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 Applications of nanozymes in the environment 1 

 2 

Abstract: Nanozymes are inorganic nanopaticles that mimic the enzyme-like properties in redox 3 

reactions, processing both unique properties of nanomaterials and a catalytic function. Because of high 4 

catalytic activity, stability and multifunctionality, nanozyme are of increasingly wide interest in the 5 

fields of environmental science and technology. In this article, we review the most recent advances of 6 

nanozyme research for environmental pollutant detection and treatment. Nanozymes can be used to 7 

detect ions, molecules and organic compounds both qualitatively and quantitatively. They have also 8 

been applied for destruction multi-drug resistant bacteria and the degradation of various organic 9 

pollutants. Despite the apparent potential of nanozymes in environmental science and technology, 10 

current research and application is still limited, and so future challenges and research prospects have 11 

been highlighted.  12 

Keywords: nanozyme; heavy metals; organic pollutants; antibacterial substances; organic pollutant 13 

degradation 14 

 15 

1. Introduction 16 

1.1 Definition of nanozyme 17 

Most life processes in nature involve “enzymes”. Natural enzymes are a class of biomolecules that 18 

process catalytic functions.1 They are mainly proteins, and their catalytic activity on the substrate can 19 

be very efficient and high specific.2 However, since most natural enzymes are inhibited and denatured 20 

by non-physiological or adverse conditions, such as heat, acids, and alkalis, they are prone to 21 

degeneration and can lose their function.3-5 With the rapid development of nanoscience, 22 



nanotechnology and the development of nanomaterials have entered various branches of  the life 23 

sciences.6, 7  24 

In early research, the superoxide dismutase (SOD) mimicking activities of fullerene derivatives was 25 

discovered.8, 9 Subsequently it was found that the inorganic nanomaterial Fe3O4 processed a biological 26 

activity similar to that of the natural enzyme, horseradish peroxidase (HRP).10, 11 Since then, the 27 

“nanozyme” concept has developed and the subyear of increasing numbers of research publications.12-24 28 

Nanozymes are inorganic nanopaticles that mimic enzyme-like properties in redox reactions, 29 

therefore processing both unique properties of nanomaterials and a catalytic function.14, 23, 25-27 Because 30 

of high catalytic activity, stability and multifunctionality, nanozymes have found increasingly wide 31 

potential applications in fields, such as medicine, chemical engineering, agriculture and the 32 

environment.21, 22, 28-32 In fact, nanomaterials were originally considered as being a chemically inert 33 

material with no intrinsic biological effects, a nanozyme was originally defined as an enzyme or 34 

enzymic catalytic group associated with the nanomaterial surface and termed a nanomaterial 35 

hybridizing enzyme.33, 34 For example, azacrown was modified onto gold nanoparticles (AuNP) by 36 

chelation with Zn2+ to imbue catalytic activity in shearing phosphodiester bonds mimicking the 37 

function of RNase35. Thus the catalytic activity arises from surface-modified components and not from 38 

the nature of the nanomaterials themselves. However, with the further development and application of 39 

nanomaterials, several nanomaterials have been found to process inherent enzymic catalytic properties, 40 

and therefore, the definition of nanozyme has become broader to include all nanomaterials that possess 41 

intrinsic enzyme-like activities.36  42 

 43 

1.2 Classification and catalytic mechanisms of nanozyme  44 



Nanozymes vary in structure and composition, and include metal oxides,37-52 metals,17, 53-71 and 45 

carbon-based nanomaterials.72-78 However, most of the catalytic reactions mediated by nanozymes 46 

employ the following four kinds of enzymic reactions: oxidase (OXD), peroxidase (POD), catalase 47 

(CAT) and superoxide dismutase (SOD) (Table 1). 48 

 49 

Table 1 Current nanomaterials as enzyme mimics and their typical applications and representative references (GO: graphene oxide, PANI: 50 
polyaniline, rGO: reduced graphene oxide, C-dots: carbon dots, NPs: nanoparticles, CAT-NP: catalytic nanoparticles, Dex-NZM: 51 
dextran-coated iron oxide nanoparticles termed nanozymes, GQD: Graphene quantum dot, MNP@CTS: ferromagnetic chitosan 52 
nanozyme, OXD: oxidase, POD: peroxidase, CAT: catalase, SOD: superoxide dismutase, HRP: Horseradish Peroxidase) 53 

Application Nanomaterial Enzyme type Reference 

Detection of ions MoS2 POD 104 

 Fe3O4 POD 105 

 Au POD 106 

 CoOxH-GO POD 108 

Detection of organic pollutants PdAu POD 112 

 PANI/rGO CAT 115 

 MnO2 OXD 117 

Antimicrobial and antifouling 

treatments 
MoS2 POD 133 

 C-dots OXD 134 

 C3N4@AuNPs POD 123 

 CAT-NP with Fe3O4 POD 135 

 CuO NPs POD 138 

 CuO nanorods POD 139 

 Nanoceria SOD and CAT 140 

 Dex-NZM POD 136 

 CeO2−x nanorods HRP 141 

 GQD POD 72,143 

Treatment of organic pollutants MNP@CTS POD 149 

 MnP POD 150 

 LiP POD 153 

 ZnO/CuO POD 157 

 Au/TiO2 POD 158 

 Nano-eco-enzyme POD 159,160 

 54 

Natural OXDs are enzymes that catalyze an oxidation-reduction reaction, especially those involving 55 

dioxygen (O2) as the electron acceptor.79 Nanozymes based on gold80-86 and copper87, 88 are typical 56 



representatives of OXD mimic enzymes.34 The proposed mechanism of molecular activation for AuNP 57 

catalysis is shown in Figure 1. The hydrated glucose anion is first adsorbed onto the surface of the 58 

AuNP, and the interaction with gold surface atoms forms an electron-rich gold species which 59 

effectively activates molecular oxygen by nucleophilic attack and produces a dioxo-gold intermediate. 60 

The Au+-O2
− or Au2+-O2

2− couples of the dioxo-gold intermediate serve as a bridge to transfer electrons 61 

from glucose to dioxygen. Finally, gluconic acid and H2O2 are produced.33, 34 62 

 63 

Fig. 1 Gold nanoparticles exhibit a catalytic mechanism that mimics glucose oxidase (reproduced with permission from ref. 86, Copyright 64 

2006 Wiley-VCH). 65 

PODs can commonly attack peroxides.89 Fe3O4 magnetic materials process intrinsic POD 66 

properties10 and these have been applied for the detection of both H2O2 and glucose.90 Other iron 67 

oxide-based POD mimics have also been studied, including Fe3O4,91, 92 Fe2O3,93, 94 and doped ferrites.95 68 

Since POD-like iron oxide has a Fenton and/or Haber-Weiss reaction mechanism (possibly 69 

involving ·OH / HO2·), nanozymes can be used for organic pollutant degradation by combining free 70 

radical production with magnetic properties of iron oxide.34 71 

CATs catalyze the decomposition of hydrogen peroxide to water and oxygen.96 CeO2 NPs can serve 72 

as CAT mimic enzymes.97 A series of catalytic effects is achieved by a redox reaction that forms 73 

catalytically effective Ce4+. Ce4+ is reduced by H2O2 to form Ce3+ and produces protons and O2. After 74 

that, another H2O2 molecule can combine with the oxygen vacancy in reaction ⑤, oxidizing Ce3+ to 75 



Ce4+, and releasing H2O (Fig. 2).33, 98 76 

 77 

Fig. 2 Mechanism of CeO2 nanoparticles acting as catalase mimic enzymes (reproduced with permission from ref. 98, Copyright 2011 78 

Royal Society of Chemistry). 79 

SOD is an enzyme that alternately catalyzes the dismutation (or partitioning) of the superoxide (O2
-·) 80 

radical into either molecular oxygen (O2) or hydrogen peroxide (H2O2).99 Taking Cu SOD as an 81 

example, as a reducing agent, O2
-· is finally turned into O2: Cu2+-SOD + O2

-· → Cu+-SOD + O2.100 82 

These kinds of redox reactions can produce (or eliminate) free radicals and regulate levels of reactive 83 

oxygen species (ROS). Because ROS can attack nucleic acids, proteins, polysaccharides, lipids and 84 

other biological molecules, ROS releasing nanozymes can have excellent antimicrobial properties.101 In 85 

addition, POD-mimic nanozymes can produce hydroxyl radicals with oxidative properties. Due to these 86 

characteristics, nanozymes have been widely applied to environmental problems. Nanozymes can 87 

detect the presence of certain pollutants, and also be used for effective treatment. 88 



 89 

Fig. 3 Natural enzymic properties, advantages and applications of nanozymes (R: substrate, OXD: oxidase, POD: peroxidase, CAT: 90 

catalase, SOD: superoxide dismutase) (reproduced with permission from ref. 33, Copyright 2019, American Chemical Society). 91 

 92 

Table 2 Nanomaterials for detection as enzyme mimics and their targets and agents (PANI: polyaniline, rGO: reduced graphene oxide, 93 
OXD: oxidase, POD: peroxidase, CAT: catalase) (adapted from refs.104-108,112,115,117) 94 

Nanomaterial Enzyme type Agent Target 

MoS2 POD 2, 3-diaminophenazine Fe2+ 

Fe3O4 POD 4-chloro-1-naphthol Ag+ 

Au POD 4-nitrophenol Hg2+ 

CoOxH-GO POD Amplex Red CN- 

PdAu POD O-phenylenediamine Malathion 

PANI/rGO CAT Electrical signal Kanamycin 

MnO2 OXD Oligonucleotides Ochratoxin A 

 95 

2. Nanozymes for the detection of environmental pollutants 96 

  Nanozymes can be used in place of natural enzymes for environmental monitoring. By employing 97 

the catalytic activity of POD nanozymes, the content of hydrogen peroxide in rainwater, acid rain, and 98 

heavy metals, including mercury, can be detected in environmental samples. Such nanozyme detection 99 

methods are also suitable for operation under various environmental conditions and are relatively 100 

simple and inexpensive, and can be easily applied to screening of, e.g. pesticides, organophosphorus 101 

compounds, and other substances. 102 



Whether the pollutants are ions, metals or organic compounds, nanozymes can only detect them 103 

indirectly. The basic principle of detection is that the target activates a reaction between the nanozyme 104 

and the agent, or the presence of the nanozyme causes the target to undergo a change in chemical 105 

properties and reacts with the agent to be detected (Fig. 4). An agent is usually a colorimetric sensor 106 

although there is some use of sensors such as electric current monitors (Table 2). 107 

2.1 Detection of Ions 108 

In the field of environmental pollution, the term heavy metals, mainly refers to such potentially 109 

biotoxic elements as mercury, cadmium, lead, chromium and arsenic. Heavy metals cannot be degraded, 110 

only transformed into different chemical species by abiotic or biotic mechanism, and they can be 111 

biologically amplified through food webs, causing harm to ecosystems and organisms, including 112 

humans. 102, 103 113 

A novel layered molybdenum disulfide (MoS2) nanosheet POD mimetic-based fluorescent catalytic 114 

biosensor was developed for the sensitive and selective detection of Fe2+ over the range of 0.005-0.20 115 

μM.104 The catalyst MoS2, was synthesized from Na2MoO4·2H2O, and exhibits POD activity. 116 

O-phenylenediamine acts as the substrate and was converted to 2, 3-diaminophenazine by MoS2 in the 117 

presence of Fe2+, becoming an indicator of fluorescence detection. Since the fluorescence intensity was 118 

proportional to the Fe2+ concentration, Fe2+ was successfully detected with high selectivity and 119 

sensitivity.  120 



 121 

Fig. 4 The basic principle of nanozyme detection of ions/organic compounds (PANI: polyaniline, rGO: reduced graphene oxide) (adapted 122 

from refs.104-106,108,112,115,117) 123 

   Based on the POD-like properties of histidine-modified Fe3O4 (his-Fe3O4) nanozyme, a simple, 124 

low-cost means to detect Ag+ was developed with ultralow detection limit of 18 fg/mL.105 An electron 125 

transfer sensor was conjugated to the highly active nanozyme his-Fe3O4 in the presence of Ag+ via a 126 

specific reaction. 4-chloro-1-naphthol was used as the substrate, nanozyme his- Fe3O4 was used as the 127 

catalyst, and H2O2 was used as an oxidant. When Ag+ was present, the POD enzyme activity of his- 128 

Fe3O4 was activated and this changed the substrate to generate insulating precipitation of 129 

benzo-4-chlorohexadienone. The insulating products attenuate the photocurrent signal which reflected 130 

the presence of Ag+. His-Fe3O4 nanozymes could make photoelectrochemical immunoassays chemical 131 

easier and less expensive.  132 

  Mercury in the environment exists in many chemical forms, with divalent mercury being one of the 133 

most stable. Because of the toxicity and bioaccumulation potential of mercury, detection in the 134 

environment is very important. One approach harnessed the strong affinity between AuNP and Hg2+, 135 

meaning that mercury can attach to the surface of gold nanozymes to form a gold amalgam. As a POD 136 

nanozyme, AuNP activity was further enhanced by precipitation of Hg2+, and NaBH4 supplied as a 137 



reducing agent, reduce the substrate 4-nitrophenol more quickly. 4-nitrophenol reduction produces a 138 

colour change with ultra-high sensitivity to Hg2+ and detection limits down to 1.45 nM. This AuNP 139 

nanozyme was stable and recyclable. 106, 107 140 

  A cobalt oxide/oxide-modified graphene oxide (CoOxH-GO) nanozyme having POD-like catalytic 141 

activity has been used as an effective detecting agent for CN- (selectivity>100-fold).108 The principle 142 

relied on the significant inhibitory effect of CN- on the catalytic activity of the CoOxH-GO nanozyme. 143 

When Amplex Red was used as a substrate and colorimetric reagent, with the CoOxH-GO nanozyme as 144 

catalyst and H2O2 as oxidant, the increase in CN- concentration was clearly reflected by a decrease in 145 

red colour. This method can also be applied to complex wastewaters (e.g. sea water) at low cost.  146 

 147 

2.2 Detection of organic pollutants 148 

There are several kinds of organic pollutants in the environment, and many are difficult to detect. 149 

Nanozymes can be used to detect pesticides, antibiotics and other toxic organic compounds. 109-111 150 

Pesticide pollution refers to pollution caused by pesticides, and their toxic metabolites, 151 

degradation products and impurities remaining in organisms, agricultural by-products and the 152 

environment after pesticide use has exceeded the maximum residue limits. The toxicity of residual 153 

pesticides to living organisms is called the pesticide residue, and this can contaminate the soil, 154 

atmosphere and groundwater. In order to detect pesticide residues, various nanozymes have been 155 

examined. For example, O-phenylenediamine was used as the substance to be oxidized, and 156 

palladium-gold (PdAu) bimetallic nanozyme as the catalyst. Because the POD activity of nanozyme 157 

was selectively quenched with increasing concentrations of malathion, is PdAu nanozyme could be 158 

used for detection of is low-toxic insecticide. This assay was highly sensitive (60 ng/ml) and of low 159 



cost.112-114 160 

Kanamycin is an antibiotic which can be detected by an innovative gas pressure-based biosensing 161 

platform.115, 116A polyaniline nanowire functionalized reduced graphene oxide (PANI / rGO) framework 162 

was used as a CAT-like nanozyme that catalyzed the reduction of hydrogen peroxide to produce 163 

oxygen. The existence of kanamycin triggered strand displacement amplification which affected the 164 

CAT nanozyme and reflected the presence of kanamycin as an electrical signal which increased with 165 

increasing kanamycin concentration.115, 116 166 

 167 

Fig. 5 Different forms of nanozymes and their applications in environmental biotechnology (C-dots: carbon dots, NPs: nanoparticles, 168 

CAT-NP: catalytic nanoparticles, GQD: Graphene quantum dot, E.coli: Escherichia coli, S.aureus: Staphylococcus aureus, NPE-10: 169 

nonylphenyl poly (oxyethylene) ethers, VOCs: volatile organic compounds) (adapted from refs. 72, 133-141,149-160). 170 

Ochratoxin is a mycotoxin that has attracted worldwide attention. It is one of a group of important, 171 

food-contaminating mycotoxins produced by seven species of Aspergillus and six species of 172 

Penicillium, four of which are the most toxic and widely distributed in the agricultural products. The 173 

most widely polluting and damaging to human health is ochratoxin A (OTA). One detection method 174 

was based on the biotin-streptavidin reaction.117, 118 Here, 3, 3', 5, 5'-tetramethylbenzidine (TMB) was 175 



used as a substrate and a colorimetric reagent, and MnO2 nanosheets were used as an OXD nanozyme 176 

to oxidize TMB to a blue colour TMB Ox. However, when OTA was present, acid-2-phosphate was 177 

converted to ascorbic acid, which reduced the MnO2 nanosheet to Mn2+ which cannot oxidize TMB. 178 

Theis method for detecting OTA possessed high sensitivity, with a limit of detection being 0.069 nM.117, 179 

118 180 

3. Application of nanozymes in environmental treatment 181 

3.1 Nanozymes as antimicrobial and antifouling agents 182 

Environmental antibiotic resistance is a rapidly increasing problem in recent years. Abuse of 183 

antibiotics can lead to the emergence of multi-drug resistant bacteria as well as causing environment 184 

pollution. Therefore, it is important to develop new antimicrobial agents that are highly effective, 185 

environmentally-friendly and which avoid or minimize drug resistance. Effects of antibacterial 186 

nanomaterials are multifaceted, which can make it difficult for bacteria to develop drug resistance. 187 

Compared with traditional nanomaterials, nanozymes have possess higher biosafety and show promise 188 

as an effective antibacterial material.119, 120  189 

Reactive oxygen species (ROS) play an important role in cellular defence against pathogen 190 

invasion121, 122, and nanozymes have the ability to regulate level of ROS free radicals.123 This ability 191 

confers an antibacterial function. For instance, hydrogen peroxide is a commonly used disinfectant 192 

because it can be decomposed to generate free radicals, thereby attacking cellular components of 193 

bacteria, such as membranes, proteins and nucleic acids.124, 125 However, the efficiency of generating 194 

free radicals is low, and the addition of a catalyst greatly accelerates the reaction. Nanomaterials with 195 

POD mimicking enzyme activity can be used as such a catalyst to improve the transformation of 196 

hydrogen peroxide to free hydroxy radicals and thus enhance sterilization.126-129It was found that in the 197 



presence of low concentrations of hydrogen peroxide, trace amounts of nanozymes could kill 100% 198 

Escherichia coli (E. coli), while the sterilization efficiency of hydrogen peroxide alone was less than 199 

15%.130This study also found that vanadium pentoxide nanowires with vanadium haloperoxidase 200 

activity effectively inhibited formation of biofilm. In the presence of hydrogen peroxide, this substance 201 

can oxidize bromide ions to produce hypobromous acid (HOBr) and singlet oxygen, which has strong 202 

antibacterial activity. Applying vanadium pentoxide nanowires to the surface of stainless steel inhibited 203 

microbial adhesion, thus effectively preventing the formation of biofilm, and therefore has potential in 204 

antifouling applications, e.g. for ship hulls.  205 

Photocatalytic cooperation with nanozymes can kill bacteria very effectively.131, 132 POD activity 206 

of a MoS2 nanozyme was activated by lowering the pH which altered the surface charge of MoS2 from 207 

negative to positive. The activated MoS2 nanozyme catalyzed the decomposition of H2O2, and the 208 

resulting •OH destroyed cell integrity to achieve an antibacterial effect. The advantage of this method is 209 

that this antibacterial treatment can be accomplished simply by controlling the light.133 Light-driven 210 

carbon dots (C-dots) were used as OXD nanozymes to kill E. coli and S. aureus by photosensitization, 211 

both ambient light and UV irradiation being tested.134 212 

Ultra-thin graphite carbon nitride (g-C3N4) AuNPs can be used as POD to efficiently catalyze the 213 

decomposition of H2O2 into •OH to kill drug-resistant Gram-negative and Gram-positive bacteria. This 214 

method was also very effective in destroying and preventing biofilm regeneration.123 Catalytic 215 

nanoparticles containing biocompatible Fe3O4 and dextran coated iron oxide NPs also have POD 216 

activity and can be used to decompose H2O2 to produce •OH. This method degrades the biofilm matrix 217 

and kills bacteria quickly. 135, 136 218 

Nano-CuO, as an artificial POD, is another kind of antibacterial material.137 Nanozyme based 219 



hydrogel (nanozyme-gel) CuO NPs and CuO nanorods (NRs) can be used to catalyze the 220 

decomposition of H2O2 to kill E. coli. Interestingly, the catalytic activity of CuO NRs showed 221 

significant catalytic enhancement under visible light irradiation, allowing light control of antibacterial 222 

activity. 138, 139 223 

Nanoceria has a variety of enzymic properties. A nanoceria was discovered with both CAT and 224 

SOD properties, which was controlled by the Ce3+/Ce4+ ratio.140 When the Ce3+/Ce4+ ratio and its 225 

activity are regulated, the cerium oxide nanozyme converts between these two properties. The 226 

superoxide anion is converted to H2O2 like SOD which is then further converted to H2O and O2 like 227 

CAT, and was effective in killing E. coli and S. aureus. CeO2−x nanorods can somehow prevent 228 

biofouling in an aqueous environment because of haloperoxidase activity. One CeO2−x NRs is stable in 229 

water, including marine environments, and can reduce bacteria adhesion by 70% compared to 230 

conventional PVA fibres. 96-99, 141, 142 231 

Graphene quantum dots (GQD) also have multiple enzymatic properties like nanoceria. GQD can 232 

exhibit POD properties, e.g. addition of GQD can significantly improve the antibacterial activity of 233 

H2O2, while GQD/AgNP hybrids can express an OXD function.72, 143 234 



 235 

Fig.6 Schematic of viral lipid peroxidation by IONzymes for virus inactivation. IONzymes directly contact with IAVs particles 236 

and collapses the viral lipid envelope by enhancing the level of lipid peroxidation, which further produces free radicals to destroy 237 

neighbouring proteins, including haemagglutinin, neuraminidase, and matrix protein 1, and impaires various viral structures and 238 

functions resulting in failed infection. (IONzymes: iron oxide nanozymes, IAVs: inactivated A viruses) (reproduced with permission 239 

from ref. 144, Copyright 2019, Ivyspring International Publisher) . 240 

Most recently, iron oxide nanozymes (IONzymes) have been demonstrated to effectively 241 

inactivate A viruses (IAVs) by inducing envelope lipid peroxidation and destruction of the integrity of 242 

neighbouring proteins, including haemagglutinin, neuraminidase, and matrix protein 1 (Fig. 6). 243 

Furthermore, IONzymes possess broad-spectrum antiviral activity against 12 subtypes of IAVs 244 

(H1~H12).144 245 

 246 



3.2 Treatment of organic pollutants in water 247 

Nanozymes have shown excellent qualities for the treatment of contaminated wastewater because 248 

they (i) can treat compounds that are normally difficult to biodegrade, (ii) can operate independently of 249 

the contaminant concentration, (iii) can operate over a wide range of pH, temperature and salinities, (iv) 250 

are not subject to inhibition from biofouling, (v) are relatively simple and easy to control, and (vi) 251 

possess high stability and are recyclable.145-148 252 

Ferromagnetic chitosan nanozymes (MNP@CTS) has been synthesized which are more 253 

catalytically active than conventional ferromagnetic nanozymes for the degradation of phenol.149 This 254 

type of nanozyme has excellent POD activity and can be prepared and regenerated easily at a lower 255 

cost than conventional horseradish peroxidase (HRP). MNP@CTS removed over 95% phenol from an 256 

aqueous solution within 5 h under the optimum conditions (pH range 2-10). What is more important is 257 

that the MNP@CTS are very stable and could be regenerated for reuse for at least ten cycles. In 258 

otherwork Mn(III)-chelate arising from manganese POD was pumped into a reaction vessel containing 259 

organic contaminants.150 It was found that the Mn(III)-chelate efficiently oxidized 2, 4-dichlorophenol 260 

and 2, 4, 6-trichlorophenol. The Mn(III) was oxidized to Mn(III) at an initial rate of 78% under 261 

optimized conditions. This nanozyme had the advantage of retaining 88% of the initial MnP nanozyme 262 

activity after about 24 hours of continuous operation.  263 

Aromatic compounds are a class of compounds possessing benzene ring structures. They are 264 

normally structurally stable, resistant to degradation, and often highly toxic, causing serious pollution 265 

to the environment and injurious to human health.151, 152 Lignin peroxidase (LiP) from a variety of 266 

sources can degrade a variety of recalcitrant aromatic compounds including polycyclic aromatic and 267 

phenolic compounds. In addition to exhibiting the normal properties of POD, the enzyme can form a 268 



substrate cation radical with non-phenolic aromatic compounds and catalyze high-potential 269 

one-electron oxidation.153, 154 270 

Dyes are still a major problem in water pollution.155, 156A new thermal-decomposition method was 271 

used to prepare ZnO nanorods and ZnO/CuO nanocomposites with different weight ratios (the 272 

maximum efficiency was observed for 5% CuO loaded on ZnO).157 Organic dyes such as methylene 273 

blue and methyl orange were photocatalytically degraded by addition of composite catalyst under 274 

visible light irradiation. Preparation of this nanozyme is simple, rapid and economical. 275 

  276 

Fig. 7 Photography image represents change in colour of textile dyes using ZnO/CuO (95:5) catalyst for different exposure time under 277 

visible light irradiation.) (adapted from refs. 157). 278 

In other research, Au/TiO2 powder was prepared by a sol-gel method, and this could 279 

photocatalytically degrade nonylphenyl poly (oxyethylene) ethers (NPE-10) under sunlight 280 

illumination.158 The degradation rate of NPE-10 after irradiation for 4h was 91.8%, while that of 281 

TiO2-P-25% and undoped TiO2 was 66% and 52.6%, respectively.  282 

 283 

3.3 Treatment of indoor air pollution 284 

Nano-ecological-enzyme air purification material, another kind of nanozyme, is a new type of 285 

functional material with high purification efficiency, low wind resistance and sterilizable. It can be used 286 



in air purifiers to remove indoor dust, microorganisms, formaldehyde and other volatile organic 287 

pollutants. The material is made of activated carbon fibre (ACF) and porous polymer composites and 288 

loaded with nano-silver and eco-enzyme catalyst.159, 160 Eco-enzymatic catalysts are supported in the 289 

nanoporous carbon structure and become composite macromolecules with active oxygen carriers. 290 

Enzymatic catalysts in the nanopores combine with oxygen to form highly active superoxide ions and 291 

oxidation-reduction active sub-fields, similar to POD that are widely distributed in nature. The contact 292 

area between the eco-enzyme catalyst and adsorbed formaldehyde in the nanopores is very large. The 293 

active catalyst molecule quickly binds the formaldehyde molecule and, after a series of 294 

oxidation-reductase catalytic reactions, different intermediate peroxide molecules are formed. Finally, 295 

the formaldehyde is oxidized to water and carbon dioxide. The eco-enzyme catalyst quickly returns to 296 

its original state and can bind again to oxygen molecule in the atmosphere. This process of enzymatic 297 

oxidation-reduction can therefore be repeated multiple times (Fig. 8). Organic molecules such as 298 

formaldehyde and microbial propagules in the air can be absorbed by the nanopores through an 299 

autonomous cycle and thus maintain the long-term purification effect of the composite material. The 300 

average purification rate of formaldehyde in two hours is 91.9%.159, 160 301 

 302 

Fig. 8 Degradation of formaldehyde in air by nano-ecological-enzymes (adapted from ref.159). 303 

 304 



4. Conclusions and research prospects 305 

In the past 10 years, nanozyme research has been carried out in more than 220 laboratories in 26 306 

countries (Fig. 7), and nanozyme applications have also extended to biology, medicine, agriculture, 307 

environmental protection and other fields.36 In the field of environmental biotechnology, nanozymes 308 

have multi-functional applications ranging from pollutant detection to treatment. Nanozymes can not 309 

only achieve the specificity and efficiency of natural enzymes, but of function independently of various 310 

environmental factors that may affect biotic systems, e.g. extremes of temperature and pH. 311 

 312 

 313 

Fig. 9 The number of published papers on nanozymes has annually risen (source of data in the table: Google Scholar, December 31, 2018) 314 

(adapted from ref.36). 315 

 316 

Nanozymes also have several limitations, although nanozymes overcome many restrictive factors 317 

active against natural enzymes, most catalytic activities of nanozymes are still much lower than the 318 

corresponding natural enzymes. At present, research on nanozymes mainly concentrates on redox 319 

enzyme mimics, such as OXD, POD, CAT and SOD, with much less attention given to other enzymes 320 

that may be important in the degradation of some polymers. In addition, although the efficiency of 321 



pollutant treatment is high, the cost of industrial treatment can be higher than traditional pollution 322 

treatment methods. 323 

It is evident that nanozymes show good performance in small-scale experiments, but their 324 

application in environmental engineering is still limited, mainly because catalytic nanozyme devices 325 

require high precision technology, and an extended service life if such shortcomings can be overcome, 326 

applications of nanozymes for pollutant treatment industry may bring huge benefits. In addition, 327 

nanozymes can be combined with a variety of composite materials that allow application to changing 328 

environmental problems, which is also a challenging topic.161, 162 329 

Although current research on nanozymes is still limited, the future of nanozyme technology 330 

seems promising. In the field of environmental biotechnology, research on nanomaterials is increasing 331 

and new nanozymes continue to emerge significant research questions include how to effectively kill 332 

bacteria under adverse conditions, and how to degrade very recalcitrant organic polymers. Integration 333 

of nanozyme technology in the fields of environment, biology, agriculture and medicine could result in 334 

multi-level benefits for industrial development and human health. 335 

 336 
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