
 

The Role of 
Matrix Metalloproteinase-8 

in Anti-Cancer Immunity 

 
 

Kate Alice Makin 

 
A thesis submitted for the degree of  

Doctor of Philosophy (Ph.D.) 

 

University of East Anglia 

Norwich Medical School 

 

September 2019 

 
© This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its 

copyright rests with the author and that use of any information derived there from must be in accordance with current UK 
Copyright Law. In addition, any quotation or extract must include full attribution. 



Abstract 

 

The existing literature suggests that MMP-8 is protective in the context of several 

cancers. In breast cancer (BC) patients, MMP-8 expression correlates with increased 

relapse free survival. In vivo, absence of Mmp8 increases tumour burden and lung 

metastasis in the MMTV-PyMT spontaneous mouse mammary cancer model. Data 

imply that the putative host-protective role of MMP-8 may be via its ability to 

orchestrate the immune system. Therefore, in vivo studies were required to establish 

the mechanistic link between MMP-8 and immunity. Using Mmp8 null mice 

orthotopically injected with MMTV-PyMT-derived mammary tumours, we have 

found conflicting data in this alternative model. There was no impact on tumour 

volume in the absence of Mmp8 and there were no consistent changes to intra-

tumoural immune infiltrates by flow cytometry or cytokine gene expression in 

comparison to wild-type controls. As a caveat to these findings, upon sequencing of 

the Casp11 gene in Mmp8 null mice, a 5 base-pair deletion was discovered, rendering 

caspase-11 non-functional. This finding prevented definitive conclusions to be made 

on the impact of MMP-8 in our existing mice, therefore investigations were carried 

out to ascertain whether the passenger mutation contributed to any results by using 

the Mmp8 KO mouse without the Casp11 mutation. However, using these animals 

there was still a lack of tumour or immune phenotype. This leads to two conclusions: 

firstly, our data suggests that the passenger mutation did not contribute to any 

phenotype or lack thereof. Moreover, MMP-8 did not suppress primary growth of 

orthotopically implanted BC tumours via co-ordination of the immune system. The 

discrepancy with previous findings advocates for further exploration of the 

differences between the spontaneous and orthotopic implant model in Mmp8 KO 

mice to pinpoint the role of MMP-8 in tumourigenesis.  
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 Introduction 

  Breast Cancer  

1.1.1.  Overview  

Breast cancer (BC) is the most common cancer in women worldwide [1] with women 

in the UK facing a 1 in 8 lifetime risk of developing the disease [2]. Many predict the 

incidence of BC to rise in the next twenty years due to societal and lifestyle changes 

such as abstaining from breastfeeding, having children later in life and the impact of 

the environment, with increases in obesity and hormone replacement therapy 

prescribed during the menopause all contributing risk factors [3].  

Considerable progress has been made in increasing 5-year survival rates in recent 

years through improved prevention and treatment programmes but despite this 

success, the prognosis for patients with metastatic BC remains poor due to limited 

treatment options. Currently, the 5-year survival rate stands at a disappointing 15% 

for patients diagnosed with metastatic BC [4]. As is stands, there is no cure for 

metastatic BC. Therefore, there exists a need to develop therapies that target the 

primary tumour before metastasis can occur.  

1.1.2.  Anatomy of the Breast 

It is necessary to discuss the anatomy of the breast before considering the pathology 

of BC. The taxonomic class Mammalia is itself named after the Latin for breast: 

‘mamma’, which speaks volumes of the significance of the breast in evolution and 

survival.  The breast is a highly complex organ that undergoes dramatic changes 

throughout life including puberty, pregnancy, lactation and the menopause. The 

term ‘breast’ strictly refers to the organ housing the exocrine mammary gland in 

humans as well as primates. Mice do not have breasts but have 5 pairs of mammary-

glands that develop in a similar fashion to humans, particularly during 

embryogenesis.  

Mammary gland development begins prenatally at embryonic day 10 (E10) whereby 

bilateral milk lines arise from the ectoderm, forming five pairs of placodes located at 



the site of each future nipple [5]. Each placode expands to form a mass of cells that 

transcends into the underlying mesenchyme, the precursor to the mammary fat pad, 

and this leads to formation of the mammary anlage, or primitive organ. Once at the 

fat pad, the epithelial ‘sprout’ branches to produce 10-15 rudimentary ductal 

branches. This structure remains quiescent until puberty.  

Interestingly, unlike mice, human prenatal breast development is identical between 

genders, and does not significantly differ until hormonal differences occur during 

puberty [6]. The process of branching morphogenesis occurs at the onset of puberty 

under influence of hormones and growth factors such as oestrogen and insulin-like 

growth factor-1 (IGF-1) [7]. Highly-proliferative bulb-shaped structures called 

terminal end buds (TEBs) form to direct arborized growth throughout the remaining 

area of the fat pad to create an extensive system of branched ducts.  

Post-development, the mammary gland is fully formed and ready for further changes 

to occur during pregnancy, lactation and the menopause. The overall structure of the 

adult human breast can be found in Figure 1.1, which also illustrates lobules. Lobules 

are grape-like structures formed of clusters of alveoli: the site of milk production 

during lactation. In mice, these structures do not appear until the onset of pregnancy 

[8].  

In BC, it is the epithelial cells lining the ducts and lobules that cancer most frequently 

arises from; termed ductal and lobular cancers respectively [9]. Polarised cells lining 

the lumen of the ducts are termed ‘luminal’ and the outer layer of myoepithelial cells 

are referred to as ‘basal’. These classifications are used to subtype BCs and will be 

discussed further in 0 .  

 

 

 

 



 

 

 

 

 

 

 

 

1.1.3. Aetiology  

Several known risk factors exist for the development of neoplastic diseases of the 

breast, however the single biggest risk factor is increasing age. Figures from the US 

in 2016 attribute 99.3% deaths from BC to women over 40 years old [10]. The 

underlying reasons for this are not entirely clear, but a lifetime exposure to 

environmental and chemical triggers may increase the likelihood of acquiring genetic 

mutations [11]. Further research points to the impact of reproductive factors such as 

the menopause. The average age to begin the menopause is 51 years old in the UK  

and each 1-year delay increases BC risk by 3% due to longer oestrogen exposure 

[12,13]. Similarly, an early menarche (before 11 years of age) increases the risk [14]. 

There is a speculated relationship between lifetime number of ovulatory cycles and 

BC risk. Post-childbirth, a woman has a short-term increased risk of BC however this 

disappears in the long term and is instead replaced with a reduced overall lifetime 

risk of developing BC. Similarly, more pregnancies correlate with reduced long-term 

risk [15]. Pregnancy results in mammary stem cells that are less likely to multiply – 

influenced by variations in hormonal signalling. However, this reduction in risk is not 

reflected in women that become pregnant later in life. In fact, the opposite is true. 

This may be due to longer lifetime exposure to oestrogen and greater accumulation 

Figure 1.1. Gross anatomy of the human breast from an external and internal view  [449]. 



of genetic changes – where it is then too late to counteract any damage [16]. 

Furthermore, BC risk is diminished in breastfeeding women. Meta-analyses have 

shown that 12 months of breastfeeding reduces risk by 14% compared to parous 

women who have never breast-fed [17]. Some studies even estimate that current 

rates of breastfeeding prevent 20,000 deaths from BC annually [18].   

Another contributing risk factor is familial history of BC. A recent study of over 

113,000 women indicated a 1.75-fold increase in risk if a first degree relative had BC 

and a 2.5 fold increase with more than one affected relative [19] compared to 

individuals with no direct family history. Often, familial risk is linked to inherited 

mutations in key tumour-suppressor genes, the most well-known examples are the 

BRCA1 and BRCA2 mutations. Both are tumour-suppressor genes that facilitate 

essential DNA double-strand repair mechanisms. Germline mutations in these genes 

lead to an extremely high risk of developing both breast and ovarian cancer 

compared to the general population [20]. Overall, approximately 5% of BCs are 

attributed to genetic mutations [21].  

Many other risks of developing BC are related to lifestyle choices. The oral 

contraceptive pill and hormone replacement therapy (HRT) have both been 

associated with increased BC risk [22], but the data remain controversial and 

discontinuing oral contraceptive use for 10 years negates the risk encountered during 

usage [23,24]. There is scientific basis for these risks relating to hormone sensitivity 

in the breast. Epithelial cell growth and division in the breast tissue is responsive to 

oestrogen and progesterone. These hormones peak during the menstrual cycle whilst 

HRT supplies these hormones once the body has naturally slowed down production. 

Oestrogen has been shown to play a causal role in the aetiology of BC and has a 

known carcinogenic effect in both malignant and normal breast epithelial cells 

[25,26].  

And finally, as with the majority of cancers, high consumption of alcohol, a diet rich 

in fat and smoking are also risk factors for BC development [27].  

 

 



1.1.4. Breast Cancer Subtypes 

If a BC diagnosis is suspected, a biopsy will be performed to obtain a sample of cells 

from the breast tissue for analysis. Classification of BC is essential for an accurate 

prognosis and in designing treatment regimes. Broadly, BC is categorised into non-

invasive (in situ) or invasive. The former represents neoplasms with cells that are not 

invading the surrounding tissue, whilst the latter pertains to cells that have begun to 

invade local connective tissues. BC in situ generally has a good prognosis. Some but 

not all in situ BC’s will become invasive. Invasive BC accounts for around 80% of all 

BC diagnoses of which most are invasive ductal carcinomas [28].  

Treatment of BC is dictated by the type that a patient presents with; factoring in 

stage, histological grade of the breast tumour and specific gene expression 

signatures. Staging refers to how extensive the cancer is at time of diagnosis and is 

based on the TNM (tumour, node, metastasis) system. ‘T’ represents the size of the 

primary tumour, ‘N’ refers to the number of lymph nodes nearby with detectable 

cancer present and ‘M’ is the presence or absence of metastases. However, for 

simplicity the stage is commonly referred to in a numerical system: Stage 0 is 

representative of the presence of abnormal cells that have not yet become 

cancerous. Stage I, II and III involves spread to nearby tissues with a higher number 

representing more severe cases and finally stage IV is confirmed when metastasis has 

occurred [29]. Furthermore, a measure is made of how abnormal the cancer cells 

have become in comparison to the tissue they have originated from. This is referred 

to as being ‘well-differentiated’ for a low grade and ‘poorly-differentiated’ for a high 

grade [30] – referring to how easy it is to distinguish their tissue of origin. Grading 

and staging is key in developing a prognosis for the patient and can indicate likelihood 

of recurrence.  

BC is not merely a single disease, but a multifaceted one with distinct but sometimes 

overlapping subtypes. Traditionally, subtyping has been based on 

immunohistochemical validation of three markers: estrogen receptor (ER), 

progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2). 



Differing combinations of receptor expression can exist and the status influences the 

biological properties of BC, guides therapy and affects patient outcome.  

Due to the heterogeneous nature of tumours, classification has gone further and 

through genome-wide gene microarrays such as PAM50 there now broadly exists 

four intrinsic subtypes: luminal A, luminal B, HER2+, and basal-like, that are detailed 

in Table 1.1 [31]. Alongside ER, PR and HER2, this system also considers expression 

of Ki67, a marker of cell proliferation.  

 

Some consider normal-like breast cancer as an additional category. These tumours 

are difficult to characterise, often expressing adipocyte-related genes but test 

negative for basal-like markers such as cytokeratins and epidermal growth factor 

receptor (EGFR). There are several lines of evidence to suggest this subtype actually 

arises from normal breast cell contamination, obtained during sampling [35]. 

A complete lack of receptor expression is termed triple negative breast cancer (TNBC) 

and is associated with the worst prognosis in part due to lack of targeted therapies 

[36]. It is categorised under ‘basal-like’ BC, has a particularly high grade and low 

differentiation, characteristically expressing high levels of basal myoepithelial 

markers and frequent mutations in the tumour protein 53 (TP53) gene and 

inactivation of the retinoblastoma (Rb) pathway [37]. Almost 40% of patients will 

relapse within 5 years of diagnosis [38].  

Whilst these microarray-based molecular stratifications are indeed very useful for 

prognosis and treatment, there exists a need to further delve into the heterogeneity 

Subtype Molecular Profile Percentage Cases in UK 

Luminal A ER+, HER2-, Ki67low 71% [32] 

Luminal B ER+, HER2-, Ki67high 12% [33] 

HER2+ HER2+ 5% [34] 

Basal-like ER-, PR-, HER2- 12% [33] 

Table 1.1. Molecular classification of BC subtypes and percentage of cases 



that exists in tumours. The technology used to carry out these analyses has been 

further refined to also look at genome-wide copy number. In the METABRIC study, 

Curtis et al. integrated both the copy number alterations (CNAs) and gene expression 

data to create ten novel integrative clusters that BCs can be grouped into [39]. These 

clusters divide up some of the intrinsic subtypes, however some subtypes can still be 

captured in distinct clusters. Stratification using integrative clustering is well-

reviewed by Russnes et al [40]. 

In the UK, this in-depth analysis is not carried out during diagnosis and treatment 

planning as it is time-consuming and not deemed cost-effective by the National 

Institute for Clinical Excellence (NICE) [41]. In fact, for diagnosis, intrinsic subtyping is 

not carried out and instead focusses on ER, PR and HER2 expression. Slowly, the NHS 

is beginning to use gene expression profiling to identify recurrence risk and guide 

treatment decision. Recently, the use of the molecular test Oncotype DX, changed 

clinical practice for women diagnosed with lymph node negative, ER+, HER2- BC. 

Results from the TAILORx trial revealed that patients can avoid chemotherapy if they 

receive a mid-range recurrence score in the Oncotype DX test [42]. There appears to 

be a metastasis signature indicative of likelihood of metastasis in primary tumours, 

that these molecular tests have begun to capitalise on [43]. Another example is 

MammaPrint. This assay was developed using samples from 78 young BC patients, 

half of whom experienced metastasis within 5 years [44]. Looking at over 5000 genes, 

researchers looked for gene signatures that could predict good vs poor prognosis, 

and found that 70 of those genes could be correlated with prognosis [45]. With time 

and reduced cost, the UK may adapt their guidelines to include such tests, but for 

now these detailed arrays are not used in everyday clinical practice. 

 

1.1.5. Treatment  

Attempts to treat cancer have been made for centuries; Egyptian artefacts exist from 

1600 B.C. containing treatment plans [46]. Modern treatment as we know it has 

undergone many changes even in the last 100 or so years. In the early 20th century, 

heavily mutilating surgery was carried out by surgeons such as William Halstead; 



removing the entire breast, large areas of chest muscle and lymph nodes from the 

armpits. These radical mastectomies attempted to remove absolutely all cancerous 

tissue however the consequences for the woman were often life-changing and 

debilitating. It was not until the early 1980s with research to suggest that cancer was 

a systemic disease, that several radical surgeons began to change things. Surgery was 

transformed from radical mastectomies to segmented mastectomies known as 

lumpectomies, which facilitated targeted, local removal of cancerous tissue [47]. 

Often this was followed up with radiotherapy and is still carried out in this way today.  

Mid-way through the 20th century there was a new era in cancer treatment. 

Generous funding from the NIH aided in the development of new chemotherapeutics 

such as cyclophosphamide, methotrexate and fluorouracil. These drugs came in to 

use after surgical removal of the primary tumour, where it was recognised that 

adjuvant therapy could be used to help prevent metastasis. However, cancers are 

not one and the same. The same chemotherapeutics were administered for many 

different types of cancers. Recognition of specific cancers as their own entities was 

an important step for improved treatment.  

In BC, there exists a relationship between sex hormones and tumour progression. 

This was first realised by the surgeon Thomas Beatson. In animals who received an 

ovariectomy, it was observed that their breast tumours regressed [48]. Meanwhile, 

the discovery of the oestrogen receptor in 1967 had paved the way for oestrogen-

modulating drugs such as tamoxifen. Tamoxifen is an anti-oestrogen that has been 

in the clinic for over 40 years, used in adjuvant therapy and more recently in 

chemoprevention. BC patients with ER+ tumours are generally prescribed tamoxifen 

for 5 years post-surgery. However, this mechanism of blocking ovarian oestrogen is 

ineffective in post-menopausal women considering the menopause represents a 

cessation in ovarian function. Post-menopause, the enzyme aromatase found at high 

levels in adipose tissue is responsible for converting estrogen from androgens such 

as testosterone [49]. Therefore, a class of drugs called aromatase inhibitors are 

prescribed to post-menopausal women [50].  

More recently, the use of ‘biologics’ has become commonplace in BC treatment. 

These therapies target proteins overexpressed on tumour cells and often harness the 



immune system or via the use of antibodies work in a similar way. In patients 

overexpressing HER2, administration of the monoclonal antibody trastuzumab 

(Herceptin) is particularly effective, and has been heralded as a major advance in BC 

treatment [51]. Other similar drugs have been developed including pertuzumab and 

lapatinib that also target the HER2 pathway, as well as bevacizumab that targets 

VEGF, approved for use in patients with metastatic HER2- BC [52,53] .  

Nowadays, treatment for most cancers, BC included, is based on three pillars: 

chemotherapy, surgery and radiotherapy. Some patients will receive all three, some 

will receive only one and some receive a combination. Often the full extent of the 

cancer is not known until investigatory surgery is performed. After local surgical 

removal, adjuvant chemotherapy and radiotherapy can be given. In contrast, for 

some cancers, patients receive neoadjuvant chemotherapy and/or radiotherapy 

which aims to shrink a tumour before surgical removal. Each treatment option is 

made on a case by case basis. There is also a fourth pillar of treatment that has come 

into the light in the past decade or so: immunotherapy. This is harnessing and 

improving the ability of the immune system to eliminate cancerous cells. In several 

cancers, notably liquid cancers such as leukaemia and lymphomas, immunotherapy 

has become a bona fide treatment option, particularly those that do not respond to 

conventional therapies.  

It must be noted here that whilst these hormonal and biological therapies are very 

efficacious, they are not without their disadvantages. Treatments such as 

trastuzumab that work on a single oncoprotein are more prone to the emergence of 

resistance mechanisms [54]. Cancerous cells are evolutionarily inventive and are very 

good at treatment evasion; perhaps utilising a different but similar biological 

pathway to aid their growth and proliferation. From a societal and economic 

perspective, these innovative new medications come at quite a cost. Figures from 

2014 state it costs on average around $135,000 a year for an orally administered 

cancer medicine per year in the US [55] and the newer cancer drugs in development 

such as immunotherapies that will be discussed in further detail in 1.3.3 are 

significantly more expensive. These factors will have huge implications in the 

healthcare system’s use of these costly pharmaceuticals in modern treatment of BC. 



 The Immune System  

1.2.1. General Overview 

Humans would not have evolved into the species they are today without the 

evolution of their intelligence-guided defence system: otherwise known as the 

immune system. From the Latin word ‘immunis’ meaning exemption from military 

service or tax, the etymology of ‘immunity’ has changed somewhat over time to ‘the 

balanced state of multicellular organisms having adequate biological defences to 

fight infection, disease, or other unwanted biological invasion, while having adequate 

tolerance to avoid allergy, and autoimmune diseases. A plethora of species hoping to 

themselves flourish and evolve have been attempting to invade humans for millions 

of years and ways have been devised to prevent this. For many years, primitive 

species had basic defence systems, most likely involving release of toxic chemicals. 

However, as life became more complex with the generation of entire organ systems 

and a dedicated control centre: the cerebral cortex, we had to make our defence 

systems more sophisticated and elaborate. This multifaceted network of cells, 

messenger molecules and proteins as we now know as our immune system can be 

broadly categorised into innate; as in encoded in the germline, and adaptive – built 

over time. However, our first line of defence does not rely on the complex but rather 

a simple physical barrier. Several organs including the skin, lung and the gut are lined 

with epithelial cells packed tightly together to provide a border between the outside 

world and inside the human body. The exterior of these cells is coated with a thin 

mucus layer containing chemicals that aid in protection from microbial, mechanical 

and chemical trauma. These chemicals include mucin and defensins – the latter of 

which are broad-spectrum antimicrobials.  

If a microorganism has managed to cajole its way past the epithelial barrier, it is time 

for the innate and adaptive immune systems to step up – recognise it as foreign and 

destroy it without host damage – a process that has been refined over millions of 

years.  From the origin of immune cells to the intricate details that underlie their 

function, this chapter will attempt to cover what is one of the most highly-tuned 

systems in the human body.  



1.2.2. Haematopoiesis  

At any one time, under normal disease-free conditions, our blood is teeming with the 

soldiers of the immune system: white blood cells (WBCs). In a complete blood count, 

the reference range for WBC’s is 4500-11,000 cells per mm3 of blood [56]. To scale 

that up to a human body: that equates to on average 7.5 x 10 9 cells / L and at any 

one time there is around 4.5 – 5L of blood circulating resulting in an impressive 37.5 

x 10 9 WBCs, with constant renewal ongoing. However, WBCs do not develop in 

isolation. Our entire collection of blood cells originates from early progenitor cells 

that undergo differentiation to become distinct populations that perform specific 

functions. This process is termed haematopoiesis and begins early in embryonic 

development. In vertebrates, haematopoiesis is divided into two waves: primitive 

and definitive [57]. Briefly, the primitive wave exists to facilitate rapid production of 

red blood cells (RBCs). This occurs in the extra-embryonic yolk sac and its main 

purpose is to provide sufficient tissue oxygenation for foetus growth [58]. This phase 

is transitory, and the resulting erythroid progenitors have no renewal capacity. For a 

self-renewing population of haematopoietic cells to exist, development switches to 

the definitive wave, occurring slightly later in development. Haematopoiesis moves 

from the yolk sac, briefly to the liver and then finds permanent residence in both the 

bone marrow and the thymus.  [59] 

Formation of the entire adult haematopoietic system is reliant upon the emergence 

of haematopoietic stem cells (HSCs) during development (Figure 1.2). The 

mechanisms driving this process are evolutionarily-conserved however whilst much 

research has delineated many of the stages, the entire process is yet to be 

recapitulated in vitro, limiting some of our understanding. HSCs are a population of 

self-renewing pluripotent stem cells that under precise conditions in the HSC niche 

produce a continuous supply of mature haematopoietic cells. Upon asymmetrical 

division, two daughter progeny arise from HSC division: a progenitor cell and a 

replacement stem cell. These progenitor cells become committed myeloid and 

lymphoid progenitor cells that upon further differentiation can subsequently become 

the cells that make up our immune system.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specific spatiotemporal expression of cytokines and stem cell factors governs 

progenitor cell lineage fate. For the myeloid lineage, erythropoietin (EPO) stimulation 

alongside interleukin-3, -9 (IL-3, -9) and stem cell factor (SCF) generates 

proerythroblasts: precursors to erythrocytes [60]. All granulocytes and monocytes 

arise from a common progenitor termed colony forming unit- granulocyte, 

erythrocyte, monocyte, megakaryocyte (CFU-GEMM), that upon a distinct set of 

Figure 1.2. Hierarchical overview of haematopoiesis. The haemopoietic stem cell (HSC) is the origin 
of the entire haemopoietic lineage – a multipotent cell able to self-renew and differentiate into the 
common lymphoid progenitor (CLP) or lymphoid-primed multipotent progenitors (LMPP). The entire 
lymphoid lineage is derived from the CLP that can differentiate to become small lymphocytes – the 
origin of T and B cells or can become dendritic cells or NK cells. The myeloid lineage originates from 
the common myeloid progenitor (CMP) that can differentiate into either megakaryocyte-erythrocyte 
progenitor (MEP) or granulocyte-monocyte progenitor (GMP) to produce erythrocytes and platelets 
or granulocytes, monocytes, mast cells and dendritic cells respectively.   



signals including SCF, IL-3, flt3 ligand and granulocyte-macrophage colony-

stimulating factor (GM-CSF) becomes CFU-GM [61]. This population can then give 

rise to monocytes and thus macrophages (Mφ), dendritic cells (DCs), neutrophils and 

eosinophils. The three remaining populations that originate from the CFU-GEMM are 

thrombocytes, basophils and mast cells; the latter two of which are heavily 

influenced by IL-4 signalling [62].  

From the common lymphoid progenitor arises every variation of lymphocyte: B-cells, 

plasma cells, T-cells and dendritic cells. As with the myeloid lineage, specific cytokine 

patterns govern differentiation. However, the development and maturation of T and 

B cells requires other cytokine-independent processes including antigen-driven 

selection and will be discussed in 1.2.4.  

Discovering which factors drive each population has been largely carried out in vitro 

by colony-forming assays. In this assay, precursors are cultured in soft agar with 

cytokines to allow colonies to form that can be identified visually [63] .  

The clinic has benefitted from the knowledge gained in regulation of haematopoiesis. 

For example, for patients undergoing radiotherapy or receiving immunosuppressive 

chemotherapeutics, both the myeloid and lymphoid progenitors are highly 

proliferative and therefore very susceptible. However, pluripotent stem cells are 

resistant to cytotoxic drugs because they reside in G0 phase – quiescent and non-

cycling [64]. In stem cell transplantation, prior to the collection of stem cells/ bone 

marrow from the donor, injections of growth factors are given to stimulate 

production of higher quantities of haematopoietic cells. This is most often 

granulocyte-colony stimulating factor (G-CSF), which aids in mobilisation of HSCs 

from the bone marrow into the bloodstream as well as direct influences on 

neutrophil differentiation via downstream JAK/STAT signalling [65].  

 



1.2.3. Innate Immunity 

 Phagocytic cells  

At the heart of the innate immune system is the ability of cells to engulf pathogens 

and cell debris, scientifically referred to as phagocytosis. The process of phagocytosis 

is not unique to complex life; it is even used by simple protists for feeding [66]. The 

word ‘phagocytosis’ is derived from Greek and translates as ‘the process of cells 

devouring’. Élie Metchnikoff, the Nobel Prize for Physiology and Medicine winner in 

1908, was responsible for the discovery and naming of these professional devourers, 

of which all are WBCs that will be discussed in detail in this thesis. Many cells have 

phagocytic capabilities, however there exist professional phagocytes that carry out 

much of the work including neutrophils, monocytes and dendritic cells.  

 Monocytes 

The first mononuclear phagocytic cell to introduce is the monocyte – more than just 

a humble precursor to the Mφ. Monocytes make up an impressive 10% of all WBCs 

in humans and 4% in mice [67]. Whilst most monocytes circulate in the bloodstream, 

many also reside in the spleen and the lungs; ready for mobilisation [68]. As 

previously described, all WBCs originate from a common progenitor cell: the 

haemopoietic stem cell. All monocytes are derived from a common myeloid 

progenitor with further commitment steps occurring in the bone marrow. In mice, 

the myeloid committed precursor can differentiate into the Mφ and dendritic 

precursor (MDP) and studies have shown that this precursor has two possibilities for 

differentiation: a common monocyte progenitor (cMoP) – responsible for the more 

classical Ly6C expressing monocytes, or common DC precursors – that can produce 

classical DCs and plasmacytoid DCs [69,70].  

Upon completion of the necessary development in the bone marrow, monocytes 

circulate for around three days before migrating into peripheral tissues [71]. There 

are two main circumstances for the mobilisation of monocytes into tissues: 

homeostasis and inflammation. Once in a tissue, monocytes receive local stimulatory 



signals that encourage differentiation into one of several subsets of Mφ and dendritic 

cells.  

Monocytes can be categorised into three subpopulations that are based on 

expression of various markers including cluster of differentiation (CD) markers. These 

expression markers vary between human and mouse. Mouse monocytes are 

subdivided into three populations: classical, non-classical and intermediate. The 

predominant way to distinguish between these populations is via their expression of 

Ly6C and CD43. Classical and intermediate monocytes both have a Ly6Chi phenotype 

but differ on their CD43 levels with Ly6ChiCD43lo cells representative of classical 

monocytes and Ly6ChiCD43hi cells characteristic of the intermediate phenotype [72]. 

Around 85-90% of monocytes are classical circulating monocytes [73]. Non-classical 

monocytes are Ly6Clo and represent a sizeable amount of the circulating monocytes 

– estimated to be around 40% [74]. Some characterisations also use expression of C-

C chemokine receptor type 2 (CCR2) and CX3C-chemokine receptor 1 (CX3CR1) to 

delineate different populations [75]. Since of these subsets appear to possess 

functional differences, the traditional view that monocytes are merely 

developmental intermediates for Mφ is clearly outdated. 

Monocytes themselves possess a strong phagocytic ability, their surfaces littered 

with toll-like receptors and phagocytic receptors. During steady state, monocytes do 

not proliferate and are in fact inefficient at differentiating into DCs and Mφ [76]. 

However, during inflammation and upon appropriate inflammatory stimulation they 

can carry out their differentiation program into descendant cells. There is some 

controversy as to the theory of monocyte differentiation, largely due to conflicting 

results from experiments in vitro vs in vivo. What is debated is whether monocytes 

pre-exist as subsets with very specific fates or whether they exhibit plasticity and 

their differentiation is in response to local factors in the immune milieu. Some 

experiments in vitro have demonstrated that the original monocyte subset is 

irrelevant: GM-CSF and IL-4 are able to stimulate all monocytes into DCs [77]. If 

monocytes are stimulated with macrophage-colony stimulating factor (M-CSF) they 

exhibit an M1 pro-inflammatory phenotype, and M-CSF with the addition of IL-4 

results in an anti-inflammatory M2 phenotype [78,79].  



It is worth noting at this stage that there are several issues regarding terminology 

and experimental standards in describing activation [80]. Macrophage polarisation/ 

activation upon stimulation is not linear, and exists more as a continuum, whereby 

cells are extremely plastic to their environmental cues. The concept of M1 and M2 

phenotypes will be elaborated on in 1.3.2.1.   

Our understanding on the role of classical monocytes has developed over the last 

decade. It is now clear that there are several fates for monocytes in various 

homeostatic and inflammatory processes. Broadly speaking, classical monocytes can 

migrate into tissues to either generate tissue resident Mφ or accumulate 

undifferentiated in a monocyte reservoir such as the spleen [68]. Furthermore, 

monocytes can differentiate into non-classical monocytes that appear to have roles 

in maintenance of vascular structures or simply change phenotype once in tissues to 

take on roles such as antigen-presentation and tissue repair [81,82].  

To reach their target tissue in the first instance, monocytes must possess the ability 

to respond to a signal and traffic to the correct site – often traveling long distances. 

Their surfaces are packed with receptors that recognise and bind circulating 

chemokines released from tissues to trigger downstream signalling pathways that 

facilitate migration to target tissues. One example of which is the chemokine (C-C 

motif) ligand 2/7 (CCL2/CCL7) and CD192 signalling axis. CCL2 otherwise known as 

monocyte chemoattractant protein 1 and CCL7 are produced during inflammation 

and bind to CD192 on monocytes for recruitment [83].  CCL2/CCL7-/- mice display a 

40-50% reduction in monocyte recruitment during Listeria monocytogenes infection 

demonstrating the importance of the interaction between chemokine receptors and 

their respective cytokines [84]. There are other chemokine signalling axes that exist 

to aid in attraction of monocytes towards tissues however the role of adhesion 

molecules is also essential in monocyte recruitment. Moving monocytes into tissues 

is a form of diapedesis, or extravasation, and briefly, is the process whereby 

monocytes adhere to an activated endothelium via integrins and adhesion molecules 

such as platelet endothelial cell adhesion molecule (PECAM) and L-selectin to then 

extravasate between epithelial cell junctions to finally reach tissues [85]. This 

mobilisation must occur rapidly during times of inflammation when there is need for 



high levels of differentiation into Mφ. This process is not exclusive to classical 

monocytes, however the genetic program for tissue migration does not exist in non-

classical monocytes [86].  

Once monocytes have reached their target tissue, they very rapidly differentiate into 

Mφ. Monocyte-derived Mφ share very similar genetic programs to resident tissue 

Mφ even though the majority of tissue-resident Mφ are derived embryonically rather 

than via bone marrow precursors whilst there becomes a clear distinction from the 

counterpart circulating monocytes [87–89]. Nevertheless, as previously mentioned 

not all monocytes become Mφ. Ly6Chi monocyte populations are maintained in some 

tissues and maintain a monocyte reservoir or become Ly6Clo non-classical monocytes 

[68]. How this fate is decided in the tissue is still the subject of research.  

Something important to discuss at this stage and will be discussed further in 1.3, is 

that not all monocytic activities are beneficial. Relative levels of monocytes exist in 

homeostasis and any variations to that number can cause disease. Monocytosis – the 

overproduction of monocytes is characteristic of autoimmune diseases, tuberculosis 

infection and cancer, and can be detrimental [90]. Conversely, monocytopenia – 

reduced absolute levels of monocytes can be a risk for infection [91]. Furthermore, 

the populations that arise from differentiated monocytes may be detrimental to the 

host, as is the case for M2 Mφ in cancer for example [92]. However, paradoxically, 

M2 Mφ are also important in restoring physiology such as in wound healing [93]. 

Therefore, there is need for a fine-tuned balance of monocyte levels and their 

differentiated counterparts. 

 

 

 



 Macrophages  

 Overview 

It is logical to follow on from monocytes with their descendants: macrophages (Mφ). 

The immune cell that precedes all others in development: the Mφ has become one 

of the most well-studied cells in immunology and subsequently in disease. Mφ exist 

in all adult tissues in vertebrates and have a plethora of roles in both physiology and 

pathology. Whilst many assume all Mφ are derived from monocytes, it turns out that 

this is not the case. Several experiments have shown that Mφ have two origins during 

ontogeny. Firstly, the classical paradigm: HSCs differentiate into monocytes in the 

blood before migrating into tissues upon stimulation and differentiating into Mφ. 

And secondly, what has become evident in recent years is the existence of a 

population of tissue-resident Mφ that arise from the yolk sac during embryonic 

development at around embryonic day 8.5 (E8.5) (Figure 1.3). Furthermore, in the 

period post-yolk sac development and pre-bone marrow development there is a 

transitory wave of production of cells from the foetal-liver (E10.5) [94,95]. These 

haemopoietic progenitor populations arise from two sources: the hematogenic 

endothelium of the aorta-gonad-mesonephros as well as the yolk-sac and become 

foetal liver monocytes before infiltrating into peripheral tissues and differentiating 

into tissue-resident Mφ capable of self-renewal [59]. The yolk sac-derived and foetal 

liver-derived tissue-resident Mφ coexist demonstrating chimerism in the tissue.  

As it turns out, tissue-resident Mφ are predominately embryonic-derived and 

maintain themselves during adult life with little contribution from circulating 

monocytes. Elegant experiments have solidified this theory including a complex 

parabiosis study that involved anatomically joining two mice expressing two allelic 

variants of CD45: CD45.1+ and CD45.2+ via their circulation. Using fate mapping and 

lineage tracing it was shown that after around 2-5 months, between 15-40% non-

host (donor) monocytes can be detected in the host circulation. However, this 

percentage was not reflected in tissue compartments for the number of host vs non- 

host Mφ where the percentage was less than 1% [96]. This indicates that at steady-



state, monocyte populations do not differentiate into tissue-resident Mφ and 

therefore most must be embryonically derived.  

 

 

 In terms of monocyte-derived Mφ, the classical Ly6Chi monocyte population is 

responsible for the generation of Mφ resident to organs that are subject to continued 

inflammation such as the intestine, as well as organs undergoing vast amounts of 

remodelling such as the mammary gland and myometrium [97–99]. These Mφ are 

short-lived and non-self-renewing in comparison to tissue-resident Mφ which self-

renew and survive for much longer periods [100]. The exact reason for this is unclear 

but if there is a continuous supply of circulating monocytes available, there seems 

little use in maintaining a long-term resident population. 

Figure 1.3. Ontogeny of tissue-resident and monocyte-derived macrophages. Macrophages are 
derived from two main sources dependent on development stage. During embryogenesis, 
haemopoietic stem cells (HSCs) originating from the yolk sac can either differentiate to produce 
tissue-resident macrophages or can translocate to the fetal liver where they become monocytes 
and infiltrate into peripheral tissues. During adult life, HSCs in the bone marrow differentiate into 
granulocyte-monocyte progenitors (GMP), then macrophage/dendritic cell progenitors (MDP) 
before becoming monocytes in the blood stream and finally differentiating into macrophages in 
tissues.   



 Non-Immune Functions of φ 

The classical view of a Mφ is that it functions as a pathogen-eating rubbish bin in 

infection and immunity. However, many other non-immune responses rely on Mφ 

including development, steady state haematopoiesis and wound healing.  

In the bone marrow, Mφ are key in maintaining steady-state levels of 

haematopoiesis. During erythropoiesis, when RBCs are reaching maturity, Mφ gather 

to remove the nuclei discarded during RBC enucleation. As well as RBCs, Mφ clear 

neutrophils in the spleen and any cells in the bone marrow that do not express CD47. 

Interestingly, this is one mechanism leukemic cells utilise to avoid phagocytosis 

through upregulation of CD47 [101].  

Most knowledge on Mφ in development has come from studies using the M-CSF-/- 

mouse model [102]. M-CSF-/- mice exhibit a plethora of abnormalities including a lack 

of teeth, fertility issues in both males and females and skeletal defects [103]. 

Osteoclasts are differentiated macrophages that form from Mφ fusion events in the 

bone. Osteogenesis: the development and formation of bone is heavily reliant on the 

ability of osteoclasts to resorb bone during remodelling [104].  

Mφ are also critical in wound healing - several parallels can be drawn between this 

process and cancer immunity. Mφ are involved in all three stages in the wound 

healing response: inflammation, proliferation and remodelling [93]. Of note, the 

production of several MMPs by Mφ is a feature of each stage in this process. At each 

stage, Mφ exhibit very different phenotypes; they are extremely plastic cells and can 

sense and respond to their environment. Mφ can be broadly classified into two 

phenotypes: M1 pro-inflammatory and M2 anti-inflammatory. This classification is in 

fact a spectrum as mentioned in 1.2.3.2 however there are some functional 

differences that arise from different stimuli. M1 φ are essential for debris and 

bacterial clearance in the early wound however this population must be replaced 

with M2 φ to resolve inflammation and promote re-epithelialisation [93][105]. This 

M1/M2 paradigm will be discussed in greater detail in 1.3.   



 Macrophages in the Mammary Gland  

To detail how Mφ function in each specific organ within the body is beyond the scope 

of this thesis. However, the reliance on Mφ by the mammary gland is of interest for 

this body of work. In BC, up to 50% of a tumour is comprised of Mφ and generally 

speaking they have a deleterious effect on survival [106]. How this population 

encourages BC growth is discussed in 1.3.2.1 but it is worth noting that the mammary 

gland is not devoid of Mφ throughout health with their first exposure occurring 

during disease. It is reported that within just 2 weeks of birth, bone-marrow derived 

Mφ begin homing to the mammary gland [107]. When this migration is interrupted, 

such as in M-CSF null mice, branching morphogenesis, stem cell activity and alveolar 

budding are all interrupted. Therefore, Mφ play a key role in the development and 

maintenance of the highly dynamic mammary gland. Recently, the dogma that 

mammary gland Mφ are derived from bone marrow-derived monocytes has been 

challenged by a group that determined it is actually fetal-derived Mφ that dominate 

adult mammary glands [108]. Delineating the ontogeny and role of Mφ in both 

development of the mammary gland and during each stage of breast disease will be 

essential in designing novel therapeutics targeting monocytes or Mφ in BC.  

 Macrophages in Immunity  

The original role of Mφ as professional phagocytes is arguably of most relevance to 

the innate immune response. However, their ability to recognise stimuli, become 

appropriately activated and trigger downstream events to mount an adaptive and 

thus more complex immune response with memory is also essential. Mφ must 

recognise a plethora of molecules from different domains, let alone species. To do 

this, they express an abundance of receptors including toll-like receptors (TLRs), 

mannose-receptor and scavenger-receptor that recognise constituents of pathogens 

such as bacterial and fungal cell wall components. Recognition of these components 

leads to activation of Mφ and often phagocytosis through production of a 

phagolysosome – a fusion of hydrolytic enzymes contained in the lysosome with a 

phagosome containing the foreign object to promote its destruction. However, not 



all interactions lead to phagocytosis and instead some lead to the production of 

inflammatory cytokines or other cell death programmes such as pyroptosis [109]. 

Post-digestion, Mφ process the pathogen and form pieces that become peptide 

antigens. These antigens are processed and packaged into a complex presented with 

major histocompatibility complex II (MHCII) on their surface. In this respect, Mφ can 

function as antigen-presenting cells (APCs) presenting antigens to helper T-cells [71]. 

T-cells can thus directly induce an immune response or communicate with B-cells to 

stimulate antibody secretion. To come full circle, the formation of antibody-antigen 

complexes on the surfaces of target cells stimulates further phagocytosis via 

mechanisms such as agglutination and opsonisation [110].  

Additionally, Mφ can produce chemical messengers: cytokines that act locally and in 

some cases upon long distances to either promote or downregulate inflammatory 

responses. If Mφ are stimulated to produce pro-inflammatory cytokines, they will 

release messengers such as tumour necrosis factor (TNF), IL-1, IL-6, IL-8 and IL-12. 

And conversely, their production of anti-inflammatory cytokines includes 

transforming growth factor β (TGF-β) and IL-10 [111]. Some of these cytokines will 

be discussed in greater detail in the context of cancer immunity, particularly those 

that relate to the topic of this thesis.   

To summarise, Mφ are first-line phagocytic cells that play an important role in 

mounting both a general and specific immune response. Furthermore, they function 

in several other processes in the body including early life during development and 

maintaining homeostasis. Although not discussed here, they also participate in many 

diseases and their presence is prognostic in many conditions. This includes cancer 

which will be discussed in 1.3.2.1. 

 Neutrophils 

The most abundant yet shortest-living immune cell is the humble neutrophil; a 

member of the polymorphonuclear neutrophil (PMN) family, otherwise known as 

granulocytes. The discovery of neutrophils was made by Paul Ehrlich, observing 

distinct granular structures and a lobulated nucleus under the application of certain 



stains. This property of neutrophils is responsible for their naming since neutrophils 

take up both acidic and basic dyes to become overall neutral. Of all the leukocytes in 

the body, neutrophils make up around 70%. However, at any one time only 1-2% are 

present in the circulation; the blood merely acts as a transport system for neutrophils 

to reach their target tissue [112]. 

In contrast to the M-CSF that drives Mφ differentiation, neutrophil lineage 

commitment is driven by granulocyte colony-stimulating factor (G-CSF). From the 

early lymphoid-primed pluripotent progenitor (LPMP) comes the granulocyte-

monocyte progenitor (GMP). It is these latter cells that under stimulation of G-CSF 

commit to the neutrophil lineage, first becoming a myeloblast before a maturation 

program that produces a mature neutrophil [113]. During these maturation phases, 

the granules inside the cell themselves develop from early azurophil granules to 

secretory vesicles in the cell’s final form. These secretory vesicles are responsible for 

much of the anti-microbial function of neutrophils including production of elastase, 

myeloperoxidase (MPO) and MMPs – including MMP-8 (Figure 1.4) [114].  

In any one day, 1011 neutrophils are produced in the bone marrow for homeostatic 

maintenance of granulopoiesis, where they linger for 4-6 days forming a reserve pool 

[115]. During infection, neutrophils are mobilised, and the pool becomes depleted 

leading to neutrophilia – driving further production. Neutrophil trafficking from the 

bone marrow is driven via an axis involving G-CSF, chemokine C-X-C motif ligand-12 

(CXCL12) and CXCR4. Under homeostatic conditions, neutrophils are retained in the 

bone marrow via VLA-4/VCAM-1 signalling – enhanced by CXCL12 binding to its sole 

receptor: CXCR4 present on the neutrophils themselves [116]. During mobilisation, 

CXCR4 is downregulated, in part by G-CSF that inhibits CXCL12 production from bone 

marrow stromal cells [117]. Neutrophils also express CXCR2, which upon chemotactic 

CXCL1, -2, -5 and -6 ligand binding mediates their egression into sinusoidal blood 

vessels to travel to the site of infection [118].  

In contrast to Mφ, neutrophils have a more limited arsenal and participate in far 

fewer processes. This is probably related to their short half-life of around 6-12 hours 

in circulation and up to 2 days in tissues [119]. Generally, neutrophil functions can be 

divided into 3 categories: phagocytosis, degranulation and netosis - the release of 



neutrophil extracellular traps (NETs) Figure 1.4).  These functions will be discussed in 

the context of cancer in 1.3.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Neutrophil clearance is as important as activation due to their highly cytotoxic 

contents. When neutrophils are not removed, their intracellular cargo can be 

released upon their death via necrosis or netosis [120]. Accumulation of neutrophils 

can be extremely detrimental leading to prolonged inflammation and tissue damage. 

Clearance of neutrophils is less well understood than their influx into tissues. 

Efferocytosis is one process of removal whereby Mφ remove neutrophils ‘in the 

battlefield’. However, an emerging mechanism for aged neutrophil removal is 

homing back to the bone marrow via re-expression of CXCR4, where they become 

destroyed by bone-marrow Mφ Figure 1.5 [121].  

Figure 1.4. The main neutrophil processes in immunity.  Neutrophils utilise three major 
mechanisms: phagocytosis, degranulation and NETosis to function against pathogens. Phagocytosis 
is an evolutionarily-conserved process of ingesting foreign cells or particles for their destruction. 
Degranulation involves releasing their cytosolic contents including MMPs and myeloperoxidase 
(MPO). NETosis is the release of a neutrophil extracellular trap (NET) that can stick onto foreign 
matter and enhance its removal.  



 

 

 

 

 

 

 

 

 Other cells in innate immunity 

Neutrophils and Mφ are of the most importance to this thesis, however for 

completeness the remainder of the granulocyte family will be briefly discussed. 

Representing a much smaller percentage of total leukocytes are: the eosinophils, 

basophils and mast cells. The most abundant of this group are the eosinophils, 

making up around 1-3% of total leukocytes [122]. Predominantly, eosinophils 

function as anti-parasitic immune cells, capable of protection against helminth 

infection [123]. During helminth infection eosinophil levels rise, with aggregation and 

degranulation occurring in the damaged area [124].  

The rarest of all granulocytes are the basophils, representing a mere 0.5% of all 

leukocytes in peripheral blood [125]. This cell type is functionally similar to the last 

of our granulocytes: the mast cell and therefore they will be collectively discussed. 

The primary role of mast cells is in propagation of type 2 immune responses 

associated with helminth infection and allergy. When CD4+ Th2 cells activate naïve 

B-cells, antibody production commences with immunoglobulin M (IgM) and IgD 

classes [126]. Importantly in the context of mast cells, if these antibody-producing B-

Figure 1.5. Neutrophil homing to the bone marrow.   Senescent neutrophils re-express CXCR4 to 
return to the blood where they are engulfed by resident bone marrow macrophages [121].  



cells interact with IL-4, class switching occurs to instigate IgE antibody production: 

commonly associated with allergic responses. IgE is able to bind to the FcR1 present 

on mast cells (as well as basophils) and upon interaction with an antigen, FcR1 

crosslinking occurs leading to the release of mast cell granular contents; including 

histamine, a potent vasodilator [127].  

Briefly, one more important leukocyte population is natural killer cells (NK cells). 

Originally discovered through their potent anti-tumour activity, NK cells are very 

effective at killing infected or cancerous cells without prior-stimulation. Whether 

they belong to the myeloid or lymphocyte lineage has been debated, but their 

cytotoxic ability is unquestionable. Their general role in immunity is beyond the 

scope of this thesis but their role in cancer is discussed in 1.3.  

1.2.4. Adaptive Immunity  

Cells of the myeloid lineage are of the most relevance to this thesis; however, it 

would not be a proper description of the immune system without mention to the 

more sophisticated arm: adaptive immunity. ‘Adaptive’ refers to how this system has 

developed over time to cope with such a wide range of pathogens in the first 

instance, and then variations of those pathogens that have mutated in attempt to 

subvert immune defences; a co-evolution arms race. The finely-tuned adaptive 

immune system has four defining characteristics: self vs non-self-recognition, 

antigenic specificity, diversity and immunological memory. This is in stark contrast to 

the innate immune system. For a system so complex, there are only two main types 

of cells comprising it: T-lymphocytes and B-lymphocytes. Broadly, the two can be 

categorised into cells involved in adaptive cellular immunity and adaptive humoral 

immunity respectively. However, there are many subsets within each category that 

perform their own functions   

T and B lymphocytes perform very different functions; however, both rely on 

generation of a diverse repertoire of receptor specificities. This occurs during a 

process termed VDJ recombination whereby gene segments are recombined to 

produce antigen receptors that can recognise as many parts of a pathogen as 

possible. This process is beyond the scope of this thesis but is well-reviewed by 



Market and Papavasiliou [128]. Nevertheless, this process is ultimately responsible 

for the diversity of the adaptive immune system.  

T cells are classified according to their expression of two CD molecules: CD4 and CD8 

that divide T cells into T helper (TH) and T cytotoxic cells (TC) respectively. TH cells 

otherwise known as effector cells are further subcategorised according to their 

functions. TH cells aid in the activity of other immune cells via production of cytokines. 

TC cells are effective at killing infected and damaged cells [129].  

The B cell lineage is less extensive than T cells. Their main responsibility is the 

production of antibodies – proteins that bind to and neutralise components of 

pathogens on the surfaces of infected cells and antigen-presenting cells. Mature B 

cells bind cell-surface antigens via their B-cell receptor (BCR). This begins a complex 

activation and differentiation programme that results in the generation of plasma 

cells from B-cells that themselves produce the antibodies. After antibody production, 

B-cells can undergo differentiation into memory B cells that are responsible for the 

immunological memory feature of the adaptive immune system. This means that 

upon a second exposure, a stronger more rapid response can be initiated [130].  

B and T cells cooperate with one another, and cross-over occurs with the innate 

immune system. Much of this communication occurs via specialised APCs called 

dendritic cells (DCs) that facilitate many of the process described above [131]. Acting 

at the interface between the innate and adaptive immune system, DC’s can function 

as pattern recognition receptors, process antigens, and migrate to draining lymph 

nodes to present antigen complexes to T cells [132,133].  

 

 

 

 



 Cancer and The Immune System 

It is not a new concept that inflammation and cancer are intertwined; the presence 

of leukocytes in tumours was seen as early as the 1800s by Rudolph Virchow [134]. 

Today, we know that the tumour microenvironment (TME) is teeming with immune 

cells, that are not merely bystanders but interact with cancer cells to influence 

tumour progression (Figure 1.6). 

However, it has only recently been accepted that inflammation plays a role in 

tumourigenesis, with some of the underlying molecular mechanisms having been 

elucidated. As previously discussed, the immune system has evolved to recognise self 

from non-self. It makes logical sense to categorise tumours as ‘self’ since they are 

composed of host cells. Because of this, it was a difficult notion to accept that the 

immune system could detect, let alone eradicate cancer. Evidence that the immune 

system could see these ‘invisible’ cancers came from both the clinic and experimental 

mouse models. Famous surgeon William Coley observed that his sarcoma patient 

who exhibited complete regression had a post-surgery Streptococcus pyogenes 

infection [135]. His theory was that this infection had prompted an anti-tumour 

immune reaction.  Interestingly, to this day the cancer clinic benefits from his 

observation with the use of the infamous tuberculosis vaccine: Bacillus Calmette-

Guérin (BCG) in treating bladder cancer patients, and the fact that Coley’s toxin – a 

mixed bacterial vaccine - is still used as an immunotherapy by some clinicians. 

[136,137] 

Further support of the cancer-immune system connection came from Burnet and 

Thomas in the 1950s who suggested the ‘cancer immunological surveillance’ theory. 

Their hypothesis suggested that emerging tumour cells expressed neoantigens that 

provoked an immune response [138,139]. Experimental research using hybridoma 

studies supported this notion. Mice were immunised with human tumours and large-

scale screenings were carried out on the antibodies (Abs) produced. Many that were 

obtained were exclusive to the tumour antigen and not the tissue antigen – 

confirming the existence of neoantigens on tumour cells [140].   



Nevertheless, some opposition to the immunosurveillance hypothesis arose when 

novel genetic tools created mice that lacked an effective immune system. In nude 

mice that lack a thymus and thus T-cells, there was no increased incidence in 

spontaneous or chemically-induced tumour development compared to wild-type 

controls [141]. Of note, nude mice still have functioning NK cells – the accepted 

hypothesis for the lack of observed phenotype.  

Some years later, Robert Schreiber’s group used alternative knockout mouse models 

that shaped a newer immuno-oncology paradigm. Mice deficient in recombination-

activating gene-2 (RAG2-/-) lack both T and B lymphocytes. When RAG2-/- mice were 

subjected to chemical carcinogenesis, they developed sarcomas earlier and with 

greater frequency than their wild-type counterparts. A similar story was seen in 

interferon γ (IFNγ)-/- mice and susceptibility increased further in double RAG2-/- IFNγ-

/- mice, confirming the immune system is indeed essential in tumour prevention. 

However, additional data conflicted with the original immunosurveillance 

hypothesis. It was observed that tumours from immunodeficient mice were more 

immunogenic [142]. Immunogenicity is a term used to describe how well a tumour 

can stimulate an immune response – highly immunogenic tumours stimulate the 

most. This suggests a paradoxical role for the immune system in shaping the immune 

landscape to promote tumour outgrowth and coined the seminal use of the term 

‘immunoediting’ to describe the dynamic process whereby the host immune system 

shapes the fate of a tumour. Immunoediting is the current accepted theory in cancer 

progression and will be discussed in greater detail.  



 

Figure 1.6. Contribution of immune cells and their products in the TME.  In the TME, Mφs are 
known to polarise to the pro-tumourigenic M2 phenotype and increase angiogenesis via 
upregulation of VEGF. Dendritic cells in the TME become less involved in presenting antigens to T-
cells. The number of Treg cells is high in tumours, and other anti-tumourigenic T cells become less 
abundant. Neutrophils carry out their effector functions, natural killer cells prevent tumour cells 
being destroyed and due to all of this, the cancer cells themselves can continue to grow and 
proliferate.  

1.3.1. Immunoediting 

The process of immunoediting revolves around the idea that the immune system has 

a dual role in tumour development. It can either function to detect and eradicate 

cancers or it can promote the selection of tumours that are unable to promote a 

strong immune response and thus proliferate and thrive. The current theory 

proposes three stages of immunoediting: the elimination phase, also known as 

immunosurveillance, the equilibrium phase and escape [143].  

During the elimination phase transformed cells are detected and eradicated by the 

immune system: tumours remain contained. The immune cascade commences with 

a mass of transformed cells that are recognised by the immune system via several 

mechanisms. Firstly, the mass of cells has most likely caused local tissue damage 



whilst attempting to grow larger in size through neovascularisation for example 

[144]. This causes release of inflammatory cytokines from surrounding stromal cells. 

Secondly, the presence of tumour neoantigens on the surface of transformed cells 

prompt immune recognition. These tumour antigens come in several forms including 

mutational antigens and overexpressed proteins amongst others [145]. Similarly, 

tumours can produce so-called ‘danger signals’ such as uric acid that ultimately leads 

to their detection [146].  

The common step after initial recognition seems to be via cytokine activation of 

immune cells such as NK cells and gamma-delta (γδ) T cells [147]. These cells produce 

IFNγ which has a cornucopia of effects in the TME. Two instances of this are the direct 

cytolytic effect of IFNγ on tumour cells themselves as well as stimulation of 

chemokine production (CXCL-9, -10 and -11) from tumour cells that results in 

recruitment of further immune cells such as Mφ [148,149]. Tumour cell debris that 

arises in the TME can be ingested by local DCs that then home to draining lymph 

nodes where they are able to induce CD4+ TH cell differentiation and eventually aid 

in the production of CD8+ T cells that are specific to the tumour. This then comes full 

circle when both T cell populations reach the tumour and remove the highly 

immunogenic cells [142].  

The next stage of immunoediting relies on some tumour cells having escaped the 

elimination phase, either because of intrinsic or acquired heterogeneity. Whilst the 

elimination phase is still ongoing and highly immunogenic cells are eradicated, 

tumour cells evolve and due to genetic instability acquire new mutations such as the 

loss of major histocompatibility complex class I and II antigens or mutations in the 

IFNγ pathway that confer immune resistance. [143]. This dynamic equilibrium phase 

is essentially a long period of time, potentially years, where Darwinian selection 

occurs and results in a population of negligibly immunogenic tumour cells that can 

enter the final stage of immunoediting. 

This final stage is known as the escape phase - the tumour becomes impassive to the 

attempts of the immune system and can divide uncontrollably. A generally 

immunosuppressive tumour microenvironment is encouraged, with high levels of 

cytokines such as VEGF, TGF-β and expression of immunoregulatory molecules such 



as programmed death-ligand 1 (PD-L1) [150]. The tumour becomes clinically 

apparent and the host immune system obsolete in controlling the tumour. 

 

1.3.2. Contributions of Specific Cell Types  

 Macrophages  

Most immune subtypes function in some shape or form in the process of 

immunoediting: from the early NK cells to the later CD8+ T cells. However, the most 

abundant of all cell types present in the TME are tumour-associated macrophages 

(TAMs). The initial hypothesis of TAM ontogeny proposed that differentiation of 

circulating bone-marrow derived monocytes was responsible however in the past 

few years this dogma has been challenged - suggesting embryonic-derived tissue-

resident Mφ such as those discussed in 1.2.3.3 can also provide a pool of TAMs. 

Tumours therefore exhibit chimerism with respect to their Mφ origins.  

In human cancers, TAMs can constitute up to 50% of a tumour’s mass [151]. TAM 

infiltration is synonymous with increased tumour growth – via their ability to 

influence pro-tumourigenic processes such as angiogenesis and immune-

suppression. Meta-analyses have shown that in 80% of cases a high density of TAMs 

is associated with a poor prognosis in solid tumours including BC [106]. Tumour-

derived chemotactic factors such as CCL2, VEGF and M-CSF all encourage the 

migration of Mφ into the TME. Genetic depletion of Mφ using transgenic MMTV-

PyMT mice crossed with M-CSF null mice resulted in a delay in progression to 

malignancy as well as metastasis. The reverse experiment - overexpression of M-CSF, 

resulted in an acceleration of tumour progression and metastasis [152]. These data 

combined has led many to believe that TAM presence promotes tumour growth and 

progression. 

However, as alluded to in 1.2.3.3, Mφ exhibit a great deal of plasticity - essential to 

respond to a diverse range of signals and carry out multiple functions. Activation of 

Mφ by different sets of signals leads to ‘polarisation’ – a narrow way of describing 

the different phenotypes that arise in this process (Figure 1.7). These subsets of Mφ 



are commonly referred to as M1 and M2; with M1 representing the classically 

activated Mφ population and M2 the alternatively activated Mφ [153]. The 

‘classically activated M1’ phenotype is largely pro-inflammatory. Upon activation by 

bacterial lipopolysaccharide (LPS), IFNγ and (GM-CSF), M1 Mφ secrete a wide variety 

of pro-inflammatory cytokines including TNF, IL-1β, IL-6 and IL-12, leading to the 

downstream activation of the adaptive immune system [92,154].  

In comparison, ‘M2 Mφ’, of a decidedly more heterogeneous nature than their M1 

counterparts are associated with an anti-inflammatory phenotype. Activation does 

not occur via LPS or IFNγ but by numerous other cells and molecules. [78]. Fungal 

cells, parasites, complement proteins, IL-3, IL-4 and TGF-β can all induce the M2 

phenotype [80]. Characteristically, M2 Mφ express anti-inflammatory IL-10 as well as 

IL-1Ra and secrete angiogenic factors such as VEGF [155]. M2 Mφ are further 

subdivided into three categories: M2a, b and c. M2a Mφ are activated through 

exposure to IL-4 and IL-13 and participate in Th2 responses. Immune complexes and 

TLRs induce M2b Mφ, which are involved in immuno-regulation. And finally, M2c Mφ 

inducible via IL-10 aid in general suppression of the immune system and tissue 

remodelling through changes in matrix deposition [156].  

The concept of M1/M2 φ existing on a continuum was discussed in 1.2.3.2 and 

1.2.3.3.2. There is much debate in the field regarding the concept of M1/M2 φ 

polarisation, which many consider outdated [157]. For example, delineating φ 

subtypes through the use of one or two markers is flawed considering it is often 

changes in levels of hundreds of genes that define the phenotype of a φ [158]. 

Furthermore, there are variations in experimental conditions between labs such as 

tissue culture surfaces, activation conditions and even the origin mouse strain that 

can lead to changes to φ behaviour. These observations have led to new guidelines 

that attempt to generate consistency in the field [80].    

TAMs are often considered as polarised M2 Mφ, but this is likely an 

oversimplification. Some evidence exists that TAMs can be of the M1 phenotype. NK 

cells and APCs that produce IFNγ and TNFα can stimulate macrophage effector 

function leading to tumour cell killing and in melanoma, reprogramming TAMs from 

an M2 to an M1 phenotype led to changes in the vasculature, improving 



chemotherapy delivery and tumour growth regression [159,160]. Perhaps M1 is the 

early Mφ phenotype, that either metamorphose into M2 Mφ or are outcompeted 

during tumour growth and immunoediting. But mostly, TAMs in established tumours 

do function as M2 Mφ. Upon activation, TAMs produce a plethora of cytokines and 

growth factors that drive cancer initiation, angiogenesis, immune suppression and 

formation of metastatic niches.  

Abnormally-sustained inflammation is a hallmark of cancer [161]. Sufferers of chronic 

inflammatory disorders such as inflammatory bowel disease are at an increased risk 

of developing cancer [162]. Mφ are potent inflammatory cells and their secreted 

substances can create a microenvironment that promotes genetic instability and 

increases the likelihood of mutations. In colorectal cancer, microbial products that 

penetrate through a disrupted epithelial barrier are thought to upregulate TAM-

derived IL-23 and IL-17 that drives cancer progression [163]. In hepatocellular 

carcinoma, TAM-derived IL-6 promotes tumour initiation via STAT3 signalling [164].  

Secondly, TAMs drive angiogenesis. Solid tumours have areas lacking a blood supply 

that subsequently become hypoxic. Cells respond to lack of oxygen by upregulating 

expression of hypoxia-inducible factor 1-α (HIF-1α) – a transcription factor that drives 

the expression of pro-angiogenic genes to promote vascularisation [165]. TAMs 

present in hypoxic regions of tumours use this mechanism to form blood vessels that 

provide nutrition for tumour growth and prevent necrosis [151,166].  

Another pro-tumourigenic process mediated by TAMs is Immune-suppression. 

Through release of immuno-suppressive cytokines such as IL-12, TGF-β and 

prostaglandin E2,  activation of T regulatory cells (Tregs) occurs that suppress CD8+ T 

cell proliferation and function [167]. Similarly, high expression of arginase 1 (Arg1) in 

TAMs inhibits T-cell functions; specifically, antigen-specific responses [168].  

And finally, TAMs can contribute to formation of secondary tumours – which is the 

most comprehensively described function of TAMs. TAMs secrete factors that 

enhance migration and invasion within the primary tumour as well as influencing 

sites of colonisation. TAM-derived CCL18 enhances BC metastasis by organising 

integrin clustering to facilitate enhanced adhesion to the extracellular matrix (ECM) 



[169]. To become motile and invade the bloodstream, cells must first undergo 

epithelial-mesenchymal transition (EMT). Then, they must use the ECM as a conduit 

to travel. TAMs can alter cell adhesiveness, or produce proteases that reorganise the 

ECM to create this path [170]. Furthermore, TAMs can be recruited to distant sites 

such as the lung to form an environment suitable for colonisation. Tumour and 

stromal cells can release VEGF and TGF-β into the bloodstream to destination organs 

which encourage tissue-resident Mφ to produce S100A8 and serum amyloid A3 that 

recruits tumour cells and Mφ [171].  

Because of these pro-tumourigenic functions, Mφ have become a novel target in 

cancer treatment. There are several approaches to do this including preventing 

monocyte recruitment, reprogramming M2 TAMs to M1, or targeting molecules 

upregulated upon activation such as CD206 on M2 Mφ [172].  

 

 

 

 

 

 

 

 

 

 

 

Figure 1.7. A comparison between M1 and M2 macrophages. Processes in red and green represent 
anti-tumourigenic and pro-tumourigenic functions respectively [450]. 



 Neutrophils  

It is perhaps counter-intuitive that short-lived neutrophils contribute to a chronic 

disease such as cancer, but more and more evidence is emerging that this is the case. 

Meta-analyses looking at peripheral blood samples and tumour biopsies have 

concluded that presence of neutrophils correlates with poor prognosis [173,174]. 

Systemic neutrophils are increased in cancer patients, perhaps unsurprisingly 

considering the inflammatory nature of cancers – though it is known that tumour 

cells produce G-CSF to mobilise neutrophils from the bone marrow [175,176]. 

Researchers have begun to correlate patient outcome with neutrophil-to-

lymphocyte ratio. A ratio greater than 4 correlated with worse overall survival in 

every type of solid cancer at all stages [173]. However, changes in neutrophil 

numbers in peripheral blood is not necessarily representative of how tumour-

associated neutrophils (TANs) behave. A meta-analysis on tumour specimens from 

many types of cancers revealed that presence of intra-tumoural neutrophils was also 

a prognostic factor [174].  So, if tumours actively recruit neutrophils, what is their 

role in tumourigenesis? Sustained inflammation is a known contributor to cancer 

initiation, growth and metastasis. Neutrophil activity in the TME can support each of 

these processes. TANs generally exhibit a pro-tumourigenic phenotype, and in mouse 

studies, just like Mφ, neutrophils can also undergo polarisation. Using the Mφ 

nomenclature, the N1 phenotype is anti-tumourigenic whereas the pro-tumourigenic 

phenotype is N2 – the phenotype of most TANs [177]. Like M1/M2 Mφ polarisation, 

N1 and N2 is an oversimplification, representative of a spectrum, and notably has not 

been seen in humans. Polarisation towards the N2 phenotype is driven by TGF-β and 

stimulates the expression of Arg1 – known to suppress T-cell cytotoxicity [168]. It was 

elegantly shown through blockade of TGF-β that TANs can also be polarised to the 

N1 phenotype, driven instead by IFNβ [178]. N1 TANs possessed anti-tumourigenic 

activity including increased expression of pro-inflammatory cytokines such as TNFα 

and are more able to adhere to ICAM-1 that is upregulated on endothelial cells [177].  

Products released from TANs such as reactive oxygen species (ROS) and proteases 

contribute to angiogenesis, cell proliferation, matrix remodelling and invasion [179]. 

For example, neutrophils produce MMP-9 which facilitates degradation of the ECM 



and releases VEGF to enhance angiogenesis [180]. Additionally, NET release can have 

a two-fold impact in tumourigenesis: stimulating endothelial cells to release pro-

angiogenic growth factors and at distant sites, can sequester circulating tumour cells 

contributing to metastatic niche formation [181,182]. Additionally, there is evidence 

that G-CSF promotes metastasis by driving neutrophils into distant sites to create a 

pre-metastatic niche that enhances the metastatic ability of several tumours [183].  

Therefore, neutrophils represent a population that could be targeted to improve 

outcome. Currently there are three inhibitors in Phase I/II clinical trials targeting 

CXCR1 and 2 [184]. G-CSF inhibitors are also being developed and tested in pre-

clinical models, although their effects on cancer patients with vulnerable immune 

systems may limit their use in the clinic [183].  

 B and T Lymphocytes 

The adaptive immune system is critical to the eradication of transformed cells – 

implicating both B and T cells. Lymphocytes display much diversity in immunity, and 

the same is true in cancer. As with neutrophils and Mφ, infiltration of lymphocytes 

into tumours can be correlated with clinical outcome; but the picture is less clear 

than with myeloid infiltrates. In the case of T cells, which subtypes dominate the 

tumour influences patient outcome. The presence of CD4+ and CD8+ T cells is 

associated with improved survival in many cancers [185–187]. Whereas, the opposite 

is true if there are high numbers of Tregs in the tumour [188–190]. Why is there a 

differential response between these populations? T cell differentiation is guided by 

cues in the local microenvironment such as cytokines and the presence of other 

immune cells. In cancer, aberrant cells express tumour-associated antigens (TAAs). 

These are presented as fragments in complex with MHC I on the cell surface 

recognised by the T-cell receptor (TCR) on T cells. If binding occurs, this leads to T cell 

activation dependent upon concomitant co-stimulation [191]. This then drives clonal 

expansion of T cells and brings in other effector cells to the site. Ultimately, the 

activation of CD8+ T cells either directly by MHC-antigen complexes or via stimulation 

by CD4+ helper T cells directs their cytotoxic activity. This can occur directly via 

granule exocytosis such as release of perforin and granzymes or via the FasL death 



receptor pathway. Alternatively, cytotoxic activity can be indirect – using antibody/ 

complement-mediated mechanisms [192] .  

How cancer cells resist this killing was detailed in 1.3.1 but in brief, T cell mediated 

cytotoxicity cannot occur if MHC has been downregulated, tumours are in an 

immune-privileged site not accessible to the immune system or they have 

upregulated immune checkpoints [193]. Immune checkpoints exist on cells to 

mediate immune tolerance. It is both unnecessary and detrimental to the host to 

maintain constant activation and so mechanisms are in place to dampen the 

response. Tregs exist in the T cell repertoire to do this very role. They do this via 

production of anti-inflammatory cytokines such as IL-10 and TGF-β which dampen 

effector functions of both B and T lymphocytes [194]. This considered, it is evident 

why an increase in Tregs is detrimental to cancer outcome. T cells are the biggest 

target in immunotherapy, and intervention methods for cancer are discussed in 1.3.3 

Much less is known about B cells in cancer. However, what is known is that B cells 

often work in synchrony with T cells. Some tumours are comprised of up to one 

quarter B cells and in some BCs, 40% of the infiltrating lymphocytes are B cells 

[195,196]. The primary B cell function is production of antibodies, and in cancer there 

are TAAs that require antibody-neutralisation. Antibodies have manifold functions in 

cancer. Firstly, they coat tumour cells in a process termed opsonisation. This coating 

leads to the death of the cell via phagocytosis, antibody-dependent-cell-mediated 

cytotoxicity mediated by NK cells or activation of the complement pathway. 

Opsonisation can also lead to cross-presentation of tumour antigens by DCs [197].  

It is important to note that whilst not discussed, other immune cells are present in 

the TME and contribute to immunoediting. This includes NK cells, DCs and a recently 

discovered subset of monocytes and neutrophils: the myeloid-derived suppressor 

cells [198].  

1.3.3. Immunotherapy 

The twenty-first century has seen the emergence of a fourth pillar of cancer 

treatment: immunotherapy. Immunotherapy harnesses the body’s own immune 



system to destroy tumours by stimulating anti-tumourigenic processes or countering 

desensitisation. The contribution of the immune system to tumour growth and 

metastasis is significant and has been discussed in detail in 1.3. Immunotherapies 

reverse the latter stages of the immunoediting process: primarily the equilibrium 

phase but also the escape phase – when cells look for ways to avoid immune 

detection. Tumour cells express neoantigens that stimulate an immune response and 

subsequently create an inflammatory TME. However, it is now appreciated that 

tumour cells manipulate the immune system for their own survival. The most-

characterised example of this is inhibition of T cells. The surface of T cells is littered 

with ligands and receptors that facilitate the plethora of roles carried out by T cells– 

including stimulatory and inhibitory molecules. For antigen-mediated activation of T 

cells to occur, as well as TCR-MHC interaction, CD28 binds its receptors: CD80 or 

CD86 expressed on APCs for co-stimulation [199]. If this interaction is disturbed, TCR 

signalling is abrogated and T-cell activity is supressed. Sometimes, this is appropriate 

– for tolerance or resolution of inflammation, activity must be diminished and so 

pathways exist to regulate T-cell function. Tregs are the masters of this: they express 

inhibitory molecules on their surface that can interact with CD4+ and CD8+ T cells to 

inhibit their function. One example is cytotoxic T-lymphocyte antigen-4 (CTLA-4) 

which competes with CD28 for interaction with CD80/86 to antagonise TCR signalling 

[200]. However, CTLA-4 can become upregulated on activated T cells to suppress 

their cytotoxic activity thus shielding a tumour from immune destruction.  

Therapeutic inhibition of CTLA-4 thus became a feasible option for treating cancer 

and ipilimumab, a monoclonal Ab against CTLA-4 was the first FDA-approved 

immunotherapy for treatment of melanoma in 2011 [201]. Several other immune 

checkpoint inhibitors (ICIs) have been developed against targets such as 

programmed death-1 (PD-1).  

PD-1 is a receptor expressed on T and B cells and is important in regulating peripheral 

tolerance to prevent autoimmunity [202]. PD-L1 ligands are constitutively expressed 

on both haematopoietic cells and non-haematopoietic cells such as mesenchymal 

and endothelial cells [203,204]. PD-1: PD-L1 interaction leads to T cell inhibition. 

Tumour cells have exploited this mechanism to repress the immune response by 



expressing PD-L1 on their surface [205]. Hence, PD-1 and PD-L1 also became 

therapeutic targets and several years after approval of ipilimumab, two more mAbs 

were approved that targeted this pathway [206].  

In terms of success, ICIs have relatively low efficacies and some severe side effects 

not to mention a huge price tag. Ipilimumab treatment led to response rates of 

around 30-40% in monotherapy, increasing to 50% in combination therapy [207]. 

Billions of dollars have been channelled into developing immunotherapies and they 

have been miraculous for some patients. Yet, only around one third of patients have 

a durable and meaningful response to ICI’s; many relapsing months to years later. 

Melanoma has been the biggest success, but the results are less convincing in other 

cancers, particularly solid cancers. This means that most patients simply do not 

respond to immunotherapies [208]. The explanation for this is not entirely clear. 

Current focus on improvements to ICIs is searching for biomarkers that predict 

response to treatment. Currently in the clinic, patients are stratified according to 

expression of checkpoint ligands, mutational burden and presence of tumour-

infiltrating lymphocytes [209]. This latter marker is hypothesised to be key - tumours 

are referred to ‘hot’ with high levels of infiltration or ‘cold’ with low immune 

infiltration which can be due to immune exclusion or a total lack of response [210]. 

Cold tumours represent the biggest challenge for immunotherapy – since absence of 

immune cells or inactivity does not lend itself well to checkpoint inhibition. Most BCs 

are cold tumours [211].  

The non-cellular component of tumours: the ECM, is often overlooked in 

immunotherapy, but it is a constant in an ever-changing landscape. However, it is 

remodelled during tumourigenesis and immunoediting. Bioactive fragments released 

from the ECM can influence immune cell trafficking, angiogenesis, blood vessel 

permeability and cell death; mostly mediated by proteolytic enzymes such as the 

MMPs [212]. The contribution of matrix composition on shaping immunogenicity is 

a new concept but should be studied in more depth to aid in the design and 

improvement of novel and existing immunotherapies respectively.   

Whilst it is clear immunotherapy is a breakthrough field, it will be important in the 

coming years to address its limitations including cost, side effects and relapse.   



  Matrix Metalloproteinases 

1.4.1. Overview 

All cells exist surrounded by an ECM that acts not merely as a scaffold but also as a 

reservoir for signalling and growth molecules – rendering it a hub for cell-cell and 

cell-ECM communication. Fundamentally the ECM is composed of water, protein and 

polysaccharides with amount and distribution varying significantly between tissue 

types. By far the most abundant component is collagen – a triple helical fibrillar 

protein that impressively makes up over a quarter of the total protein present in the 

human body [213]. The ECM is not static but rather a dynamic environment that 

requires constant remodelling to facilitate changes in cell behaviour. This 

remodelling of constituents is carried out primarily by a group of proteolytic enzymes 

aptly named the matrix metalloproteases (MMPs).  

Matrix metalloproteinases (MMPs) are a family of 23 zinc-dependent 

endopeptidases belonging to a wider metzincin superfamily that also includes a 

disintegrin and metalloproteinase (ADAMs) and a disintegrin and metalloproteinase 

with thrombospondin repeats (ADAMTSs). The founding member: MMP-1 was 

discovered in tadpoles from Rane catesbiana: a frog native to North America [214]. 

Collagen in tadpole tails requires remodelling during metamorphosis and subsequent 

transformation into an adult body – a process reliant on collagenases.  

Collagen is not the exclusive substrate of MMPs – they are able to degrade absolutely 

all protein components of the ECM [215]. Because of this power, MMPs must be kept 

in check by various mechanisms including by the tissue inhibitors of 

metalloproteinases (TIMPs) which is discussed in greater detail in 1.4.2.  

MMP classification is based on their substrate specificity forming 5 subgroups: 

collagenases, gelatinases, stromelysins, matrilysins and membrane-type (MT-MMPs) 

[216]. The members represented by each group can be found in Table 1.2. 

Despite differences between subfamilies, all MMPs are multi-domain proteins that 

possess structural similarity. MMPs consist of a pre-domain, pro-domain, catalytic 

domain, hinge region and hemopexin domain– each with their own function (Figure 



1.8). The pre-domain – an N-terminal signal sequence targets MMPs to the 

endoplasmic reticulum for secretion. 

 

 

 

 

 

 

 

 

 

Post-secretion, the pro-domain which is just 80 amino acids in length holds the key 

to activation. A conserved PRCGVPDV sequence contains a cysteine residue that 

connects to the Zn2+ ion in the catalytic domain. This intramolecular complex formed 

functions to prevent catalysis. All methods of activation such as furin cleavage lead 

to a disturbance in the cysteine-zinc interaction to permit exposure of the Zn ion – 

essential as a cofactor for enzymatic activity - known as the cysteine-switch 

mechanism [217]. Lastly, the 170-amino acid hemopexin domain is a C-terminal four 

bladed -propeller structure important in substrate and TIMP recognition [218]. This 

domain features a highly conserved histidine sequence that functions in this 

recognition as well as in zinc chelation. There are some exceptions including MMP-7, 

-23 and-26 that lack the hemopexin domain, and MMP-23 that features a further 

cysteine-rich and immunoglobulin domain [219].  MT-MMPs are an exception to 

convention and have an additional domain that enables anchoring in the cell 

membrane. This is either in the form of a transmembrane domain (MMP-14, -15, -

16, ,-24 and -27) or a glycophosphatidylinositol anchor (MMP-17 and -25) [220].  

Subfamily Members  

Collagenases MMP-1, -8, -13  

Stromelysins MMP-3, -10,   

Gelatinases MMP-2, -9  

Matrilysins MMP-7, -11, -26  

MT-MMPs MMP-14, -15, -16, -17, -24, -25  

Others MMP-12, -19, -20, -21, -23, -27, -28  

Table 1.2. Classification of the matrix metalloprotease family   



 

 

 

 

 

It has been hypothesised that the diversity that exists between MMPs is due to 

duplication events that occurred during evolution in the tetrapod lineage [221]. 

Therefore, some members are derivatives of a single gene and this is evident in their 

location on the chromosome as clusters of MMPs. For example, on human 

chromosome 11: MMP1, -3, -7, -8, -10, -12, -13, -20, and -27 all cluster closely 

together and this is reflected in mouse chromosome 9 [222]. Whilst this may explain 

some of the overlapping functions of MMPs, it has important consequences for 

genetic manipulation. The creation of mouse models specifically lacking one specific 

MMP may be difficult due to linkage between nearby genes. This issue is discussed 

in further detail in 1.5.  

 

1.4.2. Regulation of MMPs  

MMPs are responsible for maintaining homeostasis via a plethora of physiological 

processes and thus their activity requires stringent regulation. There are four main 

mechanisms of regulation: transcriptional control, proenzyme activation, 

compartmentalisation, and specific inhibition.  

Constitutive transcription of MMPs is generally low under steady-state conditions 

but a transient increase occurs upon stimuli including cell-cell and cell-ECM 

Figure 1.8. Basic domain organisation of the matrix metalloproteinase enzyme family.  



interactions that result in production of cytokines such as IL-1, IL-6, TNF, TGF-, 

epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) [223,224]. 

Many of these molecules also regulate transcription via influencing mRNA stability. 

In recent years, micro-RNAs (miRNAs) have also been shown to regulate post-

transcriptional control of MMPs – an emerging area in the field [225].  

The second mechanism of regulation is the existence of MMPs as pro-enzymes that 

require activation. There are several ways to initiate proenzyme activation: 

endoproteinase cleavage, allosteric conformational change and chemical 

modification [226]. Membrane-bound MMPs are intracellularly activated by pro-

protein convertases such as furins and therefore are active immediately upon 

appearance on the cell membrane [227]. In contrast, secreted MMPs are activated 

pericellularly. Upon exit from the cell, MMPs often undergo an initial conformational 

change that disturbs the zinc-cysteine interaction and leads to cleavage within the 

pro-domain by other proteases such as plasmin, trypsin and elastase as well as other 

MMPs that can lead to pro-domain cleavage and thus activation through 

autoproteolysis (Figure 1.9) [217,228]. Autoproteolysis also appears to be triggered 

by other non-proteolytic means such as the release of reactive oxygen species (ROS) 

from phagocytic immune cells and in vitro, the addition of compounds such as 

sodium dodecyl sulphate and 4-aminophenylmercuric acetate [229,230].  

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

The location of MMPs is perhaps the simplest method of regulation however it is very 

effective in ensuring appropriate substrate interaction. The cell surface and 

surrounding ECM is an exceptionally complex mesh of thousands of receptors, 

molecules and enzymes that require compartmentalisation to ensure a cell responds 

correctly to its environment. Secreted MMPs preferentially locate to the pericellular 

space and associate with cell-membrane proteins as is the case for MMP-1 binding 

to 21 integrin [231,232]  

And finally, there exists a brake on activity in the form of inhibitors. MMP activity is 

controlled by both a specific family of inhibitors: TIMPs and non-specific protease 

inhibitors including 2-macroglobulin.  

The TIMPs are an ancient family of four inhibitors – a modest 190 amino acids in 

length comprising a simple structure of an N-terminal and a C-terminal domain [233]. 

Figure 1.9. Schematic detailing the cysteine switch mechanism of MMP activation.   Upon 
stimulation, the interaction between the catalytic zinc and a thiol group is disturbed and the catalytic 
region becomes exposed.  [289]. 



The N-terminal domain is responsible for chelating the zinc atom necessary for 

proteolytic activation and sustained activity. The four TIMPs have overlapping 

functions but each have specific qualities. TIMP-1 is principally expressed in 

reproductive organs and the central nervous system [234]. Its limited expression 

perhaps relates to it being the only TIMP member not able to potently inhibit all 

MMPs – it is a poor inhibitor of MT1-MMP (MMP-14), MT3-MMP (MMP-16), MT5-

MMP(MMP-24) and MMP-19 [235]. TIMP-3 is often considered the most important 

– able not only to inhibit all MMPs but also several members of the ADAM and 

ADAMTS families including ADAMTS-4, -5 and ADAM17 [236,237]. The ability to 

inhibit this latter member: ADAM17, has important consequences in inflammation 

acting as a sheddase, releasing ligands such as TNFα and epidermal growth factor 

(EGF) from the cell surface [238].  

It is conceivably partly due to these interactions that the TIMP3 knockout mouse 

exhibits the most profound phenotype without challenge – lung damage and 

accelerated apoptosis in the mammary gland [239,240] . And finally, there is TIMP-4, 

that is restricted primarily to the heart [241].  

Aside from the TIMPs, 2-macroglobulin is another well-studied MMP inhibitor. 

Present in tissue fluids and the blood, it is a homotetrameric protein of 725KDa that 

physically traps enzymes for subsequent endocytic removal [242]. And finally, non-

enzymatic inhibitory methods exist including production of ROS from phagocytic 

immune cells during inflammation that potently inhibit MMP activity [231].  

The need for such extensive regulation exemplifies the importance of a balance 

between activation and inhibition of these multi-functional metalloproteases in 

homeostasis to prevent disease.  

 

1.4.3. MMPs in Physiology and Pathophysiology 

MMPs are essential in both physiology and pathology: participating in a plethora of 

processes such as embryogenesis, wound healing and angiogenesis [243]. The list of 

MMP substrates is extensive and presented in the online database MEROPS [244]. 



However, many of their functions involve common substrates such as collagens and 

other large molecular weight proteins such as laminins, fibronectin and aggrecan. 

These latter proteins are cleavable by almost all known MMPs. The fibrillar collagens: 

Type I, II and III are cleaved by collagenases and MT1-MMP at a specific site three-

quarters from the N-terminal [220]. Collagen IV, found in basement membranes is 

cleaved by gelatinases, matrilysins and stromelysins. Furthermore, MMPs can cleave 

cell-adhesion molecules such as E-cadherin (matrilysins and stromelysins) and 

integrin v3 (MT1-MMP) to influence cell migration and adhesion to particular 

substrata [245].  

It is not simply that MMPs cleave large molecules for subsequent degradation. The 

cleavage of substrates often reveals cryptic epitopes that influence multiple cell 

behaviours. For example, cleavage of latent activating protein (LAP) by MMP-2, -9, -

13 and -14 increases the bioavailability of TGF-, since LAP complexes with TGF- to 

keep it inactive. TGF- is a potent growth-promoting cytokine which has a plethora 

of effects in both physiology and pathophysiology and is discussed in more detail in 

the context of MMP-8 in 1.4.5.2 [246].  

Furthermore, MMPs can also liberate peptides that impact vascular development 

and homeostasis. MMP-2 and -9 can cleave collagen IV to reveal an angiogenesis-

promoting neo-epitope subsequently termed tumstatin [247]. Similarly, MMP-9 can 

cleave VEGF in complex with heparan-sulphate proteoglycans (HSPGs) such as 

syndecans to again promote angiogenesis [248]. Conversely, MMP associated 

products can also inhibit angiogenesis. Cleavage of VEGF by MMP-3 and in some 

instances MMP-9, can lead to its inability to bind HSPGs leading to irregular vessel 

sprouting [249]. Thus, with such wide-ranging biological impacts, the spatiotemporal 

distribution of MMPs and their substrates are crucial to physiological function [250].  

Much of our knowledge on function is derived from the phenotypes of MMP 

knockout mouse models. Somewhat surprisingly, absence of any single MMP is not 

embryonic lethal nor are there severe consequences on postnatal development 

except for in the case of Mt1mmp null mice which die prematurely after a few weeks 

[251]. It has been hypothesised that due their overlapping functions, other MMPs 



compensate in these models – making interpretation more difficult. However, many 

of the phenotypes are defects in vascular development and bone 

growth/remodelling. Endochondral and intramembranous ossification – the 

formation of long and flat bones respectively both appear to be reliant on MMPs. 

Mmp2, -9, -13, -14, and -16 null mice all exhibit defects in some aspect of bone 

biology. In MMP-13 this appears to be a general remodelling defect but the 

phenotype is better characterised in Mmp2 and Mmp9 null mice [252]. Mmp2 null 

mice have decreased bone mineralisation and defects in osteoblast and osteoclast 

growth [253]. Mmp9 null mice exhibit delayed repair upon bone fracture [254]. These 

phenotypes illustrate how important matrix remodelling is to skeletal development 

and maintenance.  

Lastly, and of most relevance to this thesis is the importance of MMPs in immunity. 

A wealth of evidence has emerged over the past few decades that MMPs participate 

in both physiological immunity and immunopathology. There are three main 

mechanisms of MMP-mediated immunity: modulation of chemotactic gradients, 

physical breakdown of the ECM to facilitate immune cell migration and cleavage of 

anti-microbial peptides. The intricacy of the innate immune system has been dealt 

with in 1.2.3 but here much of the focus is on how leukocytes are recruited to sites 

of injury and inflammation.  

Cytokines and chemokines are released from the site of injury to recruit circulating 

immune cells. Once at their target tissue, leukocytes must transmigrate across the 

endothelial barrier before degrading the surrounding basement membrane and 

migrating through the dense interstitial matrix [255]. The components of these 

structures are substrates for proteolytic enzymes such as the MMPs and so it is 

unsurprising that leukocyte migration involves MMPs [256]. Neutrophil migration is 

driven by cytokine and chemokine gradients; many of which are bound in some form 

to the ECM or cell-surface receptors. MMP-7, -8 and -9 all facilitate neutrophil 

migration to some extent. MMP-7 does this through cleavage of syndecan-1: 

releasing sequestered chemotactic cytokines such as CXCL1 – to guide neutrophils to 

damaged lung epithelia [257,258]. In an autoimmune skin blistering disease: bullous 

pemphigoid, absence of MMP-9 renders mice resistant due to an inability to recruit 



neutrophils [259]. There also exists a feed-forward mechanism between neutrophil 

infiltration and release of MMP-8 that will be discussed in detail in 1.4.5 [260]. 

Modulation of chemotactic gradients is not specific to neutrophil recruitment 

however, and at least six MMPs are able to release TNFα from its precursor on the 

cell surface (MMP-1, -2, -3, -7, -9, and -12). Similarly proIL-1β is a target of MMP 

proteolysis [261,262]. Both cytokines can hugely influence promotion of systemic 

inflammation.    

Aside from the creation of cytokine gradients, some MMPs aid in immune cell 

transmigration and extravasation. For example, MMP-2 and -9 are key in leukocyte 

transmigration across the blood brain barrier [263]. MMP-9 also mediates T cell and 

dendritic cell migration through the basement membrane [264]. Furthermore, mice 

treated with MMP inhibitors had impaired lymphocytes influx into lymph nodes – 

impacting on antigen-presentation to the systemic immune system [265].   

The final mechanism whereby MMPs influence immunity is through direct cleavage 

of endogenous antimicrobial peptides. MMP-7 is key in innate defence against 

intestinal pathogens. MMP-7 null mice are more susceptible to bacterial infection in 

the gut due to an inability to release α-defensin from epithelial cells [266].  

However, MMPs do not have uniquely positive effects on host immunity. Excess or 

inappropriate activity can lead to malignant transformation, chronic inflammation 

and ultimately disease; including HIV, meningitis, tuberculosis and periodontal 

disease [267,268]. This has led to ideas that modulation of MMP activity may be of 

benefit therapeutically. However, there are two principal issues: difficulty in 

targeting specific MMPs and the existence of so-called ‘anti-targets’. As previously 

discussed, MMPs function in homeostasis and many have positive effects that would 

be eliminated under inhibition. MMPs as anti-targets will be discussed in more detail 

in 1.4.4 in the context of cancer.   

Numerous pathologies implicate MMPs however there are fundamentally three 

general mechanisms of action: tissue fibrosis, weakening of the ECM and tissue 

destruction. The fibrotic disease atherosclerosis is the primary cause of mortality 

worldwide and whilst the series of events that lead to eventual myocardial infarction 



are complex, MMPs have an undisputed role in the progression of the disease and 

subsequent plaque rupture [269]. Less well understood is the role of MMPs in 

disorders involving reduced matrix stability such as the skin condition epidermolysis 

bullosa; nevertheless, upregulation of MMPs is seen and they have been considered 

as therapeutic targets [270]. Lastly, and of the most relevance to this thesis is the 

involvement of MMPs in diseases with characteristic tissue destruction such as 

osteoarthritis, inflammatory-related diseases (rheumatoid arthritis, periodontal 

disease, neuroinflammatory diseases) and cancer.  

Turnover of the ECM is a precise event, stringently regulated to prevent excessive 

destruction as discussed in 1.4.1. When this process becomes dysregulated it has 

enormous consequences for the immediate tissue microenvironment as well as 

distant tissues as is the case in cancer invasion and metastasis. Cells that experience 

genomic instability and uncontrolled cell division require new territory and resources 

urgently and upregulate proteolytic enzymes that permit this; such as the MMPs. This 

happens both within tumour cells but most remarkably and predominately through 

tumour-host interactions – coercing nearby stromal cells.  

1.4.4. Matrix Metalloproteinases in Cancer 

In a cancer field constantly improving but devoid of targeted therapies, MMP 

inhibitors (MMPIs) were a logical venture. Through their ability to cleave matrix 

components and liberate growth factors, MMPs participate in many stages of the 

tumourigenesis cascade. Many years ago, the seminal paper by Hanahan and 

Weinberg proposed the six hallmarks of cancer: sustained proliferative signalling, 

evading growth suppressors, activating invasion and metastasis, replicative 

immortality, inducing angiogenesis and resisting cell death [161]. The list became 

more exhaustive in recent years to include: avoiding immune destruction, genome 

instability and mutation, tumour-promoting inflammation and deregulating cellular 

energetics [271]. Common to most of these characteristics is the activity of MMPs. 

There is evidence for enhanced angiogenesis through liberation of pro-angiogenic 

molecules, physical breakdown of barriers such as the basement membrane 

facilitating invasion and metastasis, cleavage of death receptors to prevent 



apoptosis, liberation of growth factors to encourage cell growth and proliferation 

and changes in chemokine gradients to promote detrimental inflammation or avoid 

detection by the immune system. Furthermore, almost all MMPs are upregulated in 

virtually every type of solid cancer; expression generally correlative with tumour 

aggressiveness, stage and prognosis [272,273].  

Substantial investment from pharmaceutical companies saw the development of 

broad-spectrum MMPI’s such as marimastat and batimastat, designed to bind within 

the enzymes’ catalytic domain thus preventing their activity [274]. Unfortunately, 

pan-MMPI’s such as marimastat failed phase III clinical trials, failing to improve 

progression-free survival in metastatic BC patients and inadvertently causing severe 

side effects such as debilitating musculoskeletal pain and inflammation [275]. The 

hypotheses for failure were: MMPs function in early stages of tumour progression 

and the patient cohort was those with advanced disease. Secondly, there was a lack 

of specificity that led to accidental targeting of other closely related families such as 

the ADAMs and inhibition of MMPs that appeared to be host-beneficial rather than 

tumour-promoting [276]. This challenged the notion that MMPs simply pave the way 

for cancer cell invasion via the ECM. Instead, it is now appreciated that they have 

multifaceted roles in cancer, dependent upon type, stage and cellular source of the 

MMP [277]. In fact, several MMPs have been demonstrated to inhibit tumour 

initiation, cell migration, invasion and metastasis [278,279].   

Despite this, robust evidence exists that many MMPs are tumour-promoting in a 

range of malignancies. Expression in clinical specimens such as tumour tissue or 

serum often has prognostic value – with an overwhelmingly negative impact on 

survival [273]. Furthermore, samples from metastatic sites have been linked with 

high MMP levels such as MMP-1, -7, -9, -11 and -13 in BC [280].  

Several studies have looked at the expression patterns of the MMP family in BC. 

Köhrmann et al. profiled MMP expression at the protein and RNA level in both normal 

breast tissue and BC tissue, finding significant differences for many members of the 

MMP family [281]. The best example was the increased expression of MMP-9 and 

MMP-11 in BC specimens, which has been shown consistently [282,283]. Both MMPs 

are assessed in the clinical setting. MMP9 is one of 70 genes in the MammaPrint gene 



signature and MMP11 expression is measured in the Oncotype DX 21-gene array 

discussed in 1.1.5, used prognostically in the UK for guiding treatment for HER2- BC 

[284,285].  Interestingly, one of the fourteen members with high expression in BC 

tissue was MMP8; high expression also correlated with increased tumour grade 

[281]. However, there was no demonstrated correlation with survival whereas other 

studies have revealed a contrasting tumour-protective role for serum and tissue 

MMP-8 in BC [286,287]. 

 

1.4.5. Matrix Metalloproteinase-8  

MMP-8 is a member of the collagenase subfamily; efficient at cleaving triple helical 

collagen fibrils but also cytokines, growth factors and proteases [260,288]. It is 

alternatively known as neutrophil collagenase owing to its secretion in specific 

granules from neutrophils, but is also produced by a diverse set of cell types including 

Mφ, T cells, endothelial cells and fibroblasts – all cells in the TME [289]. MMP-8 is not 

essential for life, since Mmp8 knockout mice are viable and healthy with no overt 

phenotype. This is most likely due to compensation from other members of the MMP 

family. It is involved in many aspects of physiology and pathology, however of the 

most relevance to this thesis is its role in tumourigenesis and immunity.  

 MMP-8 in Tumorigenesis  

Post-MMPI failure, pharmaceutical companies abandoned MMPs but researchers 

were still curious as to why. MMP-8 was the first so-called ‘anti-target’ to be 

discovered. Evidence that MMP-8 was tumour inhibitory came from a screen of 

differentially expressed genes in two BC cell lines with opposing metastatic ability. 

Derived from MDA-MB-231 triple negative BC cells; both clones were tumourigenic 

but only one could metastasise to the lungs of mice. Mmp8 expression was 10-fold 

higher in the non-metastatic cell line compared to the metastatic, and this difference 

persisted in breast tissue after their orthotopic injection into athymic mice. 

Furthermore, upon stable antisense knockdown of MMP-8 in the metastatic clone, 

there was a 2.5-fold increase in invasion into a Matrigel matrix [290]. Follow-up work 



found that conversely, overexpression by retroviral transduction in the metastatic 

line reversed their metastatic ability [291].  

Later that year, a more focused approach was taken using an Mmp8 knockout mouse 

in carcinogen-induced skin cancer. Mice deficient in Mmp8 exhibited a much higher 

incidence of carcinogen induced skin papillomas – but this was a sex-specific 

phenomenon as this did not occur in females [292]. However, the male phenotype 

could be observed in females after ovariectomy or oestrogen-blocking tamoxifen 

treatment indicative of ovarian oestrogen being protective in female Mmp8 null 

mice. 

A similar observation was made using the same knockout mouse in tongue cancer – 

where Mmp8 deficient mice were more susceptible to developing tongue carcinoma 

than wild-type controls [293]. Once again, there were differences in phenotypes 

between males and females: the incidence was far greater in females than in males. 

To further study this, a tongue carcinoma cell line was utilised to examine the 

interplay between MMP-8 and oestrogen. Oestrogen upregulated the expression of 

MMP-8 and MMP-8 cleaved both forms of the oestrogen receptor (ER and ER). 

The MMP8 promoter does not contain an estrogen response element but does 

contain a C/EBP element known to associate with ER [294]. Both studies implicate 

oestrogen in the observed phenotypes but how MMP-8 mediates oestrogen 

signalling in vivo is yet to be determined.  

Aside from skin and tongue cancer, the anti-tumourigenic role of MMP-8 in in vivo 

tumourigenesis has extended to melanoma and BC. Overexpression of Mmp8 in 

B16F10 melanoma cells led to reduced lung metastases compared to control cells 

upon injection into immunocompetent mice. However, this was dependent on the 

catalytic activity of MMP-8 since this phenotype was lost when the B16F10 cells were 

transfected with a catalytically-dead mutant. To demonstrate the impact of host-

derived MMP-8 on tumour formation and metastasis, Mmp8 null mice were injected 

with B16F10 cells that did not express Mmp8. Whilst primary tumour growth was 

comparable between genotypes, lung metastasis was significantly higher in mice 



deficient in Mmp8. This work demonstrates that host and tumour-derived MMP-8 

contributes to the spread of melanoma [287]. 

In recent years, the Edwards group demonstrated the tumour and metastasis-

inhibitory effects of MMP-8 in a spontaneous mouse model of BC. The mouse 

mammary tumour virus-polyoma middle T antigen (MMTV-PyMT) model involves 

expression of a viral oncoprotein (PyMT) driven by a mammary-specific promoter 

(MMTV) [295]. Post-weaning, mice develop hyperplastic legions that progress in a 

similar fashion to human BC including predictable lung metastases. Crossing the 

MMTV-PyMT model onto Mmp8 null females revealed that absence of Mmp8 led to 

accelerated primary tumour growth and an eleven-fold increase in lung 

macrometastases [296]. In the primary tumour, reduced vascularity was seen in wild-

type mice compared to Mmp8 heterozygote and null mice at 8 weeks of age.  

Despite demonstration of MMP-8-mediated inhibition in tumourigenesis in several 

cancers, there is evidence that MMP-8 is detrimental in at least three cancer types: 

ovarian, liver and colorectal cancer. Tissue specimens from ovarian cancer patients 

were used to examine the expression of several MMPs at the protein and RNA level. 

Strong MMP-8 expression was observed in most ovarian cancer subtypes and 

significantly correlated with tumour grade and stage – implicating it as a prognostic 

factor for ovarian cancer progression [297]. Interestingly, MMP-8 expression often 

coincided with MMP-9 staining – perhaps indicative of the contribution needed from 

collagenases able to degrade type I and type IV collagen respectively. A connection 

with MMP-9 has been observed before in wounds from Mmp8 null mice: whereby 

loss of MMP-8 led to a significant upregulation of MMP-9 [298].  

 In both colorectal and liver cancer, high serum MMP-8 levels are associated with 

decreased survival, however the primary tissue was not studied and systemic levels 

of MMPs are not necessarily predictive of effects on the tumour itself [299,300].  

 

 



  MMP-8 and the Immune System  

The primary aim of the above studies was to determine the role of MMP-8 in 

tumourigenesis – where it is clear MMP-8 plays cancer type-specific roles.  However, 

a running thread between many of the studies was concomitant impacts on the 

immune system. This is unsurprising considering that several immune cells including 

Mφ and neutrophils are producers of MMP8, it cleaves several inflammatory 

cytokines and it is implicated in numerous inflammatory disorders.  

During inflammation, neutrophil activation leads to degranulation and subsequent 

release of antimicrobial molecules such as myeloperoxidase and elastase as well as 

ROS and several types of granules. MMP-8 is released in so-called ‘specific’ granules 

from neutrophils or can be membrane-bound. It has been suggested that up to 90% 

of MMP-8 is membrane-bound and interestingly resistant to TIMP-inhibition [301].  

The involvement of MMP-8 in several inflammatory disorders will be discussed and 

has been summarised in Table 1.3 for clarity.  

In several models of inflammation and disease, absence of neutrophil-derived MMP-

8 impairs the early inflammatory response through a delayed influx in neutrophils – 

suggestive of MMP-8 participating in a feed forward mechanism for neutrophil 

recruitment [260,296]. This is certainly true in wound healing. Matrix remodelling 

and recruitment of inflammatory cells are key processes for successful wound 

healing. Neutrophils are the first immune cells at the site of injury and survive for 

between 24-36 hours before undergoing apoptosis [302]. The death of neutrophils is 

essential for healing to progress and is followed by recruitment and differentiation 

of monocytes into Mφ [303].  

 

 

 

 

 



 

 

MMP-8 is the predominant collagenase in healing wounds but high expression is also 

observed in chronic ulcers [311]. In Mmp8 null mice, neutrophil influx is impaired in 

wound healing, and thus wound closure is delayed. This phenotype was rescued with 

bone marrow transplantation from wild-type mice indicating that immune-derived 

MMP-8 is essential for this process. Despite a delay in neutrophil entry, whilst 

neutrophils were cleared from wounds in wild-type mice, they remained in wounds 

from Mmp8 null mice [298]. Therefore, MMP-8 has a two-fold impact on neutrophils: 

driving their recruitment and resolving inflammation through their clearance.  

One hypothesis for the sustained inflammation seen in the absence of MMP-8 is a 

delay in neutrophil apoptosis. This was found to be the case in the wound healing 

model but is a phenomenon seen in other inflammatory disorders. In allergen-

induced asthma, Mmp8 null mice have increased airway inflammation attributed to 

both an initial increase in neutrophil numbers in the lungs, but also a significant 

decrease in neutrophil apoptosis [308]. A similar observation is made in 

inflammatory arthritis. Mmp8 deficiency exacerbates arthritis and neutrophils 

Disorder Phenotype Reference 

Inflammatory Arthritis Expression is protective – increased neutrophils in 

synovial tissue in null mice 

[304,305] 

Periodontal Disease Activity mediates tissue destruction. Beneficial 

during P.gingivalis infection - aids in resolution of 

inflammation 

[[43,307]285] 

Allergen-induced asthma Protective against airway inflammation – drives 

neutrophil apoptosis 

[308] 

TNF-induced hepatitis Promotes liver failure through apoptosis of 

hepatocytes and neutrophils   

[309] 

Bleomycin-induced lung 

fibrosis 

Promotes lung fibrosis by modulating MMP-9 and 

IL-10 activity 

[43,307] 

Sepsis Protective against LPS-induced endotoxemia  [310] 

Table 1.3. Relevance of MMP-8 in inflammatory disorders 



accumulate in the synovial tissue [304,305]. In a cancer-context, neutrophils linger at 

later stages of BC in the spontaneous PyMT model [296]. Similarly, in bleomycin-

induced lung fibrosis, neutrophil activity persists and does not disappear [312]. 

It has been hypothesised that neutrophils do not dissipate in Mmp8 null mice due to 

incomplete collagen breakdown, retaining some chemotactic signals. In periodontal 

disease, MMP-8 mediates tissue destruction [313]. Gum tissue is primarily composed 

of type I collagen. In mouse models of periodontitis, reduction in MMP activity 

reduces disease progression, and in Mmp8 null mice again there is impaired 

neutrophil infiltration perhaps related to the accidental trapping of neutrophil 

chemoattractants [43,307]. However, during Porphyromonas gingivalis infection, the 

complete absence of MMP-8 led to enhanced bone degradation suggesting that 

MMP-8 is essential for the resolution of inflammation [306]. Inhibition of MMP-8 

using doxycycline is currently carried out for treatment of periodontal inflammation 

[314]. Of note it is the only FDA-approved treatment to target MMPs in human 

disease.  

The predominant chemotactic signal mediated by MMP-8 is lipopolysaccharide-

induced CXC chemokine (LIX) now referred to as CXCL5. CXCL5 is one of the three 

mouse homologues of human IL-8; CXCL1 and CXCL2 being the others. CXCL5 is the 

most potent neutrophil chemoattractant both in vivo and in vitro [315]. It regulates 

neutrophil trafficking in a CXCR2-dependent manner but also binds nonsignaling 

receptors such as Duffy Antigen Receptor for Chemokines (DARC): a sink for at least 

16 CXC and CC chemokines. CXCL1 and CXCL2 are both associated with DARC and are 

also important neutrophil chemoattractants [316]. In the ECM, the establishment of 

haptotactic gradients occurs when negatively charged glycosaminoglycan chains on 

proteoglycans interact with chemokines and their immobilisation leads to 

modulation of leukocyte migration [317]. This immobilisation is often mediated by 

proteolytic cleavage.  

In vitro, it has been shown that MMP-8 cleaves CXCL5 at two sites: N-terminally at 

Ser4 ~ Val4 and C-terminally at Lys79 ~ Arg80 leading to truncated forms of CXCL5 that 

are more chemotactic than the precursor [260,318]. Proving that cleavage of MMP 

substrates occurs in vivo is a big challenge for the field due to the physiological 



redundancy that occurs in knockout mouse models. However, upon air pouch 

injection of full-length CXCL5 in Mmp8 null mice, PMN infiltration was severely 

reduced compared to the wild-type control [260]. MMP-1, -2, -9 and -13 all efficiently 

cleave CXCL5 but in this scenario, were not able to fully compensate for the loss of 

MMP-8 – indicative of the essential role of MMP-8 in leukocyte trafficking. In further 

support of this, in TNF-induced lethal hepatitis, CXCL5 was not released from the ECM 

in Mmp8 null mice, and concomitantly they displayed an impaired neutrophil influx 

[309]. Nevertheless, more recently it has been shown MMP-8 is not predominantly 

responsible for the cleavage of CXCL5, instead operating as part of a protease web. 

MMP-8 cleaves and inactivates α1-protease inhibitor (α1-PI), a known inhibitor of 

neutrophil elastase [319]. It was consequently demonstrated that neutrophil elastase 

activity increases and CXCL5 cleavage is ultimately neutrophil elastase-dependent.     

The MMP-8/IL-8 relationship has also been probed in humans. Thirkettle et al have 

demonstrated that overexpression of catalytically-active MMP8 in BC cells induces 

the expression of IL-8 and IL-6 [320]. Additionally, IL-6 enhanced endogenous MMP8 

expression and IL-8 enhanced IL-6 expression in what is evidently an 

immunomodulatory network. Whether MMP-8 directly cleaves IL-8 and its 

homologues or mediates downstream cleavage is still unclear and it is likely both 

could be true depending on substrate availability and presence or absence of 

enzymes with overlapping functions.   

The final aspect of MMP-8 in innate immunity is the link with TGF-β – which is mostly 

in the context of cancer. TGF-β is a multifunctional cytokine that is at first tumour 

suppressive in the epithelium before it can instigate tumourigenesis via several 

mechanisms. This switch in the role of TGF-β is known as the ‘TGF-β paradox’ [321]. 

Firstly, it has been shown to induce EMT [322]. EMT is a developmental process 

recapitulated in tumour progression whereby epithelial cells lose their polarity and 

cell-cell adhesion, gaining migratory and invasive properties to invade distant sites 

[323]. Further actions of TGF-β include modification of the cellular milieu to 

encourage tumour progression via deposition of ECM substances and 

immunosuppression [178,324].  



TGF-β is a potent regulator of inflammatory cells in the TME. T cell inflammatory and 

cytotoxic functions are suppressed, Tregs are potently activated by TGF-β to repress 

downstream effector cell function and in both neutrophils and Mφ, polarisation 

towards the N2, M2 pro-tumourigenic phenotype is induced [177,325]. Thus, the 

bioavailability of TGF-β can have a dramatic effect on inflammatory cells, cancer cells 

and stromal cells in the TME.  

TGF-β is often complexed with ECM molecules – which can be released through 

proteolytic cleavage. One example is fibromodulin: a proteoglycan in the ECM that 

binds TGF-β. Wen et al. took monocytes from Mmp8 null mice and found they 

struggled to polarise to the M2 phenotype endogenously or upon IL-4 stimulation. 

They demonstrated that MMP-8 cleaved fibromodulin, increasing the bioavailability 

of TGF-β [326]. In this context, MMP-8 could modulate the immune system to 

facilitate tumour progression. 

Nevertheless, contrasting data shows MMP-8 cleaves the matrix proteoglycan 

decorin facilitating sequestration of TGF-β. Decreased availability of extracellular 

TGF-β led to reduced expression of miR-21 in turn leading to a release on the 

suppression of programmed cell death-4  (PDCD4) resulting in an increase in tumour 

cell apoptosis (Figure 1.10) [327]. It is likely that both scenarios could be correct, with 

the action of MMP-8 in the tumour microenvironment likely to be context-

dependent, based on the local tissue type and array of cytokines and other enzymes 

in the vicinity.  

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

Figure 1.10. Proposed MMP-8 signalling pathway. MMP-8 cleaves decorin which is then able to 
sequester TGF-β. TGF-β is then unable to bind to its receptor which during tumourigenesis can 
increase the expression of miR-21. This micro RNA can suppress PDCD4 preventing tumour cell 
apoptosis [327].  



 Passenger Mutations  

Before the advent of modern genetic engineering tools such as CRISPR-Cas9 and 

genetic manipulation of embryonic stem cells (ESCs), selective breeding approaches 

were used in mice to study the function of a gene in vivo. Mus musculus is an ideal 

model organism for genetic studies since 99% of genes are shared with Homo 

sapiens, their reproductive cycle is short and they contract many of the same 

diseases as humans [328].  

Recently, more innovative techniques have been utilised to generate genetically-

engineered knockout mouse models. Using ESCs, homologous recombination at the 

target locus is carried out to render the gene non-functional – often inserting a drug 

resistance cassette in its place before injecting the cells into blastocysts, which are 

then implanted into pseudo-pregnant female mice [329]. However, it was not always 

effective and ESC’s from different mouse strains varied in their ability to undergo 

successful homologous recombination. Cells from the SV129 strain were particularly 

adept at colonizing and competing with cells from the inner cell mass of blastocysts 

[328]. Because of this, and the difficulty in obtaining manipulated ESCs from more 

favourable strains, thousands of gene knockout mice were produced on the 129 

background. However, the 129 strain had breeding difficulties and researchers 

desired mice on the C57BL/6 (C57) or FVB backgrounds [330]. These strains are well 

characterised and have become the gold standard for genetic mouse models. To use 

C57 mice as example: in order to obtain a pure background, with the vast majority of 

the genome consisting of C57 DNA, a backcross approach is taken for at least 10 

generations to be deemed a congenic mouse (Figure 1.11) [331]. The 129-transgenic 

donor mouse is bred to a C57 mouse, leading to the first generation of mice 

containing around 50% donor SV129 DNA and 50% C57 DNA. Further rounds of 

breeding with C57 mice are carried out to obtain a pure C57 mouse. If carried out 

effectively only 0.2% contamination from the 129 strain can be expected [332]. This 

0.2% contamination exists in the region flanking the target gene due to genetic 

linkage and is referred to as passenger DNA. Difficulties arise when this passenger 

DNA harbours mutations: aptly known as passenger mutations. Backcrossing for 10 

generations unfortunately does not always guarantee the loss of these passenger 



mutations and in fact their presence is highly likely. The closer the passenger 

mutation exists in relation to the target gene, the greater the likelihood of allelic 

differences between the knockout mouse and its non-transgenic littermates. 

Furthermore, if the passenger mutation results in a functional consequence for that 

gene such as its inactivation or expression of an aberrant protein, this confounds 

interpretation of any results since it becomes difficult to separate which gene is 

responsible for a phenotype.  

 

Whilst this concept of genetic variation in mouse strains and passenger mutations 

appears recent, it has been alluded to for some time. The existence of 

polymorphisms in the 129 genome were highlighted in a Nature paper in 1997 [333]. 

Ten years later, Lusis and Wang detailed complications with passenger mutations in 

the field of atherosclerosis but it is a problem that has been largely overlooked and 

ignored across many different fields in the last decade [334]. In 2015, Vanden Berghe 

et al. released a ground-breaking paper with the bold claim that interpretation of all 

genetically modified congenic mice may be impacted by passenger mutations [335]. 

By comparing the genomic sequence from the 129 strain to the C57BL/6J reference 

genome, an unprecedented number of insertion or deletion of bases (INDELS) and 

Figure 1.11. Persistence of passenger DNA despite backcrossing.   DNA from the 129 donor persists 
around the target locus after each cross.  



single nucleotide polymorphisms (SNPs) were detected in 1,084 genes in total. 

Importantly, this paper also investigated the functional consequences of these 

genetic alterations with 13% resulting in a gained or lost STOP codon. The group also 

investigated the extent of passenger mutations that could be present in 129 ES cell-

derived knockout mice. By looking at a small region of either 1, 5 or 10cM flanking 

the target gene, it was revealed that the percentage of mice carrying at least one 

passenger mutation was 70.7%, 96.7% and 99.5% respectively. This figure is 

exceptionally high and has implications for nearly all 129-derived knockout mouse 

models. Furthermore, a passenger mutation resulting in a new STOP codon and a 

potentially non-functional protein, affects 76% of all 129-derived congenic mice.  

One example of the consequences of these mutations is the Caspase11 passenger 

mutation. Seminal work in Cell and Science revealed IL-1β-converting enzyme 

(caspase-1) deficiency conferred resistance to endotoxic shock using Casp1 knockout 

mice [336,337]. However, almost twenty years later Kayagaki et al. uncovered a 

phenotype common to both Casp1 knockout mice and 129 mice (the origin strain of 

this model): a defect in IL-1β production and lack of caspase-11 expression. Upon 

investigation, a mutation in Casp11 was detected in the 129 strain that was also 

present in the Casp1 knockout mouse since the genes were too close on the 

chromosome to be segregated during recombination [338]. Subsequently, Casp1 null 

mice were generated using CRISPR-Cas9 technology and already some functions 

attributed to Casp1 have been shown to be Casp11-mediated [339].  

Two concepts have unfortunately coalesced in Mmp8 null mice. Firstly, smaller 

distance between genes increases the probability of linkage between those genes 

thus preventing recombination. Secondly, several members of the MMP family arose 

due to gene duplication events and thus many MMPs cluster tightly together on 

mouse chromosome 9. Mmp8, like the nine other MMPs that cluster nearby, is within 

5cM of the Casp11 gene. Almost all mouse studies were carried out in the Mmp8 null 

model created by Carlos Lopez Otin, which in the hands of Vanden Berghe et al. 

almost 10 years later had the Casp11 passenger mutation as described by Kayagaki 

[338]. However, that is not say that upon extensive breeding in other labs, the 

passenger mutation may have been eradicated. At this point, it is difficult to say 



which phenotypes were solely due to the loss of MMP-8 and which were confounded 

by a caspase-11 deficiency. Therefore, much of the work on MMP-8 described in this 

introduction, particularly in immunity is to be interpreted with this caveat in mind.  

 

  Research Aims and Objectives  

Most evidence indicates a tumour-suppressive function for MMP-8 in BC. This project 

intended to use the orthotopic model of BC, alternative to the spontaneous model 

used previously, to further expand the literature on MMP-8 in tumourigenesis. The 

main objective was to determine whether MMP-8 inhibited primary BC tumour 

growth through co-ordinating anti-tumour immunity by dissecting tumour growth 

metrics, immune populations and gene expression changes. The working hypothesis 

for this project was that MMP-8 orchestrated the innate immune system to suppress 

primary breast cancer progression.   

 

To verify this hypothesis, the aims were as follows: 

 

1. Determine whether absence of Mmp8 contribute to primary tumour growth 
in an orthotopic model of BC 

 
2. Characterise the intra-tumoural immune compartment in Mmp8 null mice 

 
3. Investigate intra-tumoural expression of lipid metabolism and cytokine genes 

in the absence of Mmp8  
 

4. Delineate the role of specific cell types within orthotopic tumours using 2D 
cell culture models  

 
5. Examine the impact of MMP-8 on immune organ populations to gain a wider 

understanding of the immune landscape in Mmp8 null mice 

 

 

 

 



 Materials and Methods 

 Mouse Breeding 

Mmp8 null mice were generated in the laboratory of Dr Carlos Lopez-Otin according 

to the protocol described in Balbín et al. [292]. Briefly, a targeting vector was 

engineered so that a PGK-neomycin resistance cassette replaced most of exon 2, the 

entirety of exon 3 and 4 and intron 2 and 3 of the Mmp8 gene. Embryonic stem cells 

(129/SvJ-derived) were electroporated with the vector and successfully-transfected 

cells were injected into blastocysts of C57BL/6J mice before being transferred into 

pseudopregnant females. Chimeric offspring were mated and maintained on a 

C57BL/6J background. In our hands, animals were bred on a C57BL/6J background. 

All experiments were performed in accordance with UK Home Office regulations and 

the European Legal Framework for the Protection of Animals used for Scientific 

Purposes (European Directive 86/609/EEC) under Project Licence SR 70/8722 and 

Personal Licence #ICD0AEBB3.  

 Genotyping and PCR 

Ear biopsies from mice were digested overnight (o/n) at 56°C in tissue lysis buffer 

(100 μl) (Tris-HCl (50 mM pH 8.5), EDTA (10 mM pH 8.0), NaCl (100 mM) and 0.2% 

SDS) supplemented with proteinase K (100 μg/mL). DNA was precipitated with 

isopropanol (100 μl), vortexing and centrifuged at 1400 x g for 30 mins. Isopropanol 

was removed, and the DNA pellet dried at 37°C for 2 hrs before being resuspended 

in TE buffer (200 μl) (Tris-HCl (10 mM pH 7.5), EDTA (1 mM)). PCR reactions were 

subsequently performed, as described below, in 96-well PCR plates (Corning, New 

York, USA) in the appropriate 96-well block thermal cycler PCR machine (Bioer 

Technology, Binjiang, China).  

PCR analysis of the MMP8 allele was performed by combining: DNA (0.8 μL), 

MegaMix- Blue (Clent Life Sciences, Stourbridge, UK) (10 μL) and WT, Anchor and Neo 

primers (at a final concentration of 0.8 μM, sequences listed below) under the 

following conditions: initialisation step at 94°C for 1 min; followed by 40 amplification 

cycles of denaturation at 94°C for 30 sec, annealing at 60°C for 30 sec, and extension 



at 72°C for 1 min; terminating with a final elongation step at 72°C for 10 min. The 

resulting PCR product was visualised using a 1.8% agarose gel, PCR products 

produced are 500-base pair (bp) (MMP8 WT) and 300-bp (MMP8 KO) in size.  

The oligonucleotide primers used were as follows: 

MMP8-Neo: 5’ – GCCAGAGGCCACTTGTGTAG – 3’  

MMP8-WT: 5’ – TCGTCTCAAGAGGTAGGCTCA – 3’  

MMP8-Anchor: 5’ – AGCCCTTAAACCGCTAAGGA – 3’ 

 

  DNA Sequencing  

PCR analysis of the caspase-11 allele was performed by combining: 1.4 µL genomic 

mouse DNA (processed as described in genotyping section), Accuprime Pfx 

SuperMix (Invitrogen, Paisley, UK) and forward and reverse caspase-11 primers with 

the following sequences:  

 

Caspase-11 Forward: 5’ - GGTTACTGTACAAAACGAGGCA – 3’ 

Caspase-11 Reverse 5’-AGCAAGCATGTTTCCGGAAG-3’ 

The PCR reaction proceeded under the following conditions:  

95°C for 5 minutes, 3 cycles of: (95°C for 15 seconds, 60°C for 30 seconds, 68°C for 

30 seconds) and maintained at 4°C.  

PCR product clean-up was carried out using the PureLink™ Quick Gel Extraction & 

PCR Purification Combo Kit (Invitrogen, Paisley, UK) according to the manufacturer’s 

instructions. The resulting PCR product was run on a 3% agarose gel to confirm 

amplification before sequencing. The capsase-11 PCR products were sequenced 

using the Mix2Seq Kit (Eurofins Genomics, Ebersberg, Germany) and subsequent 

analysis was carried out using DNADynamo (Blue Tractor Software Ltd, North Wales, 

UK).  



 Cell Culture  

B6BO1 cells were kindly obtained from Professor Katherine Weilbaecher at 

Washington University, St Louis. EO771 cells were obtained from Kairbaan Hodivala-

Dilke at Barts Cancer Institute, London. CMT-19T cells were purchased from CR-UK. 

All cell lines were mycoplasma-free and cultured in Dulbecco’s Modified Eagle’s 

Medium (DMEM) high glucose (Invitrogen, Paisley, UK) supplemented with 10% fetal 

bovine serum (FBS) (Invitrogen, Paisley, UK) and 100 units/ mL 

penicillin/streptomycin (P/S) (Invitrogen, Paisley, UK) at 37°C and at 5% CO2. Cell lines 

were grown in flasks coated in 0.1% gelatin from porcine skin (Sigma Aldrich, St Louis, 

USA). 

 Mouse Tumour Models  

B6BO1 or E0771 cells grown for at least two days, harvested at >80% confluency and 

injected at a density of 1 x 105 in 50 μl of 1:1 PBS and Matrigel (Corning, New York, 

USA: #354248) into the mammary fat pad of 8-10 week old female mice. Tumour size 

(mm3) was calculated by measuring the longest (L) and shortest (S) distance of 

tumour tissue and the formula 0.51 x L x S2. Once palpable, tumours were measured 

at least every 5 days. On the final day, tumour size was calculated ex vivo after the 

mice were sacrificed using the same formula.  

 Macrophage Isolation, Stimulation and Polarisation  

Femurs and tibias were harvested from WT and MMP8-/- mice aged between 6-8 

weeks old. Both epiphyses were removed, and the bones placed into a tube 

containing a hole made with a 19G needle prior to centrifugation at 3500 rpm for 4 

minutes. Bone marrow collected was centrifuged at 300 x g for 5 minutes, and cells 

underwent red blood cell lysis incubation for 5 minutes (NH4Cl, NaCO3, 1 mM EDTA, 

pH 7.3). Bone marrow was seeded into 6-well plates at a density of 2 million per well. 

Macrophage complete medium (50:50 Ham’s F12 Nutrient Mixture (Invitrogen, 

Paisley, UK) / DMEM with / 10% FBS and 1X P/S) was added on Day 1 with 10 ng/ml 

macrophage colony-stimulating factor (M-CSF) (Peprotech, Princeton, USA), topped 

up on Day 3 and replaced on Day 6. For polarisation experiments, on Day 7, 



macrophage culture medium was replaced with fresh medium containing 10 ng/ml 

M-CSF and either 100ng/ml recombinant LPS (Sigma Aldrich, St Louis, USA) or 10 

ng/ml recombinant IL-4 (Peprotech, Princeton, USA) as experimentally validated in 

[340] . RNA and protein were collected 48hrs post-stimulation.  

 Co-Culture Experiments 

For direct co-culture experiments, on Day 7 of the isolation of bone marrow-derived 

Mφs, 200,000 B6BO1 cells were added directly on top. Culture media and RNA was 

collected 48 hours post-addition. For transwell experiments, 200,000 B6BO1s were 

cultured overnight in a 0.4 µM transwell to adhere before being placed on top of Day 

7 bone marrow- derived Mφs. Culture media and RNA were collected from each 

compartment.  

 RNA extraction, reverse transcription-PCR and Quantitative Real-
Time PCR 

For tissue RNA isolation, 1mL of TRIzol (Thermo Fisher Scientific, Massachusetts, USA) 

was added to 50-100mg of tissue and homogenised with RNase-free glass beads 

(Thistle Scientific, Glasgow, UK) in a tissue-lyser (Qiagen, Sussex, UK) for 2 minutes at 

50Hz. For cells grown in culture, 1mL of TRIzol was used for every 1-2 x 106 cells. 

One fifth of the volume of TRIzol, of chloroform was added, the sample was mixed 

by inversion and total cell RNA was extracted using the SV Total RNA Isolation Kit 

(Promega, Wisconsin, USA) according to the manufacturer’s instructions. RNA 

samples were quantified using a Nanodrop 1000 spectrophotometer (Thermo Fisher 

Scientific, Massachusetts, USA) and their A260/280nm and A260/230nm absorbance 

ratios assessed for purity. Samples were reverse-transcribed using MMLV-

Superscript (Promega, Wisconsin, USA) resulting in a final concentration of 0.5 ng/μL. 

Quantitative real-time polymerase chain reaction (qRT-PCR) TaqMan was carried out 

using 5ng cDNA for genes of interest and 1ng cDNA for 18S rRNA.  The cycle 

conditions in the 7500 Fast Real Time PCR System (Applied Biosciences) were: 2 

minutes at 50°C, 10 minutes at 95°C, followed by 40 cycles of 15 seconds at 95°C and 

1 minute at 60°C. All primer/probe sets were obtained from Applied Biosciences 



(USA) (Table 2.1). 

 

Table 2.1. Primer/probe set details of all genes profiled for in qRT-PCR from Applied Biosciences 

Gene Name Catalogue Number 

18S Mm03928990_g1 

IL-6 Mm00446190_m1 

CXCL1 Mm04207460_m1 

CXCL2 Mm00436450_m1 

CXCL5 Mm00436451_g1 

Leptin Mm00434759_m1 

Acsl1 Mm00484217_m1 

Perilipin-1 Mm00558672_m1 

Lipase-E Mm00495359_m1 

Mmp8 N/A custom probe 

 

 Western Blotting  

Cells were lysed in RIPA buffer (500mM NaCl, 50 mM Tris pH 7.4, 0.1% SDS and 1% 

Triton-X100) supplemented with protease inhibitor (Merck Millipore, USA). Protein 

content in cell lysates was determined using the DC BioRad protein assay (BioRad, 

Hemel Hempstead, UK) and 20 μg was resolved using 8% SDS-PAGE gels and 

transferred using the wet method onto nitrocellulose membrane for 3 hours. Protein 

transfer was confirmed using Ponceau S staining before 1 hour blocking in buffer 

(phosphate buffered saline [PBS], 5% skimmed milk and 0.1% Tween-20). 

Membranes were incubated with primary antibodies (as in Table 2.2) for 16 hours 

overnight at 4°C in 5% Bovine Serum Albumin (w/v) in PBS with 0.01% (w/v) Tween 

(PBST). Membranes were washed three times for 5 minutes with washing buffer 

(PBST) before HRP- conjugated secondary antibodies (Dako, Agilent Technologies, 

USA) (Table 2.3) were applied and the blots were incubated for 2 hours. After a 



further three PBST washes, enhanced chemiluminescence (ECL) reagent (Thermo 

Fisher Scientific, USA) was applied according to manufacturer’s instructions. Protein 

bands were imaged using a Fuji Film (LAS-3000) system.  

Table 2.2 List of primary antibodies utilised for Western blotting 

 

Table 2.3 List of secondary antibodies utilised for Western blotting 

Secondary Antibody Cat No. Manufacturer Dilution 

Anti-Rabbit HRP P0448 Dako 1:2000 

Anti-Mouse HRP P0447 Dako 1:2000 

 

 Immunocytochemistry 

Cells were incubated at a density of 15,000 on 0.1% porcine gelatin-coated, acid-

washed glass coverslips overnight, before ice cold methanol fixation for 10 minutes. 

Cells were permeabilised in 0.1% Triton X-100 for 10 minutes prior to blocking in 5% 

goat serum for 30 minutes. Primary antibodies were diluted in blocking buffer to the 

concentrations found in Table 2.4 and applied overnight at 4°C. Cells were then 

washed with PBST and incubated in secondary antibody for 2 hours (Table 2.5). After 

further PBST washes, cells were mounted in fluoromount G + DAPI (Invitrogen, 

Target Species and Clonality Cat No. Manufacturer Dilution 

iNOS Mouse Monoclonal MAB9502 R&D 1:1000 

Arginase-1 Rabbit Monoclonal 93668T CST 1:1000 

MMP-8 Goat Polyclonal AF3245-SP R&D 1:1000 

Heat Shock Protein 70 Mouse Monoclonal sc7298 Santa Cruz 1:2500 

Estrogen Receptor Rabbit Monoclonal ab32063 Abcam 1:1000 

Progesterone 

Receptor 
Rabbit Polyclonal ab63605 Abcam 1:1000 



Paisley, UK) and imaged using the Axioplan epifluorescent microscope and AxioCam 

MRm camera (Zeiss, Cambridge). Images were processed using ImageJ™ software.  

Table 2.4 List of antibodies used for immunocytochemistry 

Target Species and Clonality   Cat No. Manufacturer Dilution 

Estrogen Receptor Rabbit Monoclonal   ab32063 Abcam 1:200 

Progesterone 

Receptor 

Rabbit Polyclonal  ab63605 Abcam 1:200 

 

Table 2.5 List of secondary conjugated-antibodies for immunocytochemistry 

 

 Flow Cytometry  

2.11.1. Sample Collection  

 Bone Marrow  

Bone marrow was collected according to the protocol in 2.6 to obtain a single cell 

suspension. 

 Spleen  

Spleens were harvested from WT and MMP8-/- mice aged between 6-8 weeks old. 

The spleen was homogenised through a 70 µM cell strainer with 2 mL PBS to create 

a single cell suspension. 

Secondary Antibody Cat No. Manufacturer Dilution  

Anti-Rabbit Alexa 594 A11012 Invitrogen 1:250  

Anti-Rat Alexa 594  A21209 Invitrogen 1:250  



 Tumours 

Tumours harvested from mice were homogenised and digested in collagenase 

solution (0.2% Type IV collagenase, 0.01% sheep hyaluronidase and 1X DNase I) at 

37°C for 1 hour with agitation every 10 minutes. The collagenase solution was then 

passed through a 70 µM cell strainer to obtain a single cell suspension. 

2.11.2. Cultured Cells 

For flow cytometry from cultured cells: cells were removed from the culture dish 

using 0.05% trypsin-EDTA (Thermo Fisher Scientific, Massachusetts, USA), and 

subjected to the same procedure post-single cell suspension as above. 

2.11.3. Staining and Sample Acquisition  

After centrifugation for 5 minutes at 300 x g and a PBS wash, cells isolated from 

tissues were incubated at room temperature with red blood cell lysis solution for 5 

minutes (NH4Cl, NaCO3, 1 mM EDTA, pH 7.3). Cells were counted and the 

concentration was adjusted to 1 million cells in 100µl in FACS buffer (1% BSA in PBS). 

Cells were incubated with FcR block (Miltenyi Biotec, Cologne, Germany) for 10 

minutes before the addition of conjugated primary antibodies in FACS buffer (Table 

2.6) .After incubation, two further FACS washes were carried out before fixation in 

4% paraformaldehyde (PFA) for 20 minutes. PFA was removed and cells were left 

overnight in FACS buffer. The following day, cells were run on the BD LSR Fortessa II 

Flow Cytometer (BD Biosciences, New Jersey, USA) with standard filter sets and five 

lasers. In total, 100,000 (immune organs) or 250,000 (tumours) events were collected 

per sample. Quantification and analysis were carried out using FlowJo software.  

 



Table 2.6 List of conjugated-antibodies used for flow cytometry 

 

Enzyme-linked immunosorbent assay (ELISA) 

Media was collected from cells grown in culture for at least 48 hours and centrifuged 

at 4°C at 1500 rpm for 10 minutes. The concentration of IL-6 was quantified using the 

Mouse IL-6 DuoSet ELISA Kit (R&D, UK, DY406-25) according to manufacturer’s 

instructions.   

Statistical Analysis  

Where appropriate, statistical analysis was performed using a two-tailed, unpaired t-

test. For data containing multiple comparisons – a multiple t-test was used. Where a 

correction was applied, it is stated in the figure legend. For data with greater than 

two groups, a two-way ANOVA was used. Data bars represent the mean value with 

error bars indicating standard error of the mean (SEM). All analysis was carried out 

using Prism and R software.  

 

Marker Fluorochrome Dilution Clone Manufacturer 

Live Dead Alexa 488 1:200 N/A ThermoFisher 

CD45 Pac Blue 1:400 30-F11 Biolegend 

CD11b BV605 1:400 M1/70 BD 

Ly6C PE 1:300 HK1.4 Biolegend 

Ly6G APC-Cy7 1:200 1A8 BD 

F480 PE-Cy5 1:200 BM8 eBioscience 

CD3 APC 1:200 145-2C11 eBioscience 

CD4 PE 1:200 GK1.5 eBioscience 

CD8 BUV395 1:400 53-6.7 BD 

B220 eVolve605 1:200 RA3-6B2 eBioscience 

NK1.1 eFluor450 1:200 PK136 eBioscience 



 Characterisation of a breast cancer mouse model in 
Mmp8 null mice 

Consistently, MMP-8 has been shown to play a tumour-suppressive role in numerous 

types of cancer including BC [287,293,296]. The prognostic value of MMP-8 has been 

demonstrated in BC specimens where it was found that increased expression of 

MMP8 correlates with lengthier relapse-free survival [287]. This led to further 

research aiming to elucidate the mechanism by which MMP-8 expression improves 

clinical outcome. Previous work in our lab sought to address this using a mouse 

model lacking the enzyme. To study BC progression, the Mmp8 null mice were bred 

onto MMTV-PyMT mice: an established model for studying spontaneous BC. In this 

study, mice lacking Mmp8 developed palpable tumours at an earlier time-point than 

their wild-type counterparts – indicating that MMP-8 is involved in inhibiting primary 

tumour initiation and/or growth. Upon analysis of the tumours, it was found that late 

in tumour progression, in the absence of Mmp8 there was an abundance of intra-

tumoural neutrophils that were not present in tumours from wild-type counterparts 

[296]. This delay in neutrophil clearance has also been seen in chronic wounds and 

inflammation in other models utilising Mmp8 null mice [298,308].  

Because of this observation, a logical next step was to delve further into changes in 

the immune compartment in BC tumours from Mmp8 null mice. This project sought 

to do just that – however, the spontaneous model was not the most appropriate 

model to examine this. Whilst the spontaneous model excellently replicates the 

histological changes that occur in human BC, it does not represent humans in terms 

of number of tumour foci. Multiple foci develop in the spontaneous model whereas 

this occurs in only 5.2% of human BC cases [341]. Furthermore, these foci experience 

their own unique tumour progression – when mice are sacrificed at 6 weeks old, 

some foci will have arisen 6 weeks ago and grown slowly, whereas some may have 

grown after 4 weeks of age and still be in an early growth stage [342]. This creates a 

challenge for dissecting immune compartment changes reflective of the entire 

animal in tumours at different immunological time points. To address this limitation, 

an alternative mouse model was used to study the interaction between BC and the 

immune system: the orthotopic injection model.  



In this chapter, the potential anti-tumourigenic role of MMP-8 was investigated in an 

orthotopic mouse model of BC. The phenotype of tumours from Mmp8 null mice 

have been examined through tumour growth experiments, flow cytometric and RNA 

analysis. However, as a caveat to these findings, it was discovered that the genome 

of the entire Mmp8 null mouse colony contained a 5bp deletion in the neighbouring 

Casp11 gene – known to lead to non-functional Casp11 mRNA. Therefore, these mice 

harbour an inactivating passenger mutation that confounds interpretation of the 

model. During this chapter, the Mmp8 null mice are referred to as double knockout 

(DKO) mice to reflect this.   

 

 

 

 

 

 

 

 

 

 

 



 B6BO1 and EO771 mouse mammary cancer cell lines do not 
express Mmp8 in vitro but have different hormone receptor 
statuses  

Orthotopic injection into immuno-competent mice requires the use of mouse-

derived cancer cells. In this study, two mouse mammary cancer cell lines were used 

that were suitable for orthotopic injection into the mammary fat pad: B6BO1 and 

E0771 cells. To study the function of MMP-8 in BC tumourigenesis, an Mmp8 null 

mouse was utilised. This allowed investigation into the host effects of MMP-8, 

however the use of the orthotopic model requires introduction of cells that may 

express the gene of interest: in this case Mmp8. To ascertain whether Mmp8 was 

endogenously expressed, profiling of both cell lines was undertaken at the protein 

and RNA level. MMP-8 expression was not detected at the protein level by Western 

blot (Figure 3.1A) blot nor at the RNA level using qRT-PCR (data not shown).  

In human BC, the phenotype of a tumour is determined to guide prognosis and 

treatment options. The expression levels of three hormone receptors are 

distinguished in the clinic using an immunohistochemical approach. Those receptors 

are ER, PR and HER2. Different combinations of these receptors expressed can 

influence patient outcome. However, as discussed in 1.1.4, there are also methods 

to ‘genotype’ tumours into more distinct categories. The B6BO1 and E0771 cell lines 

utilised in this study are well characterised in terms of their origin, but not their 

hormone receptor status. The B6BO1 cell line is derived from a spontaneous 

mammary tumour that arose in an MMTV-PyMT mouse on a C57BL/6 background 

(B6) and was subsequently propagated to create an invasive cell line with a high 

incidence of bone metastases (BO-1). This cell line represents a luminal B subtype of 

BC. The E0771 cell line was isolated from spontaneous tumours again in C57BL/6 

animals, but instead represents a basal-like subtype of BC. Both cell lines were 

already known to be HER2-, but their ER and PR status was uncertain. The receptor 

status of both cell lines was characterised using cell lysates for Western blots and 

cells grown on coverslips for immunocytochemistry (Figure 3.1B&C). ER expression 

could be detected in both cell lines in cell lysates, and this was confirmed with 



staining. PR was not detected in either cell line by Western blot, but could be seen 

visually in B6BO1 cells, and not in EO771 cells.  

 

Figure 3.1. MMP-8, PR and ER expression in mouse mammary cancer cell lines. A) Lysates from 
both cell lines grown in vitro underwent SDS-PAGE electrophoresis and were Western blotted for 
MMP-8. Bone Marrow was used as a positive control and GAPDH was used as a loading control. B) 
Lysates from both cell lines grown in vitro were run on a Western blot and probed for progesterone 
receptor (PR) and estrogen receptor (ER). GAPDH was used as a loading control. C) Representative 
images of cell lines immuno-stained for ER and PR. IgG isotype control shown in top panel. Scale bar 
= 100 μM. 
 



 The absence of Mmp8 does not impact tumour volume in an 
orthotopic model of BC 

MMP-8 has been previously shown to inhibit tumour progression in a spontaneous 

model of BC. To investigate whether this phenotype was true in an alternative model 

of BC, the orthotopic injection model was utilised. Female mice 8-10 weeks of age on 

a C57BL/6 background were orthotopically injected with PyMT-derived B6BO1 cells 

into the inguinal mammary fat pad (Figure 3.2A). This was carried out in DKO mice 

and compared with wild-type controls. Tumours were excised at three distinct time 

points and measured ex vivo using callipers to give a metric for tumour growth 

(Figure 3.2B). At Day 13, upon excision, there were no differences in tumour volume 

between the DKO mice and control mice, with tumours on average 500 mm3. This 

consistency was reflected at Day 15 with tumours between 800-1000 mm3, but at 

Day 18 there appears to be a trend in decreased volume in tumours from DKO mice 

which are on average 1300 mm3 in comparison to wild-type tumours reaching on 

average 1700 mm3. However, this difference is not significant.  

 

 

 

 

 

 

 



 

 

 

 

 

 

 

Figure 3.2. Orthotopically implanted B6BO1 volumes in DKO and wild-type mice.  A) Schematic of 
experimental design: 1 x 105 PyMT-derived B6BO1 mammary carcinoma cells were injected into the 
mammary fat pad of female mice. After 13, 15 or 18 Days, tumours were excised and measured. B) 
Tumour volume measurements (mm3) after excision on Days 13, 15 and 18. N ≥ 5, All data are 
presented as mean ±SEM. 



 Reduced numbers of intra-tumoural macrophages are found in 
DKO mice at Day 15 

Leukocyte infiltration into tumours has a significant impact on prognosis, and the 

composition of the tumour microenvironment is known to shape tumour growth and 

progression. In order to look for changes in the populations of intra-tumoural 

immune cells in the absence of Mmp8, mammary tumours grown orthotopically 

were subjected to flow cytometric analysis. The tumour immune compartment was 

examined across three different time points: Day 13 (Figure 3.3A), Day 15 (Figure 

3.3B) and Day 18 (Figure 3.3C) to pinpoint whether immune changes occur at specific 

stages in tumourigenesis.  

Analysis focussed on a panel that could detect the most abundant myeloid 

populations in tumours: Mφs and neutrophils using F4/80 and Ly6G as markers 

respectively. But to more precisely identify these specific cell populations, the 

antibody panel included markers of broader populations including the pan-leukocyte 

marker: CD45, to ascertain total numbers of immune cells and CD11b to delineate 

between myeloid cells and lymphocytes; CD11b a marker for cells of the myeloid 

lineage. For all samples, a gating strategy was devised to look at populations of 

immune cells and can be found in Supplementary Figure 7.1 

Forward and side scatter was used as a parameter to exclude dead or grouped cells 

from the analysis. Mφs were classified as CD45+CD11b+Ly6G&6C-F4/80+ cells. 

Neutrophils were categorised as CD45+CD11b+Ly6C-Ly6G+ cells.  

Overall, the B6BO1 tumours were composed of between 30-40% leukocytes, which 

was reflected in both genotypes and consistently across the three timepoints 

studied. At every time point, most leukocytes positively stained for CD11b; 

suggesting a large population of myeloid cells. At Days 13 and 18, around 95% of 

leukocytes were CD11b+. However, at Day 15 this figure is much lower: 

approximately 80% of the cells were myeloid cells. Again, there were no statistically 

significant differences in the percentage of intra-tumoural myeloid cells between 

genotypes. The most abundant myeloid cell population in the B6BO1 tumours was 

TAMs: constituting on average 20% of all tumour cells. At Day 15, there was a 



significant reduction in the number of F4/80+ Mφs in tumours from DKO mice. This 

was also reflected in a reduced number of myeloid cells in these mice, however this 

did not reach statistical significance.  

One other population stained for was Ly6G+ neutrophils. Very few to no neutrophils 

could be detected, independent of genotype.  

In addition to appraising quantitative differences in immune cells, their qualitative 

characteristics were also investigated. Mφs exhibit a large degree of plasticity and in 

tumours there exist populations that can either promote or inhibit tumour 

progression – representing M1 and M2 Mφs respectively.  

To investigate this, F4/80+ Mφs were further categorised according to their cell-

surface expression of two polarisation markers: MHCII and CD206 – representative 

of M1 and M2 Mφs respectively, via flow cytometry (Figure 3.3D). MHCII and CD206 

expression exists as a spectrum and delineating between M1 and M2 Mφs requires 

use of the scatter plot during flow cytometry analysis rather than a confirmatory 

staining approach.  

At Day 13, the ratio of M1:M2 Mφs was approaching 1:1. Approximately 40% of total 

Mφs were M1 in phenotype and likewise for M2 – with around 20% of Mφs not 

strongly expressing polarisation markers. At Day 15, the ratio was slightly more 

skewed in favour of M1 Mφs (1.3:1), where they predominated over M2 Mφs. This 

was similar between both genotypes. At Day 18, this effect was reversed, and M2 

Mφs were more abundant in a ratio of 1.3:1. However, this M2/M1 dominance was 

only statistically significant in tumours from wild-type mice. Overall, there were no 

differences in numbers of M1 or M2 Mφs as a percentage of Mφs at any time point 

between genotypes.  

  



  

Figure 3.3. Flow cytometric analysis of intra-tumoural immune infiltrates from DKO and wild-type 
mice across three time points.  A, B & C) Myeloid cell populations P.i. A) 13 Days, N =5,4. B) 15 Days, 
N = 9,8. C) 18 Days, N =5,5. Data are presented as a mean percentage of total live cells ± SEM. 
*Benjamini-Hochberg adjusted p value = 0.011. D) Tumour-associated macrophage polarisation 
across Day 13, 15 and 18. Data are presented as an abundance of total F4/80+ macrophages. N < 5. 
P.i = post-injection. 
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 mRNA Expression of IL-6 and IL-8 homologs does not differ in in 
tumours from DKO mice and wild-type controls 

MMP-8 is implicated in neutrophil chemotaxis. There are some data to suggest this 

is related to the proteolytic activity of MMP-8 on several chemokines including IL-6 

and IL-8 [260,320]. If MMP-8 is responsible or involved in the cleavage and 

activation of these chemokines, in the absence of Mmp8, changes to their levels 

may be expected.  

The same tumours that were subjected to flow cytometric analysis were analysed for 

their mRNA expression of IL-6 and the three mouse homologs of human IL-8: CXCL1, 

CXCL2 and CXCL5 by qRT-PCR. Analogous to the flow cytometry, tumours were 

analysed at all three timepoints: Day 13 (Figure 3.4A&B), Day 15 (Figure 3.4C&D) and 

Day 18 (Figure 3.4E&F).  

Across all time points, the expression of all four genes in the tumours remained 

consistent between genotypes and there were no statistically significant 

differences. One gene with a trend of increased expression in DKO mouse tumours 

was CXCL5 at Days 13 and 15, that was expressed 3 times higher in tumours from 

DKO mice in comparison to tumours from wild-type mice. Contrastingly, at all-time 

points there was a trend for reduced IL-6 expression in tumours from DKO mice.  

  



 

  

Figure 3.4. Cytokine gene expression in B6BO1 mammary tumours from DKO and wild-type 
controls across three time points.  A, C & E) Relative mRNA levels of IL-6, CXCL1, CXCL2 and CXCL5 
at A) Day 13 N≥4. B) Day 15 N≥12 C) Day 18 N≥4. B, D & F) Data are displayed as a Log2 fold change 
of ΔΔCT values (DKO/WT). in B) Day 13, D) Day 15 and F) Day 18. All data are displayed as the mean 
±SEM. 
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  Perilipin-1 mRNA is reduced in B6BO1 tumours from DKO mice  

Previous RNA-seq analysis of spontaneous tumours from Mmp8 null mice revealed 

differential expression of several genes involved in lipid metabolism [343]. These 

genes were subsequently narrowed down to four, selecting those with most 

significant differences and biological relevance. The expression of each of these 

four genes in B6BO1 orthotopic mammary tumours was analysed using qRT-PCR.  

RNA was isolated from the same tumours used for flow cytometric analysis. qRT-PCR 

was undertaken to measure the expression levels of four genes: Lipase E, Acyl-CoA 

synthetase long chain family member 1 (Acsl1), Leptin and Perilipin-1 at Day 13 

(Figure 3.5A&B), Day 15 (Figure 3.5C&D) and Day 18 (Figure 3.5E&F).  

All genes were expressed at low levels in the earlier stages (Day 13 and 15) of 

tumour growth, however there was a significant reduction in Plin1 mRNA in 

tumours from DKO mice compared to wild-type controls at Day 15, and an almost 

significant reduction at Day 13. At both Days, Plin1 mRNA levels were 8 times lower 

in tumours from DKO mice compared to wild-type. By Day 18, this effect was lost. 

Consistently at earlier time points, a trend existed for increased LipE and Acsl1 

mRNA in tumours from DKO mice. This trend had reversed by Day 18, but these 

genes were not significantly differentially expressed between genotypes at any 

timepoints. Leptin expression was low and did not differ much between genotypes 

at Day 13 and 15. By Day 18, Leptin expression was only detectable in two tumours.  

  



 

  

 

Figure 3.5. Lipid metabolism gene expression in B6BO1 mammary tumours from DKO and wild-
type mice across three time points.  A, C & E) Relative mRNA levels of LipE, Acsl1, Leptin, Plin1 at A) 
Day 13 N≥3. C) Day 15 N≥12 E) Day 18 N≥5. B, D & F) Data are displayed as a Log2 fold change of 
ΔΔCT values (DKO/WT) in B) Day 13, D) Day 15 and F) Day 18. All data are displayed as the mean ± 
SEM. N.B Leptin could not be detected at Day 18.  FDR-adjusted p value **p<0.001. 
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 Loss of Mmp8 does not impact tumour growth or immune 
infiltrates in an orthotopic model of basal-like BC 

There was no effect of loss of Mmp8 on tumour growth or intra-tumoural immune 

populations in ER+PR+ B6BO1 tumours of a luminal B subtype. However, to exclude 

cell-type specific influences such as hormone receptor status or intrinsic subtype, 

tumourigenesis was studied in a different cell line: the E0771 basal-like ER+PR- cell 

line.  

To mimic B6BO1 cell numbers, 100,000 E0771 cells were orthotopically injected into 

the inguinal mammary fat pad of 8-10-week-old female DKO mice and wild-type 

controls. These cells exhibit slower growth than B6BO1 tumours and were harvested 

at Day 19 (1 day after the latest time-point for B6B01 tumours). Upon excision, 

tumours were weighed and measured using callipers and on average, wild-type 

tumours were 200 mm3, and tumours from DKO mice were 300 mm3 (Figure 3.6A). 

Whilst there was a trend in increased tumour volume in DKO mice, there was no 

statistically significant difference between genotypes. To look at alternative metric 

of tumour growth, tumour weight was also measured. An increased trend was also 

apparent in DKO tumours, which were on average 0.35 g compared to 0.25 g in wild-

type tumours. This difference was similarly not significant. The size of the tumours 

can be seen in (Figure 3.6B). 

In order to be consistent with immunological profiling carried out in B6BO1 tumours, 

flow cytometric analysis was carried out using an identical myeloid panel to that 

previously to identify numbers of leukocytes, myeloid cells and Mφs (Figure 3.6C). 

The total percentage of leukocytes (CD45+) and myeloid cells (CD45+CD11b+cells) 

within the E0771 tumours was approximately between 45-50%, and 30% 

respectively. Concurrently, no significant differences between genotypes were found 

in Mφ populations (CD45+CD11b+Ly6C-Ly6G-F4/80+cells), which were between 5-10% 

of the tumour population. Overall, there were no statistically significant differences 

between genotypes in any of the myeloid cell populations analysed.  
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Figure 3.6. Tumour phenotype in DKO and wild-type mice orthotopically injected with E0771 
mammary cancer cells. A) Tumour volume measurements (mm3) performed using in vivo calliper 
measurements measured ex vivo and tumour weight (g) 19 days p.i. N = 4, 6. B) Representative 
photographs of E0771 mammary tumours from wild-type and DKO mice. Ruler shown for scale. Data 
are presented as mean ± SEM. C) Flow cytometric analysis of intra-tumoural immune infiltrates at 
Day 19. N = 4,5. Data are presented as a mean percentage of total live cells ± SEM. P.i = post-
injection. 



 Mmp8 is located in an MMP cluster with high probability of 
passenger mutations 

The DKO mouse model utilised in this thesis was created on an SV129 background 

before extensive backcrossing onto the C57BL/6 strain that it was subsequently 

maintained on.  It came to light recently that the SV129 genome contains many 

SNPs and INDELs. In the creation of a transgenic mouse model, if the target gene is 

located nearby to one of these mutations on the chromosome, there is a high 

chance it may exist in the model despite backcrossing. This is due to genetic linkage 

reducing recombination frequency. Mmp8 clusters tightly with several other MMPs 

on mouse chromosome 9 and is also <5 cM from Casp1 and Casp4 (also known as 

Casp11) (Figure 3.7A). A database exists to check the likelihood of passenger 

mutations in the knockout mouse model of choice (me-PaMuFind-It) [335]. The 

output of this for Mmp8 can be seen in (Figure 3.7B). The likely mutations affecting 

Mmp8 null models are Mmp1a, Olfr832, Fbxl12 and Casp4 (otherwise known as 

Casp11). The SNPs most likely to be present in the Mmp8 null mice are Mmp1a 

(91.35%) and Casp11 (63.02%).  

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

Figure 3.7. Location of Mmp8 within the MMP cluster and likelihood of existence of passenger 
mutations. A) Mus musculus map of chromosome 9 containing the Mmp cluster downstream from 
the Casp4 (Casp11) gene. Constructed using the NCBI Genome Data Browser [451]. B) Output from 
the me-PaMuFind-It passenger mutation finder on potential passenger mutations in Mmp8 null mice 
and their probabilities after at least 10 backcrosses [335]. 

 



 DKO mice harbour an inactivating passenger mutation in the 
Casp11 gene but not in Mmp1a   

In order to detect passenger mutations in the DKO mouse model, primers were 

designed that surrounded the known mutation-containing regions within Casp11 and 

Mmp1a:  utilising data from the me-PaMuFind-It tool [335].  

DNA was isolated from a DKO mouse at random from a colony of 50 mice as well as 

a wild-type mouse as a control. The region of interest was amplified using PCR and 

the product was subsequently run on a 3% agarose gel. For the Casp11 gene, there 

was a clear difference in the size of the band from the DKO mice compared to the 

C57 wild-type control – indicative of a difference in base pair number (Figure 3.8A). 

This was confirmed upon sequencing. The DNA sequence obtained from both 

genotypes was aligned with the mouse reference genome, and in the DKO mouse, 

but not the wild-type control, a 5bp deletion was detected in the Casp11 gene (Figure 

3.8B).  

To confirm this was not a rare phenomenon, DNA was obtained from all DKO 

breeding pairs and run on a 3% agarose gel, confirming that all DKO mice harboured 

the Casp11 passenger mutation (Figure 3.8C), thus authorising the DKO 

nomenclature. 

For Mmp1a, the above process was repeated using primers specific for the region of 

interest in the Mmp1a gene. There was no difference in band size between the DNA 

from a DKO mouse, a C57 wild-type control, and an extra control: DNA from a wild-

type mouse on a mixed C57/SV129 background (Ctrl) (Figure 3.8D). Upon sequencing 

of the PCR product, there was an identical sequence in all mice (Figure 3.8E). 

 



 

 

Figure 3.8. DNA agarose gel electrophoresis and sequencing of the Casp11 and Mmp1a gene in the 
DKO mouse.  A) The Casp11 PCR product from a DKO mouse was run on an agarose gel and 
compared to DNA from a wild-type C57 mouse and B) was sequenced and compared to a wild-type 
C57 mouse. C) Casp11 PCR products from all DKO breeding pairs. D) The MMP1a PCR product from a 
DKO mouse was run on an agarose gel and compared to DNA from a wild-type C57 mouse and a 
mouse on a mixed C57BL/6/SV129 background (Ctrl) and E) sequenced and compared to a wild-type 
C57 mouse and Ctrl mouse. 



  Discussion 

The current literature on MMP-8 suggests a predominantly tumour-suppressive role 

in several cancers [287,292,293]. Of most relevance to this thesis is evidence 

obtained in our lab using the spontaneous MMTV-PyMT BC mouse model. It was 

shown that in the absence of Mmp8, mice develop tumours earlier and have greater 

burden of lung metastases compared to wild-type littermates [296]. Additional data 

linked this onset of tumour burden with changes to the immune compartment of 

tumours and therefore it was hypothesised that MMP-8 inhibited BC growth through 

orchestration of the immune system.  

Firstly, it was necessary to profile the cell lines utilised in the injectable orthotopic 

model.  One flaw of this model, which is discussed further on in greater detail, is that 

few mouse BC cell lines exist and there is a chance that the cell line of choice may 

express the knockout gene of interest: Mmp8 in this instance. Expression of the gene 

of interest in the cells themselves could confound interpretation of the model since 

it would be difficult to delineate the impact of endogenous vs exogenous gene 

expression. Importantly, it has been shown both at the protein and RNA level, that 

MMP-8 is not endogenously expressed in either the B6BO1 or E0771 cell lines in 2D 

culture.  

In tumours from wild-type mice, small amounts of MMP-8 have been occasionally 

detected at both the RNA and protein level (data not shown) indicative of host MMP-

8 present in the TME. Many MMP-mediated effects upon tumours are stromal-

derived, and this may be the case here. MMP-8 is expressed by many stromal cells 

including fibroblasts, endothelial cells and leukocytes; all cells present in the TME 

[344,345]. In the normal breast, MMP-8 expression is restricted to myoepithelial cells 

(MECs) where it is tumour-suppressive and subsequently lost during progression to 

ductal carcinoma in situ (DCIS) [346]. Therefore, the cellular origin of MMP-8 could 

be important in guiding its function during tumourigenesis. Occasionally, small 

amounts of Mmp8 mRNA could be detected in tumours from DKO mice, the source 

of which could be from the tumour cells themselves. Although both cell lines do not 

express MMP-8 in 2D, they could be induced to express MMP-8 by locally-produced 



factors in the 3D tumour microenvironment. This 3D-effect could be modelled using 

3D spheroid culture, but it is explored in 2D later in Chapter 3. However, this raises 

the question of whether a phenotype could have been masked by inducible 

expression of Mmp8, albeit at a very low level in DKO mice.   

Alongside profiling expression of the gene of interest, confirmation was carried out 

of the hormone receptor status of the injectable mouse BC cell lines: B6BO1 and 

EO771. Receptor status of BCs has a profound impact on tumour aggressiveness, 

growth and importantly, guiding treatment options in the clinic. It is important to 

regularly check the receptor status of BC cells since it is known that receptor status 

can drift over long periods of time. For example, there are reports that triple-negative 

variants exist in the established MCF-7 ER+ BC cell line [347]. Hormone receptor 

status is also dynamic in human BC and can change over time [348].  

Two techniques were attempted to confirm the ER and PR status of both cell lines. 

Both cell lines had already been confirmed as HER2- [349,350]. B6BO1 and EO771 cell 

lysates were Western blotted for ERα and PR. The presence of ER was detected in 

both cell lines. PR could not be detected in either cell line by Western blotting. 

However, by immunocytochemistry, PR staining was visible in the B6BO1 cell line but 

not in E0771 cells. To validate the positive ER finding by Western blot, 

immunocytochemistry was used. The luminal B B6BO1 cells were confirmed as 

ER+PR+HER2- and the basal-like E0771 cell line as ER+PR-HER2-, thus representing two 

unique cell lines.    

Several links have been made between MMP-8 and both sex hormone receptors. In 

human BC, MMP-8 expression is inversely correlated with levels of both ER and PR 

[351].  Whilst the MMP8 promoter does not contain an oestrogen-receptor element 

to be directly influenced by oestrogen alone, it does contain a CCAAT/enhancer-

binding protein element (C/EBP) that ERα can associate with to become a 

transcription factor complex that can regulate activity of the promoter [294]. 

Oestrogen has been shown to drive expression of MMP-8 at both the protein and 

RNA level, perhaps via this mechanism [293]. Previously, MMP-8 has been 

demonstrated to cleave ERα and ERβ in tongue carcinoma cells, and there are further 



links with oestrogen since female Mmp8 null mice exhibit a higher incidence of skin 

papillomas only when deficient in oestrogen [292]. Therefore, the cell line ER status 

could be of importance in any observed phenotype following ovariectomy.  

Since previous data suggested a tumour-suppressive role for MMP-8 in BC, the aim 

here was to confirm whether this was also the case in an alternative model of BC: the 

orthotopic model. The experimental design was to inject mouse mammary cancer 

cells into the inguinal mammary fat pad of DKO mice and compare tumour 

progression with wild-type controls. No significant differences were observed in 

tumour volume between genotypes at Day 13, 15 or 18, when it would have been 

expected that tumour growth would increase if MMP-8 is tumour-inhibitory.   

One disadvantage of the orthotopic model, and of stark contrast to the spontaneous 

MMTV-PyMT model is the short time frame of tumour growth.  Eighteen days post-

injection, tumour volume reaches on average 1500 mm3, tumours begin to ulcerate, 

and the health of the mice deteriorates. Therefore, this is the latest time point that 

can be studied. Tumours are first palpable at around Day 7 and grow slowly until Day 

13 where they begin to reach their exponential growth phase. Day 13, Day 15 and 

Day 18 were chosen for two reasons in this study. Firstly, to attempt to mimic the 6-

, 8- and 10-week time points utilised in the MMTV-PyMT model and secondly to 

investigate whether immunological changes occur at specific time points during 

tumour growth. At Day 13, tumours were approximately 400-500 mm3; this is the 

minimum tumour size necessary to look at intra-tumoural immune populations by 

flow cytometry based on the need to collect and stain 1 million cells.  There is a 

possibility that even at the ‘early’ time point of Day 13 that the tumour is already 

well-established and the role of MMP-8 in tumour initiation has been missed. It is for 

these reasons that it is difficult to compare the two models side by side.  

Despite no change in volume of tumours from DKO mice, more subtle changes to 

tumour phenotype were investigated. MMP-8 is involved in a signalling nexus that 

drives changes in inflammatory cytokine levels – all of which can increase influx of 

immune cells into tumours. This includes CXCL5 – a prominent neutrophil 

chemoattractant and IL-6 – a predominantly pro-tumourigenic cytokine 



[260,320,352]. If MMP-8 is a key player in this network, it could be anticipated that 

immune cell populations within tumours would shift. For example, if MMP-8 

increases levels of IL-6 and CXCL5, then in its absence, reduced IL-6 and CXCL5 may 

lead to lower numbers of infiltrating neutrophils and Mφs.  

Looking within the myeloid compartment of B6BO1 mammary tumours, relative 

percentages of total cells were consistent between time points and mirror the 

percentages seen in B6BO1 tumours by Kirkup et al [353]. Some changes in 

populations were observed between DKO and wild-type mice, however none of 

these changes were consistent throughout the three time points. At Day 13, there 

appeared to be an increase in leukocytes and myeloid cells, but this was not 

significant. The Mφ population was consistent between both groups.  

At Day 15, there was a significantly lower percentage of Mφs in tumours from DKO 

mice, and this decreased population size was reflected in a reduced number of 

CD11b+ myeloid cells. This effect is lost by Day 18 where the populations are 

consistent between both genotypes. It is unclear why there are less Mφs in tumours 

from DKO mice at Day 15 but not at Day 13. However, by Day 18, with the tumours 

having reached over 1000 mm3, it may be that subtle changes in immune cells are 

lost. According to the immunoediting theory, tumours that are large have 

successfully subverted the immune response and as a result, there is a generally 

immunosuppressive environment [354].  

TAMs are generally considered to play a tumour-promoting role in BC and their 

presence is associated with a poor prognosis [355]. In DKO tumours, the reduced 

number of Mφs observed could be indicative of a less immunosuppressive 

environment however it is important to remember that no changes in tumour 

volume occurred in DKO mice, so this is unlikely to have contributed to primary 

tumour growth.  

However, it is important to remember that a spectrum of TAMs exist in tumours with 

differing effects on tumourigenesis. Therefore, it could be that immune populations 

do not differ in number but rather in function. Other groups have shown in vitro that 



MMP-8 influences polarisation towards the M2 pro-tumourigenic phenotype [326]. 

If MMP-8 does impact Mφ polarisation within tumours, changes would not 

necessarily be observed in population numbers, but instead Mφ phenotype. The 

expression of two Mφ markers was analysed: MHCII (M1 anti-tumourigenic) and 

CD206 (M2 pro-tumourigenic) within B6BO1 tumours and no significant differences 

between DKO and wild-type mice could be detected, which indicates that MMP-8 

does not influence Mφ polarisation within B6BO1 tumours.  

The B6BO1 cells used in the orthotopic model preferentially metastasise to the bone 

and to the lung [349], however metastasis was not studied. The time constraint of 

this model makes long-term metastasis studies complicated. Primary tumours must 

be resected, and half of the mice will die during this procedure. Previously MMP-8 

has been shown to be metastasis-suppressive in BC [296], but the mechanism 

remains elusive. It has been hypothesised that MMP-8 interacts with β1-integrin to 

regulate adhesion, thus preventing migration and invasion, and this could be one 

mechanism [356]. An alternative proposal is that cells within the tumour may abide 

by the ‘seed and soil’ hypothesis. Perhaps the transient decrease in Mφs at Day 15 

leads to changes in cytokine production that prevent dissemination of tumour cells, 

however this is speculation and would require more in-depth analysis on the profile 

of this Mφ population within the tumour.  

Since only small changes in immune populations were observed, it was proposed that 

absence of Mmp8 may not lead to quantitative differences in immune cells but may 

impact the abundance of inflammatory mediators such as cytokines and chemokines. 

MMP-8 is a known driver of cytokine production including IL-6 and IL-8 [260]. In 

culture, overexpression of Mmp8 leads to upregulation of IL-6 and IL-8 at the protein 

and RNA level. The catalytic domain of Mmp8 was found to be critical for this 

upregulation,  However, the upregulation at the RNA level is indicative of an effect 

on gene transcription rather than direct proteolytic activity  [320]. In mice, IL-8 is 

found as 3 homologs: CXCL1, -2 and -5, and CXCL5 has been validated as a 

downstream target of MMP-8. MMP-8 cleaves and inactivates α1-PI, to release 



inhibition of neutrophil elastase which can subsequently cleave and increase activity 

of CXCL5 – a potent neutrophil chemoattractant [319].  

The gene expression of IL-6, CXCL1, -2 and -5 in B6BO1 tumours was evaluated to 

ascertain whether MMP-8-dependent changes to intra-tumoural cytokines could be 

detected. At all three timepoints no significant up- or down- regulation of any of the 

genes was detected. However, there was a general trend for downregulation in IL-6 

mRNA in DKO tumours at all timepoints that was reaching statistical significance. It 

could be theorised that MMP-8 does induce the expression of IL-6 in B6BO1 tumours, 

since in the absence of MMP-8, IL-6 transcripts are reduced. However, there may be 

a loss of resolution in a mass of cells and molecules as complex as a tumour. It may 

be that the tumour cells do produce less IL-6 in the absence of MMP-8 but this effect 

is diluted by the vast amounts of IL-6 produced from immune cell populations. This 

theory is plausible given that B6BO1 tumours are made up of between 30-40% 

leukocytes and monocytes, Mφs and T cells are the major sources of IL-6 [357]. To 

confirm this theory, fluorescence-activated cell sorting (FACS) could be utilised to 

separate cancer cells from immune cells to study population-based transcriptomics.  

Measurements of IL-6 protein levels were attempted in the tumours by ELISA but 

every sample was below the limit of detection (data not shown). Concentrations of 

IL-6 are low in tumour tissue, probably owing to it being a secreted molecule [358], 

therefore a high-sensitivity ELISA may solve this issue to reveal whether as in 

Thirkettle et al, MMP-8 induces the expression of IL-6 at both the protein and RNA 

level in mouse mammary tumours.  

As consistent immunological changes in DKO tumours could not be found, other 

changes in tumour phenotype were investigated. It was observed by Otto Warburg 

over a century ago that cellular metabolism is altered in cancer cells [359]. It is now 

acknowledged that the ability of cells to reprogram their energy metabolism is a 

fundamental capability acquired by tumours [360]. In cancer, abnormalities occur in 

all aspects of energy metabolism including glucose, lipid and amino acid metabolism. 

Previous RNA-seq data generated in our lab on MMTV-PyMT tumours identified 

several biological pathways that were up- or down-regulated in Mmp8 null mice 



[343]. Many genes involved in the process of lipid metabolism were significantly 

downregulated at 8 weeks of age including fatty acid metabolism and fat cell 

differentiation. These genes were conversely upregulated at 10 weeks of age. Focus 

was placed on genes that were either highly significantly different or through a 

literature search, genes known to have links to cancer.  

The mRNA expression of four lipid metabolism genes was studied: LipE (hormone-

sensitive lipase), Acsl1, Leptin, and Plin1, in B6BO1 orthotopic mammary tumours 

from both DKO and wild-type mice at 3 different time points. At earlier time points: 

Day 13 and 15, consistent changes in lipid metabolism gene expression were 

observed. Despite not reaching statistical significance, an almost 3-fold increase in 

transcripts for LipE and Acsl1 in tumours from DKO mice was detected. This 

contrasts with Day 18:  LipE and Acsl1 mRNA was downregulated by approximately 

3-fold in DKO tumours. These concomitant increases and decreases contrast with 

the previously generated RNA-seq data. In tumours from MMTV-PyMT/Mmp8 null 

mice, at 10 weeks of age, the latest time point studied, all four lipid metabolism 

genes were strongly upregulated, particularly Leptin. Whereas, at the latest time 

point of Day 18, Leptin was undetected, and LipE and Acsl1 were downregulated in 

B6BO1 orthotopic tumours. However, lipid metabolism gene expression was 

downregulated in tumours from MMTV-PyMT/Mmp8 null mice at 6 weeks of age, 

the earliest time point studied. This is in agreement with the downregulation of 

Leptin and Plin1 expression at Day 13 and Day 15 in B6BO1 tumours from DKO 

mice. Although it is difficult to directly compare the two models at a molecular level 

as well as a temporal one, the sequencing was a useful unbiased approach to begin 

to further dissect gene expression changes.  

What is clear from both the previous and current data is that lipid metabolism is 

dysregulated in mammary tumours lacking Mmp8. A consistent observation was 

made across earlier timepoints that Plin1 mRNA is significantly downregulated in 

tumours from DKO mice. At Day 13 and Day 15, there is an 8-fold decrease in Plin1 

transcripts. By Day 18 this phenotype is absent. What is not certain from the use of 



DKO mice is whether absence of Casp11 influenced this finding. This has been 

considered in Chapter 4.  and will be discussed further there.  

Because BC is such a heterogenous disease, it is important to use BC cell lines that 

represent more than one subtype. Using the ER+PR+ B6BO1 cell line, representative 

of a luminal B subtype, it was shown that tumour growth was not inhibited by MMP-

8, since in its absence there was no change to tumour volume. Furthermore, no 

consistent immunological changes were detected, suggesting that MMP-8 does not 

orchestrate the immune system to inhibit BC progression, as was first hypothesised. 

However, to look at whether this hypothesis held true in another subtype, the B6BO1 

tumour experiment was repeated using the E0771 BC cell line, lacking the PR 

expression found in the B6BO1 cells. These cells are representative of a basal-like 

subtype, which is often characterised by an aggressive clinical outcome [361]. Using 

this alternative model, results consistent with those in the B6BO1 model were found, 

with absence of MMP-8 playing no role in primary BC tumour growth. There were 

also no changes to immune populations. These results both suggest that in the 

presence of estrogen receptor on BC cells, absence of Mmp8 has no effect. This has 

been seen before in cancer, where female Mmp8 null mice were protected from skin 

carcinoma in the presence of estrogen [292]. It would be interesting to use a triple 

negative cell line to ascertain whether estrogen receptor status plays a role in MMP-

8-related tumour biology.  

As a caveat to the findings thus far, potential pitfall was discovered in the mouse 

model utilised throughout this chapter. Detailed in a paper by Vanden Berghe et al, 

was the existence of passenger mutations in the SV129 mouse strain: the origin of 

many transgenic mouse models, including the one used here [335]. In brief, 

passenger mutations are SNPs and INDELs in the genome of ‘donor’ mice that due to 

genetic linkage persist near to genes of interest despite extensive backcrossing onto 

alternative strains. If these mutations change the gene sequence dramatically, they 

can lead to a non-functional protein. If this is the case, a mouse model can become a 

‘double knockout’ and interpretation of the contribution from the gene of interest vs 

the passenger mutation becomes extremely difficult to interpret.  



Using the me-PaMuFind-It web tool by Vanden Berghe et al, there was a strong 

possibility (over 70%) that the genome of the Mmp8 null mice used thus far 

contained two passenger mutations – one in the Mmp1a gene and the other in the 

Casp11 gene [335]. Upon DNA sequencing of the region containing the known 

mutation of both genes in these mice, the presence of the Casp11 5bp passenger 

mutation and the absence of mutations in the Mmp1a gene was confirmed. It has 

previously been shown that this 5bp deletion in Casp11 leads to a non-functional 

protein rendering the mice Mmp8-/-/Casp11-/- or double knockout (DKO) as they are 

referred to throughout this thesis [339].   

Whilst there is little evidence to suggest caspase-11 plays a role in BC specifically, it 

has many functions within the immune system [339,362]. The lack of tumour and 

immune phenotype observed in this orthotopic BC model could have been obscured 

by the passenger mutation, and contrastingly, any observations made could have 

been the result of the passenger mutation. Thus, repeat investigations in Mmp8 null 

mice with functional Casp11 were warranted. 

To summarise: 

 The two BC cell lines utilised in the orthotopic injection model do not 
endogenously express Mmp8 

 The E0771 cell line representing a basal-like subtype is ER+PR- and the 
B6BO1 cell line representing a luminal B subtype is ER+PR+ 

 Loss of Mmp8 does not impact tumour growth in an orthotopic model of BC 
or alter the intra-tumoural myeloid immune compartment  

 There is differential lipid metabolism gene expression in tumours from 
Mmp8 null animals including a reduction in Plin1 expression  

 DKO mice are so-called due to the detection of a Casp11 inactivating 
passenger mutation  

 



 Characterisation of the Mmp8 KO breast cancer model in 
tumourigenesis 

In the previous chapter, results indicated that MMP-8 does not inhibit primary BC 

tumour growth, and its absence only led to minor changes in tumour phenotype. 

However, the entire body of work was carried out in DKO mice that it was discovered 

harboured a passenger mutation in the Casp11 gene.  

The caspase-11 deficiency in the DKO mouse colony is of importance in the 

interpretation of the BC model for several reasons, but primarily due to its role within 

the immune system. Caspase-11 belongs to the family of caspases: cysteine-aspartic 

proteases with critical roles in several forms of programmed cell death including 

apoptosis, pyroptosis as well as inflammation [363]. Eleven caspases exist in humans 

whereas there are only 10 in mice. The caspase family is grouped into three 

categories: inflammatory caspases (-1, -4, -5, -12) initiator caspases (-8, -9, -10 and -

2) and executioner caspases (-3, -6, -7) [364]. Caspase-11 is the mouse homolog of 

human caspase-4: an inflammatory caspase. As a cytosolic LPS-binding receptor, it 

plays a central role in pyroptosis: a form of programmed cell death often triggered 

upon infection with intracellular pathogens [365] [366]. It does this by forming a 

complex called the inflammasome with many other proteins that upon stimulation 

causes the release of IL-1β and IL-18 resulting in pyroptosis [365].  

A plethora of defects have been associated with the absence of caspase-11 including 

abnormal immune cell apoptosis and decreased circulating cytokine levels [362,367]. 

Other research groups have acknowledged the presence of the Casp11 passenger 

mutation in their models, and in some cases published data have been proven to be 

heavily influenced by its absence. In total, nine MMPs are within 5cM of the Casp11 

gene including Mmp7, -8 and -13. Mmp7, -8 and -13 null mice were found to be 

resistant to LPS-induced endotoxemia [310,368,369], notably as were Casp11 null 

mice [370]. Subsequently, all three of the MMP- knockout mice were found to have 

the same 5bp mutation in the Casp11 gene found in our model. Upon repeat studies 

in knockout mice without the passenger mutation, this phenotype was completely 

abrogated – suggestive that it was a result of the passenger mutation [335]. 



Here, the notion that the Casp11 passenger mutation may have confounded the 

interpretation of the specific role of MMP-8 in tumour growth and immune 

orchestration has been acknowledged. To correct for this, extensive repeat 

experiments have been carried out on tumour volume, immune populations and 

gene expression analysis using Mmp8 null mice without the passenger mutation, that 

will be referred to as Mmp8 KO hereafter.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Mmp8 KO mice no longer harbour a Casp11 passenger mutation  

The discovery of the Casp11 passenger mutation in our DKO mouse colony meant 

that interpretation of the specific role of MMP-8 in this model would not be possible. 

Therefore, mice were sought that were Mmp8 KO with a functional Casp11 gene. 

Mice were obtained from Roosmarijn Vandenbroucke in Ghent and a new colony of 

Mmp8 KO mice; free of passenger mutations was established.  

Firstly, the MMP-8 status was confirmed in these mice. The region of interest 

surrounding the neomycin resistance cassette inserted into the Mmp8 gene was 

amplified using PCR and the product was run on a 1.8% agarose gel (Figure 4.1A). 

Controls were run alongside for wild-type mice, Mmp8 heterozygote mice and Mmp8 

null mice. The MMP-8 band from a wild-type mouse is found at ~500bp, as seen in 

the wild-type control DNA. The knockout status of the Mmp8 KO mouse is confirmed 

by the band size at ~280bp, identical to that of the Mmp8 null control DNA.  

Next, the passenger mutation status was examined using DNA isolated from the 

newly acquired Mmp8 KO mice, and compared to DNA from a wild-type mouse as a 

control. The region of interest in the Casp11 gene was amplified using PCR and the 

product was subsequently run on a 3% agarose gel (Figure 4.1B) The PCR product was 

then sequenced (Figure 4.1C). For the Casp11 product, there was no longer a 

difference in the size of the band from the Mmp8 KO mouse compared to the C57 

wild-type control – indicative of no difference in base pair number. This was 

confirmed upon sequencing, where an identical sequence was obtained from both 

genotypes, unlike the 5bp deletion seen in DKO mice. To reiterate nomenclature: 

Mmp8 null mice with the Casp11 inactivating mutation will continue to be referred 

to as DKO and those from Ghent demonstrated to have functional Casp11 will be 

referred to as Mmp8 KO.  

  



  

 

 

 

 

 

 

Figure 4.1. DNA agarose gel electrophoresis of the Mmp8 and Casp11 gene and sequencing of the 
Casp11 gene in the Mmp8 KO mouse.  A) & B) The MMP-8 (A) and Casp11 (B) PCR products from an 
Mmp8 KO mouse were run on an agarose gel and compared to DNA from a wild-type C57 mouse. 
Controls were run alongside from wild-type, Mmp8-heterozygous and Mmp8-null mice. C) The 
Casp11 PCR products were sequenced and compared to a wild-type C57 mouse. 
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 The absence of Mmp8 does not impact tumour volume in the 
B6BO1 orthotopic breast cancer model independent of the Casp11 
mutation 

In DKO mice, the rate of primary breast tumour growth was not significantly different 

to that of tumours harboured by wild-type animals. However, as previously 

discussed, these results may be confounded by the Casp11 passenger mutation. 

Therefore, to determine whether MMP-8 is important in primary BC tumour growth, 

the orthotopic injection model was again utilised, but this time in Mmp8 KO mice 

without the Casp11 passenger mutation. Female mice 8-10 weeks of age were 

orthotopically injected with B6BO1 cells into the inguinal mammary fat pad. To mimic 

the previous tumour stages, tumours were excised on Day 13, 15 and 18. The size of 

the tumours on each day can be seen in (Figure 1.2A-C) respectively. Tumours were 

measured with callipers ex vivo to calculate tumour volume (Figure 1.2D).    

The tumour volume can be seen to increase consistently between genotypes from 

Day 13 to Day 18. At Day 13, tumours from both genotypes are on average 500-600 

mm3. At Day 15, wild-type tumours are 800 mm3 and Mmp8 KO tumours are larger, 

measuring on average 1200 mm3. At Day 18, tumours from wild-type mice reached 

on average 2000 mm3 whereas tumours from Mmp8 KO mice were smaller at 1700 

mm3. These averages are mostly consistent with those in Chapter 3 at each time 

point, for both genotypes. Previously, at Day 13, DKO and wild-type tumours were 

approximately 500 mm3. At Day 15, they were between 800-1000 mm3 and by Day 

18 there was a slight decreasing trend in volume in the DKO tumours, which were on 

average 1300 mm3 in comparison to 1700 mm3 in wild-type tumours.  

Overall, no differences in tumour volume between genotypes were observed at Day 

13, 15 or 18 by tumour volume measurement.  

 



 

 

 

 

Figure 4.2. Orthotopically implanted B6BO1 tumour volumes in wild-type and Mmp8 KO mice.  A-
C) Representative photographs of tumours from wild-type and Mmp8 KO mice excised at A) Day 13. 
B) Day 15. C) Day 18 D) Tumour volume measurements (mm3) after excision on day 13, 15 and 18. N 
= 5. Data are presented as mean ±SEM. 

 



 The absence of Mmp8 has no effect on intra-tumoural myeloid 
immune populations in the B6BO1 orthotopic injection model 

Despite no changes in tumour volume observed upon repeat experiments in Mmp8 

KO mice, an investigation was carried out to examine whether Casp11 status had any 

influence on immunological processes within the tumour, that had not impacted 

tumour volume. Since caspase-11 plays a critical role in inflammation, it was 

reasonable that DKO and Mmp8 KO mice may behave differently in the context of 

the immune system.  

Myeloid cells made up the largest proportion of cells within the B6BO1 tumours and 

are of most relevance to MMP-8, considering its release from Mφs and neutrophils. 

Therefore, again the antibody panel was designed to look at CD45+ leukocyte 

populations, CD45+CD11b+ myeloid cells and CD45+CD11b+Ly6C-Ly6G-F4/80+  

macrophages.  

Whilst re-establishing the Mmp8 KO mouse colony, there was time to optimise and 

refine the flow cytometry panel. In the following experiments, the panel had the 

addition of a fixable Live/Dead marker to more definitively remove dead cells from 

analysis, and Ly6C, a marker to further delineate Mφ/monocyte subsets. Previously, 

to identify neutrophils in tumours a gating strategy was used inclusive of 

CD45+CD11b+Ly6G+ cells, whereby no neutrophils could be detected. In this panel, 

neutrophils could not be found, and the addition of Ly6C to more definitively label 

this population (CD45+CD11b+Ly6C-Ly6G+) also ruled out the contribution of Ly6G+ 

cells such as myeloid-derived suppressor cells (MDSCs).  

The number of immune cells present in tumours was analysed at Day 13 (Figure 

4.3A), Day 15 (Figure 4.3B) and Day 18 (Figure 4.3C) as a percentage of total cells. In 

the DKO mice, significant reductions were seen in Mφ number at the Day 15 time 

point, where the percentage of Mφs within the tumours was 16% in comparison to 

22% in wild-type animals. However, this reduction was not present in the Mmp8 KO 

animals. Instead, at Day 15, tumours from both wild-type and Mmp8 KO mice had 

approximately 15% Mφs.  



The relative proportions of all cells remained at levels consistent with those in 

Chapter 3, except for Day 18, whereby tumours from both wild-type and Mmp8 KO 

mice contained up to 40% CD45+ leukocytes. In tumours from DKO mice and wild-

type mice at the same time point, this number was 30% of total cells.  

 

 

 

 

Figure 4.3. Flow cytometric analysis of intra-tumoural immune infiltrates across three time points 
in Mmp8 KO and wild-type mice. A-C) Myeloid cell populations A) 13 days, B) 15 days and C) 18 
days p.i. n≥5. Data are presented as a mean percentage of total live cells ± SEM. P.i = post-injection. 

 



 Intra-tumoural cytokine levels do not differ between Mmp8 KO 
and wild-type mice  

There is some evidence to suggest that MMP-8 modulates the expression of the 

cytokines IL-6 and IL-8 [260,320]. If MMP-8 is responsible or involved in the cleavage 

and activation of these chemokines, in the absence of Mmp8, changes to their levels 

could be expected. In Chapter 3. , no differences were found in levels of IL-6 or 

homologs of IL-8 at the RNA level. However, upon discovery of the Casp11 passenger 

mutation, to ensure this had not affected previous findings, this analysis was 

repeated on tumours from Mmp8 KO mice with functional Casp11.  

Utilising the same tumours subjected to flow cytometric analysis in 4.3, mRNA 

expression of IL-6 and the three mouse homologs of human IL-8: CXCL1, CXCL2 and 

CXCL5 was analysed by qRT-PCR. Analogous to the flow cytometry, tumours were 

analysed at all three time points: Day 13 (Figure 4.4A&B), Day 15 (Figure 4.4C&D) and 

Day 18 (Figure 4.4E&F).  

Across all time points, all four transcripts could be detected. Expression of all four 

genes in the tumours remained consistent between genotypes and there were no 

statistically significant differences. However, there was a trend in reduced CXCL2 

expression at Day 18 and increased CXCL5 expression at Day 15 in Mmp8 KO tumours.  

 

 

 

 



 

Figure 4.4. Cytokine gene expression in B6BO1 mammary tumours from Mmp8 KO and wild-type 
mice across three time points.  A C & E) Relative mRNA levels of IL-6, CXCL1, CXCL2 and CXCL5 at A) 
Day 13, C) Day 15, E) Day 18. B D & F) Log2 fold change of ΔΔCT values (KO/WT) at B) Day 13, D) Day 
15 and F) Day 18. N≥5. All data are displayed as the mean ±SEM. 
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  A trend exists for downregulation of Plin1 mRNA in B6BO1 
tumours from Mmp8 KO mice 

In Chapter 3, based on differential lipid metabolism gene expression in spontaneous 

tumours derived from MMTV-PyMT mice crossed onto an Mmp8 null background, 

whether this phenomenon occurred in orthotopically-derived tumours was 

investigated. Significantly reduced levels of Plin1 mRNA were detected in DKO 

tumours. However, now aware that the mice did not possess a functional Casp11 

gene, this analysis was repeated in tumours from Mmp8 KO mice not harbouring the 

passenger mutation.  

RNA was isolated from the same tumours used for flow cytometric analysis in 4.3. 

qRT-PCR was undertaken to measure the expression levels of four genes: lipase E, 

acyl-CoA synthetase long chain family member 1 (Acsl1), leptin and perilipin-1 at Day 

13 (Figure 4.5A&B) , Day 15 (Figure 4.5C&D) and Day 18 (Figure 4.5E&F).  

At Day 13, expression of 3 of the 4 genes studied could be detected. Lept could not 

be detected in these samples. There was little variation in gene expression in tumours 

from wild-type and Mmp8 KO tumours. However, at Day 15, a trend in reduced Leptin 

and Plin1 mRNA was observed, although unlike in Chapter 3 this was not significant. 

LipE and Acsl1 mRNA levels remained consistent between genotypes. At Day 18, 

there was a trend in reduced Acsl1 and Plin1 mRNA in tumours from Mmp8 KO mice 

though this did not reach significance.  

 

 

 



 

Figure 4.5. Lipid metabolism gene expression in B6BO1 mammary tumours from Mmp8 KO and 
wild-type mice across three time points. A C & E) Relative mRNA levels of LipE, Acsl1, Leptin and 
Plin1 at A) Day 13, C) Day 15, E) Day 18. B D & F) Log2 fold change of ΔΔCT values (KO/WT) at B) Day 
13, D) Day 15 and F) Day 18. N≥5. All data are displayed as the mean ±SEM. N.B. Leptin was not 
detected at Day 13 or 18.  

LipE Acsl1 Plin1
0

1

2

3

4

R
el

at
iv

e 
G

en
e 

E
xp

re
ss

io
n

 (
2

-
C

T
)

LipE Acsl1 Leptin Plin1
0

1

2

3

lo
g

2
 F

o
ld

C
h

an
g

e
lo

g
2 

F
o

ld
 C

h
a

n
g

e

A

C

B

D

E F

Day 13

Day 15

Day 18

Day 13

Day 15

Day 18



 The absence of Mmp8 does not impact tumour progression or 
volume in a basal-like orthotopic breast cancer model 

Results thus far suggested no effect of loss of MMP-8 on tumour growth or intra-

tumoural immune populations in ER+PR+ B6BO1 tumours of a luminal B subtype. 

However, to exclude cell-type specific influences such as hormone receptor status or 

intrinsic subtype tumourigenesis was studied in a different cell line: the E0771 basal-

like ER+PR- cell line. In order to confirm whether the lack of tumour growth 

phenotype was not related to Casp11 status, EO771 BC tumour experiments were 

carried out in Mmp8 KO mice. 

In a similar fashion to B6BO1 tumour experiments, 100,000 E0771 cells were 

orthotopically injected into the inguinal mammary fat pad of 8-10 week old female 

Mmp8 KO mice and wild-type controls in two separate experiments. E0771 tumours 

exhibit slower growth than B6BO1 tumours and were harvested at later time points: 

Day 19 (1 day after the longest time-point for B6B01 tumours) or Day 25. At Day 19 

or 25, tumours were excised, weighed and measured using callipers (Figure 4.6A&B). 

Representative photographs were taken at each time point (Figure 4.6C&D).  

Tumours harvested on Day 19 were approximately 300 mm3 whereas tumours 

harvested on Day 25 were approaching 1000 mm3, with very little variation between 

genotypes. To look at another metric of tumour growth, tumour weight was 

measured.  At Day 19, wild-type tumours weighed on average 0.30 g and Mmp8 KO 

tumours weighed 0.34 g. At Day 25, tumours from wild-type mice were on average 

0.85 g and tumours from Mmp8 KO mice were smaller at 0.75 g. Tumour volume or 

tumour weight was not significantly different between genotypes at Day 19 or Day 

25.  

Tumour metrics in Mmp8 KO mice were similar to that of the DKO mice in Chapter 3, 

although there are only data available at Day 19. Wild-type tumours are on average 

200 mm3 and DKO tumours are approximately 300 mm3  whilst here, tumours from 

both genotypes are on average 300 mm3. 



To carry out the same immunological profiling carried out in DKO mice, tumours were 

subjected to flow cytometric analysis. An identical, optimised myeloid panel was 

utilised as described in 4.3 to identify numbers of leukocytes, myeloid cells and Mφs 

at Day 19 (Figure 4.6E) and Day 25 (Figure 4.6F).  

At Day 19, the total percentage of leukocytes within the E0771 tumours was 

approximately 25% compared to 30% in B6BO1 tumours. By Day 25, this number had 

reduced further to less than 22% of total cells. Whilst there were no statistically 

significant differences in amounts of CD45+ leukocytes between genotypes, there 

was a general trend in reduced numbers of CD45+ cells in tumours from Mmp8 KO 

mice. 

At Day 25, the myeloid cell population (CD45+CD11b+ cells) also showed a reduced 

trend in tumours from Mmp8 KO mice. Concurrently, there was a trend of reduced 

Mφs (CD45+CD11b+Ly6C-Ly6G-F4/80+cells) in Mmp8 KO tumours at Day 25.  

Overall, at both Day 19 and 25 there were no statistically significant differences 

between genotypes in any of the myeloid cell populations analysed.  

 

 

 



 

 

 

 

Figure 4.6. Tumour phenotype in wild-type and Mmp8 KO mice orthotopically injected with E0771 
mammary cancer cells. A&B) Tumour volume measurements (mm3) performed using ex vivo calliper 
measurements and tumour weight (g) on A) Day 19 and B) Day 25. N = 10. C&D) Visualisation of 
tumours excised C) 19 days and D) 25 days p.i of E0771 mammary carcinoma cells. Ruler shown for 
scale. Data are presented as mean ±SEM E&F) Flow cytometric analysis of intra-tumoural immune 
infiltrates at E) Day 19 and F) Day 25. N = 5. Data are presented as a mean percentage of total live 
cells ± SEM. P.i = post-injection. 



 The absence of Mmp8 does not impact tumour volume or intra-
tumoural immune populations in a subcutaneous cancer model 

The results obtained in this chapter indicated that MMP-8 does not play a role in 

inhibiting primary tumour growth in BC, but there is evidence that MMP-8 plays 

tumour-inhibitory roles in other cancers including skin carcinoma and tongue cancer 

[292,293]. An alternative model to BC was used to determine whether MMP-8 is 

involved in tumour progression in other cancer types.  

CMT-19T cells, an established lung carcinoma cell line, were subcutaneously injected 

into both male and female Mmp8 null mice, DKO mice and wild-type controls (Figure 

4.7A). At Day 15, tumours were excised and measured ex vivo using callipers to 

determine tumour volume (Figure 4.7B). Tumours were between 200-250 mm3 

across all genotypes and no significant differences in volume were found.  

In order to replicate the intra-tumoural immune population analysis carried out in 

mammary tumours, cells were stained with the same myeloid antibody panel used 

in B6BO1 and EO771 mammary tumours and cell populations were analysed using 

flow cytometry (Figure 4.7C). The number of CD45+ leukocytes was between 20-35% 

of total cells across all genotypes. There were almost double the number of CD45+ 

leukocytes in tumours from Mmp8 KO mice compared to wild-type controls, and this 

difference was statistically significant. Tumours from DKO mice contained 

approximately 25% total leukocytes, which was not significantly different from either 

genotype. However, there were significantly less CD45+CD11b+ myeloid cells in 

tumours from DKO animals compared to Mmp8 KO mice. No other differences in 

myeloid populations were observed.  

Neutrophil numbers were significantly reduced in DKO tumours in comparison to 

wild-type tumours. There was a trend in reduced neutrophil numbers in Mmp8 KO 

tumours compared to wild-type controls but this was not significant.  

And lastly, the most differences observed amongst genotypes were in the Mφ 

population. In wild-type control animals, tumours contained less than 5% Mφs in 

total. This significantly increased to 15% in tumours from Mmp8 KO animals. 



Additionally, tumours from DKO mice had significantly more Mφs than tumours from 

wild-type animals. However, tumours from DKO mice contained significantly less 

Mφs than those from Mmp8 KO mice.  

 

 

 

 

 

Figure 4.7. Subcutaneous tumour volumes in wild-type, Mmp8 KO and DKO mice. A) Schematic of 
experimental design: 1 x 106 CMT-19T lung carcinoma cells were subcutaneously injected into male 
and female mice. B) Tumour volume measurements (mm3) after excision on day 15. N ≥ 5, presented 
as mean ±SEM. C) Myeloid populations from flow cytometric analysis of intra-tumoural immune 
infiltrates. Data are presented as a mean percentage of total live cells ± SEM. *FDR-adjusted p 
value<0.05.  
 



 Discussion 

In Chapter 3, little evidence was found that supported the hypothesis that MMP-8 

inhibits primary BC tumour growth via orchestration of the immune system, finding 

no differences in tumour volume or intra-tumoural immune populations. However, 

these findings were caveated by the discovery of a loss of function Casp11 mutation 

in the DKO mice. To rule out that this impacted discovery of a phenotype, tumour 

growth assays and phenotypic analyses were repeated in Mmp8 KO mice containing 

functional Casp11.  

To begin to disentangle the contribution that lack of caspase-11 may have made in 

the DKO model, it was important to acquire mice with a functional Casp11 gene. 

Despite extensive backcrossing for at least 10-20 generations, the passenger 

mutation could not be eradicated, and so carrying out further backcrosses did not 

seem a sensible option and would have taken a significant amount of time. Through 

extensive breeding and good fortune, a group in Ghent, The Netherlands, had 

managed to produce Mmp8 KO mice devoid of the Casp11 passenger mutation, and 

kindly sent mice to enable the establishment of a new colony of Mmp8 KO mice. In 

this chapter, these mice without the passenger mutation are referred to as Mmp8 

KO, and mice that contain it are still referred to as DKO as in Chapter 3. .   

To confirm that the Casp11 gene was now functional in the Mmp8 KO mice colony, 

PCR and sequencing was carried out to ensure there was no longer a 5bp deletion in 

the Casp11 gene. The results reiterated that the Casp11 gene product was of the 

correct size for the functional gene and the passenger mutation no longer existed. 

Furthermore, Mmp8 homozygote status was confirmed using PCR.  

After confirming the colony were Mmp8 KO but not Casp11 deficient, investigation 

was carried out to determine whether the passenger mutation contributed to the 

lack of phenotype. The central finding in the DKO mice was that the loss of MMP-8 

did not affect primary BC growth and nor were there any consistent immunological 

changes within the tumours. However, all findings in Chapter 3.  were caveated by 

the passenger mutation. It was therefore important to rule out through repeat 



experiments without the passenger mutation, that it could be the contribution of the 

passenger mutation that somehow masked the true function of MMP-8 in 

tumourigenesis.  

Whilst there is no literature to suggest that caspase-11 influences cancer cells, if any 

changes did occur to other cell populations or cellular processes in its absence, they 

may indirectly impact tumour growth and progression. Therefore, B6BO1 tumour 

growth experiments were repeated in Mmp8 KO mice. As before in DKO mice, no 

significant changes to primary tumour volume were observed. If MMP-8 was tumour-

suppressive as initially hypothesised, an increase in tumour volume would have been 

anticipated in the absence of MMP-8. Since this did not occur in either the presence 

or absence of the Casp11 passenger mutation, it can be said with confidence that the 

passenger mutation was not responsible for a lack of growth phenotype.   

Nevertheless, there was an expectancy that Casp11 status might impact immune 

populations considering its role in inflammatory cell processes, particularly in 

immune cell death. In the DKO animals, at Days 13 and 18, no differences were 

observed in intra-tumoural immune populations. However, at Day 15 reduced 

numbers of intra-tumoural Mφs were found. Conversely, in the absence of the 

passenger mutation, Mmp8 KO mice have no differences in leukocyte, myeloid or 

neutrophil numbers at any of the time points. Therefore, since the differences in 

immune cell populations observed in the DKO animals are not reproduced or 

expanded upon in the Mmp8 KO mice, it is likely that MMP-8 does not influence intra-

tumoural immune populations. Instead, it appears that the significant reduction in 

Mφs observed in Day 15 in DKO mice was a consequence of the Casp11 passenger 

mutation, and that the immune compartment was somewhat altered in the presence 

of the Casp11 passenger mutation. What is important to note here is that analysis of 

the M1/M2 populations was not carried out in Mmp8 KO mice, as was performed in 

the DKO mice. Instead, a Live/Dead marker and Ly6C was used to delineate 

monocytes from Mφs. Therefore, there may have been changes to the proportion of 

cells in each polarisation state in Mmp8 KO mice, however, work later in this thesis 

proposes this is not the case.   



One other point of consistency is the continued inability to detect neutrophils in 

B6BO1 tumours. Two primary concerns to address were whether cell death occurred 

during preparation, or whether Ly6G, the cell surface marker on neutrophils, had 

been removed. There is evidence to suggest that cells are vulnerable to cell surface 

receptor cleavage via enzymatic digestion [371]. For tissues such as tumours, or 

fibrous organs like skin, mechanical disruption is not sufficient to liberate all cells 

[372]. Therefore, enzymatic digestion is necessary. Most protocols utilise collagenase 

enzymes, and in these experiments, collagenase type IV was used. However, enzymes 

by their nature will also recognise cleavage sites on cell surface receptors that may 

result in their removal or alteration. Some receptors will be more sensitive to this. 

Collagenase D is known to induce the expression of CD11c, F4/80 and MHC Class I on 

splenocytes for example [373]. Additionally, trypsin can cleave and remove CD4 on 

dendritic cells [374]. Collagenase IV is devoid of tryptic activity, and whilst there is no 

evidence to suggest that it can cleave the epitopes studied within the panel utilised 

here, it cannot be ruled out. Furthermore, cell viability could be jeopardised if 

enzyme concentration is too high.  

To address these issues, additional data collected both by us and by other groups was 

inspected. Firstly, an alternative tumour type was analysed in an attempt to identify 

Ly6G+ populations. In CMT-19T subcutaneous tumours digested with collagenase IV 

as in B6BO1 tumours, an abundance of neutrophils was detected, suggesting that 

collagenase does not affect neutrophil viability or Ly6G expression. Additionally, 

Kirkup et al. found an absence of Ly6G transcripts in RNA-seq data from B6BO1 

tumours excised 15 days post-injection, without collagenase digestion [375] . 

Therefore, there is a high degree of confidence that B6BO1 tumours do not contain 

neutrophils. 

The lack of neutrophils in this model may be of relevance to the absence of 

phenotype observed since MMP-8, or neutrophil collagenase, has strong ties to 

neutrophil function. MMP-8 mediates neutrophil chemotaxis through the IL-6/IL-8 

signalling axes as well as facilitating timely neutrophil apoptosis [260,320]. 

Considering there are no neutrophils within the tumours, there may be no effect of 



MMP-8 on the cytokines involved in this pathway since neutrophil efflux and influx 

does not appear to be occurring. Therefore, this is likely why again there is no change 

in IL-6 mRNA or the three mouse homologues of IL-8: CXCL1, CXCL2 or CXCL5.  

The most interesting result from the B6BO1 tumours in Chapter 3.  was the 

differential expression of lipid metabolism genes, with trending increases in Acsl1 

mRNA and significant reductions in Plin1 mRNA in DKO mice. To exclude any 

influence of the passenger mutation on these findings, once again RNA was 

harvested from the same B6BO1 tumours harboured by Mmp8 KO mice and 

compared to those from wild-type controls. The effects on lipid metabolism gene 

expression were not as pronounced in Mmp8 KO tumours when compared to the 

DKO animals, with none of the lipid metabolism genes significantly differentially 

expressed at any of the days studied. However, a trend of Plin1 downregulation was 

observed at all time points in the Mmp8 KO tumours and this approached significance 

at Day 15. Due to colony limitations, the number of mice utilised previously could not 

be replicated which may have impacted on observing the repeat pattern. It does 

however appear that it is MMP-8 and not caspase-11 that is responsible for the 

phenotype of reduced Plin1 expression.  There are several interesting avenues to 

explore regarding the link between perilipin-1 AND MMP-8, including several studies 

that suggest that perilipin-1 is itself tumour-inhibitory in BC [376].This will discussed 

in greater detail in 6.6 but in brief, decreased Plin1 expression in the absence of 

Mmp8 may be indicative of a tumour-suppressive lipid web involving MMP-8. There 

were many more genes that were highlighted as being differentially regulated in the 

original RNA-seq data set, and these would be interesting to examine.  

In experimental BC studies, it is recognised that cell line properties including 

hormone receptor status and intrinsic subtype influence cell behaviour and tumour 

progression when orthotopically injected into mice [377]. The B6BO1 tumours used 

thus far are ER+PR+ cells and may behave differently to cells with an alternative 

receptor status. In Chapter 3. , another cell line with a different receptor status and 

a more aggressive subtype was utilised: basal-like ER+PR- E0771 cells. This helped to 

exclude cell-type specific effects in the absence of Mmp8. No effect on tumour 



progression or intra-tumoural immune infiltrates was observed in DKO mice. 

However, for the final time it was important to rule out any impact of the passenger 

mutation.  

In Mmp8 KO mice, an almost identical pattern in E0771 tumour progression with 

wild-type mice was observed (data not shown). There were no differences in final 

tumour volume in two separate experiments that ran for 19 or 25 days. This suggests 

that the lack of tumour phenotype seen in DKO and Mmp8 KO mice is not exclusive 

to B6BO1s, is not influenced by the passenger mutation and is not time point-

dependent.  Furthermore, the intratumoural immune compartment was probed for 

myeloid population changes and no significant differences were found at either Day 

19 or Day 25. At Day 25 there was a trend in reduced Mφs, the phenotype seen at 

Day 15 in B6BO1 tumours in DKO mice, however this was not significant.  

And finally, since primary BC growth was unaffected by loss of MMP-8, a different 

model of cancer was utilised. The CMT19T mouse lung carcinoma cell line is used by 

many labs to study angiogenesis, is known to metastasise to the lung and can be 

injected subcutaneously to measure rudimentary tumour growth [378,379]. Using all 

three genotypes in our possession, tumour volume and intra-tumoural immune 

infiltration was examined at Day 15. Tumour volume remained consistent at on 

average 200 mm3 between all genotypes, suggesting MMP-8 does not impact 

CMT19T carcinoma growth. However, upon probing the intra-tumoural immune 

compartment, several population changes were observed between genotypes. The 

most changes that occurred were in the Mφ population. A significant increase in Mφ 

number was observed in tumours from both Mmp8 KO and DKO mice in comparison 

to those from wild-type controls. What is of more interest however, is the significant 

reduction in Mφs in DKO tumours compared to Mmp8 KO tumours. In each immune 

population analysed, both Mmp8 null models do not behave in the same way. For 

example, in Mmp8 KO mouse tumours, there were significantly more leukocytes than 

wild-type controls, but this is not true for DKO mouse tumours. Similarly, DKO mice 

have significantly reduced intra-tumoural neutrophils, and whilst there is a trend in 

tumours from Mmp8 KO mice, this is not significant. Taken together, these 



inconsistent immune changes suggest that Casp11 deficiency may play a role in the 

orchestration of immune cell populations in the absence of MMP-8, despite not 

impacting tumour volume. Furthermore, the increases observed in leukocyte and Mφ 

populations in tumours from Mmp8 KO mice suggest MMP-8 alone does influence 

subcutaneous tumour immune populations.  

This alternative cancer type is of interest in the study of MMP-8 since both sexes are 

used. This is in comparison to B6BO1 and E0771 mammary cancer studies where 

females were exclusively used. In skin carcinoma, absence of Mmp8 increased 

tumour burden exclusively in male mice, whereas oestrogen provided protection to 

female mice [292]. Accounting for sex in this small cohort was only possible in tumour 

volume due to number restrictions, but there was no evidence of any trend. It would 

be interesting to repeat this experiment to rule out sex-mediated effects on intra-

tumoural immune populations.  

To summarise, through repeat experiments in Mmp8 KO mice, any robust 

contribution of the absence of caspase-11 to the findings in DKO mice in Chapter 3 

has been ruled out. The passenger mutation does not explain why despite previous 

literature suggesting a tumour-inhibitory role for MMP-8, is not the case in the 

orthotopic tumour model. The data presented here suggests MMP-8 does not 

influence BC primary tumour growth, does not orchestrate the immune system 

within the tumour or impact on IL-6 or IL-8 levels within the tumour. However, an 

interesting link has been discovered between Mmp8 and perilipin-1, a tumour-

suppressive lipid metabolism gene, which may have implications in future work.  

After ruling out the contribution of MMP-8 to primary BC growth, but observing some 

immune population changes in lung carcinoma tumours, it was pertinent to further 

examine immune compartments within Mmp8 KO mice.  

To summarise:  

 It has been confirmed using molecular biology techniques that the entire 
mouse colony is Mmp8 null with a functional Casp11 gene  
 



 MMP-8 does not inhibit primary BC growth in an orthotopic mouse model 
using two separate cell lines with differential hormone receptor statuses 
 

 Absence of Mmp8 does not influence intra-tumoural myeloid immune 
infiltrates  
 

 Lipid metabolism gene expression is again impacted by the loss of Mmp8 
including a reduction in perilipin-1 mRNA that was not confounded by the 
Casp11 passenger mutation 
 

 Loss of Mmp8 does not impact subcutaneous lung carcinoma growth, but 
does influence myeloid immune populations within tumours  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 The influence of MMP-8 on innate immunity   

Whilst there is a wealth of information pertaining to the role of MMP-8 in 

tumourigenesis, there have also been numerous clinical and experimental 

observations linking MMP-8 with inflammatory disorders.  

The alternative name for MMP-8 is neutrophil collagenase, and this title reflects the 

functionality of the enzyme. Firstly, as a collagenase, MMP-8 can cleave triple helical 

collagen fibrils, utilised in remodelling of the ECM. And secondly, in reference to the 

‘neutrophil’ nomenclature, originally, neutrophils were thought to be the sole source 

of MMP-8; storing it as an inactive proenzyme in specific granules. However, it is now 

recognised that cells belonging to both the adaptive and innate immune system, 

including plasma cells, T cells, neutrophils and Mφs, are also producers [380–383].  

Perhaps owing to the contribution of these diverse immune cell types, MMP-8 is 

implicated in a wide range of inflammatory diseases including arthritis, sepsis and 

periodontal disease [310,384–386]. The latter has been extensively studied, and 

MMP-8 has even been targeted using the broad-spectrum MMP inhibitor doxycycline 

[314].  

In general, high levels of MMP-8 are associated with progression of inflammation, 

however, it is not as simple as to say that MMP-8 solely drives pathophysiology, since 

it also aids in the resolution of inflammation [385]. Although, as a caveat to studies 

linking MMP-8 to the immune system, most animal studies utilised the knockout 

mouse model that is highly likely to contain the Casp11 passenger mutation. One 

example of this is in in the study of wound healing [298].  During the process of 

wound healing, the inflammatory response following tissue injury is essential. MMP-

8 has been shown to be nonredundant in skin wound closure, in part due to driving 

neutrophil infiltration, but also at later stages through resolving inflammation to 

allow the healing process to continue. Since cancer is often described as ‘a wound 

that never heals’, there may well be parallels to be drawn between the underlying 

mechanisms, that could implicate MMP-8.  



This chapter will summarise the impact of MMP-8 on immune cell biology both in 

homeostatic immunity, and in the context of cancer, to further probe the link 

between MMP-8 and the immune system.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Bone marrow monocytes can be differentiated into an almost 
pure population of macrophages  

Macrophages are the most abundant immune cell type present in B6B01 and E0771 

mammary tumours, as determined using flow cytometry in Chapters 3.  and 4. . A 

useful ex vivo model exists to study BMM in culture, where upon plating mouse bone 

marrow, monocytes strongly adhere to the culture surface whilst other cells such as 

dendritic cells and neutrophils remain free-floating. Upon the addition of M-CSF, over 

7 days, monocytes differentiate into mature macrophages and can be subsequently 

utilised for phenotypic studies including stimulation with IL-4 or LPS, subjected to 

flow cytometry or lysed to quantitatively measure protein or RNA (Figure 5.1A) [387].   

To determine whether loss of MMP-8 impacts monocyte to macrophage 

differentiation, bone marrow was obtained from Mmp8 KO mice and the percentage 

of macrophages obtained after 7 days was compared to wild-type bone marrow.  

On Day 7, BMM were detached and stained for CD11b and F4/80. Double positive 

cells represent macrophages. Upon flow cytometric analysis, double positive 

CD11b+F4/80+ macrophages were gated on and >98% of cells were found to be BMM 

in both genotypes, suggesting an almost pure population of macrophages (Figure 

5.1B). To account for spread of fluorochromes into the other channel, fluorescence 

minus one controls (FMOs) were also run consisting of each stain individually. There 

was no FITC signal in APC-labelled cells and no APC signal in FITC-labelled cells. 

Similarly, neither APC or FITC signal can detected in unstained cells (US) which 

suggests positive and negative gates were set correctly, and any signal observed is 

due to autofluorescence.   

The remaining <2% of cells could have been monocytes or dendritic cells, since these 

are also present within bone marrow cultures.  



 

Figure 5.1. Differentiation into bone marrow derived macrophages. A) Experimental design 
removing mouse bone marrow from the femur and tibia, subsequent stimulation with M-CSF and 
polarisation with LPS or IL-4 before collection. B) Flow cytometric analysis of CD11b and F4/80 to 
confirm BMM purity in wild-type and Mmp8 KO mice.  

 

 

 

 



 The absence of Mmp8 does not impact M1 or M2 polarisation in 
bone marrow-derived macrophages 

Bone marrow monocytes can be differentiated into bone marrow-derived 

macrophages (BMM) in culture, and subsequently polarised into ‘M1 pro-

inflammatory’ or ‘M2 anti-inflammatory’ phenotypes. Other groups have shown that 

MMP-8 drives the polarisation of Mφs towards an M2 anti-inflammatory phenotype 

[326]. To investigate whether absence of MMP-8 influences Mφ polarisation in either 

direction, levels of M1 and M2 markers from polarised and unstimulated BMM were 

investigated from Mmp8 KO, DKO and wild-type mice.  

Monocytes derived from pooled mouse bone marrow were cultured with 

macrophage colony-stimulating factor (M-CSF) for 7 days where they became an 

almost pure population of Mφs (98%). Next, they were subjected to molecules known 

to induce polarisation towards two ends of a spectrum known as: M1 

(lipopolysaccharide (LPS)), M2 (IL-4) or left unstimulated for 48 hours. Cell lysates 

were Western blotted for M1 and M2 markers: iNOS and arginase-1 respectively to 

ascertain polarisation state (Figure 5.2A). There was no evidence of iNOS or arginase-

1 expression in unstimulated BMM from all genotypes. Arginase-1 could be detected 

in lysates from all cells stimulated with IL-4, with similar expression across genotypes. 

iNOS was detected in lysates from all LPS-stimulated cells, again at similar levels 

across the genotypes.  

In order to study short-term depletion of MMP-8 and caspase-11 in wild-type BMDM, 

siRNA transfection was carried out. BMDM treated with either MMP-8, caspase-11 

or non-targeting control siRNA were stimulated and polarised in identical conditions 

as above. Lysates of cells that were stimulated with LPS were Western blotted for the 

‘M1’ marker iNOS and MMP8 (Figure 5.2B) and blots of those stimulated with IL-4 

were probed for the ‘M2’ marker Arginase-1 (Figure 5.2C). In cells treated with MMP-

8 siRNA, reduced levels of iNOS were detected compared to all other conditions 

except for BMDM derived from Mmp8 null mice. In cells polarised towards the ‘M2’ 

end of the spectrum, treatment with siRNA increased amounts of arginase-1. This 

effect appeared to be siRNA specific since the non-targeting control siRNA-treated 

cells also exhibited this phenomenon.  



Knockdown efficiency was confirmed at the RNA level using qRT-PCR for both MMP-

8 (Figure 5.2D) and caspase-11 (Figure 5.2E), and compared to levels in wild-type and 

non-targeting control siRNA-treated cells. 

These data indicate that MMP-8 does not influence polarisation of BMM in culture, 

even in the presence of the Casp11 passenger mutation.    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 5.2. Macrophage polarisation marker expression in bone marrow-derived macrophages 
from Mmp8 KO, DKO and wild-type control mice. A) Lysates from BMM either unstimulated, 
stimulated with LPS or IL-4, were run on a Western blot and probed for macrophage polarisation 
markers: iNOS (M1) and Arginase-1 (M2). Heat shock protein 70 was used as a loading control. Each 
sample = 2 mice pooled. B) BMM from WT, Mmp8 KO and DKO mice, and siRNA-treated WT BMM 
were stimulated with LPS, lysates were run on a Western blot and probed for the M1 polarisation 
marker: iNOS (M1) and MMP-8. C) BMM from  WT, Mmp8 KO and DKO mice, and siRNA-treated WT 
BMM were stimulated with IL-4, lysates were run on a Western blot and probed for M2 polarisation 
marker Arginase-1 (M2). Heat shock protein 70 and GAPDH were used as a loading control. D&E) 
mRNA levels in siRNA-treated BMM of D) Mmp8 and E) Casp11. 
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 IL-6 expression is consistent between Mmp8 KO and wild-type 
mice in co-cultures of B6BO1s and bone marrow-derived 
macrophages  

Previous literature has indicated that overexpression of Mmp8 leads to upregulation 

of IL-6 in cultured BC cells [296]. Therefore, whether this occurred within the TME in 

B6BO1 mammary tumours, and if absence of MMP-8 led to opposite effects on IL-6 

production was investigated.  

To replicate this interaction in vitro, B6BO1 mammary cancer cells were co-cultured 

with unstimulated BMM either directly or separated by a 0.4 µM transwell insert. 

The amount of IL-6 was quantified in the media after 48 hours and relative IL-6 mRNA 

levels were analysed.  

Upon direct co-culture of B6BO1s with BMM from both wild-type and Mmp8 KO 

mice, no significant difference was observed in media IL-6 levels between genotypes 

as measured by ELISA. This was also reflected at the RNA level, as the expression of 

IL-6 was not significantly different between genotypes. (Figure 5.3A&B).  

Whilst these results suggest that the loss of Mmp8 in BMMs does not impact priming 

of inflammatory immune responses in response to tumour derived Damage 

Associated Molecular Patterns (DAMPs), technical limitations prevent a definitive 

answer to this question. Using co-cultures is a useful method to obtain information 

on how cells interact with one another, however since the population is 

homogeneous, it is difficult to determine gene expression for each cell type. To 

resolve differences in either Mφs or B6BO1s definitively and to determine the impact 

of soluble factors in cross-talk, transwells were employed. BMM were seeded into 6-

well plates underneath transwells containing B6BO1s. Culture media and RNA was 

collected from each separate compartment and used for IL-6 protein and gene 

analysis. Media from BMM-containing wells had an IL-6 concentration of 60-70 

pg/mL and B6BO1 containing wells was between 30-40 pg/mL (Figure 5.3C). Relative 

mRNA levels of IL-6 were not statistically different from B6BO1s or BMM regardless 

of BMM origin genotype, though there was a trend for reduced levels of IL-6 in 

B6BO1s from Mmp8 KO mice (Figure 5.3D).  



One other observation of note was the detection of Mmp8 in B6BO1 cells in 

transwells above Mφs at the RNA level (Figure 5.3E). Whilst the CT value was high at 

between 35-37, in comparison to approximately 25 in co-cultures, this finding could 

be of significance in interpreting the effects upon loss of Mmp8, if Mmp8 is indeed 

present.  

 

 

 

 

 

 

 

 

 

 

 

 



Figure 5.3. Media concentration and mRNA levels of IL-6 and MMP-8 in co-cultures of B6BO1 and 
bone marrow-derived macrophages after 48 hours. A&B) IL-6 quantities in direct co-cultures A) in 
the media as measured by ELISA and B) at the mRNA level. C&D) IL-6 quantities in each 
compartment of transwell co-cultures E) Expression of Mmp8 as measured by qRT-PCR in direct co-
cultures within each compartment of transwell co-cultures. 
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 Unchallenged Mmp8 KO mice have a reduced percentage of bone 
marrow neutrophils  

As consistent changes in intra-tumoural immune populations could not be detected 

in the absence of MMP-8, changes in immune organ populations were instead 

pursued. There is a fine balance struck between exit of leukocytes into the periphery 

and production in the bone marrow – the site of haematopoiesis [388,389]. Differing 

levels of immune populations can reflect the state of the host including presence of 

disease or neoplasm.  

The immune populations were analysed in the bone marrow of Mmp8 KO and wild-

type mice to ascertain whether MMP-8 drives changes in immune landscape.  

First, bone marrow was isolated from healthy mice from both genotypes, 6-8 weeks 

of age and the cells were subjected to flow cytometric analysis. The cells were stained 

with an identical panel to that used in the mammary and subcutaneous tumours and 

it was found that the bone marrow was predominantly composed of myeloid cells in 

wild-type mice, representing 65% of live cells (Figure 5.4A). However, in Mmp8 KO 

mice there were significantly less myeloid cells, accounting for 45% of the total cells. 

This difference within the CD11b+ myeloid population was not reflected in the 

number of monocytes since this was almost identical between genotypes, 

representing less than 10% of total cells. Neutrophils made the largest contribution 

to the myeloid compartment, representing 40% of all cells in wild-type bone marrow. 

However, in Mmp8 KO mice, less than 30% of the bone marrow was composed of 

neutrophils, significantly less than their wild-type counterparts.  

Some phenotypes observed in Mmp8 null mice have been attributed to sex, with 

female sex hormones thought to play a role [292,293,305]. An investigation into 

whether some immune cell population differences were influenced by sex was 

carried out by comparing female vs male mice from both genotypes. Whilst a more 

pronounced reduction in myeloid cells and neutrophils was found between Mmp8 

KO and wild-type males than with females (Figure 5.4B), no significant differences 

between sexes within the same genotype were found. No differences between 

monocyte populations were observed when accounting for gender. 



Based on our observations that unchallenged Mmp8 KO mice have a reduced number 

of bone marrow myeloid cells and neutrophils, mice bearing tumours were also 

analysed to see whether the immune compartment was altered during disease 

(Figure 5.4C).     

Within both genotypes, mice bearing tumours had more immune cells in general, and 

significantly more myeloid cells. This effect was more pronounced in wild-type 

animals. Wild-type tumour-bearing mice had significantly more myeloid cells and 

neutrophils than their non-tumour bearing counterparts. Mmp8 KO mice bearing 

tumours had significantly more myeloid cells than null mice without tumours, and 

whilst there was a trend for increased neutrophils, this was not significant.  

Looking between genotypes, a trend was observed in reduced myeloid cells and 

neutrophils in Mmp8 KO mice without tumours within this experiment. However, 

upon pooling these data with the previous unchallenged mice, a significant decrease 

in myeloid cells and neutrophils was observed in Mmp8 KO mice without tumours 

(Figure 5.4D). 

The gating strategy used to analyse stained cells alongside percentages of each 

parent gate can be found in Figure 5.4E. 

 

 

 

 



 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4. Flow cytometric analysis of bone marrow populations. A&B) Bone marrow myeloid cell 
populations in healthy mice from A) both sexes combined and B) individual sexes. C) Bone marrow 
populations in tumour-bearing vs non-tumour-bearing mice. D) Pooled data from two independent 
experiments on non-tumour bearing mice. E) Flow cytometric gating strategy for bone marrow 
populations including CD11b+, Ly6C+ and Ly6G+ cells. Representative plots from both genotypes as 
found in A. TB = tumour-bearing, NT = non-tumour-bearing. Data is presented as a mean percentage 
of total live cells ± SEM. *FDR adjusted p value (A) or Holm-Šídák adjusted p-value (B&E). *p<0.05, 
**p<0.005, ***p<0.0005, ****p<0.0001. 
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 The splenocyte T cell population is not affected by the absence of 
Mmp8 

To complement the study of the bone marrow as a primary lymphoid organ, the 

spleen was also studied as a crucial secondary lymphoid organ whereby circulating T 

and B cells search for their cognate antigens [390]. 

Whilst the majority of MMP-8 is myeloid cell-derived, T-cells do also contribute small 

amounts. Therefore, to investigate whether absence of Mmp8 impacted lymphoid 

immune populations, the spleen was harvested from the same animals used for bone 

marrow analysis. Subsequently the splenocytes were subjected to flow cytometry 

with an antibody panel designed to look at T cell populations (Figure 5.5A). In the 

spleen, T cells accounted for approximately 30% of the cells, staining positive for the 

pan-T cell marker CD3. Within that population, approximately half were CD4+ T 

helper cells and the other half were CD8+ T cytotoxic cells.  

The effect of sex of the animal was explored by categorising data into male and 

female populations within each genotype (Figure 5.5B). No significant difference in 

splenocyte populations were detected both dependent or independent of sex. The 

gating strategy used to analyse stained cells alongside percentages of each parent 

gate can be found in Figure 5.5C.  
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Figure 5.5. Flow cytometric analysis of spleen populations. A&B) Spleen populations in healthy 
mice from A) both sexes combined and B) individual sexes. C) Flow cytometric gating strategy for 
splenic populations including CD3+, CD4+ and CD8+ cells. Data is presented as a mean percentage of 
total live cells ± SEM. 



 Discussion  

Throughout Chapters 3 and 4, evidence was provided contrary to the hypothesis that 

MMP-8 inhibits tumour growth through orchestration of the immune system, since 

no changes were detected in tumour volume in the absence of Mmp8, nor consistent 

immunological changes. The approach taken was to solely investigate the tumour 

itself, and whilst MMP-8 had little impact in the context of the tumour, there may 

have been systemic effects of MMP-8. Two different approaches were taken to 

investigate the role of MMP-8 in both general and cancer immunity. Firstly, to look 

at how absence of MMP-8 affected the behaviour and phenotype of Mφs both with 

inflammatory stimuli and under the influence of cancer cells. And secondly, analysing 

population level changes in immune organs, additionally searching for potential sex 

differences.   

The focus on Mφs was for three reasons: 1. They were the most abundant intra-

tumoural immune cell. 2. The only immunological change detected in earlier chapters 

was reduced numbers of intra-tumoural Mφs and 3. Mφs can be easily manipulated 

in vitro. 

The culture of BMM is a well-established and reproducible technique used to study 

gene expression, behaviour and many more parameters upon application of various 

stimuli [387,391]. Since bone marrow-derived monocytes are extremely adherent, 

they preferentially stick to culture surfaces, whereas the remaining bone marrow 

cells including dendritic cells and neutrophils float freely. This allows selective culture 

of monocytes and eventually the differentiation into BMM upon regular addition of 

the growth factor M-CSF. Adherent Mφs usually make up over 90% of the population 

[387]. To confirm the differentiation protocol used in these studies was successful in 

obtaining an almost pure, homogenous population of Mφs, the number of 

CD11b+F4/80+ Mφs was quantified using flow cytometry. This confirmed that the 

population was almost pure with greater than 98% of cells expressing both markers. 

It was important at this stage to confirm that MMP-8 did not impact the 

differentiation of monocytes to Mφs before carrying out downstream experiments, 

hence it was confirmed that genotype did not impact the purity obtained. 



Mφs are extremely plastic cells and respond to cues to modulate the immune system, 

maintain homeostasis and participate in tissue repair [392]. Subsequently, they can 

adjust and change phenotype including towards each end of a spectrum of 

polarisation.  

There is some debate as to whether the phenotypes and markers associated with in 

vitro polarisation are definitive and can recapitulated in vivo [158]. However, Mφ 

polarisation is routinely analysed in vivo via flow cytometry for the levels of MHCII 

and CD206 representing M1 and M2 Mφs respectively [393]. This analysis was carried 

out in B6BO1 tumours in Chapter 3 where evidence was found for both populations 

but no differences between genotypes at any of the three timepoints. However, this 

was in the context of the tumour itself and to examine the effects of MMP-8 on Mφ 

polarisation more generally, the focus was shifted to key immune organs in both 

tumour-bearing and non-tumour-bearing animals.  

There are several lines of evidence that MMPs influence Mφ polarisation, including 

MMP-7 and -28. The absence of Mmp7 resulted in preference to M1 phenotype and 

absence of MMP-28 impaired M2 polarisation, suggestive that both are important in 

M2 polarisation. Wen et al. demonstrated that MMP-8 influences M2 polarisation. 

Using BMM derived from Apolipoprotein-E (Apo-E)/Mmp8  null mice, they found that 

in the absence of Mmp8, IL-4 was unable to stimulate differentiation into the M2 

phenotype – suggesting MMP-8 drives M2 polarisation [326]. They found this was 

related to the ability of MMP-8 to cleave fibromodulin to release sequestered TGF-β 

– an M2 inducer. However, other groups have shown contrasting data linking MMP-

8 to TGF-β levels in BC cells. Soria-Valles et al. found that MMP-8 is involved in a 

signalling nexus with decorin and miR-21 to reduce TGFβ levels, subsequently 

inhibiting BC growth and metastasis [327].  

Unfortunately, the work by Wen et al. is likely to be subject to the same caveat as 

work carried out in Chapter 3. . They used the B6.129X1-MMP8tm1Otin/J strain derived 

from the SV129 strain known to contain the Casp11 passenger mutation and crossed 

it onto an ApoE-/- background.  

These studies had the privilege to use mice both with (Mmp8 KO mice) and without 

the Casp11 passenger mutation (DKO mice) to investigate whether the absence of 



Casp11 contributed to the Mφ polarisation phenotype. BMM were stimulated with 

LPS or IL-4 and the levels of iNOS representative of M1 and arginase-1 representative 

of M2 Mφs were quantified by Western blot. BMM derived from wild-type, Mmp8 

KO and DKO mice could all be polarised to the M1 or M2 phenotype, with no 

differences in the amount of iNOS or arginase-1 present. There was an attempt to 

isolate Mφs from within tumours using fluorescent-activated cell sorting (FACS) to 

analyse marker expression at the RNA and protein level, but due to technical reasons 

this was not possible. Together, the combination of in vitro and intra-tumoural 

polarisation data indicates that MMP-8 is not vital in Mφ polarisation, independent 

of Casp11 status.  

There were concerns that absence of Casp11 could affect Mφ polarisation by virtue 

of the fact that it acts as an LPS-binding receptor. It was hypothesised that loss of 

Casp11 could prevent LPS-stimulation of Mφs; however, it appears that this is not 

the case. 

There are several explanations as to why we do not observe differences, when other 

groups do. Firstly, the mice utilised by Wen et al. are both Mmp8 and ApoE null. There 

is evidence to suggest that apolipoprotein E induces the M2 anti-inflammatory Mφ 

phenotype [394]. Therefore, it is difficult to disentangle that contribution from each 

component in this model. An attempt was made to correct for this using gene 

silencing techniques in the RAW264.7 Mφ cell line or wild-type bone marrow. 

However, the use of viral vectors such as lentiviruses can trigger immunogenicity – 

particularly in Mφs and may subsequently affect their response to challenge [395]. 

An attempt was made to knockdown MMP-8 in wild-type BMM using siRNA gene 

silencing, but upon stimulation with IL-4, enhanced expression of arginase-1 was 

observed in BMM both treated with non-targeting control siRNA and MMP-8 siRNA 

– suggesting an siRNA-induced effect on stimulation. 

Secondly, whole-cell protein levels of M1 and M2 markers (iNOS and arginase-1) 

were quantified via Western blot. In contrast, Wen et al. confirmed polarisation 

through qRT-PCR looking at RNA levels of M1 genes (Arg II, Mcp-1 and Tnf-α) or M2 

genes (Arg I, Cd163 and Cd206).  



In Chapters 3.  and 4.  the link was made between MMP-8 and the cytokines IL-6 and 

IL-8, looking at gene expression levels within B6BO1 tumours. IL-6 is a relevant 

cytokine to study in BC since it is associated with stem cell maintenance, 

angiogenesis, cachexia and chemoresistance [396–399]. Since overexpression of 

Mmp8 led to upregulation of IL-6 and IL-8 in human BC cells [320], a reduction in 

expression was anticipated in the absence of Mmp8. Whilst a reduced trend in IL-6 

mRNA levels was observed at multiple time points, there was minimal effect on the 

three mouse homologues of IL-8: CXCL1, CXCL2 and CXCL5. Therefore, the next action 

was to attempt to find the cellular source of IL-6 within the TME. Two populations 

were chosen that were the most likely origins of the IL-6: the BC cells themselves or 

Mφs and modelled what may occur using an in vitro culture. Through co-culturing, 

additional information was gleaned on cellular communication that may occur 

between these cell types – both directly and indirectly, through transwell assays.  

Concurrent with the existing literature, IL-6 was detected in both B6BO1 BC cells and 

BMMs alone [109,400]. Upon co-culture, there were similar amounts of IL-6 

transcripts in both B6BO1 and BMMs but no significant change in the absence of 

Mmp8 in BMMs. At the protein level, lower amounts of IL-6 were detected in 

cultured media from B6BO1 cells vs. BMM although this was not significant. In direct 

co-cultures of BMM and B6BO1 cells, the absence of Mmp8 in Mφs did not alter IL-6 

levels at the RNA or protein level. Whilst this suggests MMP-8 itself does not 

influence IL-6 expression in Mφs or B6BO1 cells, it does not rule out that MMP-8 has 

an impact on other components of the signalling pathway such as responsiveness to 

IL-6.  

One final observation to discuss regarding the transwell assays is the detection of 

Mmp8 transcripts in B6BO1-containg wells. Alone, B6BO1s do not express MMP-8 at 

the protein or RNA level as discovered in Chapter 3 and confirmed again in transwells. 

If soluble factors from Mφs can induce the expression of MMP-8 from B6BO1 cells, 

this may occur in vivo within tumours and could introduce MMP-8 into the system.  

Whilst the in vitro and ex vivo Mφ experiments did not reveal a role for MMP-8 in 

Mφ activation or IL-6 levels, whether MMP-8 had a broader effect on the immune 



system was considered. How absence of Mmp8 impacted immune populations was 

explored in two immune organs: the spleen and the bone marrow.  

The effects of MMPs are most often considered in the local TME. However, tissue 

MMPs can enter the bloodstream, and efficient systemic immunity is vital in 

controlling neoplasms. In inflammatory BC, low plasma levels of MMP-8 are found, 

suggestive of high levels within the tumour. Within the context of this aggressive 

cancer, MMP-8 appears to have a pro-tumourigenic role. In parallel to this, MMP-8 

plasma levels were high in patients with moderate LN involvement and low in 

patients strongly disposed to metastasis.  

Therefore, it was hypothesised that MMP-8 may have effects on systemic immunity 

in BC and could ultimately influence disease progression and spread.   

The bone marrow is the site of adult haematopoiesis, responsible for generating all 

cells of the haemopoietic lineage. There is very little literature on absolute 

percentages of cells in the bone marrow. Most quantitative measures come from 

traditional bone marrow smears. Flow cytometry was utilised to analyse specific 

myeloid populations within the bone marrow. It was found that the bone marrow of 

healthy wild-type mice under steady-state conditions was constituted of 60% 

myeloid cells of which 40% were neutrophils and less than 5% were monocytes. 

Other myeloid cells probably included basophils and eosinophils however these 

populations were not stained for. Whilst there are little data to support bone marrow 

population findings, differential counts in mouse marrow smears found neutrophils 

to account for 38-40% of total cells [401]. In bone marrow from Mmp8 KO mice, 

significantly reduced numbers of myeloid cells and neutrophils were found under 

steady-state conditions. Whilst this finding was not followed up on, there are several 

possible explanations and avenues to explore.  

In mice, the bone marrow reserve of neutrophils is thought to be around 120 million 

cells, and at any one time there are  greater than 2.5 million in circulation [402] The 

balance between production and mobilisation of neutrophils is a finely-tuned 

homeostatic process and relies heavily on both locally-produced cytokines and 

distant feedback mechanisms.  



The bone marrow microenvironment supports retention of a pool of mature 

neutrophils via interaction between CXCR4 on the neutrophils themselves and its 

ligand, stromal-cell derived factor-1 (or CXCL12) [403]. Disruption to this receptor-

ligand interaction encourages egress of cells from the bone marrow into the 

periphery.  Several MMPs have demonstrated cleavage activity against CXCL12 

including MMP-2, -8, -9 and -14, thus playing a role in regulation of chemokine 

gradients.  

There are several other biological explanations for observing a reduced number of 

neutrophils: there is less production of neutrophils, more cells are being cleared 

through apoptosis or there is a shift in populations towards immature precursors.   

If the latter explanation is correct, the reduced number of myeloid cells and 

neutrophils seen could in fact be an artefact of a shift in cell populations that do not 

express the markers that were stained for in these experiments. This could logically 

tie to an influence on mobilisation from the bone marrow, since increased 

mobilisation can cause what is referred to as ‘left shift’. This is a process whereby 

upon depletion of bone marrow stores, myeloid hyperplasia can occur in response, 

resulting in irregular myelopoiesis and the production and release of immature cells 

[404]. In the bone marrow, myeloid progenitor and precursor cells do not express 

CD11b [405]. Therefore, immature cells would not have been included in the analysis. 

It is possible that MMP-8 leads to a mobilisation of neutrophils from the bone 

marrow, resulting in erratic production of immature cells in response. However, 

several groups have carried out WBC counts in the blood of Mmp8 null mice and have 

found no significant differences, which suggests the mobilisation theory may not be 

responsible for the observed phenotype, unless these cells are being transported 

directly to target organs [308,406].  

Another possible explanation for a reduced number of bone marrow neutrophils 

could be attributed to aberrant apoptosis. In several models of disease, the loss of 

MMP-8 has been associated with this phenomenon [298,305,308,312]. In the 

absence of MMP-8, the reduced number of neutrophils observed suggests MMP-8 

suppresses neutrophil apoptosis, on the contrary to previous data. 



It has been alluded to that incomplete collagen breakdown can lead to sustained 

signalling, since chemotactic signals are retained in the ECM [407]. Collagen is a major 

component of the ECM in bone marrow, and cleavage of collagen fibrils could lead 

to changes in the balance of apoptotic mechanisms, thus impacting upon the bone 

marrow neutrophil population [408]. For example, there is a collagen fragment called 

proline-glycine-proline or PGP, that is usually released by a neutrophil-derived 

enzyme called prolyl endopeptidase [409]. PGP, generated de novo from pro-

collagen, is a pro-inflammatory molecule that acts as a potent neutrophil 

chemoattractant. MMP-8 has been shown to regulate neutrophil chemotaxis 

through generation of PGP from the corneal stroma under the influence of LPS [410]. 

MMP-8 may help to carve and maintain the bone marrow stromal landscape that 

results in cell population changes.  

Whilst most observed effects of MMP-8 on the immune system are mediated by 

myeloid cells, there is some evidence to suggest a link between MMP-8 and lymphoid 

cells. MMP-8 has been detected in T-cells within the central nervous system and in 

plasma cells [380–382]. Furthermore, there is a relationship between serum levels of 

MMP-8 and peripheral lymphocytes in Down’s syndrome patients with gingivitis, 

hypothesised to facilitate migration of CD8+ cytotoxic T cells and NK cells [411]. 

Therefore, the study of lymphoid populations in Mmp8 KO mice was warranted, and 

to do this, the spleen was chosen since it is rich in lymphoid cells. 

Flow cytometry was carried out using a basic T cell panel in the spleen of Mmp8 KO 

and wild-type mice and no differences were found in populations between 

genotypes. Whilst there is no evidence to suggest MMP-8 plays a role in spleen 

biology, to our knowledge, we are the first group to look at splenocyte populations 

in Mmp8 null mice and have confirmed at least within major T-cell populations, 

MMP-8 has no impact.  

And finally, whether sex of the mouse had any impact on bone marrow and spleen 

immune populations was explored. In some disease models, the phenotypes 

observed in female Mmp8 null mice were different to that in males. For example, in 

a model of arthritis, male Mmp8 null mice had more severe joint swelling compared 

to their wild-type counterparts, but this was not the case in females [305]. 



Additionally, male Mmp8 null mice had an increased incidence of carcinogen-induced 

skin tumours compared to wild-type mice, whereas Mmp8 null female mice were 

protected from this increase [292].   

Therefore, the bone marrow and spleen of male and female WT and Mmp8 KO mice 

was chosen to investigate whether sex had any impact on bone marrow populations. 

Despite again finding a reduced number of myeloid cells and neutrophils in the bone 

marrow of Mmp8 KO mice, no significant differences were found between sexes 

within the same genotype. This suggests that it is the absence of Mmp8 that is 

responsible for this phenotype, with no male- or female- specific effect.  

Whilst at least three groups have found sex-specific differences in Mmp8 null mice, 

so far there has been no detailed mechanism described. Balbin et al. found that in 

the absence of Mmp8, female mice were protected from skin carcinoma through an 

oestrogen-dependent mechanism since ovariectomy or tamoxifen treatment 

abrogated this protection [292]. Korpi et al. delved further into this oestrogen and 

MMP-8 association in tongue carcinoma, revealing a role for MMP-8 in ERα and ERβ 

cleavage to enable dimerization and stabilisation of receptor complexes that 

promote activation of oestrogen signalling pathways [293]. Furthermore, oestrogen 

can induce the expression of Mmp8, thought to be related to the structure of the 

Mmp8 gene promoter, which has a C/EBP element known to associate with ER-α 

[294].  

Our results so far suggest that if there are sex-specific differences in Mmp8 KO mice 

in inflammation-related diseases, this is most likely not due to changes in immune 

populations in the bone marrow or spleen.   

In summary, we found that lack of Mmp8 did not shape Mφ phenotype upon LPS or 

IL-4 stimulation, nor impact IL-6 signalling in BC cell co-cultures. However, upon 

profiling of immune organs, despite finding no changes in splenocytes, significantly 

reduced neutrophil numbers were found in the bone marrow of both unchallenged 

and tumour-bearing mice, independent of sex. We believe these observations 

warrant further study.  

 



To summarise:  

 MMP-8 does not influence bone-marrow derived Mφ differentiation or 
polarisation towards M1 and M2 phenotypes 

 
 In direct or indirect (transwell) co-cultures of B6BO1 and BMM, the absence 

of Mmp8 in BMM does not influence IL-6 protein or RNA levels  
 

 Unchallenged Mmp8 KO mice have reduced numbers of bone marrow 
myeloid cells and neutrophils compared to wild-type controls, and this trend 
exists in mice bearing orthotopic mammary tumours  

 
 The number of CD3+, CD4+ and CD8+ T cells in the spleen are not impacted by 

absence of Mmp8  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 Concluding Remarks and Future Work 

The MMP family consists of many important players in tumour growth and 

metastasis. For the most part, MMPs promote tumourigenesis by enzymatically 

modulating the ECM to facilitate cell migration, invasion and survival. However, one 

member of this family: MMP-8, appears to play a contrasting role as a tumour-

suppressive protease.  Previous data has shown that high MMP-8 expression 

correlates with improved survival in BC patients, and loss of Mmp8 enhanced 

metastasis in the MMTV-PyMT spontaneous BC mouse model [286,296]. 

Concurrently, other groups have demonstrated a link between MMP-8 and the 

immune system. MMP-8 is involved in both initialising and resolving inflammation 

through chemotaxis and apoptosis of innate immune cells. Furthermore, MMP-8 

modulates TGF-β signalling; TGF-β being a major immunosuppressive molecule in the 

TME through polarising Mφs and neutrophils towards pro-tumourigenic phenotypes 

[326,327,412].  By amalgamating these concepts, this thesis sought to investigate 

whether MMP-8 inhibits primary BC growth through orchestration of the immune 

system.  

To investigate immunological changes at specific time points in tumour growth, as 

well as measuring tumour growth itself, the orthotopic injection model was utilised. 

Using this mouse model of human BC, there was insufficient evidence to suggest that 

the hypothesis that Mmp8 orchestrates anti-tumour immunity was correct. At each 

of the three time points studied, absence of Mmp8 did not increase tumour volume, 

and only changes in one immune population could be observed within the tumours: 

reduced Mφs at Day 15.  

So why does the tumour-inhibitory function of Mmp8 in the MMTV-PyMT 

spontaneous model not manifest itself in this alternative orthotopic model of BC? 

Several possible explanations have been alluded to throughout Chapters 3 and 4, but 

to briefly summarise:  

 tumour initiation vs tumour growth and progression are different processes 

 the background strain used in animal models can hugely impact outcome 



 littermate controls were not used in both models 

  is there inducible expression of Mmp8 in the orthotopic model that obscures the 

‘absence’ of Mmp8? 

 is there influence of a potential Casp11 passenger mutation in the spontaneous 

model? 

Each of these topics will be evaluated in turn throughout this chapter.  

 Tumour Initiation vs Tumour Growth 

Whilst an increase in tumour volume would have been expected in the absence of 

Mmp8, there are some differences in this orthotopic model in comparison to the 

previous spontaneous model that may in part explain a lack of phenotype. Use of the 

MMTV-PyMT model is a well-established technique for studying tumour initiation 

since hyperplastic lesions develop spontaneously and progress without the need for 

exogenous stimuli. This model mimics the entire process of tumour initiation and 

growth into metastasis [295]. However, the orthotopic model utilised here does not 

mimic all stages of tumour growth, since normal cells do not become cancerous 

spontaneously. Instead, a mass of 100,000 cancer cells are introduced into the 

mammary gland in the presence of Matrigel which contains a plethora of growth 

factors and matrix components known to enhance tumour pathophysiology [413]. 

Therefore, this orthotopic model does not well represent tumour initiation and could 

explain a lack of tumour phenotype. This differentiation between initiation and 

progression has been pertinent before in skin carcinoma whereby it was specifically 

the amount of time to malignancy and the incidence of skin tumours and not tumour 

progression that was affected by the absence of Mmp8 [292].  

Furthermore, if tumour latency is important in observing a role for MMP-8, other 

mouse models could be considered. PyMT is just one of many oncogenes that when 

driven under the MMTV promoter can be used to model BC tumourigenesis. The 

MMTV-neu model for example has a mean latency of 100 days, almost double that 

of MMTV-PyMT mice, that develop tumours after 53 days on average [414,415].  



Therefore, utilisation of this alternative model might allow earlier events in 

tumourigenesis to be unpicked.  

 Model and Background Strain 

It is not only differences in tumour dynamics that may explain the lack of observed 

phenotype. Mouse genetics contribute hugely to experimental responses, 

particularly strain variations. Transgenic mouse models of BC are a prime example of 

this.  Most MMTV-PyMT experiments are carried out on the FVB/N (FVB) background, 

and this is partly because similar signalling pathways are activated to that in humans, 

including those downstream from erbB2, an oncogene overexpressed in 30% human 

BCs [416]. This helps replicate the complex stages that occur during tumour 

progression. Furthermore, pulmonary metastases are predictable and the tumour 

latency period is relatively short [295].  

However, whilst the MMTV-PyMT spontaneous BC model is extremely useful in 

identifying gene loci that contribute to tumourigenesis or metastasis, tumour 

responses to PyMT virus transfection do vary amongst inbred strains [417]. It has 

been hypothesised that the murine MHC gene locus (H-2) could be responsible for 

this [418]. Murine H-2 varies between strains, resulting in mice with diverse H-2 

haplotypes [419]. FVB mice have a H-2q haplotype that is more susceptible to PyMT-

induced tumourigenesis than C57Bl strains that are of a H-2b haplotype [420]. One 

group has shown that PyMT tumourigenesis is delayed by 39 days in C57Bl mice 

compared to FVB mice [415]. Additionally, they found that tumour kinetics vary 

between the strains with the exponential growth phase occurring twice as fast in FVB 

mice compared to C57Bl.  

This information may be of relevance in interpreting the data presented in this thesis 

versus those obtained previously in the spontaneous model. The results prior to this 

thesis showing MMP-8 to be tumour inhibitory were obtained using a spontaneous 

BC model on an FVB background [296]. Given, as discussed, the accelerated growth 

kinetics of BC tumours in this strain, it is reasonable to assume this as a possible 

explanation for the lack of difference we observe in the inducible model used in this 

study. In this project, C57Bl/6 mice were employed to study orthotopic tumour 



growth, and absence of Mmp8 did not impact tumour growth. Strain differences 

including H-2 haplotype could have been responsible for this discrepancy.  

 Experimental Variation 

Another comparison to be drawn between previous work using the spontaneous 

model and the orthotopic model utilised here is the use of littermate controls. In this 

thesis, due to time and colony management restrictions, the gold standard of 

littermate controls were not used and instead mice were maintained as homozygotes 

[421]. For experiments using Mmp8 KO mice without the Casp11 passenger mutation 

in Chapter 4, this standard was almost achieved, using the progeny from the litters 

of heterozygous breeding pairs, or the littermates which in theory should have 

reduced genetic variation to some degree. However, it is noticeable from the visible 

heterogeneity in tumour size that there is an unknown experimental variable that 

causes this. Some tumours upon harvest were very small or very large despite 

injections occurring on the same day, the same number of cells and age-matching 

within 2 weeks.  

As well as genetic divergence, an alternative source of experimental variability in 

mouse studies is the microbiota. Divergence of the microbiota has been shown to 

drive phenotypic changes. For example, some mice show different susceptibilities to 

Salmonella enterica Serovar Typhimurium infection, and there are even known 

cancer-inhibitory effects of the microbiome [422]. Mice purchased from The Jackson 

Laboratory controlled melanoma growth more efficiently than mice obtained from 

Taconic Farms, and responded better to immunotherapy [423]. To rule out 

microbiota-driven impacts on tumour growth, it has been proposed that littermate 

controls should be used or mice should be co-housed, unlike the setup here where 

mice were separated by genotype and maintained in different cages for their entire 

lifespan [424].  The effect of cage-driven changes to the microbiota could be 

considered a caveat to all of the tumour experiments carried out in this thesis [425].  



 Inducible Expression of Mmp8 

All models have weaknesses, for example the multiple foci that arise in the 

spontaneous model make observing immunological changes challenging. The single 

tumour that forms in the orthotopic model and progresses at a reliable rate is a good 

alternative to this. However, there are drawbacks to the orthotopic model. Knockout 

mice are designed so that the function of the gene of interest is disrupted by 

designing a genetic construct that prevents mRNA transcript production or in some 

cases results in an mRNA transcript that is rapidly degraded. Therefore, in Mmp8 null 

mice that are crossed onto the MMTV-PyMT background, subsequent homozygous 

mice are completely devoid of Mmp8. In the orthotopic model there is no host-

derived Mmp8 in homozygotes, but the use of injectable cell lines provides 

opportunity for tumour-derived Mmp8 to contribute. We confirmed that both the 

E0771 and B6BO1 cell lines did not endogenously express Mmp8 at both the protein 

and RNA level. However, under the influence of other cells in 2D and 3D, some Mmp8 

could be detected both in tumour cells in co-cultures and tumours from homozygous 

mice. In tumours from Mmp8 null animals, Mmp8 mRNA could be occasionally 

detected at a very high CT value of at least 37. In B6BO1 and BMM co-cultures, Mmp8 

could be consistently detected at a CT of 34-36. The simple explanation would be that 

the TaqMan primers span a region that is not targeted by the construct and a 

dysfunctional mRNA is being detected. However, this appears not to be the case since 

scrutiny of the primer sequences revealed that the forward primer spans the exon 

boundary of exons 4 and 5, and the reverse primer is in exon 5. The Mmp8 null allele 

construct is devoid of exon 4, which has been replaced with a neomycin resistance 

cassette [292]. Therefore, unintended amplification of a non-coding transcript is not 

possible.  

However, what could be happening is that Mmp8 has been introduced into the 

system by the B6BO1 cells that possess a functional Mmp8 gene. Whilst most 

tumoural MMP activity is host-derived, cancer cells are known to produce MMP-8 

[291]. Neighbouring cell-induced expression from the B6BO1 cells is possible. One 

contender for this is Mφs since co-culture of B6BO1s and BMM derived from Mmp8 



KO mice resulted in Mmp8 expression that did not occur in B6BO1s or BMM alone. 

To confirm B6BO1 cells within the tumour are induced to produce Mmp8, a single 

cell sequencing approach could be taken to look for expression in tumour cells within 

Mmp8 KO tumours. This would raise further questions regarding the use of this 

model to investigate tumour phenotype in the absence of Mmp8.  

 

 Passenger Mutations 

Of course, the Casp11 passenger mutation that was present in the mice utilised in 

Chapter 3 is a point of contention between the spontaneous and orthotopic model. 

Whilst within this thesis, it was extensively demonstrated that our results were not 

confounded by the passenger mutation, the same cannot be said for data generated 

in the spontaneous model.  

As discussed in Chapter 1.5, most transgenic mouse models were created using ESCs 

from the SV129 strain that was more amenable to manipulation than other strains, 

having a high propensity for germline transmission. However, SV129 mice had low 

fecundity and C57Bl mice bred well, so transgenic mice were backcrossed onto the 

C57Bl strain [335], the strain used throughout this thesis. The DKO mice with the 

passenger mutation on the C57BL/6 background in Chapter 3 originated from the 

FVB Mmp8 null mice used to cross onto MMTV-PyMT mice in the spontaneous model 

[296]. There is of course a small chance that the breeding pairs continued to harbour 

the passenger mutation whilst the mice used in the tumour experiments lost the 

mutation, but this is extremely unlikely. Therefore, the discovery that MMP-8 is 

tumour-inhibitory in BC is subject to the caveat that the model was also lacking in 

Casp11 which may have confounded interpretation of the function of MMP-8.  

 

 

 



 Further Discussion 

So far, the lack of tumour growth phenotype observed in this body of work has been 

discussed. Much of this thesis also focussed on dissecting immune changes within 

the tumour compartment. However, in a similar fashion, there was nothing 

consistent over tumour evolution. Aside from the notion that tumours were analysed 

at a much later stage than previous studies, it should be acknowledged that the main 

cellular source of MMP-8, neutrophils, appeared to be absent within both B6BO1 and 

E0771 tumours. Much of the evidence linking MMP-8 to the immune system both in 

inflammatory disorders and in the context of cancer is related to neutrophil function 

and behaviour. For example, in skin carcinoma, the absence of Mmp8 increased 

tumour burden that was accompanied by a delay in neutrophil influx and efflux [292]. 

Furthermore, MMP-8 is involved in a feed-forward mechanism of neutrophil 

chemotaxis involving increasing levels of potent neutrophil chemoattractants IL-6 

and IL-8 [260,320]. The lack of mRNA changes seen in IL-6 and mouse homologs of 

IL-8 are most likely explained by the lack of neutrophils present in the orthotopic 

tumour model, since there is no need to produce further neutrophil 

chemoattractants. The solution to this issue would be to use a cell line that creates 

tumours dependent on neutrophils or acted upon by neutrophils. For example, 

tumours derived from the 4T1 mouse mammary carcinoma cell line are known to 

contain a population of neutrophils that would enable this study [426].  

Whilst our original hypothesis that MMP-8 inhibited tumour progression by guiding 

the immune system proved incorrect, another interesting observation made within 

tumours from Mmp8 null mice was dysregulated lipid metabolism. RNA-seq data 

generated on tumours from MMTV-PyMT mice revealed several genes involved in 

lipid anabolism and catabolism were downregulated in younger Mmp8 null mice and 

upregulated in older Mmp8 null mice. This led us to look for a similar phenotype 

within the orthotopic model. Consistent downregulation of Plin1 mRNA was detected 

at all stages in our model in the absence of Mmp8 that could have interesting 

connotations.  



Perilipin-1 is part of a family of five lipid droplet-associated proteins. Lipid droplets 

are lipid-rich organelles that act as storage vessels for cellular lipids in adipose tissue. 

Perlipin-1 is located on the surface of lipid droplets, acting as gatekeeper [427]. In 

order to break down lipids via lipolysis, perilipin-1 must be hyper-phosphorylated by 

protein kinase A, which is activated upon β-adrenergic receptor stimulation [428]. It 

then relinquishes its role as gatekeeper and allows access to lipases such as hormone-

sensitive lipase to mobilise fats. Therefore perilipin-1 holds the key to accessing 

building blocks that are essential to rapidly dividing cells such as cancer cells.  

Perilipin-1 expression has been linked to BC. It is found almost exclusively in adipose 

tissue but is not readily detected in normal breast epithelial tissue [429,430]. 

However, it has been seen to be highly expressed in BC cells in tumours that 

ultimately become unresponsive to treatment [431]. In these tumours, its expression 

is also correlated with high levels of other lipid metabolism genes including leptin 

and adiponectin that are characteristic of a ‘lipogenic tumour phenotype’. The ability 

to regulate de novo lipid synthesis has been associated with tumour resilience and 

aggressiveness and even the ability to survive transit through the lymph nodes that 

are lacking in the fatty acids provided by the breast tissue – enabling metastasis to 

occur [432].  

Nevertheless, most studies have reached the conclusion that Plin1 is a tumour-

suppressor gene. In BC patients, reduced expression of Plin1 correlates with poorer 

metastasis-free survival, particularly in ER+ and luminal A subtypes [376,433].  

Furthermore, exogenous expression of perilipin-1 in BC cells inhibited migration, 

proliferation and invasion, independent of ER status, and using an in vivo mouse 

model, overexpression of Plin1 in MDA-MB-231 BC cells inhibited tumourigenesis. 

Taken together, this evidence suggests that perilipin-1 may play a role in BC 

progression, acting as a tumour-suppressor.  

The decrease in Plin1 mRNA expression seen in the absence of MMP-8 suggests that 

MMP-8 may be involved in upregulating Plin1 in BC. This fits with the notion that 

MMP-8 is tumour inhibitory in BC and may do so by regulating lipid metabolism.  



Several associations between MMPs and regulation of lipid metabolism have been 

made including MMP-2, -8 and -9. MMP-2 and -9 both modulate cholesterol 

metabolism through phospholipase A2 [434,435]. This enzyme is responsible for 

liberating arachidonic acid, the precursor to eicosanoids and leukotrienes, key 

regulators of inflammation [436].  MMP-8 has been shown to degrade apolipoprotein 

A-1 (apo) A-1– one of the major components of high-density lipoprotein (HDL) 

particles [437]. Degradation of apoA-1 leads to smaller and unstable HDL particles 

that are less capable of cholesterol efflux and thus reverse cholesterol transport to 

prevent accumulation of lipids in Mφs in vessel walls [438]. MMP-8-mediated 

degradation of apo A-1 reduces cholesterol efflux efficiency and in the absence of 

Mmp8, mice are less susceptible to atherosclerotic lesion formation [437,439]. 

Furthermore, Mmp8 null mice have lower serum triglyceride concentrations and 

circulating free fatty acids [437,440]. 

Two hypotheses can be made on the involvement of MMPs in regulation of lipid 

metabolism. Firstly, cleavage of bioactive molecules such as cytokines by MMPs can 

lead to up- or down-regulation in their activity – which could be directed towards 

regulation of lipid availability. Adipocytes themselves produce MMPs which may act 

in an autocrine or paracrine fashion to modulate lipid metabolism [441]. Secondly, 

once secreted, some MMPs closely associate with the cell membrane where they can 

modulate the activity of receptors through sheddase activity. MMP-8 is one example 

of an MMP found pericellularly on PMNs: 92% of its Type I collagenase activity can 

be attributed to membrane-bound MMP-8 [301]. This activity is TIMP-resistant and 

may be responsible for the cleavage of many as-yet unknown molecules from the cell 

surface. Further examples involving MMP activity, this time in adipogenesis, are 

MMP-11 and MMP-14. Adipocytes and their precursors exist in a dense type I 

collagen mesh that is sensitive to enzymatic activity [442]. Bi-directional cross-talk 

exists between MMP-11 and the TME whereby cancer cells induce the production of 

MMP-11 in adipose tissue [443]. MMP-11 acts as a negative regulator of 

adipogenesis, preventing adipocyte maturation and instead promoting de-

differentiation into peri-tumoural fibroblast-like cells that support and facilitate 

tumour progression. Meanwhile, MT1-MMP or MMP-14 is a membrane-bound MMP 



that is critical in the development and maintenance of adipose tissue [442]. In mice 

fed a high-fat diet, MMP-14 modifies the type I collagen architecture surrounding 

adipocytes, participating in obesity pathogenesis [444].  

Therefore, there is ample evidence to suggest that the changes seen in perilipin-1 

could be reflective of a wider network involving MMP-8 in regulation of lipid 

metabolism, specifically in BC. This finding is worth pursuing in future studies with 

other BC subtypes or different cancers – particularly lipogenic cancers such as 

prostate and colon [445,446].  

Throughout Chapters 3 and 4, despite searching for tumoural immune changes, it 

was evident that loss of Mmp8 did not impact anti-tumour immunity. Therefore, we 

turned our attention to the wider immune system. Alongside being the site of 

haematopoiesis, the bone marrow is considered an immune regulatory organ [447]. 

It is home to a plethora of cells including T cells, B cells, dendritic cells, neutrophils, 

MDSCs and mesenchymal stem cells that use the bone marrow as a nest for carrying 

out their functions. For some cells such as neutrophils, the bone marrow signifies the 

beginning of their journey as well as their end, whereby senescent neutrophils 

receive signals to home back for clearance [403]. We used the bone marrow in our 

studies throughout Chapter 5 to study the effect of MMP-8 on Mφ phenotype, 

communication and population changes. 

Alongside the above populations, the bone marrow houses a large monocyte 

population, the progenitor cell of Mφs. By modelling Mφ behaviour in culture, 

through induced differentiation of bone marrow monocytes, we found there to be 

no effect of MMP-8 on Mφ differentiation, polarisation or inflammatory cytokine 

levels. Since MMP8 has been previously shown to drive Mφ polarisation towards the 

M2 phenotype, we speculated that the Casp11 passenger mutation could have 

obscured the true MMP-8 phenotype and accounted for this by comparing DKO mice 

with the mutation to Mmp8 KO mice without it. However, the results remained the 

same, that MMP-8 does not appear to be important during Mφ polarisation 

independent of the passenger mutation. Furthermore, we investigated cross-talk 

between Mφs and tumour cells to mimic cellular interaction within tumours and 



measure signalling activity. MMP-8 acts within an immuno-regulatory network 

involving IL-6 and IL-8. In human BC cells, overexpression of MMP-8 leads to 

upregulation of both cytokines [320]. To investigate the existence of this network 

within mouse mammary tumours, IL-6 was measured at both the protein and RNA 

level in co-culture systems. Again, no role could be found for MMP-8 in modulation 

of IL-6 levels. It is possible that Mφs are not the most relevant cell type in the TME to 

study in regard to IL-6 since neutrophils are the principal producers of IL-6 and indeed 

MMP-8 [296]. However, no neutrophils were detected in B6BO1 tumours so the 

study of MMP-8 function within this cancer-cell immune axis would require the use 

of a cell line that forms tumours containing neutrophils such as 4T1 cells. The 

involvement of neutrophils could be analysed using neutrophils FACS sorted from 

tumours or via Ficoll-Paque density gradient centrifugation on mouse bone marrow 

or indeed more recently the technique has been used in tumours [448].  

Perhaps of most interest in this thesis was the finding that Mmp8 KO mice have lower 

numbers of bone marrow neutrophils than their wild-type counterparts, and that this 

phenomenon occurred in both unchallenged mice and to a lesser extent in tumour-

bearing mice. The latter result is most intriguing since there is a distinct lack of 

neutrophils within the tumours harboured by the mice. Many questions remain 

unanswered. What are the signals involved in population level changes?  Where are 

the origins of the neutrophils and what are their functions? Some speculation has 

been made in Chapter 5 regarding mobilisation defects, aberrant apoptosis and 

population shifts, but a definitive explanation remains elusive. If decreased 

neutrophil apoptosis was responsible, this result directly challenges the central 

dogma in MMP-8 immunobiology that MMP-8 drives neutrophil apoptosis.  

In summary, the lack of phenotypes discovered throughout this thesis casts further 

doubt on whether MMP-8 is truly suppressive for primary BC growth. We hope that 

through the extensive work carried out in the orthotopic mouse model of BC, we 

have ruled out the contribution of MMP-8 in later stages of tumourigenesis. Instead, 

emphasis should be placed on early stages of tumour initiation and the mechanism 

behind the inhibition of tumour development. Despite this, we did uncover a 



potential role for MMP-8 in lipid metabolism, finding reduced expression of perilipin-

1, a tumour-suppressive lipid metabolism gene, in Mmp8 null tumours. This finding 

warrants further study into the link between MMP-8 and metabolic regulation within 

tumours.  

Additionally, we have shown that whilst there appears to be no impact of MMP-8 on 

anti-cancer immunity within mammary tumours themselves, there may be immune 

changes that occur on a more global scale in the bone marrow. This should be the 

focus of future research on MMP-8 in cancer immunology.  

In terms of impact on the world of MMP-8 biology, this thesis emphasises the 

importance in fully considering an experimental model.  This is especially true for 

mice, that have complex genetic backgrounds that can influence experimental 

outcomes. The discovery of the high frequency of germline mutations in the SV129 

strain, the origin of countless MMP knockout mouse models in use today, will require 

many research groups to revisit early mouse models and where necessary recreate 

them with more modern tools. Whilst within this thesis there was little evidence of 

the Casp11 passenger mutation confounding data interpretation, there is a wealth of 

literature on MMP-8 and MMPs more generally where this may not be the case. The 

field as it stands should be caveated with this in mind.   

 

 

 

 

 

 

 

 

 



Future Directions  

There are several areas within this thesis that future work could expand on: 

 Carry out repeat experiments utilising Mmp8 null C57 mice in the spontaneous 

model and Mmp8 null FVB mice for orthotopic implantation to determine 

whether strain differences explain the discrepancies between the two tumour 

models.  

 

 Increase sample size for tumour experiments to study perilipin-1 phenotype. 

Histological staining will reveal the location of perilpin-1 to reveal whether it is 

expressed by breast cancer cells or surrounding healthy adipose tissue. 

 

 Use a mammary cancer cell line that expresses MMP-8 and is known to involve 

neutrophils to study interaction between MMP-8, neutrophils and breast cancer.  

 

 Explore neutrophils in Mmp8 null mice by tracking origin and destination of 

neutrophils, looking at apoptotic markers, and FACS-sorting neutrophil 

populations to study gene expression and phenotype.  
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Supplementary Figure 7.1. Flow cytometric gating strategy for tumour cells. The above gates are 
used to delineate myeloid populations within tumours and bone marrow. Forward and side scatter 
parameters are used to remove debris and single cells. Cells that stain positive for the fixable 
Live/Dead marker are removed as dead cells. Live cells are subsequently gated as CD45+ to separate 
leukocytes from other cells within the tumour, CD11b+ for myeloid cells, Ly6C- to remove 
monocytes, Ly6G- to exclude neutrophils and finally as F4/80+ to obtain the Mφ population 
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