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Abstract

Background: In clinical research, there is an increasing interest in joint modelling of longitudinal and time-to-event
data, since it reduces bias in parameter estimation and increases the efficiency of statistical inference. Inference and
prediction from frequentist approaches of joint models have been extensively reviewed, and due to the recent
popularity of data-driven Bayesian approaches, a review on current Bayesian estimation of joint model is useful to
draw recommendations for future researches.

Methods: We have undertaken a comprehensive review on Bayesian univariate and multivariate joint models. We
focused on type of outcomes, model assumptions, association structure, estimation algorithm, dynamic prediction
and software implementation.

Results: A total of 89 articles have been identified, consisting of 75 methodological and 14 applied articles. The most
common approach to model the longitudinal and time-to-event outcomes jointly included linear mixed effect models with
proportional hazards. A random effect association structure was generally used for linking the two sub-models. Markov Chain
Monte Carlo (MCMC) algorithms were commonly used (93% articles) to estimate the model parameters. Only six articles
were primarily focused on dynamic predictions for longitudinal or event-time outcomes.

Conclusion: Methodologies for a wide variety of data types have been proposed; however the research is limited if the
association between the two outcomes changes over time, and there is also lack of methods to determine the association
structure in the absence of clinical background knowledge. Joint modelling has been proved to be beneficial in producing
more accurate dynamic prediction; however, there is a lack of sufficient tools to validate the prediction.

Keywords: Joint models, Longitudinal outcomes, Time-to-event, Dynamic prediction, Bayesian estimation

Background
Over the last decade, there has been an increasing inter-
est in joint models for longitudinal and time-to-event
outcome data, especially in medical research, due to
their ability to predict individual-level patients’ risks. A
joint model consists of two linked sub-models. The rela-
tionship between the longitudinal and time-to-event

outcomes is represented by an association structure, a
function that links the longitudinal and time-to-event
sub-models. A commonly used longitudinal sub-model
is the linear mixed effect model, and the time-to-event
sub-model is often the Cox proportional hazards model.
Joint modelling reduces the biases of parameter esti-

mates by accounting for the association between the lon-
gitudinal and time-to-event data [1]. In clinical trials,
this leads to more efficient estimation of the treatment
effect on both time-to-event and longitudinal outcomes.
It also quantifies the strength of the association between
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longitudinal and time-to-event outcomes. Joint models
have been used in several areas in the medical literature
to study the relation between longitudinal biomarkers
and a time-to-event of interest, e.g. AIDS studies [2–4]
and cancer [5, 6].
Estimating the effect of longitudinal outcomes on the

risk of the event can be carried out using a frequentist
or Bayesian approach. While frequentist approaches are
common and well understood, employing a Bayesian ap-
proach to joint models allows for a more flexible estima-
tion as well as using related historical information may
improve the analysis. The maximum-likelihood approach
is the standard estimation approach in frequentist
framework [7], while the Bayesian approaches are gener-
ally based on Markov chain Monte Carlo (MCMC) sam-
pling algorithms (e.g. [8, 9]). The methods and inference
of the joint model in general are explained in details in
several tutorial papers [10–12].
A review of joint models primarily focussing on fre-

quentist approaches was carried out by Hickey et al. [1].

However, due to the recent popularity of data-driven ap-
proaches in medical research, there is a need for a com-
prehensive review of joint models under the Bayesian
framework. In this review, we summarise currently avail-
able methodology, fitting algorithms, dynamic prediction
approaches and software for joint models proposed
within the Bayesian framework.

Methods
The search included articles published up to July 2019,
and we have searched in three databases; Medline, Sco-
pus and Web of Science. The study identification jour-
ney is shown in Fig. 1. In each database, four different
keyword searches were applied to identify the articles;
“joint model AND Bayesian” or “joint models AND
Bayesian” or “joint modelling AND Bayesian” or “ (longi-
tudinal and survival) AND Bayesian”. To identify the tar-
get articles, these keywords were searched in the title
and abstract in Medline and Scopus databases, and in
the title in Web of Science. The complete search strategy

Fig. 1 Flowchart of study identification
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is available in the Additional file 1 and a blank data ex-
traction form is presented in Additional file 2.
A total of 797 articles were identified from the search,

with 179, 412 and 206 articles resulted from each of
Medline, Scopus and Web of Science respectively. Dupli-
cates were identified and removed, leaving 495 articles.
The lead author screened all articles, and if an article
could not be determined whether to include or not, it
went to a voting procedure by the rest of the authors.
Based on screening of the article title, 236 were found
relevant. The excluded articles included joint models
other than longitudinal and event-time (e.g. multiple
longitudinal outcomes alone), and review articles. A fur-
ther 92 articles were excluded as a result of screening
the abstract. This exclusion included articles that were
only modelling longitudinal data or event-time data, and
articles that did not use a Bayesian approach for param-
eter estimation.
Full-text articles were obtained for the remaining 144

and reviewed in full. A total of 55 articles that used two-
stage joint model were excluded (where the longitudinal
and event-time outcomes are modelled in two separate
steps rather than simultaneously), and if a dropout
process is modelled, but not as an event-time outcome.
Finally, a total of 89 articles were eligible for inclusion in
the review. The articles were sorted into methodological
and application groups, containing 75 articles and 14 ar-
ticles respectively. A methodological article was classed
as one that proposed and demonstrated new method-
ology whereas the application articles were classed as
those that applied existing methodology to a new data-
set. In the following sections, the identified methodo-
logical articles are reviewed.

Results
We have found the joint modelling methods developed
under the four categories: single outcome for both of the
longitudinal and event-time data (39/75, 52%); single lon-
gitudinal outcome and multiple event-time outcomes (13/
75, 17.3%); multiple longitudinal outcomes and single
event-time outcome (15/75, 20%); both outcomes are mul-
tiple (8/75, 10.7%). The majority of the articles were based
on shared random effect joint models [13–66], whereas
several articles explored joint models in terms of latent
classes [42, 54, 58, 67–70], additive model [71, 72] and
functional model [73, 74]. We reviewed the methodology
for each sub-model and association structure.

Longitudinal data sub-model
Let Yik(tijk) denote the jth observed value of the k-th lon-
gitudinal outcome for the individual i at time tijk for i =
1, …, N; k = 1, …, K and j = 1, …, nik , with N is the total
number of individuals in the study , nik is the total num-
ber of measurements for the k th longitudinal outcome

of individual i and K is the total number of longitudinal
responses in the study. The most common approach to
model the longitudinal data was the generalized linear
mixed model (GLM) and is given by

gk E Y ik tijk
� �� �� � ¼ mik tijk

� �
where gk(.) is a known link function of the k th longitu-
dinal outcome, mik(.) is a linear predictor and E(.) is the
expectation operator. When a single longitudinal out-
come is considered, that is when K = 1, and for the sim-
plicity of notation, k is dropped from the notation.
The majority of articles (48/75, 64%) involved develop-

ment of joint models with a continuous longitudinal
outcome, Table 1 and Table 2. One article proposed a
modelling approach for ordinal outcomes [26], and two
articles for counts [31, 53]. Modelling for a mixture of
outcomes was proposed by He and Luo [30], who mod-
elled continuous, ordinal and binary outcomes in a Par-
kinson’s disease study. Dagne [44] and Lu [25] proposed
an approach to account for longitudinal data with a
lower quantification limit (called left censoring in the
longitudinal outcome). Of the 75 included articles, 51
(68%) proposed models for a single longitudinal out-
come, while the remaining 24 (32%) considered models
for multiple longitudinal outcomes (the univariate and
multivariate longitudinal models are illustrated in more
detail in Additional file 3).

Single longitudinal outcome (K = 1)
Continuous outcome

Linear mixed-effect model
Linear Mixed-Effect (LME) models were generally used
to model continuous longitudinal data [16, 17, 19, 33,
46, 48, 62, 75, 76, 82], and were defined by

Y i tij
� � ¼ Xi tij

� �
βþ Zi tij

� �
bi þ εij ð1Þ

where Xi(tij) and Zi(tij) are covariates (possibly time-
varying) matrices for fixed effects β and random effects
bi respectively contributing to the linear predictor, and
εij is an independent and identically distributed Gaussian
measurement (or residual) error.
The assumption of normality for the within individual

measurement error can be beneficial in model imple-
mentation, however, any outlying observations could in-
fluence the statistical inference [23]. Therefore, when
this assumption was violated due to skewness or outliers,
alternative distributions were proposed, including skew-
normal (SN) distribution [15, 51], skew-t (ST) distribu-
tion [22, 37, 56, 61], t-distribution [18], or normal/inde-
pendent (N/I) distribution [23, 35]. N/I distribution is a
family of mixture distributions conditional on an inde-
pendent positive random variable; more details on this
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type of distribution can be found in Andrews and Mallows
[88]. Moreover, the simulation study conducted by Bagh-
falaki et al. [23] and Baghfalaki et al. [35] has showed the
robustness of the chosen N/I distribution against outliers
and its unbiasedness as compared with the conventional
normal distribution. Huang et al. [77] proposed a nonlin-
ear mixed-effects (NLME) model, and Huang et al. [78]
proposed a semiparametric nonlinear mixed-effects
(SNLME) model when the longitudinal data follows a ST
distribution. Bakar et al. [47] employed an Integrated
Ornstein-Uhlenbeck (IOU) stochastic process to model
individual variations. This approach is more flexible and
plausible than a random effects model as it enables the
longitudinal outcome to vary around a straight line and al-
lows the data to determine the degree of this variation.

Brown and Ibrahim [52] proposed a semiparametric
linear mixed-effect model. They have used Dirichlet
process priors on the parameters defining the longitu-
dinal model. Dirichlet process prior is a process that can
be used to create a family of distributions to provide
more flexible priors than the standard normal distribu-
tion [40]. This approach is proposed when there is un-
certainty about the distributional assumptions, and it
offers more flexibility in modelling the longitudinal tra-
jectory [52]. For example, individuals in HIV (human
immunodeficiency virus) studies and cancer vaccine tri-
als might encounter more diverse longitudinal trajector-
ies due to the variety of treatment response on each
individual. In cancer vaccine trials, many patients may
not exhibit an immune response to vaccination at

Table 1 Summary of longitudinal sub-models with single longitudinal outcome

Number of
articles (%)

Reference

Type of outcome

Continuous 39(95.1%) [13, 15–19, 22–25, 27, 33, 35, 37–40, 43, 44, 46–
48, 51, 52, 55, 56, 59–62, 65, 66, 75–81]

Count 2(4.9%) [31, 53]

Model

GLM, NLME, SNLME, Semiparametric random-effects modela 5(12.2%) [51, 52, 77, 78, 81]

LME 13(31.7%) [15–19, 23, 33, 35, 46, 48, 62, 75, 76]

Partially LME 4(9.8%) [22, 37, 56, 61]

Mixed effect model, Mixed effect model with IOU stochastic process, Mixed-effect
varying coefficient Tobit model, Bent-cable mixed-effects modela

4(9.8%) [25, 39, 44, 47]

Mixed-effects varying-coefficient model 3(7.3%) [27, 38, 80]

LQMM, Quantile-based mixed model, QR- NLME, QR-NLMETa 4(9.8%) [24, 59, 60, 79]

Hurdle two-part model and Longitudinal Tobit modela 2(4.8%) [43, 66]

Random change point model, Multiple-change point model, Longitudinal model
for the immune response a

4(9.8%) [13, 40, 55, 65]

ZAB, Two zero-inflated count modelsa 2(4.8%) [31, 53]

Random effect distribution

Normal 17(47.4%) [13, 15, 19, 25, 27, 33, 38, 46, 47, 51, 55, 60, 75–
77, 79–81]

Multivariate normal 10(26.3%) [16–18, 24, 39, 43, 44, 59, 62, 66]

Finite mixture of normal distributions, N/Ia 3(7.9%) [48], [23, 35]

Dirichlet process prior 2(5.3%) [40, 52]

Spline 5(13.1%) [22, 37, 56, 61, 78]

Error distribution

Normal 18(48.6%) [13, 16, 17, 19, 33, 39, 40, 46–48, 52, 55, 62, 65,
66, 75, 76, 81]

N/I, SNa 3(8.1%) [23, 35], [51]

t-distribution 1(2.8%) [18]

ST 6(16.2%) [15, 22, 37, 38, 56, 61]

Multivariate ST 6(16.2%) [25, 27, 44, 77, 78, 80]

ALD 3(8.1%) [24, 59, 79]
aThe order of the outcomes/models/distributions have the same order as in the reference
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varying time points throughout the trial. Therefore,
Brown and Ibrahim [65] assumed an initial distribution
(called “point mass at zero”) for the baseline immune re-
sponse, and developed a longitudinal model for the im-
mune response with this point mass at zero, in which
the probability that an observation arises from the point
mass changes over time and between individuals. The
distribution of the response variable is dependent on the
response of the patients to vaccination.

Quantile modelling
Some clinical studies are interested in making predictions
from the joint model on the median or lower/upper ends
of the longitudinal trajectory rather than on the mean. In
this case, linear quantile mixed model (LQMM) can be
used to describe the longitudinal process by

QYi tijð ÞjXi tijð Þ;Zi tijð Þ τð Þ ¼ mτ
i tij
� �þ εij ð2Þ

where mτ
i ðtÞ is the true underlying value of the longitu-

dinal outcome Yi(tij) at τ th quantile measured at time t,

QYi tijð Þ τð Þ ¼ F−1
Y i tijð Þ τð Þ ¼ inf Y i tij

� �
: FY i tijð Þ Y i tij

� �� �
≥ τð Þ

n o
for τ ϵ 0; 1½ �

ð3Þ

In the above equation, FY iðtijÞ is the distribution func-
tion of Yi(tij) and inf represents the infimum function.
Yang et al. [24] considered a LQMM, whereas Huang
and Chen [59] proposed quantile regression based non-
linear mixed-effects model (QR-based NLME) when re-
sponse trajectories are nonlinear. Waldmann and
Taylor-Robinson [60] considered a quantile-based mixed
model, an extension to the mean regression joint model
proposed by Faucett and Thomas [89]. Yang et al. [24]
and Huang and Chen [59] considered independent
asymmetric Laplace distribution (ALD) in each time
point for the error term in the quantile model since it is
robust against outliers or to account for skewness in the
longitudinal process. When the longitudinal outcome is
measured with limit of detection (see section below) and
covariates are skewed with measurement error, Zhang
and Huang [79] employed a quantiles regression based

Table 2 Summary of longitudinal sub-models with multivariate longitudinal outcomes

Number of
articles (%)

Reference

Type of outcome

Continuous 8(36.4%) [20, 21, 28, 32, 49, 63, 82, 83]

Rate, Ordinal, \ (or/and continuous), Continuous, Ordinal and Discretea 5(22.7%) [14, 26, 34, 50, 84]

Continues and binary 2(9.1%) [36, 57]

Continuous and ordinal 3(13.6%) [29, 41, 45]

Continuous, ordinal and binary 4(18.2%) [30, 85–87]

Model

GLM, Partially LMEa 2(9.1%) [20, 32]

Multivariate GLM 4(18.2%) [14, 34, 36, 57]

Multivariate mixed effect models 5(22.7%) [21, 28, 63, 82, 83]

ZAB, Proportional-odds cumulative logit modela 2(9.1%) [26, 50]

GLM and CR mixed-effects model, Mixed-effect model and CR mixed-effects model, LME and con-
tinuous latent variable model, LME and a mixed-effects beta regression model, ZOIBa

5(22.7%) [29, 41, 45, 49, 84]

MLIRT 2(9.1%) [30, 86]

MLLTM, MLTLMa 2(9.1%) [85, 87]

Random effect distribution

Normal 12 (54.5%) [20, 26, 29, 30, 36, 45, 50, 82,
84–87]

Multivariate normal 7(31.8%) [14, 21, 28, 41, 49, 63, 83]

Dirichlet process prior 3(13.7%) [32, 34, 57]

Error distribution

Normal 12(63.2%) [20, 29, 30, 36, 41, 45, 49, 57,
82, 83, 85, 87]

Multivariate normal SN 4(21.1%) [14, 21, 34, 63]

Finite mixture of normal distributions, Multivariate SN, SN/Ia 3(15.7%) [28, 32, 86]
aThe order of the outcomes/models/distributions have the same order as in the reference
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nonlinear mixed-effects Tobit (OR-NLMET) model. In
this model, the continuous longitudinal outcome as-
sumes an asymmetric Laplace distribution (ALD).

Modelling of left-censored longitudinal outcomes
In measuring the longitudinal outcome, some repeated
measurements are left-censored due to limit of detection
(LOD) [25, 44]. Usually LOD is a threshold defining the
minimum value that can be observed, and measurements
below the LOD are known as ‘censored’. As the standard
LME model does not account for left censoring, Dagne
[44] and Lu [25] proposed alternative models to tackle
this issue. Lu [25] proposed modelling left-censored lon-
gitudinal data using the mixed-effect varying coefficient
Tobit model:

Y i tij
� � ¼ β0 tij

� �þ X�
i tij
� �

β1i tij
� �þ εij

β1i tij
� � ¼ β1 tij

� �þ bi tij
� � ð4Þ

where β0(tij) and β1i(tij) denote the time-varying coeffi-
cients for intercept and slope respectively, and X�

i ðtijÞ is
the true (unobservable) covariate value, and β1(.) denotes
the population smoothing curve while bi(tij) indicate the
random effects.
Dagne [44] considered a bent-cable mixed-effect

model to account for two growth curves in the longitu-
dinal data. The model was defined by

Y i tij
� � ¼ g tij; μij;X

�
ij

� �
þ εij ð5Þ

where μij is the mean structure and X�
ij is the true (unob-

servable) covariate. To account for between-individual
and within-individual variation, Brilleman et al. [43] pro-
posed a hurdle two-part model with first part estimating
the probability when the longitudinal outcome is ob-
served above the LOD and the second part estimating
the mean of the longitudinal response conditional on
LOD being exceeded. The dependency between the two-
parts of the longitudinal hurdle model was accounted
for through the correlated random effects, which follow
a multivariate normal distribution.
Graham et al. [66] considered using a longitudinal Tobit

model (non-varying coefficient) for modelling the longitu-
dinal outcome when some measurements achieved the
highest limit. Lu et al. [27], Lu [38] and Lu et al. [80] pro-
posed mixed-effects varying-coefficient models, and spline
approaches are used to model the random effects and the
population-level effects. They modelled the changing rela-
tionship between HIV viral load and CD4 cell counts in
AIDS studies during the course of treatment.

Modelling multiple change points
In some clinical studies, multiple change points of each
individual trajectory could occur due to variety of

reasons. For example, in a study of HIV, the individual
trajectories often have multiple points of rapid change
due to the treatment effect [40]. Hennessey et al. [13],
and Yu and Ghosh [55] considered a random change
point model that accounts for trend in different individ-
ual trajectories, whereas Ghosh et al. [40] proposed a
multiple-change point model which allows several up-
and-down phases in the longitudinal marker trajectory.

Modelling longitudinal data with hierarchical structure
Generally, the longitudinal data have two level hierarch-
ical structure where the individual is the only clustering
factor. However, Brilleman et al. [81] employed GLMM
to longitudinal data having a hierarchical structure with
clustering factor beyond the individuals. They have mod-
elled data from lung cancer where the interest was to
study the relationship between tumour burden and risk
of death or progression of disease. The longitudinal out-
come was clustered within a specific tumour lesion for a
given patient at a number of time points.

Count outcome
In modelling longitudinal count data with exceeded
number of zeros, Hatfield et al. [53] proposed a two-part
zero-augmented beta model (ZAB). Zhu et al. [31] pro-
posed two zero-inflated count models, namely zero-
inflated Poisson (ZIP) and zero-inflated negative bino-
mial (ZINB). The latter differed from the former in hav-
ing an additional parameter which captures the
variability due to over-dispersion.

Random effect distribution
The longitudinal random effects are generally specified
as following a normal distribution, see Table 1 and Table
2. In HIV studies however, outliers may occur among re-
peated measurements within an individual and some in-
dividuals may show very different behaviour from the
rest. Distinguishing between these types might not be
easy in practice [23]. Thus some articles employed a
normal/independent (N/I) distribution as it has been
shown through simulated studies that it is more robust
for outliers than the conventional normal distribution
[23, 35]. Baghfalaki et al. [48] has proposed a finite mix-
ture of normal distributions to capture the unobserved
heterogeneity of the random effects [48]. In a HIV study,
using a simple exploratory diagnostic tool proposed by
Verbeke and Molenberghs [90], they found that a finite
mixture of normal distributions could improve the esti-
mation when compared to the standard normal distribu-
tion. In some cases, a Dirichlet process prior is assigned
to the random effects to allow for flexibility and avoid
misspecification of the random effects distribution [40].
Martins et al. [82] assumed normally distributed random
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effects within different geographical regions to model
the longitudinal outcome in a HIV study.

Multivariate longitudinal outcomes (K > 1)
Multiple longitudinal outcomes were considered in 19
articles. Eight presented methods where all longitudinal
outcomes were the same type of data (continuous out-
comes [21, 28, 63], count outcomes [50], or ordinal out-
comes [26]) whilst other 11 articles presented methods
when the longitudinal outcomes were a mix of data
types (e.g. continuous, ordinal and binary longitudinal
outcomes [30]).

Continuous outcomes
For continuous data, generally multivariate mixed effect
models were used [21, 28, 63, 83] and were described as
in (1) for each k. The model accounted for two sources
of dependency; within-individual repeated measurements
over time for a given longitudinal outcome and between
different longitudinal outcomes for the same individual.
Rue et al. [49] modelled two continuous longitudinal

outcomes; an LME model was employed for first out-
come and a mixed-effects beta regression model for the
second outcome (a proportion). In the former, linear
combinations of a cubic splines basis functions were
considered to model the trajectory function to account
for multimodal trends. The correlation between the two
longitudinal outcomes was accounted through jointly
modelling the individual specific random effect in each
longitudinal outcome [49].
Tang and Tang [32] considered a partially LME model

with spline terms to account for the complex functional
structure between measurement times within and be-
tween outcomes. They used a P-spline approximation.
Chen et al. [20] considered a GLM model and the trajec-
tory function was allowed to take a linear or quadratic
form based on the trend of mean response. Liu and Li
[84] considered a zero-one inflated beta (ZOIB) regres-
sion model to account for [0, 1] interval data. Usually,
beta distribution is known for offering a wide range of
distributional shapes in the open support interval (0, 1).

Rate outcomes
A Zero-Augmented Beta (ZAB) model was considered
for rate outcomes. The data are on a bounded measure-
ment scale of [0, 1] interval, and a high number of zero
longitudinal observations is included [50]. The model
was expressed as,

Y ik tij
� � � ZAB ωi tij

� �
; μi tij

� �
;ϕ

� � ð6Þ

where ωi(tij), μi(tij), and ϕ are the probability, mean and
dispersion of Yik(tij) ∈ (0, 1) for the k th longitudinal out-
come, respectively. A logistic model was assumed for ωi,

and a beta regression model was assumed for μi, and
logit link function was used to estimate the correspond-
ing parameters.

Count outcomes
In terms of multiple ordinal outcomes, Armero et al.
[26] employed a proportional-odds cumulative logit
model based on a continuous latent variable and was
written as

Y ik tij
� � ¼ DK ⟺Y �

ik tij
� �

∈ θk−1; θkð � ð7Þ

where Y �
ikðtijÞ denotes the continuous latent variable and

DK represent a an ordinal category. A logistic distribu-
tion was proposed for Y �

ikðtijÞ and used a mixed effect
model for the individual-specific time trajectories of the
latent variable. The translation of the ordinal variable
through the latent variable offered flexibility in relation
to the computational implementation of the model.

Mixing type of longitudinal outcomes
A multivariate GLM model is often utilised when having a
mixture of longitudinal outcomes with a link function for
each outcome dependent on the type of data [14, 34, 36,
57]. Rizopoulos and Ghosh [57] proposed modelling the
linear predicator using spline-based approach to allow
flexibility in the individual-specific evolution for each out-
come. The choice of link function used in the model de-
pends on the distribution of the outcome. For example, an
identity link function is utilised for a continuous outcome
which follows a normal distribution, a logit link function
is used if the outcome is binary and a log link function is
applied when the outcome is a count.
Wang and Luo [85] employed a multidimensional latent

trait linear mixed (MLTLM) model to allow for multiple
latent variables and within-outcome multidimensionality
in multiple longitudinal outcomes. However, Chen and
Luo [86] considered a multilevel item response theory
(MLIRT) model to account for skewness and outliers in
the continuous outcomes. They assumed a heavy-tailed
skew-normal/independent (SN/I) distribution. He and
Luo [30] modelled a mixture of continuous, ordinal and
binary longitudinal outcomes using MLIRT model. Wang
et al. [87] proposed a semiparametric multilevel latent trait
model (MLLTM) to simultaneously model continuous,
binary and ordinal outcomes. A smooth time function
based on truncated power series spline was included in
the model to allow for additional flexibility.
However, Andrinopoulou et al. [45], Andrinopoulou

et al. [29], and Baghfalaki et al. [41] proposed using a
different model for each outcome and then link the
models through a correlation structure, for example through
random effects or measurement error. Andrinopoulou et al.
[45] considered using a GLM model for the continuous
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data, whereas a continuation ratio mixed-effects model was
proposed for the ordinal outcomes. Andrinopoulou et al.
[29] proposed a mixed-effect model with B-spines to capture
the complex trend in the continuous outcome, and a con-
tinuation ratio (CR) mixed-effects model was used when the
individuals are likely to shift from one category to another.
Baghfalaki et al. [41] considered using a LME model for
continuous data whereas a continuous latent variable model
was proposed for the ordinal longitudinal outcomes.

Random effect distribution
The random effects are generally assumed to follow a multi-
variate normal distribution [14, 20, 21, 28–30, 36, 41, 45, 49,
50, 63, 83, 84, 86, 87]. However, in the case of unspecified
distribution of the random effects, a normal prior [26] or
Dirichlet process prior [32, 34, 57] is assumed. Tang and
Tang [32] conducted a simulation study to show the effect of
the misspecification of the random effect distribution on the
estimation, and found that assuming Dirichlet process prior
reduces the bias and it is flexible enough to capture the gen-
eral shapes of different distributions of the random effect.

Correlation structure
The correlation between the multiple longitudinal out-
comes was captured through the individual-specific random
effects for each outcome in a multivariate distribution [29,
41, 45, 86]. However, the correlation between within an
individual i for measurements of multiple longitudinal out-
comes measured at the same time was captured through
the error term εij.~Nk(0,Σ), and bik~N(0,Ψk) where the co-
variance matrix Σ captures the association between longitu-
dinal measurements recorded at the same time and the
term Ψk is a covariance matrix that describes the associ-
ation between the random effects for the k-th outcome [63,
83]. The joint model suggested by Chi and Ibrahim [63] has
separately accounted for dependence among repeated mea-
surements for a given outcome and correlation between
multiple longitudinal outcomes.

Time-to-event data sub-model
Let Ti indicates the observed failure time for an individ-
ual i where Ti = minðT�

i ;CiÞ and where T�
i denotes the

true event time and Ci represents the censoring time.
Let δi ¼ Ið T �

i ≤CiÞ is an indicator taking value 0 if the
response is censored and 1 if the event of interest is ob-
served. A common choice for modelling the time-to-
event (or event-time) data in the joint model is through
the Cox proportional hazard model

λi tð Þ ¼ λ0 tð Þ exp Xi tð ÞβþWi tð Þf g ð8Þ

where λ0(t) is the baseline hazard function, Wi(t) is a latent
process, and Xi(t) are covariates with the corresponding
coefficients β. Several models are proposed for modelling

the event-time outcomes; 42(66.7%) articles considered a
single event-time outcome while 21(33.3%) articles pro-
posed joint models for multiple event-time outcomes.
Although three types of censored event-times can

occur, namely right, left and interval, in the review
we have not found articles dealing with left censoring
[91]. The right censored event-times occurs when the
study period of the observation ends before the indi-
viduals experience the event. For example, if the
event of interest is admission to the hospital, and by
the end of the study, some individuals have not yet
experienced this event. 27(42.8%) articles were based
on right censoring. Left-censoring occurs when the
event time is not observed but it is known to have
happened before a certain time. When individuals ex-
perienced the event of interest within a known time
period (e.g., between follow up appointments), they
are interval-censored. Seven articles were based on
interval-censored event-times [44, 51, 59, 60, 69, 70,
92]. For example, if an individual experienced a heart
attack between the last two follow up appointments,
it is known that the event of interest has happened,
but it is not known exactly when it is happened. Su
and Hogan [64] developed a joint model for doubly
interval-censored event-times, accounting for the time
between initiation of highly active antiretroviral ther-
apy (HAART) and viral suppression (related to longi-
tudinal CD4 count). The doubly interval-censoring
occurred when both the time origin (HAART initi-
ation) and failure time (viral suppression) were inter-
val censored.

Single event outcome
Semiparametric model
The majority of articles (42, 66.7%) were based on a sin-
gle event outcome. Generally, the Cox proportional haz-
ards model was employed [15, 17, 30, 31, 35, 39, 40, 46,
52, 76, 77, 79, 81, 83–87]. Yang et al. [24], and Wald-
mann and Taylor-Robinson [60] used a proportional
hazards model which accounted for the quantile term
defined in equation (3) in the model. This model enables
to study the association of each longitudinal quantiles
with the event-time outcome separately.

Full parametric model
12Fully parametric models were proposed to model the
event-time data using Weibull distribution [19, 23, 33,
36, 43, 48, 50, 53]. Graham et al. [66] assumed that the
event-time outcome follows a normal distribution with
the mean depending on covariates and random effects in
a study of dementia, where the time to death was the
outcome of interest.
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Accelerated failure time model (AFTM)
Modelling the event-time data is considered by adapting
AFTM, which involved covariates that might affect the
expected event time. Dagne [44] and Huang et al. [51]
considered random effect AFTM for modelling the
interval-censored event-time outcome and specified the
error term to follow a normal distribution. Baghfalaki
et al. [41] used log-normal distribution and Weibull dis-
tribution, whereas Huang and Chen [59], and Huang
et al. [78] proposed a nonparametric Dirichlet process
(DP) prior as a distribution for the error term in AFTM.

Relative risk model
Relative risk models have been used to model event-
time outcomes by Andrinopoulou et al. [62], Rizopoulos
and Ghosh [57], Armero et al. [26] and Martins et al.
[82]. Andrinopoulou et al. [62] used a B-spline approach
for time-varying coefficients that links the longitudinal
and event-time outcomes. Armero et al. [26] proposed a
left-truncated relative risk model to account for delays
in the entry times of event-times. Rizopoulos and Ghosh
[57] employed a relative risk model to examine the risk
of graft failure in study of chronic kidney disease. Mar-
tins et al. [82] proposed a relative risk model to deal
with spatial survival effects accounting for the unob-
served heterogeneity among individuals living in the
same geographical region.

Cure fraction in the time-to-event model
Modelling event-time data with cured individuals in a
study population cannot be accomplished using model
such as a proportional hazards model. Therefore, cure
rate model is used, which is a special case of survival
models where a portion of individuals in the population
never experience the event of interest [20, 21, 47, 65].
Chi and Ibrahim [21] extended the model which allowed
to accommodate for both zero and nonzero cure fraction
with a proportional hazards structure.

Multiple event-time outcomes
Multiple events occur when there are more than one
event-time outcome of interest, for example, competing
risks or recurrent events. Six (9.5%) methodological arti-
cles considered joint models for multiple event out-
comes. The Cox proportional hazards model was
commonly used to model the multiple event-times [14,
28, 32, 34, 38].
Chi and Ibrahim [63] proposed a novel bivariate sur-

vival model that has a proportional hazards structure for
the population hazard when the baseline covariates are
entered biologically through the mean function of the
Poisson process. In many applications, such as cancer
with multiple failure times (i.e. death and relapse), there
is an interest to examine the joint or marginal survival

distribution. Also, the marginal survival distribution ac-
commodated both zero and nonzero cure fractions for
the event-time, and in the joint survival distribution, an
individual-specific frailty term is incorporated to capture
the correlation between the two event-time outcomes.
Competing risk event-times are present when individ-

uals are at risk of experience more than one mutually ex-
clusive events, such as death from different causes. Fifteen
(23.8%) methodological articles developed joint models for
competing risk outcomes. Modelling of the competing
risks is mostly carried out by a caused specific propor-
tional hazards model [16, 18, 22, 27, 29, 37, 45, 49, 56, 61,
75]. Hennessey et al. [13] proposed modelling of time-to-
dropout for various reasons by considering lognormal sur-
vival regression model to account for the dropout occur-
ring in the early phase of the study. To account for
substantial measurement error in the covariates when
modelling competing risks, Lu [25] and Lu et al. [80] con-
sidered a cause-specific varying-coefficient proportional
hazard model. Yu and Ghosh [55] considered a mixture of
Weibull models to account for competing risks of demen-
tia and dementia-free death.

Baseline hazard function
The baseline hazard function was usually defined by a
piecewise constant [14, 15, 17, 24, 29–32, 34, 38–40, 52, 60,
85, 86], while others used a step function [16, 18, 35, 75,
76]. Also, B-splines approach is utilised in many articles for
specifying the baseline hazed function [22, 27, 37, 45, 46,
49, 56, 61, 81]. The baseline hazard function was also mod-
elled parametrically by Weibull [19, 23, 43, 50, 53, 82] or by
using an exponential distribution [36]. Andrinopoulou et al.
[62] approximated the baseline hazard function using P-
splines [93] and Wang et al. [87] and Tang et al. [28]
adapted penalized splines for the baseline hazard.

Association structure
In the joint model, the longitudinal and event-time out-
comes are linked by an association structure. The associ-
ation structure represents the effect of longitudinal
outcome(s) on the risk of event(s). The choice of associ-
ation structure should be made based on the clinical
background of the study. However, this information may
not always be accessible, and therefore, Rizopoulos and
Ghosh [57] evaluated several association structures, and
identified reasons for using the different association
structures. More details for choice of association struc-
tures can also be found in the article by Hickey et al. [1].
A linear combination of individual-specific random ef-

fects were used to define the association structure in
39(52%) articles. The current value association structure is
commonly used in the joint model with 27(36%) articles
using it. Many other structures have been proposed to link
the two sub-models including the correlated random effects
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(3, 4%), time-dependent slope (3, 4%), random effects with
fixed effect (2, 2.7%) and cumulative effect (1, 1.3%). Table
3 summarises the proposed association structures.
Brilleman et al. [81] assumed patient–level summary

measures were associated with the hazard of the event in
hierarchical structure data. Examples of patient–level
summary measures are average, maximum, or minimum
of functions of the longitudinal sub-model parameters
(i.e. the lower level cluster-specific linear predictor or
rate of change in the marker at time t).
Several authors proposed using a variety of parameter-

isation, and then examined the influence of each param-
eterisation on the model estimation [13, 45, 49, 57, 87],
see Table 3. These parametrisations were compared
using an information criterion such as DIC, to find the
best association structure for making inference and pre-
diction. However, Andrinopoulou et al. [62] assumed
that the effect of the longitudinal outcome might have a
time-varying effect on the time-to-event outcome, and a
B-spline approach was employed to model the associ-
ation parameter. They have considered current value,
time-dependent slope, and cumulative effect association
structures with time-varying coefficient defined respect-
ively as Wi(t) = υ(t)mi(t), WiðtÞ ¼ υ1ðtÞmiðtÞ þ υ2ðtÞ d

dt

miðtÞ , and WiðtÞ ¼ υðtÞ R t
0 miðsÞds where mi(.) denotes

the true underlying value of the longitudinal outcome, υ

ðtÞ ¼ PL
l¼1

αlBlðtÞ , αl is a set of parameters that capture

the strength of the association between the two

outcomes, and Bl(t) represents the l-th basis function of
a B-spline.

Alternative approaches to joint model
Several alternative approaches to shared parameter joint
models are identified in the review.

Latent class joint model
Joint latent class models assume that the population in
the study is heterogeneous and is constructed of a num-
ber of latent subgroups that are homogeneous [94].
Hence, each class shared the same mean trajectory func-
tion and hazard function. For class p, the longitudinal
outcome is defined by class-specific mixed-effect sub-
model and the event-time outcome is defined by class-
specific proportional hazards sub-model

Y i tijjci ¼ p
� � ¼ Xi tij

� �
βp þ Zi tij

� �
bip þ εij ð9Þ

λi tjci ¼ pð Þ ¼ λ0p tð Þ exp Xi tð Þβp þWip tð Þ
� �

ð10Þ

where ci is latent class indicator for the i th individual,
and other parameters are defined similarly as in general
sub-models. To identify the number of classes, the
Bayesian Information Criterion (BIC) is adapted [94].
The above sub-models were considered by Andrino-

poulou et al. [68] when both the longitudinal and event
time outcomes are single. When the longitudinal out-
come is measured with limit of detection (LOD), Huang
et al. [54] proposed a class-specific nonlinear mixed-
effect Tobit model for the longitudinal outcome, and an

Table 3 Association structures for joint model

Parameterisation Latent association Number of
articles (%)a

Reference

Random effect Univariate Wi(t) = αbi 31(41%) [13, 15, 17, 19, 22, 23, 25, 27, 31, 33, 35, 37, 38, 44, 48,
51, 53, 54, 56, 59–61, 66, 69, 70, 75, 77–80, 82]

Multivariate WiðtÞ ¼
PK

k¼1αkbik 8(10.7%) [20, 30, 36, 41, 50, 82, 85–87]

Current Value
parameterisation

Univariate Wi(t) = αmi(t) 14(18.7%) [13, 24, 39, 40, 43, 46, 47, 52, 65, 67, 71–73, 76]

Multivariate WiðtÞ ¼
PK

k¼1αkmikðtÞ 13(17.3%) [14, 21, 26, 28, 32, 34, 45, 49, 57, 63, 83, 84, 87]

Correlated
random effect

Univariate Wi(t) = φ
with ϐi = {bi, φi}~H

2(2.7%) [16, 18]

Multivariate Wi(t) = φ
with ϐi ¼ fbi; φig∼Hαk

1(1.3%) [57]

Random effect
with fixed effect

Multivariate WiðtÞ ¼
PK

k¼1αkðβk þ bikÞ 2(2.7%) [29, 57]

Time-dependent
slope

Univariate WiðtÞ ¼ αð1ÞmiðtÞ þ αð2Þ d
dt miðtÞ 1(1.3%) [87]

Multivariate WiðtÞ ¼
PK

k¼1fαk ð1Þ mikðtÞ þ αk ð2Þ d
dt mikðtÞg 2(2.7%) [45, 81]

Cumulative effect Univariate WiðtÞ ¼ α
R t
0 miðsÞds 1(1.3%) [45]

Abbreviation: aThe number of article that used this association among all other articles with its percentage
Notation: mik(t) denotes the true underlying value of the longitudinal outcome for individual i and outcome k; αk represents the association parameter for the k-th
outcome; αk

(1) and αk
(2) denote the association parameters for the current value and the derivative from the mean trajectory function for the k-th longitudinal

outcome respectively; bik denotes the random effect for individual i and outcome k; φ represents a random effect and H denotes joint distribution for the random
effects; βk denotes the coefficient parameters
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accelerated failure-time model was used for the event-
time outcome. Dagne [69] considered a two-part Tobit
model for longitudinal outcome which accounted for
left-censored outcome and heterogeneity among individ-
uals. They have also used an accelerated failure model
for the class specific event-time outcome. Also, to adjust
for the skewness in the data, Dagne [69] assumed a
multivariate skew-t (ST) distribution for the random
error. Garre et al. [67] modelled the longitudinal out-
come using an intercept-only random-effects model and
a segmented random change-point model. To model a
non-linear pattern in longitudinal outcome, Chen and
Huang [70] considered a mixture of semiparametric
mixed-effects models under multivariate ST distribution.
Entink et al. [58] proposed a mixture multilevel item re-
sponse model. In modelling nonlinear heterogeneous
multivariate longitudinal data, Huang et al. [42] consid-
ered using a finite mixture of nonlinear mixed-effects
models for modelling the latent class in the longitudinal
trajectories. They have proposed modelling of multiple
event outcomes using proportional hazards where the
hazard function for each latent class is defined as step
function [42].

Functional joint model
The functional joint model approach involves modelling
the longitudinal outcome, event-time outcome and ex-
posure variables that include both scalar predictors and
functional predictors. The functional predictors consist
of a sample of functions that have information about
curves, surfaces, or other geometric features that are
varying over time [73]. These types of function are de-
fined on a one-dimensional time domain, e.g. growth
curve data and heart rate monitor data. The functional
longitudinal model can be expressed as

Y i tij
� � ¼ Xi tij

� �
βþ

Z g

S
g xð Þ
i sð ÞB xð Þ sð Þds

þ Zi tij
� �

bi þ εij ð11Þ
where gðxÞi ðsÞ is a time-invariant function predictor de-
fined over a one-dimensional domain S, and the coeffi-
cient function B(x)(s) denotes the pointwise association
between the functional predictor and the longitudinal
outcome. This approach was proposed to model the
growing volume of functional data, collected in higher
dimensional domains in both longitudinal and event-
times outcomes [73]. The function event-time outcome
model can be defined as

λi tð Þ ¼ λ0 tð Þ exp Xi tð Þβþ
Z g

S
g xð Þ
i sð ÞB xð Þ sð ÞdsþWi tð Þ

� 	

ð12Þ
where the term

R g
S g

ðxÞ
i ðsÞBðxÞðsÞ represents the func-

tional predictor. The inclusion of this term aims to show
the influence of the functional predictor toward the
event hazard.
To model longitudinal functional, longitudinal scalar

and event-time outcomes simultaneously, Li and Luo
[74] proposed a multivariate functional joint model.
Modelling of the functional longitudinal data was carried
out by adapting a functional mixed effect model, and a
functional principle component analysis (FPCA) ap-
proach was used to expand the random intercept func-
tion. FPCA is a dimension reduction tool.

Additive joint model
Additive joint models involve a highly flexible specifica-
tion of the association between the longitudinal outcome
and an event-time outcome process. Köhler et al. [71]
proposed an additive joint model which is allowed for
complex nonlinear association structures between the
longitudinal and the event-time outcome processes.
Kohler et al. [72] considered an additive joint model
using penalized splines for longitudinal trajectory with a
potentially nonlinear time varying association structure.

Bayesian estimation
The Bayesian approach works by estimating the joint
posterior distribution of the model, which is a product
of the joint likelihood of the longitudinal and event-time
outcome data and the joint prior distribution. The latter
includes prior information that can be assigned for the
unknown parameters in the joint model [24]. The joint
posterior distribution can be written as

p θ; bijY i;Tið Þ∝L Y i;Tijθð Þp θð Þ

where the term L(Yi, Ti| θ) is the joint likelihood of the
longitudinal and event-time outcome data and p(θ) de-
notes the prior information of the unknown parameters
θ in the joint model. The term θ represents all parame-
ters to be estimated from the model, while Ti denotes
the event-time, Yi is the longitudinal data and bi are the
random effects as defined in sub-models.
The Bayesian sampling algorithms used to estimate θ

are summarised in Table 4. The sampling algorithms
work by drawing samples from the joint posterior distri-
bution [24]. A total of 66(91.6%) articles used Markov
Chain Monte Carlo (MCMC), of which 37(54.4%) speci-
fied the sampling algorithm used: Gibbs sampling
9(12.5%), Gibbs sampler and Metropolis-Hastings (MH)
algorithms 24(33.3%), Gibbs sampling with adaptive re-
jection algorithm and MH sampling 3(4.2%), and block
Gibbs sampling and MH algorithm 2(2.8%). 28(38.8%)
articles did not specify the algorithm used. Köhler et al.
[71] used Newton-Raphson procedure and a derivative-
based Markov chain Monte Carlo (MCMC) algorithm in
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order to estimate the mode and the mean of the poster-
ior distribution. Li and Luo [73] and Li and Luo [74]
considered No-U-Turn sampler instead of Gibbs sam-
pler since it was faster to converge. Brilleman et al. [81]
employed Hamiltonian Monte Carlo (HMC) instead of
an MCMC method for its ability to explore the param-
eter space of the posterior distribution more efficiently.
A combination of HMC and No-U-Turn sampler was
adapted by Wang et al. [87] since it resulted in faster
convergence compared to HMC alone. Tang et al. [28]
used the Bayesian Lasso to simultaneously estimate the
parameters and select the important covariates in model.
Assessing the convergence of MCMC is essential when

employing the Bayesian estimation. The diagnostic tools
have been designed to evaluate how long the chain takes
to produce observations from the stationary distribution
of the Markov chain [95]. The trace plots, Gelman–
Rubin statistics, autocorrelations plot and the potential
scale reduction factor (PSRF) were used in reviewed
article.

Prior and sensitivity analysis
One of the advantages of Bayesian estimation is the abil-
ity of incorporating information from previous studies
through prior distributions of parameters. The incorpo-
rated prior could be informative or non-informative.
The latter is employed in the absence of prior informa-
tion or when there is no need to influence the model fit
with any prior information about the parameters, and
therefore this type of prior has a minimal influence on
the estimation. The former is assigned when some infor-
mation is available from previous research which prob-
ably have an impact on the posterior distribution. It is
necessary to check the influence of the assigned prior on
the posterior estimation by performing a sensitivity ana-
lysis [38, 56].

Generally, a weakly or non-informative normal prior is
assumed for the fixed effect parameters in the longitu-
dinal model. Brown and Ibrahim [52] assumed a Dirich-
let process prior for the longitudinal model parameters
to allow for more flexible modelling framework since
not all of the longitudinal parameters come from the
same distribution and these parameters might not re-
main constant over time. Chen et al. [39] assigned a uni-
form improper priors.
The unknown fixed effect parameters in event-time

sub-model are generally assumed to follow a normal
weakly or non-informative prior distribution Choi et al.
[36] specified a multivariate normal distribution for the
event-time fixed effect coefficients whereas Brilleman
et al. [43] assumed Cauchy priors.
Generally, the association parameter is assigned to fol-

low a normal weakly or non-informative prior distribu-
tion. Das et al. [76] assumed a uniform prior for the
association parameter.
In Bayesian estimation, as prior information about the

parameters is included in the model, it is important to
check the sensitivity of the incorporated prior on the es-
timation. In many articles, influence of the assigned
priors on the posterior estimation was carried out by try-
ing different hyper-priors [15, 20, 22, 24–27, 31, 32, 37,
38, 41, 56, 61, 76, 78–80, 82]. Zhu et al. [14] developed a
Bayesian influence approach aimed to assess the sensitiv-
ity of inference to different unverifiable assumptions
under the framework of Bayesian analysis of joint
models and to detect influential observations or outliers.

Dynamic prediction
Using the available information to provide risk assess-
ment of a disease or predict a future longitudinal meas-
urement is valuable in clinical studies. Dynamic
prediction is based on updating the prediction from the

Table 4 Bayesian sampling algorithms

Sampling algorithm Number of
articles (%)

Reference

Markov Chain Monte Carlo (MCMC) 28(38.8%) [13, 17, 20, 24, 26, 30, 31, 33, 38, 39, 43, 46, 49, 50, 53, 57, 58, 60, 62, 67, 68, 72,
75, 76, 82, 84–86]

Gibbs sampler and Metropolis Hastings (MH) 24(33.3%) [14, 15, 22, 23, 25, 27, 29, 35, 37, 41, 42, 44, 48, 51, 54, 56, 59, 61, 69, 70, 77–80]

Gibbs sampling 9(12.5%) [19, 36, 40, 45, 47, 52, 65, 66, 83]

Gibbs sampling with adaptive rejection and MH 3(4.2%) [16, 18, 63]

Block Gibbs sampling and MH 2(2.8%) [32, 34]

Bayesian Lasso 1(1.4%) [28]

Newton-Raphson procedure and a derivative-
based MCMC

1(1.4%) [71]

No-U-Turn sampler 2(2.8%) [73, 74]

Hamiltonian Monte Carlo (HMC) 1(1.4%) [81]

HMC and No-U-Turn sampler 1(1.4%) [87]
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joint model as new survival or longitudinal information
is recorded [96].
Armero et al. [26], Li and Luo [73] and Wang et al.

[87] proposed a dynamic prediction for future longitu-
dinal measurements and estimated the survival function
of patients at future time point u. Choi et al. [36] gener-
ated dynamic predictions from the probabilities of events
that happen within a fixed window of time, while Yang
et al. [24] considered predicting the survival probability
of new patients up to time u. Andrinopoulou et al. [45]
considered predicting the cumulative incidence probabil-
ities for a new patient using multiple longitudinal mea-
surements. Li and Luo [74] generated dynamic
predictions of scaler and functional outcomes at future
time point as well as the conditional probability of
event-free at a future time u.
Andrinopoulou et al. [45] and Rizopoulos et al. [46]

proposed using Bayesian model averaging (BMA) ap-
proach to combine predictions from different joint
models based on different association structures to pro-
vide more efficient risk predictions. This approach
accounted for model uncertainty and not all the individ-
uals have the same prognostic model.

Software
To implement the algorithms, a variety of software have
been utilised, as shown in Table 5. A total of 21 articles
(36.8%) fitted joint models through WinBUGS
programme (MRC Biostatistics Unit, Cambridge, UK).
Eleven articles provided the code to fit the model: four
were available on request from the authors [15, 51, 77,
78], six were available in the appendix or supplement
materials [13, 17, 37, 48, 57, 66] and one could be

accessed online [33]. In two articles, both OpenBUGS
and BUGS languages were used to develop codes, but
only one provided the code in the appendix [31].
The R software [97] was employed in 21 articles

(35.6%), 10 had access to WINBUGS (using R2Win-
BUGS package) [19, 35, 42, 50, 53, 54, 59, 69, 70, 79],
one got access to OpenBUGS (through rbugs package)
[36] and one used an R interface to JAGS through the R
package rjags [84]. Several articles used existing packages
(such as JMbayes and bamlss) [71, 72] to fit the model,
whereas others developed their own R software, which were
available in the appendix [42, 54, 70] or could be requested
from the corresponding author [35, 36, 59, 60, 79].
Other software used in review articles included JAGS

[98], Fortran [83], Stan and C language, with codes avail-
able upon request from author [40, 52] or in the supple-
mentary material [24, 43, 73, 74, 81, 85–87].
Andrinopoulou et al. [29] implemented the algorithm

using two software programmes, WinBUGS and R. Rizo-
poulos et al. [46] and Andrinopoulou et al. [45] used R
and JAGS to implement the algorithms, where Tang
et al. [34] used R and Matlab (The MathWorks Inc., Na-
tick, MA) and the codes can be requested from the
author.

Application
A total of 14 application articles were found in the re-
view where Bayesian joint modelling approaches have
been considered to tackle issues in data, or answer ques-
tions regarding the relationship between the longitudinal
biomarkers and event-time outcomes [2–6, 92, 99–106].
They were applied in a wide range of disease areas; can-
cer [5, 6, 99], HIV/AIDS studies [2–4], cystic fibrosis

Table 5 Software used with Bayesian joint models

Software Number of articles (%) Reference

WinBUGS 21(35.6%) [13, 15, 17, 22, 23, 27, 33, 37, 41, 42, 44, 48, 51, 56, 57, 61, 66, 67, 77, 78, 80]

OpenBUGS 2(3.4%) [31, 82]

BUGS language 1(1.7%) [30]

R 5(8.5%) [39, 60, 68, 71, 72]

R (interface to WinBUGS) 10(16.9%) [19, 35, 42, 50, 53, 54, 59, 69, 70, 79]

R (interface to OpenBUGS) 1(1.7%) [36]

R (interface to JAGS) 1(1.7%) [84]

R and JAGS 2(3.4%) [45, 46]

R and Matlab 1(1.7%) [34]

R and WinBUGS 1(1.7%) [29]

JAGS 3(5%) [24, 26, 49]

Stan 6(10%) [43, 73, 74, 81, 85, 87]

Matlab 1(1.7%) [28]

C language 3(5.1%) [25, 40, 52]

Fortran 1(1.7%) [83]
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[100], renal disease [101], diabetes [102], cognitive func-
tioning [104], Huntington’s disease [105], and eye dis-
ease [106], and also other research areas such as health
insurance [103] and daily living [92]. For example, Serrat
et al. [5] used the joint model to show the association
between the prostate-specific antigen and the risk of
prostate cancer. Khoshhali et al. [101] determined the
relationship between serum albumin levels and periton-
eal dialysis technique failure in patients according to dia-
betic status. Guure et al. [104] wanted to examine and
assess the association between Mental State Examination
and the risk of dying due to cognitive impairment. Long
and Mills [105] aimed to estimate a multivariate joint
model using data from four longitudinal observational
studies and compute individual-specific predictions for
characterising progression of Huntington’s disease.
There were two longitudinal outcomes: total motor
score and the symbol digit modalities test, and the
event-time was time to motor diagnosis.

Discussion and conclusion
A large number of approaches have been proposed and
employed to model longitudinal and event-time out-
comes jointly. The first article of this review was pub-
lished in September 2003. Mixed effect models were the
most common modelling approach for longitudinal data,
while the Cox proportional hazards model was com-
monly used to represent the event-time outcome. A
wide range of models including cure rate model, Bent-
cable mixed-effects model and proportional-odds cumu-
lative logit model were employed in the literature to
handle different type of longitudinal and event-time out-
come data. For example, several articles proposed mod-
elling event-time data with cured individuals using a
cure rate model instead of a proportional hazards model.
The cure rate models can account for a special case of
survival models where a portion of individuals in the
population never experience the event of interest.
In general in Bayesian joint models, the prior is defined

for the unknown fixed effect parameter and the associ-
ation parameter. The model incorporates prior informa-
tion from previous studies to influence the posterior
distribution. However, in some articles, a prior was also
assumed for both fixed and random effect parameters in
longitudinal trajectory, which can offer more flexibility in
modelling the longitudinal trajectory and avoiding the un-
certainty regarding the distributional assumptions. A
Dirichlet process prior is the most popular, which can be
used to create a family of distributions to provide more
flexible priors than the standard normal distribution.
MCMC is generally adapted to estimate the parame-

ters in Bayesian joint modelling approaches. A posterior
mean is usually estimated using the MCMC, however, in
a couple of articles, the mode was also estimated in

addition to the mean of posterior distribution using
Newton-Raphson procedure and a derivative-based
MCMC algorithm. The speed of convergence was one of
the factors considered in choosing an appropriate sam-
pler in MCMC, for example, No-U-Turn sampler was
chosen over the Gibbs sampler for the reason of fasting
converge. The rationale behind the choice of MCMC
sampler has not been justified in all the articles, there-
fore, development of appropriate reporting guidelines
would be beneficial for the use of MCMC or its exten-
sions, and the type of sampler to be used in different
scenarios when modelling joint longitudinal and time-
to-event data.
One of the recent advances of joint modelling is to

generate dynamic predictions. This process updates the
prediction from a joint model as new information be-
comes available. Several articles developed methods for
providing dynamic predictions for survival probability
and future longitudinal measurements. This characteris-
tic is beneficial in medical research as it helps to provide
a tailored disease progression for individuals, and there-
fore takes a relatively accurate decision to improve the
health decision-making. For example, in the a heart valve
replacement [45], such dynamic prediction tools can in-
form the physicians about future re-intervention to their
patients. In this case, the available follow-up measure-
ments of the current patients were utilized to produce
updated predictions on survival and re-intervention in
future. However, methods to validate these predictions
are not yet fully developed. The validation measures are
able to see how the model predicted the observed data
(these are called calibration measure) and the ability of
the model to discriminate between individuals who ex-
perienced the event and those did not (discrimination
measure). Not all of the available validation methods, es-
pecially the calibration measures, can be utilised in real
data. Only the discrimination measures such as the re-
ceiver operating characteristic (ROC) curves can be used
for assessing predictive accuracy.
Many approaches assumed that the association param-

eter to be constant over time, however, in some study
populations, the relation between the biomarkers trajec-
tory and the risk of event might change over time. Only
one article proposed a method along splines to account
for such time dependant changes in association Andri-
nopoulou et al. [62].
A couple of articles discussed the effect of the chosen

association structure on the analysis [13, 45, 49, 57, 87].
However, none proposed a method when the association
between the two processes cannot be firmly specified
from the data or clinical background.
In conclusion, we have reviewed a wide range of

joint models in univariate and multivariate settings
within Bayesian framework, summarising the model
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specifications, association structure, computing algo-
rithm and dynamic prediction. We have also identi-
fied several future research directions for this area,
including better methodologies for validation of dy-
namic prediction, modelling of time-varying associ-
ation parameters, and techniques to account for
unspecified association structure.
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