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To Inhibit or Enhance? Is There a
Benefit to Positive Allosteric
Modulation of P2X Receptors?
Leanne Stokes*, Stefan Bidula , Lučka Bibič and Elizabeth Allum

School of Pharmacy, University of East Anglia, Norwich, United Kingdom

The family of ligand-gated ion channels known as P2X receptors were discovered several
decades ago. Since the cloning of the seven P2X receptors (P2X1-P2X7), a huge research
effort has elucidated their roles in regulating a range of physiological and
pathophysiological processes. Transgenic animals have been influential in
understanding which P2X receptors could be new therapeutic targets for disease.
Furthermore, understanding how inherited mutations can increase susceptibility to
disorders and diseases has advanced this knowledge base. There has been an
emphasis on the discovery and development of pharmacological tools to help dissect
the individual roles of P2X receptors and the pharmaceutical industry has been involved in
pushing forward clinical development of several lead compounds. During the discovery
phase, a number of positive allosteric modulators have been described for P2X receptors
and these have been useful in assigning physiological roles to receptors. This review will
consider the major physiological roles of P2X1-P2X7 and discuss whether enhancement
of P2X receptor activity would offer any therapeutic benefit. We will review what is known
about identified compounds acting as positive allosteric modulators and the recent
identification of drug binding pockets for such modulators.
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INTRODUCTION

Over the last decade we have seen new developments in pharmacological agents targeting P2X4,
P2X7, and P2X3 receptors with some candidates entering clinical trials (Keystone et al., 2012; Stock
et al., 2012; Eser et al., 2015; Matsumura et al., 2016; Timmers et al., 2018; Muccino and Green,
2019). Drug discovery for other P2X receptors such as P2X1 and P2X2 is somewhat slower with very
few selective and potent drugs being identified (Burnstock, 2018). Advances in structural biology
have helped move drug design for P2X receptors forward. Accompanying this is the advance in
knowledge of the types of physiological responses controlled by this family of ion channels and
clinical areas where such drugs may be therapeutically useful. Much emphasis has been placed on
the development of antagonist agents and relatively little attention has been on the discovery or
development of positive modulators. In this review, we take stock of all the evidence regarding the
known physiological roles of the major P2X receptors and present what we currently know about
pharmacological agents that can enhance ATP-mediated responses.
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Stokes et al. PAMs at P2X Receptors
In receptor function and pharmacology, the word “allosteric”
is commonplace. The historical use of this word is discussed by
Colquhoun and Lape (2012) and the use of the term allosteric in
current pharmacological terminology is used in the context of
allosteric modulators, allosteric interactions, and allosteric
transitions (Neubig et al., 2003). Allosteric transition describes
the mechanism underlying receptor activation; following ligand
binding to an orthosteric site, there is conformational
communication through the protein to activate the biological
response, for example, ion channel pore opening (Changeux and
Christopoulos, 2016). Pharmacologically, multiple sites exist on
receptor proteins where ligands can bind. While agonists bind at
orthosteric sites, modulators act at distinct allosteric (other) sites
and typically affect agonist action (Neubig et al., 2003). Allosteric
drug interactions can have different outcomes, either positive,
negative, or neutral/silent modulatory effects (Neubig et al., 2003;
Changeux and Christopoulos, 2016). For positive allosteric
modulators (PAMs), these can alter sensitivity to the agonist
by shifting the concentration-response curve, alter agonist
efficacy by increasing the maximum response, or alter gating
kinetics of the ion channel by affecting activation or deactivation
(Chang et al., 2010). At the molecular level, it is thought that
PAMs reduce the energy barrier for gating thus making it easier
for an ion channel to transition into an active, open state (Chang
et al., 2010). These two different effects on the agonist actions
have been classified by some as Type I (increasing the maximum
response or efficacy) and Type II (shifting the concentration-
response curve and thus altering agonist EC50 values) (Hackos
and Hanson, 2017). These two effects may not always be
separated with some PAMs exhibiting both effects (mixed Type
I/II) (Figure 1). The therapeutic beauty of PAMs is their reliance
on the presence of the endogenous agonist for activity. Therefore,
in disease states where agonist-induced receptor signaling is
perhaps defective, PAMs could help to bring those responses
back into the “normal” range.

Other ligand-gated ion channels such as the Cys-loop family
(GABAA receptor, glycine receptor, nicotinic acetylcholine
receptor, and 5-HT3 receptor) have many drug binding
pockets which are well characterized for both PAMs and
negative allosteric modulators (NAMs). The barbiturates and
Frontiers in Pharmacology | www.frontiersin.org 2
benzodiazepines act as PAMs at the GABAA receptor and are
clinically used as sedatives, anti-convulsants, and anaesthetic
agents (Solomon et al., 2019). Newer developments have seen
multiple PAMs for a7 nAchR advance into clinical trials for
Alzheimer’s disease, schizophrenia, and ADHD (Yang T. et al.,
2017). PAMs for NMDA ionotropic glutamate receptors could
be useful for disorders where their hypofunction is implicated
(e.g., schizophrenia) (Yao and Zhou, 2017) and PAMs for AMPA
ionotropic glutamate receptors could be useful in several
cognitive disorders (Lee et al., 2016). For the P2X receptors,
only ivermectin, a PAM with activity on P2X4, has been assessed
in a pilot Phase 1 clinical trial for alcohol-use disorders (Roche
et al., 2016).

We have recently discovered and characterized novel positive
allosteric modulators that act on P2X7 and P2X4 receptors
(Helliwell et al., 2015; Dhuna et al., 2019) and this has
prompted us to ask questions about whether PAMs hold any
therapeutic benefit for P2X receptors. We present here a review
of the latest literature on P2X receptors focusing on the major
identified subtypes P2X1, P2X2, P2X2/3, P2X4, and P2X7 with
well-known physiological roles (P2X5 and P2X6 have no
assigned physiological roles as homomeric receptors).
P2X1 RECEPTOR

The P2X1 receptor is a fast desensitizing ion channel activated by
ATP, ab-Me-ATP, bg-Me-ATP, 2-MeSATP, BzATP, and Ap4A
(North and Surprenant, 2000). Human P2X1 was cloned from
urinary bladder RNA, and later from human platelets (Longhurst
et al., 1996; Sun et al., 1998). Mackenzie et al. first recorded P2X1
currents from human platelets (Mackenzie et al., 1996) and
P2X1-dependent Ca2+signaling in platelet activation was
characterized (Sage et al., 1997). In 1999, P2X1 was stated to
have no significant role in platelet aggregation (Takano et al.,
1999) however, a later study by Oury et al. demonstrated that
P2X1 did act as a positive regulator of platelet responses (Oury
et al., 2001). Further to this, a transgenic mouse over-expressing
P2X1 in megakaryocytes demonstrated increased ab-Me-ATP-
sensitive Ca2+ responses ex vivo and more profound platelet
FIGURE 1 | Schematic diagram of types of positive allosteric modulator (PAM) effects on concentration-response curves. Three different types of PAM effect are
displayed on concentration-response curves (for illustration purposes only, curves are hand-drawn). A Type I effect is defined as increasing the maximum response
without a change in EC50 value. A Type II effect is defined as a left-ward shift in the concentration-response curve (and a reduction in the EC50 value) without
affecting efficacy (maximum response). A mixed Type I/II effect is defined as both a left-ward shift in concentration-response curve and an increase in efficacy
(maximum response).
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shape changes to this agonist (Oury et al., 2003). Tests on these
P2X1 over-expressing platelets revealed an increase in collagen-
induced aggregation and in the transgenic mouse, an increase in
fatal pulmonary thromboembolism was observed compared to
wild-type mice (Oury et al., 2003). This work demonstrates that
the expression level of P2X1 can modulate platelet aggregation
responses. Other studies have investigated the synergy between
P2X1 and P2Y1 GPCRs on platelets and it appears that P2X1
activation alone does not induce platelet aggregation (Jones et al.,
2014) but that a synergistic activation of P2X1/P2Y1 enables full
platelet aggregation. Ca2+ influx through P2X1 was deemed
critical for this effect (Jones et al., 2014). It is therefore
postulated that P2X1 acts as a coincidence detector for released
nucleotides and can modulate responses through other platelet
receptors (Grenegård et al., 2008; Jones et al., 2014) such as
adrenaline and thrombin receptors (Jones et al., 2014) and
FcgRIIa (Ilkan et al., 2018). This may be a crucial physiological
role for P2X1 to amplify intracellular Ca2+-dependent signaling
via release of nucleotides in an autocrine loop (Ilkan et al., 2018). It
is also suggested that P2X1 expressed on neutrophils can be
involved in thrombosis (Darbousset et al., 2014) as P2X1-/- mice
demonstrated increased polymorphonuclear (PMN) cell
accumulation in a laser-injury model which reduced thrombus
formation. Thrombosis was restored upon infusion of both
platelets and PMNs from wild-type mice whereas infusion of
platelets alone did not restore thrombus formation (Darbousset
et al., 2014). This was confirmed by using NF449, a selective P2X1
antagonist, demonstrating abolishment of PMN recruitment to
the site of injury. With the wealth of evidence showing that P2X1
contributes to platelet aggregation responses, any chronically
applied pharmacological agent enhancing P2X1 Ca2+ influx in
platelets could therefore cause an increased risk of thrombosis,
particularly if a positive modulator affects the rate of channel
desensitization. Alternatively, acute positive pharmacological
modulation may enhance aggregation and clot formation and
this may be useful in cases where patients were actively bleeding.

P2X1 is also known to play a role in smooth muscle
contraction. ATP is released alongside noradrenaline from
sympathetic nerves as a non-adrenergic non-cholinergic
(NANC) neurotransmitter. This ATP acts on P2X1 receptors
localised on postsynaptic smooth muscle cells (e.g., vas deferens)
to contribute to the excitatory junction potential and contractile
response (Kennedy, 2015). This work was originally pioneered
by Geoffrey Burnstock leading to the accepted notion of
purinergic neurotransmission (Burnstock, 2006). ATP is also
released from parasympathetic nerves together with
acetylcholine and acts on postsynaptic P2X1 in the urinary
bladder to induce contractile responses (Kennedy, 2015). It is
now thought that P2X1 is the predominant receptor in arterial,
bladder, gut, and reproductive smooth muscle (Vial and Evans,
2001). In vascular smooth muscle P2X1 has a role in sympathetic
nerve mediated vasoconstriction (Vial and Evans, 2002) and in
the renal vasculature, P2X1 is implicated in the regulation of
cortical and medullary blood flow by inducing vasoconstriction.
In isolated kidneys this autoregulation increases vascular
resistance and preglomerular microvascular regulation is
Frontiers in Pharmacology | www.frontiersin.org 3
thought to stabilize the glomerular filtration rate (Guan et al.,
2007). P2X1-/- mice have an impairment in this protective
autoregulatory behavior (Inscho et al., 2003). In hypertensive
disorders, this renal autoregulation can be defective and
purinergic receptors may contribute to the pathophysiology.
For example, in Angiotensin-II mediated models of
hypertension, there is an increase in vascular resistance causing
a reduction in glomerular filtration rate. There is conflicting
evidence regarding the expression of P2X1 following chronic
administration of Angiotensin-II with some studies reporting an
increase (Franco et al., 2011) and other studies reporting a
reduction in P2X1 expression (Gordienko et al., 2015).

In the bladder, the purinergic component is likely to be P2X1
and a heteromeric form of P2X1 together with P2X4 (P2X1/4
heteromer) (Kennedy, 2015) and neurogenic contractions can be
cholinergic and non-cholinergic. In bladder dysfunction, such as
interstitial cystitis, there is an increase in the non-cholinergic
mechanisms. In reproductive smooth muscle such as vas
deferens, P2X1 induces contractile responses and P2X1-/- mice
display defective contraction and are reported to have a deficit in
male fertility (Mulryan et al., 2000). Male mice were shown to
copulate normally and the reduction in fertility was due to a
reduced number of sperm in the ejaculate rather than from
sperm dysfunction (Mulryan et al., 2000). Contraction of the vas
deferens to sympathetic nerve stimulation in P2X1-/- mice was
reduced by 60% (Mulryan et al., 2000). Further studies have
shown that the ectonucleotidase NTPDase 1 plays an important
role in regulating the activity of P2X1 in the vas deferens by
preventing chronic desensitization (Kauffenstein et al., 2014). It
has been suggested that pharmacological modulation of P2X1
could be useful in the treatment of male fertility. Blockade of
P2X1 may represent a novel target for male contraception but
conversely, potentiating P2X1 activity may enhance male fertility
associated with defective contraction. Such treatments would
need to be tissue-specific to prevent side effects on other
physiological responses described.

In terms of therapeutic interventions, enhancement of P2X1
responses could be beneficial in acute platelet aggregation and
clot formation, or in boosting vas deferens contractile responses
to enhance male fertility (although this would need to be
tissue-restricted).
POSITIVE ALLOSTERIC MODULATORS
OF P2X1

There are very few studies describing compounds that can
potentiate P2X1 responses. Two compounds described as
PAMs include MRS2219 and gintonin. MRS2219 is an
analogue of PPADS shown to selectively enhance rat P2X1
expressed in Xenopus oocytes using two-electrode voltage
clamp recordings (Jacobson et al., 1998). MRS2219 had an
EC50 of 5.9 µM and had no effect on rat P2X2, rat P2X3, or rat
P2X4 currents (Jacobson et al., 1998). Gintonin is a water-
insoluble non-saponin component of ginseng, made of
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carbohydrate (mostly glucose), lipids (linoleic acid, palmitic acid,
oleic acid, lysophospholipids, phosphatidic acid), and amino
acids (Choi et al., 2015) and mainly acts on lysophosphatidic
acid (LPA) receptors (Im and Nah, 2013). Using a Xenopus
oocyte expression system, gintonin was shown to potentiate
human P2X1 responses (Sun-Hye et al., 2013) with a similar
proposed mechanism to phosphoinositides such as PIP2 (Bernier
et al., 2008b). Since the exact component of gintonin responsible
for P2X1 potentiation is unclear, this needs more investigation in
order to be useful in drug discovery. Overall, more information is
required on chemicals that can act as selective PAMs at P2X1.
P2X2 RECEPTOR

The P2X2 receptor is a non-desensitizing ion channel activated
by agonists such as ATP, BzATP, and 2-MeSATP (North and
Surprenant, 2000). P2X2 was first cloned from rat PC12
pheochromocytoma cells (Brake et al., 1994) and human P2X2
was subsequently cloned from pituitary tissue RNA (Lynch et al.,
1999). There is evidence that P2X2 can exist as a homomeric
receptor and as a heteromeric receptor in combination with
P2X3 (Lewis et al., 1995).

P2X2 is expressed in the inner ear and is thought to play a role
in the regulation of hearing. P2X2 mRNA expression increases
from embryonic day 12 to postpartum day 8–12 when expression
peaks, then decreases to adult levels (Housley et al., 1998). ATP
levels in the endolymph are low, P2X2 is activated following
exposure to loud noises and contributes to otoprotection
whereby ATP is released and acts to reduce the endocochlear
potential (Thorne et al., 2004). Part of the adaptive response to
loud noise involves an upregulation of P2X2 expression in the rat
cochlea (Wang et al., 2003). This upregulation in response to
stressors was less in older mice suggesting that this may increase
the susceptibility of older animals to noise-induced hearing loss
(Telang et al., 2010). In 2013, a human study identified a
mutation in P2RX2 in a Chinese family with inherited
progressive hearing loss (Yan et al., 2013). Characterization of
this mutation in a HEK-293 cell heterologous expression system
revealed that the Val 60 > Leu mutation in P2X2 was not able to
respond to ATP (Yan et al., 2013). Individuals carrying the
mutation developed severe hearing loss by the age of 20 (Yan
et al., 2013). This study also used the P2X2-/- mouse to
demonstrate that age-related hearing loss was much greater in
these animals than those expressing P2X2 (Yan et al., 2013). In
2014, a second mutation in P2RX2 was identified in an Italian
family with hereditary hearing loss (Faletra et al., 2014). This
mutation changed Gly 353 > Arg, a residue in the TM2 domain
(Faletra et al., 2014). In 2015, a Japanese study identified a third
mutation in P2RX2 (Asn201 > Tyr) associated with severe
hearing loss (Moteki et al., 2015). P2X2 is also thought to play
a role in modulating vestibular function. P2X2-/- mice had
impaired reflexes in response to sinusoidal rotation when
compared to wild-type mice (Takimoto et al., 2018) and were
more likely to slip when crossing a narrow beam (Takimoto et al.,
2018). It may be advantageous to positively modulate P2X2
Frontiers in Pharmacology | www.frontiersin.org 4
responses in the inner ear to increase otoprotection in
response to any damage caused by loud noises. This may be of
benefit in elderly individuals where P2X2 expression levels are
reduced. Similarly, positive modulation of P2X2 may help with
balance disorders (e.g., vertigo and Meniere’s disease) and this
angle may warrant further investigation.

P2X2 is known to be expressed throughout the hypothalamus
and pituitary gland and is involved in the release of hormones
such as arginine vasopressin but not oxytocin (Custer et al.,
2012). The hypothalamus connects to secretory cells of the
anterior pituitary which release chemicals such as luteinising
hormone, thyroid stimulating hormone, adrenocorticotrophic
hormone (ACTH), growth hormone, prolactin, and follicle-
stimulating hormone. This system is intricately balanced and
depends on feedback regulation. P2X2 has been directly linked to
the enhancement of LH release from the pituitary (Zemkova
et al., 2006). The hypothalamus also controls feeding and
drinking behavior, reproductive behavior, and temperature
regulation and P2X2 is expressed on neurons involved in the
regulation of food intake (Collden et al., 2010). Other than
regulating hormone secretion directly, P2X2 can play a
neuromodulatory role by regulating the release of other
neurotransmitters such as glutamate and GABA (Vavra et al.,
2011) and in paraventricular neurons, P2X2 can modulate
sympathetic activity (Ferreira-Neto et al., 2017). From a
therapeutic viewpoint, disorders of the hypothalamus and
pituitary gland typically include over-activation (e.g., Cushing’s
disease, tumors of NET) rather than under-activation and
strategies are needed to limit excessive hormonal secretion.
The impact of modulating P2X2 inputs in the hypothalamus is
currently unknown.

In 2013, Cao et al. suggested that stimulating P2X2 receptors
may be a potential therapeutic strategy for depressive disorders
(Cao et al., 2013). Following chronic social defeat stress, mice
were found to have lower ATP levels in the brain than control
unstressed mice (Cao et al., 2013). Administration of ATP into
ventricles (i.c.v injection) elicited an anti-depressant-like effect in
the immobility test (forced swim test) and the non-hydrolysable
ATP analogue, ATPgS, had a larger effect. Administration of
ATP together with Cu2+ which is known to enhance P2X2
responses, reduced immobility and was interpreted as having
an anti-depressant effect (Cao et al., 2013). The proposed
mechanism involved ATP release from astrocytes acting on
P2X2 receptors in the medial prefrontal cortex and a reduction
in P2X2 expression using AAV-shRNA abolished the anti-
depressant effect of ATP (Cao et al., 2013). This may provide
an interesting mechanistic approach to developing novel anti-
depressants, potentially by enhancing ATP release or by
enhancing P2X2 signaling.
P2X2 AND P2X2/3 HETEROMERS

ATP was identified as a neurotransmitter involved in rodent taste
perception and areas of the tongue areas involved in taste
sensation (circumvallate and fungiform papillae) express both
May 2020 | Volume 11 | Article 627
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P2X2 and P2X3 receptors (Bo et al., 1999). This was confirmed in
a study using transgenic mouse models (Finger et al., 2005).
Single gene knockout mice for P2X2 and P2X3 displayed reduced
gustatory afferent nerve firing responses to some tastants,
however, only in the P2X2/P2X3 double knockout mice were
taste responses dramatically affected, losing responses to both
sweet and bitter tastants (Finger et al., 2005). This suggested that
the P2X2/3 heteromer was responsible for the gustatory neuron
signaling to the gustatory cortex and that ATP was crucial for
taste signaling. Release of ATP from type II cells, which do not
synapse with the gustatory afferent neuron, also appears to be
important in taste signaling. In P2X2/3 double knockout mice,
tastants failed to release ATP (Huang et al., 2011). As P2X3 is
only found in afferent neurons, this indicates a role for
homomeric P2X2 receptors in the release of ATP from taste
cells. Modulation of either homomeric P2X2 or heteromeric
P2X2/3 receptors could therefore affect taste sensation and some
P2X3 antagonists have been noted for their suppressive effect on
taste in clinical trials (Muccino and Green, 2019).

In terms of therapeutic interventions, enhancement of P2X2
responses could be beneficial in otoprotection or in the
modulation of mood. Further mechanistic research into the
related physiology and pathophysiology is required to decide if
such a pharmacological approach would be viable.
POSITIVE ALLOSTERIC MODULATORS
OF P2X2

There is surprisingly little information about the pharmacology
of P2X2, in particular human P2X2. In 2011, four derivatives of
the anthraquinone dye Reactive Blue 2 were described as having
positive allosteric modulator effects at rat P2X2 (Baqi et al.,
2011). Reactive Blue 2 is a non-selective antagonist with effect at
rat P2X2 and the derivative compound 51 (PSB-10129) increased
the maximum response induced by ATP (Baqi et al., 2011). This
could be classed as a PAMwith Type I effect (Table 1). This work
demonstrated that lipophilic substitution at certain positions
could turn a negative modulator into a positive modulator. Two
neurosteroids, dehydroepiandrosterone (DHEA) and
progesterone, are known to positively modulate P2X2. DHEA
can potentiate both homomeric P2X2 and heteromeric P2X2/3
in recombinant expression models (De Roo et al., 2003; De Roo
et al., 2010). Conversely, progesterone potentiates ATP-induced
currents in rat dorsal root ganglion neurons and P2X2-
expressing HEK-293 cells (De Roo et al., 2010) but not in
P2X2/3 expressing Xenopus oocytes, suggesting that it is
selective for homomeric P2X2 (De Roo et al., 2010). Both of
these neurosteroids increased the response to submaximal but
not saturating concentrations of ATP suggesting that they affect
potency of the agonist but not efficacy. Complete concentration-
response experiments would be needed to confirm this, but these
could be classed as PAMs with Type II effects (Table 1).
Testosterone is an endogenous steroid with no potentiating
activity at rat P2X2 (Sivcev et al., 2019). However, several
synthetic 17b-ester derivatives of testosterone including
Frontiers in Pharmacology | www.frontiersin.org 5
testosterone butyrate and testosterone valerate, act as PAMs at
P2X2 (Sivcev et al., 2019). The testosterone derivatives increased
the sensitivity of P2X2 to ATP, reducing the EC50 (Sivcev et al.,
2019), therefore these PAMs likely have Type II effects (Table 1).
From this evidence, it is possible that steroids/neurosteroids can
act as endogenous positive modulators of P2X2. This could be
therapeutically useful, for example, some steroids have been used
in treatment of sensorineural hearing loss and Meniere’s disease,
as reviewed in (Keiji et al., 2011).
P2X3 RECEPTOR

The P2X3 receptor is a rapidly desensitizing ion channel
activated by agonists such as ATP, ab-MeATP and 2-MeSATP
(North and Surprenant, 2000). P2X3 receptors are expressed in
TABLE 1 | Chemicals identified as having positive allosteric modulator activity at
P2X receptors.

Drug name Target
Receptor

Predicted PAM
effect

(Type I, II, mixed)

Reference

MRS2219 P2X1 (rat) Unknown (Jacobson et al.,
1998)

Gintonin P2X1 (rat) Unknown (Sun-Hye et al., 2013)
PIP2 P2X1 (rat) Type I (Bernier et al., 2008a)
PSB-10129 P2X2 (rat) Type I (Baqi et al., 2011)
DHEA P2X2 (rat)

P2X2/3 (rat)
Type II (De Roo et al., 2003)

Progesterone P2X2 (rat) Type II (De Roo et al., 2010)
Testosterone
butyrate

P2X2,
P2X4

Type II
Mixed Type I/II

(Sivcev et al., 2019)

Ivermectin P2X4 (rat)
P2X4 (human)
P2X7 (human)

Mixed Type I/II
Mixed Type I/II

(Khakh et al., 1999)
(Priel and Silberberg,
2004)
(Nörenberg et al.,
2012)

Abamectin P2X4 (rat) Unknown (Asatryan et al., 2014)
Selamectin P2X4 (rat) Unknown (Asatryan et al., 2014)
Moxidectin P2X4 Unknown (Huynh et al., 2017)
Cibacron blue P2X4 (rat) Unknown (Miller et al., 1998)
Alfaxolone P2X4 (rat) Unknown (Codocedo et al.,

2009)
Allopregnanolone P2X4 (rat) Unknown (Codocedo et al.,

2009)
THDOC P2X4 (rat) Unknown (Codocedo et al.,

2009)
Ginsenoside CK P2X7 (human),

P2X7 (mouse)
P2X4 (human)

Mixed Type I/II
Mixed Type I/II
Mixed Type I/II

(Helliwell et al., 2015)
(Bidula et al., 2019a)
(Dhuna et al., 2019)

Ginsenoside Rd P2X7,
P2X4

Unknown
Unknown

(Helliwell et al., 2015)
(Dhuna et al., 2019)

Clemastine P2X7 (human) Type II (Norenberg et al.,
2011)

Tenidap P2X7 (mouse) Mixed Type I/II (Sanz et al., 1998)
Polymyxin B P2X7 Mixed Type I/II (Ferrari et al., 2004)
Garcinolic acid P2X7 (human) Unknown (Fischer et al., 2014)
Agelastine P2X7 (human) Unknown (Fischer et al., 2014)
GW791343 P2X7 (rat) Mixed Type I/II (Michel et al., 2008a)
May 2020 | V
A Type I positive allosteric modulator (PAM) effect increases efficacy whereas a Type II
PAM effect increases sensitivity to agonist seen as a left-ward shift in the concentration
response curve. A mixed Type I/II PAM effect represents both features.
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sensory neurons where they play a role in nociceptive
transmission, taste sensation, bladder distension, and
chemoreceptor reflexes (Fabbretti, 2019). P2X3 was cloned
from dorsal root ganglion sensory neurons (Chen et al., 1995)
and is expressed on afferent C-fibre nerve terminals in peripheral
tissues as well as being expressed in central terminals of dorsal
root ganglia, as reviewed in (Bernier et al., 2018). Consequently,
P2X3 contributes to acute pain signaling and potentially to
chronic pain pathways as well (Bernier et al., 2018). P2X3 is
expressed in carotid body neurons that regulate the chemoreflex
sympatho-excitatory response controlling blood pressure
(Pijacka et al., 2016). During the pathophysiology associated
with hypertension, P2X3 upregulation can contribute to
hyperreflexia and high blood pressure (Pijacka et al., 2016). A
recent role for P2X3 has been postulated in chronic cough and
airway sensitization due to expression on airway vagal afferent
neurons (Abdulqawi et al., 2015; Ford et al., 2015). Continuing
this theme of regulating sensory activity, P2X3 is expressed on
gustatory sensory neurons and is responsible for taste signaling
to the gustatory cortex (Vandenbeuch et al., 2015). As already
mentioned, taste signaling involves homomeric P2X3 as well as
heteromeric P2X2/3 receptors (Finger et al., 2005). Finally, P2X3
is also documented to have a role in the sensory control of
bladder volume. Afferent neurons innervating the bladder
express P2X3 and P2X3-/- mice display a reduced bladder
voiding frequency (Cockayne et al., 2000). Collectively, this
information about the major physiological roles of P2X3 does
not present a strong case whereby potentiating ATP-responses at
this receptor would be therapeutically useful. There are no
known PAMs acting on P2X3 receptors. However, to date
nothing is known about the presence of loss-of-function
mutations in P2X3 and whether this could be linked to hypo-
function of bladder reflexes, for example.
P2X4 RECEPTOR

P2X4 is a moderately desensitizing ion channel which is activated by
ATP, ATPgS, and BzATP (North and Surprenant, 2000). First
cloned from rat brain (Soto et al., 1996), P2X4 is widely expressed
in the central nervous system, cardiovascular, epithelial, and
immune systems. One of the first identified physiological roles for
P2X4 was in the cardiovascular system where shear stress-induced
ATP release was demonstrated to activate P2X4 on endothelial cells
to induce a vasodilatation response (Yamamoto et al., 2000;
Yamamoto et al., 2006). Endothelial cells deficient in P2X4 display
no flow-regulated Ca2+ response or nitric oxide production
(Yamamoto et al., 2006). Blood pressure measurements were
higher in P2X4-/- mice and the adaptive flow-dependent vascular
remodeling response to carotid artery ligation was impaired similar
to chronic flow-induced changes in the eNOS-/- mouse (Yamamoto
et al., 2006). In humans, a role for P2X4 in regulatingflow-dependent
vascular tone is postulated and a rare loss-of-function polymorphism
was associated with increased pulse pressure (Stokes et al., 2011). It is
also thought that P2X4 in the heart could be cardioprotective since
cardiac-specific over-expression of P2X4 in mice protected against
Frontiers in Pharmacology | www.frontiersin.org 6
heart failure (Yang et al., 2014; Yang et al., 2015). In vascular
endothelial cells of the brain, P2X4 can also be activated by shear
stress and can promote release of osteopontin, a neuroprotective
molecule in ischaemic situations (Ozaki et al., 2016). P2X4 was
required for ischaemic tolerance in a middle cerebral artery
occlusion model of ischaemic stroke (Ozaki et al., 2016).

P2X4 is expressed in epithelial tissues such as salivary glands and
bronchiolar epithelium. In the bronchioles, P2X4 is thought to
maintain the beating of cilia in the mucus layer, helping to clear the
airways of pathogens (Ma et al., 2006). A role has also been described
in lung surfactant secretion from alveolar type II epithelial cells
(Miklavc et al., 2013). In T lymphocytes, P2X4 can affect T cell
activation and migration (Woehrle et al., 2010; Ledderose et al.,
2018). In monocytes/macrophages, P2X4 has been linked to release
of the chemokine CXCL5 (Layhadi et al., 2018) and the killing of E.
coli bacteria (Csóka et al., 2018). In the latter study, macrophages
taken from the P2X4-/- mouse failed to kill bacteria in response to
ATP (Csóka et al., 2018). Potentiation of P2X4 with ivermectin
enhanced killing of bacteria and in a mouse model of sepsis,
ivermectin improved survival (Csóka et al., 2018).

In the central nervous system, P2X4 is widely expressed on
neurons and its role here was recently reviewed (Stokes et al.,
2017). Development of a transgenic mouse with a red fluorescent
tdTomato under the control of the P2RX4 promoter confirmed
the widespread distribution of P2X4 in the central nervous
system (Xu et al., 2016a). In neurons, P2X4 regulates synaptic
transmission (Rubio and Soto, 2001; Sim et al., 2006; Baxter et al.,
2011) including modulation of GABA release (Xu et al., 2016a).
In terms of regulating behavior, P2X4-/- mice exhibit an
increased intake of ethanol (Khoja et al., 2018) and this has led
to much research on the role of P2X4 in alcohol-use disorders.
Treatment with ivermectin counteracts the inhibitory effect of
ethanol on P2X4 and can influence the intake of alcohol (Yardley
et al., 2012; Franklin et al., 2014). P2X4-/- mice also demonstrate
a defect in sensorimotor gating due to dysregulation of dopamine
neurotransmission (Khoja et al., 2016). In this study, ivermectin
was shown to enhance L-DOPA induced motor behavior
suggesting that positive modulation of P2X4 may be a useful
adjunct strategy for Parkinson’s disease (Khoja et al., 2016).

Finally, one of the well-known roles for P2X4 involves
pathological signaling contributing to neuropathic pain. P2X4
contributes to microglial activation and regulates the release of
BDNF which can affect local neurotransmission in the dorsal
horn of the spinal cord. Studies have shown that P2X4-/- mice are
protected against neuropathic pain (Coull et al., 2005; Ulmann
et al., 2008). This work has led to an intensive effort to find
antagonists of P2X4 that could be used in the treatment of
chronic pain states. Any development of PAMs for therapeutic
use would need to be tested for adverse effects on pain states.
POSITIVE ALLOSTERIC MODULATORS
OF P2X4

One of the pharmacologically defining features of P2X4 is
potentiation by ivermectin (IVM) (Khakh et al., 1999), a
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derivative of avermectin B1, a macrocyclic lactone produced by
Streptomyces avermitilis. Through its action on glutamate-gated
chloride channels in nematode worms (Cully et al., 1994), IVM is
mostly known as a broad-spectrum anti-parasitic agent (Fisher
and Mrozik, 1992). IVM also potentiates mammalian GABAA

receptors (KrůŠek and Zemkova, 1994) and a7-nicotinic
acetylcholine receptors (Krause et al., 1998). At P2X4, IVM
increases the amplitude of the ATP-induced current at P2X4
with an EC50 of ~ 0.25 µM (Priel and Silberberg, 2004; Gao et al.,
2015), shifts the EC50 for ATP and it changes the desensitization
of the P2X4 response (Khakh et al., 1999; Priel and Silberberg,
2004). Therefore, IVM has mixed TypeI/II effects (Table 1). IVM
may also potentiate the heteromeric P2X4/P2X6 receptor but
does not affect P2X2, P2X3, (rodent) P2X7 receptors, or P2X2/3
heteromers (Khakh et al., 1999). Although the crystal structures
of closed and ATP-bound state of P2X4 have been solved
(Kawate et al., 2009; Hattori and Gouaux, 2012), the IVM-
bound structure of P2X4 remains unknown. Priel and
Silberberg noted that extracellular application was required for
IVM modulation of P2X4 suggesting that IVM does not interact
with the intracellular domains (Priel and Silberberg, 2004). It is
suggested that IVM most likely partitions into membrane where
the lactone ring interacts with the TM domains of P2X4 at the
protein-lipid interface. There is also a suggestion that IVM could
also affect the trafficking and recycling of P2X4 (Stokes, 2013).
Scanning alanine mutagenesis of TM1 and TM2 confirmed that
residues near the extracellular surface of the plasma membrane
are critical for IVM action (Jelinkova et al., 2006; Silberberg et al.,
2007; Asatryan et al., 2010; Popova et al., 2013). Critically, these
residues lie either in the extracellular domain (Trp50, Thr57,
Ser69, Val60, and Val61) or in the TM2 domain (Asn338, Ser341,
Gly342, Leu346, Gly347, Ala349, and Ile356). Asatryan et al.
showed that certain amino acids at the interface of the
ectodomain and TM2 (Trp46, Trp50, Asp331, Met336) are
also involved in determining the selectivity of IVM for P2X4
(Asatryan et al., 2010). Furthermore, the residues lining the edge
of the lateral portals are also important (Rokic et al., 2010;
Samways et al., 2012; Rokic et al., 2014; Gao et al., 2015).
Molecular docking studies have provided important insights
and confirmed some of the experimental findings (Latapiat
et al., 2017; Pasqualetto et al., 2018).

In various models of disease IVM-dependent increased P2X4
activity might affect alcohol intake, sensorimotor gating, and
dopamine-induced motor behavior (Bortolato et al., 2013; Khoja
et al., 2016; Khoja et al., 2018; Khoja et al., 2019) implicating
P2X4 as a novel drug target for the treatment of alcoholism and
psychiatric disorders. IVM has also been shown to have an anti-
cancer effect; it kills breast cancer cells through potentiating
P2X4/P2X7 signaling (Draganov et al., 2015).

Apart from IVM, other members of the avermectin family
that affect P2X4 function are abamectin (ABM), selamectin
(SEL), and moxidectin (MOX). ABM is structurally similar to
IVM, and similarly potentiated the ATP-induced P2X4 currents.
However, at concentrations higher than 3 µM, ABM induced
P2X4 responses in the absence of ATP (Asatryan et al., 2014).
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This may indicate that ABM can act as a direct agonist at higher
concentrations. Moreover, in the same concentration range as
IVM, ABMwas able to antagonize the inhibitory effect of ethanol
(100 mM) (Asatryan et al., 2014). In contrast to ABM, SEL is
structurally diverse to IVM and was less effective at potentiating
P2X4. SEL displayed a lack of efficacy in attenuating the
inhibitory effects of ethanol (Asatryan et al., 2014). Lastly,
MOX does not possess any saccharide moieties which might
add to the increased lipophilicity and a faster penetration across
the blood-brain barrier. Similar to IVM and ABM, MOX
potentiated the P2X4-mediated currents in Xenopus oocytes at
0.5–1 µM and decreased the inhibitory effects of 25 mM (but not
50 mM) ethanol on P2X4 (Huynh et al., 2017). Consequently,
this supports the use of avermectins as potential drugs to prevent
and treat alcohol use disorders.

Cibacron blue, an anthraquinone sulfonic acid derivative, can
potentiate rat P2X4 receptors (Miller et al., 1998). Low
concentrations (3–30 µM) resulted in a 4-fold increase in ATP
responses however, when tested at 100 µM, cibacron blue was
inhibitory at rat P2X4 (Miller et al., 1998). This molecule might
represent a novel pharmacophore for the structure-based design of
novel allosteric ligands. Similar to P2X2, P2X4 can bemodulated by
neurosteroids. Alfaxolone, allopregnanolone, and 3a, 21-
dihydroxy-5a-pregnan-20-one (THDOC) potentiate rat P2X4
responses in Xenopus oocytes and at high concentrations both
alfaxolone and THDOC could gate the receptor (Codocedo et al.,
2009). The mechanism of potentiation was not investigated in
detail but the active neurosteroids could increase response to 1 µM
ATP suggesting they may increase receptor sensitivity to agonist
(Codocedo et al., 2009). A study found that testosterone 17b-ester
derivatives such as testosterone butyrate and testosterone valerate
could enhance P2X4 responses (Sivcev et al., 2019) by increasing
receptor sensitivity to agonist (mixed Type I/II effect).

Recently, our lab identified ginsenosides of the protopanaxdiol
series as positive allosteric modulators at P2X7 and P2X4
receptors (Helliwell et al., 2015; Bidula et al., 2019b; Dhuna
et al., 2019). By using a plethora of techniques, including
fluorescent YOPRO-1 dye uptake assays in stable cell lines over-
expressing human P2X4, calcium assays, and electrophysiology,
we demonstrated that two ginsenosides, CK and Rd, show ~2-fold
potentiation of ATP-responses at P2X4 (Dhuna et al., 2019) which
could be classed as a mixed Type I/II effect (Table 1).
Enhancement of P2X4 is less than enhancement of P2X7 and
our docking studies have predicted that while the interacting
amino acid residues are similar in both receptors, subtle
differences in the binding pocket might modify the way these
ginsenosides bind to P2X4 (Dhuna et al., 2019). However, this
may also provide novel pharmacophore information for
development of selective PAMs.

In terms of therapeutic interventions, enhancement of P2X4
responses could be beneficial in hypertension (to reduce blood
pressure via vasodilation), sepsis, Parkinson’s disease, or in
alcohol-use disorders. Thus, more research is justified to
investigate PAMs and to determine their mechanisms of action
both in vitro and in vivo.
May 2020 | Volume 11 | Article 627

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Stokes et al. PAMs at P2X Receptors
P2X7 RECEPTOR

P2X7 is a non-desensitizing ion channel activated by ATP and
BzATP (North and Surprenant, 2000). First cloned in 1996
(Surprenant et al., 1996), P2X7 is expressed in immune cells
such as monocytes, macrophages, NK cells, lymphocytes, and
neutrophils (Di Virgilio et al., 2017) and has predominantly been
characterized by the intracellular signaling pathways that it
regulates (Bartlett et al. , 2014). P2X7 requires high
concentrations of ATP for activation and displays a somewhat
unique secondary pore-forming phenomena allowing movement
of organic molecules across the cell membrane. The physiological
function (and substrates) of this secondary pore pathway is
currently unclear, however, it is likely to play a role in many
P2X7 signaling events (Di Virgilio et al., 2018). Activation by
high concentrations of ATP is consistent with its role in
inflammation, where ATP can be released from stressed or
damaged cells and functions as a damage-associated molecular
pattern (DAMP) (Di Virgilio et al., 2017). Often, activation of
P2X7 at these inflammatory sites can be detrimental and this
may contribute to the pathophysiology of a plethora of
inflammatory disorders. Conversely, it is possible that P2X7
activation may be beneficial in the defence against intracellular
pathogens and cancerous cells.

P2X7 is a known regulator of immune cell mediator secretion.
Multiple studies have demonstrated secretion of cytokines from
the IL-1 family (IL-1b, IL-1a, IL-18) in response to P2X7-
dependent activation of the NLRP3-caspase-1 inflammasome
(Giuliani et al., 2017). Other cytokines such as those relying on
cleavage by metalloproteinases (e.g., TNF-a) are also released
following P2X7 activation as well as other cell surface proteins
(e.g., L-selectin, VCAM-1, CD23, and CD14) which are shed
(Pupovac and Sluyter, 2016). The particular cytokines released
by P2X7 may depend on the cell type under examination, for
example, in T lymphocytes, P2X7 can contribute to IL-2
production and secretion (Yip et al., 2009). Current knowledge
may only be the tip of the iceberg as other immune cell types
have not been rigorously examined. P2X7 can also contribute to
the regulation of various caspase-dependent and -independent
cell death pathways, including autophagy, necrosis, pyroptosis,
and apoptosis, governing the homeostatic turnover of cells and
modulating immunity to pathogens (Di Virgilio et al., 2017).
Although the major physiological roles of P2X7 may be complex
to pin down, it is clear that this receptor is involved in
inflammation and infection. For a comprehensive overview of
the pathophysiological roles of P2X7 in this context, please refer
to (Di Virgilio et al., 2017; Burnstock and Knight, 2018; Savio
et al., 2018).

P2X7 activation is important in the defence against
intracellular bacteria such as Chlamydiae, Porphyromonas
gingivalis, and mycobacteria species. P2X7 promotes the
acidification of intracellular organelles, phospholipase D
activation and decreases bacterial load (Coutinho-Silva et al.,
2001; Coutinho-Silva et al., 2003; Darville et al., 2007).
Consequently P2X7-/- mice are more susceptible to vaginal
infection by Chlamydiae (Darville et al., 2007). P2X7 plays an
Frontiers in Pharmacology | www.frontiersin.org 8
important role in defence to P. gingivalis, the causative agent of
periodontitis, via regulation of inflammasome activation (Choi
et al., 2013; Hung et al., 2013; Park et al., 2014). The role of P2X7
in mycobacterial infections appears to be strain specific. On the
one hand, loss-of-function in P2X7 may contribute to enhanced
susceptibility to pulmonary and extra-pulmonary tuberculosis in
humans (Fernando et al., 2007). P2X7 participates in the
elimination of the intracellular bacteria via phospholipase D
activation and host cell apoptosis (Fairbairn et al., 2001; Placido
et al., 2006; Fernando et al., 2007; Singla et al., 2012; Areeshi
et al., 2015; Wu et al., 2015). Conversely, mice infected with
hypervirulent mycobacterial strains cannot effectively control the
infection and P2X7 contributes to the severity of inflammation
and propagation of bacterial growth (Amaral et al., 2014). With
such hypervirulent strains, mice deficient in P2X7 were better
protected against the infection (Amaral et al., 2014).

A role for P2X7 in the immune response to parasites
Leishmania amazonensis, Toxoplasma gondii, Plasmodium
falciparum (Salles et al., 2017), and Entamoeba histolytica
(Mortimer et al., 2015) is also becoming clear. Macrophages
infected by L. amazonensis can reduce their parasitic load via the
P2X7-dependent production of the mediator leukotriene B4
(LTB4) (Chaves et al., 2009; Chaves et al., 2014). Again,
P2X7-/- mice were more susceptible to infection (Figliuolo
et al., 2017). P2X7 activation can drive the elimination of T.
gondii via the production of ROS, acidification of intracellular
organelles (Correa et al., 2010; Moreira-Souza et al., 2017), and
secretion of pro-inflammatory cytokines (Miller et al., 2011;
Miller et al., 2015; Correa et al., 2017; Huang et al., 2017).
Therefore, for parasitic infections, enhancing P2X7 responses
may be therapeutically beneficial.

In models of infection, it is less clear how P2X7 affects
outcomes in cases of sepsis. In a murine model of sepsis,
P2X7-/- mice had a better chance of survival (Santana et al.,
2015; Wang et al., 2015). Pharmacological inhibition using the
P2X7 antagonists A-740003 or Brilliant Blue G, resulted in
increased survival, downregulating inflammation and
maintaining mucosal barrier integrity (Greve et al., 2017; Savio
et al., 2017; Wu et al., 2017). A risk genotype of human P2X7
containing a known gain-of-function haplotype (P2X7-4.1 in
(Stokes et al., 2010)) was increased in a cohort of sepsis patients
(Geistlinger et al., 2012). Recent work shows P2X7 activation in
human monocytes compromised subsequent NLRP3
inflammasome activation by bacteria and contributed to
mitochondrial dysfunction (Martinez-Garcia et al., 2019).
Impairment of NLRP3 was associated with increased mortality
in sepsis patients (Martinez-Garcia et al., 2019) suggesting that
P2X7 activation plays a detrimental role in sepsis. In the same
study, the murine CLP model was used to test the role of
activation of P2X7 in vivo prior to induction of sepsis and the
authors documented an increased mortality (Martinez-Garcia
et al., 2019) However, opposing studies using the murine model
suggest that P2X7 could be protective within sepsis and
demonstrated increased mortality in P2X7-/- mice (Csoka et al.,
2015). This issue of the role P2X7 plays during sepsis needs
further investigation for further progress to be made.
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P2X7 has been implicated in the immune response to several
viruses including; vesicular stomatitis virus (VSV), influenza
virus, dengue virus, and HIV. In the case of VSV and dengue
virus, P2X7 plays a beneficial role, with ATP-induced signaling
resulting in decreased viral replication (Correa et al., 2016; Zhang
et al., 2017). Conversely, evidence points towards a detrimental
role for P2X7 in influenza and HIV infections. In the case of
influenza, P2X7 deficiency protected against a lethal dose of the
virus due to a reduction in inflammatory mediators and reduced
neutrophil recruitment (Leyva-Grado et al., 2017). More
recently, administration of the P2X7 antagonist AZ11645373
or probenecid [an approved drug known to inhibit P2X7
(Bhaskaracharya et al., 2014)], improved survival and recovery
to pathogenic influenza infection in a murine model (Rosli et al.,
2019). For HIV infection, pharmacological inhibition of P2X7
could limit replication of the virus within macrophages, and
prevent virion release (Hazleton et al., 2012; Graziano et al.,
2015). With viral infections, enhancing P2X7 responses may only
be beneficial in certain cases and much more work is needed to
fully understand potential therapeutic interventions.

The role of P2X7 in anti-fungal immunity is currently under-
explored but studies have reported that P2X7 is not involved in
scavenging Candida albicans and in the production of IL-1b in
response to yeast infection (Hise et al., 2009; Perez-Flores et al.,
2016). Xu et al., demonstrated that invariant natural killer T
(iNKT) cells release ATP and induce Ca2+ signaling in dendritic
cells, which stimulates the production of prostaglandin E2,
recruitment of neutrophils, and reduced C. albicans infection
(Xu et al., 2016b). A more recent study showed that P2X7 was
critical for the induction of adaptive immune responses to
Paracoccidioides brasiliensis and survival (Feriotti et al., 2017).

P2X7 is also expressed in glial cells within the central
nervous system including microglia, oligodendrocytes,
astrocytes, and there is some (often debated) evidence
for expression in neurons. In the CNS, more P2X7 plays
potential physiological roles in neuronal axonal growth and
modulation of neurotransmitter release but also participates in
neuroinflammation (Bartlett et al., 2014). Under pathological
conditions or following damage to the CNS, a significant amount
of ATP can be released which contributes to neuroinflammation.
It is predominantly activation of P2X7 on microglia that
stimulates the production of pro-inflammatory mediators and
ROS. This neuroinflammation combined with an increase in cell
death stimulates an environment whereby extracellular ATP
concentrations are further enhanced, stimulating more cell
death, including the death of neurons. Dysregulated P2X7
activation has therefore been touted as a key contributor to the
pathophysiology of Alzheimer’s disease, Parkinson’s disease, and
multiple sclerosis, among others. Genetic ablation of P2X7
dampens neuroinflammation and enhances the clearance of
amyloid-b plaques (Mclarnon et al., 2006; Ryu and Mclarnon,
2008; Ni et al., 2013). Such neuroinflammatory responses may
also be involved in psychiatric disorders, as reviewed in
(Bhattacharya and Biber, 2016). Indeed, a gain-of-function
haplotype of human P2X7 has been repeatedly linked to
various psychiatric conditions including bipolar disorder,
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major depressive disorder, and anxiety disorders (Czamara
et al., 2018; Deussing and Arzt, 2018). Current drug
development programs are focused on testing CNS penetrant
P2X7 antagonists for psychiatric conditions (Bhattacharya and
Ceusters, 2020).

In the cardiovascular system, P2X7 participates in
inflammation, cell metabolism, and cell death and therefore
impacts ischemic heart disease, stroke, and vascular diseases
such as atherosclerosis, hypertension, thrombosis, and diabetic
retinopathy. P2X7 activation can contribute to cardiac
dysfunction in myocardial infarction due to its role in
inflammation which can facilitate sympathetic sprouting and
arrhythmia (Lindholm et al., 1987; Yang W. et al., 2017).
Notably, activation of P2X7 by the synthetic agonist BzATP
can upregulate the secretion of nerve growth factor (NGF),
which may be linked to enhanced sympathetic hyper-
innervation and sprouting (Yin et al., 2017). P2X7 is
upregulated at the site of infarct and can promote the
activation of the NLRP3 inflammasome and the release of
inflammatory IL-1b within the ventricles (Yin et al., 2017).
Inhibiting P2X7 was demonstrated to promote cardiac survival,
suppress T cell mediated immune responses, and limit the risk of
rejection (Vergani et al., 2013). P2X7 generally contributes to
excessive inflammation in the vasculature and is implicated in
several vascular diseases via IL-1b production and production of
matrix metalloproteases (MMPs) which contributes to the
pathophysiology of atherosclerosis (Lombardi et al., 2017).

In the lung, P2X7 is a potential target for lung hypersensitivity
associated with chronic inflammatory responses. Targeting P2X7
may control IL-1b-induced lung fibrosis and silicosis (Moncao-
Ribeiro et al., 2014). Inhibiting P2X7 on dendritic cells and
eosinophils could be beneficial in the treatment of allergic
asthma, and the anti-histamine, oxatomide, has been suggested
to be a P2X7 antagonist (Yoshida et al., 2015). Further, P2X7 has
been associated with pulmonary oedema and with emphysema,
the latter linked to the inhalation of cigarette smoke inducing
ATP release (Lucattelli et al., 2011). P2X7 is connected to the
recruitment of inflammatory cells to the lung during injury,
particularly neutrophils, which further enhance lung injury. In
this case, deletion or inhibition of P2X7 appeared to be protective
within the lung. Therefore, with both cardiovascular and lung
disorders, enhancement of P2X7 responses would not likely be of
any advantage and most research is focused on testing
P2X7 inhibitors.

In bone, P2X7 is involved in osteogenesis (Sun et al., 2013) and
the development of mature osteoblasts (Gartland et al., 2001; Ke
et al., 2003; Panupinthu et al., 2008). In these cells P2X7
participates in functions such as production of lipid mediators,
induction of transcription factors, propagation of intercellular
calcium signaling between osteoblasts and osteoclasts, and
intracellular signaling in response to fluid shear stress (Gartland
et al., 2001; Jorgensen et al., 2002; Liu et al., 2008; Okumura et al.,
2008; Panupinthu et al., 2008; Gavala et al., 2010). This positive
role of P2X7 in the maintenance of bone strength is supported by
studies utilizing mesenchymal stem cells (MSCs) taken from post-
menopausal women, where bone mineralization and osteogenic
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differentiation were impaired (Noronha-Matos et al., 2014).
Notably, administration of BzATP in vitro could restore these
functions, indicating an important role for P2X7 in driving the
formation of bone. P2X7 has been suggested to be involved in
differentiation of osteoclasts (Barbosa et al., 2011) and the
generation of multinucleated cells, however some evidence from
P2X7-/- mice shows that this is a redundant process not solely
reliant upon P2X7 (Gartland et al., 2003; Ke et al., 2003; Agrawal
et al., 2010). Treatment of osteoclasts with BzATP or high ATP to
stimulate P2X7 can increase bone resorption and this effect is lost
in P2X7-/- mice (Jiang et al., 2000; Armstrong et al., 2009; Hazama
et al., 2009). Miyazaki et al. demonstrated that bone resorption
relies on intracellular (ATP) and mitochondrial function
(Miyazaki et al., 2012). In this study treatment of bone marrow-
derived osteoclasts with extracellular ATP resulted in decreased
survival and resorption (Miyazaki et al., 2012). The differences
between may be due to species specific differences or genetic
variation, but a fine balance between P2X7 activation/inactivation
must be maintained to ensure optimal osteoclast function
(Donnelly-Roberts et al., 2009; Bartlett et al., 2014).

Skeletal muscle is required for numerous structural and
biological functions within the body. When muscles are
stimulated, they release small amounts of ATP which
propagates intracellular Ca2+ signaling and downstream
biological effects. However, when muscles are damaged, much
larger concentrations of ATP are released, triggering an
inflammatory response. An acute inflammatory response is
essential for muscle repair and regeneration, but prolonged
inflammation can result in muscular dystrophies (Tidball and
Villalta, 2010). P2X7 expression is increased in the muscles of
Duchenne’s muscular dystrophy patients and in murine models
of muscular dystrophy (Young et al., 2012). P2X7 can contribute
to sterile inflammation by promoting the release of inflammatory
mediators from dystrophic muscles (Rawat et al., 2010) or
contribute to deregulated homeostasis in dystrophic muscles
(Young et al., 2015). In the MDX model of muscular
dystrophy, P2X7 deficiency reduced dystrophic symptoms such
as decreased muscle structure and increased inflammation,
whilst promoting expansion of T regulatory cells known to
suppress dystrophic muscle damage (Sinadinos et al., 2015).
Surprisingly, cognitive and bone improvements were also
noted in these animals (Sinadinos et al., 2015). As for many of
the disorders linked to excessive inflammation, enhancement of
P2X7 responses in this context would be predicted to
be detrimental.

Finally, the role of P2X7 in cancer development and
progression will be considered. A feature of some tumor cells
are their high levels of P2X7 expression, which can mediate cell
proliferation, or cell death depending upon the type of tumor, the
variant of P2X7 expressed and potentially, the cellular
environment. Tumors often produce high concentrations of
extracellular ATP within the tumor core which would enable
P2X7 signaling (Burnstock and Knight, 2018). P2X7 antagonists
have been suggested as potential anti-metastatic agents by
reducing tumor cell proliferation. Conversely, it is thought that
activating P2X7 on tumor cells could result in cell death.
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First of all, considering the role of P2X7 in tumor cell
proliferation, expression of P2X7 on tumor cells is associated
with accelerated tumor growth (Adinolfi et al., 2012). g-
irradiation can induce the release of ATP from B16 melanoma
cells, which results in proliferation and tumor growth (Hattori
et al., 2012). Inhibition of P2X7 with AZ10606120 reduced
proliferation of human pancreatic duct adenocarcinoma and
human neuroblastoma cells in vitro (Amoroso et al., 2015;
Giannuzzo et al., 2016). Furthermore, AZ10606120 reduced
neuroblastoma tumor growth in nude mice (Gomez-
Villafuertes et al., 2015). P2X7 can contribute to the metastasis
of human lung cancer cells, and P2X7 inhibition significantly
decreased the migration of cancer cells transplanted into
immunodeficient mice (Takai et al., 2014; Schneider et al.,
2015). Emodin, a natural product antagonist of P2X7, could
reduce the invasiveness of a highly invasive breast cancer cell line
and ATP could elicit an increase in cell migration and metastasis
in another breast cancer cell line (Jelassi et al., 2013; Xia et al.,
2015). P2X7 expression is being used post-operatively as a
prognostic indicator for survival in renal cell carcinoma
patients (Liu et al., 2015). Expression of a non-pore functional
P2X7 (nfP2X7) was found in pathological specimens from
prostate cancer patients and was not observed in normal
patients suggesting this as a possible biomarker of prostate
cancer (Slater et al., 2004). A more recent study suggests
nfP2X7 is broadly expressed on many tumor cells (Gilbert
et al., 2019). While it is unclear which splice variant encodes
nfP2X7, antibodies recognizing this different form of P2X7 have
been tested in a Phase I safety and tolerability trials for basal cell
carcinoma (Gilbert et al., 2017). P2X7 plays a deleterious role in
osteosarcoma and can contribute to cancer-induced bone pain
(Giuliani et al., 2014; Falk et al., 2015). With gliomas, P2X7
activation is linked to an increase in inflammation, intracellular
calcium signals, and tumor cell migration (Morrone et al., 2016).

P2X7 may play a role in the host immune response to tumor
cells. In 2015, Adinolfi et al. reported that tumor progression was
accelerated in mice lacking P2X7 (Adinolfi et al., 2015).
Expression of P2X7 on host immune cells was critical for
controlling the anti-tumor immune response (Adinolfi et al.,
2015). In P2X7-/- mice, an immunocompromized tumor
infiltrate was characterized with few CD8+ T cells and an
increased number of T regulatory cells (De Marchi et al., 2019).

Alternatively, P2X7 activation may be important in the
eradication of certain types of tumor. P2X7 activation has been
demonstrated to induce apoptosis in acute myeloid cells but not
haematopoietic stem cells (Salvestrini et al., 2017). A useful
review of the literature is presented by Roger et al., where
therapeutic strategies for solid tumors including promoting the
cytolytic effect of ATP, are discussed (Roger et al., 2015). Many in
vitro studies have shown that ATP or BzATP can be cytotoxic to
tumor cells (Roger et al., 2015) and some have shown an effect of
ATP on melanoma in vivo (White et al., 2009). Exploitation of
the high level of expression of P2X7 on tumor cells to stimulate
tumor cell death is an option explored by (De Andrade Mello
et al., 2017). This study used hyperthermia to enhance
membrane fluidity and potentiate ATP-induced cytotoxicity
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via P2X7 in colon cancer cells in vitro (De Andrade Mello et al.,
2017) although such an approach has not yet been tested in vivo.
This does highlight the possibility of using positive allosteric
modulators to provide a similar enhancement of P2X7-induced
cell death.

Summarising therapeutic interventions, enhancement of
P2X7 responses could be beneficial in infectious diseases
(particularly with intracellular bacteria and parasites) to boost
microbial defences, in anti-tumor immunity, and induction of
tumor cell death. More research is required to develop selective
PAMs and to determine their mechanisms of action both in vitro
and in vivo.
POSITIVE ALLOSTERIC MODULATORS
OF P2X7

A number of chemically distinct molecules have been suggested to
act as positive modulators of P2X7. Clemastine, a first-generation
anti-histamine, acts to positively modulate P2X7 in mouse and
humanmacrophages (Norenberg et al., 2011). The combination of
clemastine and ATP could enhance P2X7-mediated whole-cell
currents, Ca2+ entry, pore-formation, and IL-1b release from
human monocyte-derived macrophages and murine bone
marrow-derived macrophages (Norenberg et al., 2011).
Clemastine is thought to bind extracellularly to an allosteric site
and concentration-response experiments using whole-cell
recordings revealed an effect on sensitivity to agonist but not
efficacy (Norenberg et al., 2011) therefore showing a Type II PAM
effect (Table 1). There have been few studies so far investigating
the effects of clemastine-induced potentiation of P2X7 in a
biological setting. In a murine model of amyotrophic lateral
sclerosis (ALS), a short treatment with clemastine (from
postnatal day 40 to day 120) could delay the disease onset and
extend the survival of SOD1-G93A mice by ~10% (Apolloni et al.,
2016). Spinal microglia taken from these mice during the
symptomatic phase highlighted that clemastine also stimulated
autophagic flux and decreased SOD-1 levels. Whether or not this
effect was P2X7-dependent was not investigated in this study, but
clemastine treatment was observed to enhance the expression of
both P2X7 and P2Y12 (Apolloni et al., 2016). A study by Su et al.,
investigated the effect of clemastine on chronic unpredictable mild
stress and depressive-like behavior in BALB/c mice (Su et al.,
2018). Clemastine could limit IL-1b and TNF-a production in the
hippocampus, suppress microglial M1-like activation, and
improve astrocytic loss within the hippocampus (Su et al.,
2018). They also show that clemastine treatment resulted in
downregulation of hippocampal P2X7 expression (Su et al.,
2018). However, whether these effects of clemastine were P2X7-
dependent was not investigated.

Isatin (1H-ondole-2,3-dione) is found within plant and
animal tissues, including human tissues (concentrations range
from <0.1 to 10 µM). Several isatin derivatives exist with a
diverse array of properties (anti-microbial, anti-convulsant, anti-
inflammatory, and anti-cancer) and biological targets (proteases,
kinases, and caspases). N-alkylated isatin derivatives which
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typically bind to tubulin to destabilise microtubules, were
identified to enhance IL-1b secretion in a P2X7-dependent
manner (Sluyter and Vine, 2016). In contrast to isatin or the
parent synthetic molecule, 5, 7-dibromoisatin, the derivatives 5,
7-dibromo-N-(p-methoxybenzyl) isatin (NAI), and 3-4-[5,7-
dibromo-1-(4-methoxybenzyl)-2-oxoindolin-3-ylidenamino]
phenylpropanoic acid (NAI-imine) could enhance P2X7-
induced IL-1b release from J774 mouse macrophages (Sluyter
and Vine, 2016). However, neither NAI or NAI-imine
potentiated ATP-induced responses including dye uptake and
cell death suggesting that these chemicals may act downstream of
the P2X7 receptor (Sluyter and Vine, 2016). Without further
experimental evidence for their mechanism of activation, we
have not classified the isatin derivatives as PAMs of P2X7.

Ivermectin, as previously discussed, is a commonly utilized
PAM for P2X4. Challenging the selectivity of ivermectin for
P2X4 within the family, Norenberg et al., demonstrated that
ivermectin potentiated human P2X7 receptors but not murine
P2X7 (Nörenberg et al., 2012). Utilizing electrophysiological and
fluorometric methods, they observed potentiation of ATP-
induced currents and Ca2+ influx in cells expressing human
P2X7, but not rat or mouse P2X7 (Nörenberg et al., 2012).
Notably, ivermectin could not potentiate other P2X7-driven
functions such as YO-PRO-1 dye uptake (Nörenberg et al.,
2012). Concentration-response experiments reveal that
ivermectin has a minor effect on the EC50 value for ATP and
can increase the maximum response (Nörenberg et al., 2012)
suggesting classification as a mixed Type I/II PAM effect (Table
1). Ivermectin has been suggested to drive P2X4/P2X7/
Pannexin-1 signaling to enhance numerous cell death
pathways including apoptosis, necrosis, pyroptosis, and
autophagy in cancer cells (Draganov et al., 2015).

Ginsenosides are steroid-like glycosides that are
predominantly obtained from the roots of the plant genus
Panax ginseng. Our lab first described four protopanaxadiol
ginsenosides [Rb1, Rh2, Rd, and the metabolite compound K
(CK)] that could potentiate ATP-activated P2X7 currents, dye
uptake, and intracellular Ca2+ concentrations, with the most
potent ginsenoside CK enhancing cell death toward a non-lethal
concentration of ATP (Helliwell et al., 2015). Using molecular
modeling and computational docking, we identified a novel
binding site in the central vestibule region of human P2X7
(Bidula et al., 2019b) shared by other P2X receptors such as
P2X4 (Dhuna et al., 2019). This predicted allosteric site involves
amino acid residues Ser60, Asp318 and Leu320 in the b-strands
connecting the orthosteric binding site to the transmembrane
domains (Bidula et al., 2019b). This region is intimately involved
in gating and more work now needs to be done to explore the
mechanism of potentiation. Recently, we explored the effect of
ginsenosides on P2X7-dependent cell death. High ATP (3 mM)
was shown to induce an unregulated form of cell death in J774
mouse macrophages, while conversely, potentiation of a non-
lethal concentration of ATP by ginsenoside CK could enhance
apoptotic cell death in a caspase-dependent manner (Bidula et al.,
2019a). In contrast to high ATP, the effect of ginsenoside CK
could be reversed via the chelation of extracellular Ca2+,
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scavenging mitochondrial ROS, Bax inhibition, or by caspase
inhibitors suggesting that different intracellular signaling events
were involved following positive modulation (Bidula et al., 2019a).

Tenidap, a COX/5-LOX inhibitor and anti-inflammatory
drug was discovered to be a potentiator of mouse P2X7
enhancing ATP-mediated cytotoxicity and Lucifer yellow dye
uptake (Sanz et al., 1998). From the dose-response experiments
performed in an LDH release assay (Sanz et al., 1998), it appears
tenidap has mixed Type I/II PAM effects at P2X7 (Table 1). It is
not known whether the effect of tenidap is restricted to mouse
P2X7; no studies on human P2X7 can be found.

Polymyxin B, an antibiotic with bactericidal action against
almost all Gram-negative bacteria, was identified to have
potentiating action at P2X7 enhancing Ca2+ influx, membrane
permeabilization, and cytotoxicity to low agonist concentrations
(Ferrari et al., 2004). Interestingly, treatment with the irreversible
inhibitor oxidised ATP or genetic ablation of P2X7 rendered cells
insensitive to the synergistic effects of ATP and polymyxin B, but
this effect was not replicated by the reversible P2X7 inhibitor
KN-62 (Ferrari et al., 2004). Polymyxin B appears to left-shift the
ATP concentration-response curve and increase the maximum
response (Ferrari et al., 2004) thus it has mixed Type I/II PAM
effects (Table 1). Polymyxin B nonapeptide, a derivative of
polymyxin B lacking the N-terminal fatty amino acid 6-
methylheptanoic/octanoic-Dab residue, did not have the same
activity at P2X7 (Ferrari et al., 2007).

Agelasine and garcinoloic acid are two natural products
capable of potentiating P2X7. Agelasines are bioactive 7,9-
dialkylpurinium salts isolated from a marine sponge, whereas
garcinolic acid is a xanthone derived from flowering plants of the
species Garsinia (Fischer et al., 2014). Both agelasine and
garcinolic acid compounds could potentiate P2X7 responses in
HEK-293, A375 melanoma, and mouse microglial cells, but only
garcinolic acid could significantly enhance P2X7-induced dye
uptake (Fischer et al., 2014). Information regarding the type of
PAM effect could not be extracted from the study as the effect of
agelasine/garcinolic acid on the ATP concentration-response
curves were not reported.

Other positive modulators of P2X7 include GW791343 (2-
[ (3 ,4 - Difluoropheny l ) amino] -N - [2 -methy l -5 - (1 -
piperazinylmethyl) phenyl]-acetamide trihydrochloride) a
negative modulator at human P2X7, but a positive modulator at
rat P2X7 (Michel et al., 2008a). Using ethidium uptake
experiments to measure P2X7 responses, GW791343 increases
potency and efficacy of the agonist BzATP at rat P2X7 expressed
in HEK-293 cells (Michel et al., 2008a) suggesting a mixed Type I/
II PAM effect (Table 1). Key structural differences exist between
different species of P2X7 receptor and amino acid residue at
position 95 is thought to be involved in coordinating GW791343
(Michel et al., 2008b). Anaesthetics such as ketamine, propofol,
thiopental and sevofluranehave been identified as positive
modulators of P2X7 in two independent studies (Nakanishi
et al., 2007; Jin et al., 2013). Various phospholipids such as
lysophosphatidylcholine, sphingophosphorylcholine, and
hexadecylphosphorylcholine, can modulate the potency of ATP
towards P2X7 (Michel and Fonfria, 2007). When used at sub-
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cytotoxic concentrations, each of these lipids could potentiate
ethidium accumulation and P2X7-dependent IL-1b production
from cells expressing recombinant or endogenous P2X7
respectively. However, when used at higher concentrations, the
lipids induce an increase in intracellular Ca2+, radioligand
binding, and cytotoxicity (Michel and Fonfria, 2007). Therefore,
it is unclear whether the lipids are having a direct effect at P2X7 or
simply inducing changes in the properties of the membrane itself.
Phosphoinositides (anionic signaling phospholipids) can also
positively modulate P2X7 via short, semi-conserved polybasic
domain located in the proximal C-terminus of P2X subunits
(Bernier et al., 2013). A single study has identified that P2X7
can be allosterically modulated by the glycosaminoglycan chains
of CD44 proteoglycans present on Chinese hamster ovary (CHO)
cells (Moura et al., 2015). The presence of these GAGs on the cell
surface significantly increased the sensitivity of cells to ATP,
potentiating Ca2+ influx and pore formation (Moura et al.,
2015). Moreover, cells defective in GAG biosynthesis were
protected from P2X7-dependent cell death (Moura et al., 2015).
These works open up the possibility that allosteric modulation of
P2X7 could occur in vivo via a multitude of mechanisms.

As the known number of positive allosteric modulators for
P2X7 begins to increase, the question arises as to where positive
modulation of P2X7 would be therapeutically beneficial. It has
been well documented that P2X7 plays pivotal roles in immunity
to infection and loss-of-function SNPs in P2X7 have proven
deleterious. P2X7 has been demonstrated to provide immune
protection towards viral (dengue), bacterial (chlamydia,
periodontitis, tuberculosis), fungal (paracoccidioidomycosis),
parasitic (leishmaniasis, trypanosomiasis, toxoplasmosis,
amoebiasis, malaria), and helminth (schistosomiasis)
infections. The causative agents of these diseases directly
impact billions of people of worldwide and indirectly put many
others at risk. Thus, the identification of novel positive allosteric
modulators of P2X7 and further exploration into their biological
effects would be significantly beneficial in the development of
novel treatments to boost immune defences.

With the identification that positive modulation by
ginsenoside CK could calibrate cell death responses of
macrophages, promoting apoptotic cell pathways over lytic cell
death pathways (Bidula et al., 2019a), we hypothesize that the
ability to be able to pharmacologically promote these types of cell
death pathways could be beneficial in the removal of pathogens,
particularly intracellular pathogens such as mycobacteria and
parasites which are not always effectively recognised by the
immune system. Due to the role of P2X7 in regulating several
cell death pathways, further investigation into whether other
positive modulators could selectively promote alternative cell
death pathways involved in the removal of pathogens could be
important in the resolution of the infections listed above.

Another area in which positive modulation could be beneficial
is in the treatment of cancers. P2X7 appears to participate in
ameliorating myeloma, glioblastoma, non-small cell lung
carcinoma, and melanoma, but the studies concerning cancer
are often contradictory. However, a common characteristic
among cancer cells is that many of them exhibit higher
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expression of P2X7 and that ATP at the tumor site is often
abundant (Pellegatti et al., 2008; Roger et al., 2015). Stimulation of
numerous cancer cell lines with high concentrations of ATP in
vitro results in decreased viability of these cells. In cancer patients,
it may be plausible to try and target cancer cells in two ways:
administering a positive modulator to amplify the effects of
enhanced local ATP concentrations around the tumor,
activating P2X7 and inducing cell death or, alternatively, the use
of an antibody-drug conjugate to target P2X7 specifically on these
cells could be employed. Attaching a positive modulator to an
antibody specific to P2X7, especially when targeting tumors with
enhanced expression of P2X7, could deliver the modulator to
where it is needed, amplify P2X7 responses on these cells, and
induce death of the cancer cells. An issue arising from this method
however, is if the cancer patient has any underlying pathologies
associated with enhanced expression of P2X7, then targeting this
receptor through antibody-drug conjugates might result in off-
target effects and death of healthy cells.
CONCLUSIONS

Collectively it appears that there is good evidence that positive
allosteric modulation of P2X2, P2X4, and P2X7 receptors may be
Frontiers in Pharmacology | www.frontiersin.org 13
of therapeutic benefit in a number of different conditions
summarised in Figure 2. It is also clear that there may be
endogenous molecules particularly in the central nervous
system, that could act as positive modulators to enhance the
action of the physiological agonist ATP (e.g., neurosteroids on
P2X2 and P2X4). With regard to the question posed in the title,
to inhibit or enhance, we have tried to present a balanced view of
the knowledge surrounding the major physiological and
pathophysiological roles for P2X receptors. There is a strong
case for inhibition of several P2X receptors in a variety of
diseases and clinical development of candidate compounds is
in progress. However, this does not exclude the development of
positive modulators for use in other disorders. We hope that we
have highlighted these opportunities. Similar to other ligand-
gated ion channels (NMDA receptors, nAchR) one challenge lies
in drug selectivity for different forms of ion channels, typically
subunit composition. With this in mind, knowing more about
pharmacology of splice variants and polymorphic variants may
be important for homomeric P2X receptors and understanding
the differential pharmacology of heteromeric P2X receptors.
With the advances in structural information and continued
progress in allosteric binding pocket identification, plus access
to the relevant animal models of disease, positive modulation of
P2X receptors may become a fruitful area of research.
FIGURE 2 | Schematic diagram summarising the major roles of P2X receptors in the body where positive allosteric modulators may have a therapeutic benefit.
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