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The use of computers in design is substantially different today from what it was only 30 years ago. 7 

And light-years ahead of how things were designed before computers entered the scene only about 8 

60 years ago. This article discusses the use of computers, more specifically computational design, as a 9 

useful tool for designers (computational design here refers to the application of computational tools 10 

to design practice). 11 

Design practice often involves long hours devoted to repetitive tasks such as research, testing, and 12 

drawing many options in order to work out the best solution for a given problem. This is particularly 13 

the case for architecture and construction. For example, if designers working on a new residential 14 

building want to find out the optimal slant for each façade panel to maximise solar gain (amount of 15 

sunlight entering through each window), they will need to test several strategies, evaluate them, 16 

create models, and simulate results in order to compare the efficiency of each option. Once the 17 

designers have found the right strategy, they will still need to revisit each individual panel to evaluate 18 

the best angle for performing the task. In this way, a single design job could take weeks of testing, 19 

adjustments, meetings with consultants, and could easily lead to frustration with the complexity of 20 

the entire process. 21 

For centuries designers accepted this repetitive and often vexating process, largely because they had 22 

no choice. It was either this or not design anything of any interest. For example, Renaissance 23 

architects created multiple physical models/maquettes to convince their clients of the aesthetic 24 

qualities of their projects. It is therefore not surprising that the automation and optimisation of tasks 25 

appeals to designers and others involved in the design process. This is particularly evident in the case 26 

of computational design, whereby computers and software are used as a fundamental part of the 27 

process. 28 

 29 

 30 
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Evolution of computational tools 32 

During the 1990s and 2000s, designers started to recognise the benefits of using computers to 33 

simplify laborious or complex tasks, to save time and resources, and to acquire a higher level of 34 

precision and control over the design process. Notably, architecture firm Gehry and Partners made 35 

early use of the parametric software Catia to assist the design and fabrication of the Guggenheim 36 

Museum in Bilbao. Around the same time, in 1993, Jon Hirschtick developed Solidworks a CAD 37 

(Computer-Aided Design) software that is now used by millions of designers and engineers in product 38 

design. The use of CAD, whereby designers use software to replicate hand-drafting more efficiently 39 

and accurately, quickly became popular. 40 

 41 

After this initial “digital phase”, which focussed largely on the replication of human tasks by 42 

computers, a new way of using computers for design emerged. Recently, a new generation of 43 

designers has started including the use of algorithms and computational logic in their work. This 44 

approach necessitates a much greater understanding of how computers work and involves the use of 45 

computational thinking as a fundamental part of the design process. This new digital age in design 46 

includes an awareness of algorithmic logic, datasets and statistic models. In this respect, as design 47 

becomes increasingly data-driven, designers find themselves learning more about this data and 48 

developing more effective ways of handling them. The technique of form-finding is a clear example of 49 

such an approach, where the shape of a building is not created by the designer but by a combination 50 

of algorithms. The designers develop a series of tasks for the computer to perform, they set certain 51 

conditions, and then they use computers to run a series of simulations/tests that will eventually 52 

return the desired shape. Such approaches have been applied to many fields in design, including 53 

jewellery, product and furniture design (Philippe Morel’s algorithmic chair is a good example of this), 54 

fashion (e.g. 3D printed garments), graphic design (using software like Casey Reas and Ben Fry’s 55 

Processing), as well as architecture and construction.    56 

 57 

In general terms, design practice is a vast and complex discipline and it would not be possible to 58 

automate or optimise all aspects of it. For example, aspects pertaining to intuition, synthesis and 59 

creativity within the design process are hardwired into human nature and cannot be easily replicated 60 

by algorithms. However, areas that involve the use of data could be processed by computers and 61 

automated in order to augment the design practice. In this sense, computational design should not be 62 

considered a substitute for design in general, where automation completely takes over the creative 63 

process, it should rather be considered as an additional tool for designers that can, and indeed 64 



should, be used to simplify, improve and extend their work. Through computation, designers can 65 

perform quicker, more accurate and more comprehensive tasks to test concepts and ideas.       66 

  67 

Machine Learning (ML) 68 

One of the most popular and increasingly used computational approaches to design is machine 69 

learning (ML). This is where designers and data scientists work together to generate workflows, a 70 

combined series of different steps in a process that result in optimised shapes, spatial configurations, 71 

and more performant objects. It is not difficult to imagine how the designers frustrated with the angle 72 

calculations of multiple facade panels may welcome ML as a very useful tool.      73 

 74 

There are three main types of applications where ML is proving particularly beneficial within design 75 

processes, specifically in the Architecture, Engineering and Construction (AEC) industry.  76 

 77 

The first of these are analytical tools, where designers use ML techniques to simulate and monitor 78 

possible design scenarios. This includes the analysis of existing buildings and public spaces, as well as 79 

hypothetical studies, where different factors are tested and building performances evaluated. A 80 

recent example of this approach is the MIT SenseAble City Lab’s AI Station project which analysed Wifi 81 

signals to understand how passengers move through two stations in Paris1. They used a multi-layered 82 

analytical process called Deep Convolutional Neural Network (DCNN) to evaluate indoor legibility in 83 

the Gare de Lyon and Gare St. Lazare. Indoor legibility is the extent to which a space is organised in a 84 

clear and coherent pattern and can be recognised by users. Researchers in this project used 85 

photographic images as an input in order to observe people’s behaviours and space utilisation as well 86 

as visual portions of the spaces.   87 

The second type are design tools that have been developed to support designers in their projects and 88 

research, mainly running on open platforms. These include Dynamo (an open-source graphical 89 

programming tool), Autodesk Revit (one of the main pieces of building information modelling 90 

software used widely by architects, mechanical engineers and contractors) and McNeel Rhinoceros’ 91 

Grasshopper (a visual programming language and 3D modelling software). This group includes 92 

applications like Dodo2, Owl3 or Lunchbox4, where traditional parametric 3D modelling programs can 93 

 
1 The project is explained in details here: http://senseable.mit.edu/ai-station/app_wifi/ 
2 https://www.food4rhino.com/app/dodo 
3 https://www.food4rhino.com/app/owl 
4 https://www.food4rhino.com/app/lunchbox 

http://senseable.mit.edu/ai-station/app_wifi/
https://www.food4rhino.com/app/dodo
https://www.food4rhino.com/app/owl
https://www.food4rhino.com/app/lunchbox


be augmented by libraries that add machine learning capabilities (e.g. Artificial Neural Network, 94 

nonlinear regression, K-Means clustering etc.) to be used in conjunction with spatial data modelling.  95 

 96 

Figure 1. ©Silvio Carta. Example of Rhino/Grasshopper interface (Lunchbox library). The example shows a non-linear regression applied to a 97 

random series of points. The algorithm predicts the Y value based on the X value from a training set.   98 

 99 

The third group includes management and information tools and can be considered as an extended 100 

version of more traditional Building Information Modelling (BIM) systems. These tools are generally 101 

referred as part of “City Information Systems” (CIM) and are characterised by a wider application of 102 

ML to urban policy and management. New ML-led approaches are being developed across the private 103 

and public sectors to combine existing urban information (property, location data, ordinance surveys.) 104 

with information generated by the actors involved in the planning process. A particularly successful 105 

example is PlanTech5, an initiative developed and supported by Connected Places Catapult’s digital 106 

planning group. The aim of this project is to foster new ways of managing the public digital 107 

infrastructure of planning through increasingly more interconnected databases being used by the 108 

different actors involved in the planning process, and more automated and optimised services for 109 

final users.  110 

 111 

ML and optimisation for design: A Case Study  112 

One particular example may offer more clarity on how machine learning approaches are being used 113 

within the Architecture, Engineering and Construction (AEC) industry. In a special issue of the 114 

International Journal of Architectural Computing (IJAC), dedicated to the topic of “Intelligent and 115 

Informed”, Tarabishy and colleagues presented a ML-based model for effectively computing the 116 

 
5 https://www.plantechweek.com/ 

https://www.plantechweek.com/


spatial and visual connectivity values in a given space. These are important metrics for developing 117 

interior layouts but calculating them in real time can be difficult. 118 

Designers at the global architectural firm Foster + Partners have been working on finding new ways to 119 

analyse the spatial configuration of complex building projects (for example large office blocks) at the 120 

concept stage of the design process. Spatial configuration is considered in terms of traverse-ability (a 121 

measure of how easily users can walk through a space), proximity (the distance between various 122 

elements within a space) and visual connectivity (how easily users can see various key parts of the 123 

office). The original paper by Tarabishy et al (2019), upon which the following account is based, can 124 

be found at this link and offers a very good example of how contemporary designers and data 125 

scientists can work together to optimise their design outcomes.   126 

Traditionally, Dijkstra’s algorithm has been used to calculate spatial connectivity and visibility graph 127 

analysis (VGA) to calculate visual connectivity. Dijkstra’s algorithm calculates the shortest paths 128 

between nodes in a graph, which may represent for example, various elements in the office, and VGA 129 

analyses what people can see in a given space. The problem with these techniques, especially when 130 

applied to architecture, is that their computation can be quite heavy and time-consuming making it 131 

difficult to provide a real-time response where it is most needed, for example in the sketch/concept 132 

design phase. In their study, Tarabishy and colleagues explore the use of ML-based techniques to 133 

generate surrogate models which substitute/augment these computationally heavy simulations using 134 

deep neural networks. These approaches achieve a significant reduction of the computation time 135 

along with an optimisation of the resources required (Tarabishy et al. 2019:54).  136 

In their article, Tarabishy and colleagues (2019)  begin by explaining how the spatial and visual 137 

connectivity for a given floor plan can be calculated using VGA and Dijkstra’s algorithm, a lengthy 138 

process requiring significant computational resources including hours/weeks of calculations 139 

depending on the complexity of the floor plan and the availability of resources.  140 

In order to prepare the spatial configuration of a building for simulation and analysis in this way, floor 141 

plans need to be reduced to a spatial grid (and parametrised) that includes the key features of the 142 

building such as walls, doors, passages, furniture etc. In this particular study each cell is 0.3 metres 143 

and is represented as a graph node for the purposes of analysis. Adjacency is calculated as immediate 144 

connection with neighbouring cells for the spatial connectivity (excluding unavailable cells like those 145 

of walls etc.), and with the rule of “two nodes are connected to each other if you can draw a line 146 

without crossing an obstacle for visual connectivity” (Tarabishy et al. 2019:55). Tarabishy and 147 

colleagues used Dijkstra’s algorithm to calculate the shortest path within the graph (i.e. traversing the 148 

graph), whilst the values of the connectivities were calculated using an isovist graph model.   149 

https://journals.sagepub.com/doi/full/10.1177/1478077119894483


Recognising the computational intensity of these simulations, Tarabishy and colleagues set about 150 

trying to improve the calculation of spatial and visual connectivity by using machine learning. They 151 

considered this task in terms of a supervised learning problem, using floor plans as images, and 152 

approaching the problem in terms of image processing (rather than semantically, as before). This can 153 

be thought of as a mapping exercise between an image of a floor plan (used as an input, with key 154 

spatial features such as walls and furniture) and an image of an analysed plan (used as an output). The 155 

output image has some of its pixels unchanged, namely those representing walls and furniture, and 156 

others with new values assigned according to the analysis. These values are represented using colour 157 

gradients.  158 

Having re-expressed the problem in terms of image processing, Tarabishy and colleagues employed 159 

Convolutional Neural Networks (CNNs) to optimise the analysis of spatial and visual connectivity. This 160 

method is supported by recent experiments indicating that these CNNs-based algorithms can perform 161 

better than others in object detection performance and image classification. In order to be useful for 162 

the ML experiment, Tarabishy and colleagues needed to prepare a set of training data in a suitable 163 

format. This data consisted of a large number of different floor plans in raster format and with 164 

enough resolution to be effectively processed without unnecessary noise. The researchers were then 165 

able to carry out a synthetic data generation using an automated system through a CAD framework 166 

(Rhinoceros and Grasshopper). This parametric model allowed them to generate 6,000 bidimensional 167 

plans with a variety of spatial configurations (walls and furniture arrangement) to be used for initial 168 

testing (Tarabishy et al. 2019:57). The generated images had a resolution of 100 x 100 pixels (each 169 

pixel representing 1 metre of physical office space) and this was considered a good compromise 170 

between the indication of key elements in the plan (expressed in binary terms, with black pixels 171 

representing walls and un-traversable elements and white pixel for walkable spaces in the grid) and a 172 

reasonable analysis time (which grows exponentially with the resolution). 173 

In order to improve the analysis of these plans with regards to boundaries and the position of users, 174 

Tarabishy and colleagues introduced a signed distance function (SDF) in all generated plans. This 175 

function is used to determine the distance of any point x from the closest other fixed point in a set Ω 176 

(indicating the office boundary walls). There is evidence to support that the inclusion of the SDF along 177 

with a binary system of spatial representation and in conjunction with CNNs can improve the 178 

computability of a model for real-time analyses.  179 

Once the dataset is ready for inputting there are a number of parameters that need to be considered 180 

and tested before starting the actual training. In this project, the learning rate and the choice of the 181 

algorithm were amongst the most important of these. Tarabishy and colleagues tested a number of 182 



approaches from the U-Net model, a type of CNN, approaches from the U-Net model (a type of CNN 183 

based on fully convolutional network FCN that has been developed for biomedical image 184 

segmentation and that, compared with the original FCN, outputs more precise segmentations with a 185 

smaller number of training images, including stochastic gradient descent (SGD), Adam, RMSProp and 186 

Adadelta. Among all these optimisers, SGD and Adadelta performed better, with a rapid convergence 187 

(correctly mapping black pixels in input with black pixels in output). Eventually they selected Adadelta 188 

to run the experiment on the basis that it presented the fastest convergence rate ie. correctly 189 

mapping black pixels in input with black pixels in output than the other options (Tarabishy et al. 190 

2019:59).   191 

Machines learn by means of a loss function, a method of evaluating how well the algorithm models 192 

the given data. Tarabishy and colleagues opted to use a combination of the mean squared error (MSE) 193 

and gradient difference loss (GDL) (to introduce a weighted sum) to define the loss function in this 194 

case. The latter approach is used in ML, as well as in neural networks, to estimate the performance of 195 

a certain model in the optimisation process.  196 

In order to obtain the intended level of accuracy , the researchers introduced a generative adversarial 197 

networks (GAN) approach based upon two models competing with each other to complete a given 198 

task; one generating images that are accurate enough to convince the other model, and a 199 

discriminator assessing the outputted images. GAN then converts the loss function into a parameter 200 

that can be used to train the model. According to Tarabishy and colleagues (2019:60), “This 201 

architecture avoids hand-engineering of the loss function and incentivizes the network to produce 202 

images which could be undistinguishable from reality.”  203 

The researchers implemented GAN, and carried out this training, with the Pix2Pix architecture. This is 204 

where a network maps input to output images, whilst at the same time learning a loss function to 205 

train the mapping that allowed them to translate an input image to a specific output (instead of a 206 

random image), to become a conditional generative adversarial network (cGAN) (Tarabishy et al. 207 

2019:60).  208 

Tarabishy and colleagues (2019:61) found that ,[by using]   “the Pix2Pix architecture, inference 209 

(predicting the output given an input image) for one image is computed in 0.08 s and for the U-Net in 210 

0.032 s for each of the analyses, compared to 15 s for running the actual spatial connectivity analysis 211 

and 128 s for running the visual connectivity.” The results clearly demonstrate how deep learning 212 

surrogate models (and more specifically convolutional neural networks) can significantly reduce the 213 

calculation time for an analysis of spatial configuration (0.032 seconds versus 15 and 128 seconds of 214 

the methods based on graphs and using VGA and the Dijkstra’s algorithm).      215 



 216 

Computational design today and tomorrow  217 

This study is fairly representative of the work that progressively hybrid profiles of architects, planners 218 

and data scientists are conducting under the umbrella of computational design. Increasingly, global 219 

architecture and urban design firms are establishing in-house research clusters to carry out advanced 220 

research in data analysis and visualisation, building optimisation, simulation and building 221 

performance. Zaha Hadid’s Code, KPFui Urban Interface and Foster + Partners’ Applied Research and 222 

Development group are all well known examples of this trend. Research like the study conducted by 223 

Tarabishy and colleagues is increasingly relevant both for designers and, more importantly, for 224 

everyone involved in the planning, management and use of cities and public spaces. Research into 225 

optimisation within design is helping to produce quicker and more accurate simulations, tests and 226 

prototypes in projects where each decision in the design phase corresponds to a large number of 227 

actions, costs, months and years of work, and resources. Simulations and analyses of buildings and 228 

cities are becoming increasingly more precise, leaving a smaller margin for error and human mistakes. 229 

Automation and optimisation of processes in design yield better outcomes (that are more 230 

performant, functional and appreciated by users).  231 

There are many aspects of design that are not computational and still rely on human perception, 232 

taste, preference and intuition. However, the systems for the computational aspects have come a 233 

long way and will allow for much more complex systems in the future. 234 

A number of challenges still exist for the years ahead. Such approaches are still generally sporadic and 235 

characteristic of only a small number of cutting-edge research groups within traditional design firms 236 

and universities. In other words, research in optimisation, classification, sorting and in machine 237 

learning more generally are only possible today within those practices and institutions that can allow 238 

investment, in terms of time and resources, into computational research. This tends to occur on a 239 

centralised level (research centres, universities and large design consultancy companies), and is much 240 

more difficult (and rare) for small-medium design practices, start-ups and individuals to engage in. If 241 

this line of research is considered to be vital for the progress of design, we are still quite far from 242 

reaching a critical mass whereby computational design becomes a collective effort, shared by the 243 

entire global design community instead of being promoted by a few small groups of excellence. 244 

There may be a silver lining though. As technology progresses at a fast pace, the Architecture, 245 

Engineering and Construction (AEC) industry is constantly pressured to embrace new ways for 246 

processes to be automated and optimised, projects to be planned and controlled with higher 247 

http://www.zha-code-education.org/
https://ui.kpf.com/
https://www.fosterandpartners.com/expertise/research/
https://www.fosterandpartners.com/expertise/research/


accuracy, and new data to be produced around each design process (from the exact quantity of 248 

certain building materials present in a construction site to metrics to monitor the user’s experience in 249 

cities). The next 5-10 years will be characterised by an increase in attention to computational design, 250 

optimisation and ML techniques to support design. Cities are likely to be increasingly governed by 251 

intelligent systems where ML will be a fundamental component, and young designers currently 252 

enrolled in a growing number of new university programmes that include computational design in 253 

their curricula, will be able to contribute more significantly to urban projects. They will consider ML as 254 

one of many options in their design toolbox, therefore normalising and extending the use of ML 255 

within the design process. This would allow the extension of computational design and ML to a larger 256 

platform, whereby the number of designers engaging in the use of (and proportionally in the research 257 

associated with) machine learning reach a critical mass extending to small groups and individuals as 258 

well.      259 
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