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Abstract. Ensemble forecasting has gained popularity in the field of numerical medium-range weather prediction as a means

of handling the limitations inherent to predicting the behaviour of high dimensional, nonlinear systems, that have high sen-

sitivity to initial conditions. Through small strategical perturbations of the initial conditions, and in some cases, stochastic

parameterization schemes of the atmosphere-ocean dynamical equations, ensemble forecasting allows one to sample possible

future scenarii in a Monte-Carlo like approximation. Results are generally interpreted in a probabilistic way by building a5

predictive density function from the ensemble of weather forecasts. However, such a probabilistic interpretation is regularly

criticized for not being reliable, because of the chaotic nature of the dynamics of the atmospheric system as well as the fact

that the ensembles of forecasts are not, in reality, produced in a probabilistic manner. To address these limitations, we propose

a novel approach: a possibilistic interpretation of ensemble predictions, taking inspiration from fuzzy and possibility theories.

Our approach is tested on an imperfect version of the Lorenz 96 model and results are compared against those given by a stan-10

dard probabilistic ensemble dressing. The possibilistic framework reproduces (ROC curve, resolution) or improves (ignorance,

sharpness, reliability) the performance metrics of a standard univariate probabilistic framework.

1 Introduction

As a result of its chaotic dynamics, the prediction of the atmospheric system is particularly sensitive to the limited resolution

in the initial conditions (ICs), discrepancies introduced by measurement error, computational truncation and an incomplete de-15

scription of the system’s dynamics (closure problem). Ensemble predictions have consequently been developed to characterize

the skill of single numerical predictions of the future state of the atmosphere. As suggested by Leith (1974), assuming that the

error field is dominated by observational error (i.e. error on the ICs propagated forward in the model), we can perturb M times

the best estimate for the ICs, run forward the model from each IC and interpret the M results in a Monte-Carlo like fashion.

In other words, we use the local density of the resulting M predictions (or members) to quantify the plausibility of a given20

future scenario. Instead of the traditional point deterministic predictions, probabilistic predictions are thus realized. Today, the

ICs are perturbed according to various schemes, designed to sample in a minimalist way systems of millions of dimensions

(like numerical weather global models). These schemes generally select the initial perturbations leading to the fastest growing

perturbations (e.g. singular vectors (Hartmann et al., 1995)).
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Yet, in practice, the assumption of a near-perfect model, where observational error is more significant than model error, is25

not always true. Thus, individual member trajectories are not expected to stay in the convex hull of the ensemble after a few

hours (Toth and Kalnay, 1997; Orrell, 2005). While ensemble predictions is built on the idea that the range of the ensemble

provides an idea of the the possible futures and that its variance is representative of the skill of the single deterministic forecast,

in practice and despite the introduction of stochastic parameterization schemes to represent model error (Buizza et al., 1999),

the operational ensembles are overconfident: the spread is typically too small (Wilks and Hamill, 1995; Buizza, 2018). In30

particular, such probabilistic predictions are not reliable; on average, the probability derived for a given event does not equal

the frequency of observation. Although ensemble-based probabilistic predictions present more skill than the climatology, they

generally cannot be used as actionable probabilities, for the sheer fact that, by design (limited EPS size, biased sampling of

ICs) and by context (flow-dependent regime error, strongly nonlinear system) they do not represent the true probabilities of

the system at hand (Legg and Mylne, 2004; Orrell, 2005; Bröcker and Smith, 2007, 2008; Smith, 2016). This is all the more35

true for extreme events, that, for dynamical reasons, cannot be associated to a high density of ensemble members; such events

indeed result from nonlinear interactions at small scales, which cannot be reproduced in number in a limited-size EPS (Legg

and Mylne, 2004).

A range of post-processing methods have been developed to tackle these limitations (Vannitsem et al., 2018). The classical

Bayesian model averaging (BMA; Raftery et al. (2005)) and non-homogeneous Gaussian regression (Gneiting et al., 2005)40

fit an optimized (sum of) parametric distribution(s) onto the ensemble of predictions. More recently, techniques involving

recalibration by means of the probability integral transform (Graziani et al., 2019) or by using the actual probability of success

of a given probabilistic threshold (Smith, 2016) were designed to address the lack of reliability. Allen et al. (2019) introduced

a regime-dependent adaptation of the traditional post-processing parametric methods, to tackle the issue of possibly significant

model error. All ensemble post-processing techniques are trained on an archive set of (ensemble, observation) pairs, using45

the same model. Most often, the objective function to optimize is a performance score, like the negative log-likelihood or the

continuous ranked probability score, whose individual results for each couple (ensemble, verification) are aggregated over the

whole archive.

However, if post-processing globally improves the skill of common events, it deteriorates the results for extreme events

(Mylne et al., 2002), which generally, for predictability reasons, cannot be associated to a high density of ensemble members50

(Legg and Mylne, 2004).

For all these reasons, we may wonder, echoing Bröcker and Smith (2008), whether the probability distribution (PDF) is the

best representation of the valuable information contained in an EPS. Rather, the description of possibility theory in Dubois

et al. (2004): "a weaker theory than probability (...) also relevant in non-probabilistic settings where additivity no longer makes

sense and not only as a weak substitute for additive uncertainty measures" presents new opportunities, in a context where where55

conceptual and practical limitations restrict the applicability of a density-based (i.e. additive) interpretation of EPS.

This is what we investigate in this work. Namely: can we design a possibilistic framework for interpreting EPS that would

perform at least as well as a standard probabilistic approach for most of the performance metrics, and improve the known

shortcomings of the probabilistic approach? We investigate this question by means of numerical experiments on a commonly-

2



used surrogate model of the atmospheric dynamics, the Lorenz 96 system. Section 2 introduces the basics of possibility theory,60

then used to develop an original possibilistic framework for the interpretation of ensemble of predictions in Sec. 3. This

framework is tested on the imperfect Lorenz 96 model in Sec. 4. A conclusion follows.

2 Possibility theory

Possibility theory is an uncertainty theory developed by Zadeh (1978) from fuzzy set theory. It is designed to handle in-

complete information and represent ignorance. Considering a system whose state is described by a variable x ∈ X , the65

possibility distribution π : X 7→ [0,1] represents the state of knowledge of an agent about the current state of the system.

Given an event A= {x ∈ SA}, the possibility and necessity measures are defined respectively as: Π(A) = supx∈SA π(x) and

N(A) = 1−Π(Ā) where Ā represents the complementary event of A. Π(A) and N(A) satisfy the following axioms:

1. Π(X ) = 1 and Π(∅) = 0

2. Π(A∪B) = max
(
Π(A),Π(B)

)
(similar to N(A∩B) = min

(
N(A),N(B)

)
), where B = {x ∈ SB}.70

The following conventions apply (Cayrac et al., 1994):

a. N(A) = 1⇔Π(Ā) = 0 indicates that A has to happen, it is necessary;

b. 0<N(A)< 1 is a tentative acceptance of A to a degree N(A), since min
(
N(A),N(Ā)

)
= 0 from axiom 2 (Ā is not

necessary at all);

c.
(
Π(A) = Π(Ā) = 1

)
⇔
(
N(A) =N(Ā) = 0

)
represents total ignorance: the evidence doesn’t allow us to conclude if75

A is rather true or false;

Possibility and probability distributions are interconnected, through the description of uncertainty by imprecise probabili-

ties (c.f. the Dempster-Shafer Theory of Evidence’s framework (Dempster, 2008)). Under specific constraints, an imprecise

distribution can degenerate into either a probability or a possibility distribution. One can consequently assess the degree of

consistency of a possibility and a probabilistic distributions. Among the definitions of consistency (Delgado and Moral, 1987),80

we retain here the view of Dubois et al. (2004), that a probability measure P and possibility measure Π are consistent if the

probability of all possible events A satisfies P (A)≤Π(A). It implies, from the definition of necessity, that the probability

P (A) is bounded as well from below by the necessity measure: N(A)≤ P (A)≤Π(A). Necessity and possibility measures

can consequently be viewed as upper and lower limits on the probability of a given event.

3 Possibilistic framework for EPS interpretation85

The statistical post-processing of EPS generates forecasts in the form of predictive probability distributions p(x|x̃,θ), noted

p(x|x̃)θ, where x̃ = {x̃1, ..., x̃M} is the ensemble, θ a vector of parameters and p a (sum of) parametric distribution(s). BMA
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distributions are weighted sums of M parametric probability distributions, each one centered around a linearly corrected

ensemble member. In this work, the members are exchangeable, so the mixture coefficients and parametric distributions do

not vary between members and the BMA comes down to an ensemble dressing procedure. We compare our method against a90

Gaussian ensemble dressing, whose predictive probability distribution reads:

p(x|x̃)θ =
1

M

M∑
i=1

N (ax̃i +ω,σ2) (1)

where N (µ,v) is the normal distribution of mean µ and variance v. The parameters θ = {a,ω,σ} are inferred through the

optimization of a performance metric, e.g. the ignorance score (Roulston and Smith, 2002), or negative log-likelihood, a

strictly proper1 and local2 logarithmic score.95

Here, instead of performing a probabilistic ensemble dressing, we can perform a possibilistic ensemble dressing: a possi-

bilistic membership function is dressed around each ensemble member first shifted and scaled. Similarly to its probabilistic

twin, the ith possibility kernel is assumed to represent the possibility distribution of the true state of the system, given the ob-

servation of x̃i. Because we have several member observations i= {1, ...,M} and there is only one truth (the actual system’s

state), we can interpret it as a union (OR) of possibilities. Fuzzy set theory offers several definitions for computing the distribu-100

tion resulting of the union of two fuzzy distributions. We adopt here the max-sum definition: πA∪B(x) = max
(
πA(x),πB(x)

)
,

although some of our tests, not presented here, show that alternative definitions do not significantly change results.

Gaussian kernels exp−
1
2u

2
i are thus fitted to each member x̃i, with ui = x−(ax̃i+ω)

σ , a the scaling factor, ω the shifting of

the kernels’ peaks from the individual member x̃i and σ a parameter accounting for the width of the individual kernels. The

resulting possibilistic distribution is given by the sum, in a possibilistic manner, of all the individual kernels:105

π(x) = ∪i=1...M exp−
(x−(ax̃i+ω))2

2σ2 = sup
i=1...M

exp−
(x−(ax̃i+ω))2

2σ2 (2)

For any event of interest A= {x ∈ SA}, we can extract the possibility and necessity measures Π(A,θ) and N(A,θ) (noted

Πθ(A) and Nθ(A)), given the knowledge encoded in π(x,θ) (noted πθ). Πθ(A) evaluates to what extent A is logically con-

sistent with πθ whereas Nθ(A) evaluates to what extent A is certainly implied by πθ. Ideally, this pair falls in an area of the

possibilistic diagram (N,Π) that is close to one of the three notable points: (1,1) for A certain; (0,0) for Ā certain; (0,1) for110

total ignorance, i.e. both A and Ā are possible but none is necessary given π. Points on the line N = 0 are in favor of Ā, the

more favorable the closer to (0,0); points on the line Π = 1 are in favor of A, the more favorable the closer to (1,1). Other

areas of the diagram are inconsistent with the axioms defining Π and N .

From the geometric interpretation given by the possibilistic diagram, several options are available for scoring each point(
Nθ(A),Πθ(A)

)
that is, for assessing the quality of the prediction given by the pair

(
Nθ(A),Πθ(A)

)
. A brute-force method is115

to minimize the distance to the correct pole (e.g. (1,1) for A true). Yet, such an approach would try and push events towards

(1,1) or (0,0) on the possibilistic diagram, thus ignoring the ignorance pole and, as a result, the idea that some events are

impossible to predict from a particular EPS set. A more complete method could, for instance, also consider the rank r of the
1i.e. it takes its optimal value only when the forecast probability is equal to the true distribution of the system.
2i.e. it does not depend on the full forecast distribution, but only on the predictive probability associated to the true system’s state.
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EPS w.r.t.A. Namely, if the actual observation x∗ is in SA, the associated point should belong to the line Π = 1 but the distance

to the ignorance pole (1,0) should be proportional to r. The same applies for x∗ /∈ SA; the associated point should belong to120

line N = 0 with the distance to (1,0) proportional to rĀ =M − rA. Thus, an observation x∗ ∈ SA associated to an erroneous

EPS (r→ 0) will fall close to the ignorance pole, suggesting that we cannot trust the raw ensemble. A score verifying these

requirements is:

Si(θ) =

|Nθ(A)− r
M |+ |Πθ(A)− 1|,x∗ ∈ SA

Nθ(A) + |Πθ(A)− r
M |,x

∗ /∈ SA

Given a training set containing n pairs (x̃i,x
∗
i ), the final empirical score is: S(θ) = 1

n

∑n
i=1Si(θ) and training consists of125

finding the θ that minimizes S.

4 Application to the imperfect Lorenz 96 system

To test our framework, we reproduce the experiment designed by Williams et al. (2014), who used an imperfect L96 model

(Lorenz, 1996) to generate ensemble predictions and investigate the performance of ensemble post-processing methods for the

prediction of extreme events. The training sets consist of 4000 independent pairs of EPS of size M = 12 and the associated130

observations, for each lead time τ = {1,3,5,7} days3. The EPS have beforehand been pre-processed to remove the constant

bias. The testing set consists of another 10,000 independent pairs of bias-corrected EPS and associated observations, for each

lead time. We consider the prediction of an extreme event: Ae = {x≤ q0.05}, where q0.05 is the 0.05 quantile of the climatic

distribution of x and a common event Ac = {q0.5 ≤ x≤ q0.6} . Results are compared against those given by a probabilistic

post-processing, namely a Gaussian ensemble dressing.135

We first assess the performance of each interpretation in terms of the empirical ignorance score relative to the climatology:

Sn(pθ, c) =
1

n

n∑
i=1

(
IGN(rθ,x

∗
i )− IGN(c,x∗i )

)
=− 1

n

n∑
i=1

log2

(rθ(x∗i )
c(x∗i )

)
(3)

where, following the work of Bröcker and Smith (2008), in the probabilistic framework, the predictive probability pθ(x∗|x̃) is

blended with the climatology c(x∗) of the verification x∗: rθ(x∗) = αpθ(x
∗) + (1−α)c(x∗). Our possibilistic framework is

a mapping RM 7→ [0,1]× [0,1], while the ignorance applies to a probabilistic prediction RM 7→ [0,1]. We consequently need140

to find a mapping from the dual measures N and Π to an equivalent probability. Since possibility and necessity measures can

be seen as upper and lower bounds of a consistent probability measure, we can write P (A) = αN(A) + (1−α)Π(A) with

α ∈ [0,1] for any event A of interest. Varying α allows one to browse across the range of associated probabilities, consistent

with the possibility distribution π. We use this technique to compute the ignorance score of the possibilistic framework and

compare its range to the performance of a probabilistic Gaussian ensemble dressing. Both frameworks are characterized by145

negative relative ignorance, confirming that they have a predictive added-value over climatology. The difference in ignorance

equals the difference in expected returns that one would get by placing bets proportional to their probabilistic forecasts.
3τ = 1 corresponds to 0.2 model time units after initialization and can be associated with approximately 1 day in the real world (Lorenz, 1996).
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As shown in Figure 1, for both types of events, the possibilistic framework performs as well or slightly better than the

probabilistic, for all α ∈ [0,1]. The slight increase in performance remains relatively constant or even improve (extreme event

case) with lead time. The relative ignorance of the possibilistic framework has a variance (due to the range of α) that grows150

with the lead time, as expected.

To understand better the operational consequences of such results, we report in Figure 2 the relative operating characteristic

(ROC) of both frameworks at lead times of 3 and 7 days. Given a binary prediction (yes/no w.r.t. eventA), the ROC plots the hit

rate (HR; fraction of correctly predicted A over all A observed) versus the false alarm rate (FA; fraction of wrongly predicted

A over all Ā observed). We use increasing thresholds pt ∈ [0,1] for making the decision (yes if P (A)≥ pt) and report the155

associated HR and FA in the graph. Again, we vary α to see the range of HR and FA covered for each pt by the possibilistic

prediction (N,Π). The resulting points form a curve (probabilistic approach) or a cloud (possibilistic method), which are a

visual way to assess the ability of a forecast system to discriminate between events and non events.

The possibilistic curves all fit or are very close to the probabilistic curves, for both extreme and common events and for

all lead times. The main difference is their extension: the possibilistic framework remains located in areas of relatively small160

FA, compared to the results of the probabilistic approach for similar thresholds pt. This results indicates that the HR remains

smaller than what can be achieved by the probabilistic framework, showing lower skill. The fact that the possibilistic curves

yet lies on the probabilistic ROC curves shows that the reason behind this discrepancy is not a lack of discrimination between

events and non-events; for a given FA, both methods provide the same HR. The reason is connected to a bias in probabilities

for the possibilistic approach towards zero and towards 1: the possibilistic framework is very sharp, as shown on the diagrams165

in Figure 3. Because they are not blended with climatology, a large part of the predictions have zero probability associated

to the event of interest, instead of a minimal one, which prevents the current implementation of the possibilistic framework

from reaching higher HR. Side experimentation not reproduced here has shown that weighting the scores attributed to observed

event A in the global empirical training score allows to reproduce fully the probabilistic curve for each lead time.

Reliability diagrams presented on Figure 4 plot the observed conditional frequencies against the corresponding forecast170

probabilities for lead time 3 and 7 days. They illustrate how well the predicted probabilities of an event correspond to their

observed conditional frequencies. The predictive model is all the more reliable (i.e. actionable) when the associated curve is

close to the diagonal. Noting that the diagonal represents perfect reliability, the distance to the diagonal indicates underforecast-

ing (curves above) or overforecasting (curves below). Distance above the horizontal climatology line indicates a system with

resolution, a system that does discriminate between events and non-events. The cones defined by the no-skill line (half-way175

between the climatology and perfect reliability) and the vertical climatology line allow us to define areas where the forecast

system is skilled.

The probabilistic curves are globally aligned with the perfect reliability line, yet with growing lead time, they are restricted

to small probabilities only (because of wider EPS or pure predictability issues such as mentioned for extreme events). On the

contrary, the reliability plots associated with the possibilistic approach cover all range of probabilities. This approach tends to180

be underforecasting (resp. overforecasting) for small (resp. large) probabilities, especially for the common event. A large part

of the area covered by the possibilistic solutions is contained in the skill cones for the rare event, denoting a skilled predictive

6



system for all but very low predictive probabilities. Results are less interesting for the common event, where the possibilistic

framework leads to a flatter diagram, indicating less resolution, especially with larger lead times.

5 Conclusions185

In this work, we have presented a possibilistic framework which allows us to interpret ensemble predictions without the notion

of member density, or additivity that proved to be incoherent with the conditions in which EPS were built. Preliminary results

show that such a framework can be used to reproduce the probabilistic performances (ROC curves, resolution) and even slightly

improve some of them (ignorance, sharpness, reliability). Moreover, the proposed approach addresses some of the well-known

limitations of the probabilistic framework (reliability, for example). The added-value of this framework is particularly tangible190

for extreme events. Further work is needed to improve the design of the possibilistic distributions, by means of dynamical

information or statistical priors. Besides, developments regarding the understanding and the operational use of such ’fuzzy’

results are necessary.
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Figure 1. Ignorance relative to the climatology computed for the possibilistic (colored lines) and probabilistic (black lines) frameworks, in

the case of the prediction of an extreme (EE; solid line) and a common (NEE; dashed line) event of interest, as defined in Sec. 4. The upper

and lower bounds, as well as the median, obtained by considering that N(A) ≤ P (A) ≤ Π(A) in the possibilistic framework are reported.

Figure 2. ROC curves for the extreme event (left side) and common event (right side) at lead time 3 days (top) and 7 days (bottom). The

probabilistic results are reported by means of black circles and the possibilistic results by means of colored crosses. The larger the symbol,

the larger the threshold probability used to compute HR and FA.
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Figure 3. Normalized histograms of the equivalent forecast probabilities in the possibilistic framework for the observations of the extreme
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Figure 4. Reliability diagrams for the extreme event (left side) and common event (right side) at lead time 3 (top) and 7 days (bottom).

The probabilistic results are reported in black line, while the upper, median and lower bounds of the possibilistic ones are in thinner red

lines. Standards elements of comparison are reported in the diagram, as described in Sec. 4, namely the diagonal (perfect reliability), the

climatological reference (horizontal dotted) and the cones of skill (inside the dashed-dotted secants).

Bröcker, J. and Smith, L. A.: Increasing the reliability of reliability diagrams, Weather and forecasting, 22, 651–661, 2007.

Bröcker, J. and Smith, L. A.: From ensemble forecasts to predictive distribution functions, Tellus A: Dynamic Meteorology and Oceanogra-

phy, 60, 663–678, 2008.

Buizza, R.: Ensemble forecasting and the need for calibration, in: Statistical Postprocessing of Ensemble Forecasts, pp. 15–48, Elsevier,205

2018.

Buizza, R., Milleer, M., and Palmer, T. N.: Stochastic representation of model uncertainties in the ECMWF ensemble prediction system,

Quarterly Journal of the Royal Meteorological Society, 125, 2887–2908, 1999.

9



Cayrac, D., Dubois, D., Haziza, M., and Prade, H.: Possibility theory in" Fault mode effect analyses". A satellite fault diagnosis application,

in: Proceedings of 1994 IEEE 3rd International Fuzzy Systems Conference, pp. 1176–1181, IEEE, 1994.210

Delgado, M. and Moral, S.: On the concept of possibility-probability consistency, Fuzzy sets and Systems, 21, 311–318, 1987.

Dempster, A. P.: Upper and lower probabilities induced by a multivalued mapping, in: Classic Works of the Dempster-Shafer Theory of

Belief Functions, pp. 57–72, Springer, 2008.

Dubois, D., Foulloy, L., Mauris, G., and Prade, H.: Probability-possibility transformations, triangular fuzzy sets, and probabilistic inequalities,

Reliable computing, 10, 273–297, 2004.215

Gneiting, T., Raftery, A. E., Westveld III, A. H., and Goldman, T.: Calibrated probabilistic forecasting using ensemble model output statistics

and minimum CRPS estimation, Monthly Weather Review, 133, 1098–1118, 2005.

Graziani, C., Rosner, R., Adams, J. M., and Machete, R. L.: Probabilistic Recalibration of Forecasts, arXiv preprint arXiv:1904.02855, 2019.

Hartmann, D., Buizza, R., and Palmer, T. N.: Singular vectors: The effect of spatial scale on linear growth of disturbances, Journal of the

atmospheric sciences, 52, 3885–3894, 1995.220

Legg, T. and Mylne, K.: Early warnings of severe weather from ensemble forecast information, Weather and Forecasting, 19, 891–906, 2004.

Leith, C.: Theoretical skill of Monte Carlo forecasts, Monthly Weather Review, 102, 409–418, 1974.

Lorenz, E. N.: Predictability: A problem partly solved, in: Proc. Seminar on predictability, vol. 1, 1996.

Mylne, K., Woolcock, C., Denholm-Price, J., and Darvell, R.: Operational calibrated probability forecasts from the ECMWF ensemble

prediction system: implementation and verification, in: Preprints of the Symposium on Observations, Data Asimmilation and Probabilistic225

Prediction, pp. 113–118, 2002.

Orrell, D.: Ensemble forecasting in a system with model error, Journal of the atmospheric sciences, 62, 1652–1659, 2005.

Raftery, A. E., Gneiting, T., Balabdaoui, F., and Polakowski, M.: Using Bayesian model averaging to calibrate forecast ensembles, Monthly

weather review, 133, 1155–1174, 2005.

Roulston, M. S. and Smith, L. A.: Evaluating probabilistic forecasts using information theory, Monthly Weather Review, 130, 1653–1660,230

2002.

Smith, L. A.: Integrating information, misinformation and desire: improved weather-risk management for the energy sector, in: UK Success

Stories in Industrial Mathematics, pp. 289–296, Springer, 2016.

Toth, Z. and Kalnay, E.: Ensemble forecasting at NCEP and the breeding method, Monthly Weather Review, 125, 3297–3319, 1997.

Vannitsem, S., Wilks, D. S., and Messner, J.: Statistical postprocessing of ensemble forecasts, Elsevier, 2018.235

Wilks, D. S. and Hamill, T. M.: Potential economic value of ensemble-based surface weather forecasts, Monthly weather review, 123, 3565–

3575, 1995.

Williams, R., Ferro, C., and Kwasniok, F.: A comparison of ensemble post-processing methods for extreme events, Quarterly Journal of the

Royal Meteorological Society, 140, 1112–1120, 2014.

Zadeh, L. A.: Fuzzy sets as a basis for a theory of possibility, Fuzzy sets and systems, 1, 3–28, 1978.240

10


