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Abstract

We present the results of a systematic analysis of the morphology of

the thin lubrication film surrounding a long gas bubble transported by a

liquid flow in a square capillary. Direct numerical simulations of the flow

are performed using the Volume-Of-Fluid method implemented in Open-

FOAM, for a range of capillary and Reynolds numbers Ca = 0.002− 0.5 and

Re = 1 − 2000, and very long bubbles, up to 20 times the hydraulic diam-

eter of the channel. The lubrication film surrounding the bubbles is always

resolved by the computational mesh, and therefore the results are represen-

tative of a fully-wetting liquid. This study shows that when Ca ≥ 0.05, the

long gas bubble exhibits an axisymmetric shape on the channel cross-section,

whereas for lower capillary numbers the bubble flattens at the centre of the

channel wall and thick liquid lobes are left at the corners. When Ca ≤ 0.01,

the thin film at the centre of the wall assumes a saddle-like shape, which

leads to the formation of two constrictions at the sides of the liquid film
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profile, where minimum cross-sectional values of the film thickness are ob-

served. The resulting cross-stream capillary pressure gradients drain liquid

out of the thin-film, whose thickness decreases indefinitely as a power-law of

the distance from the bubble nose. Therefore, the film thickness depends on

the length of the bubble, unlike flow in circular channels. We report detailed

values of the centreline, diagonal and minimum film thickness along the bub-

ble, bubble speed, and cross-sectional gas area fraction, at varying Ca and

Re. Inertial effects retard the formation of the saddle-shaped thin-film at

the channel centre, which may never form if the bubble is not sufficiently

long. However, the film thins at a faster rate towards the bubble rear as the

Reynolds number of the flow is increased.

Keywords: Bubbles, Surface tension, Microchannel, Two-Phase,

Volume-Of-Fluid, Thin film

1. Introduction

The dynamics of thin liquid film flows and their gas-liquid interfaces in

micro-geometries is key to many diverse processes and applications that span

different disciplines, ranging from mechanical and environmental engineering

to biological and medical science, such as microchannel two-phase cooling [1],

transport of pollutants in unsaturated soil [2], cleaning of bacterial cells from

medical surfaces [3], medical therapy [4], simultaneous humidification and

thermal management of fuel cells [5]. At the pore scale, the two-phase flow

is idealised as a long gas bubble displacing a wetting liquid as it propagates

within a rigid channel, and leaving a thin liquid film at the wall. The topology

and thickness of the liquid film depend on the competition between viscous
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and capillary forces, quantified by the capillary number Ca = µlU/σ (with

µl being the liquid dynamic viscosity, U the bubble or average liquid speed,

and σ the surface tension), by the competition of inertial and viscous forces,

characterised by the Reynolds number Re = ρlUL/µl (where ρl is the liquid

density and L a characteristic length of the channel cross-section), and by a

parameter reflecting the cross-sectional shape of the channel, e.g. the aspect-

ratio in rectangular channels [6]. The problem has been studied extensively

for flow in circular capillaries, starting with the seminal works of Bretherton

[7] and Taylor [8]. In circular tubes, a flat film region develops sufficiently far

from the nose and rear menisci of the bubble. The film thickness h in the flat

film region is known to scale as h ∼ Ca2/3 when Ca ≤ 0.005 and Re� 1 [7];

the correction h ∼ Ca2/3/(1+Ca2/3) is necessary to extend the validity of the

correlation to capillary numbers up to Ca = 2 [9]; inertial effects (Re� 1) are

implemented by introducing a correction term dependent on the Reynolds

number at the denominator [9, 10]. Furthermore, fully-theoretical models

based on the lubrication approximation are available to predict the entire

bubble profile [11, 12], from the nose all the way to the rear meniscus.

Capillaries with angular cross-sections are expected to better represent

the tortuosity of the gaps within porous media, or the shape of channels in

microfluidic devices. When considering noncircular capillaries, the literature

is still rather vast, although studies have mostly focused on the inertialess

regime, where the Weber number of the flow, We = Ca Re, is much smaller

than unity. The first systematic analyses addressing the transport of bub-

bles in square channels can be attributed to Ratulowski and Chang [13] and

Kolb and Cerro [14, 15], who found that below a threshold value of the
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capillary number, Ca = 0.04 − 0.1, the cross-sectional shape of the bubble

becomes non-axisymmetric, with a very thin liquid film at the channel cen-

tre and thick liquid lobes at the corners. Wong et al. [16, 17] developed an

asymptotic analysis of the flow in the thin-film surrounding a long bubble

advancing in a polygonal channel at quasi-static conditions. Their analysis

revealed that surface tension forces rearrange the thin-film at the channel

centre into a saddle profile, with a thickness of order Ca2/3 at the centre and

order Ca1 at the sides where the film is the thinnest, and that the film thins

indefinitely towards the bubble rear. Hazel and Heil [18] performed system-

atic simulations of the propagation of air fingers within noncircular channels

for a wide range of capillary numbers (but Re� 1) and confirmed that the

cross-sectional profile of the finger becomes non-axisymmetric in square tubes

when Ca ≤ 0.04. In this regime, they showed that a very thin film of liq-

uid forms at the channel centre and the Laplacian pressure gradients arising

between the channel centre and corners generate transversal flows that drive

fluid flow into the corners. These results were later extended to rectangular

channels by de Lózar et al. [6, 19], who provided scaling analyses to predict

the wet area fraction (fraction of the channel cross-section occupied by the

liquid) as a function of capillary number and channel aspect-ratio. More

recently, Chen et al. [20, 21] measured the entire 3D profile of the lubrica-

tion film around long bubbles travelling in square microchannels by using a

chromatic interference method. They investigated the range Ca ≤ 0.01 and

Re� 1 and confirmed the theoretical predictions of Wong et al. [16] that the

minimum film thickness at the sides obeys hmin ∼ Ca1 at short distance from

the bubble nose, with the exponent gradually increasing to the asymptotic
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value 4/3 as the distance is increased. Khodaparast et al. [22] proved that

the sites of the local minima in the film thickness are critical locations for

the stability of the film of partially-wetting liquids, which may eventually

rupture and lead to the formation of dry patches.

The literature survey presented above reveals that a systematic analysis

of the topological features of long bubbles travelling in noncircular channels

for a wide range of capillary and Reynolds numbers is still missing. Essential

information about the detailed perimetral distribution of the liquid film on

the channel cross-section, the minimum and maximum values of the film

thickness around the channel perimeter, the evolution of the film profile along

the bubble, and how these features vary depending on the flow conditions,

are still elusive despite being of great interest for the design and optimisation

of two-phase microfluidic devices.

This work presents a thorough systematic analysis of the distinctive topo-

logical features characterising long gas bubbles propagating in square capil-

laries, for a wide range of capillary and Reynolds numbers, Ca = 0.002− 0.5

and Re = 1 − 2000. Direct numerical simulations of the two-phase flow are

performed utilising the Volume-Of-Fluid (VOF) method [23] implemented

in OpenFOAM. This study emphasises that the dynamics of elongated bub-

bles in square channels, and the thickness of the resulting liquid films, differ

substantially from those reported for circular channels. Depending on the

capillary number of the flow, profoundly different shapes of the thin liquid

film are observed. The length of the bubble and the inertial forces, that

become relevant when Re ≥ 100 − 500, are key parameters influencing the

topology of the gas-liquid interface. The rest of this article is organised as
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follows: in Section 2, the numerical model is briefly introduced; in Section 3,

a description of the flow problem is presented; Section 4 outlines the results

of the systematic analysis; conclusions are summarised in Section 5.

2. Numerical method

Direct numerical simulations of the flow of elongated bubbles in square

capillaries are performed utilising the VOF method [23] implemented in the

interFoam solver of OpenFOAM. Accordingly, gas and liquid phases are

treated as a single mixture fluid with variable properties across the inter-

face, and a volume fraction field α is defined to map the phases throughout

the flow domain. In each computational cell of the domain, α identifies the

fraction of the cell volume occupied by the primary phase, which corresponds

to gas in the present case. Therefore, the volume fraction takes values of 1

in the gas, 0 in the liquid, and 0 < α < 1 in cells that are intersected by

the interface. By means of the volume fraction field, the properties of the

mixture fluid can be computed as an average over the two phases, e.g. the

density ρ:

ρ = αρg + (1− α)ρl (1)

where the subscripts g and l denote gas- and liquid-specific properties, re-

spectively.

The advantage of the single-fluid formulation is that a single set of con-

servation equations holds for both phases, which share a unique velocity and

pressure field. We consider the incompressible and laminar flow of two New-

tonian fluids, for which the governing equations of mass and momentum are
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expressed as follows:

∇ · u = 0 (2)

∂(ρu)

∂t
+∇ · (ρuu) = −∇p+∇ · µ

[
(∇u) + (∇u)T

]
+ Fσ (3)

where u indicates the fluid velocity, t the time, p the pressure, µ the dy-

namic viscosity, Fσ the surface tension force vector. All the fluid-specific

properties, ρg, ρl, µg, and µl, are considered constant in this work. The sur-

face tension force is formulated according to the Continuum Surface Force

method [24] and computed as Fσ = σκ|∇α|, where σ is the surface ten-

sion coefficient (considered constant) and κ the local interface curvature.

The latter is estimated by means of derivatives of the volume fraction field,

κ = ∇ · (∇α/|∇α|).

The mathematical problem is closed by a transport equation for the vol-

ume fraction, which allows the numerical model to update the location of the

interface, and therefore the mixture fluid properties, as the two-phase flow

evolves across the computational mesh:

∂α

∂t
+∇ · (αu) +∇ · [α(1− α)Ur] = 0 (4)

where Ur is an artificial compression velocity [25] and it is given by:

Ur = min

[
Cα
|φ|
|Sf |

,

(
|φ|
|Sf |

)
max

]
nf (5)

In Eq. (5), φ is the volumetric flux through the control volume face, Sf is the

surface area vector of the cell face and nf is the unit normal vector to the

interface evaluated at the control volume face. Cα is a numerical parameter

that tunes the interface compression, with Cα = 0 indicating no compres-

sion, while increasing values enhance compression and thus lead to a sharper
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interface. In the present work, the default value Cα = 1 has been retained

[26, 27, 28], as it ensured a good compromise between interface sharpness

and accuracy in surface tension calculation.

OpenFOAM’s VOF-based solver interFoam discretises the transport equa-

tions above with a finite-volume method, on a collocated grid arrangement.

The volume fraction Eq. (4) is discretised with a first-order time-explicit

scheme based on the MULES (Multidimensional Universal Limiter for Ex-

plicit Solution) algorithm [25], whereas the remaining equations are inte-

grated in time with a first-order implicit scheme. The divergence opera-

tors are discretised using second-order TVD (Total Variation Diminishing)

schemes [29], whereas Laplacian operators are discretised with central finite-

differences. The PISO (Pressure Implicit Splitting of Operators) algorithm

[30] is utilised to iteratively update pressures and velocities (3 corrections

set) within each time-step. The residuals thresholds for the iterative solution

of the flow equations are set to 10−7 for the velocity and 10−8 for both vol-

ume fraction and pressure. The time-step of the simulation is variable and

is calculated based on a maximum allowed Courant number of 0.5.

3. Problem definition and simulation setup

We consider a long gas bubble propagating in a straight channel of square

cross-section, with hydraulic diameter Dh (radius Rh), filled with a wetting

Newtonian liquid; a schematic of the flow configuration under consideration

is provided in Fig. 1. In order to describe the flow, we adopt a Cartesian

reference frame where z denotes the streamwise coordinate, x the horizontal
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Figure 1: Illustration of the flow configuration under consideration (Cal = 0.005, Rel =

10). An elongated gas bubble travels steadily at a speed Ub within a capillary channel

of square cross-section, pushed by a fully-developed laminar flow of liquid. Under the

conditions of interest, a thin film of liquid always wets the channel wall. The figure on the

right shows a close-up look of the computational mesh on the channel cross-section, in the

thin-film region (h/Rh ≈ 0.007).

and y the vertical coordinate. The bubble moves steadily along z at a speed

Ub, pushed by a laminar liquid flow of average velocity Ul. The no-slip

condition applies at the channel wall, and therefore far from the bubble the

liquid velocity profile is fully-developed. Gravity is neglected in this study

and therefore the channel orientation is irrelevant. A thin film of liquid is

trapped between the bubble and the channel wall, and the topology and

thickness of this liquid film depends on the competition of viscous, capillary,

and inertial forces. The relative importance of these forces is quantified by

the capillary number Ca = µlU/σ (viscous to capillary force) and by the

Reynolds number Re = ρlUDh/µl (inertia to viscous force). Typically, in

noncircular channels surface tension forces arrange the liquid in a thin-film

region along the walls, with thick liquid lobes at the corners, as it can be

observed in Fig. 1.

In the numerical model, the channel is modeled with a three-dimensional
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geometry. At the inlet, a fully-developed laminar flow of liquid is set, together

with a zero-gradient pressure condition. At the outlet, the pressure is set to

a uniform reference value while a zero-gradient condition is applied to the

velocity. No-slip is imposed at the channel walls. Owing to the π/2 symmetry

of the flow, only one quarter of the cross-section is simulated and symmetry

boundary conditions are utilised on the planes x = 0 and y = 0. A long gas

bubble is initialised close to the channel inlet, its initial length Lb will be

varied between 7Dh and 20Dh during the study. The liquid to gas density

and viscosity ratios are set to 1000 and 100, respectively. The unsteady flow

equations are solved in time until the bubble achieves a steady-state motion.

The range of capillary and Reynolds numbers studied in this work is

Cal = 0.002− 0.5 and Rel = 1− 2000, with Ul being used here as a velocity

scale. The channel length in the simulation ranges from 20Dh for the low

Cal range, to 100Dh for large Cal and Rel, due to the long distance that

the bubble must travel before a steady propagation is observed. Very small

thicknesses h of the thin liquid film are achieved, down to h/Rh = 0.0025

at the smallest capillary numbers studied. The thinnest film that can be

adequately captured by the computational mesh depends on the size of the

elements at the wall, with 5−10 cells being necessary across the film to resolve

the liquid velocity profile [31, 32]. We employ a structured mesh made of

orthogonal hexahedra, with gradual refinement at the channel wall, as shown

in Fig. 1. Following a mesh independence study, the finest mesh used for the

smallest capillary numbers cases has the thinnest element next to the wall

of thickness 2.9 · 10−4Rh, with an expansion ratio of 1.16 in the wall-normal

direction; this guarantees that at least 5 − 10 cells discretise liquid films of
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thicknesses h/Rh = 0.002− 0.006 and above. For example, Fig. 1 shows the

computational mesh in the thin-film region for a case run with Cal = 0.005

and Rel = 10, where a thin-film of thickness h/Rh ≈ 0.007 is discretised

by 11 cells. Tests carried out with a finer mesh did not yield appreciable

differences in the results (film thickness and bubble speed). Algebraic VOF

methods such as MULES may lead to an artificial smearing of the liquid-gas

interface. Under the present setup, the numerical thickness of the interface,

measured as the number of cells whose volume fraction is between 0.01 and

0.99, is always of two computational cells. Tests performed with a finer mesh,

where a thinner interface was achieved, did not yield appreciable differences,

and therefore it can be concluded that the results are independent of the

numerical thickness of the interface.

Overall, domain grids with number of cells ranging from 5 to 20 million

were utilised, with longer channels requiring more computational resources.

Simulations were run on a high-performance computing cluster, typically em-

ploying ten 12-core nodes (infiniband interconnection; available RAM: 40 GB

per node) for each case, adopting OpenFOAM’s scotch domain decomposi-

tion. The computational time for each simulation ranged from 3000 (low Re)

to 20000 CPU hours (high Re).

As a validation test, we simulated the conditions analysed experimen-

tally by Marschall et al. [33] for the flow of elongated bubbles in a verti-

cal square channel, which was conducted for Cab = µlUb/σ = 0.088 and

Reb = ρlUbDh/µl = 17, and thus within the range of interest of the present

study. The deviation between the experimental and numerical values of the
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film thickness is below 2%; details of the comparison are included in the

Supplementary Material.

4. Results and discussion

A first series of numerical simulations was run by systematically varying

the capillary number, but fixing the Reynolds number to a small value, Rel ≤

10, such that the Weber number of the flow Wel = Cal Rel � 1. This enables

us to study in detail the visco-capillary regime, where the effects of inertial

forces are expected to be negligible [9, 34]. The results for the negligible-

inertia case are presented in Section 4.1. The visco-inertial regime was then

investigated by systematically varying the Reynolds number, for selected

values of the capillary number. The analysis of the impact of inertial forces

on the bubble dynamics is provided in Section 4.2.

4.1. Flows with negligible inertia

4.1.1. Effect of the capillary number

In order to study the dynamics of long bubbles and thin liquid films

in the negligible-inertia regime (We � 1), we have performed numerical

simulations by varying the capillary number in the range Cal = 0.002− 0.5,

while fixing the Reynolds number to a small value. Figure 2(b) shows the

cross-sectional radius of the bubble as a function of the capillary number,

when the centreline (y = 0) and diagonal (x = y) radii are measured at a

distance of 11Rh from the bubble tip, as indicated in Fig. 2(a). The choice of

measuring the bubble radii at 11Rh and reporting these as a function of the

bubble capillary number, Cab = µlUb/σ, enables a direct comparison with
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the results of the numerical study of Hazel and Heil [18]. As a general trend,

the bubble radius decreases as the capillary number is increased and viscous

forces overcome capillary forces, in agreement with the traditional thin-film

theory [7]. Three different regimes for the topology of the liquid film, or

cross-sectional shape of the bubble, are identified when varying Cab. Above

a certain threshold for the capillary number, Cab ≥ 0.05, centreline and

diagonal bubble radii differ by less than 1% and the bubble is axisymmetric,

as it can be observed in the cross-sectional profile of Fig. 2(c). This threshold
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Figure 2: (a) Sketch of an elongated bubble travelling in a square capillary and (b) compar-

ison of centreline and diagonal bubble radii, measured 11Rh behind the tip of the bubble

nose, with Hazel and Heil [18] numerical study, and Han and Shikazono [35] and Kreutzer

et al. [36] empirical correlations (Wel � 1). (c), (d), (e) and (f) show representative cross-

sectional bubble shapes at different regimes. In (e), `x denotes the cross-stream distance

between the minimum film thickness location and the channel centre.
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value agrees with the experimental measurements of Kolb and Cerro [14]

and the theoretical predictions of Ratulowski and Chang [13]. For smaller

capillary numbers, the two radii diverge because rc is limited by the channel

wall, such that rc ≤ Rh, whereas the diagonal radius can potentially grow

up to rd =
√

2Rh if the liquid-gas interface reaches the channel corners.

Figure 2(d) shows the non-axisymmetric bubble profile on the cross-section

for this second regime, where the liquid film is the thinnest at the centre

of the channel, while most of the liquid is pushed towards the corners. We

identify a third regime which is encountered at smaller capillary numbers,

and is characterised by the formation of a dimple on the interface between

the channel centre and the corner, see Fig. 2(e) and (f), where the interface

curvature changes sign and exhibits a saddle shape at the channel centre. The

minimum film thickness value on the cross-section is detected in the vicinity

of this dimple, at a distance from the channel centre indicated as `x. Our

numerical simulations suggest that the dimple appears when Cab ≤ 0.01, in

agreement with the observations of Ferrari et al. [37]. Further decrease of Cab

in this regime does not yield appreciable differences in rc, while rd increases

towards the asymptotic value of rd = 1.2Rh predicted by the theory of Wong

et al. [16] for bubbles propagating in square channels at vanishing capillary

numbers. The results of our numerical simulations agree remarkably well

with those of Hazel and Heil [18], deviations for both rc and rd are below 1%

across the entire range of Cab studied. For further comparison, Figure 2(b)

includes also the predictions for the diagonal bubble radius obtained with

two empirical correlations from the literature. The correlation of Kreutzer

et al. [36] was obtained by fitting the numerical data of Hazel and Heil [18]
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(0.01 ≤ Cab ≤ 10), the experimental data of Kolb and Cerro [14] for air

bubbles in horizontal, upward and downward flow (0.01 ≤ Cab ≤ 10), and

the experimental data of Thulasidas et al. [38] for a train of bubbles rising

in a vertical square channel (10−4 ≤ Cab ≤ 10); it reads as follows:

rd
Rh

= 0.7 + 0.5 exp−2.25Cab
0.445

(6)

Our numerical data compare very well with this correlation when Cab ≥

0.01, while at lower capillary numbers the diagonal bubble radius in our

simulations is about 5% larger. This can be ascribed to the fact that, when

Cab < 0.01, the empirical fit is based exclusively on the data of Thulasidas

et al. [38]. These were obtained for air-water flow in a vertical channel of

Dh = 2 mm, where gravitational forces induce an appreciable thickening

effect on the liquid film already when the Bond number (Bo = ρlgR
2
h/σ)

is below 1 [39], thus explaining the underprediction of the numerical bubble

radius observed in Fig. 2(b). The second correlation included in Fig. 2(b) was

proposed by Han and Shikazono [35] and obtained by fitting their diagonal

film thickness measurements for long air fingers displacing three different low-

viscosity liquids (water, FC40 and ethanol), in Dh = 0.3 − 1 mm horizontal

square capillaries; for We� 1, this reads as follows:

rd
Rh

= 1.171− 2.43Cab
2/3

1 + 7.28Cab
2/3

(7)

At large capillary numbers, Eq. (7) overestimates both our and Hazel and

Heil [18] numerical data. Han and Shikazono [35] observed that their mea-

surements could be either above or below Hazel and Heil [18] data at large

capillary numbers, depending on the fluid and channel diameter. Deviations

in this regime can be attributed to the effect of inertia, as We � 1 in the
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Figure 3: Topology of the elongated bubble and liquid film for Cal = 0.005 (Wel � 1):

(a) contours of the liquid film thickness measured over the y = Rh plane; (b) profiles of

the streamwise film thickness extracted along the x = 0 axis (white dashed line in (a))

and along the minimum film thickness line (white dash-dot line in (a)); (c) cross-sectional

(x− y plane) liquid-gas interface profiles at different distance from the bubble nose, with

the inset providing a close-up view near the centre of the wall. In (a) and (b), the bubble

is moving from left to right; zN indicates the streamwise coordinate of the bubble nose.

experiment due to the low-viscosity fluids employed. As Cab is reduced be-

low 0.01, the predictions are slightly below the numerical data, due to the

asymptotic value of 1.171 used in Eq. (7) for Cab → 0, which differs from the

value of 1.2 obtained by Wong et al. [16], where our numerical results seem

to converge.

4.1.2. Bubble shapes

In this section, representative profiles of the bubbles for the three regimes

identified in the previous section are discussed. Figure 3 provides information

about the liquid film distribution along the bubble for Cal = 0.005, which be-
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longs to the regime where the interface dimple appears. The contours of the

film thickness in Fig. 3(a) reveal the formation of a minimum film thickness

region that evolves towards the bubble rear, where the film becomes progres-

sively thinner. In the cross-stream direction, the thinnest film is detected at

a distance of 0.3Rh from the channel centreplane (x = 0), and the thin-film

region occupies about half of the channel width, from x/Rh ≈ −0.5 to 0.5.

In Fig. 3(b), the liquid film thickness is extracted both along the channel

centreline and along the minimum film thickness line. The two curves start

to deviate at about 1.3Rh behind the bubble nose, where the dimple is first

formed, and the thicknesses decrease monotonically until the rear meniscus,

where the minimum thickness has become half the thickness on the centre-

line. Figure 3(c) illustrates the profiles of the liquid-gas interface at different

cross-sections along the bubble, and suggests that the entire interface line

in the thin-film region is shifting towards the wall, as cross-sections farther

from the bubble front are considered. In the thin-film region, the interface

curvature is positive (on the x−y plane) and the liquid pressure is larger than

that within the bubble because of the Laplace pressure jump (p = pb + σκ,

with pb being the bubble pressure), whereas at the corners the curvature is

negative and thus the pressure is below that of the bubble. This transversal

pressure gradient drives a transversal flow of liquid that drains the thin-film

region, thus explaining the progressive thinning of the liquid film towards the

bubble rear observed in Fig. 3(b). This aspect will be investigated in more

detail in Section 4.1.4.

Figure 4 displays the topological features of the film surrounding the bub-

ble for Cal = 0.02, where the centreline bubble radius is still smaller than
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that along the diagonal, but the interface dimple does no longer appear. In

this regime, the minimum film thickness is detected along the channel centre-

line. The film thickness still decreases monotonically towards the bubble tail,

and even at very large distances behind the bubble nose, see Fig. 4(c), the

axial film thinning is still noticeable. Although the interface curvature has a

constant sign all around the cross-sectional perimeter, the curvature change

between the thin-film region and the channel corner is still significant, and

hence draining flows still occur. It is interesting to note that the minimum

film thickness at 28Rh behind the bubble tip has a similar value to the min-

Figure 4: Topology of the elongated bubble and liquid film for Cal = 0.02 (Wel � 1): (a)

contours of the liquid film thickness measured over the y = Rh plane; (b) profile of the

streamwise film thickness extracted along the x = 0 axis (white dashed line in (a)), which

coincides with the minimum film thickness line; (c) cross-sectional (x−y plane) liquid-gas

interface profiles at different distance from the bubble nose, with the inset providing a

close-up view near the centre of the wall. In (a) and (b), the bubble is moving from left

to right; zN indicates the streamwise coordinate of the bubble nose. In (c), the interface

profiles are extracted from a case run with a longer bubble.
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Figure 5: Topology of the elongated bubble and liquid film for Cal = 0.2 (Wel � 1): (a)

contours of the liquid film thickness measured over the y = Rh plane; (b) profile of the

streamwise film thickness extracted along the x = 0 axis (white dashed line in (a)), which

coincides with the minimum film thickness line; (c) cross-sectional (x−y plane) liquid-gas

interface profiles at different distance from the bubble nose, with the inset providing a

close-up view near the centre of the wall. In (a) and (b), the bubble is moving from left

to right; zN indicates the streamwise coordinate of the bubble nose.

imum thickness measured for Cal = 0.005 and (zN − z)/Rh = 12 (Fig. 3(c)),

despite the different concavity of the interface in the thin-film region. Once

more, this emphasises the remarkable importance of the bubble length on

the liquid film thickness in square channels. This differs substantially from

the topology of long bubbles travelling in circular channels, where bubbles

as short as 5Rh are sufficient for a flat film region to exist between the front

and rear menisci, in the same conditions (Cal = 0.02, We� 1) [12].

Much thicker liquid films are detected for the case run with Cal = 0.2,

reported in Fig. 5. The bubble is axisymmetric and its body is exactly
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Figure 6: (a) Centreline, diagonal and minimum film thicknesses versus liquid capillary

number (Wel � 1); the black dashed line indicates the film thickness prediction for a

circular channel calculated using Aussillous and Quéré [9] correlation; (b) bubble-to-liquid

velocity ratio and gas area fraction as a function of the liquid capillary number (Wel � 1);

the dashed lines indicate the results of the numerical simulations of de Lózar et al. [19].

cylindrical. The change in the film thickness at the channel centre between

4Rh and 20Rh behind the bubble nose is less than 1%, thus suggesting that

transversal flows are absent, so that the liquid pressure is uniform around

the bubble.

4.1.3. Film thickness and bubble speed

This section focuses on flow parameters of interest for practical appli-

cations, such as the design of micro-evaporators or chemical reactors. Fig-

ure 6(a) displays the liquid film thickness along the cross-section diagonal,

centreline, and the minimum thickness, evaluated at a given distance from

the bubble tip, for all the Cal tested with the numerical simulations. The

predictions extracted with the correlation of Aussillous and Quéré [9] for
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circular channels are also included:

h

R
=

1.34Cab
2/3

1 + 3.35Cab
2/3

(8)

It can be seen that the diagonal film thickness hd (evaluated as hd =
√

2Rh−

rd) is considerably larger than the uniform thickness measured in circular

channels, with an order of magnitude difference when Cal ≤ 0.01. On the

other hand, the centreline film thickness hc (hc = Rh − rc) is always below

the value for circular channels, down to one order of magnitude smaller when

Cal ≤ 0.01, so that hc ≈ (1/100)hd in this regime. Centreline and minimum

film thicknesses match at large capillary numbers, until the interface dimple

is formed and the two curves diverge when Cal ≤ 0.01. For decreasing values

of Cal, hc first exhibits a slight increase due to the inversion of the thin-

film curvature, and eventually it decreases monotonically as Cal ≤ 0.004.

The asymptotic theory of Wong et al. [16] suggests that the centreline film

thickness decreases as hc ∼ Cab
2/3 when Cab → 0; the computational mesh

presently employed does not allow to simulate values of Cal below 0.002,

however the decreasing trend seems to be in qualitative agreement. The

minimum film thickness hmin decreases monotonically as the capillary num-

ber is reduced (Fig. 6(a)); the simulation data yield an asymptotic scaling

of hmin ∼ Cal
1 for Cab → 0, in perfect agreement with the theory of Wong

et al. [16], who predicted the same power-law for the minimum film thickness

occurring at a short distance from the bubble nose. Figure 6(a) also includes

the minimum film thickness measured at 5Rh from the bubble tip; although

the film is thicker than that measured at 11Rh, the scaling hmin ∼ Cal
1 still

holds at small Cal.

The simulation results for the bubble-to-liquid velocity ratio and the gas
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area fraction are presented in Fig. 6(b) as a function of the liquid capillary

number. As a comparison, the figure also includes the results of the numerical

simulations of de Lózar et al. [19], where the gas area fraction was extracted

directly from the simulations and the velocity ratio is computed from the

material liquid balance:
Ub
Ul

=
A

Ab
=

1

ε
(9)

where A is the cross-sectional area of the channel, Ab is the area occupied

by the bubble and ε the gas area fraction. Note that Eq. (9) is obtained

under the assumption of negligible axial flow of liquid around the bubble.

The agreement between de Lózar et al. [19] and our data is remarkable, thus

suggesting that the stagnant liquid film assumption adopted to derive Eq. (9)

holds well even at large capillary numbers. Wong et al. [16] theory predicts

Ub/Ul = 1.064 and ε = 0.94 as Cab → 0, which is in line with the data in

Fig. 6(b).

4.1.4. Interface topology in the minimum film thickness region

In this section we provide a thorough analysis of the thin-film region in

the presence of the interface dimple, thus focusing on conditions characterised

by Cal ≤ 0.01. In this regime, the minimum film thickness hmin can become

substantially smaller than the centreline thickness hc, as observed in Fig. 6(a).

On a generic channel cross-section, e.g. A-A in Fig. 2(a), the transversal

distance between the minimum thickness location and the channel centre

(x = 0 plane) is indicated as `x, see the schematic in Fig. 2(e). Since the

thin-film occupies the region 0 ≤ x ≤ `x, the nondimensional parameter

`x/Rh provides an estimation of the fraction of the cross-sectional perimeter

covered by a thin film. Figure 7(a) plots `x/Rh as a function of the distance
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from the bubble nose, for different values of the capillary number. At the

bubble nose, the minimum film thickness is detected at the channel centre,

so that `x = 0. The dimple appears at a distance of (1.2 − 1.8)Rh from

the nose, where the minimum film thickness location shifts from the channel

centre. From about 4Rh behind the bubble tip, `x is constant towards the

bubble tail, as predicted by Wong et al. [16].

For each value of Cal, we extract `x along the bubble body (where this

is constant) and plot it in Fig. 7(b); in this figure, we also include the result

of a simulation run with Cal = 0.001, where the film eventually dewets

due to insufficient mesh resolution. When Cal > 0.01, the thinnest film is

detected along the channel centreline. As the capillary number is reduced,

the minimum thickness region shifts sideways and `x/Rh converges to the

asymptotic value of 0.47 predicted by Wong et al. [16], i.e. almost half of the

cross-sectional perimeter is covered by a very thin film.

Additional insight to the cross-sectional profile of the liquid-gas interface

at varying Cal is provided with Fig. 7(c). Here, it is further observed that the

interface dimple moves towards the channel corner as the capillary number

decreases, and that the minimum film thickness decreases at a faster rate

than that along the centreline. Due to the very thin films observed at the

interface dimple, liquid film dryout is expected to initiate at the locations

indicated in Fig. 7(b), as observed experimentally by Khodaparast et al. [22]

and theoretically by Kreutzer et al. [40] for the adiabatic flow of long air

bubbles in noncircular microchannels. If dryout does not occur, the thin film

observed between x = 0 and x = `x is expected to be beneficial for applica-

tions such as flow boiling in microchannels [41] or bubble-driven detachment
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Figure 7: Analysis of the simulation results for the Cal ≤ 0.01 regime (Wel � 1): (a)

streamwise profiles of the distance `x between the minimum thickness location and the
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thickness location and the x = 0 plane as a function of the liquid capillary number; (c)

cross-sectional liquid-gas interface profiles at different capillary numbers (the same colour

legend as in (a) applies), extracted at 11Rh from the bubble nose.

of colloids from confined microgeometries [3, 2].

An interesting streamwise liquid film thinning trend emerges when plot-

ting the minimum film thickness along the bubble (e.g. Fig. 3(b), red curve)
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in logarithmic coordinates, see Fig. 8. Based on the observed trend, the

bubble can be decomposed along its length into two distinct zones: the nose

region at the bubble front tip, where (zN − z) < Rh; and the bubble body

behind it, (zN − z) > Rh, where the dimple and the thin-film region at the

channel centre have formed. In this latter region, the minimum film thickness

decays as a linear function of the distance from the nose, thus suggesting a

power-law dependence hmin ∼ (zN − z)−β. The exponent β represents the

slope of the streamwise film thickness profile in log-log coordinates. We ex-

tract the value of β for each Cal as the exponent that yields the best fit of

the power-law to the hmin(z) profile in the simulation, and obtain values in

the range β = 0.5− 0.67 for Cal = 0.002− 0.01, see the data in the inset of

Fig. 8.

In order to provide physical grounds to the observed film thinning trend,

we utilise an analytical model to describe the evolution of the liquid film in

the thin-film region at the channel centre. The model is based on the solution

of the Navier-Stokes equations for a flow with a free-surface, simplified under

the lubrication approximation [42, 16, 34]. The full derivation is included

in the Appendix; below, the main results are reported and compared with

the simulation data. We adopt a reference frame analogous to that depicted

in Fig. 1, where z denotes the streamwise coordinate, and h(x, z) is a two-

dimensional function that describes the height of the liquid film covering the

channel wall, evaluated as the distance between the y = Rh boundary and

the liquid-gas interface. We consider the thin-film region between the dimple

and the channel centre, where 0 ≤ x ≤ `x, and far from the bubble nose

and tail. In this region, the thickness of the film is much smaller than its
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streamwise and cross-stream extension, h� Lb and h� `x, the film is nearly

parallel to the wall, |∇h| � 1, and therefore the lubrication approximation

applies. Accordingly, the fluid flow within the film is taken to be nearly

parallel to the wall and the velocity field is described as a two-component

vector u(x, y, z) = u(x, y, z)i + w(x, y, z)k, where u is the component along

x and w that along z.

The pressure in the film is independent of y, i.e. the pressure is constant

along a direction perpendicular to the wall, and thus the pressure field can
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Horizontal component of the velocity and velocity vectors in the thin-film region.

be described as a two-dimensional function:

p(x, z) = pb + σκ(x, z) = pb − σ∇2h(x, z) (10)

where pb is the pressure inside the bubble (assumed constant) and κ(x, z) =
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−∇2h(x, z) is the local interface curvature; note that ∇2h < 0 at the channel

centre and ∇2h > 0 at the corners. Figure 9(a) illustrates the pressure field

on a selected cross-section for a simulation run with Cal = 0.01. Near the

channel centre, where x < `x, the interface curvature is positive and p > pb in

agreement with Eq. (10), whereas at the channel corner p < pb. Equation (10)

can be utilised to derive an expression for the pressure gradient:

∇p = −σ∇
(
∇2h

)
(11)

where ∇ = i ∂/∂x+ k ∂/∂z. The equation above indicates that the pressure

gradient mobilising the liquid in the thin-film region is the capillary pressure

gradient induced by changes of the interface curvature.

We consider a reference frame moving with the bubble at a speed Ubk.

In accordance with the no-slip condition, the wall moves with velocity −Ubk

and the velocity profile in the liquid film can be expressed as:

u(x, y, z) = −Ubk +
1

µ
∇p
[

1

2
(Rh − y)2 − h(Rh − y)

]
(12)

where y varies between y = Rh − h(x, z) at the bubble interface and y = Rh

at the channel wall. Equation (12) shows that, in a reference frame moving

with the bubble, the fluid velocity in the film has two contributions. The first

is due to the motion of the wall and has only an axial component (−Ubk),

whereas the second is due to the capillary pressure gradient and may have

both streamwise and cross-stream components, depending on the interface

profile. Figure 9(b) and (c) depicts the flow field in the thin-film region and

reveals the occurrence of transversal flows driven by the cross-stream pressure

gradient ∂p/∂x = −σ∂ (∇2h) /∂x. Note that ∂ (∇2h) /∂x > 0 in the thin-

film, such that ∂p/∂x < 0. The velocity magnitude of the transversal flows is
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substantial, as it reaches values as high as u ≈ 0.25Ul. We emphasise that, in

a stationary reference frame, the cross-stream velocity component in the film

in Fig. 9(b) and (c) is one order of magnitude larger than the streamwise

component (not reported in the figure), thus suggesting that the capillary

pressure gradient in the streamwise direction is negligible compared to that

in the cross-stream direction.

The film evolution equation resulting from the model is (full derivation

in the Appendix):

Ub
∂h

∂z
− σ

3µ
∇ ·
[
h3∇

(
∇2h

)]
= 0 (13)

Using the observation that the capillary pressure gradient in the streamwise

direction is negligible compared to that in the cross-stream direction, the

equation above simplifies into:

Ub
∂h

∂z
− σ

3µ

∂

∂x

(
h3
∂3h

∂x3

)
= 0 (14)

Equation (14) is essentially a continuity equation for the volumetric flow of

liquid in the film per unit area. It demonstrates that streamwise changes of

the liquid film thickness, ∂h/∂z, occur as a result of the transversal flows

triggered by the cross-stream capillary pressure gradient, which originates

from changes in the interface curvature. Equation (14) can be made nondi-

mensional by defining a new set of variables:

Z =
1

3Cab

h30
R4
h

(zN − z), X =
x

Rh

, H =
h

h0
(15)

where h0 is a reference film thickness value, e.g. the initial minimum film

thickness where the dimple first appears in the vicinity of the bubble nose.
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Replacing these variables into Eq. (14) removes all parameters:

∂H

∂Z
+

∂

∂X

(
H3∂

3H

∂X3

)
= 0 (16)

Equation (16) not only describes the evolution of the liquid film trapped

between long bubbles and polygonal channels, but it has also been applied to

study the pinching of soap films [43], the film drainage in droplet coalescence

[44] and the capillary drainage of annular films [45, 46]. Numerical and semi-

analytical solutions of Eq. (16) are available in the literature [40, 43, 44,

45, 46], and show that the film thins by forming a localised dimple where,

at sufficiently large values of Z, the thickness decreases as Hmin ∼ Z−0.5,

i.e. hmin ∼ (zN − z)−0.5 in the dimensional coordinates adopted in this

work. The exponent 0.5 agrees remarkably well with the present simulation

results reported in Fig. 8, in particular in the low capillary number range,

Cal < 0.005. As Cal > 0.005, the data in Fig. 8 show an increasing deviation

of β from the asymptotic value 0.5, with the film that thins more rapidly

as Cal is increased. A possible explanation for this discrepancy is that as

Cal, and thus Cab, increase, the nondimensional coordinate Z decreases (see

Eq. (15)) and therefore the asymptotic solution is achieved at much larger

distances from the bubble nose.

4.2. Flows with inertia

In this section, we study the effect of inertial forces on the bubble and

thin-film dynamics. For five selected values of the liquid capillary number,

we vary the Reynolds number in the range Rel = 1−2000, with the resulting

Weber number reaching values as high as Wel = 50. For flows in circular

channels, the Reynolds number has a mixed effect on the thickness of the
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flat film region. Until intermediate values, Rel ≤ 100 − 500, the liquid film

exhibits a thinning trend, whereas at larger Rel the film thickness increases

monotonically [34]. Also, the bubble nose elongates for increasing Reynolds

numbers [12], and hence it takes a longer bubble in order for a flat film region

to form.

Representative cross-sectional profiles of the bubble for increasing Rel,

at fixed Cal = 0.005, are presented in Fig. 10(a). As Rel is increased, the

film thickness at the channel centre decreases and converges to the minimum

film thickness value, such that the dimple becomes barely visible when Rel =

2000. The reduced curvature of the dimple observed in Fig. 10(a) as Rel is

increased, is a consequence of plotting the interface profile at a fixed distance

from the bubble nose. We observe that inertia retards the formation of

the dimple, from a distance of about 1Rh behind the bubble nose when

Rel = 10, to about 9Rh when Rel = 2000, and that the dimple shifts towards

the channel centre as Rel is increased; see the additional data included in

the Supplementary Material. The corresponding minimum film thickness

streamwise profiles are depicted in Fig. 10(b). As Rel increases, the zone

identified as the bubble nose in Fig. 8 becomes much longer, thus retarding

the formation of the interface dimple. The exponentially-thinning film zone

still appears once the dimple has formed, although farther from the nose. The

slope of the minimum thickness profile in this zone, extracted as exponent

of the power-law hmin ∼ (zN − z)−β, increases from β = 0.56 at Rel = 10

to β = 0.77 at Rel = 2000, and thus the film thins at a faster rate in the

presence of inertial effects. Therefore, sufficiently far from the bubble nose,

the minimum film thickness reduces monotonically with an increase of the
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Reynolds number.

Similar trends are detected when varying Rel at fixed Cal = 0.01. Fig-

ure 10(c) shows that, at 11Rh behind the bubble nose, the dimple has not

yet formed when Rel ≥ 1000. We observe that it takes about 14Rh for it

to form when Rel = 1000 (see data in the Supplementary Material), while

for Rel = 1250 the dimple is never formed, even for a bubble that is about

30Rh long. The slope of the exponentially-thinning film zone, see Fig. 10(d),

increases with Rel, from β = 0.67 at Rel = 10 to β = 0.81 at Rel = 1000,

whereas the bubble is not long enough for it to develop when Rel = 1250. At

long distance from the bubble nose, zN − z > 30Rh, hmin decreases mono-

tonically with the increase of Rel.

When Cal = 0.1, see Fig. 10(e) and (f), the bubble is axisymmetric for all

the values of Rel tested. For Rel ≤ 100, the bubble length is always sufficient

in order for a flat film region to appear along the bubble body. In this

range, the thickness of the flat film decrases when increasing Rel, similarly

to flows in circular capillaries. For Rel ≥ 250, a bubble length of 40Rh is

not sufficient for a flat film region to develop due to the extreme elongation

of the nose. However, extrapolation of the purple (Rel = 250) and green

(Rel = 500) profiles in Fig. 10(f) to longer bubbles suggest that the trend of

film thickness with Rel is reversed, i.e. the thickness increases with Rel.

The results for all the simulations run with inertial effects are compiled in

Fig. 11, where minimum film thicknesses and gas area fractions are measured

on a cross-section 11Rh behind the bubble nose. For Cal = 0.005, 0.01,

the minimum thickness decreases when increasing Rel, because the bubble

nose, where the film exhibits the steeper thinning rate, becomes longer, and
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because the slope of the exponentially-thinning film zone becomes steeper.

The reversed trend observed for Cal = 0.01 and Rel > 1000 is exclusively

a consequence of fixing the measurement section at 11Rh, whereas it takes

a longer distance for the bubble nose to develop. For cylindrical bubbles,

Cal ≥ 0.05, the film thickness trends with Rel are in agreement with those

for circular channels. The bubble speed, reported in Fig. 11(b), exhibits a

slight decrease with increasing Rel at low-intermediate values of Rel, while it

increases steeply at large Reynolds numbers. The values of gas area fraction

(Fig. 11(c)) are related to the velocity ratio via Eq. (9). For Rel ≤ 100, area

fractions do not differ appreciably from the values measured in the visco-

capillary regime (We� 1), whereas at large Reynolds numbers the reduction

of the gas area fraction owing to increased inertial effects is remarkable.
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5. Conclusions

We have performed a systematic analysis of the topology of long gas bub-

bles travelling within square capillaries. We have investigated both the visco-

capillary and visco-inertial regimes, by varying the capillary and Reynolds

numbers of the flow in the range Cal = 0.002 − 0.5 and Rel = 1 − 2000.

The study is based on the results of direct numerical simulations conducted

utilising the Volume-Of-Fluid method implemented in the solver interFoam

of OpenFOAM. This study emphasises the fact that the dynamics of elon-

gated bubbles in square channels, and the thickness of the resulting liquid

films, differ substantially from those reported for circular channels. The main

conclusions of this work are as follows:

• Bubbles have unique topological features depending on the capillary

number. When Cab ≥ 0.05, the bubbles are cylindrical and a flat film

region develops, provided that the bubble is sufficiently long. When

0.01 < Cab < 0.05, the confinement effect of the channel walls flattens

the liquid-gas interface at the channel centre, and the bubble cross-

section is no longer axisymmetric. When Cab ≤ 0.01, the thin film at

the channel centre exhibits a saddle shape, and an interfacial dimple is

formed at the matching point between the thin-film at the centre and

the thick menisci at the corners.

• The centreline and minimum liquid film thicknesses in square channels

are up to one order of magnitude smaller than that reported for bubbles

travelling in circular tubes. The scaling law hmin ∼ Cab
1 applies as

Cab → 0, in agreement with the available theory, in contrast with the
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law h ∼ Cab
2/3 for circular channels.

• The interfacial dimple, where the film exhibits a minimum thickness,

appears at a constant distance from the channel centre, and this dis-

tance varies with Cal and Rel. Dewetting of the film is likely to initiate

at this location.

• Unlike flow in circular channels, a flat film region is never achieved

along the bubble at small capillary numbers, and thus the bubble length

impacts considerably the film thickness magnitude. The film thins as an

exponential function of the distance from the nose, hmin ∼ (zN − z)−β,

with β converging to the asymptotic value of 0.5 as Cal decreases, in

the inertialess regime.

• Inertial effects retard the formation of the interfacial dimple, which

may never form if the bubble is not sufficiently long. However, the film

thins at a faster rate towards the bubble rear as Rel is increased.

• The trend of the film thickness with Rel is mixed, as this depends also

on Cal and on the bubble length. The gas area fraction exhibits a

marked dependence on Rel when inertial forces become dominant.
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Supplementary material

Supplementary material associated with this article is included with the

submission. This provides a comparison with the experimental data of Marschall

et al. [33], and additional data about the shape of long bubbles for flows with

inertial effects.

Appendix A. Equations governing the flow in the thin-film region

at the channel centre

In the thin-film region bounded between the bubble interface and the

wall at the channel centre, the liquid-gas interface is nearly parallel to the

wall (|∇h| � 1) and the velocity field can be described as a two-component

vector u(x, y, z) = u(x, y, z)i +w(x, y, z)k. The continuity equation reads as

follows:
∂u

∂x
+
∂w

∂z
= 0 (A.1)

Under the lubrication approximation, the x and z components of the mo-

mentum equation can be written in compact notation as:

∇p = µ
∂2u

∂y2
(A.2)

where ∇ = i ∂/∂x+ k ∂/∂z and p = p(x, y, z), and along y:

∂p

∂y
= 0 (A.3)

which means that the pressure is constant along y, p = p(x, z). We adopt a

reference frame moving with the bubble at a speed Ubk. Therefore, at the

channel wall, y = Rh, the no-slip condition requires that:

u = −Ubk (A.4)
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At the liquid-gas interface, y = Rh − h(x, z), the stress jump conditions at

leading-order write as [16]:
∂u

∂y
= 0 (A.5)

and:

p− pb = σκ = −σ∇2h (A.6)

where pb is the pressure within the bubble, assumed constant. κ(x, z) is

the local curvature of the interface, that under the small-slope assumption

(|∇h| � 1) is expressed as κ = −∇2h. The integration of Eq. (A.3), with the

integration constant set by Eq. (A.6), provides an expression for the pressure

field in the liquid film:

p(x, z) = pb − σ∇2h(x, z) (A.7)

and for the pressure gradient:

∇p = −σ∇
(
∇2h

)
(A.8)

Equations (A.7) and (A.8) coincide, respectively, with Eqs. (10) and (11) in

the article. Integration of Eq. (A.2) along y, with the boundary conditions

in Eqs. (A.4) and (A.5), yields the velocity profile in the liquid film:

u(x, y, z) = −Ubk +
1

µ
∇p
[

1

2
(Rh − y)2 − h(Rh − y)

]
(A.9)

which is Eq. (12) in the article. A volumetric flow rate q(x, z) is identified

by integrating the velocity profile given by Eq. (A.9) across the film:

q =

Rh∫
Rh−h

u dy = −Ubhk− h3

3µ
∇p (A.10)
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which represents the volumetric flow of liquid across a plane area normal

to u, with unit width and with height equal to the film thickness. The

divergence of the volumetric flow rate can be written as a function of the

velocity derivatives as:

∇ · q =
∂qx
∂x

+
∂qz
∂z

=
∂

∂x

Rh∫
Rh−h

u dy +
∂

∂z

Rh∫
Rh−h

w dy (A.11)

and, using the chain rule:

∂

∂x

Rh∫
Rh−h

u dy +
∂

∂z

Rh∫
Rh−h

w dy =

=

Rh∫
Rh−h

∂u

∂x
dy + u(x,Rh − h, z)

∂h

∂x
+

Rh∫
Rh−h

∂w

∂z
dy + w(x,Rh − h, z)

∂h

∂z

(A.12)

Owing to the small-slope assumption, |∇h| � 1, the second and fourth terms

at the right-hand side of Eq. (A.12) are negligible, thus it follows that:

∇ · q =

Rh∫
Rh−h

∂u

∂x
dy +

Rh∫
Rh−h

∂w

∂z
dy (A.13)

and, since the right-hand side of Eq. (A.13) coincides with the continuity

equation, integrated along y across the film, this must be zero:

∇ · q = 0 (A.14)

Introducing Eq. (A.10) into Eq. (A.14) yields:

Ub
∂h

∂z
+

1

3µ
∇ ·
(
h3∇p

)
= 0 (A.15)
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and, using Eq. (A.8) to rewrite the capillary pressure gradient, we obtain:

Ub
∂h

∂z
− σ

3µ
∇ ·
[
h3∇

(
∇2h

)]
= 0 (A.16)

which is the differential equation describing the evolution of the film thickness

h(x, z) in the thin-film region at the channel centre [42, 16, 34], Eq. (13) in

the article.
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Experimental and pore-level numerical investigation of water evapora-

tion in gas diffusion layers of polymer electrolyte fuel cells, Int. J. Heat

Mass Tran. 115 (2017) 238 – 249.

40
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