
Uncertainty Modelling for Scarce and Imprecise

Data in Engineering Applications

Thesis submitted in accordance with the requirements of the University of Liverpool for

the degree of Doctor in Philosophy by

Jonathan Cyrus Sadeghi

January 2020
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Abstract

In this thesis, models for uncertainty quantification in the case of scarce and imprecise
data are described, and the computational efficiency of simulations with these models is
improved. Specifically, probability boxes are used to describe imprecision in cumulative
distribution functions. This may be the case when imprecise data is used to train a model,
or the prior knowledge regarding a property of the system being studied is very weak.
Performing simulations with probability boxes is often computationally expensive, because
an optimisation program must be solved to obtain each sample in a Monte Carlo simulation.
When the system model is known analytically, it is possible to significantly reduce the
cost of the analysis. However, the system model is often a black box which can only be
queried for a particular point value of the input. Each evaluation or query of the system
model is often computationally expensive in itself. Currently, few efficient methods exist
to perform computations with probability boxes, and the techniques which exist do not
provide rigorous bounds on the obtained probability of failure.

Interval Predictor Models are a technique to create an approximate representation of
a function, where the uncertainty in the true function is described as an interval, with
statistical guarantees on the coverage of the true function. This thesis proposes the use
of Interval Predictor Models to create an approximate surrogate model for the true black
box system model and hence obtain rigorous bounds on the probability of failure of a
system. Techniques are described to create Interval Predictor Models which are tailored
to model the performance of a system for reliability analysis. This thesis also describes
analytical techniques which can be used for probabilistic safety analysis, in the case that
the system model is not a black box. This is advantageous as it enables engineers to
perform calculations without spending time programming complex Monte Carlo simulations.
A technique is presented to efficiently create Interval Predictor Models for datasets of
arbitrary complexity and size, which may contain imprecise data, and we call these models
Interval Neural Networks. Case studies or numerical examples are presented to demonstrate
the performance of the proposed techniques, including some common benchmarks and a
finite element model. The interval predictor models used in this thesis were implemented
in the open source uncertainty quantification software OpenCossan, and are now freely
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available.∗

∗https://github.com/cossan-working-group/OpenCossan/tree/development/+opencossan/

+metamodels/@IntervalPredictorModel
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Uncertainty in engineering simulation

Since the advent of the computer, engineering simulation has become an invaluable tool for

the design and analysis of systems. Simulation allows engineers to bridge the gap between

theoretical models of systems and empirical evidence, whilst making predictions about yet

to be constructed systems [136]. Some important applications of this include structural

engineering [168], aeronautical structures [168], and petroleum reservoir engineering [154].

The engineer’s theoretical model of the system’s physics can be defined by a mathe-

matical function or a more complex simulation, and this theoretical model will depend

upon associated parameters which determine the specific properties of the system under

consideration. The physical model to be used may be motivated by the engineer’s expert

judgement, or prescribed by a relevant design standard document. Provided the model’s

parameters are known, the model can be used to make predictions about the system. In

some cases, e.g. well known material properties, the parameters to be used will also be

prescribed by the design standard document. If this is not the case, the engineer must

identify these parameters from data or expert judgement. Hence, in many realistic situations

these parameters will not be known exactly, and therefore will be associated with some

uncertainty. If the system is not well understood, then the theoretical model of the system’s

physics may itself be uncertain. However, in many cases this situation can be dealt with by

adding more uncertain parameters to the model, thereby increasing the model’s degrees of

1
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freedom. This uncertainty will be reflected in the predictions made by the model, hence

the ability of the system to meet some specified objective, e.g. safe operation, now becomes

uncertain. In essence, this motivates the well known structural reliability analysis problem,

where we wish to calculate the probability that the system under uncertainty doesn’t meet

a specified objective, which is referred to as the failure probability of the system [115].

1.1.2 Reliability engineering

Researchers in the discipline of reliability engineering have proposed many techniques to

solve the reliability analysis problem. Most generally, Monte Carlo simulation can solve any

reliability analysis problem with arbitrary accuracy, given sufficient samples of the uncertain

system parameters and evaluations of the system model [115]. If the failure probability

of the system is small, which is typical in most realistic engineering problems, then the

number of model evaluations required increases significantly, and creates a bottleneck

to the calculation. Therefore, in practice, more efficient methods are required to solve

the reliability analysis problem for expensive computational models with many inputs.

These include approximate methods, e.g. the First Order Reliability Method (FORM) and

advanced simulation techniques, e.g. line sampling, which require fewer samples of the

system model [168, 50].

Alternatively, since the cost of the analysis depends strongly upon the cost of evaluating

the system model, one may attempt to replace the expensive system model with a cheaper

surrogate, known as a metamodel. This metamodel is usually obtained by using machine

learning technologies to learn a function which is a sufficiently accurate representation

of the true model. Well known metamodels applied in reliability engineering include

neural networks, response surfaces (polynomial regression), polynomial chaos, and Kriging

(Gaussian process emulators) [168, 157, 76]. If the metamodel is inaccurate then this can

introduce additional uncertainty into the calculation, and typically this must be traded

off against time required to create the metamodel. In any case, the uncertainty in the

metamodel should be quantified and its influence on the failure probability of the system

stated. As such, the problem is challenging and does not yet have an entirely satisfactory

solution, although significant progress has been made in recent years.
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1.1.3 Models of uncertainty

Many techniques exist for modelling uncertainty, and therefore the chosen uncertainty model

is also, to an extent, an engineering judgement. This judgement is usually based on the type

of uncertainty being modelled, and usually two types of uncertainty are considered; epistemic

uncertainty and aleatory uncertainty [68, 50]. Broadly speaking, epistemic uncertainty

represents uncertainty which originates from a lack of knowledge, and aleatory uncertainty

represents uncertainty which originates from natural variability, i.e. stochasticity.∗ Again,

some guidelines are available in design standards or regulations, for example the United

States Nuclear Regulatory Commission often suggests using Bayesian probability theory

[175, 176].

Bayesian probability theory is a logically consistent method of reasoning under uncer-

tainty, though it has been shown to lack empirical justification in some circumstances,

e.g. Balch et al. [11]. Efficient computational methods exist to identify many probabilistic

models for uncertain variables in the Bayesian paradigm, in addition to convenient analytic

techniques [88]. In recent decades, several extensions to the traditional probabilistic models

for uncertainty have been proposed, e.g. Dempster-Shafter Theory, probability boxes, and

random sets [50, 60] (often referred to as specific manifestations of imprecise probabilities).

These methods enable reasoning with imprecise data and a severe lack of prior information.

Imprecise data consists of data where each measurement is not specified by a real number

(sometimes referred to as crisp measurements), but instead the data falls within certain

bounds which can be characterised. Scarce data refers to the case where insufficient data is

available to accurately identify an unknown model parameter. Therefore our knowledge of

the parameter places undue weight on our prior belief about the parameter. In such cases

an engineer may wish to check the sensitivity of their model’s predictions to the chosen

prior, and it is therefore essential that the engineer can accurately represent uncertainty

in their prior belief about a parameter [16, 18]. Crucially, imprecise probabilities offer

a method of reasoning with uncertainty which is more flexible and hence requires fewer

assumptions than traditional probabilistic methods.

∗Note that in some cases this distinction is unclear. For example when a very simple model is used for
the behaviour of a coin, the outcome of the coin flip may appear to be random. However, one could imagine
a situation where the kinematics of the coin can be simulated exactly using Newton’s laws of mechanics,
and the only uncertainty in the outcome of the coin flip is caused by lack of knowledge in the coin’s initial
position and velocity. Chaotic systems (e.g. the Lorenz attractor), where the future evolution of the system
depends strongly on the initial conditions, may appear to be random, for example when the model considered
for the system is insufficiently detailed and the initial conditions are not known with sufficient accuracy.
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Despite these advantages, working with imprecise probabilities in practice introduces

some new difficulties. Since the uncertainty model is more complex, the computational

techniques required to perform computations are also more complex. Typically, this

computation involves some optimisation in addition to the already expensive Monte Carlo

simulation [50]. Hence, in recent years, researchers have described techniques to solve

the reliability analysis problem with imprecise probability models which apply similar

approximations to those used in the straightforward probabilistic case.

In this introduction we will focus our discussion of uncertain model parameters on

probability boxes, but we will see later in the thesis that different models of imprecise

probability have much in common, and are sometimes interchangeable.

Since the predictions of metamodels used in reliability analysis (as described in Sec-

tion 1.1.2) are unlikely to be perfect, their uncertainty must be modelled. Machine learning

practitioners typically achieve this by using conventional probability theory. Unfortunately,

this sometimes requires strong assumptions to be made about the form of the function being

represented. Therefore, Interval Predictor Models (IPMs) have recently been proposed

by Campi et al. [34] as a method of quantifying uncertainty in machine learning, which

relax some common assumptions required by probabilistic methods. An interval predictor

model is any model which predicts an interval, as opposed to a point value. Sophisticated

techniques relying on the advances of scenario optimisation can be used to guarantee

bounds on the probability that the prediction interval contains the desired ‘true’ value of

the modelled function [29].

1.2 Problem definition and objectives

For the purpose of this introduction, probability boxes can be considered to be a represen-

tation of a set of contiguous cumulative probability distribution functions (in fact, this is

a specific class of probability boxes and a more general definition is given in Chapter 2).

Although probability boxes have existed for some time [60], efficient methods for performing

calculations with probability boxes on expensive computational models have only started to

appear in the literature in the past decade. Therefore unsurprisingly, their use in industry

with expensive computational models is not yet widespread, particularly relative to tradi-

tional probabilistic models. However, this lack of adaptation is also true of calculations with

probability boxes for more simple systems, which do not require significant computational

resources for analysis. The following possible explanations are proposed for this:
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• Most of the computational methods available are still too slow for practical usage on

large systems.

• The efficient methods which are available rely upon approximations and are therefore

not trusted by engineers in safety critical domains.

• The methods available are not implemented in readily available software, and devel-

oping bespoke software for one-off usage may be economically impractical and too

time consuming.

Note that for a particular calculation only a subset of these issues may apply. Increasing

the usage of these techniques is a fundamental aim of the imprecise probability community

[182]. Ensuring that these techniques exist and are used is important due to the obvious

economic and societal advantages of enabling engineering that is one the one hand safe, and

on the other hand not excessively conservative in its design. Overly conservative designs are

undesirable because, by definition, they result in excessive construction and manufacture

costs, which may prevent the benefits of new technology being realised by society.

This thesis aims to mitigate these issues via the following objectives:

1. Propose computational methods, which provide statistically rigorous and theoretically

guaranteed bounds on the propagation of probability distributions and, by generalisa-

tion, probability boxes in specific calculations, by applying interval predictor model

metamodels.

2. Decrease the computational cost of interval predictor models for imprecise data, whilst

enabling more complex Interval Predictor Models to be constructed.

3. Provide analytical methods for some common probabilistic safety analysis calculations

with probability boxes, which do not require computer simulation.

4. Demonstrate the applications of the developed techniques on calculations relevant to

the nuclear industry.

1.3 Structure of this thesis

In order to address the objectives discussed in the previous section the following nine

chapters are presented.
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Chapter 2 reviews uncertainty models, i.e. models describing the uncertainty in a

variable, or set of variables. We review techniques to construct these models from data,

and expert opinion, and describe techniques for converting between common models.

This chapter describes probability boxes in detail, and shows how traditional probability

distributions emerge as a particular case of a probability box.

Chapter 3 reviews machine learning techniques for creating regression models, which are

used as metamodels in engineering. Regression models differ from the uncertainty models

described in Chapter 2, as they model the behaviour of a uncertain variable which depends

on the behaviour of another variable. In this chapter, the theory behind interval predictor

models is described in detail, and compared to traditional techniques in statistical learning.

Chapter 4 describes the well known reliability analysis problem in engineering, where

one wishes to calculate the probability that the performance of a system under the influence

of uncertainty meets a particular design condition. State-of-the-art techniques for efficiently

solving this problem with random variables and probability box variables are reviewed.

In Chapter 5, we describe the analysis of an industrial test case from the nuclear

sector, where a concrete containment for a nuclear reactor was pressurised to failure. The

containment is modelled using an analytic equation derived from structural engineering

principles. The properties of the containment are represented by random variables where

the distribution parameters are not precisely known, i.e. probability boxes. We apply

sensitivity analysis using Monte Carlo simulation to study the effect of changing these

distribution parameters.

Chapter 6 provides equations to solve the problem described in Chapter 4 analytically for

some particularly important and commonly occurring system configurations for probabilistic

safety analysis in the nuclear industry. A generalisation of the equations is presented for

the case where the system’s parameters are represented by probability boxes. Then these

developments are applied to analytically calculate the reliability of the containment from

Chapter 5 and an additional containment test case, i.e. without using Monte Carlo

simulation.

Chapter 7 utilises the interval predictor models introduced in Chapter 3 as a metamodel

for solving the reliability analysis problem in Chapter 4. The results are compared to other

state of the art techniques involving metamodels.

In Chapter 8, the results from Chapter 7 are extended to solve the reliability analysis

problem for the case where the system’s parameters are described by probability box

variables, by using an interval predictor model metamodel.
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Chapter Content Objective

1 Introduction

2 Review of Literature

3 Review of Literature

4 Review of Literature

5 Novel Contribution 4

6 Novel Contribution 3

7 Novel Contribution 1

8 Novel Contribution 1

9 Novel Contribution 2

10 Conclusion

Table 1.1: Content of thesis chapters.

Chapter 9 demonstrates novel methods of training interval predictor models with complex

structures on huge data sets. This is achieved by using neural networks to represent the

bounds of the interval predictor model, and applying a new loss function to ensure robust

and efficient training.

Finally, Chapter 10 summarises the presented work, and makes recommendations for

future research.

The content of the chapters is summarised in Table 1.1. The structure of the thesis is

illustrated by the flowchart in Figure 1.1.
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Chapter 2
Models of 
Uncertainty

Chapter 3
Machine Learning
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Reliability
Analysis

Chapter 6
Analytic Imprecise 
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Figure 1.1: Organisation of thesis chapters.



Chapter 2

Models of Uncertainty

2.1 Overview of uncertainty models

The purpose of uncertainty models is to allow analysts to move beyond computation with

point values of variables. By using an uncertainty model one can describe the variability or

lack of knowledge in a parameter, and consider how this affects the result of a calculation.

In this chapter, we describe the process of quantifying the uncertainty in a set of variables

independently of the values of other variables, which is known as generative modelling (the

alternative case, regression modelling is described in the subsequent chapter).

As a concrete example, consider predicting the weather at a particular location, on a

particular day. A model to predict the weather on Tuesday independent of other information

would be considered a generative model. If the model predicted the weather on Tuesday,

given the weather conditions on Monday, which were already known, this would be termed

a regression model.

So far we have avoided discussing any type of uncertainty model in particular, since

many different models of uncertainty exist. The particular model chosen for an application

may be selected based on a number of factors, including its ability to be created from the

type of data available, ease of computation, and the desired properties of predictions made

by the model.

Models which can be created from imprecise data, i.e. interval data, often result in less

informative predictions than models which cannot. However, uninformative predictions

are not necessarily undesirable, if the predictions are a true representation of the state of

knowledge of the analyst or engineer. Hence the chosen uncertainty model should truthfully

9
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represent the level of uncertainty of the analyst, given the available information.

It should also be noted that, contrary to common opinion, particular classes of uncer-

tainty model do not necessarily restrict the type of uncertainty which can be represented.

In some cases, a probabilistic model may allow epistemic uncertainty to be communicated

[88], and in principle one could use an interval model to represent aleatory uncertainty —

though usually probabilistic models are more useful representations of aleatory uncertainty.

The ease of calculation should also be considered when the class of uncertainty model

to be used is chosen. If the speed of calculation is very important, because a decision based

on the predictions of the model must be made with severe time limitations, then it could

actually be more unsafe to choose an uncertainty model which is more accurate but reduces

the speed with which predictions can be made. For example, this could be the case in an

online safety system in a power plant [172]. However, in most situations the speed with

which predictions must be made is more flexible, and therefore it is usually preferable to

choose an uncertainty model which is accurate, and then use approximations or efficient

computational methods to compute the desired prediction.

With this in mind, in this section several uncertainty models will be presented, including

probabilistic models, non-probabilistic models, and imprecise probabilistic models. The

type of information which can be used to create the models will be discussed, and their

amenabilities to calculation will be compared.

2.1.1 Probabilistic models of uncertainty

Overview

Probabilistic models of uncertainty require the definition of a probability space, which

is given by (Ω,F , P ), where Ω represents the space of all possible outcomes (the sample

space), F is a σ algebra representing the set of events, where each event is a set containing

outcomes, and P ∈ [0, 1] represents probabilities which are assigned to the events in F
[88]. Note that the probability assigned to the space of all outcomes is 1, P (Ω) = 1, and

the probability of the empty set of outcomes is zero, P (∅) = 0. By definition, for an

outcome ω ∈ Ω and its complementary outcome ωC , their intersection is the empty set,

ω ∩ ωC = ∅, and their union is equal to the entire sample space, ω ∪ ωC = Ω. It follows

that P (ω) + P (ωC) = 1.

The aim of defining the probability space is usually to obtain the random variable

X : Ω → E, which is a function from the set of outcomes Ω to the measurable space E.
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The probability that X takes a value falling inside in the set S is given by

Pr(X ∈ S) = P ({ω ∈ Ω|X(ω) ∈ S}). (2.1)

When the measurable space is the real line, E = R, the cumulative distribution function

(CDF) can be obtained by calculating the probability of the event that that X is less than

a particular value x, {X < x}. Therefore the cumulative distribution function is given by

FX(x) = P (X ≤ x). (2.2)

The well known probability distribution function (PDF) of the variable, pX(x), is the

gradient of the cumulative distribution function, pX(x) = dFX(x)
dx . The probability density

represents the relative likelihood of a random variable taking a particular value. Note that,

as follows from our definition, the cumulative distribution must increase monotonically with

x, and as such the probability density function is always positive. In addition, the integral

of the probability density function over the whole real line will always be equal to 1, since

limx→∞ FX(x) = 1 and limx→−∞ FX(x) = 0 [149].

Note that important properties of the random variable are summarised by the mean of

the random variable,

µX = E[X] =

∫
R
xpX(x)dx, (2.3)

where E is the expectation operator, and the variance

Var(X) = E[(X − µX)2] =

∫
R

(x− µX)2pX(x)dx, (2.4)

which is sometimes quoted in terms of the standard deviation, σX =
√

Var(x) [149]. The

standard deviation is sometimes expressed as the coefficient of variation of a varible (CoV ),

which is defined as CoV = µX
σX

.

In practical calculations, one is not usually concerned with the probability space

(Ω,F , P ), because defining either the probability distribution function or cumulative dis-

tribution function by assigning probability density to the possible values for X is usually

sufficient for calculations to proceed. The measure theoretic framework for probability

theory which we have summarised here was introduced by Kolmogorov [102]. An equivalent

theory was derived by extending Boolean logic to assign quantitative values of truthfulness

to statements, termed plausibilities, in the seminal work of Jaynes [88].
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The probability of an event may be considered in terms of probabilities of sub-events,

for example if A = A1 ∩ A2, where ∩ represents the logical and operation, then P (A) =

P (A1 ∩ A2). This can be evaluated as P (A1 ∩ A2) = P (A1|A2)P (A2), by definition.

P (A1|A2) is the probability that A1 is true, given that A2 is true. The dependence between

A1 and A2 is encoded in P (A1|A2); P (A1|A2) = P (A1) if A1 and A2 are independent

events, so that P (A) = P (A1)P (A2). If the dependence is not known then bounds for P (A)

can be established, and this is discussed in Chapter 6. Similar bounds are available for the

logical or operation, ∪.

One may model dependencies between variables by considering the joint distribution

over more than one variable, e.g. p(x1, x2) = P (X1 = x1 ∩X2 = x2), where X1 and X2 are

two random variables. Traditionally, a generative model is defined as a joint probability

distribution. One may summarise the properties of a joint distribution using the co-variance

between two variables

cov(X1, X2) = E[(X1 − µX1)(X2 − µX2)] =

∫
R

∫
R

(x1 − µX1)(x2 − µX2)p(x1, x2)dx1dx2.

(2.5)

Taking the co-variance of a variable with itself yields the variable’s variance, cov(X1, X1) =

Var(X1) [149].

Computation with Probabilistic Models

The expectation (mean value) of a general function g(x) with respect to an uncertain

variable, which is modelled with a probability distribution p(x), can be evaluated as

E[g(X)] =

∫
RN

g(x)p(x)dx, (2.6)

where we now allow x to have multiple components.

In the most general case, one can draw realisations, known as samples, from the random

variable by selecting values for the variable in the ratio of their assigned probability densities.

Given M samples drawn from p(x), {x(1), . . . , x(M)}, E[g(X)] can be approximated by the

Monte Carlo estimator

E[g(X)] ≈ I =
1

M

M∑
i=1

g(x(i)). (2.7)
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The error of the Monte Carlo estimator is given by

σg√
M

=

√∑M
i=1(g(x(i))− I)2√
M(M − 1)

, (2.8)

where σg is the unbiased sample estimator of the variance of g [150]. Clearly the error in

the estimator decreases with 1√
M

, so collecting more samples will slowly decrease the error

in the estimator [140]. However in many circumstances collecting more samples of M is not

feasible, and σg may be large.

Therefore, in practice, more efficient methods are used to compute the expectation. In

Chapter 4 efficient methods for solving a specific form of this integral from engineering

reliability analysis will be explained. However, it is useful to note there are some more

general efficient approaches for computing an approximation of the expectation in Eqn. 2.6.

For example, provided that g(x) can be differentiated, one can attempt to approximate

the expectation in Eqn. 2.6 with a Taylor expansion

E[g(X)] = E[g(µX + (X − µX))] ≈ E[g(µX) + g′(µX)(X − µX) +
1

2
g′′(µX)(X − µX)2 . . .],

(2.9)

where µX is the mean of random variable X. When g(x) is linear, the the expectation in

Eqn. 2.6 can therefore be calculated trivially, since X − µX = 0 and g′′(x) = 0. If g(x) is

non-linear then using the approximation E[g(X)] ≈ E[g(µX)] is correct only to first order

[179]. At the expense of generality, the expectation is evaluated using only two evaluations

of g(x), which is a clear advantage when g(x) is expensive to evaluate, or the computation

of E[g(X)] is required quickly. This idea is applied to engineering in the Kalman Filter and

Extended Kalman Filter [179].

Uhlmann [174] proposed a more accurate approximate method for approximating the

expectation in Eqn. 2.6 which requires few evaluations of g(x), and does not require g(x)

to be differentiated. The Unscented Transformation, sometimes referred to as deterministic

sampling, requires the computation of so called sigma points which are specially chosen

represent the covariance of the input distributions. It is then only required to compute g(x)

for these sigma points, after which a weighted average is used to obtain the approximation of

the expectation in Eqn. 2.6. Wan and Van Der Merwe [179] demonstrate that the Unscented

Transformation is accurate to at least second order, but potentially to third or forth order

in some cases. The number of sigma points required, and hence the cost of the computation,
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depends linearly on the dimensionality of x. Although this approach is more generally

applicable and accurate than the Taylor Series method, the Unscented Transformation

is limited to use cases where x has reasonably low dimensionality, because otherwise too

many evaluations of g(x) are required. The method has been applied to engineering in the

Unscented filter [179] and uncertainty quantification in the nuclear industry by Zhang et al.

[188] and Perret et al. [139].

In order to avoid these approximations, techniques can be used to obtain more accurate

approximations of g(x) in specific cases (metamodels), or alternatively efficient sampling

strategies can be used. This is discussed in Chapter 4 for application to reliability analysis.

2.1.2 Set-based models of uncertainty

The two most common set-based models of uncertainty are convex sets and interval models.

The popularity of these models can be attributed to the computational simplifications they

enable, relative to non-convex set models of uncertainty. Set-based models are a method of

characterising uncertainty, without describing the level of belief for each distinct value, as

in probabilistic models. Alternatively, they can be seen as an initial way of prescribing the

support for an as-yet undetermined probabilistic model.∗

Interval models of uncertainty

An interval model of uncertainty is a set of numbers where any number falling between the

upper and lower bounds of the interval is included in the set. In the interval notation, an

interval uncertainty model is given by X = [x, x] = {x ∈ R | x ≤ x ≤ x} [121]. Note that

interval models can also be defined for the case where the endpoints are excluded from the

intervals, and in this case regular brackets are used instead of square brackets. Interval

models can be re-parameterised in terms of their centre and interval radius, c = x+x
2 and

r = x−x
2 . Interval models usually don’t express dependency between multiple variables.

Note that when using an interval model of uncertainty, the relative likelihoods of

different values of the variable are unknown and therefore it is impossible to draw precise

samples from the model in the same sense that one draws samples from a probability

distribution. Put simply, an interval model represents complete lack of knowledge, apart

from the bounds. For this reason, they are often preferred for modelling severe epistemic

∗The support of a distribution is the set of values for which the probability measure is non-zero.
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uncertainty, sometimes known as incertitude, rather than aleatory uncertainty, where the

ability to model the variability of a quantity is the main focus [104].

Basic computation with interval models is typically computationally inexpensive since

one can rely upon interval arithmetic for elementary operations. Complex functions and

computer codes can be ‘converted’ to accept interval inputs by applying the so-called

natural extension, where arithmetic operations are converted to interval arithmetic and real

valued inputs are replaced with interval values [121]. However, applying the natural interval

extension can result in gradual widening of the prediction interval during propagation

through the code, due to repeated appearance of the same variables [121].

In many cases, one can create a Taylor expansion for g(x) up to terms of a specific order

in x, and then use an interval bound for the rounding error to rigorously and accurately

bound g(x) [81, 113, 124]. Intermediate linear Taylor models may be combined together

to yield relatively tight bounds on the output with reduced computational expense, since

computing the maximum of a multivariate linear function over a set of intervals is trivial.

Engineers could choose to neglect the modelling of the remainder in cases where a rigorous

bounding of the range of g(x) over X is not required, or the Taylor model is sufficiently

accurate. Alternatively, if g(x) is represented a Bernstein polynomial, bounds on the range

of g(x) over X can be obtained analytically [45].

For complex functions or computer codes it may not be possible to rewrite the code in

terms of interval arithmetic, as the code may be ‘black-box’ and therefore inaccessible. In

these cases it may be necessary to rely upon numerical optimisation to compute approximate

bounds on the range of g(x). For example, if one wishes to make predictions about the

output of a model g(x) for x ∈ [x, x] then one must evaluate

[ min
x∈[x,x]

g(x), max
x∈[x,x]

g(x)]. (2.10)

For general g(x), a non-linear optimiser with the ability to respect bounds must be

used to solve Eqn. 2.10, for example Bayesian optimisation or a genetic algorithm. A brute

force search could also be used to solve Eqn. 2.10. If g(x) is convex, then one may apply

convex optimisation routines [22]. Due to the curse of dimensionality this optimisation

becomes more difficult when there are many interval variables to be propagated, since the

complexity for many convex optimisation algorithms increases with the dimensionality of

the problem [26].

The method of Cauchy deviates offers an efficient alternative to computing finite
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difference gradients of g(x) in order to apply a Taylor expansion for black-box functions

[103]. The Cauchy deviates method evaluates g(x) for a set of transformed samples drawn

from Cauchy distributions and then uses the property that the linear combination of

Cauchy distributed random variables is also Cauchy distributed with a known distribution

parameter to bound g(x).

Convex set models of uncertainty

A convex set is defined as a set where, for any two points in the set, all points along the

connecting line between the two points are also included in the set. Convex sets are useful

as they are in many ways similar to interval models, but allow dependencies to be modelled

between variables. Ben-Haim and Elishakoff [15] provide examples of how convex set models

may be used in engineering practice. There is a deep connection between interval models

and convex set models. An interval model with multiple variables would be represented as

the specific case of a hyper-rectangular convex set. In addition, affine transformations of

hyper-rectangular convex sets result in a class of models known as zonotopes [163].

The smallest convex set containing a particular set of data points is termed the convex

hull of the dataset. Computing the convex hull of a dataset has complexity O(n log n+nb
d
2
c)

[41], where b·c is the floor operator which rounds a real number down to the nearest integer,

and therefore in practice one often learns a simplified representation of the convex set with

desirable computational properties.

`p ellipsoids (for p > 1) are a particularly useful case of a convex set, because they can

be easily manipulated in calculations [180]. An `p ellipsoid is given by the set X = {x |
‖x− c‖p,w ≤ r}, where the weighted `p norm is ‖x‖p,w = (

∑N
i=1 |wixi|p)

1
p , xi are variables

in a set of dimensionality N , c ∈ RN represents the centre point of the set, and wi are

weights controlling the relative uncertainty in each variable [85]. p can be adjusted to control

the correlation between the variables. The case `∞ corresponds to the hyper-rectangle

(interval) model, where there is no correlation between variables. When p is decreased the

variables become more correlated.

Computation with convex set models is performed in the same way as with interval

models, except the bounds on x are replaced with convex constraints:

[min
x
{g(x) : x ∈ X},max

x
{g(x) : x ∈ X}], (2.11)

where X is a convex set. If g(x) is linear with known gradient, and X is a hyper-sphere or
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hyper-rectangle, then this optimisation program in Eqn. 2.11 admits an analytic solution

[116]. If the convex set is small then the analytic solution may be a reasonable solution

when used with a Taylor expansion for g(x), as with interval uncertainty models.

2.1.3 Imprecise probabilistic models of uncertainty

Probability Boxes

Probability boxes generalise probability distributions and intervals; they model a set of

cumulative distribution functions. Probability boxes are used to communicate epistemic

uncertainty in the precise form of a probability distribution [60]. In the particular limiting

cases of no epistemic uncertainty and no aleatory uncertainty, traditional CDFs and intervals

can be recovered from the probability box, respectively.

Broadly speaking, probability boxes can be split into two types. Distribution-free

probability boxes consist of an envelope defined by two CDFs. Any CDF contained within

the envelope is permitted, i.e. the probability box contains all cumulative distribution

functions F (x) which satisfy the envelope condition F (x) ≤ F (x) ≤ F (x)∀x.

Distributional probability boxes consist of a conventional probability distribution where

at least one parameter of the distribution is given as an interval rather than a crisp value,

i.e. the probability box is given by the probability distribution pθ(x) with parameters

θ ∈ Θ, where Θ is a hyper-rectangular convex set. It is possible to perform a conversion

from distributional probability boxes to distribution-free probability boxes, by finding a

distribution-free probability box which encloses the distributional probability box. This

conversion results in the loss of information about the distribution types enclosed, and

hence the conversion can not be easily reversed. The envelope of a distributional probability

box, which will be a distribution-free probability box, can be obtained by evaluating

[F (x), F (x)] = [min
θ
Fθ(x),max

θ
Fθ(x)], (2.12)

where Fθ(x) is the CDF corresponding to the probability distribution pθ(x).

Computation with Probability Boxes

Probability boxes are a specific case of a random set [50, 3], and therefore when they are

propagated through a calculation their propagation can be decomposed into two distinct

parts; the propagation of a set of epistemic uncertain variables which fall within an uncertain
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hyper-rectangle θ ∈ Θ, and the propagation of an aleatory set of variables α, which are

associated with a probability distribution. The result of propagation through the model

is a probability box, rather than a single CDF. The propagation is non-trivial since the

epistemic variables are intervals and have no probability distribution, which means that

conventional Monte Carlo simulation cannot be applied. Two methods are commonly used

to propagate probability boxes: Double Loop Monte Carlo (sometimes referred to as search

or optimisation of the epistemic space), and integration of the aleatory variables [133].

For a distributional probability box the upper and lower expectation are defined by

E[g(X)] = max
θ∈Θ

∫
RN

g(x)pθ(x)dx (2.13)

and

E[g(X)] = min
θ∈Θ

∫
RN

g(x)pθ(x)dx. (2.14)

If g(x) is linear or easily approximated by a Taylor series then similar approximation

techniques to those discussed for probability distributions earlier in the chapter can be

applied.

In the general case, to accurately approximate the upper expectation in Eqn. 2.13 we

can use the Monte Carlo estimator from Eqn. 2.7 inside an optimisation routine:

E[g(X)] = max
θ∈Θ

1

M

M∑
i=1

g(x(i)), (2.15)

where x(1), . . . , x(M) are drawn from pθ(x). This is known as Double Loop Monte Carlo

simulation, and can be applied only in the case of distributional probability boxes. This

estimator can be shown to have a positive bias [173]. As is the case with computation with

interval models, it is necessary to use a non-linear optimisation routine to evaluate the

outer loop in the general case.

The Double Loop Monte Carlo method can be modified to propagate distribution-free

probability boxes by drawing the samples required for Eqn. 2.15 from a monotonically

increasing staircase function, which is parameterised by θ and satisfies the envelope condition

for the probability box under consideration. However, this approach will be computationally

inefficient in general since a high dimensionality θ would be required to approximate the

probability box with sufficient accuracy, and therefore another approach is required.

For a distribution-free probability box note that one can sample intervals from the
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Figure 2.1: Obtaining samples from a probability box.

probability box by generating random numbers between 0 and 1 and applying inverse

transform sampling to F and F , i.e. generate sampled intervals [x, x] = [F−1(α), F
−1

(α)]

by sampling α ∼ U(0, 1), where F−1 and F
−1

are the inverse CDFs of the probability box

envelopes and U is the uniform distribution. The process of generating a single sample is

known as taking the α cut, and the sampled intervals constitute focal elements [50]. This

process is shown in Figure 2.1. One can then propagate these intervals through g(x) using

the techniques described for intervals in the previous section, e.g. using the natural interval

extension of g(x), or using black-box optimisation. Therefore one can calculate the upper

expectation as

E[g(X)] =
1

M

M∑
i=1

max
x∈[x(i),x(i)]

g(x), (2.16)

where [x(i), x(i)] are the intervals generated from inverse transform sampling. In this thesis

we dedicate most of our attention to the case of Double Loop Monte Carlo simulation for

distributional probability boxes.

Dempster-Shafer structures

A Dempster-Shafer Structure is another form of imprecise probability model which has been

widely applied in engineering [147]. In this thesis we do not use Dempster-Shafer structures,

however we briefly outline the model and the relationship to probability boxes here for

context. A Dempster-Shafer (DS) structure represents the assignment of probability mass

to intervals rather than point values, as is the case with probability density functions.

Consider the case where probability mass has been assigned to intervals on the real line,
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{([x(1), x(1)], p(1)), . . . , ([x(n), x(n)], p(n))}, where
∑n

i=1 p(i) = 1. We can define two measures

called belief and plausibility which bound the probability mass contained in a particular

interval. The belief measure is defined by

bel(A) =
∑
i

[x(i),x(i)]⊆A

p(i), (2.17)

and the plausibility measure is defined by

pls(A) =
∑
i

[x(i),x(i)]∩A 6=∅

p(i), (2.18)

where bel(A) ≤ P (A) ≤ pls(A) and pls(A) = 1− bel(A), and ⊆ represents a subset. For a

particular DS structure, Ferson et al. [60] define an associated probability box using

F (x) =
∑

x(n)≤x
p(i) (2.19)

and

F (x) =
∑

x(n)<x

p(i). (2.20)

2.2 Creating models in practice

2.2.1 Choosing a model

As discussed previously, it is essential to exercise engineering judgement when choosing an

uncertainty model, both in terms of speed of computations which can be performed with

the model and the appropriateness of the model’s representation of uncertainty. Engineers

should also note that it is essential to exercise their judgement even after the theoretical

uncertainty framework is chosen, since the set of hypotheses included in the uncertainty

model has a strong affect on the conclusions drawn from analysis.

For example, consider the following problem proposed by Zadeh [185]: two doctors

examine a patient, but differ in their diagnoses. Doctor A believes the patient has a 99%

chance of meningitis and 1% chance of concussion. Doctor B believes the patient has a

99% chance of tumor and 1% chance of concussion. Since the doctors’ diagnoses strongly
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conflict with each other, a näıve application of Bayesian probability concludes that the

patient most likely has concussion. Zadeh proposes that this problem can be solved with

fuzzy logic. However, Maskell [114] shows that Bayesian probabilities can, in fact, be used

to solve the problem, by allowing the model to consider that the doctors may have made a

mistake in their estimations of probabilities.

Another interesting example is demonstrated by Balch [10] and Balch et al. [11]; it is

shown that using probability distributions to represent epistemic uncertainty in satellite

conjunction analysis does not provide a useful description of the likelihood of collision

between satellites, since the likelihood of collision appears to decrease when data with more

incertitude is collected.

2.2.2 Training models from data

Here we provide a non-exhaustive review of methods to calibrate probabilistic and non-

probabilistic generative uncertainty models, in order to set the context for the remainder of

the thesis.

Creating parametric Bayesian probabilistic models

Consider the probability distribution pθ(x) = p(x(i)|θ) with vector of parameters θ, which

we wish to identify based on a set of n training samples, Xtrain = {x(1), . . . , x(n)}, drawn

from the random variable specified by pθ(x). A distribution over the parameters θ, given

the data Xtrain can be obtained by applying Bayes’ law:

P (θ|Xtrain) =
P (Xtrain|θ)p(θ)
P (Xtrain)

, (2.21)

where p(θ) represents a prior distribution on θ, P (Xtrain) =
∫
P (Xtrain|θ)dθ acts as a

normalising constant, and the data likelihood can be written as P (Xtrain|θ) =
∏
i p(x

(i)|θ) by

assuming independence of training samples. This approach, known as Bayesian Hierarchical

Modelling [74], has desirable properties. For example, the epistemic uncertainty on θ will

decrease as more data becomes available which will be observed as a ‘concentration’ of the

posterior distribution for θ around one point.

Although simple analytical distributions are often used for the likelihood P (Xtrain|θ)
(e.g. a Gaussian distribution with mean θ1 and scale θ2). One can also extend the

framework to consider more complex likelihood functions. For example, often the likelihood
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is P (Xtrain|θ) =
∫
P (Xtrain|y)δ(f(θ)− y)dy, where f(θ) is an arbitrarily expensive and

complex function, for which we may not know the gradient, and p(x(i)|θ) is a simple

probability density, for example a normal distribution, and δ(x) is the Dirac delta function.

This setting is referred to as an ‘inverse problem’ [169].

The probability distributions over θ represent epistemic uncertainty in θ, whilst the data

likelihood, p(x(i)|θ), represents the natural stochasticity (aleatory uncertainty) of the data

generating mechanism. Note that the prior distribution, p(θ), should be chosen to represent

our prior knowledge of the parameter θ, and in the case of no knowledge, should be set

to an appropriate uninformative distribution. The distribution used for the uninformative

prior should be chosen based on physical considerations regarding the parameter of interest,

but is often somewhat arbitrarily assumed to be uniform [88].

The prior distribution is not the only place where prior knowledge enters into the

probabilistic model; the model specification, i.e. the data likelihood, represents another

form of prior knowledge which must be carefully considered with this approach [88]. It

is particularly important to decide which parameters in the likelihood function should be

modelled as uncertain, e.g. if the likelihood is assumed to be a Gaussian density, will a

value be assumed for the standard deviation of the distribution, or will this be an element

of θ, and hence an uncertain parameter?

We can derive point estimates for θ from the Bayesian approach [67]. The maximum

a posteriori estimator for θ is obtained by evaluating θMAP = maxθ P (θ|Xtrain), where

P (θ|Xtrain) ∝ P (Xtrain|θ)P (θ). The maximum likelihood estimator for θ is obtained by eval-

uating θML = maxθ P (Xtrain|θ). Note that the maximum likelihood estimator is equivalent

to the maximum a posteriori estimator when a uniform prior distribution is used. These

estimators can be evaluated using any optimisation method. Stochastic Gradent Descent,

a widely used optimisation method, will be discussed in Chapter 3 since it is most often

applied to regression models.

We do not necessarily have to disregard uncertainty in θ when using the maximum

a posteriori approach, since the covariance of the distribution can be estimated by inverting

the Hessian (matrix of second derivatives with respect to parameters θ) of P (θ|Xtrain). This

is known as the Laplace approximation. This estimate is exact in some well known cases,

e.g. the case of a Gaussian likelihood and prior, where the optimisation loss (the logarithm

of the posterior) becomes the mean squared error [169].

In many cases the full posterior for θ can be calculated analytically, for example where

a conjugate prior is used so that the posterior distribution has the same functional form as
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the prior distribution. If this is not the case, and one wishes to compute the full posterior

distribution, then a Markov Chain Monte Carlo (MCMC) method is often used to obtain

samples from the posterior distribution, or other approximate numerical techniques are

used.

An MCMC algorithm constructs a Markov chain with the desired distribution as its

equilibrium distribution, so that if the Markov chain is simulated for a sufficient time then

the samples drawn are from the posterior distribution [74]. MCMC methods typically do

not require the gradient of the posterior to be known, and are hence applicable to a wide

class of problems. Unfortunately, MCMC simulation can be computationally infeasible

when θ has high dimensionality, or when the training dataset is large. Recently, efficient

sampling based algorithms have been proposed to combat this problem [80].

As an alternative to MCMC based methods, Variational Inference can be used to find

the closest match between an approximating parametric ‘proposal’ distribution and the

true posterior distribution. This method typically requires the gradient of the likelihood

function to be known, but scales very well to high dimensionality problems [21].

Approximate Bayesian Computation is an efficient computational method which can

be used to sample from an approximation of the posterior distribution in the case that

the likelihood is too expensive to compute [48]. Sadeghi et al. [154] demonstrate a similar

method, where the true likelihood probability density function is replaced by an interval

with associated probability, and show that bounds on the likelihood function can still be

obtained in this case.

Frequentist confidence intervals

In this thesis, traditional frequentist statistics are not used, except for in the validation of

some Interval Predictor Models, but for the interested reader we briefly describe here how

a frequentist confidence interval can be obtained for θ.

In frequentist statistics, one aims to identify a region of parameter space which would

contain the true value of the parameter with a specified frequency if the experiment was

repeated, i.e. we aim to find the confidence interval Θ = [θ, θ], where P (θ ∈ Θ) = 1− α,

and α is an arbitrarily small probability.
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Non-parametric prediction intervals

The maximum and minimum of a dataset (i.e. [mini x(i),maxi x(i)] when x is one dimen-

sional) can be used to produce a prediction interval with coverage probability n−1
n+1 , i.e. the

probability that x(n+1) will fall inside the prediction interval [183]. A tighter prediction

interval, with a lower coverage probability of n+1−2j
n+1 can be obtained by using the j-th

smallest and largest values in the dataset.

Creating parametric imprecise probability models

The application of Bayes’ law in Eqn. 2.21 assumes that the data Xtrain consists of real,

‘crisp’, values. However, we can also apply Bayes’ law to imprecise, interval data. For

example, consider the set of training data Xtrain = {[x(1), x(1)], . . . , [x(n), x(n)]}. If an

analytic equation is available for the posterior parameters then in many cases it is possible

to obtain bounds on the posterior parameters given interval data. For example, if a Gaussian

density is used for the likelihood and prior, then one may obtain bounds on the posterior

normal distribution parameters analytically [120].

The standard Bayesian paradigm can also be made robust by considering a set of

prior distributions. This is known as Robust Bayes [17]. Again, bounds on the posterior

parameters are available analytically in many cases, e.g. the Imprecise Dirichlet model.

Probability boxes can also be obtained by creating so-called confidence structures, which

are encoded as probability boxes. Confidence boxes encode confidence intervals at all

confidence levels. The binomial confidence bounds, which bound the success probability

of a binomial random variable, are a particularly useful example which can be found by

inverting the CDF of a binomial random variable [62].

Creating non-parametric imprecise probability models

Several methods exist to obtain non-parametric CDFs from data. The CDF can be

estimated from n training samples, Xtrain = {x(1), . . . , x(n)}, using the empirical cumulative

distribution function (eCDF), which is given by

Sn(x) =
1

n

n∑
i

Ix≥x(i)(x), (2.22)
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where I is the indicator function, which is equal to 1 if the subscript statement is satisfied,

and is otherwise equal to zero [101]. The eCDF is effectively the random variable which

is formed by assigning probability density equally at the point value of each sample, and

hence when plotted the eCDF looks like a staircase function. The eCDF can be generalised

to the case of imprecise sampled data, by considering a separate eCDF for the upper and

lower bounds of the samples. These upper and lower bounds represent the envelope of a

probability box, and hence an empirical probability box is obtained [60].

So-called concentration inequalities can be used to obtain bounds on the CDF of a

random variable with a certain confidence. A probability box can be obtained for the

random variable by choosing a cutoff confidence, such that the CDFs at that confidence

will form the envelope of the probability box [60].

The Kolmogorov-Smirnov statistic can be used to measure the confidence that the

true CDF of a random variable differs by more than a certain probability from the eCDF

obtained from sampled data (i.e. the vertical distance between the CDFs is compared)

[126]. The Kolmogorov-Smirnov statistic is given by

D = sup
x
|Sn(x)− F (x)|, (2.23)

where F (x) is the true CDF and the values for D can be obtained from Kolmogoroff [101].

Now a set of CDFs can be found with associated confidence. The Kolmogorov-Smirnov

statistic can be applied to eCDF bounds obtained by considering imprecise data [60].

Chebyshev’s inequality bounds the probability density of a random variable which can

fall more than a certain number of standard deviations from the mean [149]. Therefore

knowledge of the mean and standard deviation of a random variable imposes bounds on its

CDF. Chebyshev’s inequality is given by

P ((X − µ) ≥ kσ) ≤ 1

k2
, (2.24)

where k > 1 is a real number, µ is the mean of a random variable, and σ is the standard

deviation of the random variable.

2.2.3 Creating uncertainty models without data

When insufficient data is available to create a satisfactory uncertainty model using the

techniques described in the previous section, one may resort to creating a model based on
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the opinions of experts. This process is known as expert elicitation [167]. In this section

we briefly outline how various uncertainty models can be obtained from expert opinion, in

order to further justify and provide context for the uncertainty models used in this thesis.

Expert elicitation is not the main focus of this thesis, and therefore this section may be

skipped without consequence.

Probabilistic elicitation

In the Bayesian Hierarchical Modelling paradigm, discussed in the previous section, the

posterior distribution concentrates as data is received and gradually the prior has less

influence on the posterior. The prior distribution represents the state of knowledge about a

parameter before data is available, and if limited data is available then more care should

be taken to choose an appropriate prior, i.e. the opinions of experts should be considered

and assessed quantitatively.

When eliciting multiple expert opinions one must attempt to aggregate the opinions of

experts, regardless of the model chosen. Usually the opinions of experts are fused using

quantitative rules [167], and feedback may be given to the experts in order to allow their

opinions to be changed. Oakley and O’Hagan [127] propose the SHELF framework which

gives specific rules for how the opinions of experts should be elicited, and proposes that

the opinions should be aggregated by a rational unbiased observer during the elicitation

process.

Non-probabilistic elicitation

Imprecise probability models also have a role to play in expert elicitation. For example, if

the model exhibits severe dependency on a probabilistic prior which can only be elicited

approximately, one may wish to conduct a sensitivity analysis to the prior by considering a

probability box prior, as discussed in Section 2.2.2.

Other non-probabilistic models may be considered for a parameter, for example interval

bounds on a parameter may be available from physical considerations. Alternatively, experts

may prefer to specify their estimates as intervals, or may feel more comfortable specifying

bounding CDFs (i.e. probability boxes). Ferson et al. [60] discuss several methods for

aggregating probability boxes which can be chosen based on the desired properties of the

analysis.
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2.2.4 Validating a trained model

Once an uncertainty model has been obtained it is essential that the model is validated,

to ensure that it suitably represents the analysts uncertainty. Even if one uses a Bayesian

framework and trusts the priors and probability calculus, it is still possible that the model

has been misspecified. For this reason, one should qualitatively inspect the results of the

analysis, and quantitatively check that a probabilistic model is correctly calibrated using

numerical techniques.

Validating probabilistic models

Usually one partitions the data available for creating the model into the data set used for

training the model, Xtrain, and the data set used for testing, Xtest (containing Ntest data

points).

If a probabilistic model is correctly calibrated then we expect the stated probabilities

to represent the real frequencies with which events occur, for example if a set of events are

predicted to occur with 0.9 probability then we expect that they occur 90% of the time in

reality. This can be verified by plotting the test data relative to the trained distribution.

One method of achieving this is ‘binning’ the data into a histogram, and visually comparing

the histogram to the plotted distribution for the trained model [74].

One may use the test set, Xtest, to compute various statistics of the model. For example,

classical statistical tests can be used, such as the χ2 summary statistic for the sum of

squared errors which represents goodness of fit [74]. The test set can be used to compute

the negative logarithmic predictive density for the model, i.e. − logP (Xtest|Model) =

− logEP (θ|Xtrain)P (Xtest|θ), which can be used as a figure of merit for comparing models.

If one wishes to compare two probabilistic models Model1 and Model2 then one may

compare the evidence for the models by computing the Bayes Factor:

P (Xtrain|Model1)

P (Xtrain|Model2)
=
P (Model1|Xtrain)P (Model2)

P (Model2|Xtrain)P (Model1)
, (2.25)

where the model evidence (or marginal likelihood) P (Xtrain|Model) is computed by eval-

uating the expectation of the data likelihood for the model over the posterior obtained

in training (P (Xtrain|Model) = EP (θ|Xtrain)P (Xtrain|θ) =
∫
P (Xtrain|θ)P (θ|Xtrain)dθ). If the

Bayes factor is greater than one then Model1 is preferred, otherwise one should choose

Model2 [106]. When P (Model2) = P (Model1) the prior belief in each model is equal and
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the Bayes factor becomes equal to the likelihood ratio. The likelihood ratio can also be

computed for the test data set. One can also generate new data by sampling from the

distribution EP (θ|Xtrain)p(x|θ) and comparing this to the training and test data. This is

known as a posterior predictive check [74].

Validating non-probabilistic models

If a convex-set or interval based model is compared to crisp data then one can check that

all elements of the test set Xtest fall within the model. Ferson et al. [61] proposes that

interval models are validated against interval data using the metric for comparison of two

sets A and B:

∆(A,B) = inf
a∈A,b∈B

|a− b|, (2.26)

where A would represent the trained convex model, and B would represent an element of

Xtest. The mean of ∆(A,B) over every element B ∈ Xtest could be used to validate against

the entire test set, i.e. 1
Ntest

∑
B∈Xtest

∆(A,B).

Following this, Ferson et al. [61] proposes a generalisation of the Wasserstein distance

to measure the distance between an eCDF and a probability box, as a probability box

validation metric. The proposed metric, termed mean absolute difference of deviates, is

given by

Ex∆([F (x), F (x)], [Sn(x), Sn(x)]), (2.27)

where [F (x), F (x)] are the bounds of the probability box to be validated, and [Sn(x), Sn(x)]

are the bounds of the empirical probability box created from the training data, which

becomes a single CDF in the case of crisp data ([Sn(x), Sn(x)]). The metric reduces to

zero when there is overlap of the probability boxes at every x. We compare models by

computing the metric for each model, and then choosing the model with the lowest value

for the metric.

2.3 Chapter summary

This chapter presents a review of uncertainty models which can be used to describe unknown

parameters in a computational model, in addition to describing how the models can be

created in practice, from data or otherwise, and how computation can be performed

with these models. In particular, we discussed probabilistic models, which are used for
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conventional uncertainty quantification, and non-probabilistic models, which are used in

cases where only limited or imprecise data may be available, and prior knowledge may

be difficult to obtain in the form of a probabilistic prior. In this chapter, all considered

uncertainty models did not depend upon the behaviour of other variables — their uncertainty

was constant or homoscedastic. In many cases, it may be desirable to model how the

uncertainty in a variable changes with respect to another variable. This is typical, for

example, when we wish to consider how the output of a computer code changes with respect

to its inputs. Therefore, the following chapter describes so called regression models, where

modelling this dependency is possible.



Chapter 3

Machine Learning of Regression

Models

Regression models differ from generative uncertainty models in that they model the effect

of one variable on another variable. In the language of probability theory this involves

modelling a conditional probability distribution, rather than a joint probability distribution.

In some fields regression models are known as discriminative models, but this is usually

when the dependent variable in the probability distribution is discrete, and the problem

to be solved involves classification [125]. This thesis is concentrated only on the case

of continuous variables. In this chapter, we review different classes of regression model

and describe how they can be trained and validated from data. We describe in which

circumstances each type of model should be used.

3.1 Parametric regression models

Typically when learning a regression model, one wishes to obtain a estimate of the relation-

ship between the two variables, in addition to a measure of uncertainty in this relationship.

Typically this is achieved by specifying a function relating the two variables, and then using

Machine Learning techniques to calibrate parameters of that function based on sampled

data. The function can be specified based on expert knowledge, or alternatively a very

general function is chosen.

The most simple regression models usually consist of the inner product of a parameter

vector and a vector of ‘features’, such that the model output’s dependency on the parameters

30
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to be calibrated is linear. The features, usually known as the basis, are a function of the

input variables, which may be non-linear. Models of this form are amenable to computation,

and in general a wide variety of functions can be expressed in this way. In this formulation

the output of the model is given by

f(x,p) =
∑
i

piφi(x), (3.1)

where x and f(x,p) represent the input and output to the regression model, respectively,

pi are the parameters of the model to be calibrated which are components of the vector p,

and φi(x) is the basis [67]. Let x be a vector in RN , with components xi.

The basis should be chosen based on prior knowledge and engineering judgement. Basis

functions are either global or local. A local basis consists of radial functions, which only

depend upon the distance from a certain point, i.e. φ(x) = φ(|x|). The Gaussian basis is a

common radial basis function, where φi(x) = exp (−εi(x− ci)2). εi and ci are parameters

which can be set based on knowledge of the physical process being modelled or learnt

from data at the same time as pi, though this is more difficult because f(x) has non-linear

dependency on these parameters. The Gaussian basis function tends to zero far away

from ci. On the other hand, a global basis consists of functions which in general are

non-zero at all points in the input space. For example, the global polynomial basis of the

form φi(x) =
∏
i x

li
i , with indices li chosen based on engineering judgement, is nonzero

everywhere except for x = 0.

Polynomial Chaos Expansions offer a principled way to choose basis functions. Polyno-

mial Chaos Expansions are a class of regression model with a basis consisting of polynomials

which are orthogonal to each other, i.e. their inner product is zero with respect to a

probability distribution over their inputs (
∫
RN φi(x)φj(x)p(x)dx = 0∀i 6= j) [157].

In order to learn more complex functions, a more complex function representation is

needed, with the ability to model arbitrary non-linearities in the model parameters to be

learned. Neural networks are a widely used regression model which fulfil this purpose [67].

Neural networks consist of neurons which apply an inner product between the input and

a parameter vector, and then apply an arbitrary non-linearity, before feeding into other

neurons, until finally the result is outputted. These computational neurons are organised

into layers, which is equivalent to multiplying the input by a parameter matrix (known

as a weight matrix), rather than a vector. The way in which layers are connected can

lead to desirable properties, for example spatial invariance of particular layers over the
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Inputs OutputsHidden Layers

Figure 3.1: A diagram of a feed-forward neural network with three hidden layers, each with
a width of three neurons. The activation function, which is applied to the weighted sum of
the inputs to each neuron, is not shown.

input when the input is an image, i.e. a matrix. This is equivalent to repeating parameters

in the weight matrix. The most simple way to connect the layers is to allow each layer

to be completely connected to the subsequent layer, which is known as the feedforward

architecture. Layer i of a feed-forward neural network is given by

fi(x,W ) = act (Wifi−1(x)), (3.2)

where fi(x,W ) is a vector (which is the input vector x when i = 0, i.e. f0(x) = 0), act is a

non-linear activation function, and Wi is the ith weight matrix. The activation function

is typically the hyperbolic tangent function, the soft-max function or the rectified linear

function. A diagram of a feed-forward neural network is shown in Figure 3.1. Sundararajan

[168] demonstrates how neural networks can be trained to replicate the opinions of expert

engineers on the probability of failure of particular pipe welds in a power plant.
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3.1.1 Bayesian parameter learning

Defining a data likelihood

It is common to define a probability distribution based on the output of a regression model,

and then use the probability calculus introduced in Chapter 2 to learn distributions over

the parameters of the regression model. For simple models it is usually assumed that the

output f(x) of the model is some meaningful parameter of the distribution, e.g. the mean

of a normal distribution:

p(y|x,p) = N (f(x,p), σ2), (3.3)

where σ is the scale parameter of the normal distribution, which should be learned form

data. This results in a model where the level of uncertainty in p(y|x) does not depend on

the input to the model. This is known as a homoscedastic model of uncertainty.

Sometimes it is desirable to explicitly allow the uncertainty in the predictions to depend

on x. This is known as heteroscedastic uncertainty [68]. In this case it can be useful to

define a model where other parameters of the distribution depend on x, i.e. we define

p(y|x,p) = N (f1(x,p1), f2(x,p2)2), (3.4)

where f1(x,p1) and f2(x,p2) are different functions with different parameter sets, p1 and

p2.

Any valid probability distribution can be used in a similar way, for example the Dirac

delta function can be used to define

p(y|x,W, u) = δ(y − fi(x, u,W )), (3.5)

where fi(x) is the output of a neural network, where in this case the input layer is a

function of the true input and a random vector of noise, i.e. f0(x, u,W ) = concatenate(x, u)

where u ∼ U(0, 1). This is a very popular formulation in Machine Learning for Computer

Vision [77] [55], because p(y|x,W, u) can now be used to learn a very general probability

density in a computationally tractable way, since p(y|x,W ) =
∫
δ(y − fi(x, u,W ))U(0, 1)du

can be evaluated easily using a Monte Carlo estimator during inference of the posterior

distribution.
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Performing the Bayesian computation

Using a set of n training samples, Xtrain = {{x(1), y(1)}, ..., {x(n), y(n)}}, one can learn a

distribution over p in the same way as in Chapter 2 by using

P (p|Xtrain) =
P (Xtrain|p)p(p)

P (Xtrain)
=

∏
i P (x(i), y(i)|p)p(p)

P (Xtrain)
=

∏
i p(y

(i)|x(i),p)p(x(i))p(p)

P (Xtrain)
,

(3.6)

where the data likelihood can be written as P (Xtrain|p) =
∏
i p(y

(i), x(i)|p) by assuming

independence of training samples, p(p) represents a prior distribution on p, p(x(i),p) =

p(x(i))p(p) by assuming independence of p and the sampled inputs, and P (Xtrain) =∫ ∏
i p(y

(i)|x(i),p)p(x(i),p)dp acts as a normalising constant. As in Chapter 2, the posterior

distribution on p will tend to concentrate around one point as more data is received.

The maximum likelihood and maximum a posteriori estimators described in Chapter 2

are equally applicable here. These estimators are evaluated by minimising so-called loss

functions (objective functions). The maximum a posteriori estimator for p is obtained

by evaluating pMAP = maxp P (p|Xtrain), where P (p|Xtrain) ∝ P (Xtrain|p)P (p) = LMAP(p).

The maximum likelihood estimator for p is obtained by evaluating pML = maxp LML(p) =

maxp P (Xtrain|p). The maximum likelihood estimator is equivalent to the maximum

a posteriori estimator when a uniform prior distribution is used. Using a normal distribution

for the data likelihood leads to the well known mean squared error or `2 norm loss function

when the maximum likelihood estimator is used. Using a polynomial basis with the

mean squared error loss function leads to ordinary least squares regression. If a normal

distribution prior is used then this leads to an `2 weight regularisation (squared penalty)

in the maximum a posteriori loss function. In a similar way, most sensible loss functions

which aim to estimate point values for parameters have a Bayesian interpretation.

Computational methods

In practice, the most common way to create regression models is to evaluate the estimators

pML or pMAP with Stochastic Gradient Ascent, which maximises the logarithm of the

relevant probability distribution (or equivalently by using Stochastic Gradient Descent to

minimise the negative of the log posterior). This is computationally tractable even for high

dimensional p, since usually the gradient of logP (p|Xtrain) is known analytically. Gradient

Descent methods are a class of optimisation methods which adjust the value for a parameter

at each step of the algorithm by subtracting a small learning rate constant, η, multiplied
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by the gradient of the loss, L, with respect to the trainable parameter, i.e.

pi ← pi + η
∂L
∂pi

. (3.7)

This is repeated for a set number of iterations until the algorithm has converged. Stochastic

Gradient Descent approximates the product of likelihoods in the loss function by evaluating

the likelihood for one different sampled data point at each iteration. This is effective since

the expectation of the loss used in Stochastic Gradient Descent will still be equal to the true

value of the loss function. In this case, the learning rate constant must be reduced to ensure

convergence, which means many iterations of the algorithm are required to ensure a good

estimate for the parameters is obtained. Mini-batches, where the likelihood is evaluated for

a small set of data points at each iteration, can be used to achieve good convergence at

higher learning rates, whilst decreasing the required computational time, since a GPU can

be used [151]. Various improvements to Stochastic Gradient Descent aim to ensure that the

optimiser reaches a true minimum of the loss function, a particularly common improvement

being the ADAM optimiser [100].

Using the maximum likelihood and maximum a posteriori estimators can allow some

estimate of the uncertainty in the model to be made, but this uncertainty is an underestimate

of the true model uncertainty. For very simple regression models, MCMC can be used to

obtain the full posterior distribution on p, however this is usually intractable for models

with large parameter sets. As an alternative, variational inference can be used to minimise

the difference between the P (p|Xtrain) and an approximating posterior distribution, as

described in Chapter 2. Note that P (p|Xtrain) must be differentiable in p for this to be

possible. Using Bayes’ law to infer posterior distributions over the weights of a neural

network is referred to as training a Bayesian neural network, and this is almost always

achieved by using variational inference [21].

The technique of dropout sampling has been shown to improve the performance of

Stochastic Gradient Descent solvers, by improving the performance on validation tests

[162]. Dropout sampling involves randomly setting a fraction, pdropout of the weights to

zero during each training iteration. For particular choices of activation function, when

an l2 penalty on the weights is used in the loss function, it can be shown that dropout

sampling is equivalent to variational inference on a Bayesian neural network, where a

Bernoulli distribution is used as the approximating posterior distribution [70]. In order

for the approximating posterior distribution to be an accurate representation of the true
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posterior distribution, it is necessary to adjust the dropout probability, pdropout. Rather

than repeatedly performing training with different dropout probabilities, it is more efficient

to make the dropout probability a parameter which can be optimised during training, by

making the loss differentiable in terms of the dropout probability. This can be achieved

with concrete dropout, where a continuous approximation of the Bernoulli distribution is

used [71].

3.1.2 Validation

As was the case with generative uncertainty models in Chapter 2, it is necessary to validate

Regression Models. For probabilistic regression models this involves many of the same

techniques which are applied when validating generative models. However, validating

conditional probability densities presents additional challenges; although the model’s

predicted probabilities may be correctly calibrated on average, the model may be overly

certain in some areas of the input domain and too uncertain in other areas. For example,

using a regression model with homoscedastic uncertainty on a dataset where the uncertainty

is heteroscedastic may predict the correct mean squared error on average [69], but the

model evidence will be lower than for a more appropriate model.

To briefly recap the content from Section 2.2.4, before training one should split the

data into training and test data sets, and then begin the validation by applying sanity

checks. For example, a posterior predictive check could be used, where data is sampled from

the trained model and compared to the training data. Alternatively, one could produce a

plot of the normalised residuals, where the difference between the model output and the

training and test data divided by predicted standard deviation ( y−y(i)√
Var

p(y|x(i))
(y)

) is plotted

against the model output. Then more formal methods can be used, for example the Bayes

factor can be computed as in Eqn. 2.25, to compare several models [67]. This is similar to

comparing the negative logarithmic predictive density of different models on the test sets,

which is equal to the Mahalanobis distance for Gaussian predicted probability densities. It

is essential to compare the value of the loss (the negative logarithmic predictive density)

between the test and training data sets. If the value of the loss is much higher on the

test data set it is likely that the model is over-fitting the data, and will not generalise

well to new data. One may also wish to compute the expected variance of the Model’s

predictions (
∫

Varp(y|x)(y)p(x)dx), as it is likely that this can be compared to the expected

uncertainty of a subject matter expect in order to appraise the performance of the model.
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If the uncertainty is too high it is likely that the model is under-fitting the data so the

model complexity should be increased.

3.1.3 The bias-variance tradeoff

Bayesian techniques rely upon priors to control the complexity of a regression model. Well

chosen priors prevent learning too much information from a sample of data, and hence

prevent overfitting by restricting the effective learning capacity of the model. The issue of

underfitting is usually addressed by giving the model as much complexity as is possible

and necessary to reduce the bias of the model, in order to ensure that the model is able to

represent the desired function in principle. Then, overfitting is prevented by using a well

chosen prior to reduce the variance of the fitted model. Non-Bayesian machine learning

techniques often arbitrarily introduce mechanisms to constrain model complexity such

as weight penalties; these techniques are unnecessary in the Bayesian paradigm due to

the effect of prior distributions, which are in some cases equivalent to weight penalties.

Bootstrapping (averaging over maximum likelihood models trained on re-sampled selections

of the training data) is often used to reduce the variance of the trained model. Friedman

et al. [67] describes how bootstrapping can also be seen as a method to compute maximum

likelihood estimates of difficult to compute quantities like the standard error in an estimator,

and an alternative implementation of maximum a posteriori estimation for the case of an

uninformative prior. For certain likelihood functions and priors the bootstrap distribution

can be seen as an approximate Bayesian posterior distribution.

The Vapnik-Chervonenkis (VC) dimension, which represents the complexity of a classi-

fication model, can be used to derive a bound between the test error and training error of

a classification model (i.e. where y is a binary outcome) [177]. Similar bounds exist for

regression models. This means that the test error can be established without partitioning

the data. We do not use the VC dimension in this thesis because it is difficult to calculate

in practice, but we return to the idea of calculating a bound on the test error of a model

without partitioning the data in Section 3.3.2.

3.2 Non-parametric models

Bayesian non-parametric models are models for regression which learn a prior distribution

over functions at training time. This is achieved by learning so-called ‘Kernel hyper-
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parameters’ from the training data set, which specify a Gaussian Process Prior. Inference

is performed at test time by applying Bayes’ law to this prior with the available data [54].

The process of performing computation inference at test time is referred to as lazy learning

(as opposed to eager learning presented in the previous section, where the inference happens

during training, and only a single pass through the network is required to make predictions).

Gaussian Process models can be tuned to have desirable properties for many applications,

for example one can assume that the training data is noise-free and hence the relevant

function can be learned from very few samples. Gaussian Processes are particularly useful

for global optimisation of non-linear functions, because the predictive uncertainty can be

used to decide where the next sample should be chosen [65]. Gaussian processes are not

used in this thesis (except for as a comparison in some of the numerical examples), but we

will briefly describe how they relate to the Bayesian parametric models discussed in this

Chapter.

It can be shown that a single layer Bayesian neural network, with an infinite number

of neurons in the layer, is equivalent to a Gaussian Process, and can therefore be used

as a more convenient alternative, since the inference is performed at training time [123].

Variational approximations can be made for Gaussian Processes to make the inference

computationally tractable for large data sets and deep architectures [82]. Neural Processes

learn a distribution over functions in a similar way to Gaussian processes, but with

significantly reduced computational expense since only a forward pass through the neural

network is required at test time [73]. Neural Processes are useful for meta-learning (learning

to learn). For example, they were used to learn how to predict 2D views of 3D spaces, given

limited training data [58].

3.3 Learning bounds on a model

Instead of learning a probability distribution to describe the effect of one variable on another,

one may instead attempt to learn a function which maps the input variables to an interval

representing the possible range of the output. Such models are known as interval predictor

models. Sometimes the predicted intervals have an associated confidence level (or a bound

on the confidence level), and as such they can be considered as bounds on the quantiles of a

random variable [49]. Typically the obtained intervals represent an outer approximation, i.e.

the intervals are overly wide and hence conservative in an engineering sense. An interval

predictor model can be seen as prescribing the support of a Random Predictor Model,
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which is defined as a function which maps input variables to an output random variable. A

Gaussian Process Model is a specific case of a Random Predictor Model.

In this section, we describe how interval predictor models can be trained in practice. We

then describe how the theory of scenario optimisation can be used to provide guaranteed

bounds on the reliability of the trained interval predictor models, for the purpose of

validation.

3.3.1 Training interval predictor models

Let us consider a black box model (sometimes referred to as the Data Generating Mechanism

or DGM) which acts on a vector of input variables x ∈ Rnx to produce an output y ∈ R.

We wish to obtain the two functions y(x) and y(x) which enclose a fraction, ε, of samples

from the DGM, i.e. samples of y(x) where x is sampled from some unknown probability

density. The functions y(x) and y(x) are bounds on a prediction interval, and as such we

wish them to be as tight as possible. This can be written as a so-called chance constrained

optimisation program:

arg min
p

{Ex(yp(x)− y
p
(x)) : P{yp(x) > y(x) > y

p
(x)} ≤ ε}, (3.8)

where p is a vector of function parameters to be identified, and ε is a parameter which

constrains how often the constraints may be violated. Chance constrained optimisation

programs can be solved by using a so-called scenario program, where the chance constraint

is replaced with multiple sampled constraints based on data, i.e.

arg min
p

{Ex(yp(x)− y
p
(x)) : yp(x(i)) > y(i) > y

p
(x(i)), i = 1, ..., N}, (3.9)

where Xtrain = {{x(1), y(1)}, ..., {x(n), y(n)}} are sampled from the DGM. Most of the

literature on scenario optimisation Theory aims to obtain bounds on ε. Finding bounds on

ε using scenario optimisation is easier in practice than other similar methods in statistical

learning theory, since no knowledge of the Vapnik-Chervonenkis dimension (a measure of

the capacity of the model, which is difficult to determine exactly) is required.

A key advantage over other machine learning techniques is that interval training data

(i.e. where the training data inputs are given in the form x(i) ∈ [x(i), x(i)] due to epistemic

uncertainty or some other reason) fits into the scenario optimisation framework coherently
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[108]. This can be seen as equivalent to defending against the attack model of adversarial

examples considered by Madry et al. [112], where the network is trained to produce the same

outputs for small perturbations of the input data. The framework also permits robustness

against uncertainty in training outputs, i.e. y(i) ∈ [y(i), y(i)], where y(i) is a single training

example output.

Convex interval predictor models

If the objective and constraints for the scenario program are convex then the program can

be easily solved, and bounds can be put on ε. We will approximate the DGM with an

interval predictor model (IPM) which returns an interval for each vector x ∈ X, the set of

inputs, given by

Iy(x, P ) =
{
y = G(x,p),p ∈ P

}
, (3.10)

where G is an arbitrary function and p is a parameter vector. By making an approximation

for G and considering a linear parameter dependency Eqn. (3.10) becomes

Iy(x, P ) =
{
y = pTφ(x),p ∈ P

}
, (3.11)

where φ(x) is a basis (polynomial and radial bases are commonly used), and p is a member

of a convex parameter set. The convex parameter set is usually assumed to be either

ellipsoidal or hyper-rectangular [34]. Crespo et al. [46] demonstrates that hyper-rectangular

parameters sets result in an IPM with bounds with a convenient analytical form. The

hyper-rectangular parameter uncertainty set can be defined as

P =
{
p : p ≤ p ≤ p

}
, (3.12)

where p and p are parameter vectors specifying the defining vertices of the hyper rectangular

uncertainty set. The IPM with linear parameter dependency on the hyper-rectangular

uncertain set of parameters is defined by the interval

Iy(x, P ) = [y(x,p,p), y(x,p,p)], (3.13)
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where y and y are the lower and upper bounds of the IPM, respectively. Explicitly, the

lower bound is given by

y(x,p,p) = pT
(
φ(x)− |φ(x)|

2

)
+ pT

(
φ(x) + |φ(x)|

2

)
, (3.14)

and the upper bound is given by

y(x,p,p) = pT
(
φ(x) + |φ(x)|

2

)
+ pT

(
φ(x)− |φ(x)|

2

)
. (3.15)

To identify the hyper-rectangular uncertainty set one trains the IPM by minimising the

value of

δy(x,p,p) = (p− p)T |φ(x)|, (3.16)

subject to the constraint that the training data points fall inside the bounds on the IPM,

by solving the linear and convex optimisation problem

{
p̂, p̂

}
= arg min

u,v

{
Ex[δy(x,v,u)] : y(x(i),v,u) ≤ y(i) ≤ y(x(i),v,u),u ≤ v

}
. (3.17)

The constraints ensure that all data points to be fitted lie within the bounds and that

the upper bound is greater than the lower bound. This combination of objective function

and constraints is linear and convex [46]. In this thesis all interval predictor models have

polynomial bases, i.e. φ(x) =
[
1, xi2 , xi3 , ...

]
with x = [xa, xb, ...] and ij = [ij,a, ij,b, ...] with

ij 6= ik for j 6= k.

For illustrative purposes an example degree 2 IPM is shown without training data

points in Figure 3.2. The hyper rectangular uncertainty set corresponding to the IPM in

Figure 3.2 is plotted in Figure 3.3. The discontinuity observed in the upper and lower

bounds is a consequence of the chosen basis, and can be avoided by choosing a basis where

φ(x) = |φ(x)|.

Non-convex interval predictor models

In some circumstances engineers may wish to represent more complex functions with IPMs,

and hence the functions used to represent the bounds of the IPM may have more trainable

parameters. The interior point method used to solve linear optimisation programs, such

as those used for convex IPMs, has complexity d2ncons, where d represents the number of
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Figure 3.2: A degree 1 IPM in the ‘data
space’ with p = [1.5, 2] and p = [1, 1]. Sam-
pled polynomials within the bounds of the
IPM are shown as dashed lines. The grey
region is outside the IPM and cannot be
sampled from.
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Figure 3.3: The IPM’s hyper rectangular
uncertainty set plotted in ‘parameter space’.
The uniformly sampled parameter vectors
of the polynomials shown in Figure 3.2 are
displayed as points in the uncertain set.
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optimisation variables and ncons represents the number of constraints in the optimisation

(which in this case scales linearly with the number of training data points), and hence the

method does not scale well to IPMs with large numbers of trainable parameters [22].

Neural networks enable uncertainty models to be created with vast numbers of parame-

ters in a feasible computational time. Neural networks with interval outputs were proposed

by Ishibuchi et al. [87], and further described by Huang et al. [83]. In these papers the

learning takes place by identifying the weights W , which solve the following program:

arg min
W,W

[Ex(y(x)− y(x)) : y(x(i)) > y(i) > y(x(i)) ∀ i], (3.18)

where y(x) and y(x) are obtained from two independent neural networks, such that y(x)

and y(x) are the output layers of networks, such as those defined by Eqn. 3.2. In practice

this problem is solved by using a mean squared error loss function with a simple penalty

function to model the constraints. In general, penalty methods require careful choice of

hyper-parameters to guarantee convergence. These neural networks act in a similar way

to interval predictor models, however the interval neural networks do not attempt to use

the training data set to bound ε. Freitag et al. [66] define similar networks with fuzzy

parameters to operate on fuzzy data. The fuzzy neural networks are trained by minimising

a least square loss function (a set inclusion constraint is not used), which can also be

applied to time series data sets. These approaches are very different from the approach of

Patiño-Escarcina et al. [137], where a traditional neural network loss function is intervalised

using interval arithmetic.

Campi et al. [35] extended the scenario approach to non-convex optimisation programs,

and hence applied the approach to a single layer neural network, with a constant width

interval prediction, which was trained using the interior-point algorithm in Matlab. In

other words the following program is solved:

arg min
W,h

[h : |y(i) − ŷ(x(i))| < h ∀ i], (3.19)

where h is a real number, and ŷ represents the central line of the prediction obtained from

the same network specified by Eqn. 3.2. The bounds on the prediction interval are therefore

given by y(x) = ŷ(x) + h and y(x) = ŷ(x)− h. The constant width interval neural network

expresses homoscedastic uncertainty. The solution to the optimisation program in Eqn. 3.19

can also be obtained by finding the neural network weights which minimise the so-called
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maximum-error loss:

Lmax-error = max
i
|y(i) − ŷ(x(i))|, (3.20)

where h is the minimum value of the loss. It is trivial to show this is true, since the set

inclusion constraint in Eqn. 3.19 requires that h is larger than the absolute error for each

data point in the training set [37].

3.3.2 Validating models with the scenario approach

We will first present an overview of the scenario optimisation theory for the validation of

models in the convex case, before describing more general techniques which apply in the

non-convex case.

Convex case

Intuition tells us that the solution of the scenario program will be most accurate when the

dimensionality of the design variable is low and we take as many samples of the constraints

as possible (in fact, an infinite number of sampled constraints would allow us to reliably

estimate P{yp(x) > y(x) > y
p
(x)}, and hence solve the program exactly). However, in

practice obtaining these samples is often an expensive process. Fortunately, the theory of

scenario optimisation provides robust bounds on the robustness of the obtained solution.

The bounds generally take the following form:

Pn(V (ẑn) > ε) ≤ β. (3.21)

This equation states that the probability of observing a bad set of data (i.e. a bad

set of constraints) in future, such that our solution violates a proportion greater than

ε of the constraints (i.e. V (ẑn) > ε where V (ẑn) = 1
n

∑n
i V

(i) and V (i) = 1 only if

yp(x) > y(x) > y
p
(x)), is no greater than β. The scenario approach gives a simple analytic

form for the connection between ε and β in the case that the optimisation program is

convex:

β =
1

ε

d

n+ 1
, (3.22)

where n is the number of constraint samples in the training data set used to solve the

scenario program, and d is the dimensionality of the design variable, z. For a fixed d and n

we obtain a confidence-reliability plot as shown in Figure 3.4. The plot demonstrates that
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by decreasing ε slightly, 1−β can be made to be insignificantly small. Other tighter bounds

exist in the more recent scenario optimisation literature, e.g. [30, 32, 1], for example

β =

d−1∑
i=0

(
n

i

)
εi(1− ε)n−i. (3.23)

Crucially the assessment of V (ẑn) is possible a priori, although other techniques exist [12].

Care et al. [39] analyse the reliability of solutions of the maximum error loss functions

(Eqn. 3.20) in the scenario framework when ŷ(x) is convex in x and the function weights.

In the convex case, the a priori assessment is made possible by the fact that the number

of support constraints (the number of constraints which if removed result in a more optimal

solution) for a convex program is always bounded by the dimensionality of the design

variable. Campi and Garatti [33] explore this connection for convex programs in further

detail, by analysing the number of support constraints after a solution is obtained. In fact,

the bound in Eqn. 3.23 if often overly conservative, because in many cases the number of

support constraints is less than the dimensionality of the design variable, and hence a more

accurate bound on the reliability of the IPM can be obtained. The improved bound is given

by letting ε be a function of the number of support constraints s∗n such that ε(s∗n) = 1−t(s∗n).

Then for 0 < β < 1 and 0 < s∗n < d the equation

β

n+ 1

n∑
m=k

(
m

k

)
tm−k −

(
n

k

)
tn−k = 0 (3.24)

has one solution, t(k) in the interval [0, 1].

This idea has a deep connection with the concept of regularisation in machine learning

[31]. Garatti and Campi [72] demonstrates how the number of support constraints of a

scenario program can be used to iteratively increase the number of sampled constraints,

which requires fewer sampled constraints in total than Eqn. 3.23 for equivalent ε and β.

For a non-convex program, the number of support constraints is not necessarily less than

the dimensionality of the design variable, and therefore a new approach is required, which

we describe in the following section.
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Figure 3.4: Plot of Eqn. 3.22 for n = 100 and d = 2.

Non-convex case

Campi et al. [36] provide the following bound for the non-convex case:

Pn(V (ẑn) > ε(s)) < β, (3.25)

where

ε(s) =


1, for s = n,

1− n−s

√
β

n(ns)
, otherwise,

(3.26)

and s is the cardinality of the support set (in other words, the number of support constraints).

The behaviour of this bound is similar to the convex case since in general increasing n

should increase the size of the support set.

Finding the cardinality of the support set is in general a computationally expensive task,

since the scenario program must be solved n times. Campi et al. [35] present a time-efficient

algorithm which only requires that the scenario problem is solved s times.
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A posteriori frequentist analysis

When data is available in abundance, as is typically the case in most machine learning

tasks where a neural network is currently used, V (ẑn) can be evaluated more easily by

using a test set to collect samples from V (ẑn). Estimating V (ẑn) is similar to estimating a

probability of failure in the well known reliability theory. Therefore one can construct a

Monte Carlo estimator of V (ẑn), or use more advanced techniques from reliability analysis

if it is possible to interact with the data generating mechanism. For example, if the number

of test data points is large we can use the normal approximation Monte Carlo estimator of

V (ẑn) with V (ẑn) ≈ Nv
Nt

and standard deviation

√
Nv
Nt

(1−Nv
Nt

)

Nt
, on a test set of size Nt, where

Nv data points fall outside the interval bounds of the neural network.

A particularly robust method of estimating the probability of a binary outcome involves

using the binomial confidence bounds. In this case specifically, one can bound V (ẑn) with

the desired confidence using the binomial confidence bounds:

Nt−Nv∑
i=0

(
Nt

i

)
(1− v)ivNt−i =

β

2
(3.27)

and
Nt∑

i=Nt−Nv

(
Nt

i

)
(1− v)ivNt−i =

β

2
, (3.28)

where P (V (ẑn) < v ∩ V (ẑn) > v) = β. Estimating V (ẑn) using a test set also offers the

advantage that when the neural network is used for predictions on a different data set,

V (ẑn) can be evaluated easily. If the value of V (ẑn) obtained on the test set is higher than

that on the training dataset, one can apply regularisation in order to implicitly reduce the

size of the support set and increase V (ẑn) on the test set (e.g. dropout regularisation, or `2

regularisation on the weights).

This methodology is ideal for models with a complex training scheme, where determining

the support set would be prohibitively expensive. Note that the probabilistic assessment of

the reliability of the model takes place separately from the training of the regression model,

such that it is still robust, even if there is a problem with the regression model training.

This is an important advantage over Variational Inference methods which are often used

with neural networks.
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3.3.3 Software for interval predictor models

Patelli et al. [134] describe the first open source software implementation of interval predictor

models in the generalised uncertainty quantification software OpenCossan, which is written

in Matlab. The OpenCossan software allows convex IPMs to be trained, with hyper-

rectangular uncertainty sets. The OpenCossan software is modular and allows the IPMs

to be automatically trained as approximations of expensive engineering models, and then

used in other engineering calculations, e.g. design optimisation. A partial Python port of

the OpenCossan IPM code was released as open source software by Sadeghi [153].

The introduced software has been applied in [23], to study fatigue damage estimation

of offshore wind turbines jacket substructure.

3.4 Chapter summary

This chapter presents a review of regression models with predictive uncertainty which can

be used to describe the relationship between variables in engineering models, in addition to

describing how the models can be created in practice from data. We reviewed probabilistic

models and non-probabilistic models. Probabilistic regression models use probability

distributions to express information about the variability and uncertainty in the modelled

output; they are currently the most widely used regression models. Non-probabilistic

models are useful in cases where only limited or imprecise data may be available, and

prior knowledge of regression model parameters may be difficult to obtain. A particular

advantage of Convex IPMs are the a priori bounds on the model bound violation, which

can be used to validate the model at training time without test data.
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Reliability Analysis

4.1 Reliability analysis with random variables

4.1.1 Problem definition

Reliability theory

The aim of structural reliability analysis is to compute the probability that the performance

of a system is less than some specified threshold; this probability is known as the failure

probability of the system. Firstly, the performance of the system, g(x), is defined as a

function of the vector of system variables, x = (x1, x2, . . . , xi, . . .). The performance function

is negative when the system fails, and otherwise positive. Then the failure probability can

be found by solving the integral

Pf = P (g(x) < 0) =

∫
If (x)fX(x)dx, (4.1)

where the indicator function, If (x), is defined as

If (x) =

{
1, for g(x) < 0

0, for g(x) ≥ 0

}
, (4.2)

49
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and the probability density function of the system random variables is fX(x) [115]. It is

common for the performance function to be defined in the load resistance form, e.g.

g(x) =
∑
i∈R

xi −
∑
i∈L

xi, (4.3)

where R are indices corresponding to resistance factors and L are indices corresponding

to load factors, so that the system fails when the sum of loads is greater than the sum of

resistances [143]. When the resistance and load are balanced, g(x) = 0 and the system is

on the interface of the safety and failure regions. The limit state surface is specified by the

x for which g(x) = 0.

In fault tree analysis the failure event of a system is written in terms of failure events for

smaller subsystems or components, using Boolean algebra. Probability arithmetic can be

used with the fault tree to combine failure probabilities for individual subsystems to obtain

the failure probability for the whole system. This requires knowledge of the dependencies

between the probability of failure events for the considered sub-systems [115].

Reliability based design optimisation

In reliability based design optimisation (RBDO), a cost function, e.g. the weight or

construction cost of the system, is minimised subject to the constraint that the failure

probability of the system does not fall below a certain value. The reliability based design

optimisation problem can be stated as the optimisation program

arg min {cost(d) : Pf (d) < Ptarget}, (4.4)

where d is the vector of design variables, cost(d) is the cost function of the design, Pf (d) is

the failure probability of the design, and Ptarget is the target failure probability. Usually the

vector of design variables, d, will be parameters of the random variables, fX(x), associated

with the resistance, such that Eqn. 4.4 usually finds a balance between a cost effective

design and a design where the resistance of the system is sufficiently greater than the load

[115].

In engineering practice the model of the structure is often computationally expensive

to evaluate, and therefore it may be more convenient to find a sub-optimal solution to

Eqn. 4.4, by designing the structure based on engineering judgement. Approximate rules of

thumb, such as partial safety factors, allow the reliability of the system to be constrained
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approximately using analytical equations [115]. Then the full reliability analysis can be

performed with the proposed design to ensure that the reliability of the system satisfies the

constraints in Eqn. 4.4. Hence a safe and efficient design can be obtained with reduced

computational effort.

Sensitivity analysis

Sensitivity analysis allows the effect of each uncertain variable on the variability of the

model response to be quantified. This can be achieved either by local methods, which

describe variability of the model response at the expected value of the system variables, or

global methods, which describe the total variability of the model response.

Local sensitivity analysis is often achieved by evaluating the first derivative of the model

response with respect to the system variables. Similarly, Birnbaum [20] defines component

importance as the partial derivative of the system reliability with respect to the reliability

of the component.

Global sensitivity analysis is usually performed by evaluating the Sobol indices,

Si =
Varxi(Ex∼i(g(x)))

V ar(g(x))
, (4.5)

which describe the contribution of the variance of xi to the total variance of the model

response g(x), when only xi is varied. x∼i represents all random variables other than xi.

The Total Effect indices, given by

Ti = 1− Varx∼i(Exi(g(x)))

V ar(g(x))
, (4.6)

include the effect of interactions caused by varying xi whilst varying other variables [155].

The most simple way to evaluate the Sobol indices and total effect indices is by using

a Monte Carlo estimator for the expectation and variance terms in Eqns. 4.5 and 4.6. In

some cases, for example when the model has too many parameters or the model is very

computationally expensive, it is necessary to use a more complex method to compute the

Sobol and total sensitivity indices. For example, the upper bound of the total sensitivity

index can be efficiently calculated by integrating the local sensitivity analysis over the

whole space of the inputs [131], and the Sobol indices can be efficiently calculated by use of

the Fourier Amplitude Sensitivity Testing (FAST) method [170].
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4.1.2 Methods to compute the failure probability

In some circumstances the failure probability can be computed analytically, for example

when the system variables x are normally distributed and the performance function is

linear [115]. However, often a closed form solution of Eqn. 4.1 is not available and hence

alternative methods must be used.

Monte Carlo simulation

In general, the failure probability can be computed by Monte Carlo simulation, as discussed

for general functions in Chapter 2. The Monte Carlo estimator for the failure probability is

P̂f =
1

N

N∑
i=1

If (x(i)), (4.7)

where N samples, x(i), are drawn from the the probability density function of the system

random variables fX(x). The coefficient of variation of the failure probability estimator is

CoV[P̂f ] =

√
1− Pf
NPf

. (4.8)

Therefore, obtaining order of magnitude estimates of Pf with Monte Carlo simulation

requires at least 1
Pf

samples, and for an accurate estimate even more samples are required.

If Pf is small and g(x) is expensive to evaluate then the number of samples required is

unreasonably large, and more efficient strategies are required to evaluate Pf .

Efficient sampling strategies

Several sampling strategies have been proposed to choose a set of samples which can be

used to reduce the variance of the Monte Carlo estimator in Eqn. 4.7 without expending

additional computational effort. Low-discrepancy sampling strategies aim to choose a set

of samples which cover the sampling domain with the desired density. This is often not

the case with a small random set of samples, which may fall disproportionately in one area

of the sampling domain before the law of large numbers takes effect. Stratified Sampling

strategies, such as Latin Hypercube Sampling divide the probability density of the system

variables into an n-dimensional grid, where each grid element contains equal probability

density. Then a sample may be chosen at random in each grid element, resulting in a set of
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samples which covers the sampling domain well. For linear functions it can be shown that

this sampling strategy has a lower variance than the traditional Monte Carlo estimator

[86]. The main disadvantage of efficient sampling strategies is that the reduction in the

coefficient of variation is small when compared to other techniques, e.g. Line Sampling.

First Order Reliability Method

The First Order Reliability Method (FORM) allows the probability of failure of a system to

be computed without Monte Carlo simulation. Assuming the system variables are distributed

normally and independently, the probability of failure can be obtained analytically if

the performance function, g(x), is linear. If the performance function is not linear, a

Taylor expansion can be used to find a linear approximation of the limit state function as

shown in Figure 4.1. If the system random variables are not normally distributed then a

transformation must first be applied to the random variables and the limit state function,

so that FORM can be applied [115].

The performance function, g(x), is written as the Taylor series expansion

g(x) = g(x∗) + (x− x∗)∇g(x∗) + . . . = (x− x∗)∇g(x∗) + . . . , (4.9)

about the point x∗, which is usually chosen to be the point on the limit state surface

with the highest probability density. This point is known as the design point, and can be

obtained by solving the optimisation program

x∗ = arg min
x
{|x|2 : g(x) = 0}. (4.10)

Alternatively, using the assumption of a linear performance function, the design point can

be determined using the gradient of the performance function. The reliability index is

defined as β =
√
|x∗|2, and in the case of normally distributed random variables and a

linear limit state function Pf = φ(−β). This can be shown by observing that when x∗ has

a standard normal distribution and g(x) is linear (as in Eqn. 4.9), the system performance

will have a normal distribution with mean

Ex(g(x)) = (Ex(x)− x∗)∇g(x∗) = −x∗∇g(x∗) (4.11)
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FORM

Figure 4.1: A diagram of the First Order Reliability Method for two system variables,
shown with random variables in the standard normal space.

and variance

Varx(g(x)) = |∇g(x∗)|2. (4.12)

Therefore, since x∗ = β ∇g(x∗)√
|∇g(x∗)|2

, Pf = φ

(
−Ex(g(x))√
Varx(g(x))

)
leads to the desired expression.

A similar method relying on a more accurate approximation of the limit state function

is the Second Order Reliability Method.

The main advantage of FORM is the small number of samples required to estimate

the failure probability. The main disadvantage of FORM is that for non-linear limit state

surfaces the method is likely to be extremely inaccurate, due to the degradation of the

Taylor series approximation for limit state surfaces with high curvature. Non-linear limit

state surfaces are often induced by the transformation of the system’s random variables to

the standard normal space.
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Line sampling

The fundamental idea behind Line Sampling is to refine estimates obtained from the

First-order reliability method (FORM), which may be incorrect due to the non-linearity of

the limit state function. Conceptually, this is achieved by averaging the result of different

FORM simulations [51]. Firstly, the approximate direction of the failure region from the

origin in standard normal space must be determined. This is known as the importance

direction. It is usually obtained by finding the design point, by approximate means if

necessary. Following this, samples are randomly generated in the standard normal space

and lines are drawn parallel to the importance direction in order to compute the distance

to the limit state function, which enables the probability of failure to be estimated for each

sample.

For each sample of x, the probability of failure in the line parallel to the important

direction is defined as:

Pf (x) =

∫ ∞
−∞

I(x+ βα)dβ, (4.13)

where α is the importance direction, and φ is the probability density function of a Gaussian

distribution (and β is a real number). In practice, the roots of a nonlinear function must

be found to estimate the partial probabilities of failure along each line. This is either done

by interpolation of a few samples along the line, or by using the Newton-Raphson method.

The global probability of failure is the mean of the probability of failure on the lines:

Pf =
1

NL

NL∑
i

P
(i)
f (4.14)

where NL is the total number of lines used in the analysis, and P
(i)
f are the partial

probabilities of failure estimated along all the lines.

For problems in which the dependence of the performance function is only moderately

non-linear with respect to the parameters modelled as random variables, setting the

importance direction as the gradient vector of the performance function in the underlying

standard normal space leads to highly efficient Line Sampling. De Angelis [50] describes

enhancements which can be made to Line Sampling to increase the efficiency. For example,

the solution of the Newton-Raphson search used on the previous line can be used to inform

the search on the next line, if the lines are sorted by proximity. In addition, the importance

direction can be updated during simulation based on the completed subset of lines.
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The Line Sampling methodology is more expensive than FORM, but far less expensive

than Monte Carlo simulation. It is likely to perform poorly for highly non-linear limit state

surfaces, but in general offers a good balance between accuracy and computational expense.

Importance sampling

In Importance Sampling, samples are drawn from a distribution with a higher density in

the failure region and then re-weighted to obtain a Monte Carlo estimator with reduced

variance. The re-weighted estimator is written as

Pf =

∫
h(x)

If (x)fX(x)

h(x)
dx =

1

N

N∑
i=1

If (xi)fX(xi)

h(xi)
, (4.15)

where xi are drawn from the proposal density h(x). The optimal proposal density, which

results in the greatest reduction of the variance of the estimator is

h(x)optimal =
If (x)fX(x)

Pf
, (4.16)

which is not useful in practice because of the dependence on the quantity to be estimated,

Pf . However, the optimal proposal density can be used to motivate the choice of the

proposal density in practice. An appropriate h(x) can be chosen by finding the design

point with an approximate method and centring the proposal density on the design point,

since Eqn. 4.16 indicates that the failure region has a higher proposal density. A complete

discussion of the technique is given in Schuëller and Stix [159] and Melchers and Beck [115].

Importance Sampling is useful as it offers an unbiased estimator which can estimate

the failure probability with few samples. The main difficultly is determining the proposal

distribution h(x). This is usually achieved by engineering judgement and knowledge of the

design point.

Subset simulation

Subset simulation aims to calculate Pf by decomposing the space of the random variables

into several intermediate failure events with decreasing failure probability. The conditional

probabilities for the intermediate failure regions can then be used to calculate Pf which is
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given by

Pf = P (Fm) = P (Fm)
m−1∏
i=1

P (Fi+1|Fi) (4.17)

where Fi represents intermediate failure event i. By making the conditional probability of

samples falling in the intermediate failure regions large, the coefficient of variation of each

individual failure event can be minimised, hence minimising the coefficient of variation of

Pf . Markov chains are used to generate conditional samples between intermediate failure

regions in order to calculate P (Fi+1|Fi). A complete description of the method is given in

Au and Beck [8].

The main advantage of Subset Simulation is that it can estimate failure probabilities

for non-linear limit state surfaces in a black box manner with relatively low computational

expense. However, Breitung [25] shows that subset simulation is not accurate for some

limit state surfaces, for example limit state surfaces with multiple importance directions.

Metamodels

If inexpensive samples of g(x) or If (x) are available then the estimator P̂f can be evaluated

trivially. Therefore, the problem of estimating Pf can be effectively reduced to a machine

learning problem. In the case of modelling g(x), the problem is one of regression. In

the case of modelling If (x), the problem is classification of the failure region. A machine

learning model which fulfils this purpose is known as a metamodel or surrogate model.

In the literature many machine learning techniques have been applied to the reliability

analysis problem: linear regression (known as the response surface methodology) [27],

support vector machines [148], polynomial chaos expansions [19], neural networks [160]

and Gaussian process emulators (sometimes known as Kriging) [94]. Neural networks and

Gaussian processes have the advantage of being able to quantify their uncertainty accurately,

so the required number of training samples can be assessed. Polynomial chaos expansions

allow the sensitivity indices of g(x) to be computed analytically from the trained metamodel

[164].

In general, the most useful metamodels produce the most accurate estimates of Pf ,

whilst requiring the smallest number of training samples. An ‘experimental design’ specifies

where the samples of g(x) will be made for training. Usually a uniform design is chosen,

but other sampling strategies can be used [165]. Active learning can be used to sequentially

choose the samples required to train the metamodel. These samples are usually chosen
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based on where the uncertainty of the metamodel is largest. In adaptive Kriging Monte

Carlo simulation (AK-MCS) the samples are chosen at points with large uncertainty, close

to the limit state surface. This strategy achieves state of the art efficiency [56]. This strategy

is known as active learning, and the function which is used to choose the subsequent sample

is known as the probability of misclassification acquisition function.

The main advantage of metamodels is that the estimator for the failure probability

based on the metamodel can be made arbitrarily accurate. The main disadvantage is that

the metamodel introduces uncertainties, so the problem is effectively shifted to trying to

create an accurate metamodel with a small number of samples.

4.2 Convex set models for reliability

4.2.1 Problem definition

In contrast to probabilistic models of uncertainty, where the statistics of g(x) — and hence

the failure probability — can be determined, in convex uncertainty models the focus is on

the best and worst possible values for g(x). This is good, because underestimation of the

worst case due to inaccurate sampling in the tails of probability distributions can be avoided.

In addition, the analysis can include extreme lack of knowledge of the possible loads the

system will be subjected to. However, sometimes the analysis may be overly conservative if

the worst case is extremely unlikely to occur. Convex set models of uncertainty also offer a

framework to analyse a possible set of future designs, before the design for a system has

been finalised.

For system parameters x ∈ X, the structural response is given by the interval

[minx∈X g(x),maxx∈X g(x)], which can be determined by the methods discussed in Sec-

tion 2.1.2 [57]. For a system with response gload(x) which must not exceed gthreshold,

Ben-Haim [14] proposes a non-probabilistic figure of merit,

Rnon-probabilistic = 1− gload(x)

gthreshold
, (4.18)

where gload(x) = maxx∈X gload(x). Rnon-probabilistic describes how close the system is to

failure, but it cannot be interpreted as a probability or rate of failure.
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4.3 Reliability analysis with probability boxes

4.3.1 Problem definition

Probability boxes offer a hybrid of the convex set and probabilistic approaches for reliability

analysis. In structural reliability analysis with probability boxes, the objective is to compute

the failure probability in the same sense as with traditional random variables in Section 4.1.1.

However, it is now impossible to compute an exact value for the failure probability; only

bounds on the failure probability are available [4]. For distributional probability boxes,

fXθ(x) for θ ∈ Θ, the bounds on the failure probability can be found by solving the integrals

P f = P[g(x) < 0] = min
θ∈Θ

∫
RN

If (x)fXθ(x)dx, (4.19)

and

P f = P[g(x) < 0] = max
θ∈Θ

∫
RN

If (x)fXθ(x)dx. (4.20)

For distribution-free probability boxes given by [F i(xi), F i(xi)], each system variable

can be written as a function of separate probabilistic and set based variables as x′i =

F−1
i (αi)+(F

−1
i (αi)−F−1

i (αi))θi, where the aleatory variable α = (α1, α2, . . .) is a uniformly

distributed random vector with the same dimensionality as x, and θ ∈ Θ is the unit hyper-

cube with the same dimensionality as x [50]. This enables the performance function g(x)

to be rewritten in terms of α and θ, i.e. g(α,θ). Bounds on the failure probability can

then be obtained by evaluating

P f = P[g(x) < 0] = P[g(α) < 0] (4.21)

and

P f = P[g(x) < 0] = P[g(α) < 0], (4.22)

where the upper and lower performance function are obtained from

g(α) = min
θ∈Θ

g(α,θ) (4.23)

and

g(α) = max
θ∈Θ

g(α,θ) (4.24)

By finding the envelope of a distributional probability box, the algorithm for computing
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the failure probability for the distribution-free case can be applied. As expected, Fetz

and Oberguggenberger [64] demonstrate that this results in overly conservative bounds

on the failure probability, since clearly information is lost by taking the envelope of the

distributional probability box. Therefore, only Eqn. 4.19 and Eqn. 4.20 should be applied

when computing failure probabilities with distributional probability boxes.

4.3.2 Methods to compute the failure probability

In this section we concentrate on methods to compute the failure probability for distribu-

tional probability boxes.

Monte Carlo estimators

A Monte Carlo estimator can be applied for the integrals in the failure probability compu-

tation with distribution-free probability boxes (Eqns. 4.19 and 4.20) to yield the bounds

[P f , P f ] = [min
θ∈Θ

1

N

N∑
i=1

If (x
(i)
θ ),max

θ∈Θ

1

N

N∑
i=1

If (x
(i)
θ )], (4.25)

where the samples x
(i)
θ are drawn from fXθ(x). This is the double loop Monte Carlo

approach; an inner loop is used to compute a Monte Carlo estimator which is optimised

over in the outer loop [133]. The outer loop optimisation can be evaluated using brute

force grid sampling of θ, which is known as näıve double loop Monte Carlo simulation. It

is usually more efficient to use an efficient global optimisation algorithm to evaluate the

optimisation loop, such as Bayesian Optimisation, or a genetic algorithm [50].

Evaluating the failure probability using double loop Monte Carlo simulation is compu-

tationally expensive, since now each inner loop Monte Carlo estimator must be computed

multiple times. This is particularly the case when the problem dimensionality is large or the

failure probability is small. Troffaes [173] shows that the bias of the estimator is negative,

and the magnitude of the bias decreases as more samples are made.

Imprecise First Order Reliability Method

A generalisation of FORM for systems with components which are described by probability

boxes was introduced by Qiu et al. [144]. The system’s performance function must be

written in the load resistance form (Eqn. 4.3), and the system must have one strength and
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one load component. Therefore, the system variables consist of the resistance variable with

mean µR ∈ [µR, µR] and standard deviation σR ∈ [σR, σR], and load variable with mean

µL ∈ [µL, µL] and standard deviation σL ∈ [σL, σL]. Then the failure probability lies in the

interval [P f , P f ] = [φ(−β), φ(−β)], where

β =
µR − µL
σL2 + σR2

, (4.26)

and

β =
µ
R
− µL

σ2
L + σ2

R

. (4.27)

In more complex cases, one may need to solve an optimisation program to find the

reliability index [90]. For example, one could imagine a system which fails if the sum of

many different products of probability box distributed variables falls below a threshold.

Line sampling

De Angelis [50] describes two ways in which Line Sampling can be used to increase the

efficiency of probability box propagation. Line Sampling can be applied as an alternative

to the Monte Carlo estimator used to approximate the integral in the double loop approach

(Eqns. 4.19 and 4.20). Alternatively, Line Sampling can be applied to the aleatory variables

α for the upper and lower performance functions in Eqns. 4.21 and 4.22. When Line

Sampling is applied in the aleatory space, the importance direction updating strategy

proposed by De Angelis [50] significantly increases the accuracy of the computation. Judged

by number of samples required for computation, Line Sampling is close to the state of the

art. However, Line Sampling is ineffective on highly non-linear limit state surfaces.

Importance sampling

The Importance Sampling estimator in Eqn. 4.15 can be applied to greatly reduce the

number of samples required when computing the failure probability for a system subject to

probability box random variables [64]. The bounds on the failure probability are given by

P f = min
θ∈Θ

∫
If (x)

fXθ(x)

h(x)
h(x)dx = min

θ

1

N

N∑
i=1

If (x(i))
fXθ(x(i))

h(x(i))
(4.28)
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and

P f = max
θ∈Θ

∫
If (x)

fXθ(x)

h(x)
h(x)dx = max

θ

1

N

N∑
i=1

If (x(i))
fXθ(x(i))

h(x(i))
, (4.29)

where the samples x(i) are drawn from the proposal distribution h(x). The proposal

distribution can be iteratively updated to provide more accurate results. Decadt et al. [52]

demonstrates that the bias in both cases is negative and decreases in magnitude as more

samples are collected. The Importance Sampling estimator requires a similar number of

samples to Line Sampling.

Multi level metamodels

Multilevel Metamodelling requires the creation of two Gaussian Process emulators [158].

The first metamodel is created for the performance function in the space of the system

variables x, using Adaptive Kriging Monte Carlo simulation. The second metamodel is

used to perform Bayesian Optimisation on the obtained failure probability from the first

metamodel, in the epistemic space. This greatly reduces the amount of repeated similar

evaluations of the system model, and hence the Multi-level metamodelling technique is

close to state of the art when judged by number of required samples.

4.4 Chapter summary

In this chapter we reviewed the application of the uncertainty models introduced in

Chapter 2 to the field of reliability engineering. Specifically, this chapter demonstrated

how probabilistic, set-based and imprecise probability models can be used to calculate the

reliability of systems under uncertainty. The optimal design of a system under uncertainty

can also be computed, and the local or global sensitivity of the response of a system to

changes in the system variables can be determined. For systems where the probability of

failure is small, computing the failure probability using a Monte Carlo estimator can be

computationally expensive. For this reason, it is necessary to apply advanced techniques in

order to calculate the probability of failure in a feasible computational time. For imprecise

probability models, computation of the failure probability of the system is even more

expensive, and hence efficient computational techniques are also required. This motivates

the novel contributions introduced in the following chapters.



Chapter 5

Structural Reliability of

Pre-stressed Concrete

Containments under Distributional

Uncertainty

5.1 Introduction

A pre-stressed concrete containment is an important safety related structure as it acts as

one of the final barriers to radioactive release. These structures are normally designed

in accordance with the allowable stress codes to sustain the specified loading conditions.

However, the compliance with the industry standard allowable stress codes does not give any

reliable indication of the probability of failure (Pf ) if the containment is over-pressurised

under postulated beyond design basis events.

In recent years, two international round robin exercises have been conducted which

have provided valuable test data related to failure under over-pressurisation. The first

exercise involved the numerical analysis of the 1/4 scale steel-lined Pre-stressed Concrete

Containment Vessel (PCCV) with design pressure (Pd) of 0.39 MPa which was tested at

Sandia National Laboratories (SNL) in USA and has been analysed by Prinja and Shepherd

[141]. The second exercise involved the unlined Bhabha Atomic Research Centre (BARC)

Containment test model (BARCOM) with Pd of 0.1413 MPa that was tested by the BARC

63
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in Tarapur, India and has been analysed by Kamatam and Prinja et al. [142]. These studies

are essentially deterministic studies that have helped validate the analysis methodology and

modelling techniques that can be used to predict pre-stressed concrete containment capacity

and failure modes. Such deterministic analytical and experimental studies have helped

to establish the mode of failure, but do not give any indication of the failure probability.

Furthermore, the conventional allowable stress codes used to design such containments also

do not provide the probability of failure.

In this chapter, methods to calculate the probability of failure for such a containment are

described, given the failure mode identified in the previous studies. In addition, the effect

of uncertain structural variability distribution parameters on the analysis is considered. As

a numerical example, this analysis is performed for the SNL containment.

5.2 Structural model

Both SNL and BARCOM tests have shown that the collapse of the containment structure

subjected to internal pressure is not expected to occur soon after the design pressure is

exceeded. There is no cliff edge, but a gradual progressive damage of the containment

structure under over-pressurisation indicating the safety margin of the structure against

collapse. The experiments and the attendant numerical analyses have established the

ultimate structural collapse mode of the containments under internal pressure loading which

indicates that the failure takes place in the general field of the containment wall around

mid-height and away from any major structural discontinuities like the penetrations. This

is because robust design procedures have been used that provide adequate compensation

and local strengthening to avoid structural failure at discontinuities. In the case of the

SNL model shown in Figure 5.1, the failure location at applied pressure (P ) of 3.65Pd

was accurately predicted by the computational model at mid-height of the cylinder in the

general area away from the buttress and main penetrations. The BARCOM model is also

predicted to fail at mid-height of the cylinder wall as indicated in the deformed shape

shown in Figure 5.2. Based on these experimental studies and the attendant numerical

analyses, a failure function is presented that assumes first yielding in the hoop direction at

mid-height of the cylinder wall.

Failure of a containment structure is dictated by the strain levels experienced by the

tendons, rebars and the liner following the tensile cracking of the concrete. The first

membrane yield is expected to occur in the hoop direction in the cylinder wall. If the failure
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Figure 5.1: Predicted failure mode of the SNL model (a) Finite Element Analysis results vs
(b) test at P = 3.65Pd.

Figure 5.2: Predicted response of the BARC model (a) under prestress only and (b) at
P = 2.89Pd.
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state is defined as the tensile cracking of the concrete and yielding of the tendons, rebars

and the liner, then the internal pressure at a specific deformed shape is given by:

P =
1

R
(AsFs +AcFc +AlFl +AtFt) (5.1)

where As, Ac, Al and At are the cross-sectional areas of the rebar steel, concrete, liner plate

and tendons respectively given as area per unit height of the cylinder wall. Fs, Fl and Ft

are the yield stress of rebar steel, liner plate and tendons respectively and Fc is the tensile

strength of the concrete. R is the mid radius of the cylinder wall.

The failure function g can be written as:

g = PR− (AsFs +AcFc +AlFl +AtFt). (5.2)

Structural parameters

We assign normal distributions to R, Pd, Fs, Fl, Ft, Fc, As, Ac, Al and At. The mean values

for Fs, Fl, Ft and Fc were set to known values [143]. The mean values for R and Pd are

set to the measured point values from the design. The mean values for the cross-sectional

area properties were obtained from the geometric data, summarised in Table 5.1, as follows.

The steel rebar area per unit height is given by

As =
nsπr

2
s

hs
, (5.3)

where ns is the number of steel rebars through the thickness of the wall, rs is radius of steel

rebar and hs is the vertical spacing. The liner area unit height Al = thickness of the plate×1.

The tendon area per unit height is

At =
ntπr

2
t

ht
, (5.4)

where nt is the number of tendons through wall thickness, rt is tendon radius and ht is

tendon vertical spacing. The concrete area per unit height is

Ac = ((ro − ri)− (Al +As +At)) (5.5)
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Geometric Property Value

Outside radius of the wall, ro (mm) 5700

Inner radius of the wall, ri (mm) 5375

Wall thickness (mm) 325

Wall height (mm) 10750

No. of tendons through wall, nt 3

Tendon vertical spacing, ht (mm) 119.4

Tendon radius, rt (mm) 6.85

No. of rebars through wall, ns 2

Rebar vertical spacing, hs (mm) 113

Rebar radius, rs (mm) 11.1

Liner plate thickness (mm) 1.6

Table 5.1: Summary of geometric data point values for the SNL containment model.

where ro and ri are outer and inner radii of the wall, and the mid radius of the wall,

R = ro+ri
2 .

In structural reliability analysis for concrete containment capacities, tensile strength of

two different types of materials need to be considered: concrete and steel. Concrete behaves

like a brittle material whereas steel components like the tendons, rebars and liner plate

will exhibit plastic behaviour when loaded beyond their yield stress. In case of concrete,

variability in strength can be traced to two fundamentally different sources: variability

in the properties of the concrete mixture and ingredients and variability in the way the

strength is tested and measured. Similarly, variability in yield strength of a given steel

varies due to variation in chemistry, heat treatment and mechanical processing. Typically, it

is the compressive strength concrete which is specified and measured. The tensile strength

of concrete is taken to be about 10% of its compressive strength at room temperature. At

higher temperatures, the strength tends to decrease and any loss in the tensile strength is

proportional to the corresponding loss in the compressive strength.

Variability in geometric dimensions of engineered components depends on the manufac-

turing process and the specified tolerances. Usually, tolerances in manufacturing processes

are tight and tend to follow normal distribution. In this example, all material, geometric and

loading parameters are assumed to be distributed normally, with a coefficient of variation

(CoV) of 0.2. In practice, the CoV in yield strength of steel components could be less than

0.1 and the CoV of geometric dimensions could be even lower. The variables used in the

performance function for the SNL containment are summarised in Table 5.2.
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Variable Mean Value Coefficient of Variation

Concrete tensile strength (MPa), Fc 4.4 0.2

Liner yield (MPa), Fl 382 0.2

Rebar yield (MPa), Fs 465 0.2

Tendon yield (MPa), Ft 1740 0.2

Design Pressure (MPa), Pd 0.39 0.2

Radius (mm), R 5537.5 0.2

Concrete area per unit height (mm), Ac 312.85 0.2

Liner area per unit height (mm), Al 1.6 0.2

Rebar area per unit height (mm), As 6.85 0.2

Tendon area per unit height (mm), At 3.7 0.2

Table 5.2: Uncertainty model parameters used for SNL containment. Inputs are indepen-
dently normally distributed.

5.3 Analysis

The coefficient of variation (CoV) of the defined structural parameters was not known

precisely. Therefore, sensitivity analysis was used to determine the variation in the prob-

ability of failure with respect to these parameters. The effect of varying the parameters

whose variance had the greatest contribution to the variance of the output, i.e. the greatest

sensitivity, was considered in greater detail.

The failure probability, Pf for the SNL containment was calculated using the first order

reliability method on the performance function g, where the design point was obtained from

the iterative algorithm proposed in Rackwitz [146]. Then the calculated failure probabilities

were validated using the importance sampling, line sampling and subset simulation methods

from OpenCossan, described in Section 4.1.2, as it was found that the failure probability

was too small to be evaluated in a short time using standard Monte Carlo simulation. The

failure probabilities when the applied pressure P = Pd are shown in Table 5.3. The failure

probabilities when the applied pressure was 5.4Pd are shown in Table 5.4.

Although the advanced FORM result at the design pressure has slight disagreement

with the Monte Carlo value of Pf , it is correct to an order of magnitude and therefore serves

as a useful estimator for Pf . In addition, the percentage error of the FORM is reduced

at higher values of Pf (for example, at P = 5.4Pd the probability of failure computed by

FORM is 0.51 and the value computed by Monte Carlo is 0.49), and therefore for most of

the fragility curve the FORM gives a reasonably accurate approximation.
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Method Pf Standard Deviation of Pf
Advanced FORM 2.7× 10−8 Not applicable

Line Sampling 2.6× 10−8 7× 10−9

Subset Simulation 2.7× 10−8 2.7× 10−9

Importance Sampling 6.7× 10−8 1.8× 10−9

Table 5.3: Probability of failure at applied pressure Pd computed by Advanced FORM,
Subset Simulation and Importance Sampling. 106 samples were used in the Importance
Sampling simulation. A maximum of 40 failure thresholds were used for the Subset
Simulation, with an intermediate failure probability threshold of 0.5, and 5000 initial
samples were used. Line Sampling was performed using 100 lines, with 6 model evaluations
on each line.

We would like to know which uncertainties make important contributions to our calcu-

lated measure of uncertainty, which in this case is the uncertainty in Pf . The uncertainty in

Pf is caused by uncertainty in coefficients of variation of input parameters to the advanced

FORM analysis. The Sobol indices for the sensitivity of Pf , calculated by the advanced

FORM method, with respect to the coefficients of variation of each parameter in Table 5.2

were calculated using OpenCossan [130]. A uniform distribution between 0 and 1 was

applied for the coefficients of variation of the input parameters to the advanced FORM, i.e.

any value for the coefficients of variation was equally likely. This is a useful assumption,

as it allows us to study the effect of an arbitrary variation in this parameter. The mean

values for the parameters were taken from Table 5.2.

The sensitivity analysis was then repeated with an applied pressure of 5.4Pd, chosen

for the strength to design load ratio calculated in the previous section in order to make

Pf = 0.5, and an applied pressure of 5Pd, chosen to increase the pressure beyond the design

load whilst maintaining Pf < 0.5. At increased pressures the variance in the Sobol and total

sensitivity indices computed by Monte Carlo simulation was impracticably high and so it

was necessary to compute the Sobol indices using the Fourier Amplitude Sensitivity Testing

(FAST) method [170] and the upper bound of the Total Sensitivity indices using Patelli’s

method of integrating the local sensitivities [131], both of which have been implemented

in OpenCossan. This allowed the calculation to be completed in a shorter time as fewer

samples were required.

The calculated Sobol indices and total sensitivity indices for applied pressure equal

to Pd are shown in a bar plot in Figure 5.3. It is clear that the biggest contributors to

uncertainty in the output are the coefficients of variation of At and Ft. The bar plots show
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Method Pf Standard Deviation of Pf
Advanced FORM 0.507 Not applicable

Monte Carlo 0.489 0.005

Table 5.4: Probability of failure at applied pressure 5.4Pd computed by Advanced FORM
and Monte Carlo Simulation. 104 samples were used in the Monte Carlo simulation.

error bars to represent the uncertainty in the Monte Carlo estimators for the indices.

Figure 5.4 and Figure 5.5 show the effect of varying At and Ft separately, whilst keeping

the other variables fixed at their values from Table 5.2. There is a sharp increase in failure

probability when the coefficient of variation is larger than 0.2. Further analysis shows that

the location for this knee in the graph depends upon the value of the other parameters, i.e.

if the other coefficients of variation are set as 0.3 then the location of the knee changes to

0.3. Figure 5.6 shows the effect of varying both of these parameters simultaneously.

The calculated Sobol indices and total sensitivity indices upper bounds for applied

pressure equal to 5.4Pd are shown in a bar plot in Figure 5.7. It is clear that the biggest

contributors to uncertainty in the output are the coefficients of variation of R and P ,

followed by Ft and At. Figure 5.8 shows the effect of varying P and R simultaneously when

the applied pressure is equal to 5.4Pd , whilst keeping the other variables fixed at their

values from Table 5.2.

The calculated Sobol indices and total sensitivity indices upper bounds for are shown

in a bar plot in Figure 5.9. Again, it is clear that the biggest contributors to uncertainty in

the output are the coefficients of variation of R and P , followed by Ft and At. Figure 5.10

shows the effect of varying P and R simultaneously when 5Pd, whilst keeping the other

variables fixed at their values from Table 5.2.

5.4 Discussion

The results show a large variability of the failure probability at the design pressure for

changing coefficients of variation of At and Ft, and this could possibly be explained by the

large mean value of these variables. At increased pressures, it is clear that the coefficients

of variation of P and R play a greater role in the variability of Pf .

It is interesting to note that the variability of Pf is greatly decreased when the applied

pressure is 5.4Pd, implying that the choice of CoV is unimportant when Pf = 0.5. Intuitively,

it is clear that if a distribution is centred on the edge of the failure region (i.e. on the limit
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Figure 5.3: Plot of Sobol indices and total sensitivity indices for uncertain coefficient of
variation for all input parameters to advanced FORM when the applied pressure is equal to
the design pressure, Pd. The error bars represent one standard deviation.
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Figure 5.4: Plot of failure probability at applied pressure equal to the design pressure for
varying coefficient of variation of tendon area, At, while keeping other variables fixed.
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Figure 5.5: Plot of failure probability at applied pressure equal to the design pressure for
varying coefficient of variation of tendon yield, Ft, while keeping other variables fixed.
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Figure 5.6: Plot of failure probability at applied pressure equal to the design pressure for
varying coefficient of variation of tendon yield, Ft, and tendon area, At, while keeping other
variables fixed
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Figure 5.7: Plot of Sobol indices and total sensitivity indices (upper bound) for uncertain
coefficient of variation for input parameters to advanced FORM at applied pressure equal
to 5.4Pd. In this figure the error bars represent the 5% - 95% confidence interval.
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Figure 5.8: Plot of failure probability at applied pressure equal to 5.4Pd for varying
coefficient of variation of applied pressure, P , and radius, R, while keeping other variables
fixed.
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Figure 5.9: Plot of Sobol indices and total sensitivity indices (upper bound) for uncertain
coefficient of variation for input parameters to advanced FORM at applied pressure equal
to 5Pd. In this figure the error bars represent the 5% - 95% confidence interval.
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Figure 5.10: Plot of failure probability at applied pressure equal to 5Pd for varying coefficient
of variation of applied pressure, P , and radius, R, while keeping other variables fixed.
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state function) then changing the CoV of the input variables should not significantly move

the probability density from the safe region into the failure region.

There is significant variability of Pf when the applied pressure is 5Pd, however the

failure probability appears to plateau when the coefficients of variation of P and R are

above approximately 0.5. This implies that if there is no data to determine of the CoV,

then a larger CoV would be a conservative choice for this pressure. In this context a

conservative choice is one which gives an overestimate of Pf . An overestimate is preferable

to an underestimate, because implying a structure is safer than it actually is could have

severe consequences. However, we also wish for our estimates to be as close as possible to

the true value of Pf , as large overestimates can cause unnecessary over engineering which

is undesirable as this can lead to increased costs. The size of coefficient for which this

plateau takes place is dependent on mean applied pressure, and this should be considered

when attempting to find a conservative value of the coefficients of variation. Moreover, for

applied pressures above the strength, Figure 5.10 shows that choosing a lower value of the

coefficients of variation would be conservative in this case.

Our analysis justifies the choice of coefficients of variation chosen in this work, as the

values given in Spencer et al. [161] and Sundararajan [168] are less than those chosen

here, and hence the assumptions for these parameters in this chapter can be considered

conservative for applied pressures below the strength.

5.5 Chapter summary

In this chapter, the structural reliability of concrete containments under distributional

uncertainty was analysed. Previous studies established the ultimate structural collapse

mode of the containments under internal pressure loading, indicating that the failure

takes place in the general field of the containment wall, around mid-height and away from

any major structural discontinuities. Firstly, the first order reliability method (FORM)

was applied to predict probability of failure of the containment for this mode of failure.

Then sensitivity analysis was applied to determine the dependence of the variability of the

probability of failure on the coefficients of variation of structural variables.

It has been shown that there is a strong dependence of the probability of failure of

a concrete containment computed by advanced FORM on the coefficients of variation of

the rebar yield and rebar area at the design pressure. The coefficients of variation of the

pressure and radius are also important parameters, especially in the centre of the fragility
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curve when the applied pressure is increased. The variability of the probability of failure is

decreased at this applied pressure; however it is still important to apply conservatism in

scenarios where we lack knowledge of the true value of these parameters.

In order to accurately describe the epistemic uncertainty in distribution parameters,

particularly in the tails of the fragility curve, it may be necessary to construct a probability

box by defining the CoV as an interval [60]. This approach can be understood as the

engineer testing many different values for the CoV of each variable, and choosing the most

and least conservative values to give an interval for Pf (in practice the engineer would use

a sophisticated optimisation algorithm coupled with conventional reliability analysis to

perform the calculation). In the following chapters, efficient methods for performing this

computation are described.



Chapter 6

Analytic Imprecise Probabilistic

Safety Analysis

6.1 Introduction

Probabilistic safety analysis (PSA) was first introduced in the 1970s as a means of estab-

lishing the probability of a certain amount of radiation release to the environment from a

nuclear structure. It is perceived to address many of the weaknesses of deterministic analysis

[118]. For example, deterministic analysis relies heavily on engineering conservatism which

could be difficult to quantify in practice. In addition, it is not always clear what the most

conservative value for a particular parameter is when performing a black box analysis.

In recent years, techniques from the area of imprecise probability have been increasingly

applied to probabilistic safety analysis studies in academic literature [93] [13], because

they offer a natural framework to model epistemic uncertainty. Epistemic uncertainty is

particularly important in the nuclear industry where there is often a lack of sufficient data

to completely model relevant phenomena. However, the proposed models usually require

sophisticated simulation techniques, as discussed in Chapter 4. In Le Duy et al. [110]

recommendations are made for how available data can be used to define probability boxes

for risk assessment. In the United States, the nuclear regulator [28] refers to Kennedy et al.

[98] who provide many analytic relationships to establish the fragility of a containment with

a conventional probabilistic treatment. The effect of epistemic uncertainty in probabilistic

safety analysis with conventional probability was considered in [143, 166].

In (conventional) structural probabilistic safety analysis, often the relations used are

81
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simple analytic expressions which, in contrast to the methods based on imprecise probability,

allow the failure probability of the system to be computed with no Monte Carlo simulation

at all. This offers two significant advantages. Firstly, the computational time required

to complete the calculations is greatly reduced, which allows projects to be completed on

shorter timescales and less money to be spent on high performance computing. Secondly,

the time of engineers is saved as they are not required to spend large amounts of time

programming Monte Carlo simulations, which reduces expenditure for their employer, and

consequently benefits the industry as a whole.

In this chapter, we will propose imprecise probabilistic analogues to many of the proba-

bilistic formulae proposed in Kennedy et al. [98] which have become standard expressions

used in probabilistic safety analysis. In this way, we hope to unite the conventional literature

which is applied to probabilistic safety analysis in industry with relatively recent devel-

opments in imprecise probability. The analysis will make extensive use of the probability

boxes introduced in probability bounds theory. We will demonstrate how to establish the

fragility curve of a system when components are connected in parallel or series, and when

the failures of the components may have unknown dependencies. We will demonstrate

how to establish a probability box fragility curve when the product of random variables

must be considered. Then, we will also demonstrate how this can be used to calculate

the failure probability when there is additional imprecision in the load distribution. We

will also consider the implications of the imprecise first order reliability method (FORM),

and show how we can analytically obtain results from a simplified calculation when the

exact reliability index is difficult to obtain. All of the above are particularly useful when

combined with an event tree to e.g. yield the expected radiation release to the environment

or to calculate the reliability of complex plant.

The merit of this approach is that the entire fragility curve can be constructed by one

analyst using conventional spreadsheet packages, without the requirement to use complicated

simulation techniques which would require large amounts of time spent programming by

the analyst. Therefore the benefits of traditional probabilistic safety analysis approaches

are retained whilst also obtaining the advantages of using probability bounds theory.

6.2 Probabilistic safety analysis

Probabilistic Safety Analysis is broken down into three levels. Level 1 probabilistic safety

analysis studies the reactor and determines accident sequences which are likely to result
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in a release from the reactor pressure vessel. Level 2 considers the containment structure,

and how likely this is to fail in an accident. This is done by creating a fragility curve

for the containment, which quantifies the failure probability at a particular load. Level

3 probabilistic safety analysis combines the information produced by level 1 and level 2

probabilistic safety analysis to provide the probability of radiation release to the environment

[43].

In probabilistic safety analysis level 2 the main goal is to establish the fragility curve

of a (nuclear) structure [138]. In seismic hazard analysis the fragility curve expresses the

failure probability of the structure as a function of the peak ground acceleration. This can

then be used to conduct safety analysis once the conditions inside the reactor (the ‘source

term’) and the external conditions are known [168].

The fragility of a system is its probability of failure conditioned on a particular load.

Therefore, in the context of this section, bounds on failure probabilities may be taken as

bounds on fragilities. For a system, S, of components, ci, connected in series (i.e. the

system will fail if one component fails) the fragility of the system, f(s|a), at a damage

measure a (i.e. the peak ground acceleration) is given by

f(s|a) = 1−
∏
ci⊂S

[1− f(ci|a)], (6.1)

when the fragilities of the individual components are independently distributed [98].

If the dependence is not known then Boole’s inequality can be used to calculate an

upper bound on the probability that at least one event from a set of events occurs, i.e.

the probability that a series system fails, when the dependence between different events is

unknown. The Fréchet inequalities are similar upper and lower bounds that apply to the

probability of the union and intersection of events when no information is available about

the dependence of events [152].

Boole’s inequality is equivalent to the upper bound given by the Fréchet inequalities for

the union of n events:

max(P (A1), ..., P (An)) ≤ P
(

n⋃
i=1

Ai

)
≤ min(1, P (A1) + ...+ P (An)). (6.2)
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The other Fréchet inequality (which applies for components connected in parallel) being

max(0, P (A1) + ...+ P (An)− (n− 1)) ≤ P
(

n⋂
i=1

Ai

)
≤ min(P (A1), ..., P (An)). (6.3)

Note that both Boole’s inequality and the Fréchet inequalities are conservative bounds

which should be used when the dependence between failure events is unknown.

If the fragilities of the components are independently distributed and the components

are connected in parallel (i.e. the system has redundancy and fails if every component fails)

then the system’s fragility is given by

f(s|a) =
∏
ci⊂S

f(ci|a). (6.4)

The rare event approximation states that the value of f(s|a) given by Eqn. 6.1 is usually

approximately equal to the value given by Boole’s inequality for the small probabilities

relevant to this type of analysis [42], i.e. 1 −∏ci⊂S [1 − f(ci|a)] ≤ ∑ci⊂S [f(ci|a)] and∑
ci⊂S [f(ci|a)] ≈ 1−∏ci⊂S [1− f(ci|a)] for small f(ci|a). This is useful because for systems

with many components, applying Boole’s inequality requires evaluating fewer terms than

Eqn. 6.1. Similarly, combining fragilities using Eqn. 6.3 provides an upper bound to the

value of f(s|a) given by Eqn. 6.4 [98]. These formulae can also be applied to connected

systems which form super systems, in which case the unknown dependence versions on the

equations should be used [98].

In Probabilistic Safety Analysis f(ci|a) is usually modelled as a log normally distributed

random variable, because the physical quantities being modelled must be greater than zero,

i.e.

f(ci|a) = φ

 log

(
a

βi

)
σi

 , (6.5)

where βi represents the median failure value and σi is the logarithmic standard deviation

of component ci, and φ is the cumulative distribution function (CDF) of a standard normal

variable. Typically in Probabilistic Safety Analysis aleatory uncertainty can be distinguished

from epistemic uncertainty by modelling the β for any particular component as a lognormally

distributed random variable with parameters βe and σe. Hence the outer distribution (i.e.

Eqn. 6.5, with logarithmic standard deviation σa) will describe aleatory uncertainty, and
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epistemic uncertainty is modelled by the nested distribution (i.e. the inner distribution,

the CDF over β, with parameters βe and σe).

In order to allow this model to be used for computation, typically the mean distribution

is obtained (more widely known as the ‘composite’ distribution), which is also log-normally

distributed. This is an averaged distribution obtained by combining the aleatory uncertainty

(i.e. σa from the outer distribution) and the epistemic uncertainty (our uncertainty in the

distribution parameters, σe) [99]. For the composite distribution, the logarithmic standard

deviation, σc, is the euclidean norm of the two lognormal logarithmic standard deviations, i.e.

σc =
√
σ2
a + σ2

e , and the median is simply the median of the inner (epistemic) distribution,

βc = βe (a detailed derivation is provided in Kaplan et al. [91]). This distribution is

assumed to be conservative, since it approaches the asymptotic values in the tails of the

distributions described by the extrema of the epistemic distribution [98]. However, in many

cases assuming that the epistemic uncertainty is log-normally distributed may be an overly

strong assumption.

Figure 6.1 shows an example of a composite distribution compared to the median

fragility curve and the 5th and 95th percentiles of the epistemic uncertainty. As discussed,

the mean curve approaches the extreme outer distributions’ tails (obtained by taking β

from the 5th and 95th percentiles of the nested epistemic distribution and σ = σa). Clearly,

the median curve could not be used for this purpose as it does not adequately describe the

range of our belief in the peak ground acceleration.

6.3 Probability bounds analysis

6.3.1 Fragility curve

Let us consider the fragility distribution for a general component given by Eqn. 6.1. Instead

of considering βi as a random variable and finding the composite distribution we will instead

consider uncertainty in βi and σi as intervals. This enables the random variables to be

converted into probability boxes, which is useful for several reasons. Firstly, we do not need

to assume a distribution for our epistemic uncertainty, which permits a robust analysis

even with limited data. Secondly, instead of having to find the composite distribution

we can simply find the envelope of our distributions. Note that uniform distributions are

conceptually different from interval incertitude, since a uniform distribution specifies that
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Figure 6.1: The composite curve compared to the median curve (β = βe and σ = σa),
and the curves with 5th and 95th percentiles of β and σ = σa. In the example σa = 0.2,
βe = 5ms−2 and σe = 0.5.
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1.2ms−2, σ = 0.2 and σ̄ = 0.5.
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each value in the support of the distribution is equally likely, whereas an interval describes

lack of knowledge in a set-like manner, without implications for the likelihood of different

elements within the set.

If βi ∈ [βi, βi] and σi ∈ [σi, σi] then the distributional probability box can be converted

to a distribution-free probability box where the upper bound of the fragility is given by

f(ci|a) = φ


log

(
a

βi

)
−
∣∣∣∣log

(
a

βi

)∣∣∣∣
2σi

+

log

(
a

βi

)
+

∣∣∣∣log

(
a

βi

)∣∣∣∣
2σi

 , (6.6)

and the lower bound of the fragility is given by

f(ci|a) = φ

 log

(
a

βi

)
+

∣∣∣∣log

(
a

βi

)∣∣∣∣
2σi

+

log

(
a

βi

)
−
∣∣∣∣log

(
a

βi

)∣∣∣∣
2σi

 , (6.7)

where the | · | operator represents the absolute value of a quantity. These bounds are shown

in Figure 6.2. This follows from noting that φ is a monotonic function of its arguments, so

finding the maxima and minima of Eqn. 6.5 can be reduced to finding the maxima and

minima of
log a

βi
σi

when βi ∈ [βi, β̄i] and σi ∈ [σi, σ̄i]. Then note that log a
β̄i
< log a

β i
< log a

βi
.

The upper bound is found by noting that if 0 < log a
βi

then
log a

β i
σi

<
log a

βi

σi
and if 0 > log a

βi

then
log a

β i
σi

<
log a

βi

σ̄i
. The lower bound is found by noting that if 0 < log a

β̄i
then

log a
β i

σi
>

log a
β̄i

σ̄i

and if 0 > log a
β̄i

then
log a

β i
σi

>
log a

β̄i
σi

. Finally, note that it is trivial to construct a function

which takes a different value above and below zero, e.g. f1(x)−|f1(x)|
c1

+ f1(x)+|f1(x)|
c2

is equal

to 2f1(x)
c2

above zero and 2f1(x)
c1

below zero.

In general, converting distributional probability boxes to distribution-free probability

boxes results in loss of information [5]. However, in this case Eqn. 6.6 and Eqn. 6.7 are a

result of taking the natural extension of Eqn. 6.5, and therefore the values obtained will

be the tightest bounds possible, so in the specific case of Eqn. 6.6 and Eqn. 6.7 there is

no consequence to making the conversion. The other results in this section provide the

tightest possible bound in the case of unknown dependence, since we simply apply a Fréchet

inequality. Note that the results in subsequent sections do not make use of the conversion
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used in this section, in order to avoid the potential information loss.

For systems containing components in series or parallel, when the component failures

are known to be independent, the fragility can be calculated by using Eqn. 6.1 and Eqn. 6.4,

respectively. Alternatively, if the failure dependence is unknown we can use the relevant

Fréchet inequality, Eqns. 6.2 and 6.3, to yield the fragility. Alternatively, in the case of

unknown failure dependence, the rare event approximation (described in Section 6.2) can

be used to justify the application of Eqn. 6.1 and Eqn. 6.4 which will be accurate in the

tails of the distributions (i.e. for rare events).

Therefore, using the natural interval extension of Eqn. 6.2 with Eqn. 6.6 and Eqn. 6.7

it can be shown that, for components in series, the probability of failure at a particular

ground motion, a, with certainty falls in the interval given by

f(s|a) ∈
[

max
i

[
f(ci|a)

]
,min (1,

n∑
i=1

[
f(ci|a)

]
)

]
, (6.8)

i.e.

f(s|a) ∈

max
i

φ
 log

(
a

βi

)
+

∣∣∣∣log

(
a

βi

)∣∣∣∣
2σi

+

log

(
a

βi

)
−
∣∣∣∣log

(
a

βi

)∣∣∣∣
2σi


,

min

1,
n∑
i=1

φ


log

(
a

βi

)
−
∣∣∣∣log

(
a

βi

)∣∣∣∣
2σi

+

log

(
a

βi

)
+

∣∣∣∣log

(
a

βi

)∣∣∣∣
2σi




 . (6.9)

6.3.2 Product of log-normally distributed random variables

Often the fragility curve for a component must be established by considering the product

of a number of random variables with lognormal distributions. If this is the case then

the probability bounds analysis approach can be extended to allow us to find the relevant

fragility curve. To demonstrate, consider a general random variable d which is given by the

product of other random variables, i.e.

d = q
arbs

ct
, (6.10)
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where a, b and c are lognormal random variables and q, r, s and t are constants. It is clear

that d will be lognormally distributed with median βd = q
βraβ

s
b

βtc
, and logarithmic standard

deviation σ2
d = r2σ2

a + s2σ2
b + t2σ2

c [98].

In the case of interval imprecision in the distribution parameters of a, b and c we can

obtain

βd = q · β
r
a · βsb
βt
c

, (6.11)

and

βd = q ·
βra · βsb
βtc

, (6.12)

by using the endpoint formulae for interval multiplication [121] with knowledge of the

support of the distribution parameters. The logarithmic standard deviation can be obtained

from

σ2
d = r2σ2

a + s2σ2
b + t2σ2

c , (6.13)

and

σ2
d = r2σ2

a + s2σ2
b + t2σ2

c , (6.14)

by taking the interval extension of the expression stated above for the case of no interval

imprecision.

This is principally of use when computing the response factor, F , which can be expressed

as the product of a number of response factors applying to different pieces of equipment and

processes (for example damping effects or modelling effects), i.e. F =
∏
i Fi. The Fi are

modelled as lognormal random variables and may have interval imprecision in the median

[168].

6.3.3 Failure probability

Consider a system which fails when the load exceeds the strength. For a general load

distribution the failure probability is given by

Pf = −
∫ ∞

0

dH(a)

da
f(s|a)da, (6.15)

where H(a) is the seismic hazard curve (i.e. the probability that the ‘load’ exceeds a

certain value in a particular unit of time, which usually takes the form of the complement

of a CDF since it must be monotonically decreasing, and the probability cannot exceed
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1) [6]. When H(a) and f(s|a) are both log normally distributed, it is simple to solve

Eqn. 6.15 by transforming the integral [92]. However, in general this integral is not solvable

analytically and it cannot be solved analytically when the fragility curve is replaced with

the distribution-free probability boxes derived in the previous section.

Therefore, to derive bounds on the failure probability of systems subject to distributional

probability box loads and fragilities, we will apply Fréchet bounds and interval arithmetic

to well known results obtained by solving Eqn. 6.15 for common probability distributions.

For example, consider the case where the probability distribution function of the load,
dH(a)
da , is log-normally distributed with parameters βl and σl and the fragility, f(s|a), is

lognormally distributed with parameters βi and σi. In this case, the failure probability can

be evaluated as

Pf = φ

− log βi − log βl√
σ2
i + σ2

l

 . (6.16)

A plot of distributions used in Eqn. 6.16 with example parameters is shown in Figure 6.3.

To calculate an upper bound on the failure probability for a series system we evaluate the

maximum and minimum of Eqn. 6.16 with βl ∈ [βl, β̄l], σl ∈ [σl, σ̄l], βi ∈ [βi, β̄i], σi ∈ [σi, σ̄i]

and Eqn. 6.2. Analogously, for components in parallel a similar result can be obtained from

Eqn. 6.3. For simple systems these bounds provide useful analytic quantification of the

reliability of the system under epistemic uncertainty. However, for more complex systems

the bounds are usually not analytically calculable and hence numerical integration may be

necessary (e.g. [156], [135], [59]).

It is likely that there is uncertainty in βl and σl. If this is the case then the analysis

can be made robust using an uncertainty quantification approach for the load distribution

which is analogous to the approach used for the fragility.

In some works, such as ASCE 43-05 [24], the hazard curve has been modelled as a power

law, since this is a good approximation to the Cauchy-Pareto complementary cumulative

distribution function [97]. Such an equation takes the form of

H(a) = k1a
−KH , (6.17)

where k1 and KH are positive fitted constants. KH represents the slope of the mean

seismic hazard curve when plotted on log-log scale. With a log-normal fragility in the

parametrisation used in this chapter, the failure probability for a single component is given
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Figure 6.3: Demonstration of failure probability calculation with Eqn. 6.16. The lognormal
probability density functions for the stress and strength are shown. The shaded area
represents the integrand in Eqn. 6.15, which yields the failure probability Pf = 0.14. The
example parameter values for the plotted distributions were βl = 1ms−2, σl = 1, βi = 3ms−2

and σi = 0.2.
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by

Pf = H(βi) exp
(KHσi)

2

2
. (6.18)

A plot of distributions used in Eqn. 6.18 with example parameters is shown in Figure 6.4.

When there is interval imprecision in KH , k1, βi and σi we can obtain bounds on the

failure probability, and this result can be generalised trivially to the case of a parallel or

series system using the formulae given in Section 6.2.

6.3.4 Summary of failure probability expressions

The following list of results can be derived from the previous section:

• Parallel System with unknown dependence; Lognormal load and Strength:

Pf =
∑
ci⊂S

min

φ
− log βi − log βl√

σ2
i + σ̄2

l

 , φ

− log βi − log β̄l√
σ2
i + σ̄2

l

− (n− 1) (6.19a)

and

Pf = min
ci⊂S

max

φ
− log βi − log βl√

σ2
i + σ2

l

 , φ

− log βi − log βl√
σ2
i + σ2

l

 (6.19b)

• Series system with unknown dependence; Lognormal load and Strength:

Pf =
∑
ci⊂S

max

φ
− log βi − log β̄l√

σ̄2
i + σ̄2

l

 , φ

− log βi − log β̄l√
σi2 + σ2

l

 (6.20a)

and

Pf = max
ci⊂S

min

φ
− log β̄i − log βl√

σ̄2
i + σ̄2

l

 , φ

− log β̄i − log βl√
σi2 + σ2

l

 (6.20b)
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Figure 6.4: Demonstration of failure probability calculation with Eqn. 6.18. The lognormal
probability density functions for the stress and strength are shown. The shaded area
represents the integrand in Eqn. 6.15, which yields the failure probability Pf = 0.12. The
example parameter values for the plotted distributions were KH = 2, k1 = 1(ms−2)KH ,
βi = 3ms−2 and σi = 0.2.
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• Series system with independent components (upper bound also valid for dependent

rare events); Log-normal load and strength:

Pf = 1−
∏
ci⊂S

1−max

φ
− log βi − log β̄l√

σ̄2
i + σ̄2

l

 , φ

− log βi − log β̄l√
σi2 + σ2

l

 (6.21a)

and

Pf = 1−
∏
ci⊂S

1−min

φ
− log β̄i − log βl√

σ̄2
i + σ̄2

l

 , φ

− log β̄i − log βl√
σi2 + σ2

l

 (6.21b)

• Parallel system (independent components - upper bound also valid for dependent rare

events); Log-normal load and strength

P f =
∏
ci⊂S

min

φ
− log β̄i − log β̄l√

σ̄2
i + σ̄2

l

 , φ

− log β̄i − log β̄l√
σi2 + σ̄2

l

 (6.22a)

and

P̄f =
∏
ci⊂S

max

φ
− log βi − log β

l√
σ̄2
i + σ2

l

 , φ

− log βi − log β
l√

σi2 + σ2
l

 (6.22b)

• Single Component; Power Law Load, with k1 ∈ [k1, k̄1] and KH ∈ [KH , K̄H ]; Lognor-

mal, with median β ∈ [β, β̄] and logarithmic standard deviation σ ∈ [σ, σ̄]:

P̄f = k̄1 max

[
β−K̄H exp

(K̄H σ̄)2

2
, β−KH exp

(KH σ̄)2

2

]
(6.23a)

and conservative lower bound

P f = k1β̄
−K̄H exp

(KHσ)2

2
(6.23b)



96 Jonathan Cyrus Sadeghi

If KH > log β̄
σ2 or K̄H <

log β

σ̄2 a tighter lower bound is obtained from:

P f = k1 min

[
β̄−KH exp

(KHσ)2

2
, β̄−K̄H exp

(
K̄Hσ

)2
2

]
(6.23c)

• Parallel system with unknown dependence; Power Law Load, with k1 ∈ [k1, k̄1] and

KH ∈ [KH , K̄H ] Lognormal, with median βi ∈ [β
i
, β̄i] and logarithmic standard

deviation σi ∈ [σi, σ̄i]:

P̄f = k̄1 min
ci⊂S

[
max

[
β−K̄H
i

exp
(K̄H σ̄i)

2

2
, β
−KH
i exp

(KH σ̄i)
2

2

]]
(6.24a)

and

P f = k1

∑
ci⊂S

[
β̄i
−K̄H exp

(KHσi)
2

2

]
− (n− 1) (6.24b)

• Series system with unknown dependence; Power Law Load, with k1 ∈ [k1, k̄1] and

KH ∈ [KH , K̄H ] Log-normal, with median βi ∈ [β
i
, β̄i] and logarithmic standard

deviation σi ∈ [σi, σ̄i]:

P̄f = k̄1

∑
ci⊂S

max

[
β−K̄H
i

exp
(K̄H σ̄i)

2

2
, β
−KH
i exp

(KH σ̄i)
2

2

]
(6.25a)

and

P f = k1 max
ci⊂S

[
β̄i
−K̄H exp

(KHσi)
2

2

]
(6.25b)

• Parallel system with independent components (upper bound also valid for dependent

rare events); Power Law Load, with k1 ∈ [k1, k̄1] and KH ∈ [KH , K̄H ]; Log-normal,

with median βi ∈ [β
i
, β̄i] and logarithmic standard deviation σi ∈ [σi, σ̄i]:

P̄f =
∏
ci⊂S

k1 max

[
β−K̄H
i

exp
(K̄H σ̄i)

2

2
, β
−KH
i exp

(KH σ̄i)
2

2

]
(6.26a)
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and

P f =
∏
ci⊂S

k̄1β̄i
−K̄H exp

(KHσi)
2

2
(6.26b)

• Series system with independent components (upper bound also valid for dependent

rare events); Power Law Load, with k1 ∈ [k1, k̄1] and KH ∈ [KH , K̄H ]; Log-normal,

with median βi ∈ [β
i
, β̄i] and logarithmic standard deviation σi ∈ [σi, σ̄i] :

P̄f = 1−
∏
ci⊂S

[
1− k̄1 max

[
β−K̄H
i

exp
(K̄H σ̄i)

2

2
, β
−KH
i exp

(KH σ̄i)
2

2

]]
(6.27a)

and

P f = 1−
∏
ci⊂S

[
1− k1β̄i

−K̄H exp
(KHσi)

2

2

]
(6.27b)

The failure probability bounds for a parallel system with unknown dependencies and

lognormally distributed load and strength, Eqn. 6.19, can be derived by applying the natural

interval extension of the Fréchet inequality for the intersection, Eqn. 6.3, to the natural

interval extension of the failure probability for a lognormal component, Eqn. 6.16.

Eqn. 6.20, the series system with unknown dependencies and lognormally distributed

load and strength is derived in the same way, except this time the union Fréchet inequality

(Eqn. 6.2) is applied.

Eqn. 6.21 and Eqn. 6.22 can be derived in the same way by applying Eqn. 6.1 and

Eqn. 6.4, respectively.

The derivation of Eqn. 6.23 (single component with power law load and log normal

fragility) is more complex, due to repeated variables (KH) [121]. Firstly, note that Pf =

H(βi) exp (KHσi)
2

2 = k1 exp (−KH log βi + 1
2K

2
Hσ

2
i ). Recall that k1 > 0, KH > 0, β > 0

and σ > 0. Note that Pf is monotonic in k1, σi and βi, so our task is simply to find

maxKH k̄1 exp (−KH log βi + 1
2K

2
H σ̄

2
i ) and minKH kl exp (−KH log β̄i + 1

2K
2
Hσ

2
i ).

The function k1 exp (−KH log βi + 1
2K

2
Hσ

2
i ) is quadratic in KH and has a global min-

ima in KH at KH = log β
σ2 . Clearly maxKH k̄1 exp (−KH log βi + 1

2K
2
H σ̄

2
i ) takes its maximum

value at K̄H orKH . Elementary interval analysis reveals that kl exp (−KH log β̄i + 1
2K

2
Hσ

2
i ) >

kl exp (−K̄H log β̄i + 1
2KH

2σ2
i ). However in reality KH and KH cannot appear in the same
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expression, as they represent specific values of the same quantity. A tighter bound is

obtained by checking if KH < log β̄i
σi2

< K̄H . If this inequality holds then the minimum

occurs at KH = log β̄i
σi2

. Otherwise we must check which of K̄H and KH minimises the

failure probability. Then the remaining results can be obtained by applying the union or

intersection Fréchet inequalities, or rare event approximation as appropriate.

6.3.5 Imprecise FORM

The bounds on the failure probability of a structural system in the load resistance form,

subject to distributional probability box uncertainty, can be approximated using the well

known FORM approximation described in Section 4.3.2. If the resistance variable consists

of the sum of many component strengths then one may need to use optimisation to find the

reliability index. Alternatively, we can attempt to analyse in which conditions the system

is likely to fail using a simple analytical method.

Consider a load term which is the product of a constant and a random variable, i.e.

L = CLd, where C is a constant and Ld is a random variable representing the design load.

The system will have a Pf = 0.5 when β = 0, which implies the strength to load ratio,

γ = µS
µL

, will be equal to 1. Clearly, this is only the case when C = γd = µS
µLd

, i.e. the

applied load is scaled by the strength to design load ratio [143].

This can be trivially extended in the case of probability box variables to find an interval

load for which Pf = 0.5, i.e. L0.5 ∈ [L0.5, L̄0.5] = [γ
d
Ld, γ̄dLd, ] where

γ̄d =
µ̄S
µ
Ld

, (6.28)

and

γ
d

=
µ
S

µ̄Ld
, (6.29)

where µS and µL are the mean values of the strength and load and σL and σS are the

standard deviations of the strength and load. Note that the standard deviation of the

random variables is not involved in the calculation of this load.
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6.4 Numerical examples

6.4.1 Reliability analysis of a simple concrete containment

To demonstrate the results described in the previous sections, we will consider a modified

version of an example given in Modarres et al. [119] with interval imprecision in the

coefficient of variation of the random variables. The random variables will be modelled with

lognormal distributions since lognormal distributions are commonly used in the Probabilistic

Safety Analysis literature to model physical quantities which must always be positive [168],

[98]. However, our approach could be applied to similar problems with different distribution

types, and many other distributions exist to ensure positivity of random variables. The

problem description will be briefly replicated in this section for clarity.

A concrete containment is a structure designed to prevent radioactive release from

nuclear power plants to the environment. It is therefore important that the reliability of this

structure can be determined accurately, as failing to do so could have severe consequences

for the environment and the general public. During the process of determining the reliability

of a containment, engineers wish to determine the relationship between applied pressure

and failure probability of the containment. A simplified performance function is used to

perform reliability analysis without having to run simulations on a complex finite element

model. This approach is advantageous as the computational time required is significantly

reduced. The approach assumes that the system will fail if the load is larger than the

strength.

The containment’s strength is considered to be divided between 7 failure mode contrib-

utors, all of which may cause system failure. Therefore, this example can be treated as a

system composed of 7 components (which are modelled as random variables), connected in

series.

The probability of failure for the containment is given by

Pf =

∫
St<Lt

f(x)dx, (6.30)

where f(x) is the joint probability distribution function of the random variables, x =

(x1, x2...) and St and Lt represent the strength and load terms respectively. The input

parameter values assumed in this analysis were taken from the original example given by

Modarres et al. [119], but modified to fit lognormal variables and include some imprecision as

shown in Table 6.1. The pressure load inside the containment, for the specific accident being



100 Jonathan Cyrus Sadeghi

Failure Mode Logarithmic Median, µ,
log β /MPa

Logarithmic Standard
Deviation, σ /MPa

Liner tear around personnel airlock −0.0943 [0, 0.0017]

Basemat shear −0.0141 [0, 0.0016]

Cylinder hoop membrane 0.0853 [0, 8.8641× 10−4]

Wall-basemat junction shear 0.1231 [0, 0.0014]

Cylinder meridional membrane 0.2159 [0, 8.3320× 10−4]

Dome membrane 0.5911 [0, 5.345× 10−4]

Personnel air lock door buckling 0.2159 [0, 0.0013]

Table 6.1: Input parameters for the modified concrete containment example from Modarres
et al. [119].

considered, was taken to be lognormally distributed with mean 0.575 MPa and standard

deviation of 0.117 MPa (such that the parameters for the fitted lognormal distribution were

log β = −0.5737 MPa and σ = 0.2014 MPa).

The fragility of the series system was bounded using Eqn. 6.9 and compared to the

empirical CDFs obtained by randomly sampling the epistemic uncertainty. The results are

shown in Figure 6.5.

The failure probability was calculated using Eqn. 6.20, since the dependence between

failure modes was unknown. This resulted in a failure probability between 0.0086 and

0.0123, which contains the precise probability of failure (Pf = 0.0122) given in Modarres

et al. [119]. This result was verified by use of double loop Monte Carlo simulation, which

was performed using the same samples used to generate Figure 6.5 (100 epistemic samples

and 106 aleatory samples). The analytic code took 0.027 seconds to run, whilst the double

loop Monte Carlo simulation took 0.16 seconds to run on an 2.9 GHz Intel Core i5 processor

in Matlab. In addition the result from double loop Monte Carlo simulation would require

more samples, and hence even greater time, to increase accuracy in the tails of the p-box

to an arbitrary amount already achieved by the analytic approach.

These results reveal a good agreement with the expensive simulation procedures in a

fraction (one fifth) of the time. Note that although in this case the double loop Monte

Carlo was quick to run, this may not be true in general (such as in high dimensional

cases). In addition, the Monte Carlo simulation could be one nested component in a much

larger computation. Even when this is not the case, it is unrealistic to expect practising

engineers to resort to double loop Monte Carlo simulation for what should be a simple
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Figure 6.5: Probability box representing the fragility curve of the series system, computed
analytically. For comparison, sampled fragility curves double loop Monte Carlo simulation
are shown, which was computed by making 100 epistemic samples.

design calculation, even with the inclusion of epistemic uncertainty. In practical cases it

would also be necessary to consider uncertainty in the Logarithmic Mean of the random

variables which can be easily accounted for given the developments in Section 6.3.

6.4.2 Containment with additive component strengths

In many real systems the components’ strengths may be added together, rather than

combined in parallel or series. Such an example is given in Chapter 5. This poses

a challenge for analytical methods, as in general normal distributions and log normal

distributions cannot be summed easily (except in limited cases such as independently

distributed normal random variables). Therefore, in order to consider such systems in the

imprecise probabilistic safety analysis framework, we resort to using the imprecise FORM

approximations given in Qiu et al. [144].

In Chapter 5, Probabilistic Safety Analysis of a concrete containment was presented

as part of a round robin international test exercise. Two experimental test cases (Sandia

National Laboratories and Bhabha Atomic Research Centre) were described and the

probability of failure for each containment was calculated. The experiments were compared
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Variable Mean Value, [µ,µ̄] Coefficient of Variation

Concrete tensile strength, Fc [4.3, 4.5] 0.2

Liner yield, Fl [370, 390] 0.2

Rebar yield, Fs [450, 370] 0.2

Tendon yield, Ft [1700, 1800] 0.2

Design Pressure, Pd 0.39 0.2

Radius, R 5537.5 0.2

Concrete area, Ac 312.85 0.2

Liner area, Al 1.6 0.2

Rebar area , As 6.85 0.2

Tendon area, At 3.7 0.2

Table 6.2: Input parameters for Sandia National Laboratories containment test case with
additive component strengths.

to a cylindrical concrete containment model, where the area and strength of the concrete,

rebar, tendons and liner are modelled as normally distributed random variables. In this

example, the Sandia National Laboratories Containment will be analysed with intervalised

epistemic uncertainty describing the mean value of the random variables representing

yield values of structural materials. This could indicate lack of knowledge about the

materials used, i.e. insufficient experiments. The modified properties of the Sandia National

Laboratories containment are summarised in Table 6.2.

The performance function of the containment is obtained as a load-strength relationship,

i.e.

g = (AsFs +AtFt +AlFl +AcFc)− PR. (6.31)

We set the applied pressure to be equal to the design pressure, scaled by a constant.

Using the strength to design load ratio method from Eqn. 6.28 and Eqn. 6.29 with

µ̄S
µ
L

=
µ̄As µ̄Fs + µ̄At µ̄Ft + µ̄Ac µ̄Fc + µ̄Al µ̄Fl

µ
Pd
µR

(6.32)

and
µ
S

µ̄L
=
µ
As
µ
Fs

+ µ
At
µ
Ft

+ µ
Ac
µ
Fc

+ µ
Al
µ
Fl

µ̄Pd µ̄R
(6.33)

we find that Pf = 0.5 when P ∈ [5.2Pd, 5.24Pd]. In order words, because of our epistemic

uncertainty in the structural properties of the system we are unsure which pressure causes
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Pf = 0.5. Clearly the epistemic uncertainty we have considered does not significantly

change the pressure at which Pf = 0.5.

For a more complete understanding of the system (i.e. understanding which pressures

cause large and small failure probabilities), advanced simulation methods would be necessary.

This is because the strength to design-load ratio method only considers the mean values

of the random variable in order to find the pressure at which the structure has Pf = 0.5,

and does not consider the variability of the structural components. For example, one could

resort to the method proposed by de Angelis et al. [51], where line sampling is applied to

structures with epistemic uncertainties.

6.5 Chapter summary

In this chapter, we have demonstrated methods to analytically propagate probability boxes

in commonly used Probabilistic Safety Analysis equations. These equations include series

and parallel systems with unknown dependencies, lognormal fragility distributions and

equations where lognormally distributed factors are multiplied. In addition, Power Law

Load load distributions are considered. Crucially, we use intervals to model epistemic

uncertainty in the parameters of these distributions. This enables the robust quantification

of epistemic uncertainty when performing Probabilistic Safety Analysis, particularly in an

industrial context. These distributions are sufficient for the analysis of many industrial

problems, but in general the imprecise probability methods proposed could be generalised

to other distributions as well.

These expressions are imprecise probabilistic analogues to many of the probabilistic

formulae proposed in Kennedy et al. [98], which have become standard expressions used in

Probabilistic Safety Analysis. We also demonstrated how similar techniques can be applied

to simplified calculations involving more complex models.

Our proposed expressions enable engineers to complete essential design calculations

whilst considering epistemic uncertainty, and avoid the impracticalities of double loop Monte

Carlo simulation which we believe is a significant barrier to the modelling of epistemic

uncertainty in many industrial probabilistic safety assessment workflows. However, the

proposed methodology in this chapter cannot be applied for black box models, which do not

have an analytic performance function. Therefore, the following chapters propose alternative

methodologies which still reduce computational demands, whilst being compatible with

more general simulations and models.



Chapter 7

Interval Predictor Models for

Reliability Analysis

7.1 Introduction

As discussed in Chapter 4, metamodels can be used to reduce the computational expense

of a Monte Carlo simulation to calculate the probability of failure of a system. However,

since an approximate model is used to predict the model response, the surrogate approxi-

mation introduces a prediction uncertainty in the model response [178]. Consequently, this

prediction uncertainty propagates to uncertainty concerning the computed probability of

failure, that has to be effectively estimated and accounted for in such approximate analyses.

Interval predictor models (validated by the scenario optimisation theory), as discussed in

Chapter 3, are a type of metamodel which provide a robust quantification of their predic-

tive uncertainty. This chapter therefore presents a systematic approach to consider such

prediction uncertainty in the estimation of small failure probabilities in nonlinear models.

Section 7.3.2 describes how IPMs used in the literature can be modified to create more

accurate metamodels for performance functions. An analytic case study is performed in

Section 7.4 to illustrate the proposed approach, where the performance of interval predictor

models is compared to that of Kriging models (i.e. Gaussian Processes). Advanced Monte

Carlo methods are used to present a benchmark for the proposed approaches.

The use of interval predictor models for reliability analysis is a novel contribution of

the author in Patelli et al. [134]. Subsequently, they have also been applied in Crespo et al.

[47].

104
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7.2 Interval failure probability

When calculating the failure probability of a system, a metamodel is often applied to

predict the performance function g(x). The prediction of g(x) by the metamodel will be

referred to as ĝ. Both Kriging and Interval Predictor Model (IPM) surrogate models either

give an estimate of the uncertainty on the prediction of the model response or provide

the analyst with a set-valued response that prescribes this uncertainty. In both cases,

the predicted response ĝ is modelled as belonging to an interval ĝI . In the context of

failure probability estimation, the resulting random model response can be regarded as

belonging to a probability box [ĝ] due to the superposition of the interval uncertainty from

the surrogate model on the probabilistic description of the response g(x) stemming from the

random model parameters x. As a consequence, P̂f becomes interval valued. Specifically,

the interval probability of failure, P̂ If , can be computed as:

P̂ If =

∫
R
If ([ĝ])f I

ĝI
([ĝ])d[ĝ] (7.1)

which can be solved following e.g. a nested optimisation approach [111].

However in this specific context, some considerations allow for simplification of this

equation. In case of Kriging, the superimposed interval uncertainty on the predicted model

response is strict in the sense that the upper and lower bounds do not cross. This is a

direct result from the truncation of the random variable that is associated to each predicted

response. During the training of the IPM, the upper prediction is constrained to be greater

than the lower prediction and hence a similar observation can be made in this context, as

demonstrated in Patelli et al. [134] and Crespo et al. [47]. Therefore, only the extreme

bounds of the predicted response intervals need to be considered in the evaluation of the

failure probability. As such, Eqn. 7.1 can be split up as in Zhang et al. [187], and a Monte

Carlo estimator applied to yield

P̂ f =

∫
R
If (ĝ)f

ĝ
(ĝ)dĝ ≈ 1

N

N∑
i=1

If (ĝ
i
) (7.2a)

P̂ f =

∫
R
If (ĝ)f ĝ(ĝ)dĝ ≈ 1

N

N∑
i=1

If (ĝi) (7.2b)

where, f
ĝ
(ĝ) and f ĝ(ĝ) are respectively the distribution function of the lower and upper



106 Jonathan Cyrus Sadeghi

Sampling
Metamodel Training

full model

Monte Carlo Simulation
with metamodel

Figure 7.1: A diagram of Monte Carlo simulation with an uncertain surrogate model.

bounds on the prediction of the surrogate model, ĝ and ĝ, and ĝi and ĝ
i

are the N samples

drawn from these distributions. This is shown in Figure 7.1.

In case dependent random model parameters are considered, the computation of the

failure probability is usually performed in standard normal space (SNS). Due to the

interval-valued uncertainty that is attributed to each realisation of the random model

response, the limit state function obtained from the metamodel becomes interval valued

after transformation to SNS. However, it can be shown that due to the monotonicity of the

iso-probabilistic transformation to SNS (see Jiang et al. [89]), the minimum and maximum

value of the limit state function correspond to the vertices of the interval-valued uncertainty

on the model response realisations. Therefore, the above arguments also hold in this case.

This method as such allows an analyst to make a robust prediction of the probability

of failure of a highly non-linear, computationally demanding computer model at greatly

reduced cost. It furthermore allows the analyst to uniquely separate the uncertainty

stemming from the modelled physics from the uncertainty that stems from applying a

surrogate model instead of the full numerical simulation code.

7.3 Uncertain surrogate model predictions

This section describes how the uncertain surrogate model predictions required by the

interval failure probability estimation described in Section 7.2 are obtained for Kriging and

interval predictor models. Specific optimisations which can be used to create IPMs which

more accurately model performance functions are explained.
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7.3.1 Kriging

Kriging approximates the full model g(x) as the sum of a functional regression model

F (β,x), where F is usually a polynomial function and β represents the regression coefficients,

and a stationary zero-mean Gaussian stochastic process z(x) [105]. Formally, the Kriging

surrogate model m̂Kr() is expressed as:

ĝ = m̂Kr(x) = F (β,x) + z(x). (7.3)

In Eqn. 7.3, the polynomial regression model is given as the linear superposition of a number

of functions f(x) : Rn 7→ R:

F (β,x) = fT (x)β (7.4)

where β are the corresponding regression coefficients that have to be estimated. The

auto-covariance of the stationary zero-mean Gaussian stochastic process z(x) is given as:

E[z(xi), z(xj)] = σ2R(θ, xi, xj) (7.5)

with σ the process variance and R(θ, xi, xj) the correlation model between two xi, xj in X .

The correlation model is characterised by a set of coefficients θ.

The degree of the polynomial regression model and the correlation function family are

selected by the analyst, based on expert opinion. Then, the correlation coefficients, process

variance and correlation parameter θ are determined using a Bayesian supervised learning

procedure, as discussed in Chapter 3.

Since Kriging associates a Gaussian random variable to each predicted ĝ = m̂Kr(x),

an estimation of the variance ζ(x) in the prediction is given by the Kriging model. By

considering the k · σ-bounds of a Kriging Metamodel, the response of the Kriging predictor

can as such be interpreted as an interval:

ĝI = [m̂Kr(x)− k · ζ(x); m̂Kr(x) + k · ζ(x)]. (7.6)

This interval is by definition symmetric around the deterministic estimate of the Kriging

model. By applying this method for the model response, an interval ĝI containing the k · σ
confidence interval of the model response is obtained next to the deterministic estimate ĝl

of the model response.
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7.3.2 Interval predictor models

In contrast to most surrogate modelling approaches, interval predictor models (IPMs)

provide the analyst with a set-valued mapp ing mI
IPM : x 7→ gI ⊂ G instead of only one

crisp value. Specifically, the IPM maps the crisp valued vector of input parameters x to

an interval gI bounding the range of the actual crisp model prediction, as discussed in

Chapter 3. IPMs for reliability analysis are created by obtaining an input training data set

of samples from f(x), xi, which are propagated through g(x) to obtain output training

data, gi. When training an IPM as a metamodel to estimate small failure probabilities, it

is important to evaluate the objective function (the expected distance between the bounds)

either analytically or with high accuracy. This is because the standard deviation of the

empirical estimate of the failure probability may well be larger than the failure probability

in these cases. It is clear that obtaining more data will expand the IPM’s prediction

interval, and without observing an infinite amount of data the obtained bounds on the IPM

prediction interval will never be completely robust. Therefore, the accuracy of the IPM is

assessed using tools from the scenario optimisation theory described in Chapter 3.

Modified objective function

Since the purpose of structural reliability analysis is to obtain the failure probability, which

is calculated by integration of an indicator function, the priority should be to model the

performance function as accurately as possible where it is close to zero [2]. This is not

achieved in regular interval predictor models because the objective function (Ex[δy(x,v,u)])

minimises the expectation of the width of the IPM everywhere in the data containing region.

A hyperbolic tangent objective function (w(x,v,u)) can be used to remedy the problem,

which is given by

w(x,v,u) =
∑
i

tanh (bĝ(xi,v,u))− tanh (bĝ(xi,v,u)), (7.7)

where b is a positive real scaling factor which can be increased or decreased to alter the

convergence of the IPM. Increasing b will reduce the objective function to the indicator

function — i.e. the IPM will behave more like a classifier. In fact, since the proposed

objective function is an expectation, it will be equal to twice the difference between the

empirically computed bounds on the probability of failure (2(P f − P f )). This loss function

is particularly useful whenever a metamodel is created for the purposes of reliability analysis.
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Decreasing b will result in a linear scaling between the objective and g(x), i.e. similar to the

unmodified objective function. This function is advantageous because when the IPM is close

to zero there is a clear incentive to make the model as tight as possible here. Furthermore,

the function is smooth and analytically differentiable with respect to the parameter vector,

which permits easier optimisation, and therefore its gradient can be obtained as

∇uw(x,v,u) =
∑
i

b
φ(xi)− |φ(xi)|

2
sech2

(
bĝ(xi,v,u)

)
−

∑
i

b
φ(xi) + |φ(xi)|

2
sech2

(
bĝ(xi,v,u)

)
, (7.8)

and

∇vw(x,v,u) =
∑
i

b
φ(xi) + |φ(xi)|

2
sech2

(
bĝ(xi,v,u)

)
−

∑
i

b
φ(xi)− |φ(xi)|

2
sech2

(
bĝ(xi,v,u)

)
. (7.9)

tanh is a non-convex function, and therefore one may wish to define a convex approximation

of the function for practical purposes. In this chapter the approximate loss function

wapprox(x,v,u) =
∑
i

wi(ĝ(xi,v,u)− ĝ(xi,v,u)), (7.10)

is used, with wi = tanh gi
gi

. In other words, the original IPM loss is re-weighted when the

data is close to the limit state surface, whilst the loss remains a linear function of the IPM

parameters. In fact, Eqn. 7.10 is an upper bound to the first order Taylor expansion of

Eqn. 7.7 about gi for b = 1 (sech2 (gi)(ĝ(xi,v,u)− ĝ(xi,v,u))). This approximation will

only be reasonable when the data has low noise in g, otherwise higher order terms in the

Taylor approximation will become important.

Adaptive training of interval predictor models

In order to reduce the number of support constraints in the IPM and hence improve its

reliability, two strategies were adopted. Firstly we set p̄i = p
i

for i > 1, in other words

the parameter vector was the same for the upper and lower bound except for a constant,



110 Jonathan Cyrus Sadeghi

which almost halves the bound on the number of support constraints. This strategy works

particularly well when modelling deterministic functions. Secondly, an iterative scheme is

used to refine the basis chosen. Firstly, a polynomial basis with the maximum required

degree is created and then the IPM is trained. The monomial term with the lowest pi is

removed. The IPM is now retrained with the new basis and the procedure is repeated until

the IPM has a sufficiently small uncertainty.

Producing point predictions from interval predictor models

The IPM does not provide a crisp best estimate value of the model response. For comparison

with the crisp value that is provided by the full model g(x) and the Kriging predictor, the

least squares estimate using the basis chosen for the IPM is used. This should be roughly

similar to finding the mean of a staircase predictor model, as in [47].

7.4 Case study

In the study of the uncertainty concerning the estimation failure probability due to the

application of surrogate modelling techniques, Adjiman’s function is applied:

fadj(x1, x2) = cos(x1) · sin(x2)− x1

(x2
2 + 1)

. (7.11)

Based on this function, decreasing levels of failure probability are estimated by considering

the threshold value for yth ∈ {2, 2.5, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.95, 4}. The

performance function is therefore g(x) = yth − fadj(x1, x2). Both x1 and x2 are assumed to

be marginally uniform distributed within the interval [−4, 4] with zero covariance.

As a benchmark, advanced Monte Carlo methods such as Line Sampling and Subset

simulation, as well as regular Monte Carlo simulation are applied, and their performance

in terms of necessary number of function evaluations and variance of the predictor are

compared. Then, different surrogate models for Adjiman’s function are constructed using

three techniques:

• an Interval Predictor Model, based on a 7th-order polynomial basis, refined using a

basis refinement algorithm until only 12 monomials are present,

• a Kriging model with 2nd-order regression model F (β,x) and an exponential correla-

tion model R(θ;xi,xj) = exp(−θ|xi − xj |),



Chapter 7. Interval Predictor Models for Reliability Analysis 111

and these surrogate models are applied to perform a Monte Carlo integration of Eqn. 7.2b.

Both modelling techniques are applied to the same training data sets containing either

100, 250, 500 or 1000 deterministic training samples. In order to make a fair comparison

between the two proposed techniques, the modified objective function from Eqn. 7.10 is not

used in this case study, and instead the IPM is trained in the standard way (i.e. minimising

the expectation of the difference between the bounds with Eqn. 3.9). It should be noted

that no computational gain is expected in the application of a surrogate model for the

considered test function, because the chosen test function is a simple analytic function.

Nonetheless, the experiment enables the accuracy in predicting small failure probabilities

of the considered surrogate modelling techniques to be compared in a rigorous way.

Since the considered surrogate modelling approaches are conceptually very different,

comparison of their accuracy based on some a priori (i.e. before computing Pf ) metric is

non-informative. The most obvious way would be to compute, for instance, the R2-value

and the Chebyshev norm (Dch) of the difference between the analytical model and surrogate

prediction using a set of validation data. However, since the Interval Predictor Model only

provides a set valued response for each combination of parameter values, such metrics

computed over, for instance, the midpoint of the predicted intervals are non-informative.

Hence, such comparisons do not reveal much about the performance of the methods. All

numerical computations, are performed using OpenCossan.

7.4.1 Advanced Monte Carlo sampling

As a first step in the analysis, the performance of Monte Carlo, Line Sampling with an

adaptive algorithm to find the important direction (see De Angelis [50]) and Subset-∞ [9]

is tested in terms of the estimation of the failure probability, the coefficient of variance of

this estimation and the number of samples that were needed to obtain the estimate.∗ These

simulation methods are applied directly using the analytical function, as introduced in

Eqn. 7.11, to ensure that this analysis is not biased due to prediction errors of the surrogate

models.

The Monte Carlo and Line Sampling methods were applied until a coefficient of variation

(CoV) of the estimator of 5% was reached, albeit with a maximum of 107 samples. The

sampling was performed in batches of 5 · 102 samples for Monte Carlo simulation and 200

∗The Subset-∞ algorithm proceeds as described in Chapter 4, but with a more efficient method to
generate samples between intermediate failure events.
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lines for Line Sampling. Then, after each batch the CoV is estimated and the simulation is

stopped if CoV < 0.05. For Subset-∞, the intermediate levels of Pf were set to 0.1 and

the initial population size was heuristically set until a sufficiently small CoV was obtained.

A CoV of approx. 8% for the prediction of Pf for yth = 2 was obtained at 103 samples,

as the CoV did not improve significantly when the population size was further increased.

The same initial population size was kept constant for all other evaluations of the failure

probability.

Figure 7.2 illustrates the topology of the limit state function of Adjiman’s function in

the standard normal space U . Herein, u1 and u2 respectively correspond to u1 = Tu(x1)

and u2 = Tu(x2), with Tu : X 7→ U a transformation operator mapping responses from

physical to standard normal space. This plot is generated by performing 5 ·104 Monte-Carlo

evaluations of the analytical function, with a threshold value of yth = 3.7. The red dots in

this figure indicate the samples laying in the failure domain F (i.e., I ≤ 0), whereas the

samples in the safe domain S (i.e., I > 0) are indicated in green. As it may be noted, a

highly non-linear notched limit state function g(u) is obtained, which poses a challenge for

the applied advanced Monte Carlo methods.

Figure 7.2: Failure domain F and safe domain S in standard normal space for Adjiman’s
function.

Figure 7.3 shows the estimated failure probability, as obtained using Monte Carlo,

Advanced Line Sampling and Subset-∞, as a function of the threshold value. First, it

can be seen that the estimate of the failure probability as a function of the threshold
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of yth is approximately equal for Monte Carlo and the Subset methods, as long as the

failure probability remains moderately large (i.e., Pf > 10−3). However, the obtained

results diverge significantly when smaller failure probabilities are computed. Advanced

Line Sampling on the other hand provides in this case a better estimate for the smaller

failure probabilities, which is explained by the independence of Line Sampling performance

to the magnitude of the probability of failure [50].

Figure 7.3: Estimated failure probability and the coefficient of variance for different threshold
values yth for Adjiman’s function.

Figure 7.4 shows the CoV of the failure probabilities estimated by the three methods.

It can be noted that the variance on the failure probability predictor that is obtained

by Monte Carlo and Advanced Line Sampling is up to a factor 5 smaller as compared

to Subset-∞. This is a direct result from the fact that in the case of Monte Carlo and

Advanced Line Sampling, additional samples were generated until a specified CoV of 5%

was reached, whereas the Subset method was heuristically tuned to minimise the CoV of

the prediction. Moreover, in the case of Subset, the CoV measures up to 60% in the case

of the smallest considered failure probabilities.

Figure 7.5 shows the computational efficiency in terms of necessary number of samples
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Figure 7.4: Estimated failure probability and the coefficient of variance for different threshold
values yth for Adjiman’s function.

to perform the probability of failure estimate. From this figure, it is clear that Subset-∞
is more efficient than Advanced Line Sampling, which in its turn is more efficient than

standard Monte Carlo simulation for the estimation of the failure probability. This is

particularly true when small failure probabilities are considered. However, in that context

it should be noted that the variance of the Monte Carlo estimator is an order of magnitude

lower as compared to the variance of P̂f , as obtained by Subset, which limits the credibility

of the estimate. The variance of Pf obtained via Advanced Line Sampling is approximately

equal to that of Monte Carlo, albeit at a strongly reduced computational cost.

It should be noted that Subset-∞, the most efficient technique, still requires more than

2000 model evaluations, which is prohibitive when the estimation of the failure probability

of a structure using computationally expensive computer models g(x) is considered.

As such, it can be concluded that although highly performing advanced Monte Carlo

methods exist to date, the estimation of small failure probabilities in highly non-linear

models still can prove to be computationally very demanding. Therefore, even using these

advanced Monte Carlo methods, the application of surrogate modelling techniques still
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Figure 7.5: Number of necessary samples of the advanced Monte Carlo methods for different
threshold values yth for Adjiman’s function.

proves to be of importance, as the training of such surrogate model typically requires

less model evaluations as compared to a direct application of the advanced Monte Carlo

methods for the estimation of a small probability of failure. As discussed in Section 7.2,

this imposes uncertainty on the prediction of the failure probability as well.

7.4.2 Surrogate model based estimation

Using the constructed surrogate models, decreasing levels of failure probability are estimated

by performing Monte Carlo sampling until the CoV of the predictor was less than 5%,

analogously to the method that was applied in Section 7.4.1.

The results for each estimation of the failure probability, for each of the constructed

surrogate models is illustrated in Figures 7.6 and 7.7. For the Kriging models, the 2 · σ
bounds are considered, which yield a 95.5% confidence interval for Pf . In order to make a

fair comparison, for the IPM the uncertainty in the bounds on Pf is considered as being

less than ε when β = 1− 96. In other words, the bounds on Pf obtained from integrating

over the bounds of the IPM must be expanded by ε.

Figure 7.6 illustrates the performance of the regular Kriging surrogate modelling

approach. Specifically, the ±2 · σ bounds are illustrated together with the crisp (mean)
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estimate of the model for all considered training data sets. Also the prediction of the failure

probability using the analytic model is illustrated. First, in case sufficient data are used for

the training, the regular Kriging is capable of providing a relatively accurate crisp estimate

of the failure probability, as long as Pf > 5 · 10−3. For smaller failure probabilities, Kriging

fails in all cases. Second, it can be noted that the Kriging prediction is conservative in the

sense that the ±2 · σ always encompasses the true failure probability. However, the lower

bound prediction fails in all cases when yth > 3.7. This is due to the difficulty of sampling

small failure probabilities with standard Monte Carlo with a limited sample set. Finally,

when more data are included in the training of the Kriging model, the ±2 · σ bounds on

the prediction become tighter. This is a direct result of the conditioned random field that

underlies these predictions. When more points are located throughout the model domain,

the relative distance between training points decreases, and as such also the variance of the

predicted random variable.

Figure 7.7 illustrates the performance of the Interval Predictor Model in predicting the

upper bound of Pf . Specifically, the ±ε bounds on the prediction of the upper limit of the

failure probability P̄f are illustrated for all data sets. Also the prediction of the failure

probability using the analytic model is illustrated. Only the upper bound of the IPM is

illustrated for visualisation purposes, since this is the most relevant from an engineering

standpoint. First, it can be seen that the exact failure probability always lies inside the

ε bounds of the upper bound prediction of the IPM. Hence, the IPM always gives a safe

estimation of the failure probability. However, when the true Pf becomes smaller than 0.01

for the model trained with 1000 samples, the ε bounds inflate very quickly, making the

estimate very conservative. This behaviour is more pronounced for smaller data sets, since

the confidence in the interval is proportional to the size of the training data set. Finally, it

can be noted that the upper bound prediction of the set {yth : yth < 3.5}, without taking

ε into account is more accurate than the IPM that is trained with 1000 samples. This

perhaps indicates over-fitting of the polynomial basis to the training data, which could be

aggravated by the iterative pruning of the polynomial basis as explained in Section 7.3.2.

The results indicate that to an order of magnitude, the performance of the IPM is similar

to that of Kriging. However, the IPM requires fewer assumptions to be made regarding the

functional form of the function being approximated. For example, the Kriging assumption

of a continuous function is not required.

It can be seen that by using a surrogate model, computational expenses for evaluating

small failure probabilities can be decreased drastically. This statement is based on the
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Figure 7.6: Performance of the Kriging surrogate models trained with different data sets in
predicting the failure probability of Adjiman’s function. For clarity, only the results of the
models trained with 100 and 1000 are shown.

argument that the application of advanced Monte Carlo methods for the estimation of small

failure probabilities in conjunction with non-linear limit-state functions might prove to be

computationally demanding when a full numerical model is used for the prediction of Pf .

7.4.3 When is creating an IPM surrogate worthwhile?

Here, simple equations are provided to motivate the use of IPMs as surrogates for calculating

bounds on Pf .

When an IPM metamodel is constructed for a deterministic performance function and

the basis dimensionality, d, is chosen so that the function is modelled perfectly, such that

there is no gap between the upper and lower bound of the IPM, then the entire uncertainty
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Figure 7.7: Performance of the IPM surrogate models trained with different data sets in
predicting the failure probability of Adjiman’s function.

in Pf is due to the uncertainty in the IPM bounds as a consequence of Eqn. 3.23.

When using a standard Monte Carlo simulation, without a metamodel, the uncertainty

in the failure probability can be obtained by calculating P f − P f , where the bounds of the

probability of failure are found by solving

N−Ns∑
i=0

(
N

i

)
(1− P f )iPN−if =

β

2
(7.12)

and
N∑

i=N−Ns

(
N

i

)
(1− P f )iP

N−i
f =

β

2
(7.13)
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which are the two-sided binomial confidence bounds on the success probability parameter

for a particular confidence β [95], where Ns is the number of samples observed inside the

failure region.

If the value of P f − P f is larger than the IPM bound uncertainty, ε, obtained from

Eqn. 3.23 then using an IPM metamodel is worthwhile. In the author’s experience this is

usually the case when d is small. For the IPM, ε does not depend on the probability of

failure. If the performance function being analysed is less complex then the uncertainty in

the calculated probability of failure will be lower, because the dimensionality of the basis,

d, can be reduced. Typically, functions in high dimensional spaces must be modelled with

a more complex basis.

7.5 Conclusions

In this chapter, the uncertainty in surrogate model predictions is studied in the context of

failure probability estimation. This is achieved by analysing the performance of interval

predictor models and Kriging on the robust estimation of small failure probabilities for

non-linear models. Since intervals are used to model the uncertainty on the surrogate model

estimation in addition to the propagated variability stemming from the random model

parameters, the failure probability should be computed using a probability box formulation

of the model response. It is shown that this problem reduces to computing two separate

failure probabilities, using only a single run of model evaluations. Therefore, instead of

focusing on the crisp estimate of the surrogate model to compute the probability of failure,

it is suggested to take the corresponding uncertainty into account. For practical purposes, it

is moreover even sufficient to consider the upper bound on the failure probability prediction.

The analysis reveals that interval predictor models always provide a robust estimate of

the probability of failure, yet when small training sets are considered, the bounds on the

prediction may become large. This is a natural consequence of making fewer assumptions

regarding the form of the function to be approximated by the metamodel.

In the following chapter, this approach is generalised to reliability analysis with proba-

bility boxes.



Chapter 8

Interval Predictor Models for

Propagation of Probability Boxes

8.1 Introduction

As discussed in Chapter 4, probability boxes are useful in reliability analysis when limited

data is available to model random variables. An example of such a situation in the nuclear

industry is given by Prinja et al. [143], and in the aerospace industry by Patelli et al.

[133]. However, the propagation of probability boxes through models is more difficult than

for conventional random variables, and hence sophisticated optimisation techniques are

required. However, these are often computationally expensive for black box models as

a large number of evaluations of the model performance function are required to ensure

convergence and guarantee a robust result. Although some metamodeling techniques have

been proposed to reduce the computational demands of the analysis, which would allow

the failure probability estimator to be evaluated with less computational expense, these

techniques are usually dependent on the assumptions required to construct the metamodel.

In this chapter, a novel technique is proposed which uses Interval Predictor Models

to propagate distributional probability boxes through black box models. This chapter

generalises the contribution of Chapter 7, with a different sampling strategy and improved

techniques for creating IPMs. This presents advantages over direct implementation of the

double loop Monte Carlo algorithm. In Fetz [63], it was acknowledged that optimising a

non-smooth function is a challenging aspect of double loop Monte Carlo simulation; by

using an IPM, smooth bounds on the model response can be obtained even if the response

120
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of the model under analysis is non-continuous.

In Section 8.2.1, a novel technique is proposed to propagate distributional probability

boxes through black box models, and calculate bounds on the probability of failure, Pf , of

structures in the well known structural reliability analysis problem. This is achieved by

using an IPM to model the performance function as a function of the aleatory variables,

and then conducting Monte Carlo analysis on the identified upper and lower bounds. This

is effectively a näıve double loop approach using a robust metamodel. In Section 8.2.2,

a modification is proposed to the method in Section 8.2.1, where the IPM is trained on

so-called focal elements in the aleatory space, which are obtained by brute force sampling

over the epistemic variables to find the extrema of model response for each point in the

aleatory space. In Section 8.2.3, a similar approach is demonstrated for the general double

loop Monte Carlo propagation problem; an IPM is trained on samples of the model from

a proposal distribution, and then the samples from the metamodel are re-weighted using

importance sampling to find bounds on the probability of failure. Section 8.3 demonstrates

the application of the developed techniques to the deflection of a cantilever beam with

uncertain parameters, a non-linear oscillator, and the modal analysis of a small satellite.

8.2 Proposed approaches: obtaining bounds on the failure

probability

All of the discussed approaches in this section make no assumptions about the functional

form of the model, and as such the model can truly be treated as a black box — including

stochastic system models with an unknown noise structure. In addition, the samples

required to train the metamodels may be collected in parallel, since the model is not built

sequentially or by optimising the performance function — the proposed approach relies

exclusively on sampling the performance function. The proposed methods are flexible and

can account for epistemic uncertainty contained inside the limit state function. For example,

this could be the case if there were several feasible models but a probability could not be

associated with each model. This is a feature which, to the best of the authors’ knowledge,

no existing methods of this type can deal with. Interval failure thresholds can be used with

either algorithm without an increase in the number of evaluations of the full model, since

the indicator function must be monotonic with respect to changes in the threshold used to

define the limit state function.
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8.2.1 Approach 1: metamodels for näıve double loop approach

In this approach, the Näıve double loop Monte Carlo approach is used, as described in

Chapter 4. To recap, the Näıve Double Loop Monte Carlo algorithm is shown in Algorithm

1. In this example it is assumed that g(x) has been transformed with a Copula, so that its

aleatory inputs may be sampled from uniform distributions (the function xi = T (αj ,θi) will

be used to map between the epistemic and aleatory spaces and the true system variables).

Algorithm 1 The Näıve Double Loop Monte Carlo Algorithm (once Copula has been
applied).

for i = 1, .., Ne do
Sample one realisation of epistemic parameters θi, from a uniform distribution
for j = 1, .., Na do

Sample one realisation of aleatory parameters αj , from a uniform distribution
gij = g(T (αj ,θi))

end for
Ei = 1

Na

∑Na
j=1 gij

end for
E = mini (Ei) and E = maxi (Ei)

It is assumed that the system variables can be written as a function of separate epistemic

uncertain variables falling in the unit hyper-rectangle, θ, and aleatory uncertain variables,

α, which are uniformly distributed between 0 and 1. N samples are drawn of α and θ,

both from a uniform distribution between 0 and 1. Samples of the performance function

can then be calculated by transforming the aleatory and epistemic variables into the actual

variables of the problem. Then an IPM is trained with the aleatory variables as inputs

and the performance function as the output, i.e. Eqn. 3.9 is solved whilst replacing xi

with αi and y(xi) with g(T (αi,θi)). This IPM is an uncertain model of the performance

function as a function of the aleatory input variables; the epistemic uncertainties are now

represented as the uncertainty in the IPM. The upper and lower bounds on the failure

probability can then be calculated with minimal computational expense by performing

Monte Carlo simulation on the polynomial upper and lower bounds of the performance

function from the IPM, by sampling α uniformly between 0 and 1 and then calculating

g(α) and g(α) for the samples. A diagram of the algorithm is shown in Figure 8.1.

In contrast to the random set approach applied to the propagation of distribution-free

probability boxes in the multi-level metamodel algorithm [158], the approach proposed in
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Sampling

IPM Training

full model

Monte Carlo Simulation
with polynomials

Figure 8.1: Approach 1: Diagram of algorithm to obtain bounds Pf by constructing
metamodels for Näıve double loop approach), by modelling the performance function in the
aleatory space.

this chapter does not require multiple levels of metamodeling, since one IPM is sufficient to

obtain both the upper and lower bound of the performance function. Therefore the algorithm

proposed in this chapter is effectively a single loop approach, as the optimisation takes place

during the creation of the metamodel. If the approach is applied to distributional probability

boxes then the bounds will not be tight, since random set theory based approaches

overestimate the bounds on Pf when applied to problems with distributional probability

boxes [5].

8.2.2 Approach 2: IPMs trained on propagated focal elements

A focal element αi is simply a sampled interval from a probability box. When Na samples

of i are made, for each αi the corresponding focal element becomes [minθ∈Θ T (αi,θ),

maxθ∈Θ T (αi,θ)]. When this is propagated through g(x) the associated output will

be the interval [minθ∈Θ g(T (αi,θ)),maxθ∈Θ g(T (αi,θ))]). It is trivial to train an IPM

with inputs αi, and output [minθ∈Θ g(T (αi,θ)),maxθ∈Θ g(T (αi,θ))]. However, obtain-

ing the focal elements for training is more expensive than propagating single values of

x, since the maximisation over θ requires multiple evaluations of g(x). If analytic gra-

dients of the performance function are available then approximate focal elements can
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with polynomials

Figure 8.2: Approach 2: Diagram of algorithm to obtain bounds Pf by constructing
metamodels for focal element propagation, by modelling the performance function in the
aleatory space.

be obtained in a reduced computational time by using a Taylor series model. In this

chapter we take a more general approach by obtaining focal elements for training by

approximating [minθ∈Θ g(T (αi,θ)),maxθ∈Θ g(T (αi,θ))] with brute force sampling, i.e.

[minθi∈{θ1,...,θNe} g(T (αi,θi)),maxθi∈{θ1,...,θNe} g(T (αi,θi))], where {θ1, ...,θNe} are sam-

pled by imposing a uniform distribution on the unit hypercube. Latin Hybercube Sampling

or Sobol Sequence Sampling could also be used to sample θi. Then, once the IPM has

been trained, the estimation of Pf proceeds in the same way as approach 1 (independent

sampling), by numerically integrating the IPM bounds (see Section 8.2.1). A diagram of

the algorithm is shown in Figure 8.2.

8.2.3 Approach 3: metamodels for non-näıve approach

It is also possible to directly construct an IPM metamodel of g(x), which can then be used

to find bounds on Pf . The metamodel should be constructed by collecting samples of g(x),

by sampling x from a composite distribution which has standard deviation roughly equal to

the spread of the probability box. Then P f can be obtained from Monte Carlo simulation

on g(x), and vice versa. The samples used for Monte Carlo simulation of P f should be

drawn from the proposal distribution and then re-weighted using importance sampling, as
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Sampling
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full model

Optimisation over 
epistemic variables

Importance Sampling 
estimator

Figure 8.3: Approach 3: Diagram of algorithm to obtain bounds Pf by constructing meta-
models for non-näıve approach, by applying importance sampling to the metamodel. Using
the IPM, the importance sampling estimator produces bounds on the failure probability
for a particular θ, which can be optimised over θ to yield the true bounds on the failure
probability.

proposed in Fetz [63]. Therefore the upper bound on the failure probability can be obtained

by evaluating

P f = max
θ∈Θ

∫
If (x)

fX(x,θ)

hX(x)
hX(x)dx, (8.1)

where hX(x) is the proposal distribution, which is used to generate training samples for

the IPM from the full model, If (x) is the upper bound on the indicator function obtained

from the IPM (returning 1 when g(x) ≤ 0, and 0 otherwise), and fX(x,θ) is a particular

distribution contained by the distributional probability box. A diagram of the algorithm is

shown in Figure 8.3.

The IPM metamodel is a useful addition to vanilla importance sampling, because now

the optimisation in Eqn. 8.1 is being performed on a continuous function, even if the

performance function used is not smooth, or if a set of performance functions are being

analysed. Troffaes [173] shows that importance sampling results in a consistent estimator

when the failure probability is continuous in the epistemic uncertain parameters.
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8.2.4 Confidence bounds on failure probability

In each of the proposed algorithms the interpretation of the confidence-reliability plot

(described in Section 3.3.2) is different. To recap, when constructing an IPM, the confidence-

reliability plot is interpreted as displaying the Neyman confidence bound on the probability

that an unseen sample from the performance function falls inside the IPM bounds. The

complement of the probability that an unseen sample from the performance function falls

inside the IPM bounds is known as the IPM bound violation probability. To reiterate

Section 3.3.2, the confidence-reliability plot is usually closely related to the number of

training examples used to create the IPM and other properties of the IPM and data

generating process.

When only aleatory uncertainty is present in the system inputs, i.e. random variables

are used as opposed to probability boxes, the violation probability of the IPM is the

maximum possible uncertainty in the obtained bounds on the failure probability. This

is the interpretation of the confidence-reliability plot for re-weighting (Approach 3 ) —

the confidence bound applies to the Monte Carlo estimator for the failure probability at

the proposal distribution. For focal element propagation (Approach 2 ), if the number of

aleatory samples is Na, then obtaining the confidence reliability plot using Na only measures

confidence in the propagation of aleatory uncertainty, i.e. that the next sampled focal

element from the performance function will fall outside the IPM bounds. This is because

the IPM’s training constraints become set inclusion relations for the focal elements (this

reliability will be known as Ra).

By setting d = 2 and setting the number of samples equal to the number of epistemic

samples (N = Ne), one can obtain a confidence-reliability plot relating to the brute force

propagation of the focal elements in Approach 2. In this case the bound violation probability

refers to the probability that the next sample in the brute force optimisation of the epistemic

space falls outside the bounds. Alternatively, it is well known that the maximum and

minimum of a sample can be used to produce a prediction interval with reliability Ne−1
Ne+1

[183], and this is the approach that will be used to determine the epistemic propagation

reliability (Re) for focal element propagation (Approach 2 ).

When the probability box is sampled in Approach 1, i.e. there are a mix of epistemic

and aleatory variables sampled independently, the reliability of the IPM is not associated

solely with epistemic or aleatory uncertainty propagation, but rather a hybrid of the two.

However, it is still clear that the obtained bounds become more trustworthy when the
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reliability of the IPM improves.

All reliabilities (R) quoted in the numerical examples for this chapter are obtained by

finding the reliability where the confidence is greater than 0.999 (i.e. β = 0.001).

8.3 Numerical examples

8.3.1 Cantilever beam

Problem description

For the simple example of a cantilever beam with a point load, F , at any point on the

beam, the maximum deflection of the end of the beam is given by

δmax =
Fa2

6EI
(3l − a) (8.2)

where I is the moment of inertia of the beam, a is the distance of the point load from the

fixed end of the beam, l is the length of the beam and E is the modulus of elasticity of

the beam [79]. E, I and a were fixed, and l and F were given by distributional probability

boxes with normal distributions and uncertain means (Case A). The chosen values of the

parameters are shown in Table 8.1. In order to demonstrate the application of Approach

1 (independent sampling) to a problem where epistemic uncertainty is more influential,

the analysis was repeated for a modified set of inputs with epistemic uncertainty in the

standard deviation of the random variables (Case B). It was assumed that the beam ‘fails’

when the maximum deflection is greater than 35 mm.

The independent sampling method described in Section 8.2.1 for the näıve double loop

approach was used to find the probability of failure of the system, by creating a polynomial

IPM of maximum degree 1 (φ(αl, αF ) = [1, αl, αF , αlαF ]) of the performance function. In

total 1000 samples of the true model were made. The focal element propagation method in

Section 8.2.2 was applied with the same basis.

This was compared to the re-weighting approach described in Section 8.2.3. A normal

proposal distribution was used with µF = 30500, σF = 230, µl = 5050, σl = 230. Again,

a polynomial IPM of maximum degree 1 (φ(l, F ) = [1, l, F, lF ]) was trained with 1000

samples. The bounds on the probability of failure were obtained by using MATLAB’s

fmincon function on the failure probability re-weighted estimator.

The confidence-reliability analysis was then performed using Eqn. 3.23.

fmincon
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Variable Distribution Mean Standard
Deviation
(Case A)

Standard
Deviation
(Case B)

E Fixed 200000 N/mm2 N/A N/A

I Fixed 78125000 mm4 N/A N/A

l Normal [5000, 5100] mm 200 mm [200, 220] mm

a Fixed 3000 mm N/A N/A

F Normal [30000, 31000] N 200 N [200, 220] N

Table 8.1: Values of input variables for cantilever beam problem.

Results

The metamodel for the performance function with a polynomial IPM of maximum degree 1 is

shown in Figure 8.4. The reference solution (Pf = [0.40, 0.81]) was obtained by näıve Monte

Carlo simulation with a large number of samples. Figure 8.6 shows the confidence-reliability

analysis (calculated with Eqn. 3.23) for the calculation of Pf using the IPM in Figure 8.4,

corresponding to a reliability of approximately 0.98 with high confidence (0.999). This IPM

has 6 support constraints and hence the bound on R is fairly tight. Inverting Eqn. 3.23, it

was calculated that 19619 samples would be required to obtain β = 0.001 and ε = 0.001.

Figure 8.5 shows the bounds of the CDF which were computed by Monte Carlo analysis

of the performance functions shown in Figure 8.4. The bounds on Pf can be tightened

by increasing the number of training samples which allows the degree of the IPM to be

increased without decreasing the bound on R. For example, by taking 2000 samples and

using the loss function in Eqn. 7.10, Pf = [0.388, 0.795] for a polynomial IPM with basis

φ(αl, αF ) = [1, αl, αF , αlαF , α
2
l , α

2
F ], where R > 0.987 with high confidence (0.999). When

using the loss function in Eqn. 7.7, no notable improvement was found in the bounds on

Pf , since the performance function and IPM were relatively simple, and the epistemic

uncertainty in Pf is large. Figure 8.9 shows the bounds of the CDF which were computed

by Monte Carlo analysis of the obtained IPM, when using the input Case B. The reference

solution computed with Double Loop Monte Carlo simulation was Pf = [0.40, 0.81].

The re-weighting strategy with the direct IPM metamodel (shown in Figure 8.7) directly

obtains the reference solution. Since the direct IPM is a model of a linear function it

can be easily represented exactly by the IPM, and hence there are no support constraints.

This allows us to bound the reliability of the IPM to at least 0.99 with high confidence

(β = 0.001) by using the wait and judge approach. For similar reasons, the correct solution
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can be obtained with as few as 10 samples using the re-weighting estimator. Figure 8.8

shows the confidence-reliability analysis for the calculation of Pf using Figure 8.7.

A summary of the results for this example are given in Table 8.2.

Approach NSamples Case A Case B

Reference Solution, Double
Loop Monte Carlo

Na = 103,
Ne = 106

Ne × Na =
109

Pf = [0.4, 0.81] Pf = [0.4, 0.81]

Approach 1 (independent sam-
pling, IPM degree 1)

1000 Pf = [0.36, 0.81],
R ≥ 0.98

Pf = [0.36, 0.81],
R ≥ 0.98

Approach 1 (independent sam-
pling, IPM degree 2)

2000 Pf = [0.39, 0.80],
R ≥ 0.99

Pf = [0.39, 0.80],
R ≥ 0.99

Approach 1 (independent sam-
pling, IPM degree 1)

300 Pf = [0.39, 0.81],
R ≥ 0.94

Pf = [0.38, 0.79],
R ≥ 0.94

Approach 2 (focal element
propagation, IPM degree 1)

1000 (Na =
125, Ne = 8)

Pf = [0.375, 0.795]
Ra > 0.85, Re ≈ 0.78

Pf = [0.373, 0.785]
Ra > 0.85, Re ≈ 0.78

Approach 3 (re-weighting,
IPM degree 1)

1000 Pf = [0.4, 0.81],
R ≥ 0.99

Pf = [0.4, 0.81],
R ≥ 0.99

Approach 3 (re-weighting,
IPM degree 1)

10 Pf = [0.4, 0.81],
R ≥ 0.021

Pf = [0.4, 0.81],
R ≥ 0.021

Table 8.2: Summary of results for cantilever beam reliability analysis in Section 8.3.1.

8.3.2 Dynamic response of a non-linear oscillator

Problem description

In order to demonstrate the application of the method on a non-linear performance function,

the well known non-linear oscillator example is used [56] [84]. The performance function is

defined by

goscillator(C1, C2,M,R, T1, F1) = 3R−
∣∣∣∣ 2F1

Mω2
0

sin(
ω0T1

2
)

∣∣∣∣ , (8.3)

where the natural frequency of the oscillator, ω0 =
√

C1+C2
M , M is the mass, C1 and C2 are

the spring constants of the primary and secondary springs, R is the displacement at which

the secondary spring yields, t1 is the duration of the loading, and F1 is the amplitude of the

applied force. As usual, the system fails when goscillator ≤ 0, hence the failure probability to

be estimated is Pf = P(goscillator ≤ 0). The distributions and probability boxes assigned to
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Figure 8.4: Degree 1 IPM of the performance function in the aleatory space for the cantilever
beam, created by independently sampling the aleatory and epistemic variables (Approach
1).

the inputs are listed in Table 8.3. A diagram of the system is shown in Figure 8.10.

The methods described in Section 8.2 for the näıve double loop approach were used to

find the probability of failure of the system, by creating a polynomial IPM of maximum

degree 1 of the performance function. In total, 1000 samples of the true model were made.

This was compared to the approach described in Section 8.2.3, with a normal proposal

distribution with mean at the centre of the probability box and standard deviation set to

cover the support of the probability box (µproposal =
µ+µ

2 and σproposal =
√

(
µ−µ
2×3 )2 + σ2).

Again, a polynomial IPM of maximum degree 1 was trained with 1000 samples. The bounds

on the probability of failure were obtained by using MATLAB’s fmincon function on the

failure probability re-weighted estimator. The performance function loss (Eqn. 7.7) was not

used in this example, as it was not found to significantly improve the performance of the

model.

Results

The results for the analysis of the oscillator are shown in Table 8.4, including number of

support constraints is shown for each trained IPM, and a bound on the reliability computed

as described in Section 3.24. The reference solution was computed with näıve double loop

fmincon
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Figure 8.5: CDF bounds obtained by Monte Carlo analysis on the performance function
modelled in Figure 8.4. The ‘flat’ bounds are a remnant of the low degree IPM chosen to
represent the performance function of the cantilever beam. Training samples are shown on
the abscissa axis.
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Figure 8.6: Confidence-reliability plot corresponding to the IPM used to model the per-
formance function in Figure 8.4 for the cantilever beam and calculate Pf (as described in
Section 3.3.2). This plot corresponds to a reliability of approximately 0.98 with confidence
0.999, which is shown on the plot as a star.
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Figure 8.7: Direct degree 1 IPM of the performance function for the cantilever beam,
created for the re-weighting approach (Approach 3).
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Figure 8.8: Confidence-reliability plot corresponding to the IPM used to model the perfor-
mance function in Figure 8.7 for the cantilever beam and calculate Pf . This plot corresponds
to a reliability of over 0.99 with confidence 0.999, which is shown on the plot as a star.
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Figure 8.9: CDF bounds obtained by Monte Carlo analysis on the performance function
modelled the IPM for the second cantilever beam input set. The ‘flat’ bounds are a remnant
of the low degree IPM chosen to represent the performance function of the cantilever beam.

Figure 8.10: A non-linear oscillator.
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Variable Distribution Mean Standard Deviation

C1 Normal 1 0.1

C2 Normal 0.1 0.01

R Normal [0.45, 0.5] 0.05

M Normal 1 0.05

t1 Normal [0.95, 1] 0.2

F1 Normal [0.95, 1] 0.2

Table 8.3: Values of input variables for non-linear oscillator.

Monte Carlo simulation, using 10000 inner loop and 10000 outer loop samples, resulting in

a total of 1010 model queries.

Approach NSamples [P f , P f ] Confidence s∗N
Reference solution (double
loop Monte Carlo)

1010 [0.0132, 0.0712] - -

Approach 1 (independent
sampling, IPM degree 3)

1000 [0.0138, 0.0741] R ≥ 0.80,
R∗ > 0.87

90

Approach 1 (independent
sampling, IPM degree 2)

1000 [0.0073, 0.123] R ≥ 0.92,
R∗ > 0.94

33

Approach 2 (focal elements,
IPM degree 2)

1000 [0.012, 0.11] Ra > 0.62,
Re ≈ 0.67,
R∗a > 0.76

34

Approach 3 (re-weighting,
IPM degree 2)

1000 [0.0735, 0.0114] R ≥ 0.92,
R∗ > 0.94

33

Table 8.4: Summary of results for non-linear oscillator (S∗N : maximum support constraints,R:
Confidence a priori; R∗: confidence wait and judge).
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8.3.3 Small satellite

Problem description

In this section, the developed techniques are applied to a NASTRAN model of a satellite

with 900 QUAD4 elements (∼ 5300 DOF) [129]. The model is available in the OpenCossan

software [132]. All DOF of the nodes at the bottom of the nozzle have been constrained by

modelling the boundary conditions that the nozzle is attached to the supporting structure

with bolts, and a vertical acceleration of 6g has been applied together with a horizontal

acceleration of 1g (g = 9.81m/s2). The structure consists of 4 components, namely nozzle,

upper and lower panels, central cylinder and the vertical panels. The combined effect of the

uncertainty in the young’s modulus and density of each of these components on the second

natural frequency is investigated, and epistemic uncertainties in these two quantities as

shown in Table 8.5 are considered.

Variable Distribution Mean Standard Deviation

Young’s Modulus × 4 Normal [65,75] GPa 1.05 GPa

Density × 4 Normal [2500,2900] kg/m3 270 kg/m3

Table 8.5: Summary of the 8 random inputs for Satellite Model. Both of the random
variables shown above are repeated for the 4 structural components of the model.

The method described in Section 8.2.1 for the näıve double loop approach was used

to find bounds on the CDF for the second eigenvalue and also bounds on the expectation

of the second eigenvalue, by taking 1000 samples from the full model. In order to achieve

this, the method was modified to build an IPM for the response of the model rather than

the performance function, which is required when calculating expectations rather than

probabilities of failure. Approach 2 (Section 8.2.2) was used to train an IPM on focal

elements propagated with brute force optimisation, making 4 samples in the brute force

optimisation and 250 aleatory samples (samples of α). An IPM with a polynomial basis of

maximum degree 1 was used.

To obtain a reference solution, the double loop Monte Carlo method was used with 50

inner loop Monte Carlo samples, and 100 outer loop Bayesian Optimisation evaluations made

by MATLAB’s bayesopt routine, for both the upper and lower bound (i.e. 2× 100× 50 =

10000 samples in total).

bayesopt
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Figure 8.11: Small Satellite Model in NASTRAN. Full details of model available from
Panayirci [129].
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Results

For Approach 1 (independent sampling) and Approach 2 (focal element propagation),

bounds on the CDF of the output are shown in Figure 8.12. Figure 8.13 shows the

confidence-reliability analysis for the IPM, corresponding to a reliability of approximately

0.97 with high confidence. Increasing the maximum degree of the IPM to 2 tightens the

prediction interval, however the reliability of the bounds is decreased. Similar results

were obtained by using a radial basis, trained using with the same number of terms.

Applying Approach 3 (re-weighting), with a normal proposal distribution with mean at

the centre of the probability box and standard deviation set to cover the support of the

probability box (µproposal =
µ+µ

2 and σproposal =
√

(
µ−µ
2×3 )2 + σ2)), similar bounds were

obtained on the expectation of the 2nd eigenvalue. A summary of the results for this

example are given in Table 8.6. Some of the results appear overly conservative, indicating

the IPM is a poor fit for the model response. However, Approach 2 (IPM for focal element

propagation) has impressive agreement with the reference solution. As expected, the IPM

with Maximum Degree 2 has a lower reliability, and hence underestimates the upper bound

of the expectation.

Computing the reference solution resulted in bounds on the expectation of the 2nd

eigenvalue of Ex = [359, 481]. For comparison, a double loop method with Latin Hyper Cube

sampling for both loops (with 40 inner loop samples and 25 outer loop samples, resulting

in 1000 total samples), was found to underestimate the interval width, Ex = [367, 447].

Therefore, the authors do not recommend the use of Latin Hypercube Sampling, since in

probability bounds analysis it is desirable to find the outer approximation of the interval

containing the results, in order to be conservative in an engineering sense.

8.4 Chapter summary

In this chapter, a computational method of bounding the reliability of the propagation

of epistemic uncertainty was proposed. Novel loss functions were introduced to ensure

tightness when IPMs are created from data representing performance functions. The

approach proposed in this chapter is applicable to the double loop Monte Carlo algorithm

as well as the näıve approach, where an uninformative distribution is sampled rather than

using optimisation to propagate intervals. A key benefit is that the performance function

is smoothed, which enables easier optimisation of the probability of failure. Both of the
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Figure 8.12: CDF bounds obtained by Monte Carlo analysis on an IPM for the 2nd
Eigenvalue of a small satellite (modal analysis).
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Approach Nsamples [ Ex, Ex ] Confidence

Reference (Double Loop
Monte Carlo with Bayesian
Optimisation)

10000 [359, 481] N/A

Latin Hypercube Double Loop 1000 [367, 447] N/A

Approach 1 (independent sam-
pling, IPM degree 1)

1000 [327, 495] R ≥ 0.97

Approach 1 (independent sam-
pling, IPM degree 2)

2000 [349, 471] R ≥ 0.88

Approach 2 (focal element,
IPM degree 2)

1000 (Na = 250,
Ne = 4)

[352, 471] Ra > 0.55,
Re ≈ 0.6

Approach 2 (focal element,
IPM degree 1)

1000 (Na = 200,
Ne = 5)

[346, 489] Ra > 0.84,
Re ≈ 0.67

Approach 2 (focal element,
IPM degree 1)

1000 (Na = 40,
Ne = 25)

[353, 485] Ra > 0.33,
Re ≈ 0.92

Approach 2 (focal element,
IPM degree 1)

1000 (Na = 125,
Ne = 8)

[339, 487] Ra > 0.746,
Re ≈ 0.78

Approach 3 (re-weighting,
IPM degree 1)

1000 [321, 477] R ≥ 0.966

Table 8.6: Summary of results for small satellite model using different approaches.

proposed approaches do not make restrictive assumptions about the functional form of the

model response, and are easily parallelisable.
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Figure 8.13: Confidence-reliability plot corresponding to the IPM of the 2nd Eigenvalue
of small satellite modal analysis. This plot corresponds to a reliability of over 0.97 with
confidence 0.999, which is shown on the plot as a star.



Chapter 9

Interval Neural Networks

9.1 Introduction

In recent years, deep learning using artificial neural networks has emerged as a generalised

machine learning tool which has revolutionised supervised learning, reinforcement learning,

as well as finding many applications in the field of engineering, most often as efficient

surrogates for large models [171]. In all fields, but particularly in safety critical engineering

applications, it is essential to quantify the uncertainty of the neural network, as discussed

in Chapter 3. The simplest approaches attempt to quantify this uncertainty by analysing

the mean squared error or explained variance (r2) of the neural network on a test set.

However, these approaches do not robustly bound the predictions of the neural network.

Bayesian neural networks (assisted by variational inference), where the weights are modelled

probabilistically as random variables, have emerged as the most popular tool for making a

prediction of the uncertainty of the neural network [123]. However, many assumptions are

necessary in order to apply this approach. For example, the weights are commonly assumed

to have a Gaussian prior (or mixture of Gaussians). In addition, variational inference is

more computationally expensive than typical back-propagation algorithms [21].

Probabilistic techniques are not the only method of modelling epistemic uncertainty.

Chapter 3 described interval predictor models; a recently developed machine learning

technique for supervised learning which makes interval predictions with guaranteed accuracy

[34]. To recap, for every input example, x(i) an interval predictor model would predict

bounds on the output, ȳ(x(i)) and y(x(i)), instead of just y(x(i)). The technique relies upon

the solution of chance constrained convex optimisation programs by the scenario technique

143
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[29], which can accommodate interval valued training data.

In this chapter, we propose a back-propagation algorithm for neural networks with

interval predictions, and show how this can be efficiently used to create interval neural

networks. The proposed constant width interval predictions can be seen as a robust

homoscedastic bound on the uncertainty of the trained network, though we also propose

a method for obtaining non-constant width predictions. The work can be seen as a

generalisation of the non-convex interval predictor models discussed in Chapter 3.3, where

the maximum error loss function is minimised. The contribution in this chapter allows

significantly deeper networks to be trained with less computational expense, by proposing

modifications to the maximum error loss function which are minimised for minibatches of

training data. The proposed networks can make predictions with hetreoscedastic uncertainty

for multiple outputs, and imprecise training data can be used. We present results for a test

function example, and an engineering problem. Furthermore, we demonstrate the effect

using different minibatch sizes.

9.2 Comparison with related work

Osband [128] and Kendall and Gal [96] discuss epistemic and aleatory uncertainty in

deep neural networks from a Bayesian perspective. However, several other probabilistic

approaches to quantifying the uncertainty in neural networks exist. For example, ensemble

techniques can be applied to create multiple neural networks which improve the uncertainty

quantification compared to mean squared error approaches [67, 109].

Interval neural networks offer a principled framework for dealing with imprecision in

training data. This chapter describes a novel framework for training neural networks which

output a specific type of convex set prediction: super-ellipsoids, which are mathematically

parameterised as ellipsoids in a space equipped with an `p norm (this acts essentially as a

transformation enabling continuous deformation between hyper-spheres and hyper-cubes).

The hyper-ellipsoidal case, representing correlated uncertainty between outputs, and hyper-

rectangular case, representing no correlation between outputs, are discussed in detail in

Section 9.3.4. Bayesian techniques, and other probabilistic techniques for neural networks

are not capable of handling the set inclusion constraints required for the neural network

output, since the output is a point value or probability distribution rather than a set. The

interval neural networks in this chapter have several advantages over those proposed in

previous literature. The main advantage is that the training algorithms allow more complex
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network architectures to be trained. Specifically, the gradient descent algorithm can be

used and no penalty or barrier functions are required in the loss function. In addition, `2

ball training data is considered while other papers (e.g. Lacerda and Crespo [108]) only

consider `∞ training data.

Like other set-based and interval uncertainty models, the networks do not indicate the

relative likelihood of different outputs within the prescribed output interval, because an

interval communicates less information than a fuzzy number or probability distribution; it

indicates complete uncertainty within the defined range. Although the interval output could

be seen as a disadvantage because it is less expressive than a probability distribution, it

enables simple guarantees to be made on the performance of the network (e.g. Section 3.3.2).

Furthermore, the loss functions proposed in this chapter currently only apply to regression

problems; no attempt has been made to generalise typical classification loss functions, e.g.

the logistic loss function or cross entropy loss function.

9.3 Interval neural network training

9.3.1 Overview

Firstly, we recall from Chapter 3 that one can create a homoscedastic interval predictor

model (Eqn. 3.19) by finding the neural network weights which minimise the maximum

absolute error loss:

Lmax-error = max
i
|y(i) − ŷ(x(i))|, (9.1)

where ŷ(x) represents the central line of the prediction from a neural network (feedforward

or otherwise, as described in Chapter 3), and the prediction width h is the minimum value

of the loss.∗ It is trivial to show this is true, since the set inclusion constraint in Eqn. 3.19

requires that h is larger than the absolute error for each data point in the training set. For

the avoidance of doubt, Eqn. 9.1 takes the maximum over each point in the training dataset,

rather than each component of a multi-output neural network (though this is discussed in

Section 9.3.4). In order to minimise the loss in Eqn. 9.1, stochastic gradient descent is used.

To obtain an accurate estimate of h (the minimum value of the loss), the loss function

Lactual = Lmax-error + (h− Lmax-error)
2 (9.2)

∗i.e. ŷ(x) =
y(x)+y(x)

2
and h =

y(x)−y(x)

2
.
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is minimised with respect to the weights and h, which is beneficial as the estimate for h

is effectively averaged by the gradient descent algorithm and is hence more accurate than

simply setting h to the value of the loss at any iteration in particular, whilst the minimum

of the loss for the network weights, W , remains unchanged. This technique can be trivially

applied for every subsequent loss function described in this chapter, and is used in all of

our numerical experiments. Our algorithm is described in further detail in Algorithm 2.

Note that Algorithm 2 could also be initialised with the weights obtained by training the

network with a mean squared error loss function, if these were already available.

Algorithm 2 Maximum error backpropagation method

Input: Training data pairs (x(j), y(j) for j = 1, ..., N)
Randomly initialise weight tensor and h.
for i = 1, .., Niter do

Set k = arg maxj∈[1,...,N ] |y(j) − ŷ(x(j))|
Use gradient of loss function to update W and h (W ← W + η∇W |y(k) − ŷ(x(k))| +
(h− |y(k) − ŷ(x(k))|)2 h← h+ η ∂

∂h(h− |y(k) − ŷ(x(k))|)2)
end for

Output: Weight tensor and h

Algorithm 2 is more costly than the standard back propagation method, since the

proposed method costs O(N ·Niter), compared to a standard stochastic gradient descent

cost of O(Niter). The algorithm is amenable to parallelisation, since at each step the N

evaluations of the absolute error can be made simultaneously. However, the largest GPU

architectures have several thousand cores, so for datasets with millions of data points

Algorithm 2 would not be tractable. Note also that the Niter required for convergence in

both algorithms is not necessarily the same, as this depends on the variance of the gradient

at each step.

9.3.2 Scalability improvement

We propose the use of minibatch stochastic gradient descent to reduce the computational

cost of the algorithm [53], whereby a randomly selected subset of size M of the training

data is selected at each step and used to evaluate the maximum absolute error loss, Eqn. 9.1.

This procedure is described in further detail in Algorithm 3.

Using minibatches reduces the cost of the proposed algorithm to O(M ·Niter), which is

a potentially vast improvement when N >> M > 1. However, we are now only minimising
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Algorithm 3 Maximum error backpropagation method, using minibatches

Input: Training data pairs (x(i), y(i) for i = 1, ..., N)
Randomly initialise weight tensor and h.
for i = 1, .., Niter do

Generate set, B, of M random numbers, sampled without replacement between 1 and
N
Set k = arg maxj∈B |y(j) − ŷ(x(j))|
Use gradient of loss function to update W and h (W ← W + η∇W |y(k) − ŷ(x(k))| +
(h− |y(k) − ŷ(x(k))|)2 h← h+ η ∂

∂h(h− |y(k) − ŷ(x(k))|)2)
end for

Output: Weight tensor and h

an approximation of Eqn. 9.1. Fortunately, the true loss function can be approximated well

for reasonably small minibatch sizes.

The probability of selecting the true maximum of the absolute error in a minibatch

by random sampling without replacement is M
N . The probability that the maximum error

point selected in the minibatch is the i-th largest error in the training set is

P (i) =

(
N−i
M−1

)(
N
M

) . (9.3)

Then to find the expectation of i we calculate

E(i) =

i=N−M+1∑
i=1

i

(
N−i
M−1

)(
N
M

) =
N + 1

M + 1
. (9.4)

In the case that N
M >> 1 we find that the expression for the expected percentile reduces to

E(i)

N
≈ 1

M
, (9.5)

so for large N we find that using a minibatch of size M is equivalent to minimising the
1
M -th percentile of the empirical cumulative distribution function of the error for the whole

training dataset. The variance of the percentile is

Var (
i

N
) =

M(N −M)(1 +N)

N2(1 +M)2(2 +M)
, (9.6)
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which becomes

Var (
i

N
) ≈ 1

M2
(9.7)

in the large N limit. Therefore we see that the minibatch technique performs best when

the size of the training set is large, but it is also necessary to increase the minibatch size to

avoid the gradient having a large variance.

Now, let us consider the case when the k − 1 data points in the minibatch with the

largest error are ignored, i.e. we minimise the k-th largest error in the minibatch. The

probability that the k-th largest error point selected in the minibatch is the i-th largest

error in the training set is

P (i) =

(
N−i
M−k

)(
i−1
k−1

)(
N
M

) . (9.8)

In Nagaraja [122] the order statistics are given for uniform distributions sampled without

replacement. This allows us to find the expectation of i, which is given by

E(i) =
k(1 +N)− 1−M

(1 +M)
. (9.9)

Therefore, by minimising the k-th largest error in a minibatch of size M in the N
M >> 1

limiting case, one is actually minimising the k
M -th percentile of the empirical cumulative

distribution function of the error for the whole training dataset. This reduces to Eqn. 9.4

when k = 1, as expected. If desired this can be checked after training by passing the entire

dataset through the model once and checking the identified value of h against the data

(this check will not be too costly if NiterM >> N). The variance of i is

Var (i) =
k(M − k + 1)(N + 1)(N −M)

(M + 1)2(M + 2)
, (9.10)

which reduces to Eqn. 9.7 when the appropriate limits are taken. This provides valuable

insight - when k > 1 is minimised it is necessary to increase M slightly to maintain constant

variance in the gradient.

All the above results assume the minibatch is constructed by sampling without re-

placement. If the minibatch is constructed by sampling with replacement then the order

statistics for sampling with replacement should be used instead.

Minimising the empirical percentiles of the error on the training set, with the minibatch

approximation of Eqn. 9.1, allows us to control the training of the neural network but does
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not by itself provide a statistical guarantee on performance on the test set. To statistically

guarantee performance of the model it is therefore necessary to use the techniques in

Section 3.3.2, and in particular the a posteriori frequentist analysis.

9.3.3 Incertitude in training data

Algorithm 2 and Algorithm 3 are described for use with crisp training data. However one

of the main advantages of the interval predictor model framework is that training data with

incertitude (i.e. interval training data or fuzzy data) fits coherently into the paradigm [108].

An example of incertitude in training data is a common defence against the adversarial

attack model from Madry et al. [112]. The proposed attack model places each training

data point in an uncertain hyper-sphere (`2 ball). Typically, in the context of uncertainty

quantification, incertitude is characterised with intervals (`∞ ball). However, both cases

are convex sets and therefore the conceptual challenge of accommodating this training data

is similar. Since the neural network model is more complex than that proposed in Lacerda

and Crespo [108], the computations required to accommodate interval data are also more

complex.

For the case of interval imprecision in the output variables (i.e. pairs x(i) and [y(i), ȳ(i)]

are observed), Eqn. 3.19 can be modified as follows:

arg min
W,h

[h : max (|ȳ(i) − ŷ(x(i))|, |y(i) − ŷ(x(i))|) < h ∀ i], (9.11)

which can be written in simplified form if the width of interval [y(i), ȳ(i)] is constant for all

data points. The optimisation program in Eqn. 9.11 can be solved by minimising the loss

Loutput incertitude = max
i

(
max (|ȳ(i) − ŷ(x(i))|, |y(i) − ŷ(x(i))|)

)
, (9.12)

with respect to the weights, W , where h becomes the value of the loss at the minimum.

For interval incertitude in the input training data the situation is more complex. Since

the sum of squares approach used in Lacerda and Crespo [108] is not directly applicable,

the algorithm with neural networks will be more costly. If the pairs [x(i), x̄(i)] and [y(i), ȳ(i)]

are observed then one must solve

arg min
W,h

[h : max
x∈[x(i),x̄(i)]

(|ȳ(i) − ŷ(x)|, |y(i) − ŷ(x)|) < h ∀ i], (9.13)
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where the nested optimisation in the constraints significantly increases the complexity of

the algorithm. Several strategies for efficiently solving such programs were described in

Section 2.1.2, and will be re-iterated here.

One approach to solving this problem would be to attempt to brute force the nested

optimisation (i.e. discretise along the upper ‘edge’ of the incertitude box). However

if the incertitude is large or the dimensionality of the training data is high, then this

becomes impractical. Another possibility is assuming the prediction of the neural network

is approximately linear locally, and using the gradient of the neural network with respect

to the inputs (which is known analytically) to find an approximate solution to the nested

optimisation problem. This is similar to the approaches proposed in Kurakin et al. [107]

and Goodfellow et al. [78], where the gradient is used to search within a set close to the

original training data for points which maximise the loss function of the neural network.

The crucial difference is that in the formulation proposed in this chapter only the surface

of the set must be searched, since the aim is to enclose the whole set in the interval neural

network.

Therefore we propose that Eqn. 9.13 is best solved by minimising

Linput incertitude = max
i

max (|ȳ(i) − (ŷ(
x̄(i) + x(i)

2
)− ε(i))|, |y(i) − (ŷ(

x̄(i) + x(i)

2
) + ε(i))|),

(9.14)

with respect to the parametersW , where ε(i) = | x̄(i)−x(i)

2 ·(sign(∇xŷ( x̄
(i)+x(i)

2 ))◦∇xŷ( x̄
(i)+x(i)

2 ))|
(◦ denotes component-wise multiplication of vectors), and h becomes the value of the loss

at the minimum. This loss will provide an accurate solution to Eqn. 9.13 when the output

of the neural network (ŷ(x)) is locally linear for a Taylor series expansion in the training

data intervals, such that |ŷ(x+ δx)− (ŷ(x) + δx · ∇xŷ(x))| < ω, where ω is an arbitrarily

small constant representing the accuracy of the solution and δx is a constant vector at the

length scale of the interval width. Of course, higher order Taylor expansions can be used to

construct more complex loss functions, or the assumption of monotonicity can be made

(maxx∈[x(i),x̄(i)] ŷ(x) = ŷ( x̄
(i)+x(i)

2 + x̄(i)−x(i)

2 ◦ sign(∇xŷ( x̄
(i)+x(i)

2 )))).

This approach provides a computationally feasible approximate solution to many prac-

tical problems involving the `∞ ball and `2 ball uncertainty models.
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9.3.4 Multi-output neural networks

A key advantage of neural networks over other machine learning techniques is the ease with

which correlation between model outputs can be expressed. For example, this is applicable

when the output layer is a one hot encoder for classification tasks, or an image for computer

vision tasks. It is also of use for multi-task learning [7, 186]. So far Algorithm 2 and

Algorithm 3 have been described in the context of supervised learning from data with only

one output dimension. We generalise the algorithms in the previous sections to multi-output

neural networks by predicting an `p ball, with radius h, around the output of the neural

network in the output space. To recap Section 2.1.2, note that p =∞ corresponds to no

correlation between outputs (intervals, or hypercubes), and p→ 0 corresponds to the case

of completely correlated outputs. p becomes a hyper-parameter which can be optimised to

express the dependence between outputs in the proposed model. A weighted norm can be

used to form more complex shapes like super-ellipsoids, or hyper-rectangles (as opposed to

hyper-cubes).

To train the interval neural network the optimisation program

arg min
W,h

[h :

(∑
j

∣∣∣y(i)
j − ŷj(x(i))

σ̂j

∣∣∣p) 1
p

< h ∀ i] (9.15)

should be solved, where the weights σ̂ are normalised such that ‖σ̂‖2 = 1, which is ensured

by setting σ̂i = σi√∑
j σ

2
j

, where σi are parameters to be found during training.

In practice, training takes place by replacing the absolute error in Algorithm 3 with the

appropriate `p distance in the output space, i.e.

Lmulti-output = max
i

(∑
j

∣∣∣y(i)
j − ŷj(x(i))

σ̂j

∣∣∣p) 1
p

, (9.16)

which reduces to the case of a `p ball when σi = 1 ∀ i.

For example, if the analyst believes there is no dependency between outputs they might

minimise Eqn. 9.16 with p =∞ for minibatches of training data. The network would then

predict intervals (hyper-rectangles) with radius h. Explicitly, the training loss for neural
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networks predicting hyper-rectangles is given by:

Lhyper-rectangle = max
i

max
j

∣∣∣y(i)
j − ŷj(x(i))

σ̂j

∣∣∣. (9.17)

The trained network makes interval predictions with centre ŷj(x) and half-width hσ̂j(x).

9.3.5 Heteroscedastic interval uncertainty

So far the interval neural networks discussed (i.e. from solving Eqn. 3.19) have made

predictions with constant interval width, or constant convex set width in the case of multi-

output models. There may be some situations where a richer description of uncertainty is

desired. Therefore in this section we describe how to generalise the results from the previous

sections to the case of non-constant width interval prediction. Rather than solving the

original interval neural network optimisation program (Eqn. 3.18), we propose a modified

model:

arg min
W,h

[h :
|y(i) − ŷ(x(i))|

σ̂(x(i))
< h ∀ i], (9.18)

where the neural network provides ŷ(x(i)) (the central line prediction of the interval), and

σ̂(x(i)) (the interval half-width), and the other symbols have the same meanings as in

Eqn. 3.19. In order for the optimisation program to yield a plausible interval neural network

it is required that σ̂(x(i)) > 0 and Ex(σ̂(x)) = 1. These constraints can be enforced by

setting σ̂(x(i)) = σ(x(i))
Ex(σ(x)) , where σ(x(i)) is output from a neural network layer with positive

only activation function (e.g. ReLU or Softplus, or in the case of a multi-output neural

network, as in the previous section, Softmax). Then the neural network can be trained by

minimising the loss given by

Lheteroscedastic(y
(i)) = max

i

|y(i) − ŷ(x(i))|Ex(σ(x))

σ(x(i))
, (9.19)

again h is obtained from the minimum value of the loss function. The loss is evaluated on

minibatches, and therefore Ex(σ(x)) is computed using the Monte Carlo estimator of the

expectation on the minibatch. The trained network makes interval predictions with centre

ŷ(x) and half-width hσ̂(x) (the normalising factor Ex(σ(x)) should be precomputed and

stored).
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9.4 Numerical examples

All experiments were timed on TensorFlow on a Google Colaboratory session equipped with

an NVIDIA Tesla T4. In all experiments, TensorFlow’s ADAM optimiser was used with

exponential gradient decay, i.e. learning rate = initial learning rate ∗ decay rate
global step
decay steps

[100].

9.4.1 Simple numerical example

Description

In order to illustrate the developed techniques we will demonstrate the interval neural

network on a modified version of a simple problem from Campi et al. [35]. We train a

neural network in TensorFlow with 1 hidden layer containing 10 neurons with hyperbolic

tangent activation on 1250 samples from the following test function:

y = 0.3 ∗ (15 ∗ x ∗ exp(−3 ∗ x) + w ∗ x) (9.20)

where w is a normal distributed random variable with zero mean and standard deviation

σ = 0.025. The data is generated by sampling from the input variable x uniformly between

0 and 1. We perform the following experiments:

1. We train a constant width neural network using the loss from Eqn. 9.1, using a

minibatch size of M = 200;

2. We repeat the previous experiment with a minibatch size of M = 20 to demonstrate

the effect of using a smaller minibatch size;

3. We train a neural network with heteroscedastic uncertainty using the loss from

Eqn. 9.19;

4. We train a neural network using the mean squared error (MSE) loss as a comparison.

For clarity, the algorithm used is described in Algorithm 3. The hyper-parameters used

are shown in Table 9.1. Note that an epoch is defined as one pass of the whole dataset

through the model, so training runs with smaller batch sizes require more iterations to

complete the same number of training epochs, and hence will require more training time.

These optimiser hyper-parameters were tuned manually by inspecting the loss curves, and
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Experiment 1 2 3 4
Const. Width Const. Width Heteroscedastic MSE

Minibatch size, M 200 20 200 200

Initial learning rate 0.1 0.1 0.1 0.1

Learning rate decay rate 0.96 0.96 0.96 0.96

Number of training epochs 6000 6000 6000 6000

Decay steps 100 100 100 100

Table 9.1: Hyper-parameters used in the numerical experiments for the simple analytical
function.

the Minibatch size was chosen to be large enough to benefit from the properties discussed in

9.3.2. The weights were initialised using the TensorFlow defaults (Glorot uniform initializer

[75] for the kernel and zeros for the bias), and h was initialised at zero.

Results

The training loss curves for Experiments 1, 2, 3 and 4 are shown in Figures 9.1, 9.3, 9.5

and 9.7 respectively. The trained neural networks for Experiments 1, 2, 3 and 4 are shown

in Figures 9.2, 9.4, 9.6, and 9.8 respectively.

Using a train–test split ratio of 0.2, and the a posteriori frequentist analysis approach

from Section 3.3.2 we calculate bounds on the violation probability, v̄ and v, from

P (V (ẑN ) < v̄ ∩ V (ẑN ) > v) = 10−3 (9.21)

for each trained interval neural network (with the test set size, Nt = 250). In this case the

solution ẑN is the obtained weights and model width of the interval neural network. The

results are summarised in Table 9.2, which also displays the model half-width h for each

trained network and the number of bound violating test points, Nv.

As expected, the number of violating test points, Nv, and hence the bounds on the

violation probability, V (ẑN ), are higher in Experiment 2 than Experiment 1, as the minibatch

size, M , is lower. In addition, we observe that as expected, the model half-width, h, is much

lower in Experiment 3 than in Experiment 1. This indicates that the model in Experiment

1 is far too simple for the dataset, which we know to be true because in reality the training

data contains heteroscedastic additive noise. For comparison, we observe that the neural

network trained with the mean squared error loss function (Experiment 4), has a root

mean squared error on the test set of 4.3× 10−3, and a fitted model which is comparable
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Experiment 1 2 3 4
Const. Width Const. Width Heteroscedastic MSE

Test points, Nt 250 250 250 250

Bound violating test
points, Nv

1 5 2 N/A

v̄ 3.6× 10−2 6.4× 10−2 4.4× 10−2 N/A

v 4.0× 10−6 3.0× 10−3 1.8× 10−4 N/A

Model half-width, h 1.5× 10−2 1.0× 10−2 9.7× 10−3 N/A

Root mean squared
error

N/A N/A N/A 4.3× 10−3

Runtime (s) 66 525 75 68

Table 9.2: Results from the numerical experiments with the simple analytical function.

to those in the interval model experiments (since if the strong assumption is made of a

fitted Gaussian probability density then 99.7% data points would fall within 3 standard

deviations of the mean).

9.4.2 Simple numerical example with uncertain training data

Description

In order to demonstrate the developments in Section 9.3.3, we train an interval neural

network on a modified version of the previous example, where the training data consists of

`∞ balls (intervals). The centre of the intervals (x(i), y(i)) = ( x̄
(i)+x(i)

2 ,
ȳ(i)+y(i)

2 ) is generated

by Eqn. 9.20. The incertitude in both the inputs and outputs will be given by the interval

radius,
ȳ − y

2
=
x̄− x

2
=

1

160 ∗ (|x− 0.5|+ 0.1)
. (9.22)

In order to allow for heteroscedasticity we train the network with the loss from Sec-

tion 9.3.3 with the scaling in Section 9.3.5, i.e. we minimise Lexperiment + (Lexperiment − h)2

where

Lexperiment = max(Lheteroscedastic(ȳ
(i)) +

x̄(i) − x(i)

2
· abs(∇xLheteroscedastic(ȳ

(i))),

Lheteroscedastic(y
(i)) +

x̄(i) − x(i)

2
· abs (∇xLheteroscedastic(y

(i))) (9.23)

where abs is the component-wise absolute value, σ and ε take the same meanings as in
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Figure 9.1: Plot of convergence of the neural network for Experiment 1.
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Figure 9.2: Plot of trained interval neural network for Experiment 1. Training set shown in
red, test set shown in yellow.
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Figure 9.3: Plot of convergence of the neural network for Experiment 2.
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Figure 9.4: Plot of trained interval neural network for Experiment 2. Training set shown in
red, test set shown in yellow.
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Figure 9.5: Plot of convergence of the neural network for Experiment 3.
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Figure 9.6: Plot of trained interval neural network for Experiment 3. Training set shown in
red, test set shown in yellow.
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Figure 9.7: Plot of convergence of the neural network for Experiment 4 (mean squared
error loss).
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Figure 9.8: Plot of trained interval neural network for Experiment 4 (mean squared error
loss). Training set shown in red, test set shown in yellow.
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Experiment 1 2
Const. Width MSE

Minibatch size, M 200 200

Initial learning rate 0.1 0.1

Learning rate decay rate 0.96 0.96

Number of training epochs 6000 6000

Decay steps 100 100

Table 9.3: Hyper-parameters used in the numerical experiments with interval training data.

previous chapters, and the gradient of the loss, |∇xLheteroscedastic|, is evaluated at the centre

of the intervals ( x̄
(i)+x(i)

2 ). The same neural network architecture was used as in the previous

example (10 neurons in hidden layer). In order to make a comparison, another network

with two hidden layers with 10 and 20 neurons was used. This is summarised in Table 9.3.

In this case the interval network could not be compared with a traditional neural

network, as a traditional neural network would not be able to represent the set inclusion

constraint required to train with interval data.

Results

The training loss curves and trained single interval neural network are shown in Figure 9.9

and Figure 9.10. The corresponding plots of the neural network with two hidden layers

are shown in Figure 9.11 and Figure 9.12. Using a train–test split ratio of 0.2, and the

a posteriori frequentist analysis approach from Section 3.3.2 we calculate bounds on V (ẑN )

with confidence 0.999. Although the single-layer interval neural network encloses the

expected proportion of data based on the minibatch size, the interval appears overly large

in places. This indicates that the chosen neural network may be too simple and hence the

complexity (number of neurons) of the model could be increased, as in the neural network

with two hidden layers. The results are summarised in Table 9.4.

9.4.3 Multi-output test function

Description

In order to test the multi-output loss function proposed in Section 9.3.4, we train an interval

neural network with the loss function Eqn. 9.17 on a test function from Coveney [44], which
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Experiment 1 2
Single Layer Two Layers

Test points, Nt 250 250

Bound violating test
points, Nv

1 2

v̄ 3.6× 10−2 4.4× 10−2

v 4.0× 10−6 1.8× 10−4

Model half-width, h 0.066 0.058

Runtime (s) 182 191

Table 9.4: Results from the numerical experiments with interval training data.
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Figure 9.9: Plot of convergence of single hidden layer interval neural network trained on
uncertain data.
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Figure 9.10: Plot of trained single hidden layer interval neural network trained on uncertain
data. Training set shown in as red squares, test set shown as yellow crosses.
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Figure 9.11: Plot of convergence of the interval neural network with two hidden layers
trained on uncertain data.
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Figure 9.12: Plot of trained interval neural network with two hidden layers trained on
uncertain data. Training set shown in as red squares, test set shown as yellow crosses.
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Experiment 1 2
Const. Width MSE

Minibatch size, M 200 200

Initial learning rate 0.01 0.01

Learning rate decay rate 0.99 0.99

Number of training epochs 10000 10000

Decay steps 200 200

`2 regularisation scale 1.5× 10−3 1.5× 10−3

Table 9.5: Hyper-parameters used in the numerical experiments for the multi-output test
function.

was used to test multi-output emulators. The test function is given by

y1 = 3x3
1 + exp(cos(10x2) cos2(5x1)) + exp(sin(7.5x3)) + w1 (9.24)

and

y2 = 2x2
1 + exp(cos(10x1) cos2(5x2)) + exp(sin(7.5x2

3)) + 1.5w2, (9.25)

where w1 and w2 are uniformly distributed random numbers between 0 and 1. The model

is trained on 1000 samples from the test function, made by sampling each component of

x uniformly between 0 and 1, with a 0.2 train test split ratio. The neural network has 1

hidden layer with ReLU activation and 100 neurons. The hyper-parameters are summarised

in Table 9.5. The TensorFlow default initialisers are used, except for σ which is initialised

to ones.

Results

The plots of residuals for the network outputs are shown in Figures 9.14 and 9.15. The

training loss curve is shown in 9.13. Using a train–test split ratio of 0.2, and the a posteriori

frequentist analysis approach from Section 3.3.2 we calculate bounds on V (ẑN ) with

confidence 0.999 for the trained interval neural network. The model half-widths were

hσ̂1 = 0.64 and hσ̂2 = 0.83. Encouragingly, the model has identified a noise in each output

similar to the true value from the test function. This is comparable with the result obtained

by training the same network with the MSE loss. The results are summarised in Table 9.6.
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Experiment 1 2
Const. Width MSE

Test points, Nt 200 200

Bound violating test
points, Nv

8 N/A

v̄ 1.0× 10−1 N/A

v 1.0× 10−2 N/A

Model half-width out-
put 1, hσ̂1

0.66 N/A

Model half-width out-
put 1, hσ̂2

0.85 N/A

Root mean squared
error output 1

N/A 0.34

Root mean squared
error output 1

N/A 0.50

Runtime (s) 115 88

Table 9.6: Results from the numerical experiments with the multi-output test function.
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Figure 9.13: Plot of convergence of the multi-output neural network.
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Figure 9.14: Plot of residuals for output 1 of multi-output interval neural network. Training
set shown in as blue, test set shown in yellow.
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Figure 9.15: Plot of residuals for output 2 of multi-output interval neural network. Training
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Experiment 1 2
Const. Width MSE

Minibatch size, M 200 200

Initial learning rate 0.01 0.01

Learning rate decay rate 0.9 0.9

Number of training epochs 15000 15000

Decay steps 1000 1000

`2 regularisation scale N/A N/A

Table 9.7: Hyper-parameters used in the numerical experiments for the concrete test dataset.

9.4.4 Realistic engineering test case

Description

The compressive strength of concrete is a nonlinear function of age and ingredients. Yeh

[184] provides a database with 1030 experimental measurements of the compressive strength

of concrete as a function of age and composition in kg/m3 (cement, blast furnace slag, fly

ash, water, superplasticizer, coarse aggregate, fine aggregate).∗ No information is provided

about incertitude in the measurements, and therefore we are forced to process the data as

it is given.

We wish to obtain robust bounds for the compressive strength of the concrete. This

can be used for a worst case structural reliability analysis calculation. We replicate the

architecture from Yeh [184] with our proposed algorithm and train a neural network with

1 hidden layer containing 8 neurons with hyperbolic tangent activation functions on the

normalised dataset (transformed to have mean zero and unit variance).

We apply Algorithm 3 with the constant width loss from Eqn. 9.1 and M = 200. The

weights are again initialised with the TensorFlow defaults. The hyper-parameters are

summarised in Table 9.7.

Results

Annotated plots of the convergence for the upper and lower bounds (i.e. the maximum

error at each step) are shown in Figure 9.16. The absolute error for the upper and lower

bounds (i.e. the ‘residuals’) is plotted in Figure 9.17, and corresponds to an error width of

h = 14.6 MPa, so the bounds had width 29.2 MPa. Using a train–test split ratio of 0.2, and

∗Copyright Prof. I-Cheng Yeh
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Experiment 1 2
Const. Width MSE

Test points, Nt 206 206

Bound violating test
points, Nv

8 N/A

v̄ 1.0× 10−1 N/A

v 9.7× 10−3 N/A

Model half-width, h
(MPa)

14.6 N/A

Root mean squared
error (MPa)

N/A 5.85

Runtime (s) 145 146

Table 9.8: Results from the numerical experiments for the concrete test dataset.

the a posteriori frequentist analysis approach from Section 3.3.2 we calculate bounds on

V (ẑN ) with confidence 0.999 for the trained interval neural network. The results compare

favourably with other machine learning techniques [181]. The results are summarised in

Table 9.8.

9.4.5 Outaouais benchmark dataset

Description

The Outaouais dataset was introduced in the Evaluating Predictive Uncertainty Challenge

[145]. The dataset is for a regression problem with 37 features and 1 target variable. The

dataset consists of 20000 training examples and 9000 test examples.

To predict the target, a heteroscedastic interval neural network was trained with

Eqn. 9.19. The network architecture had two hidden layers with 150 and 20 neurons with

ReLU activation functions. The weights were initialised with the TensorFlow defaults.

This was compared to a heteroscedastic maximum likelihood perceptron network (het-

eroscedastic MLP) [40], trained with the same network architecture and hyper-parameters.

The hyper-parameters for both models are summarised in Table 9.9.

Results

Using the test dataset with the a posteriori frequentist analysis approach from Section 3.3.2,

we calculate bounds on V (ẑN ) with confidence 0.999 for the trained interval neural net-
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Figure 9.16: Plot of convergence of the interval neural network to predict concrete compres-
sive strength.

Experiment 1 2
Heteroscedastic Interval Network Heteroscedastic MLP

Minibatch size, M 200 200

Initial learning rate 0.001 0.01

Learning rate decay rate 0.995 0.995

Number of training epochs 2000 2000

Decay steps 200 200

`2 regularisation scale N/A N/A

Dropout rate 0.01 N/A

Table 9.9: Hyper-parameters used in the numerical experiments for the Outaouais dataset.
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Figure 9.17: Plot of residuals (difference of predictions and targets) for interval neural
network to predict concrete compressive strength. Model central line shown in green, and
bounds shown in black. Training set shown in blue, test set shown in yellow.
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Experiment 1 2
Heteroscedastic Interval Network Heteroscedastic MLP

Test points, Nt 9000 9000

Bound violating test
points, Nv

671 N/A

v̄ 6.6× 10−2 N/A

v 8.3× 10−2 N/A

Model half-width, h 0.29 N/A

Normalised mean
squared error, nMSE

N/A 0.038

Runtime (s) 691 705

Table 9.10: Results from the numerical experiments for the Outaouais dataset. The data
variance used to compute the nMSE metric was 0.55.

work. The results are summarised in Table 9.10. The confidence bound on V (ẑN ) of

the heteroscedastic interval network is superior to that of the heteroscedastic MLP when

Chebyshev’s inequality is used to produce a confidence bound from the mean squared error

of the MLP.

9.5 Chapter summary

In this chapter, we have demonstrated how to create neural networks which quantify their

uncertainty with interval predictions. In order to achieve scalability, the proposed technique

relies upon techniques developed for modern deep learning applications, such as minibatch

gradient descent. The proposed approach converges reliably and is not restricted to a

specific architecture. Crucially, we avoid using explicit set inclusion relationships in the

training process, which usually cause computational difficulties for practitioners of interval

methods.

Since the model is not Bayesian, it is unnecessary to specify prior distributions, or to

use complex variational inference implementations. Instead, the uncertainty is modelled

using an interval which contains at least a specific proportion of the true output with near

certainty.

The main contribution of this chapter is to provide a computationally feasible alternative

to Bayesian models of uncertainty in neural networks, by allowing the neural network to be

trained from data specified by `2 or `∞ balls, which the network is forced to include in its
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prediction interval. The theoretical contributions of this chapter could be applied to many

convex models of uncertainty, and hence useful domain specific models could be derived

from the work presented in this chapter.



Chapter 10

Conclusion

The research in this thesis set out to describe how uncertainty quantification can be

accurately and reliably achieved for engineering systems, when the available data is of poor

quality or if a limited quantity of data is available. Computational techniques for performing

this simulation in a feasible computational time were discussed. The developed uncertainty

quantification techniques were discussed in the context of reliability engineering for structures

in the civil nuclear industry, however the potential applications of the developed techniques

are much wider than this. This thesis is mostly focused on computational and statistical

techniques, and hence the code to create interval predictor models, a major contribution

of the thesis, has been made available as open source software. In this chapter, the main

contributions proposed in this thesis will be summarised and recommendations for future

research will be made.

10.1 Summary of conclusions

In Chapter 1, the motivation behind this thesis was explained and the direction of the

research was introduced.

Chapter 2 presented a review of uncertainty models which model joint uncertainty of

unknown variables (e.g. generative probabilistic models, convex sets and probability boxes).

Techniques for general computation with such models are described. The construction of

such models with or without experimental data was discussed.

Chapter 3 discussed techniques to create uncertainty models, where the uncertainty

in one variable is dependent on the uncertainty in other variables. These models include

179
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Bayesian regression, neural networks, Gaussian processes and interval predictor models.

Techniques to validate the performance of these models is discussed.

Chapter 4 presented a state of the art review of techniques for reliability analysis,

where the probability of failure of a system under the influence of uncertainty is calculated.

Reliability measures were discussed for probabilistic models, convex set models and imprecise

probability models. Efficient computational techniques were discussed for performing the

simulation required to calculate the reliability of expensive black-box models of systems.

In Chapter 5, the analysis of a concrete containment from the nuclear industry was

presented. The structural failure of the containment under pressure is modelled using an

analytic equation derived from structural engineering principles. The properties of the

containment were represented by random variables where only an upper bound on the

coefficients of variation of the distribution parameters was available. Sensitivity analysis

was applied to study the effect of changing these distribution parameters on the probability

of failure of the system.

In Chapter 6, equations were provided to solve the problem described in Chapter 4

analytically, where the system’s parameters are represented by probability boxes, for systems

where the performance is described by a strength load relationship. This was achieved by

using interval analysis to generalise the traditional analytical probabilistic equations used

in such calculations. Then these developments were applied to analytically calculate the

reliability of a containment structure, without using Monte Carlo simulation.

Chapter 7 described how the interval predictor models introduced in Chapter 3 could

be used as a metamodel to obtain rigorous bounds on the failure probability calculated

by Monte Carlo simulation, as described in Chapter 4, whilst reducing the computational

time required for the simulation. Techniques to create interval predictor models which are

better suited to modelling performance functions were described. For example, the interval

predictor model can be forced to model the limit state function more accurately, and the

basis used in the interval predictor model can be iteratively pruned to prevent overfitting.

A case study is presented, where the performance of interval predictor models is compared

to Kriging.

In Chapter 8, the results from Chapter 7 were generalised for the case where the system’s

parameters are described by probability box variables. Several sampling techniques were

proposed and their efficiencies compared, including re-weighting based estimators and focal

element propagation techniques. The performance of the technique was studied for test

cases including a cantilever beam, a non-linear oscillator and a finite element model of a
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small satellite.

Chapter 9 demonstrated how non-convex interval predictor models could be trained

for arbitrarily large datasets, with multiple prediction variables. This was achieved by

developing new loss functions which can be minimised using minibatch stochastic gradient

descent to reduce the computational complexity of training. The proposed training technique

is applicable to cases where the training data is imprecise. The technique was applied to

benchmark datasets, and the prediction of the compressive strength of concrete.

10.2 Recommendations

While traditional Bayesian methods address the issue of scarce and limited data in some

sense, it is clear that the framework of imprecise probability offers greater flexibility

when limited prior knowledge is available, or data is imprecise. Furthermore, the existing

metamodelling techniques used to enhance the efficiency of Monte Carlo simulations require

many assumptions to be made regarding the computational model. This is something that

the proposed techniques avoid, either by use of analytic computation, or by use of interval

predictor models. Hence, rigorous bounds can now be obtained on the failure probability of

systems, or other quantities predicted by interval predictor models. This is something that

will no doubt be of use in highly regulated engineering domains, where the performance of

safety critical systems must be accurately quantified. Therefore, the presented research

opens up many interesting research directions for future work.

The analytic probabilistic safety analysis approach for probability boxes presented

in Chapter 6 lends itself very well to industrial application, because it does not require

complex and time consuming simulations, and many systems can be expressed as a parallel

or series combination of components. In its current state, it is likely that the work

could be applied to the study of many similar systems in structural engineering. The

wider application of imprecise probabilities in industrial probabilistic safety analysis is an

exciting prospect. Similar approaches could be developed for other analytic probabilistic

relationships used in engineering, as one simply has to intervalise the relevant expressions

used in traditional probabilistic safety analysis. For example, more complex calculations are

required to calculate the relevant failure probabilities of backup power systems in nuclear

power plants. Currently the approach presented considers either independence or complete

lack of knowledge on dependencies of failure events. It would be desirable if the approach

could be modified to consider partial knowledge of dependencies between failure events.
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The computational efficiency of the reliability analysis in Chapter 7 and Chapter 8 could

be greatly enhanced if more efficient techniques were available to train interval predictor

models, as metamodels or otherwise. Other metamodel techniques, e.g. AK-MCS [56], use

active learning to reduce the number of samples required from the full model by specifying

that more samples should be collected on the limit state surface of the computational model.

By analogy, it would be useful if the interval predictor model could iteratively specify

in which regions additional accuracy is required, and then collect samples accordingly.

Recent progress in scenario optimisation indicates that such techniques may be viable, e.g.

importance sampling estimators for estimating the reliability of a solution to a scenario

program [12] and the FAST algorithm [38]. Furthermore, the iterative scenario approach

proposed in Garatti and Campi [72], which reduces the number of samples required to

guarantee the solution of a scenario program, appears to be particularly effective in numerical

examples where the solution must be guaranteed with high probability — corresponding to

rare failure probabilities in the algorithm proposed in this thesis.

The development of techniques to train interval neural networks for imprecise data in

Chapter 9 is an attempt to incorporate interval incertitude into modern machine learning

architectures, but no attempt was made to include Bayesian machine learning techniques in

the framework.∗ Further development in this area could produce a variational method for

training Bayesian neural networks on imprecise data, which would yield probability boxes

to describe the posterior distribution of the network’s weights. Chapter 9 describes how

a loss function can be intervalised for imprecise data using Taylor expansions. It is also

known that loss functions can be intervalised using interval arithmetic [137]. Therefore,

one could also attempt to intervalise the evidence lower bound loss function from Bayesian

neural networks. A similar algorithm could also be developed when the prior distribution

for the weights was not precisely known.

It would be desirable to extend the approach to the problem of classification; currently

the approach presented in Chapter 9 has only been applied to regression. In fact, preliminary

results in Mirman et al. [117], indicate that the max error loss function can be applied to

classification problems for a particular class of neural networks where the intervals can be

propagated analytically through the network, i.e. without using a Taylor series linearisation

of the loss, resulting in a model equivalent to a homoscedastic interval neural network for

classification. However, in Mirman et al. [117] no theoretical justification is made for the

∗Clearly, using weight regularisation in the networks for the numerical experiments has an obvious
Bayesian maximum a posteriori interpretation, but this was not the focus of the experiments.
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empirical finding that the proposed models generalise to data not seen in training; in this

thesis the presentation of interval neural networks in the context of non-convex scenario

optimisation provides such an explanation.
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