.2 MCUPS. On the other hand, when backtracking is computed, the peak

throughput is increased to 161 MCUPS, though the improvement ratio is 10.4 times

which is lower than the 11 times without backtracking. As with single text batching,

this higher throughput but lower improvement ratio is due to less work required to cal-

culate the additional cells for backtracking, and the sequential backtracking algorithm

being ine�cient on the GPU.

The improvement ratio of GPU-M-H decreases by 6.1 on average, when compared to

GPU-M-B. On average, GPU-M-H causes an increase in improvement ratio by 0.6 and an

increase in throughput by 9.8 MCUPS when compared to GPU-S-H.

We see that GPU-M-B increases throughput yet lowers the improvement ratio achieved,

when compared to GPU-M-A. Throughput of GPU-M-B increases on average by 45.8

MCUPS compared to GPU-M-A, and the improvement ratio decreases by 0.3 on average.

GPU-M-H achieved higher throughput and higher improvement ratio than GPU-S-H, yet

does not outperform GPU-B.

5.6.3 Improvement on Di�erent GPU Devices

By running GPUGapsMis on GPUs with more resources, it is expected that a higher

level of improvement against CPUGapsMis would be achieved, however some parallel

algorithms are not able to take advantage of extra resources past a certain point, due

to excessive communication overhead. We wish to investigate whether a GPU with

more resources is negatively a�ected in performance gained, when compared to a lower

speci�cation GPU, due to �nite global memory access bandwidth and costly access

latency. The increased number of alignment tasks (threadblocks) running concurrently

on the GPU could create a communication bottleneck when serving global memory

requests.

We test this by investigating how results of GPUGapsMis on GTX680 (already dis-

cussed) compare to results on GTX650. GTX650 and GTX680 have 2 and 8 SMs,

clock speed of 1.2GHz and 1 GHz, and global memory of 1GB and 2GB, respectively.

GTX680 has more Streaming Multiprocessors than GTX650, so it can run more align-

ment tasks concurrently than GTX650. Therefore we expect GTX680 to outperform

GTX650 when running GPUGapsMis. Assuming that all data �ts on the GPU memory,

we must decide how much we expect GTX680 to outperform GTX650. GTX680 has 4

times the resources of GTX650, but a clock speed that is only 83% of GTX650. There-

fore we can estimate that GTX680 will be around 3.3 times faster than GTX650. The
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global memory bandwidth of GTX680 is only 2.4 times of GTX650, so there is potential

for some applications to encounter a bottleneck in global memory access on GTX680,

yet not GTX650.

We run the best performing approach of GPUGapsMis, GPU-M-B on GTX650. If

GPUGapsMis has 3.3 or greater improvement on GTX680, compared to GTX650, then

we should expect that running GPUGapsMis on a Kepler GPU with speci�cations higher

than GTX680 would yield greater improvement still. The results obtained achieved are

summarised in Table 5.2.

Table 5.2: Comparison of resources for GTX650 and GTX680 and associated perfor-
mance of GPU-M-B.

GPU GTX650 GTX680
Num SM 2 8

Clock Speed 1.2GHz 1GHz
Resource Ratio 1 4

Expected Improvement 1 3.3
Observed Improvement 1 3.5

GTX680 outperforms GTX650 in all cases, by a ratio of 3.5 times. This ratio remains

constant throughout increase in pattern length and throughout increase in number of

sequence pairs. Figures 5.13 and 5.14 demonstrate that the performance of GPU-M-B

exhibits similar trends on GTX650 as on GTX680, and show the ratio of improvement

between the two GPUs una�ected by input data size.

We are able to conclude that GPUGapsMis adapts to a GPU of di�erent speci�cation

well, and that any communication overhead is not exaggerated by a disproportionate

amount, as resources available are increased. Therefore, we are able to have con�dence

that proportionally better speed up would be possible, should higher speci�cation GPUs

be used to run GPUGapsMis.

5.7 Conclusion

In this chapter, we presented a study on a GPU-based algorithm to solve the pairwise

semi-global sequence alignment with bounded number of gaps problem, using a data-

parallel approach. We analysed our algorithm GPUGapsMis on both the AGPU and

ATGPU models, with theoretical analysis con�rmed by observed results. We achieved

greater speed up compared to a previous data-parallel approach. On our system, we

achieved peak speed up against the CPU of 11 times when only the alignment scores
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Figure 5.13: Result for GPU-M-B, with multiple text batching, running on GTX 650 for
input sets containing 204800 sequence pairs.

were computed, and 10.4 times speed up when the backtracking was also computed.

We achieved greater levels of speed up compared to a previous existing data-parallel

approach [68] on a similar system. We successfully used the ATGPU model (introduced

in Chapter 4) to accurately predict the best performing GPU approach, which was

not possible using existing abstract GPU models. This is because the di�erent GPU

approaches had the same amount of computational work, but di�ering amounts of

data transfer. We showed that the best performance was achieved by GPU-M-B, with
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Figure 5.14: Result for GPU-M-B, with multiple text batching running on GTX 650 for
input sets containing patterns of length 200.

multi text batching and backtracking computed on the GPU. Of all approaches we

considered, GPU-M-B required the least host device communication, and we showed that

the performance scaled well on a GPU of better speci�cation. We note that there will

exist a point where an increase in resources (i.e. number of cores, amount of global

memory) on the GPU will fail to yield ever increasing improvement (using the same

input data). This is because the maximum amount of parallelism would have been

achieved for that particular input data set.



Chapter 6

Protein Spectral Identi�cation on

GPU

6.1 Introduction

The characterisation of proteins or peptides is often carried out using mass spectrometry,

a process which fractures a sample along various cleavage points (generally along the

peptide bonds). These segments of the sample are then measured by means of their

molecular weight and the intensity of which they appear in the sample. The data is

then mapped out as a spectrum, which shows the information relating to the molecular

weight of the constituent parts. By analysing the data points on the spectrum, it is

then possible to infer the identity of the sample protein, by means of its constituent

peptides. However, modi�cation in the form of PTM can make unexpected changes to

the spectrum, meaning that a simple comparison of experimental values with known

values is not su�cient, so there are a range of spectral identi�cation algorithms which

look to match modi�ed experimental sample spectra with a known theoretical spectrum

in a database. There has been relatively little work into accelerating this process using

the GPU.

In this chapter, we investigate using the GPU to accelerate and solve the Match Score

Identi�cation problem (introduced in Chapter 3), which computes similarity between

a database of theoretical known protein or peptide spectra, and a set of experimental

modi�ed spectra. This particular algorithm has been shown to perform well against

existing tools, maintaining accuracy levels and speeding up the identi�cation of protein

spectra. We propose the algorithm GPU-MSI, which solves the match spectral identi-

�cation on the GPU. We provide a theoretical analysis of GPU-MSI using the ATGPU

89



Chapter 6. Protein Spectral Identi�cation on GPU 90

Table 6.1: Comparison of sequential MSI Algorithms for single experimental spectrum
S, and same length theoretical spectra T

Algorithm Time

List Match O(qrn)

Vector Match O(qrm)

Index Match (Worst Case) O(qrn)

model, comparing with sequential solutions and showing that it is optimal. We then

verify performance of GPU-MSI using experiments, con�rming the hypotheses that were

generated by the analysis on the ATGPU model, and showing that GPU-MSI achieves

promising level of speed up, with up to 22× speed up on our system, compared to the

best performing CPU implementation.

Organisation of Chapter

The remainder of the chapter is organised as follows: We �rst analyse the existing se-

quential approaches to the Match Spectral Identi�cation problem in Section 6.2. In

Section 6.3, we consider how each of the sequential approaches from Section 6.2 will

run on the GPU, before proposing the algorithm GPU-MSI and giving analysis on the

ATGPU model. Section 6.5 details the setting of the experiments used and Section 6.6

presents and discusses experimental results to verify the performance of GPU-MSI. Fi-

nally, Section 6.7 concludes the chapter.

6.2 Sequential Approaches

In order to solve Problem 1, there exists several sequential algorithms, which we now

analyse. Algorithms 6, 8, and 10 were previously analysed in [53], yet we also give

pseudocode and analysis here. A summary of the analyses of the di�erent algorithms is

given in Table 6.1.

List Match Algorithm The list match algorithm (Algorithm 6) calculates the match

score between all experimental spectra in T and all library spectra in X , all stored as

ordered mass-lists.

For computing the match score for q experimental spectra of n masses, and r target

spectra, each of m ≤ n masses, the simple list match algorithm requires O(qrn) time.
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Algorithm 6 List Match
Input: Experimental spectra T = T0, ..., Tq−1
Theoretical spectra X = X0, ..., Xr−1 as mass-lists.
Output: Spectrum Xα ∈ X with the highest match score with each Ti ∈ T .
1: for i = 0→ q − 1 do
2: for j = 0→ r − 1 do
3: δ = Ti[n]−Xj [m]
4: x = 1
5: y = 1
6: while x < n AND y < m do
7: if Ti[x] == Xj [y] then
8: score = score+ 1
9: x = x+ 1
10: y = y + 1
11: else if Ti[x] < Xj [y] then
12: x = x+ 1
13: else
14: y = y + 1

15: x = 1
16: y = 1
17: while x < n AND y < m do
18: if Ti[x] == Xj [y] + δ then
19: score = score+ 1
20: x = x+ 1
21: y = y + 1
22: else if Ti[x] < Xj [y] + δ then
23: x = x+ 1
24: else
25: y = y + 1
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Vector Match Algorithm The vector match algorithm calculates the match score

between experimental spectra T stored as 0-1 vector and all spectra in X , stored as

mass lists. The vector representation T ′ of T is generated as per Algorithm 7, with

Algorithm 8 performing the calculation.

Algorithm 7 Generate Vector representation of T
Input: Query spectra T = T0, T1, ..., Tq−1 Output: T

′
i = Ti ∈ T as 0-1 vector.

for i = 0→ q − 1 do
Create T ′i [0, ..., Ti[n]− 1 = 0
for j = 0→ n− 1 do

T ′i [Ti[j]− 1] = 1

Algorithm 8 Vector Match
Input: Query spectra T ′ = T ′1, ..., T

′
q

Target spectra X = X1, ..., Xr

Output: Spectrum Xα ∈ X with the highest match score with each T ∈ T .
1: for i = 1→ q do
2: max = 0
3: α = 0
4: for j = 1→ r do
5: δ = Ti[n]−Xj [m]
6: for k = 1→ m do
7: if T ′i [Xj [k]] == 1 then
8: score+ +

9: if T ′i [Xj [k] + δ] == 1 then
10: score = score+ 1

11: if score > max then
12: max = score
13: α = j

14: Record α

We consider computing the match score for q experimental modi�ed spectra of n

masses, and r target spectra, each of m ≤ n masses. For generating the vector, n − 1

accesses are required and N + n− 2 updates, with no comparisons. For generating the

vector, O(qn) time is required, and for computing the score using Algorithm 8, O(qrm)

time is required, which dominates the running of the two algorithms. This is because

the number of target spectra in the database r would typically be much larger (an order

of magnitude larger) than the lengths of the spectra (n or m).
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6.2.1 Index Match Algorithm

The main contribution of [53] was the index match algorithm, which calculates the

match score for theoretical spectrum X against query spectra T , using linked lists. The

linked lists index T and X by the columns of their 0-1 vector representation, allowing

traversal of each linked list to quickly establish which spectra in X contain a mass peak

at a particular column.

To generate the linked lists, each spectrum in X is traversed, with nodes being

added to the linked list corresponding to the mass value of each peak. This is shown

in more detail in Algorithm 9. In order to calculate C(T,X∗(δ)), the linked lists are

re-calculated with the relevant shifts inserted, and then traversed at the same time as

the non-shifted lists. We discuss this in more detail in Section 6.3, as the algorithm

GPU-MSI requires a shifted representation of the library to be calculated.

Algorithm 9 Generate Linked List representation of X
Input: X ′
Output: The set of linked lists L = L1, ..., LM where M is the maximum precursor
mass of X .
1: for i = 1→M do
2: Initialise linked list Li
3: for i = 1→ r do
4: for j = 1→ m do
5: Add new node �i" to LXi[j]

The generation of the linked lists require O(rm) time. The match score is then

calculated for (T ,X ) using the index match algorithm, as shown in Algorithm 10.

The maximum size of each linked list is r, as there are r target spectra in X ; however,
the average size of each linked list is r(m−1)

M as there are M linked lists in total and

r(n− 1) +M nodes in total created (each linked list has a null node). The only linked

lists that are traversed are those qn−1 lists which correspond to masses in T , therefore
algorithm 10 requires O(qnr) time in the worst case, yet linked list traversal would be

reduced to O( r(m−1)M ) in the average case.

It was shown in [53] that the index match algorithm was, in practice, faster than the

vector match algorithm when the generated linked lists were reused for scoring many

experimental spectra against a library.
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Algorithm 10 Index Match
Input: Query spectra T = T1, ..., Tq as mass list.
Linked lists L = L1, ..., LM from X
Output: Spectrum Xα ∈ X with the highest scoring match score with each T ∈ T .
1: for i = 1→ q do
2: for j = 1→ n do
3: for Each non-null node lk in LTi[j] do
4: score[lk.label] = score[lk.label] + 1

5: α = 0
6: max = 0
7: for j = 1→ r do
8: if score[j] > max then
9: α = i
10: max = score[j]

11: Report α

6.3 Match Score Identi�cation Problem on The GPU

We now study how the match spectral identi�cation problem can be solved on the GPU.

We discuss how each of the sequential solutions presented in Section 6.2 would execute on

the GPU; we see that the list match algorithm and the index match algorithm is not well

suited to execution on the GPU. We adapt the vector match algorithms for the GPU,

and propose the new algorithm GPU-MSI, giving analysis on the Abstract Transferring

GPU model [12] (see Chapter 4) and verifying performance with experimental results.

6.3.1 List Match Algorithm on GPU

For a particular thread block i, have each constituent thread j calculate the match score

for the spectrum pair (Ti, Xj) ∈ T × X . The spectral data would be held in shared

memory. Xj would reside completely in bank j, meaning bank-con�ict free access to

Xj , Each thread would keep its own score value in shared memory, thus avoiding bank

con�icts encountered when accessing the score value.

As in the sequential version a loop of (n + m) operations would be required for

each thread, with each thread accessing the experimental spectrum in a non-pattered

manner. Figure 6.1 demonstrates how the non-patterned access to Ti could potentially

cause bank con�icts. Up to a b-way bank con�ict could occur at each access operation

to Ti, when n ≥ b2, and up to a dnb e-way bank con�ict when n is smaller.
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Figure 6.1: Non-patterned access to Ti can cause bank con�icts in shared memory.
b = 5, ni = 18. A 3-way bank con�ict (red) is shown.

6.3.2 Index Match on GPU

Linked lists are not always best suited to the GPU as they can not be accessed randomly,

can inhibit techniques used for addressing the data structure, and require more space

than a regular array of structs. Therefore, we model the linked lists of the index match

algorithm as arrays of integers; the integer value i in array j represents a node of label

i in linked list j. Arrays would be of size r, with dummy data (integer values set to -1)

occupying the remaining elements of array j.

In a data parallel implementation, the cores would take each array of r and process

elements in r
b steps. An uneven workload between the cores of the multiprocessor would

occur, as the column position being considered is not guaranteed to have a multiple of

b library sequences to be updated. In the case where x < b elements are present, this

means that some cores would lie idle, therefore under utilising resources. Should the

elements represent c, c+b, c+(2b)... (where c is a constant, and b is the number of cores)

then bank con�icts would occur and the operations would serialise. Without padding

to the arrays, there would be non-coalesced global memory access, which could create

a bottleneck in the program; both of these memory access constraints could remove the

time-saving incentive of using the index match algorithm, and adding padding to the

arrays could then remove the space-saving incentive of using the index match algorithm.

6.4 Vector Match on GPU

We now introduce the GPU-MSI algorithm, which solves the Match Score Identi�cation

problem introduced in Chapter 2. To our knowledge, this is a novel GPU algorithm

which calculates the match score for a set of query spectra T = T1, ...., Tq and target

spectra X = X1, ..., Xr.
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Table 6.2: Example of vector match calculation against experimental spectrum
T = {2, 6, 8, 12}, where the library spectra have di�erent precursor masses. X1 =
{2, 6, 8, 10}, X2 = {2, 3, 5, 9}, X3 = {6, 9, 11}, X4 = {2, 3, 5, 8}, X5 = {3, 6, 7}. Travers-
ing column 7 (shown in grey) allows all matched mass points at position 8 to be found
in the single column, yet the di�ering δ values means that the same can not be achieved
for �nding matched points against X∗(δ) (cells shown in black), requiring a di�erent
column for each library spectrum. δ1 = 2, δ2 = 3, δ3 = 1, δ4 = 4, δ5 = 5,.

Col 0 1 2 3 4 5 6 7 8 9 10
X1 0 1 0 0 0 1 0 1 0 0 x
X2 0 1 1 0 1 0 0 0 0 x x
X3 0 0 0 0 0 1 0 0 1 0 0
X4 0 1 1 0 1 0 0 0 x x x
X5 0 0 1 0 0 1 0 x x x x

Table 6.3: By right-aligning the spectral library vector representation to the precursor
mass of the experimental spectrum T , all δ-shifted matched pairs for t3 = 8 are located
in column 8 − (12 − 11) − 1 = 6 (black). All non-shifted matched pairs are shown in
grey (T5 is out of range).

Col 0 1 2 3 4 5 6 7 8 9 10
X1 x 0 1 0 0 0 1 0 1 0 0
X2 x x 0 1 1 0 1 0 0 0 0
X3 0 0 0 0 0 1 0 0 1 0 0
X4 x x x 0 1 1 0 1 0 0 0
X5 x x x x 0 0 1 0 0 1 0

We give explanation of the algorithm for calculation only one query spectra Ti

against X , as the calculation for a whole set of query spectra is very similar. The input

data is T ,X ′,X ′δ (i.e. a 0-1 vector representation of the theoretical library). The GPU

algorithm runs with b cores per multiprocessor. Each multiprocessor mpi will calculate

the match score between Ti and X .

6.4.1 Calculating and Aligning the Shifted Vector representation

Table 6.2 demonstrates the access pattern to the cells of the vector representation of X
that would be required, when calculating C(T∗,X ), in a situation where the spectra in

X have di�erent masses (this would be almost all cases of input data). It shows that the

shifted value that is required for the score is resident in di�erent columns of the vector

representation. This presents a problem when we want to use the GPU, as all threads

must perform the same action, and correctly patterned data access is required for both
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global and shared memory access. The aligned data in a single column (that is for the

non-shifted value) will work well for the GPU, as it all resides in contiguous cells. We

are therefore required to calculate a second vector representation of X , which aligns all

spectra values to the right ; this then places all shifted values in the same column, as is

demonstrated in Table 6.3. To use this with an entire set of experimental spectra, we

align this shifted vector representation to the maximum mass value found in T . This

technique can also be applied to the index match algorithm (algorithm 10) to calculate

the linked lists for the shifted spectra.

6.4.2 Reducing Space Requirement on the GPU

With the current data storage scheme used in [52], r elements are required for not only

each peak value in the spectrum, but for all values between 0 and W (where W is the

maximum mass of the experimental spectra). This therefore requires O(Wr) space.

This is equivalent to O(nD(a+ ∆)r) space, where r is the number of library spectra, n

is the size of the experimental spectra, D is the discretisation factor, a is the maximum

mass of the amino acids used in the experimental spectra, and ∆ is the maximum weight

which a PTM adds to the a�ected spectrum.

W can become very large when we consider long spectra, large PTM values, and large

discretisation factors; a spectrum could contain anything from 50 peaks to thousands

of peaks, depending on the sample; PTM values can also be large, with the N-terminal

palmitoylation PTM adding 238 Daltons to the mass of the spectral fragments; the

discretisation factor can range from 1 in the case of ion trap spectra experiments, to 100

for ion cyclotron resonance spectra experiments, and no doubt greater, depending on

the resolution on the spectra and the quality of the equipment used. This means that

the library representation can become very sparse and very large.

When accessing the data, the total of accessed values is O(qnr), we see that the

amount of unaccessed (therefore useless) data is O(D(a+ ∆)).

From our work on the ATGPU model in Chapter 4, and work concerning amounts

of data transfer to and from the GPU in Chapter 5, we know that we should always

look to minimise the number of transfers and the amount of transfers. We also know

that GPU memory is much more limited than memory available to the CPU, so we

should be motivated to use this as e�ciently as possible. At the moment, the amount

of unaccessed data that is transferred to the GPU is something we can look to improve.

We now present a data storage scheme that reduces the storage requirement and

improves on the ratio of accesses to stored words. We serialise the mass peak positions
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Figure 6.2: The space saving scheme only considers columns which match with mass
peaks present in the library.

in the theoretical library, such that each subsequent unique peak position has the subse-

quent serial number. For example, consider the mass peaks in the set T ′ = {T1 ∪T2} =

{120, 146, 160, 200, 250, 300, 343, 411}. When we serialise these positions, any instance

of 120, in either the set of experimental spectra or the library, would be mapped to 0;

any instance of 146 would be mapped to 1, and so on. Both the experimental spectra

and the library of theoretical spectra (and the shifted copies) are then mapped to these

values, which excludes mass peaks within the library that will never be matched with

the experimental spectra. The vector representation and index representation are then

created as earlier using the new mapping. This new mapping requires r elements per

mass peak, of which there are now O(qn) unique mass peak columns being stored. We

note that O(qnr) ≤ O(Mk) meaning the space required has now been lowered. We

also note that the amount of access now matches the size of the library, meaning we

have increased the ratio of stored words to accessed words, and use the memory more

e�ciently.

Figure 6.2 demonstrates how only columns corresponding with a mass peak in the

library are taken for the space saving solution, and how only these positions are consid-

ered when calculating the match score against an experimental spectrum, lowering the

amount of column fetches needed and removing the need to check for empty columns.

Idea of Parallelisation

Global Memory T is held in global memory, such that Ti is stored in dnb e consecutive
blocks. X ′ (resp. X ′(δ)) is stored in global memory, such that X ′j [Ti], ..., X

′
j+b−1[Ti]

(resp. X ′(δ)j [Ti], ...,X ′(δ)j+p−1[Ti]) is stored in the same block. Score is stored such

that Score[i][j] being the score between Ti and Xj is in the same block as Score[i][j +
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b− 1]. Global memory storage is demonstrated in Figure 6.3

X ′
0

1

Mmax − 1

0 1 2 b− 1 b k
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(a) X ′ (identical for X ′(δ)) in global memory. Each row con-
tains the vector for all spectra at a particular position. Each
column keeps the vector for a particular spectrum.

T ′
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M
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(b) _T in global memory. Each row contains the mass list for
Ti.

Score
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ℓ− 1

0 1 2 b− 1 b k − 1

...
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(c) _Score in global memory. Each row contains the scores
for Ti against X .

Figure 6.3: Global memory of GPU Reverse Vector Match

Shared Memory Shared memory will hold in _T [0, ..., b − 1], b consecutive mass

values of Ti. In _X[0, ..., b − 1] will reside a b-long segment of a row of X ′ or X ′(δ).

Score values for library spectra will be held in _score[0, ..., b− 1].

Kernel Threadblock i of b threads will calculate the match score between a query

spectrum Ti and all target spectra X .
The kernel will calculate the score data to go into _Score[i][j] for all 0 ≤ j < r,

with the main outer loop iterating through the row _Score[i][∗], calculating b values
per iteration. During the calculation, score values are held in shared memory and are

accessed in a bank-con�ict free manner. Upon completion of the iteration, the scores for
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the b library sequences is complete and then the values are placed into global memory

in a single coalesced memory access operation.

During each iteration, the experimental spectrum is fetched from global memory a

block at a time, containing b mass values. These mass values are looped over, and each

relevant b-sized column segment is pulled from X ′ (and for X ′(δ)) into shared memory.

The values pulled from X ′ represent the presence/absence of a peak in each of the b

library sequences at this particular position, determined by the values in Ti. If 0, there

is no peak. If 1, there is a peak. Therefore, we simply add this value to the score

values, in a bank con�ict free manner. The subsequent values of Ti are dealt with in

the same fashion, and then the iteration completes. We then proceed to calculate for

the next b library sequences. Output data is returned to the host and the kernel is then

terminated.

ATGPU Analysis We now give analysis of GPU-MSI using the ATGPU model with

b cores per multiprocessor and q multiprocessors, and present the pseudocode in Al-

gorithm 11. Note that W represents a transfer between GPU and CPU memory; ⇐
represents a global memory access operation; ← represents a shared memory access

operation.

Transfer Complexity There are in total 5 transfer operations. The _T ,_T (δ)

data structures each require qn words. The _X ,_X (δ) data structures each require

qnr words, and the Score data structure requires qr words. Therefore, the transfer cost

is α5 + β(2qn+ 2qnr + qr), which is upper bounded by O(α+ β(qnr)).

Time Complexity The inner-most loop (i.e. lines 13-17) is executed dnr
b2
e times. The

inner-most loop itself iterates for b times, meaning the code within the loop executes

dnrb e times. This inner-most loop contains 16 individual operations.

The fetching of the T values (lines 11 and 12)and outputting to the _Score matrix

(line 18) are executed dnr
b2
e times, where there are 10 operations.

The time cost is therefore 16dnrb e+ 10dnr
b2
e, which is upper bounded by O(nrb ).

I/O Complexity Each of the q multiprocessors, in the process of aligning the spectra

accesses the T and _Score data as 3dnr
b2
e blocks. Each multiprocessor accesses the X

data as 2dnrb e blocks. This gives the amount of global memory blocks accessed as

q(3dnr
b2
e+ 2dnrb e), which is upper-bounded by O( qnrb )
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Algorithm 11 GPU-MSI on ATGPU
Input: Normalised mass list representation of experimental spectra T , T (δ) Input:
Vector representation of Library spectra: X ′,X ′(δ)
Output: Score matrix for all spectral pairs

1: //Copy Input data to Device
2: _T W T
3: _T (δ) W T (δ)
4: _X W X ′
5: _X (δ) W X ′(δ)
6: //Begin GPU Work
7: for all mpi ∈MP [0, ..., q − 1] in parallel do
8: for all ci,j ∈ Ci in parallel do
9: for y = 0→ d rbe do
10: for x = 0→ dnb e − 1 do
11: _t[j]⇐ _T [i][yb+ j]
12: _td[j]⇐ _T d[i][yb+ j]
13: for z = 0→ b do
14: _x[j]⇐ _X ′[_T [z]][yb+ j]
15: _score[j]← _score[j] + _X[j]
16: _xd[j]⇐ _X ′(δ)[_Td[z]][yb+ j]
17: _score[j]← _score[j] + _pSeqd[j]

18: _Score[i][j]⇐ _score[j]

19: //Return answer to Host
20: ScoreW _Score
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Global Memory Used As per the description of the storage scheme in Section 6.4.2,

and in a similar vain to the I/O complexity, the X data requires 2qnr words. The T
data requires 2qn words, and the _Score data structure requires qr words. Therefore,

the total global memory used is 2qnr + 2qn+ qr, which is upper-bounded by O(qnr).

Shared Memory used In Algorithm 11, no shared memory data structure requires

more than b words, meaning the shared memory used is O(b), and therefore the occu-

pancy on the real GPU should be optimal.

Cost Function We see that there is a single round in this algorithm, so the cost

function is upper-bounded as in Expression 6.1, where α is the ATGPU cost to stage

a Host Device memory transaction, β is the cost of transferring a single word to the

device, b is the number of cores on each multiprocessor of the device, λ is the cost

for accessing a block of global memory on the device ,γ is the operation rate (i.e. the

number of operations completed per time-cost unit), and σ is the cost for synchronisation

operations at the end of a computation round.

O

(
α+ β(qnr) +

nr
b + λ qnrb

γ
+ σ

)
(6.1)

Discussion Because the global memory access is able to coalesce, because there are

no bank con�icts, and because the shared memory usage is linear with the number

of cores in the multiprocessor, we expect GPU-MSI to achieve high occupancy on the

GPU, meaning that latency of global memory access should be well hidden by com-

putation tasks, and that the algorithm will use the GPU resources well, yielding good

performance.

We now compare GPU-MSI in Algorithm 11 with the existing sequential algorithms

of the simple vector match algorithm (Algorithm 8) and the index match algorithm

(Algorithm 10). The processor time product of GPU-MSI is qnr (there are qb processors,

multiplied by nr
b time). We therefore see, compared to the time complexity of the simple

vector match algorithm (Algorithm 8) and the index match algorithm (Algorithm 10)

of O(qnr), that GPU-MSI performs no more work than the sequential algorithms, and so

is optimal.

When we consider the ATGPU cost function of GPU-MSI, we see that the work carried

out by the GPU is O(nrb +λ qrb ). Generally, as the cost of global memory access is large,

we expect that the global memory access will dominate this function, and therefore that



Chapter 6. Protein Spectral Identi�cation on GPU 103

the performance of GPU-MSI will be more sensitive to an increase in r, than it would be

to an increase in n.

6.5 Experimental Setting

Spectral identi�cation tools are typically used to search databases of known spectra, in

order to �nd the best match for a query spectrum, or set of query spectrum. In order to

simulate a database search for the most optimal alignment for a set of query sequences,

we align a set of query (pattern) sequences with a set of target (text) sequences.

Let S = s1, s2, ..., SL be the set of experimental spectra and let T = t1, t2, ..., tr be

the set of theoretical library spectra. We look to simulate searching in a database for

the theoretical spectrum which gives the best score for each individual experimental

spectrum. For each pair of spectra in S × T , we solve the Match Spectral Identi�cation

Problem, with either GPU-MSI - or - with CPU-MSI-V or CPU-MSI-I - a sequential im-

plementation of the vector match algorithm and the index match algorithm on a single

CPU thread.

Input Data. We randomly generate a single spectrum to the length that we specify

in the experiments, by picking amino acids at random, until the given amount are

picked. We then insert a shift of a random value between 10 and 50, at a random

position in the spectrum. We do this many times over, creating a new spectrum each

time. We use some of these generated spectra as the theoretical library, and some as

the experimental spectra. This ensures that we are using spectra that are reletivley

similar to each other for our simulated database search - this matches the use case that

would be encountered by biologists. The synthetic data used will give a good view of

the performance of GPU-MSI with real sequence data, as all data is treated identically

by the algorithm.

For our experiments, we consider di�erent sizes of theoretical library, and di�erent

lengths of spectra, measuring the performance of aligning all the spectral pairs. We

use a set of q = 500 experimental spectra and a database of r = {250, 500, 750, 1000}
theoretical spectra, of length m = {50, 75, 100, 125, 150, 175, 200}. We align all q × r
spectral pairs. The spectral data is generated at runtime, though the program can be

extended to allow input from disk.

Performance Measurement. To measure the performance of the algorithms, we

�rst process the input data so that it is in the form required for the particular algorithm

(vector representation, or index representation). The timer then measures time taken
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Figure 6.4: Result for GPU-MSI for a library of 1000 spectra.

for all GPU operations (such as data transfer and compute) to �nish, as well as the

entire CPU-based method.

6.6 Results and Discussion

In this section, we present and discuss results from experiments carried out as described

in Section 6.5. Following from the ATGPU analysis in Section 6.4, we expect that the

performance of GPU-MSI will be more sensitive to an increase in r, than it would be to

an increase in n.

We look to evaluate the performance change of GPU-MSI as the input size increases,

and to validate the ATGPU analysis given in Section 6.4. We carry out all experiments

described in Section 6.5, with all results presented in Table C.1. In order to look closely

at the trends, we focus on two settings: (i) increasing number of library spectra with

spectral length �xed at 200 amino acids; and (ii) increasing spectral length with number

of library spectra �xed at 1000. Both settings investigate the e�ect of increasing data

size. The results presented here appear in the �nal rows and �nal columns of Table C.1,

and are representative of all other experiment results obtained.

Figures 6.4 and 6.5 show that the latency of CPU-MSI-V CPU-MSI-I increase lin-

early with the increase in size of input data. GPU-MSI has considerably smaller latency

than all results by the CPU algorithms and therefore outperforms both CPU-MSI-I and
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Figure 6.5: Result for GPU-MSI for spectra of 200 length.

CPU-MSI-V in all cases. Furthermore, we can see in Figure 6.4b that the improvement

ratio increases as the pattern length increases. This stands to reason, as Figure 6.4a

shows an almost �at trend in latency for GPU-MSI, as opposed to the linear growth shown

for the CPU counterparts. Figure 6.5 shows that when the number of library spectra is

increased, the running time increases linearly. This is reinforced by Figure 6.5b which

shows the improvement ratio is much �atter than in Figure 6.4b . This suggests that

the performance of GPU-MSI is not sensitive to the spectral length, but is sensitive to

the size of the theoretical database. In comparison, the CPU counterparts are sensitive

to both theoretical library size and spectral length. When we compare the trends of

the results to the ATGPU analysis in Section 6.4, we see that our hypothesis has been

con�rmed, and that GPU-MSI is indeed more sensitive to an increase in the size of the

theoretical library, than to an increase in the length of the spectra to be aligned.

The peak improvement that we achieved with GPU-MSI on our system was 22× over

the best performing CPU control algorithm, which occurred with spectral length of 200

and 1000 theoretical library spectra.

6.7 Conclusion

In this chapter, we introduced the algorithm GPU-MSI, which computes the match score

identi�cation problem for a set of experimental protein spectra and a set of known
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theoretical library spectra. The chapter reviewed and analysed the existing sequential

solutions, and then considered how each of the sequential solutions would run on the

GPU. We then introduced the algorithm GPU-MSI. We gave analysis and developed

hypotheses about the performance of the algorithm using the ATGPU model that was

introduced in Chapter 4, and showed that the GPU-MSI algorithm is optimal, in that it

performed no more work than the sequential counterparts. We then discussed the ex-

perimental setting and presented the experimental results. We veri�ed the performance

of GPU-MSI against two existing sequential solutions using experiments. We showed that

the hypotheses created using the ATGPU model were con�rmed by the experimental

results, and that the algorithm achieved promising levels of improvement on our system

when compared to the CPU control experiments. GPU-MSI achieved a peak improvement

of 22× over the best performing CPU control experiment on our system.



Chapter 7

Conclusion

In this chapter, we look to draw conclusions on the thesis.

In Chapter 1, there were two research questions set out:

1. Are we able to create a parallel abstract model that gives improved and accurate

analysis of GPU programs, compared to the analysis given by existing models?

2. Can new GPU-based algorithms improve on existing solutions to bioinformatics

tasks within the Sequence Alignment problem and the Protein Spectral Alignment

problem?

We now discuss how well these questions have been answered.

In Chapter 2, we reviewed several existing abstract parallel models, both general

parallel models, and those that are designed with the GPU speci�cally in mind. We

highlighted that no model existed which considered the data transfer between the CPU

and the GPU, before then bringing attention to the arguments in the literature regarding

consideration of CPU GPU data transfer: namely, that the costs involved with trans-

ferring data from the CPU to the GPU (and vice-verse) should always be considered,

as they are expensive operations and can greatly reduce an application's performance

level, once these operations are also taken into account.

In Chapter 4, we proposed a new GPU abstract model, which we called ATGPU.

The ATGPU di�ers from existing models in the fact that it is the �rst abstract GPU

model (to our knowledge) which considers CPU GPU data transfer. The ATGPU also

combines the capabilities of existing models, making it more comprehensive than the

existing models. We demonstrated the use of the ATGPU model in a number of settings:

In Chapter 4 we used our model to analyse a number of computational problems,

demonstrating that for some computational problems, the CPUGPU data transfer op-

107
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erations that are captured by the ATGPU model give a more full and accurate analysis

than the existing models, and that for some other problems, the model is as useful as

the existing models. We successfully veri�ed these �ndings with experiments.

In Chapter 5, we considered the performance of our GPU-based sequence alignment

algorithm GPUGapsMis, and extended analysis on the existing AGPU model, by the use

of ATGPU cost function to model di�erent experimental approaches. By using the

ATGPU cost function, we were able to show that the computation carried out by these

approaches was the same, but the CPU GPU data transfer di�ered. This meant that

the existing models did not distinguish between the approaches. We demonstrated that

the ATGPU cost function successfully distinguished between the di�erent approaches,

and that it produced the correct result in identifying the best performing approach.

In Chapter 6, we considered the performance of our GPU-based spectral identi�ca-

tion algorithm GPU-MSI, and used the analysis of this algorithm on the ATGPU model

to generate hypotheses about the performance. These hypotheses were then successfully

con�rmed using experimental results.

We can therefore conclude that, in proposing the ATGPU model in Chapter 4,

we have successfully created a parallel abstract model that gives improved and more

accurate analysis of GPU programs, compared to the analysis given by existing models.

In Chapter 3, we introduced two speci�c bioinformatics problems, namely: DNA

Sequence Alignment, and Protein Spectral Identi�cation. We highlighted that there has

been a wealth of research in the area of sequence alignment using GPU, and decided

to focus on one particular problem: semi-global sequence alignment with a bounded

number of gaps. For this particular problem, we have shown that there was existing

GPU algorithms for the single gap case, and that for the multiple gap case, there was

also an existing GPU algorithm, but we identi�ed scope where it could be improved.

We then reviewed research relating to protein spectral identi�cation, and discussed

how there is only a small amount of research relating to the use of GPU in solving

this problem, which mostly focussed on matrix multiplication operations to speed up

particular scoring schemes. We identi�ed a scoring scheme called the match spectral

identi�cation, which successfully accelerated the identi�cation of protein spectra using

linked lists; we identi�ed scope to propose a GPU solution to accelerate this further, as

none existed.

In Chapter 5, we proposed the algorithm GPUGapsMis, which is a GPU-based algo-

rithm that solved the semiglobal sequence alignment with a bounded number of gaps

problem. We studied a number of approaches for using the GPU to solve this problem,

investigating di�erences in batching the sequence alignment jobs, and in computing the
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optimal alignment on the GPU and the CPU. The empirical results that we obtained

improved on the existing GPU work on this problem, obtaining a peak improvement

of 11× on our system over the CPU control experiments in the case where alignment

scores were calculated on the GPU, using the multiple text batching approach, and

for a particular input size. We also conducted a case study of the various approaches,

concluding that the best performance for this problem was to load as many jobs on the

GPU as possible, and to perform all calculation on the GPU, even in the case of com-

puting the optimal alignment backtracking, which is a sequential computation. We also

demonstrated that our algorithm's performance scaled as expected on GPU of di�erent

speci�cation.

In Chapter 6, we proposed GPU-MSI, a GPU-based algorithm that solves the match

spectral identi�cation problem for identifying protein spectra in a database. To our

knowledge, this is the �rst GPU-based solution to date. We gave analysis of the algo-

rithm using the ATGPU model, and successfully veri�ed the performance using experi-

ments. Our experiments shown that, for the di�erent input sizes tested, this algorithm

yielded a promising 22× improvement at its peak over the best performing CPU control

on our system.

We can therefore conclude that we have successfully proposed two GPU-based al-

gorithms that improve on existing solutions to bioinformatics tasks.

We now discuss future work.

For the ATGPU model that was introduced in Chapter 4, it would be desirable

in the future to carry out further experiments on other computational problems to

verify our model; We think there is potential to look for ways in which global memory

management on the ATGPU can be improved, in order to analyse global memory usage

in a better way. Furthermore, it is desirable to verify the model using other GPUs. It

is also interesting to consider extending the model to capture bank con�icts, though

these are hard to analyse and di�cult to predict. In particular, it would be good to

investigate the use of multiple streams, as it is common in CUDA applications to have

a compute stream and a memory stream operating concurrently, which can hide latency

of expensive data transfer operations and give further practical improvement. We would

also be interested in extending the model to capture a multiple GPU setting.

For GPUGapsMis, introduced in Chapter 5, it would be interesting in the future to

investigate di�erent data-parallel approaches to lower the amount of shared memory

required, as well as investigate task parallel methods. In addition to this, it would also

be interesting to look at ways to improve the performance of the backtracking phase,

possibly by using a task-parallel GPU kernel. We use only a single GPU device in
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this thesis, so it would be interesting to investigate using multiple GPU devices to test

further scalability, as well as to use higher speci�cation GPUs to verify the improved

speed up claim. Furthermore, it would be interesting to consider GPU variants for other

alignment problems, e.g. those that may replace BWA or Bowtie.

In the future, it would be interesting to investigate GPU-MSI (introduced in Chap-

ter 6) in calculating the diagonal score identi�cation problem, also in [53], which uses

the same match score identi�cation scheme that was studied, with extended inputs of

the spectra. This allows the algorithm to �nd PTMs at the edges of alignments and also

to score individual diagonal paths through the alignment graph. It is the application

of the match score identi�cation algorithm as the diagonal score identi�cation scoring

scheme, which is used for �ltering in other approaches, as detailed in Chapter 3. Addi-

tionally, it would be good to investigate this problem using real datasets of experimental

protein spectra, to see how the algorithm performs in a more likely real-world setting.

The limitations of the ATGPU model mean that bank con�icts and uneven work

on the cores make analysing some algorithms di�cult, as this is di�cult to predict. In

the future, it would be interesting to implement the index match algorithm and the list

match algorithm on the GPU, and to give analysis on an improved ATGPU model that

captures bank con�icts and uneven work loads, to investigate this problem further.
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Appendix A

Speci�cation of Hardware and

Software Setting for Experiments

In this thesis, we utilise the AMD A10 5800-K1 CPU, Nvidia GTX 6502 and the Nvidia

GTX 6803 GPUs installed in custom build workstations. Table A.1 gives the speci�ca-

tions of the machines.

Table A.1: Speci�cations of the custom build workstations used for experiments within
this thesis.

Item Machine 1 Machine 2

CPU AMD A10 5800-K AMD A10 5800-K
RAM 16GB 16GB
GPU Nvidia GTX 650 Nvidia GTX 680
OS Ubuntu Ubuntu
Other nVidia CUDA proprietary drivers nVidia CUDA proprietary drivers

14 cores, clocked at 3.8 GHz
22 SMs, 384 CUDA cores, clocked at 1.2 Ghz, 1GB device memory
38 SMs, 1536 CUDA cores, clocked at 1 Ghz, 2GB device memory
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Appendix B

Full Results Tables for

GPUGapsMis

This appendix contains the full results tables for all experiments detailed for GPUGapsMis

in Chapter 5. Several approaches are used:

• GPU-S-A computes only the alignment phase, with a single text on the GPU

(Table B.1)

• GPU-S-B computes the alignment phase and backtracking phase on the GPU, with

a single text on the GPU (Table B.2).

• GPU-S-H computes the alignment phase on the GPU with at most a single text,

and the backtracking phase on the CPU (Table B.3).

Likewise, the approaches GPU-M-A (Table B.4), GPU-M-B (Table B.5) and GPU-M-H

(Table B.6) compute for multiple text on the GPU. The approaches CPU-A and CPU-B

are used as control for alignment phase only, and for including backtracking phase,

respectively.
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Table B.1: Results for GPU-S-A

Patt Length 50 100
Latency (seconds) Throughput (MCUPS)

Speedup
Latency (seconds) Throughput(MCUPS)

Speedup
Num Seqs CPU-A GPU-S-A CPU-A GPU-S-A CPUGapsMis GPU-S-A CPUGapsMis GPU-S-A

1600 4.0 0.4 10.3 84.9 8.2 8.0 1.0 10.2 78.8 7.7
3200 7.9 1.0 10.4 85.3 8.2 15.9 2.0 10.2 78.8 7.7
6400 15.9 1.9 10.3 85.3 8.3 31.6 4.0 10.3 79.5 7.7
12800 31.8 3.8 10.3 86.3 8.4 63.6 8.1 10.2 79.8 7.8
25600 63.5 7.6 10.3 86.3 8.4 126.4 16.2 10.3 79.8 7.8
51200 127.3 15.2 10.3 86.3 8.4 253.7 32.5 10.2 79.8 7.8
102400 254.2 30.4 10.3 86.4 8.4 508.5 65.0 10.2 79.8 7.8
204800 509.0 60.7 10.3 86.4 8.4 1012.2 130.1 10.3 79.8 7.8

Patt Length 150 200
Latency (seconds) Throughput (MCUPS)

Speedup
Latency (seconds) Throughput (MCUPS)

Speedup
Num Seqs CPU-A GPU-S-A CPU-A GPU-S-A CPU-A GPU-S-A CPU-A GPU-S-A

1600 12.3 1.7 9.9 73.7 7.5 16.4 2.2 9.8 73.5 7.5
3200 23.7 3.3 10.2 73.8 7.2 33.0 4.4 9.8 73.6 7.5
6400 47.6 6.5 10.2 74.6 7.3 65.9 8.7 9.8 74.5 7.6
12800 94.7 13.0 10.3 74.7 7.3 131.4 17.3 9.8 74.5 7.6
25600 200.0 26.0 10.2 74.7 7.4 263.6 34.7 9.8 74.5 7.6
51200 380.8 52.0 10.2 74.7 7.3 527.3 69.4 9.8 74.5 7.6
102400 759.7 104.0 10.2 74.7 7.3 1053.3 138.8 9.8 74.5 7.6
204800 1525.0 207.9 10.2 74.7 7.3 2106.0 277.5 9.8 74.5 7.6
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Table B.2: Results for GPU-S-B

Patt Length 50 100
Latency (seconds) Throughput (MCUPS)

Speedup
Latency (seconds) Throughput(MCUPS)

Speedup
Num Seqs CPU-B GPU-S-B CPU-B GPU-S-B CPU-B GPU-S-B CPU-B GPU-S-B

1600 4.0 0.5 15.5 120.9 7.8 8.0 1.0 15.3 113.5 7.4
3200 7.9 1.0 15.5 121.0 7.8 15.9 2.1 15.3 113.5 7.4
6400 15.9 2.0 15.4 121.0 7.8 31.6 4.3 15.4 113.6 7.4
12800 31.9 4.0 15.4 121.0 7.8 63.7 8.6 15.3 113.5 7.4
25600 63.6 8.1 15.5 121.0 7.8 126.5 17.2 15.4 113.6 7.4
51200 127.5 16.2 15.4 121.0 7.8 253.9 34.3 15.3 113.6 7.4
102400 254.5 32.5 15.5 121.0 7.8 508.9 68.6 15.3 113.6 7.4
204800 509.7 65.0 15.4 121.0 7.8 1013.0 137.2 15.4 113.6 7.4

Patt Length 150 200
Latency (seconds) Throughput (MCUPS)

Speedup
Latency (seconds) Throughput (MCUPS)

Speedup
Num Seqs CPU-B GPU-S-B CPU-B GPU-S-B CPU-B GPU-S-B CPU-B GPU-S-B

1600 12.3 1.7 14.8 106.8 7.2 16.4 2.3 14.7 106.3 7.2
3200 23.7 3.4 15.3 106.8 7.0 33.0 4.6 14.7 106.3 7.2
6400 47.6 6.8 15.3 106.8 7.0 65.9 9.1 14.7 106.4 7.2
12800 94.7 13.6 15.4 106.8 6.9 131.5 18.2 14.7 106.4 7.2
25600 191.1 27.3 15.2 106.8 7.0 263.7 36.4 14.7 106.4 7.2
51200 381.0 54.5 15.3 106.8 7.0 527.6 72.8 14.7 106.4 7.2
102400 760.2 109.0 15.3 106.8 7.0 1053.8 145.7 14.7 106.4 7.2
204800 1525.9 218.2 15.3 106.7 7.0 2107.0 291.4 14.7 106.4 7.2
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Table B.3: Results for GPU-S-H

Patt Length 50 100
Latency (seconds) Throughput (MCUPS)

Speedup
Latency (seconds) Throughput(MCUPS)

Speedup
Num Seqs CPU-B GPU-S-H CPU-B GPU-S-H CPU-B GPU-S-H CPU-B GPU-S-H

1600 4.0 1.3 15.5 48.1 3.1 8.0 2.7 15.3 45.7 3.0
3200 7.9 2.6 15.5 48.1 3.1 15.9 5.3 15.3 45.7 3.0
6400 15.9 5.1 15.4 48.1 3.1 31.6 10.7 15.4 45.7 3.0
12800 31.9 10.2 15.4 48.1 3.1 63.7 21.3 15.3 45.7 3.0
25600 63.6 20.4 15.5 48.1 3.1 126.5 42.6 15.4 45.7 3.0
51200 127.5 40.9 15.4 48.1 3.1 253.9 85.2 15.3 45.7 3.0
102400 254.5 81.8 15.5 48.1 3.1 508.9 170.4 15.3 45.7 3.0
204800 509.7 163.5 15.4 48.1 3.1 1013.0 340.7 15.4 45.7 3.0

Patt Length 150 200

Latency (seconds) Throughput (MCUPS)
Speedup

Latency (seconds) Throughput (MCUPS)
Speedup

Num Seqs CPU-B GPU-S-H CPU-B GPU-S-H CPU-B GPU-S-H CPU-B GPU-S-H

1600 12.3 4.0 14.8 45.2 3.1 16.4 5.3 14.7 45.8 3.1
3200 23.7 8.1 15.3 45.2 3.0 33.0 10.6 14.7 45.7 3.1
6400 47.6 16.1 15.3 45.2 3.0 65.9 21.2 14.7 45.7 3.1
12800 94.7 32.2 15.4 45.2 2.9 131.5 42.4 14.7 45.7 3.1
25600 191.1 64.4 15.2 45.2 3.0 263.7 84.8 14.7 45.7 3.1
51200 381.0 128.8 15.3 45.2 3.0 527.6 169.6 14.7 45.7 3.1
102400 760.2 257.6 15.3 45.2 3.0 1053.8 339.2 14.7 45.7 3.1
204800 1525.9 515.3 15.3 45.2 3.0 2107.0 678.3 14.7 45.7 3.1



A
pp

endix
B
.
F
ull

R
esults

T
ables

for
G
P
U
G
apsM

is
129

Table B.4: Results for GPU-M-A

Patt Length 50 100
Latency (seconds) Throughput (MCUPS)

Speedup
Latency (seconds) Throughput(MCUPS)

Speedup
Num Seqs CPU-A GPU-M-A CPU-A GPU-M-A CPU-A GPU-M-A CPU-A GPU-M-A

1600 4.0 0.4 10.3 105.4 10.2 8.0 0.8 10.2 99.5 9.8
3200 7.9 0.8 10.4 109.0 10.5 15.9 1.6 10.2 99.8 9.8
6400 15.9 1.5 10.3 109.7 10.6 31.6 3.2 10.3 101.0 9.8
12800 31.8 2.9 10.3 111.7 10.8 63.6 6.4 10.2 101.5 9.9
25600 63.5 5.9 10.3 111.7 10.8 126.4 12.8 10.3 101.5 9.9
51200 127.3 11.8 10.3 111.3 10.8 253.7 25.9 10.2 100.4 9.8
102400 254.2 23.2 10.3 113.2 11.0 508.5 50.5 10.2 102.9 10.0
204800 509.0 46.3 10.3 113.2 11.0 1012.2 101.0 10.3 102.9 10.0

Patt Length 150 200
Latency (seconds) Throughput (MCUPS)

Speedup
Latency (seconds) Throughput (MCUPS)

Speedup
Num Seqs CPU-A GPU-M-A CPU-A GPU-M-A CPU-A GPU-M-A CPU-A GPU-M-A

1600 12.3 1.2 9.9 101.6 10.3 16.4 1.8 9.8 91.5 9.3
3200 23.7 2.4 10.2 102.9 10.0 33.0 3.5 9.8 91.6 9.4
6400 47.6 4.7 10.2 104.3 10.2 65.9 6.9 9.8 92.7 9.5
12800 94.7 9.3 10.3 104.4 10.2 131.4 13.9 9.8 92.8 9.4
25600 191.0 18.6 10.2 104.5 10.3 263.6 27.8 9.8 92.8 9.5
51200 380.8 37.6 10.2 103.2 10.1 527.3 56.1 9.8 92.1 9.4
102400 759.7 73.4 10.2 105.7 10.4 1053.3 110.0 9.8 93.96 9.58
204800 1525.0 146.8 10.2 105.8 10.4 2106.0 219.9 9.8 94.0 9.6
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Table B.5: Results for GPU-M-B

Patt Length 50 100
Latency (seconds) Throughput (MCUPS)

Speedup
Latency (seconds) Throughput(MCUPS)

Speedup
Num Seqs CPU-B GPU-M-B CPU-B GPU-M-B CPU-B GPU-M-B CPU-B GPU-M-B

1600 4.0 0.4 15.5 154.2 10.0 8.0 0.8 15.3 145.3 9.5
3200 7.9 0.8 15.5 158.7 10.2 15.9 1.7 15.3 146.3 9.6
6400 15.9 1.5 15.4 160.4 10.4 31.6 3.3 15.4 146.5 9.5
12800 31.9 3.1 15.4 160.6 10.4 63.7 6.6 15.3 146.7 9.6
25600 63.6 6.1 15.5 160.9 10.4 126.5 13.3 15.4 146.9 9.6
51200 127.5 12.2 15.4 161.1 10.4 253.9 26.5 15.3 146.9 9.6
102400 254.5 24.4 15.5 161.1 10.4 508.9 53.0 15.3 147.0 9.6
204800 509.7 48.8 15.4 161.1 10.4 1013.0 106.0 15.4 147.0 9.6

Patt Length 150 200

Latency (seconds) Throughput (MCUPS)
Speedup

Latency (seconds) Throughput (MCUPS)
Speedup

Num Seqs CPU-B GPU-M-B CPU-B GPU-M-B CPU-B GPU-M-B CPU-B GPU-M-B

1600 12.3 1.2 14.8 149.2 10.1 16.4 1.8 14.7 134.5 9.1
3200 23.7 2.4 15.3 150.9 9.9 33.0 3.6 14.7 134.0 9.1
6400 47.6 4.8 15.3 150.9 9.9 65.9 7.2 14.7 134.6 9.2
12800 94.7 9.6 15.4 151.1 9.8 131.5 14.4 14.7 134.6 9.1
25600 191.1 19.3 15.2 151.0 9.9 263.7 28.8 14.7 134.7 9.2
51200 381.0 38.5 15.3 151.1 9.9 527.6 57.6 14.7 134.6 9.2
102400 760.2 77.1 15.3 151.1 9.9 1053.8 115.1 14.7 134.6 9.2
204800 1525.9 154.1 15.3 151.2 9.9 2107.0 230.2 14.7 134.7 9.2
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Table B.6: Results for GPU-M-H

Patt Length 50 100
Latency (seconds) Throughput (MCUPS)

Speedup
Latency (seconds) Throughput(MCUPS)

Speedup
Num Seqs CPU-B GPU-M-H CPU-B GPU-M-H CPU-B GPU-M-H CPU-B GPU-M-H

1600 4.0 1.3 5.5 45.8 3.0 8.0 2.5 6.1 49.53 3.2
3200 7.9 2.4 11.1 50.4 3.3 15.9 4.6 12.2 53.4 3.5
6400 15.9 4.6 22.2 53.8 3.5 31.6 9.0 24.4 54.3 3.5
12800 31.9 8.9 44.3 55.0 3.6 63.7 17.6 49.0 55.4 3.6
25600 63.6 17.5 88.8 56.1 3.6 126.5 34.8 97.5 56.0 3.6
51200 127.5 34.7 177.1 56.6 3.7 253.9 69.3 195.6 56.2 3.7
102400 254.5 69.2 352.5 56.8 3.7 508.9 138.5 391.6 56.2 3.7
204800 509.7 138.4 712.0 56.8 3.7 1013.0 276.8 779.5 56.3 3.7

Patt Length 150 200

Latency (seconds) Throughput (MCUPS)
Speedup

Latency (seconds) Throughput (MCUPS)
Speedup

Num Seqs CPU-B GPU-M-H CPU-B GPU-M-H CPU-B GPU-M-H CPU-B GPU-M-H

1600 12.3 3.4 7.3 53.8 3.6 16.4 4.5 8.3 54.3 3.7
3200 23.7 6.4 14.6 56.5 3.7 33.0 8.7 16.6 55.6 3.8
6400 47.6 12.7 29.0 57.3 3.8 65.9 17.1 33.4 56.8 3.9
12800 94.7 25.2 58.0 57.7 3.8 131.5 33.8 66.3 57.4 3.9
25600 191.1 50.3 116.4 57.9 3.8 263.7 67.3 133.9 57.6 3.9
51200 381.0 100.2 232.5 58.0 3.8 527.6 134.3 268.0 57.7 3.9
102400 760.2 200.4 464.5 58.1 3.8 1053.8 268.7 532.2 57.7 3.9
204800 1525.9 400.3 928.5 58.2 3.8 2107.0 536.9 1062.8 57.7 3.9



Appendix C

Full Results Tables for GPU-MSI

This appendix contains the full results tables for all experiments detailed for GPU-MSI

in Chapter 6.
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Table C.1: Results for GPU-MSI

Num Lib Spectra 250 500
Length CPU-MSI-V CPU-MSI-I GPU-MSI Speedup on GPU CPU-MSI-V CPU-MSI-I GPU-MSI Speedup on GPU
50 395 332 127 3 811 695 252 3
75 583 499 128 4 1211 1078 253 4
100 794 662 129 5 1645 1377 254 5
125 961 834 130 6 1999 1782 255 7
150 1176 1015 131 8 2440 2099 256 8
175 1358 1173 132 9 2905 2477 257 10
200 1590 1347 132 10 3270 2795 258 11

Num Lib Spectra 750 1000
Length CPU-MSI-V CPU-MSI-I GPU-MSI Speedup on GPU CPU-MSI-V CPU-MSI-I GPU-MSI Speedup on GPU
50 1211 1092 376 3 2837 7238 500 6
75 1822 1643 377 4 4244 8326 501 8
100 2518 2185 371 6 5622 10944 502 11
125 3117 2768 380 7 6813 13909 504 14
150 3625 3311 371 9 8361 16593 505 17
175 4272 3855 382 10 9931 19081 507 20
200 5022 4437 383 12 11092 21774 508 22


