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Abstract 15 

We discuss a new framework for understanding the structure of motor control. Our approach 16 

integrates existing models of motor control with the reality of hierarchical cortical processing and the 17 

parallel segregated loops that characterize cortical-subcortical connections. We also incorporate the recent 18 

claim that cortex functions via predictive representation and optimal information utilization. Our 19 

framework assumes each cortical area engaged in motor control generates a predictive model of a different 20 

aspect of motor behavior. In maintaining these predictive models, each area interacts with a different part 21 

of the cerebellum and basal ganglia. These subcortical areas are thus engaged in domain appropriate 22 

system identification and optimization. This refocuses the question of division of function among different 23 

cortical areas. What are the different aspects of motor behavior that are predictively modelled? We suggest 24 

that one fundamental division is between modelling of task and body while another is the model of state 25 

and action. Thus, we propose that the posterior parietal cortex, somatosensory cortex, premotor cortex, 26 

and motor cortex represent task state, body state, task action, and body action, respectively. In the second 27 

part of this review, we demonstrate how this division of labor can better account for many recent findings 28 

of movement encoding, especially in the premotor and posterior parietal cortices.  29 
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Introduction 30 

Motor control is perhaps one of the most central and complex tasks of the brain. For example, 31 

while driving, we must move our arms, legs, and gaze in a coordinated fashion to control the movement 32 

of our car while also assessing its movement and that of the other cars around us. For that to happen our 33 

brain needs to integrate sensory and motor information about our own body’s state (joint configuration) 34 

and the task state (car direction and speed) in order to plan the required action within the task (like taking 35 

a sharp turn while staying on the road and avoiding other cars) and the body action to enable it (turning 36 

the wheel with the hands and controlling the gas and brake pedals with the foot). This requires predictive 37 

coding of the outcome of movements at both the task and body level, accounting for the multiple costs of 38 

the task (maintaining the speed limit and proper distance, avoiding rapid acceleration or deceleration) and 39 

the body (keeping the arms in comfortable positions while maintaining the ability to respond). As such, 40 

the neuroanatomy of motor control involves multiple cortical and subcortical regions across the brain. For 41 

decades, theories of the motor functions have failed to address how these different regions simultaneously 42 

coordinate the body within the task. We will extend existing theories regarding the roles of the cerebral 43 

cortex, the cerebellum and the basal ganglia to address this gap. The historical focus on these three areas 44 

(e.g., Kornhuber, 1971; Mogenson et al., 1980) is justified largely because they are tightly interconnected 45 

and have been heavily studied in the context of reaching and grasping movements, finger movements, eye 46 

movements, and locomotion. Of course, other areas – most obviously the spinal cord, red nucleus, and 47 

thalamus – play key roles in motor control. 48 

Kenji Doya proposed an influential hypothesis that delineated the roles of these different brain 49 

structures based on computational principles (Doya, 1999, 2000). Doya suggested that the cerebellum, the 50 

basal ganglia, and the cerebral cortex are specialized for different types of learning: supervised learning, 51 

reinforcement learning, and unsupervised learning, respectively. Doya addressed the way that these 52 

different learning rules might shape the roles each motor area played in motor behavior. His view was that 53 

the learning rules would lead the cerebellum to form internal models, the basal ganglia to play a role in 54 

action selection and the cortex to form representations of state and action. Different versions of this idea 55 

of the functions of these different areas have served the field well for many years. However, they were 56 

brought together particularly powerfully when they were connected to ideas of optimal feedback control 57 

introduced into the field by Emo Todorov and Michael Jordan. The optimal feedback control theory for 58 

motor coordination (Todorov and Jordan, 2002) suggested a mathematical approach for motor control 59 

which formalized the relationship between motor commands, task goals, sensory-motor noise, and sensory 60 

feedback. In this formulation, motor commands were chosen to achieve task goals based on an estimate of 61 

state that combined sensory feedback with the system's prediction of the current state. The task goals are 62 

represented as a cost-to-go function. The cost-to-go function ascribes the current state a value that 63 

combines how well it leads to achievement of task goals and how much effort will be required to achieve 64 

them. Reza Shadmehr and John Krakauer (2008) used Todorov’s optimal feedback control framework as 65 
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the basis for a computational neuroanatomy of motor control. In their scheme, primary- and pre-motor 66 

cortices generate motor commands, while the basal ganglia evaluate the cost-to-go function, and the 67 

cerebellum predicts upcoming state. In recent years, the term computational neuroanatomy mostly refers 68 

to algorithm-based quantitative approaches to image processing and 3D reconstruction associated with the 69 

study of neuroanatomy. Here we use it in the same sense used by Shadmehr and Krakauer (2008) to 70 

describe the identification of distinct motor control processes from computational models and their 71 

mapping to different brain regions.  72 

In this paper, we try to extend these influential theories in two key ways. First, we suggest that 73 

each of the cortical areas involved in motor control may be implementing the model described by 74 

Shadmehr and Krakauer (2008), based on anatomical evidence that each cortical region forms its own 75 

loops with the basal ganglia and the cerebellum. Second, we suggest that these different cortical areas may 76 

be interacting in ways that are consistent with existing influential perspectives on the cortical hierarchy, 77 

that focus on the cortex’s role in representing prediction and optimal information utilization (Clark, 2013; 78 

Kanai et al., 2015). These two extensions combine to produce a new, coherent model of the neuroanatomy 79 

of motor control.  80 

Multiple cortical loops with the basal ganglia and the cerebellum 81 

Compelling anatomical evidence supports the existence of parallel loops connecting cortical areas 82 

with both the basal ganglia and cerebellum. The loops are characterized by a high degree of topographic 83 

specificity (Middleton and Strick, 1997, 2001). Most areas of cortex receive input from dedicated, separate 84 

regions of the basal ganglia, and the most prominent input to a given region of the basal ganglia derives 85 

from the same area of cerebral cortex to which it projects. Most cortical areas have a similar loop with 86 

cerebellum (Bostan and Strick, 2018; Dum and Strick, 2003; Kelly and Strick, 2003; Middleton and Strick, 87 

1997). Neuroanatomical studies have demonstrated that cerebellar output reaches many areas of the cortex, 88 

including the posterior parietal cortex and regions of prefrontal cortex (see Bostan et al., 2013, for review). 89 

The primary somatosensory cortex has projections to the basal ganglia (Kunzle, 1977) and the cerebellum 90 

(Middleton and Strick, 1998). Gerbella et al., (2016) suggested that cortical regions connected one to 91 

another (such as specific sectors of the premotor and parietal cortex) also have convergent projections to 92 

the same striatal sectors. But the figures for individual monkeys suggest that it is a group effect due to 93 

inter-subject variability in the projections, and within each monkey there is only partial overlap in the 94 

striatal sectors (e.g. case 62, Figures 10 and 11). Neuroimaging is lacking the resolution to address the 95 

different pathways, yet, human neuroimaging studies also support the notion that different cortical regions 96 

are bidirectionally connected to distinct areas of the cerebellum and the basal ganglia (Buckner et al., 2011; 97 

Choi et al., 2012; O’Reilly et al., 2010; Seitzman et al., 2020; Yeo et al., 2011).  98 

A model based on this notion of parallel segregated loops of different cortical areas with the basal 99 

ganglia and the cerebellum was first presented by James Houk, who refers to it as a distributed processing 100 
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module (DPM) (Houk, 2001, 2005; Houk et al., 2007). According to Houk, a given area of cortex together 101 

with its subcortical loop(s) forms a DPM and the different distributed modules communicate with each 102 

other through cortico-cortical connections. Cognitive neuroscientist Takashi Hanakawa suggested a model 103 

similar to the DPM model to explain how the premotor cortex can serve as a gateway between motor and 104 

cognitive networks (Hanakawa, 2011). The Hanakawa model is consistent with the model we present 105 

below, although our focus is on the roles of premotor and parietal cortices in task-body integration where 106 

the Hanakawa model focuses on motor–cognitive integration.  107 

Recent findings of direct connections between the basal ganglia and the cerebellum (Bostan and 108 

Strick, 2018; Quartarone et al., 2020) adds complexity to the view of parallel segregated loops. However, 109 

one prominent theory proposes that the newly found connections are part of an integrated network which 110 

balances the relative influence of the basal ganglia and the cerebellum without changing their respective 111 

roles (Bostan and Strick, 2018; Taylor and Ivry, 2014). More controversially, there are recent reports of 112 

actual reward processing in the cerebellum (Medina, 2019) based on findings of reward signals in 113 

cerebellar climbing fibers (Heffley et al., 2018; Kostadinov et al., 2019). This may challenge the canonical 114 

view of the cerebellar role in motor control and learning. However, it is also possible that the reward 115 

signals reflect upstream influences of reward on kinematics (Lixenberg et al., 2020). Another suggestion 116 

is that some climbing fibers play a homeostatic role and do not affect motor learning (Tang et al., 2017). 117 

A final alternative is that reward signals in the cerebellum are found more laterally in the cerebellum and 118 

thus reflect internal modelling of reward that is not directly connected to movement (Heffley and Hull, 119 

2019; Sendhilnathan et al., 2020; Tsutsumi et al., 2019). Considering other recent results showing that 120 

climbing fibers provide predictive signals about movement parameters (Streng et al., 2018) the canonical 121 

view is still widely accepted (Apps et al., 2018; Sokolov et al., 2017). 122 

It is also worth considering recent findings suggesting that basal ganglionic dopamine signals do 123 

not necessarily reflect reward prediction error (Cox and Witten, 2019). These findings are in line with an 124 

increasingly prominent hypothesis that direct and indirect pathways in the basal ganglia circuit 125 

respectively calculate parallel and separate evaluations of action selection and outcome evaluation 126 

(Nonomura et al., 2018; Stephenson-Jones et al., 2013, 2016). This would explain why neurons associated 127 

the direct pathway would not be sensitive to reward. This hypothesis is consistent with findings that the 128 

activity of substantia nigra dopaminergic neurons not associated with reward is strongly associated with 129 

movement selection and movement vigor (Da Silva et al., 2018).  130 

Cortical function 131 

The cerebral cortex has a laminar organization, and certain aspects of the laminar organization are 132 

preserved across most of cortex. This includes many aspects of the distribution of neurons appearing in 133 

each layer; it includes aspects of the structure of interlaminar connections; it also includes the layers 134 

producing local and projection efferents (Shipp, 2007). The similarity in the connectivity patterns of the 135 
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cortical layers, as well as the patterns of input and output from thalamus and other subcortical structures, 136 

has long been taken to imply that different cortical areas employ similar cortical algorithms (Douglas and 137 

Martin, 2004; Mumford, 1991, 1992), and that the cerebral cortex, like the cerebellum and basal ganglia, 138 

is specialized for a particular computation that is applied in different contexts  (Doya, 1999).  139 

However, recent findings highlighting the heterogeneity across cortical areas mean that the 140 

computation performed may vary with the context (Palomero-Gallagher and Zilles, 2019). The variability 141 

in the neurochemistry of the different cortical areas and the variation in the width of the different cortical 142 

layers (Zilles and Amunts, 2010), as well as the variability of the patterns of lateral connectivity (Sirosh 143 

et al., 1996) suggest that the cortical algorithm varies in ways that match specific processing demands in 144 

each area of cortex (Barbas, 2015). To take a familiar example, the target of thalamic input, layer IV, is 145 

unusually thick in visual cortex. This makes sense, since this input brings the visual input to visual cortex. 146 

In contrast, layer IV is non-existent in the motor cortex. Thalamic input to motor cortex, which represents 147 

the output of the basal ganglia and the cerebellum, projects to other layers. Thus, processing in the two 148 

areas will be different despite the many similarities between them. 149 

One traditional view of the cortical structure is that the cortex is essentially a tool for 150 

representation: each area of cortex represents different aspects of reality based on the inputs it receives 151 

and the sensory-motor receptive fields of its neurons (Penfield and Boldrey, 1937). Thus, information from 152 

various sensory receptors flows forward and accumulates progressively to create a full picture of the real-153 

world scene (Marr, 1982). A more recent view looks at the brain as a dynamical system. The dynamical 154 

systems perspective predicts that “the evolution of neural activity should be best captured not in terms of 155 

movement parameter evolution, but in terms of the dynamical rules by which the current state causes the 156 

next state” (Shenoy et al., 2013). While some find this view to explicitly contrast with a representational 157 

view, it can also be viewed as a framework of constraints on neural representations and their dynamics 158 

(Churchland et al., 2010). Under this logic, even if we accept the representational view, the representations 159 

must be structured so that their dynamics interact meaningfully with the dynamics of the real world being 160 

represented (Churchland et al., 2010, 2012; Michaels et al., 2016). Structural and neurochemical variations 161 

between cortical regions may reflect differences in the aspects of reality being represented (Palomero-162 

Gallagher and Zilles, 2019). These differences would certainly include differences in the time constants 163 

of the dynamics as well as the relative importance of prediction and reliability of new information. It may 164 

also reflect the dimensionality of the predictive space. 165 

Karl Friston and colleagues have been developing a related approach suggesting that cortical 166 

representation is essentially predictive (e.g., Bastos et al., 2012; Clark, 2013; Friston, 2010; Kanai et al., 167 

2015). In this view, cortex mimics the dynamics of the represented world in order to represent future 168 

sensory stimulation. In their view, motor commands are characterized as predictive representations of 169 

proprioceptive input (Adams et al., 2015). Importantly, parallel segregated loops are a key property of the 170 

canonical circuits for predictive coding suggested by Friston and colleagues (Bastos et al., 2012). 171 
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Incorporating the dynamical and predictive accounts of cortical function and the parallel loops described 172 

above into the Shadmehr and Krakauer (2008) scheme leads to a multi-layer model described in the next 173 

section.  174 

A revised model for neuroanatomy of motor control   175 

Here we consider the different aspects of reality that might be dynamically represented in different 176 

cortical areas. We address two orthogonal dissociations: body vs task and state vs action. What the body 177 

is actually doing we call body-state. Our motor commands and our active efforts to move the body we call 178 

body-action. Similarly, task-state and task-action represent the movement within the task space. Let us 179 

consider again the example of driving discussed earlier. In this situation, body-state is the configuration of 180 

our body (hands resting on the wheel, right foot pressing the gas pedal) while body-action is the movement 181 

of our limbs (moving the hands to rotate the steering wheel and changing the pressure applied by the foot 182 

to the pedals). Task-state is the configuration of the car within the task (the car is driving 60 mph in the 183 

right lane), and task-action is the movement of the car within the task (taking a turn, accelerating, or 184 

breaking). 185 

In many situations, these different predictive dynamical representations are highly correlated. 186 

When we reach to a visual target, task-state encodes origin, target, and cursor position; task-action is the 187 

movement of the cursor to the target; body-action is the movement of the hand. In the absence of 188 

“experimenter trickery” (such as the well-studied visuomotor perturbations), these naturally represent the 189 

same direction. Neuronal coding might be quite similar in different cortical areas (e.g. cells with similar 190 

directional tuning(Mahan and Georgopoulos, 2013)). This connects to the familiar credit assignment 191 

problem (Wolpert and Landy, 2012), as an error can be assigned to different representations of the body 192 

and the task. The system relies on various cues, priors and heuristics to resolve the source of its errors 193 

(Berniker and Kording, 2008; Wei and Körding, 2009), although the computational details are still being 194 

explored (Gaffin-Cahn et al., 2019; McDougle et al., 2016; Parvin et al., 2018). 195 

The differences between the different 196 

representations become clearer in the context 197 

of a more complex task. For instance, we 198 

consider pool or billiards (Haar and Faisal, 199 

2020; Haar et al., 2019). In preparing and 200 

making a shot (Figure 1), task-state encodes 201 

ball locations and movement and the pocket 202 

into which you want to sink the ball. Task-203 

action is defined on the table: how the cue stick 204 

hits the white ball and the effect it should have 205 

Figure 1. A game of billiards as a model for state and action 
representations. The task-state would encode mostly the 
locations of the white ball, the red (target) ball, and the pocket 
which you want to sink the ball to. The task-action would be the 
action on the table – the cue stick should hit the white ball in a 
certain position with a certain angle, spin, and speed, and the 
white ball should hit the target ball and push it towards the 
pocket. The body-state would be the player’s posture and the 
way he/she holds the cue stick; and the body-action would be 
the movement that he/she does to move the cue stick. 
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and how the white ball should hit the target ball to push it towards the pocket. In contrast, body-state 206 

describes your posture and the way you are holding the cue stick while body-action is the movement you 207 

make to take the shot.    208 

Our model combines Houk's DPM model 209 

with Shadmehr and Krakauer's scheme based on 210 

optimal control theory. That is, we propose a 211 

multi-layer model where at the center of each 212 

layer is a cortical region. For each cortical region, 213 

activity is affected by a loop through the basal 214 

ganglia that incorporates expected costs and 215 

rewards into its dynamics. The dynamics of each 216 

region is also affected through connections with 217 

an area of the cerebellum that does predictive 218 

error correction: it predicts and corrects persistent 219 

errors in the cortical representation of dynamics. 220 

This is consistent with the suggestion by Donchin 221 

and Frens (2009) that state estimation is actually 222 

computed in the deep cerebellar nuclei, and with 223 

the findings of Gao et al., (2018) showing that 224 

ongoing movement representation in the cortex is 225 

dependent on the cerebellum. Together, the 226 

different cortical regions represent a predictive 227 

representation of both state and action (Figure 2).  228 

This view fits naturally with the proposal 229 

that cortex is a tool for predictive estimation and 230 

dynamic representation. It elaborates the proposal 231 

by suggesting that what distinguishes the different 232 

areas of cortex is that they emphasize different 233 

parts of reality with different dynamics. For the 234 

motor system, we propose that premotor, primary 235 

motor, somatosensory and posterior parietal 236 

cortices all predictively represent the ongoing 237 

reality and dynamics of our motor behavior but 238 

with different emphases. We hypothesize that 239 

primary motor cortex (M1) and primary 240 

somatosensory cortex (S1) are concerned with the 241 

Figure 2. A multi-layer model for motor control. In each layer 
(marked by different colored dots and arrows), a cortical 
region is making a loop with a designated area in the basal 
ganglia for expected costs and rewards, and another loop with 
an area of the cerebellum for forward modeling and state 
estimation. Each layer represents different function over the 
two fundamental divisions of task vs body and state vs action. 
Bi-directional communication between these different layers 
takes place in the cortex. 
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bodily aspects of movement where premotor cortex (PM) and posterior parietal cortex (PPC) emphasize 242 

movement inside the construct of our current task. At the same time, the frontal areas (M1 and PM) are 243 

associated more strongly with action for both body and task while the parietal areas (S1 and PPC) are 244 

concerned with body-state or task-state. The idea that M1, S1, PM and PPC have differential functions in 245 

body state and task conditions was suggested before (Cisek and Kalaska, 2010), but using different terms 246 

and not in the framework of optimal control. 247 

In our model, activity in M1 and PM determines eventual motor output, and the interactions 248 

between them creates body-action and task-action chosen in concert. The activity in these areas at any time 249 

is determined in part by the ongoing dynamics of task and body actions. However, it is also influenced by 250 

the current state of the task and the body, and these are predicted by parietal cortex. All of these dynamics 251 

must be shaped with the aim of achieving task goals. Parietal cortex must ensure that predictions of body-252 

state reflect known dynamics of the body and ongoing sensory input. It must also ensure that predictions 253 

are updated in concert with predictions of task-state. Predictions of task-state must reflect known task 254 

dynamics.  255 

Mathematically, our model is based on that of Shadmehr and Krakauer (2008) but extends its 256 

dimensionality. That is, for Shadmehr and Krakauer, there was only one cortical / subcortical loop while 257 

our model considers multiple loops. This means that our definitions of state must be expanded to reflect 258 

the state in each of the loops simultaneously and the interactions between them. Thus, superficially, the 259 

‘‘internal model’’ of the dynamics as a linear function of motor commands is the same: 260 

 �̑�(𝑡+1|𝑡) = 𝐴𝑥(𝑡|𝑡) + 𝐵𝑢(𝑡) ( 1 ) 

 �̑�(𝑡) = �̂�𝑥(𝑡) ( 2 ) 

where 𝑢(𝑡) is the motor command, and �̑�(𝑡) is the expected sensory consequence. 𝑥(𝑡|𝑡) represents the 261 

predicted state at time t given current and previous sensory feedback. However, in our model the 262 

dimensionality of the state vector is increased to include the hypothesized states of the different cortical 263 

representations:   264 

 

𝑥 = (

𝑥𝐵𝐴
𝑥𝑇𝐴
𝑥𝐵𝑆
𝑥𝑇𝑆

)           

𝐵𝐴 = 𝐵𝑜𝑑𝑦 𝐴𝑐𝑡𝑖𝑜𝑛
𝑇𝐴 = 𝑇𝑎𝑠𝑘 𝐴𝑐𝑡𝑖𝑜𝑛
𝐵𝑆 = 𝐵𝑜𝑑𝑦 𝑆𝑡𝑎𝑡𝑒
𝑇𝑆 = 𝑇𝑎𝑠𝑘 𝑆𝑡𝑎𝑡𝑒

 

( 3 ) 

The body-action and task-action here are not the descending motor command 𝑢 but the cortical 265 

representations of action in the body space and in the task space, which play a role in determining 𝑢, but 266 

are distinct from it and are also influenced by dynamics of the entire system. Matrix A represents the 267 

dynamics of the state. Its block diagonal reflects the dynamics of each cortex separately while the off-268 

diagonal blocks describe the cortico-cortical interactions: 269 
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𝐴 = (

𝐴𝐵𝐴 𝐷𝐵𝐴←𝑇𝐴 𝐷𝐵𝐴←𝑇𝑆 0
𝐷𝑇𝐴←𝐵𝐴 𝐴𝑇𝐴 0 𝐷𝑇𝐴←𝑇𝑆
𝐷𝐵𝑆←𝐵𝐴 0 𝐴𝐵𝑆 𝐷𝐵𝑆←𝑇𝑆
0 𝐷𝑇𝑆←𝑇𝐴 𝐷𝑇𝑆←𝐵𝑆 𝐴𝑇𝑆

) 

( 4 ) 

The single motor command 𝑢 influences each cortical representation differently and B captures these 270 

different effects: 271 

 

𝐵 = (

𝐵𝐵𝐴
𝐵𝑇𝐴
𝐵𝐵𝑆
𝐵𝑇𝑆

) 

( 5 ) 

Again, as reality is unified, the state of the different cortical areas must be combined to generate a single 272 

sensory vector of sensory predictions, �̂�. For simplicity, we take the sensory feedback to only include 273 

proprioceptive and visual components, 𝑦 = (
𝑦𝑝
𝑦𝑣
), though, in principle it probably also affects other 274 

modalities including auditory and haptic. The relative contributions of the different cortices to the 275 

prediction of sensory feedback is determined by the matrix H in equation 2:  276 

 
𝐻 = (

𝐻𝑝,𝐵𝐴 𝐻𝑝,𝑇𝐴 𝐻𝑝,𝐵𝑆 𝐻𝑝,𝑇𝑆
𝐻𝑣,𝐵𝐴 𝐻𝑣,𝑇𝐴 𝐻𝑣,𝐵𝑆 𝐻𝑣,𝑇𝑆

) 
( 6 ) 

In addition to equations 1 and 2 above that describe internal representation of state dynamics and input 277 

prediction, the model includes a Kalman gain equation, updating the belief state at time t+1, given the 278 

acquired sensory information. Here, again, our equation is identical to that of Shadmehr and Krakauer: 279 

 �̑�(𝑡+1|𝑡+1) = �̑�(𝑡+1|𝑡) + 𝐾(𝑡+1)(𝑦(𝑡+1) − �̂�(𝑡+1)) ( 7 ) 

However, in our model the Kalman gain includes separate blocks from the physical dimensions of the 280 

sensory consequences to the neural diminutions:  281 

 

𝐾(𝑡+1) =

(

 
 

𝐾𝐵𝐴,𝑝 𝐾𝐵𝐴,𝑣
𝐾𝑇𝐴,𝑝 𝐾𝑇𝐴,𝑣
𝐾𝐵𝑆,𝑝 𝐾𝐵𝑆,𝑣
𝐾𝑇𝑆,𝑝 𝐾𝑇𝑆,𝑣)

 
 

 

( 8 ) 

Also, in the “cost to go” function: 282 

 𝑢(𝑡) = −𝐺(𝑡)�̑�(𝑡|𝑡−1) ( 9 ) 

the matrix G would not be in sensory dimensions (v,p) but in neural dimensions: 283 

 𝐺(𝑡) = (𝐺𝐵𝐴 𝐺𝑇𝐴 𝐺𝐵𝑆 𝐺𝑇𝑆) ( 10 ) 
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Importantly, the state vs action dissociation here is not simply sensory vs motor. The state 284 

representation of the body (𝑥𝐵𝑆) is more than its sensory state. Even in the absence of any sensory feedback 285 

there is a representation of the current state of the body (posture, fatigue, etc.) and the future states the 286 

body can transition towards. The task-state representation (𝑥𝑇𝑆) is even more distinct from a sensory 287 

representation as it accounts for all abstract rules of the task, like driving on the right or the left side of the 288 

road. Similarly, the body vs task dissociation addressed here is different than the common dissociation of 289 

intrinsic vs extrinsic coordinate frames (e.g. Buneo and Andersen, 2006; Haar et al., 2017a; Kalaska et al., 290 

1997; Wiestler et al., 2014). In fact, both body and task can be represented in either coordinate frame or 291 

in both. Indeed, there is evidence for both intrinsic and extrinsic coordinate frames in the different cortices 292 

discussed (e.g. Wu and Hatsopoulos, 2006, 2007). Nevertheless, in the primary sensorimotor cortices those 293 

representations, in any coordinate frame, would always be of the body and not the task (e.g., the hands on 294 

the steering wheel and not the car on the road). Similarly, in the PM and the PPC those representations, in 295 

any coordinate frame, would always be of the task and not the body. 296 

The representations of the body’s state and action are not at all independent, of course; the extent 297 

to which they interact is attested by the strong connectivity between M1 and S1 (equation 4). However, 298 

while they are both fundamentally representing the same thing – the position of the body and its movement 299 

– they represent different aspects of that same thing. M1 is focused on the world of our possible movements 300 

while S1 is focused on what effect our movements and the world around us will have on our body. 301 

Accordingly, limb perturbation should be processed first in S1 (body-state) and then in M1 (body-action) 302 

and PPC (task-state), as the change in the body-state affects both body-action and task-state.  Only then 303 

will processing pass to PM (task-action), which is affected by body-action and task-state but not directly 304 

by body-state (see equation 4). Indeed, an examination of the relative timing of perturbation-related 305 

activity across sensory and motor cortices showed this timing gradient (Omrani et al., 2016). Moreover, 306 

the authors found that when the same perturbation is applied with and without task context, the earliest 307 

and the biggest difference in the neural response is in the PPC, as the task is not experimentally defined 308 

and might not be the same in all trials. Thus, the same change in body-state does not induce a consistent 309 

change in task-state. 310 

In our daily behavior, we do not generally tend to think about or understand our movements in 311 

terms of our body and our bodily motor commands. We do not make aware decision which muscle to flex 312 

and which to extend in order to move our hand. Nearly every movement is part of a motor task and we are 313 

controlling our performance in that task in order to achieve certain task goals. While driving, we think 314 

about turning the car left, not about the way our hands rotate the steering wheel. In the billiards example, 315 

we think about hitting the ball and creating its trajectory. We do not focus on the flexion or abduction of 316 

our shoulder and elbow. While in many experimental paradigms, body-state and task-state are identical, 317 

they are often not identical in real life. In addition to the examples above, one may consider video games, 318 

riding a bike, driving or typing as situations where body-state and task-state are dissociated. Similarly, 319 
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what constitutes a desirable, rewarding body-state may be quite different, on its face, than a desirable 320 

rewarding task-state. I may well bring my body into uncomfortable or unstable positions to achieve task 321 

goals. 322 

These fundamental distinctions between body-state and task-state and between body-state and 323 

body-action can be extended to similar distinctions between task-action and body-action and between task-324 

action and task-state. The essential point is that each of the representations has a different natural dynamics 325 

(what is most likely to come after what), a different set of goals and rewards (what is comfortable and 326 

what is effortful) and a different collection of complexities and non-linearities that may be hard to capture. 327 

One important consequence of this idea of multiple representation of different aspects of the situation is 328 

that it emphasizes the importance of bidirectional communication between them (Clark, 2013). A 329 

reasonable prediction about task-state is informed by task-actions. That is 𝐷𝑇𝐴←𝑇𝑆 in Matrix A (Equation 330 

4). Task-actions then affect task-state (𝐷𝑇𝑆←𝑇𝐴). Body-actions must, in turn, realize the chosen task-331 

actions. However, task-actions cannot be chosen without considering the feasibility of associated body-332 

actions. Reality itself is multi-level and hierarchical, and, cortex must reflect this underlying structure to 333 

successfully model it. The mapping between the different representations cannot be pre-specified but must 334 

be learned. Thus, in the driving example, a novice driver has no natural map between foot presses and car 335 

dynamics. Therefore, driving instructors need an instructor’s brake pedal. The novice driver needs to learn 336 

the parameters for the task / body dependencies (D parameters in the dynamics matrix in eq. 4).  337 

As discussed, Hanakawa (2011) presented a model, similar to ours, describing the role of pre-338 

motor cortex in mediating between motor and prefrontal-cognitive cortices. Under the combined 339 

framework, we can imagine that prefrontal cortex could represent our ongoing plans, strategies and desires. 340 

These should guide the task-action which later guide the body-action. Caminiti et al. (2017) also emphasize 341 

the importance of task-related processing in higher level areas but focus on the relationship of the task / 342 

body system with higher order processing of reward, motivation, and attention in ways that are reminiscent 343 

of Hanakawa’s model, but do not focus on the relative role of motor and premotor cortices. 344 

In our model, each of the different cortical areas has projections to the basal ganglia to account 345 

for the different costs and rewards associated with each type of representation. In essence, it follows the 346 

model of Nakahara et al., (2001) which suggests that parallel cortico-basal ganglia loops learn different 347 

coordinates with different costs and rewards. We suggest those are not coordinates but representations of 348 

task vs body and state vs action. For instance, Yeo et al., (2016), discuss the fact that one consequence of 349 

movement is its effect on the quality of sensory information. They show the need to account for sensory 350 

costs in the framework of optimal feedback control. Following this logic, basal ganglia interactions with 351 

sensory cortices may relate to optimizing our behavior to maximize the relevant sensory precision.  352 

Inherent in this perspective is an approach to simultaneous representation of state and action. Since 353 

each cortical area is representing a particular aspect of reality, inherent in that representation is the implied 354 
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representation of the dynamics of that aspect of reality. That is, a state representation contains in it, 355 

necessarily, an understanding of which states can arise from which other states. In addition, the dynamics 356 

of state are influenced by ongoing action so that the pre-central areas must influence the post-central state 357 

representations. Similarly, a central part of action representation is the way that one action flows into the 358 

next (or leads to the holding of a posture). The dynamics of movement are just as much informed by the 359 

ongoing dynamics of state as ongoing state dynamics are informed by knowledge of ongoing actions. 360 

Generally speaking, the dynamics of both body and task are high-dimensional, non-linear, and 361 

changing over time. Thus, generally speaking, the predictive representations of every cortical area will be 362 

fraught with error. In this sense, if the cerebellum engages in error-driven learning, it can serve each of the 363 

cortical areas by learning to predict the errors in its predictive representation. This is precisely the 364 

interaction between cerebellum and cortex hypothesized by Doya (2000). In this view, the cerebellum will 365 

play a different role when it corrects for the errors in different cortical representations. However, although 366 

the form of the errors will depend on the domain being represented and the model that has developed, the 367 

computations underlying the cerebellar circuitry will be the same. 368 

Task representations 369 

The proposed roles of M1 and S1 in representing body-action and body-state, respectively, are 370 

straightforward. We use new terminology to describe the commonly accepted roles of these areas. As such, 371 

we do not need to take a position on classical debates regarding coordinate systems (muscles versus 372 

movements). From our perspective, this is a discussion of how body-action is encoded: important in itself 373 

but at a level of description that is not our focus. The roles of the posterior parietal cortex and the premotor 374 

cortex in task-state and task-action representation, respectively, require further discussion. There is much 375 

less clarity about their roles and more work needs to be done to show how our perspective fits in with 376 

previous ideas. In the next section, we demonstrate how our perspective helps make sense of the literature. 377 

Posterior parietal cortex represents task-state 378 

There are several schools of thought about the role of posterior parietal cortex. One common view 379 

is that the PPC serves as a sensorimotor interface for visually guided movements (e.g. Buneo and 380 

Andersen, 2006). As such it is involved mostly in sensory-motor mapping and motor planning (Andersen 381 

and Buneo, 2002; Cohen and Andersen, 2002). Perhaps the leading alternative view is that the PPC is a 382 

state estimator, as was originally suggested by Daniel Wolpert and colleagues (Wolpert and Ghahramani, 383 

2000; Wolpert et al., 1998) and later integrated into the current model of computational neuroanatomy for 384 

motor control (Shadmehr and Krakauer, 2008). Other possibilities have also been put forward. They 385 

include high-order sensory-motor information integration in support of high-level motor functions (e.g. 386 

Fogassi and Luppino, 2005), and conscious motor intentions (e.g. Desmurget and Sirigu, 2012). We 387 
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believe that thinking in the abstracted terms of task-state representation will help clarify this extensive 388 

literature and subsume alternative perspectives within a single framework.  389 

Grea et al., (2002) reported that a patient with bilateral posterior parietal cortex damage had no 390 

difficulty reaching to targets in their central fixation, but when the target jumped at reach onset the subject 391 

could not correct for it and continued to reach to the original target location. Desmurget et al., (1999) 392 

produce similar results on healthy subjects using a single pulse transcranial magnetic stimulation at reach 393 

onset. This phenomenon is a classic example for a deficit in task-state representation. The subject simply 394 

could not adjust to the sudden change in the task-state. A study by Funamizu et al., (2016) produced similar 395 

results using optogentics in mice. Mice express learning in a task by increased anticipatory licking as they 396 

approached their goal, even in the absence of external cues. Thus, the mice are expressing their estimation 397 

of task-state. The authors showed that silencing of PPC prevented this ability to evaluate task-state. When 398 

the PPC is intact, it encodes task-state continuously, for example, it encodes changing target position even 399 

while the body is not yet moving (Reid and Dessing, 2018). 400 

It is also possible to point to works where PPC seems to be engaged in behavior that cannot be 401 

explained as either sensorimotor mapping or state estimation. In these cases, dynamical task-state 402 

representation provides a better explanation of PPC function.  Fogassi et al., (2005) found that parietal 403 

neurons coding a specific behavior, show different activity when this behavior is part of different tasks. 404 

Gail and Andersen (2006) found that parietal neurons represent the task-rule (pro- or anti-reach) before 405 

any specific movement cues, indicating abstract task representation in PPC that goes beyond spatial or 406 

motor goal representations. This task-rule is a component of task-state. Hwang and Andersen (2012) 407 

showed clear differences in PPC LFPs in reaching tasks with direct and symbolic target presentation. They 408 

saw even more striking differences between visually-guided and memory-guided reaching tasks (Hwang 409 

and Andersen, 2011). Bremner and Andersen (2014) found that parietal area 5d switches its coding after 410 

target presentation so that it always codes the most relevant information for the task. Hawkins et al., (2013) 411 

showed that parietal neurons tend to be significantly tuned either during one task or during another but 412 

rarely during both. Hawkins and colleagues even interpret their results in terms of task representation 413 

suggesting that "the superior parietal lobule plays an important role in processing information about the 414 

nonstandard nature of a task". In a recent fMRI study (Heed et al., 2018), a tactile stimulation was applied 415 

to the subjects’ feet while their legs were either straight or crossed. After a delay, subjects were instructed 416 

to do pro/anti-pointing towards their feet. The results show that during touch localization S1 encodes the 417 

anatomical side of the tactile stimulus while the PPC encodes it in external space. During movement 418 

planning only the PPC encodes the task rule (pro vs anti pointing). These results suggest that body and 419 

task state are dissociated in the parietal cortex. 420 

Explicit visuomotor adaptation is an example where change in task-state can be isolated. In 421 

visuomotor rotation adaptation tasks, visual target and hand target become dissociated. To correct for this, 422 

subjects need to learn to move their hand away from the target, at an angle equal to the rotation angle, in 423 
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order to get the cursor to the target. Recent studies dissociated explicit and implicit processes in the 424 

visuomotor adaptation (e.g. Bromberg et al., 2019; Hegele and Heuer, 2010; Mazzoni and Krakauer, 2006; 425 

Taylor and Ivry, 2011; Taylor et al., 2014; Werner et al., 2015). While implicit learning (unaware error 426 

correction) should change in the task-action representation to be the cursor direction, instead of the hand 427 

direction, if the learning is explicit (aware re-aiming, the subject is aware of the perturbation and changes 428 

the movement strategy to account for the perturbation), the task-action representation should stay loyal to 429 

the hand direction and only the task-state representation and its relation to the task-action should adapt. 430 

Indeed, we found that directional selectivity in the PPC changes following visuomotor rotation adaptation 431 

(Haar et al., 2015), while directional selectivity in the primary-motor, premotor and primary-432 

somatosensory cortex stays loyal to the hand movement direction. The rotation angle in this study was 45° 433 

while implicit adaptation to visuomotor rotation tends to be limited to about 15° (e.g. Bond and Taylor, 434 

2015; Morehead et al., 2017), suggesting that the adaptation here was mostly explicit. The small 435 

aftereffects, following the removal of the perturbation, confirm that learning was mostly explicit. 436 

Following washout, the task-state is returned to its original representation; as a consequence, the 437 

directional selectivity in the PPC also returns to its original pattern. These results were predicted earlier 438 

based on theoretical considerations (Tanaka et al., 2009). 439 

Task-state representation requires high level effector-invariant components in the neural responses 440 

during hand and arm movements for general task properties like the task goal or task rule (e.g., pro- vs. 441 

anti-reach, or reach vs. grasp). This invariance in the representation of task properties will be matched by 442 

a lack of sensitivity to kinematic components that are not related to the task. On the other hand, body-443 

action and body-state representations should reflect kinematics. Task-action representations might include 444 

both kinematic and effector invariant properties, and kinematic and effector dependent properties. Indeed, 445 

effector-invariant representation of reach vs. grasp was found in the PPC and PM but not in M1 and S1 446 

(Gallivan et al., 2013). At the same time, effector-invariant representation of reaching movement direction 447 

(in joint coordinates) was found in M1, S1 and PM, but not in the PPC (Haar et al., 2017a). The study of 448 

motor variability also supports this framework. In measurements made without feedback, where movement 449 

variability is dominated by planning noise (Dhawale et al., 2017), we demonstrated that individual 450 

movement variability magnitudes are best predicted by cortical neural variability in the PPC (Haar et al., 451 

2017b). Thus, the variability in the PPC is variability in the task-state domain.   452 

Since most motor control experimental paradigms involve visual feedback, many of the examples 453 

above could also be explained simply as if PPC is representing the visual feedback in the task. Yet, there 454 

are examples like Funamizu et al., (2016), where mice are expressing their estimation of task-state in the 455 

absence of external cues but silencing of PPC prevented this ability, which support the idea that PPC is 456 

involved in task-state estimation, regardless of specific sensory input. The Heed et al., (2018) fMRI study, 457 

which was mentioned above, used tactile stimulation (and not visual), and thus provides another support.  458 
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Another recent review has also managed to incorporate a broad group of approaches to the PPC 459 

within a consistent framework (Medendorp and Heed, 2019). They argue that different areas of the PPC 460 

show different behavior because they represent the world along two key axes. The first – the rostro-caudal 461 

axis – separates representation of body from that of the environment. The second – the medio-lateral axis 462 

– separates representations of different “action classes.” This review, thus, addresses an aspect of PPC 463 

function explicitly outside the scope of our review: the functional subdivisions within the PPC; their work 464 

is fully complementary to our own. For instance, they emphasize that PPC activity is highly dependent on 465 

task and context and represents those aspects of body and environment that are relevant to task 466 

performance. We suggest a generalization of their approach where rostral PPC reflects the projection of 467 

the self into the task – the representation of our ability to have direct effects in the task – rather than an 468 

explicit representation of the body which is more properly the role of S1.  469 

Premotor cortex represents task-action 470 

We propose that the role of the premotor cortex is to represent task-action. Only a few studies in 471 

the existing literature can speak to this question. Most often, PM is studied in tasks involving direct reach 472 

to target. In these tasks, task-action representation is simple and consistent with both task-state and body-473 

action. Nevertheless, some studies show dissociation between body-action representation in M1 and task-474 

action representation in PM. For instance, Schwartz et al., (2004) used a motor illusion to separate 475 

monkeys’ perception of arm movements from their actual movements during figure drawing. Trajectories 476 

constructed from cortical activity of the monkeys showed that the actual movement (body-action) was 477 

represented in M1, whereas the visualized trajectories (task-action) were found in the ventral PM.  478 

Another example of this dissociation, which also emphasizes the idea of the parallel loops, comes 479 

from motor adaptation studies in cerebellar patients (Donchin et al., 2012; Rabe et al., 2009). The results 480 

of these studies suggest that patients with pathology in the anterior parts of the arm representation of the 481 

cerebellum, apparently connected to M1, failed to adapt to force-field perturbation. This is presumably 482 

because force field adaptation requires adapting the relation between task-action and body-action. Patients 483 

with a lesion in a more posterior part of the arm area, apparently connected to PM, failed to adapt to 484 

visuomotor perturbation. Again, one may presume that this is because visuomotor adaptation requires 485 

changes in the relation between task-state and task-action. Recent modeling work on neural recordings 486 

from M1 and dorsal PM reached a similar conclusion: force-field adaptation changes the relationship 487 

between PM and M1; visuomotor adaptation causes changes upstream to M1 (Perich et al., 2018).  488 

In stroke patients performing imitation movements, deficits were found to be associated with PM 489 

lesions. Imitations were equally impaired when cued by actor’s arm movement or by a cursor, suggesting 490 

abstract body-independent movement representation (task-action) in PM (Wong et al., 2019). Further 491 

support for this dissociation can be found in the result of a study (Saberi-Moghadam et al., 2016) showing 492 

that when target jumps caused a sudden change in motor intention, this led to earlier changes in PM activity 493 
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than in M1. In this task, information at the task level was driving the change in motor intention so task 494 

level representation changes drive changes at the body level. We predict that tasks where the perturbation 495 

is at the body level and not the task level (for instance, a perturbation of the hand that is not reflected in 496 

the cursor) should drive changes that arise first in M1.  497 

More support for task-action representation in the premotor cortex can be found in the results of 498 

Pastor-Bernier & Cisek (2011) which shows that directional tuning of  neurons in PM modulated following 499 

changes in rewards associated with targets in the preferred direction of the neuron. This modulated tuning 500 

reflects a change in the task-action associated with the same task state. Pearce and Moran (2012) used a 501 

complex obstacle-avoidance task and showed that PM activity is modulated both by task demands and by 502 

the particular strategy being used. They looked at the activity of the PM neurons during trials differing 503 

both in the target direction and in the obstacle opening directions and showed that the same neurons show 504 

directional selectivity both to the target direction and to the obstacle opening direction. This dual 505 

directional selectivity is a good example for task-action representation in the premotor cortex. Finger 506 

sequencing is another task were the task and body representations differ: the task-action is the sequence 507 

while the body-action is individual finger movements. Indeed, a recent fMRI study by Yokoi et al., (2018) 508 

found that after intense practice on finger sequences, activity patterns in PM and PPC encoded the task 509 

(the different movement sequences), while the activity patterns in M1 and S1 could be fully explained by 510 

the body action/state: a linear combination of patterns for the constituent individual finger movements. 511 

Last, a recent study by Martínez-Vázquez and Gail (2018) looked at the LFP directed interaction 512 

between PM and PPC during movement planning and execution. They found that during movement 513 

planning the direction of the interaction is from the PPC to the PM, and during movement execution there 514 

is a flip in the direction of the interaction which flips back after execution. These findings are again 515 

consistent with our model. During planning PM receives information from PPC regarding task-state to 516 

plan task-action. During execution, PPC receives information from PM regarding ongoing task-action to 517 

update task-state. 518 

Concluding remarks 519 

Shadmehr and Krakauer’s proposal for a neuroanatomy for motor control (2008), presented a 520 

decade ago, highlighted the cortical loops with the basal ganglia and the cerebellum and suggested that 521 

they serve for computing costs and for system identification, respectively. We present a new model 522 

inspired by that scheme that emphasizes parallel loops connecting different cortical areas with these 523 

subcortical regions. This aspect of our model draws inspiration from Houk’s DPM model (Houk, 2001) 524 

and is supported by compelling anatomical evidence (Middleton and Strick, 1997, 2001). In our model, 525 

we address the notion that each area of cortex represents reality in a different way with different emphases. 526 

We suggest that the primary somatosensory and motor cortices represent respectively the state and action 527 

of the body, while the PPC and premotor cortex represent the state and action of the task. 528 
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While it is largely accepted that the basal ganglia and the cerebellum form parallel segregated 529 

loops with different cortical regions, there is an alternative view of a funnel like organization from wide 530 

areas of cortex through the sub-cortical regions onto a small area of cortex (Allen and Tsukahara, 1974; 531 

Kemp and Powell, 1971). Recent findings suggest caveats to the parallel segregated loops framework 532 

(Aoki et al., 2019), but still support it. If this ongoing controversy ultimately shows that the parallel 533 

segregated loops are a poor model for basal ganglia and cerebellar connectivity to cortex, our proposed 534 

model will be undermined.   535 

Ultimately, we wish to emphasize that this model is only a limited cartoon and makes no attempt 536 

to capture the full complexity of the cortical hierarchy in motor control or its subcortical connections. 537 

Some of these simplifications have been addressed above. Nevertheless, our model advances the paradigm 538 

within which we think about and study the motor cortices. It points the way forward towards a developing 539 

understanding of the task / body dimension and the need to distinguish the complex relationships of each 540 

cortical area to its subcortical support and develop a fuller understanding of each of the parallel loops. 541 

In models of this sort, precise anatomical definitions of the basal ganglia and cerebellum are left 542 

somewhat vague. This is true for the Shadmehr and Krakauer (2008) model, for the models of Houk (2001) 543 

and Hanakawa (2011), and also for our own model. However, the basic idea is that parallel loops with the 544 

basal ganglia will include parallel instantiations of the direct pathway, the indirect pathway, and the 545 

hyperdirect pathway (Nambu et al., 2002). Similarly, in the cerebellum, the idea is that the full cerebellar 546 

microcircuit is involved where cortical input drives mossy fibers originating in the pons as well climbing 547 

fiber input originating in the inferior olive, and that the output of the circuit will be from the dentate nucleus 548 

via the thalamus (Raymond et al., 1996).  549 

Indeed, this class of models further schematizes the motor system because the models generally 550 

do not address subdivisions of the premotor and posterior parietal cortices and often leave out other non-551 

primary motor areas such as supplementary, pre-supplementary and cingulate motor areas. The idea that 552 

the entire premotor cortex or the entire posterior-parietal cortex performs a unique function is controversial 553 

(e.g., Rizzolatti et al., 2014). The models also fail to address recent findings showing direct connections 554 

of the basal ganglia to the cerebellum (Bostan and Strick, 2018; Quartarone et al., 2020) and ignores 555 

entirely the spinal cord, red nucleus, thalamus, and other subcortical motor areas. These models have, 556 

however, helped guide thinking about the inter-relations of parts of the motor system and have been an 557 

integral part of some of the most inspiring work in our field.  558 

One direction for future work would be the one laid out by King et al., (2019). These authors used 559 

a battery of motor, sensory and cognitive tasks to produce a detailed map of cerebellar function. However, 560 

the tasks they selected do not allow dissociation of task level and body level aspects of the task. As a result, 561 

their data cannot be used to directly test our hypothesis. A similar study with specifically designed tasks 562 

would be an ideal test of our model. Another possibility for testing the dissociation of task and body 563 
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representations in PM and M1 would be the use of brain computer interfaces. Using such interfaces, we 564 

can define a task that is driven directly by activity in premotor cortex. We predict that we could ask patients 565 

to imagine doing the task with different bodily effectors and, thus, create a situation in which we can see 566 

that premotor activity is directly related to the task while M1 activity is related to the imagined movement 567 

of the body.  568 
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