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Abstract. Given a solution Y to a rough differential equation (RDE), a recent result (Ann. Probab. 47 (2019) 1–60) extends the
classical Itô-Stratonovich formula and provides a closed-form expression for

∫
Y ◦ dX − ∫ Y dX, i.e. the difference between the rough

and Skorohod integrals of Y with respect to X, where X is a Gaussian process with finite p-variation less than 3. In this paper, we
extend this result to Gaussian processes with finite p-variation such that 3 ≤ p < 4. The constraint this time is that we restrict ourselves
to Volterra Gaussian processes with kernels satisfying a natural condition, which however still allows the result to encompass many
standard examples, including fractional Brownian motion with Hurst parameter H > 1

4 . As an application we recover Itô formulas in
the case where the vector fields of the RDE governing Y are commutative.

Résumé. Étant donnée Y une solution d’une équation différentielle rugueuse (RDE), un résultat récent (Ann. Probab. 47 (2019) 1–60)
étend la formule d’Itô-Stratonovich et propose une expression explicite pour

∫
Y ◦ dX − ∫ Y dX, c’est-à-dire pour la différence entre

l’intégrale rugueuse et l’intégrale de Skorohod de Y par rapport à X, où X est un processus Gaussien avec p-variation plus petite que
3. Dans cet article, nous étendons ce résultat au cas de processus Gaussiens avec p-variation telle que 3 ≤ p < 4. La contrainte ici est
que nous nous restreignons au cas de processus Gaussiens de type Volterra avec des noyaux satisfaisant une condition naturelle, ce qui
permet néanmoins de traiter beaucoup d’exemples classiques incluant le cas du mouvement Brownien fractionnaire avec paramètre de
Hurst H > 1

4 . Comme application, nous retrouvons la formule d’Itô dans le cas où les champs de vecteurs de la RDE gouvernant Y

sont commutatifs.
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1. Introduction

Lyons’ rough path theory is a framework for giving a path-wise interpretation to stochastic differential equations of the
form

dYt = V (Yt ) ◦ dXt, Y0 = y0, (1)

in particular for a broad class of continuous, vector-valued Gaussian processes X and sufficiently smooth vector fields
V . A fundamental contribution of Lyons [24,25] was to realize that this needs X to be enriched to a rough path X whose
components comprise not only X, but also the higher-order iterated integrals up to some finite degree. The model (1) can
then be interpreted as a rough differential equation:

dYt = V (Yt ) ◦ dXt , Y0 = y0. (2)

In this paper we will assume that X = (X1, . . . ,Xd) has i.i.d components, each centered with covariance function R, and
that X is defined on a probability space (�,F,P). For simplicity we assume that F is generated by X. The process X

then gives rise to an isonormal Gaussian process w.r.t. the Hilbert space Hd
1 =⊕d

i=1 H
(i)
1 where, for all i = 1, . . . , d ,
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H(i)
1 =H1 and H1 is the completion of the real vector space

span
{
1[0,t)(·) : |t ∈ [0, T ]},

endowed with the inner-product 〈1[0,t)(·),1[0,s)(·)〉H1 = R(t, s). The solution Y to (2) can also be viewed as a Wiener
functional on (�,F,P), and its properties can be studied using the Malliavin calculus. A number of recent works have
opened up the interplay between Lyons’ and Malliavin’s calculi, see e.g. [4,5,19] and [6]. In particular, in a recent paper
[7], the authors have proven a conversion formula for the difference between the rough path integral of Y w.r.t X and the
Skorohod integral δX of Y (i.e. the L2(�) adjoint of the Malliavin derivative operator). In more detail this result shows,
for the case where Y and X are both R

d -valued, the following almost sure identity∫ T

0
〈Yt ◦ dXt 〉 − δX(Y ) = 1

2

∫ T

0
tr
[
V (Yt )
]

dR(t)

+
∫

[0,T ]2
1[0,t)(s) tr

[
J X

t

(
J X

s

)−1
V (Ys) − V (Yt )

]
dR(s, t). (3)

Here, J X
t denotes the Jacobian of the flow map y0 → Yt , and the second part of the correction term is a proper 2D Young–

Stieltjes integral (see [15,16]) with respect to the covariance function of X. When X is standard Brownian motion, this
last term vanishes since the integrand is zero on the diagonal and dR(s, t) = δ{s=t} ds dt . This, together with the fact that
R(t) := R(t, t) = t , allows us to recover the classical Itô-Stratonovich conversion formula.

In [7], conditions need to be imposed in the proof of the formula (3) which limit the range of applications. An important
assumption, for instance, is that the covariance function of X has finite (two-parameter) ρ-variation for ρ ∈ [1, 3

2 ). This
implies that the sample paths of X will have finite p-variation, for some p ∈ [2,3), and this excludes interesting examples
such as fractional Brownian motion with H ∈ ( 1

4 , 1
3 ].

The purpose of the present paper is to extend the correction formula (3) to these less regular cases. To do so we will
assume that the Gaussian process X is a Volterra process; i.e. the covariance function R of each component can be written
as

R(s, t) =
∫ t∧s

0
K(t, r)K(s, r)dr,

for some kernel K , a square-integrable function K : [0, T ]2 → R with K(t, s) = 0,∀s ≥ t . We will present conditions on
K that allow us to generalize (3). In doing so, we need to overcome a number of serious obstacles. We highlight here the
three most salient of these, outline the contribution of the present work and, at the same time, provide a road-map for the
paper:

(i) We need to prove that the solution Y belongs to the domain of the Skorohod integral δX . In fact, we prove the
stronger statement that Y belongs to the Malliavin Sobolev space D

1,2(Hd
1 ) ⊂ Dom(δX). To show that Y , a path-

valued random variable, can be understood as a random variable in the Hilbert space Hd
1 , we need to identify a class

of functions with a subset of Hd
1 . This was proved in [7], by taking advantage of the assumption that ρ ∈ [1, 3

2 ), but
the less regular cases need a new argument that exploits the structure of the Volterra kernel. To handle the Malliavin
derivative DY , we need a similar result that identifies a class of two-parameter functions as a subset of Hd

1 ⊗Hd
1 .

(ii) For the examples considered in this paper, the Gaussian rough path X will consist of iterated integrals up to degree
three; i.e. X =(1,X,X2,X3). This contrasts with the result in [7], where only the case X =(1,X,X2) needs to be
considered. This increases the complexity of the arguments significantly; indeed, the rough integral in the left side
of (3) is now well approximated locally by terms up to third-order∫ t

s

〈Yr ◦ dXr〉  〈Ys,Xs,t 〉 + V (Ys)X2
s,t + V 2(Ys)

(
X3

s,t

)
.

A key step in [7] is the proof that the second-order terms in this approximation satisfy

lim‖π(n)‖→0

∥∥∥∥ ∑
i:π(n)={tni }

V (Ytni
)

(
X2

tni ,tni+1
− 1

2
σ 2(tni , tni+1

)
Id

)∥∥∥∥
L2(�)

= 0.

For the present work we need to address the same problem for the third order terms, namely the existence of an
L2(�)-limit for sums of terms of the form

V 2(Ytni
)
(
X3

tni ,tni+1

)
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over a sequence of partitions with mesh tending to zero. An important discovery of this paper is the somewhat
surprising conclusion that these terms have vanishing L2(�)-limit, without the need to subtract any re-balancing
terms. This is the concluding result of Section 4.

(iii) The proof of point (ii) relies on a rather intricate interplay between estimates from Malliavin’s calculus and rough
path analysis. From the latter theory, we need estimates on the directional Malliavin derivatives of RDE solutions.
It is well known that an RDE solution of the form (2) can be differentiated in a direction h ∈ Cq−var([0, T ],Rd) by
considering the perturbed RDE solution driven by the translated rough path TεhX and then evaluating the derivative
in ε at zero. For TεhX to make sense, X and h must have Young-complementary regularity, i.e. 1

p
+ 1

q
> 1, in which

case Duhamel’s formula gives

DhYt =
∫ t

0
J X

t

(
J X

s

)−1
V (Ys)dh(s), (4)

a well-defined Young integral. In Malliavin calculus, h will typically be an element of the Cameron–Martin space
(written as Hd in this paper), and this has spurred interest in results that prove that Hd can be continuously embedded
into q-variation spaces, see e.g. [5,13]. By combining these results with Young’s inequality, one can then say e.g.
that

|DhYt | � |h|q-var � |h|Hd , (5)

and these arguments can be generalized to higher order directional derivatives, allowing one control over the Hilbert–
Schmidt norm of the Malliavin derivative; see [21]. Note however, that quality is lost in (5) by use of the embedding.
For the proof in (ii) we need subtler estimates on the higher order derivatives of the form

∣∣Dn
hi ,...,hn

Yt

∣∣≤ Cn(X)

n∏
j=1

|hj |q-var. (6)

The derivatives of order 2 and higher complicate matters because they are no longer representable as Young integrals
as in (4); instead genuine rough integrals appear. Much of the work underpinning point (ii) goes into deriving closed-
form expressions for these higher order derivatives and then estimating them so as to arrive at (6). We must also pay
careful attention to the random variable Cn(X) in (6) which, for our application, must have finite positive moments
of all orders. The first half of Section 4 is devoted to this material.

The culmination of these arguments is presented in Section 5, where we give a set of conditions under which a conver-
sion formula holds for

∫ T
0 〈Yt ◦ dXt 〉−δX(Y ). This formula is reminiscent of the one obtained for the case of second-order

rough paths, but there are interesting differences too. Most notably the second term in (3),∫
[0,T ]2

1[0,t)(s) tr
[
J X

t

(
J X

s

)−1
V (Ys) − V (Yt )

]
dR(s, t), (7)

which exists for 2 ≤ p < 3 as a well-defined 2D Young–Stieltjes integral, can only be identified as an L2-limit of a se-
quence of approximating sums. The difference between the two cases stems from the lack of complementary Young reg-
ularity of the integrand and R. Interestingly the integrand, while being continuous on [0, T ]2, is not Hölder bi-continuous
and so we cannot even appeal to the relaxed criteria discussed in point (i) above. It is unknown at present whether the limit
is interpretable as a 2D Young–Stieltjes integral. We discuss in detail two important corollaries of our result. The first is
where X is a fractional Brownian motion with H in ( 1

4 , 1
3 ], and the second is the case where the vector fields defining

(2) commute. In this latter case, we show that the second term (7) in the correction formula disappears and, as a special
case, we can recover Itô-type formulas for Gaussian processes, thus connecting our work to a substantial recent corpus
e.g. [2,3,20,28] and [29].

2. Preliminaries

2.1. Rough path concepts and notation

We briefly review the basic notation used in this article; the standard references [14,24,26] and [16] can be consulted for
more detail. We let T n(Rd) denote the degree n truncated tensor algebra T n(Rd) := R ⊕ R

d ⊕ · · · ⊕ (Rd)⊗n equipped
with addition, scalar multiplication and the (truncated) tensor product defined in the usual way. The unit element is e =
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(1,0 . . . ,0), and T n
e (Rd) ⊂ T n(Rd) denotes the Lie group of tensors whose zeroth order term equals unity; its Lie algebra

is An
T (Rd). The exponential and logarithm maps are written as exp : An

T (Rd) → T n
e (Rd) and log : T n

e (Rd) → An
T (Rd).

We let Gn(Rd) will be the step-n nilpotent group with d generators equipped with some (any) symmetric, sub-additive
homogeneous norm ‖ · ‖ which induces a left-invariant metric d , allowing one to define a p-variation distance on the
space of Gn(Rd)-valued paths in the customary way, cf. [15].

For p ≥ 1, the set of weakly geometric (resp. geometric) p-rough paths is denoted by Cp-var([0, T ];G�p�(Rd)) (resp.
C0,p-var([0, T ];G�p�(Rd))). Given a Banach space (E,‖ · ‖E), V p-var([0, T ];E) is the set of E-valued paths of finite
p-variation w.r.t. the norm on E; the subspace of continuous (resp. piecewise continuous) paths is Cp-var([0, T ];E) (resp.
Cp-var

pw ([0, T ];E)). For such paths f , we define the p-variation norm:

‖f ‖Vp;[0,T ] := ‖f ‖p-var;[0,T ] + sup
t∈[0,T ]

‖ft‖E.

The extension of p-variation to two-parameter functions will be heavily used. The definition hinges on the notion of the
rectangular increment which for a function f : [0, T ]2 → E is given on the rectangle [s, t] × [u,v] by

f

(
s, t

u, v

)
:= f (s,u) + f (t, v) − f (s, v) − f (t, s); (8)

see [15,30] for a complete description. On occasion, we will use the notation

f (�i, v) := f (ui+1, v) − f (ui, v)

and similarly for f (u,�j ). Two functions f and g defined on a rectangle will be said to have complementary regularity
if they respectively have finite p and q variation such that p−1 + q−1 > 1. In this case, the 2D Young–Stieltjes integral
of f against g (and vice versa) exists, and the following 2-parameter version of Young’s inequality holds:∣∣∣∣
∫

[s,t]×[u,v]
f dg

∣∣∣∣≤ Cp,q

∣∣∣∣|f |∣∣∣∣‖g‖q-var,[s,t]×[u,v], (9)

where∣∣∣∣|f |∣∣∣∣= ∣∣f (s,u)
∣∣+ ∥∥f (s, ·)∥∥

p-var;[u,v] + ∥∥f (·, u)
∥∥

p-var;[s,t] + ‖f ‖p-var,[s,t]×[u,v];
see Theorem 2.12 of [7,30] and [15].

2.2. Gaussian rough paths

We will work with a continuous Gaussian process Xt = (X
(1)
t , . . . ,X

(d)
t ) ∈ R

d, t ∈ [0, T ], which is assumed to have
zero-mean and to have i.i.d. components, defined on the canonical completed probability space (�,F,P), where � =
C([0, T ];Rd). The common covariance function of the components is R : [0, T ]2 → R, the variance R(t, t) will be
abbreviated by using R(t), and for the rectangular increment of R over [s, t]2 (recall (8)) we use the notation σ 2(s, t)

in place of E[(X(1)
s,t )

2]. The Hilbert space Hd =⊕d
i=1 H is the Cameron–Martin space (or reproducing kernel Hilbert

space), which is densely and continuously embedded in �, and is given abstractly as the completion of the linear span of
the functions{

R(t, ·)(u) := R(t, ·)eu|t ∈ [0, T ], u = 1, . . . , d
}

under the inner-product〈
R(t, ·)(u),R(s, ·)(v)

〉
Hd = δuvR(t, s), u, v = 1, . . . , d,

wherein {eu}du=1 is the standard basis of R
d and δuv is the Kronecker delta. The reproducing property is captured by

〈f·,R(t, ·)(u)〉Hd = f
(u)
t , t ∈ [0, T ] for any f = (f (1), . . . , f (d)) ∈ Hd .

If R has finite 2D ρ-variation for ρ in [1,2), then [15] proved that X lifts to a geometric p-rough path for p >

2ρ by taking limits of smooth approximations (see also [9] for the case of fractional Brownian motion). Moreover,
Proposition 17 in [15] shows that for all h ∈Hd the following embedding holds

‖h‖ρ-var;[0,T ] ≤ ‖h‖Hd

√
‖R‖ρ-var;[0,T ]2,
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Thus if ρ ∈ [1, 3
2 ), the sample paths of X will be complementary regular (a.s.) w.r.t. any Cameron–Martin path. In the

case ρ ∈ [ 3
2 ,2), Theorem 1 in [13] shows that if R satisfies the stronger condition of mixed (1, ρ)-variation [30], then

there exists C < ∞ such that ‖h‖q-var;[0,T ] ≤ C‖h‖Hd for all h in Hd , where q = 2ρ(ρ + 1)−1. One can easily verify
that this gives complementary regularity as long as p < 4.

The following condition collects the assumptions we impose on X, or equivalently R.

Condition 1. Let X be a continuous, centered Gaussian process in R
d with i.i.d. components. We assume that

(a) ‖R‖ρ-var;[0,T ]2 < ∞ for some ρ ∈ [1,2),
(b) the geometric rough path lift of X is of finite p-variation, p ∈ [1,4), and that there exists q ≥ 1 satisfying p−1 +q−1 >

1 such that ‖h‖q-var;[0,T ] ≤ C‖h‖Hd for all h ∈Hd .

For some theorems, we will need to impose further conditions on the covariance function to control the L2(�) norm
of the iterated integrals. In these cases, we will assume there exists C < ∞ such that

∥∥R(t, ·) − R(s, ·)∥∥
q-var;[0,T ] ≤ C|t − s| 1

ρ , ∀s, t ∈ [0, T ]. (10)

2.3. Volterra processes and fractional Brownian motion

A Volterra kernel K is a square-integrable function K : [0, T ]2 → R such that K(t, s) = 0∀s ≥ t . Associated with any
Volterra kernel is a lower triangular, Hilbert–Schmidt operator K : L2([0, T ]) → L2([0, T ]) given by

K(f )(·) =
∫ T

0
K(·, s)f (s)ds for all f ∈ L2([0, T ]).

Given a standard Brownian motion B and a Volterra kernel K , we define a Volterra process X = (Xt )t∈[0,T ] as the Itô
integral

Xt =
∫ t

0
K(t, s)dBs;

this is a centered Gaussian process with covariance function

R(s, t) =
∫ t∧s

0
K(t, r)K(s, r)dr.

We will consider Volterra processes for which the following conditions prevail.

Condition 2. There exist constants C < ∞ and α ∈ [0,1/4) such that

(i) |K(t, s)| ≤ Cs−α(t − s)−α for all 0 < s < t ≤ T ;
(ii) ∂K(t,s)

∂t
exists for all 0 < s < t ≤ T and satisfies | ∂K(t,s)

∂t
| ≤ C(t − s)−(α+1).

3. Convergence in D
1,2(Hd

1 )

In this section, we will discuss the various isomorphisms and subspaces of the Cameron–Martin space and its tensor
product. The motivation is as follows: let Y be a solution to RDE (2) and given a partition π = {ri} of [0, T ], denote

Yπ(t) :=
∑

i

Yri 1[ri ,ri+1)(t).

Now recall the following inequality from Proposition 1.3.1 in [27]

E
[
δX
(
Yπ − Y

)2]≤ E
[∥∥Yπ − Y

∥∥2
Hd

1

]+E
[∥∥DYπ −DY

∥∥2
Hd

1⊗Hd
1

]
, (11)

which in particular implies that Dom(δX) ⊇D
1,2(Hd

1 ), where we use Hd
1 to denote the completion of the linear span of

{
1(u)

[0,t)(·) := 1[0,t)(·)eu|t ∈ [0, T ], u = 1, . . . , d
}
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(cf. [2,27]) with respect to the inner-product given by〈
1(u)

[0,t)(·),1(v)
[0,s)(·)
〉
Hd

1
= δuvR(t, s).

Thus if we can show that almost surely, Y and DY can be identified as elements of Hd
1 and Hd

1 ⊗Hd
1 respectively, and

furthermore ‖Yπ − Y‖Hd
1

and ‖DYπ −DY‖Hd
1⊗Hd

1
both vanish as ‖π‖ → 0, then with further integrability assumptions

one can use (11) and dominated convergence to show that δX(Yπ ) converges to δX(Y ) in L2(�).
Given a Banach space E and a Volterra kernel K satisfying Condition 2 for some α ∈ [0,1/4), we introduce the linear

operator K∗ (see [2,10])

(
K∗φ
)
(s) := φ(s)K(T , s) +

∫ T

s

[
φ(r) − φ(s)

]
K(dr, s), (12)

where the signed measure K(dr, s) := ∂K(r,s)
∂r

dr . The domain D(K∗) of K∗ consists of measurable functions φ : [0, T ] →
E for which the integral on the right-hand side exists for all s in [0, T ].

Remark 3.1. Note in particular that if φ is a λ-Hölder continuous function in the norm of E for some λ > α, then
φ ∈ D(K∗) and K∗φ is in L2([0, T ];E). Also for any a in [0, T ], φ1[0,a) is in D(K∗) whenever φ is, and we have the
identity

K∗(φ1[0,a))(s) = 1[0,a)(s)

(
φ(s)K(a, s) +

∫ a

s

[
φ(r) − φ(s)

]
K(dr, s)

)
. (13)

3.1. Convergence in Hd
1

The main aim of this subsection is to investigate the (almost sure) regularity required of Y to identify it as an element of
Hd

1 , and to have ‖Yπ − Y‖Hd
1
→ 0. For Volterra processes, the first issue is to find criteria ensuring that the step-function

approximations to a given Hölder continuous function converge in Hd
1 . We recall the following result from [23] (see also

Proposition 8 of [1]).

Proposition 3.2. Let (E,‖ · ‖E) be a Banach space and K : [0, T ]2 → R be a kernel satisfying Condition 2 for some
α ∈ [0, 1

4 ). Let φ : [0, T ] → E be λ-Hölder continuous, i.e. there exists C < ∞ such that∥∥φ(t1) − φ(t2)
∥∥

E
≤ C|t1 − t2|λ, ∀t1, t2 ∈ [0, T ],

and for any partition π = {si} of [0, T ], let φπ : [0, T ] → E denote

φπ(t) =
∑

i

φ(si)1[si ,si+1)(t).

Then if λ > α we have

lim‖π‖→0

∫ T

0

∥∥K∗(φπ − φ
)
(t)
∥∥2

E
dt = 0,

where K∗ is defined as in (12).

Rather than dealing with the Hilbert space Hd
1 as an abstract completion, it will be useful to realize it as a closed

subspace of an L2 space. To this end, we define Hd
2 to be the closure in L2([0, T ];Rd) of the linear subspace generated

by {
K(t, ·)(u) := K(t, ·)eu|t ∈ [0, T ], u = 1, . . . , d

}
.

The inner-product is the usual one in L2([0, T ];Rd), namely 〈f,g〉Hd
2
= ∫ T0 〈fs, gs〉ds where 〈·, ·〉 denotes the Euclidean

inner-product in R
d . The following proposition is more or less immediate (see Proposition 2.2.4 of [22]).

Proposition 3.3. Hd
1 and Hd

2 are isomorphic as Hilbert spaces under the map K∗.
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Remark 3.4. In the case of standard Brownian motion the isomorphism K∗ is the identity operator and Hd
1 = Hd

2 =
L2([0, T ];Rd).

Since the RDE solutions we work with are path-valued, it will be convenient to find subspaces of Hd
1 whose elements

are actual paths. We let

d
α :=
⋃
λ>α

Cλ-Höl
pw

([0, T ];Rd
)
,

where Cλ-Höl
pw ([0, T ];Rd) denotes the space of piecewise λ-Hölder continuous functions. By equipping d

α with the inner-
product

〈f,g〉d
α

:= 〈K∗(f ),K∗(g)
〉
L2([0,T ];Rd )

,

whilst suppressing its dependence on K in the notation, the following proposition shows that we can regard d
α as a dense

subspace of Hd
1 .

Proposition 3.5. Suppose K is a kernel satisfying Condition 2 for some α ∈ [0, 1
4 ). Then d

α is a dense subspace of Hd
1 ,

and the inclusion map i : (d
α, 〈·, ·〉d

α
) → (Hd

1 , 〈·, ·〉Hd
1
) is an isometry.

Proof. Let f ∈ d
α and let π(n) = {r(n)

i } be a sequence of partitions whose mesh vanishes as n → ∞. We define

f π(n)(t) :=
∑

i

f
(
r
(n)
i

)
1[r(n)

i ,r
(n)
i+1)

(t).

Note that for each n, f π(n) is in d
α ∩ Hd

1 . Moreover, Proposition 3.2 tells us that ‖K∗(f π(n) − f )‖L2([0,T ];Rd ) → 0.
Hence, using the fact from Proposition 3.3 that ‖f ‖Hd

1
= ‖K∗f ‖Hd

2
for all f ∈ Hd

1 , we see that f π(n) is Cauchy in Hd
1 .

We again identify f with the limit of the sequence, and under this identification we have

‖f ‖Hd
1
= ∥∥K∗(f )

∥∥
L2([0,T ];Rd )

. (14)

Since d
α contains all the generating functions {1(u)

[0,t)(·)} of Hd
1 , its closure is Hd

1 . �

We recall from [7] a similar result in terms of p-variation. In that paper, Hd
1 was derived from a Gaussian covariance

function R which was assumed to be of finite 2D ρ-variation, ρ ∈ [1,2). It was shown that

Wd
ρ :=
⋃

q<
ρ

ρ−1

Cq-var
pw

([0, T ];Rd
)
, (15)

when equipped with the inner-product

〈f,g〉Wd
ρ

:=
∫

[0,T ]2
〈fs, gt 〉Rd dR(s, t),

is a dense subspace of Hd
1 with the inclusion map again being an isometry. In the case when λ > α ∧ (1 − 1

ρ
), any f and

g belonging to Cλ-Höl
pw ([0, T ];Rd) also belong to Wd

ρ ∩ d
α , and we have

〈f,g〉Wd
ρ

=
∫

[0,T ]2
〈fs, gt 〉Rd dR(s, t) =

∫ T

0

〈
K∗f (r),K∗g(r)

〉
Rd dr = 〈f,g〉d

α
.

The following figure depicts schematically the relationship between the various subspaces in the case of a Volterra
process satisfying Condition 2 (assuming d = 1 for convenience).
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Note that K gives an isomorphism from Hd
2 onto Hd because R(t, ·) = ∫ T0 K(·, r)K(t, r)dr , and we let � : Hd

1 → Hd

denote the Hilbert space isomorphism obtained from extending the map 1(u)
[0,t)(·) �→ R(t, ·)(u), t ∈ [0, T ], u = 1, . . . , d .

3.2. Convergence in Hd
1 ⊗Hd

1

The results of the previous subsection allow us to interpret RDE solutions (paths) as Hd
1 -valued random variables. The

Malliavin derivatives of these random variables, when they exist, will take values in Hd
1 ⊗ Hd

1 , and we therefore need
similar results which identify suitable function spaces which are subspaces of this tensor product space.

Throughout, E will denote a general Banach space with norm ‖ · ‖E . The following operator was defined in [23].

Definition 3.6. Let K∗ ⊗K∗ denote the operator(
K∗ ⊗K∗)ψ(u, v) := ψ(u,v)K(T , v)K(T ,u) + K(T ,v)AK

(
ψ(·, v)
)
(u)

+ K(T ,u)AK
(
ψ(u, ·))(v) + BK(ψ)(u, v),

where

AK(φ)(s) :=
∫ T

s

[
φ(r) − φ(s)

]
K(dr, s),

BK(ψ)(u, v) :=
∫ T

v

∫ T

u

ψ

(
u r1
v r2

)
K(dr1, u)K(dr2, v),

which is defined for any measurable function ψ : [0, T ]2 → E for which the integrals on the right side exist.

Using Proposition 3.3 and the fact that(
K∗ ⊗K∗)ψ(s, t) = (K∗ψ1

)
(s) ⊗ (K∗ψ2

)
(t) (16)

when ψ(s, t) = ψ1(s)ψ2(t), it is also clear that K∗ ⊗K∗ maps Hd
1 ⊗Hd

1 isometrically onto Hd
2 ⊗Hd

2 , which is a closed
subspace of L2([0, T ];Rd) ⊗ L2([0, T ];Rd) ∼= L2([0, T ]2;Rd ⊗R

d).
To go beyond product functions in the domain of K∗ ⊗K∗, we also recall the class of strongly Hölder bi-continuous

functions from [23].

Definition 3.7. Let 0 < λ ≤ 1. We say that a function φ : [0, T ]2 → E is strongly λ-Hölder bi-continuous in the norm of
E (or simply strongly λ-Hölder bi-continuous in the case where E is finite-dimensional), if for all u1, u2, v1, v2 ∈ [0, T ]
we have

sup
v∈[0,T ]
∥∥φ(u2, v) − φ(u1, v)

∥∥
E

≤ C|u2 − u1|λ, sup
u∈[0,T ]
∥∥φ(u, v2) − φ(u, v1)

∥∥
E

≤ C|v2 − v1|λ,
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and ∥∥∥∥φ
(

u1 u2
v1 v2

)∥∥∥∥
E

≤ C|u2 − u1|λ|v2 − v1|λ. (17)

The following result and its proof can be found as Theorem 4.1 in [23].

Theorem 3.8. Let ψ : [0, T ]2 → E be a function which is strongly λ-Hölder bi-continuous in the norm of E. For any
partition π = {(ui, vj )} of [0, T ]2, let ψπ : [0, T ]2 → E denote

ψπ(u, v) :=
∑
i,j

ψ(ui, vj )1[ui ,ui+1)(u)1[vj ,vj+1)(v).

In addition, let K∗ ⊗K∗ denote the operator in Definition 3.6, where the Volterra kernel K satisfies Condition 2 for some
α ∈ [0, 1

4 ). Then if λ > α, we have

lim‖π‖→0

∫
[0,T ]2

∥∥(K∗ ⊗K∗(ψπ − ψ
))

(u, v)
∥∥2

E
dudv = 0,

and

lim‖π‖→0

∫ T

0

∥∥(K∗ ⊗K∗(ψπ − ψ
))

(r, r)
∥∥

E
dr = 0.

For this paper, the result above, coupled with the fact that Hd
1 ⊗ Hd

1 is isomorphic to Hd
2 ⊗ Hd

2 , shows that the
strongly λ-Hölder bi-continuous functions are contained in Hd

1 ⊗Hd
1 for the class of Volterra kernels we are considering.

For orientation here, contrast this to Proposition 3.2, which showed a similar inclusion in Hd
1 for the class of λ-Hölder

continuous functions.

3.3. The Malliavin derivative and convergence in the tensor norm

Here, we will apply the results of the last subsection to the Malliavin derivatives of RDE solutions. When X ∈
C0,p-var([0, T ];G�p�(Rd)) satisfies Condition 1, for all h ∈ Hd

1 , �(h) can be embedded in Cq-var([0, T ];Rd) where
1
p

+ 1
q

> 1. Furthermore, the Malliavin derivative of Y satisfying (2) is given by [16]

DhYt =
∫ t

0
J X

t

(
J X

s

)−1
V (Ys)d�(h)(s) =

∫ T

0
1[0,t)(s)J

X
t

(
J X

s

)−1
V (Ys)d�(h)(s).

Denoting

DsYt = 1[0,t)(s)J
X
t

(
J X

s

)−1
V (Ys) (18)

with respect to any partition π = {ri} of [0, T ], we will write

DsY
π
t =
∑

i

DsYri 1[ri ,ri+1)(t).

We will proceed to show that

(i) DYπ lies in Hd
1 ⊗Hd

1 almost surely, and under suitable regularity assumptions on DY , we have
(ii) ‖DYπ −DY‖Hd

1⊗Hd
1
→ 0 as ‖π‖ → 0.

Coupled with the results in the previous subsections, this will mean that Yπ converges to Y in D
1,2(Hd

1 ), and δX(Y )

is then the L2(�) limit of δX(Yπ ).
A potential problem with (18) is the discontinuity at the diagonal {s = t}. The next two propositions show how to

handle discontinuities of this form.
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Proposition 3.9. Given a Banach space (E,‖ · ‖E), let ψ : [0, T ]2 → E be of the form

ψ(u, v) = 1[0,v)(u)ψ̃(u, v),

where ψ̃ : [0, T ]2 → E is strongly λ-Hölder bi-continuous in the norm of E. Assume that K is a Volterra kernel which
satisfies Condition 2 for some α ∈ [0, 1

4 ) and let K∗ ⊗ K∗ be the operator given in Definition 3.6. Then if λ > α, (K∗ ⊗
K∗)ψ is in L2([0, T ]2;E).

Proof. We will investigate the integrability of

K∗ ⊗K∗ψ(u, v) = ψ(u,v)K(T ,u)K(T , v) + K(T ,v)AK
(
ψ(·, v)
)
(u)

+ K(T ,u)AK
(
ψ(u, ·))(v) + BK(ψ)(u, v) (19)

in the regions {u < v} and {v < u} separately (ignoring the diagonal as it has zero Lebesgue measure).
(i) u < v:
For the first term on the right of (19) we have

ψ(u,v)K(T ,u)K(T , v) = ψ̃(u, v)K(T ,u)K(T , v) ∈ L2([0, T ]2;E),
and for the second term, we have∥∥K(T ,v)AK

(
ψ(·, v)
)
(u)
∥∥

E

=
∥∥∥∥K(T ,v)

(∫ v

u

[
ψ̃(r, v) − ψ̃(u, v)

]
K(dr, u) −

∫ T

v

ψ̃(u, v)K(dr, u)

)∥∥∥∥
E

≤ C
∣∣K(T ,v)

∣∣((v − u)λ−α +
(

1

(v − u)α
− 1

(T − u)α

))
∈ L2([0, T ]2).

The third term satisfies

∥∥K(T ,u)AK
(
ψ(u, ·))(v)

∥∥
E

=
∥∥∥∥K(T ,u)

∫ T

v

[
ψ̃(u, r) − ψ̃(u, v)

]
K(dr, v)

∥∥∥∥
E

≤ C
∣∣K(T ,u)

∣∣(T − v)λ−α ∈ L2([0, T ]2).
For the fourth term, given r1 ∈ (v, T ], we have

(u,T ] × (v, T ] = {(u, v] × (v, T ]} � {(v, T ] × (v, r1]
} � {(v, T ] × (r1, T ]},

and thus

∥∥BK(ψ)(u, v)
∥∥

E
=
∥∥∥∥
∫ v

u

(∫ T

v

ψ̃

(
u r1
v r2

)
K(dr2, v)

)
K(dr1, u)

+
∫ T

v

(∫ T

r1

[
ψ̃(r1, r2) + ψ̃(u, v) − ψ̃(u, r2)

]
K(dr2, v)

)
K(dr1, u)

+
∫ T

v

(∫ r1

v

[
ψ̃(u, v) − ψ̃(u, r2)

]
K(dr2, v)

)
K(dr1, u)

∥∥∥∥
E

.

This expression is bounded above by

C

(
(v − u)λ−α(T − v)λ−α +

∫ T

v

1

(r1 − v)α(r1 − u)α+1
dr1 +
(

1

(T − v)α

)(
1

(v − u)α
− 1

(T − u)α

))
.

Since ∫ T

v

1

(r1 − v)α(r1 − u)α+1
dr1 =
∫ T

v

1

(r1 − v)α(r1 − u)α+ 1
4 (r1 − u)

3
4

dr1
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≤ 1

(v − u)α+ 1
4

∫ T

v

1

(r1 − v)α+ 3
4

dr1, (20)

and α < 1
4 , the fourth term is also in L2([0, T ]2;E).

(ii) v < u:
The first two terms on the right of (19) vanish, and the third term obeys the estimate

∥∥K(T ,u)AK
(
ψ(u, ·))(v)

∥∥
E

=
∥∥∥∥K(T ,u)

∫ T

u

ψ̃(u, r)K(dr, v)

∥∥∥∥
E

(
ψ(u, r) = 0 when v < r < u

)

≤ C
∣∣K(T ,u)

∣∣( 1

(u − v)α
− 1

(T − v)α

)
,

and hence it is in L2([0, T ]2;E). For the fourth term, note that

ψ

(
u r1
v r2

)
= 0 when v < r2 < u,

and thus we have

∥∥BK(ψ)(u, v)
∥∥

E
≤
∥∥∥∥
∫ T

u

(∫ r2

u

[
ψ̃(r1, r2) − ψ̃(u, r2)

]
K(dr1, u)

)
K(dr2, v)

∥∥∥∥
E

+
∥∥∥∥
∫ T

u

(∫ T

r2

ψ̃(u, r2)K(dr1, u)

)
K(dr2, v)

∥∥∥∥
E

≤ C

((
1

(u − v)α
− 1

(T − v)α

)
+
∫ T

u

1

(r2 − u)α(r2 − v)α+1
dr2

)
.

Utilizing (20) again, we see that the fourth term is also in L2([0, T ]2;E). �

Proposition 3.10. Let F denote either R
e or L2(�;Re), and let ψ : [0, T ]2 → F be a function of the form ψ(u, v) =

1[0,v)(u)ψ̃(u, v), where ψ̃ is strongly λ-Hölder bi-continuous in the norm of F . Given a partition π = {ri} of [0, T ],
denote

ψπ(s, t) :=
∑
j

ψ(s, rj )1[rj ,rj+1)(t). (21)

Moreover, let K∗ ⊗K∗ be the operator given in Definition 3.6, where the Volterra kernel K satisfies Condition 2 for some
α ∈ [0, 1

4 ). Then if λ > α, we have∫
[0,T ]2

∥∥K∗ ⊗K∗(ψπ − ψ
)
(s, t)
∥∥2

F
ds dt → 0.

Proof. We define

h(u, v) :=
∫ T

0

〈
K∗(ψ(·, u)

)
(s),K∗(ψ(·, v)

)
(s)
〉
F

ds,

and correspondingly,

hπ(u, v) :=
∫ T

0

〈
K∗(ψπ(·, u)

)
(s),K∗(ψπ(·, v)

)
(s)
〉
F

ds

=
∑
i,j

(∫ T

0

〈
K∗(ψπ(·, ri)

)
(s),K∗(ψπ(·, rj )

)
(s)
〉
F

ds

)
1[ri ,ri+1)(u)1[rj ,rj+1)(v)

=
∑
i,j

h(ri, rj )1[ri ,ri+1)(u)1[rj ,rj+1)(v).
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Let λ′ := 1
4 ∧ λ. Since α < 1

4 , λ′ is greater than α, and note that any strongly λ-Hölder bi-continuous function is also
strongly λ′-Hölder bi-continuous. We will begin by first showing that h(u, v) is strongly λ′-Hölder bi-continuous.

For all u,v,u1, u2, v1, v2 ∈ [0, T ], we have

∣∣h(u1, v) − h(u2, v)
∣∣≤ (∫ T

0

∥∥K∗(ψ(·, u1) − ψ(·, u2)
)
(s)
∥∥2

F
ds

) 1
2
(∫ T

0

∥∥K∗(ψ(·, v)
)
(s)
∥∥2

F
ds

) 1
2

,

∣∣h(u, v1) − h(u, v2)
∣∣≤ (∫ T

0

∥∥K∗(ψ(·, v1) − ψ(·, v2)
)
(s)
∥∥2

F
ds

) 1
2
(∫ T

0

∥∥K∗(ψ(·, u)
)
(s)
∥∥2

F
ds

) 1
2

,

and
∣∣h( u1 u2

v1 v2

)∣∣ is bounded above by

(∫ T

0

∥∥K∗(ψ(·, u1) − ψ(·, u2)
)
(s)
∥∥2

F
ds

) 1
2
(∫ T

0

∥∥K∗(ψ(·, v1) − ψ(·, v2)
)
(s)
∥∥2

F
ds

) 1
2

.

Note that for p ≥ 1, using (13) and fixing w ∈ [0, T ], we have

∥∥K∗ψ(·,w)(s)
∥∥p

F
=
∥∥∥∥ψ̃(s,w)K(w, s) +

∫ w

s

[
ψ̃(r,w) − ψ̃(s,w)

]
K(dr, s)

∥∥∥∥
p

F

≤ C2p−1
(

1

spα(w − s)pα
+ (w − s)p(λ′−α)

)
. (22)

Since α < 1
4 ,
∫ T

0 ‖K∗ψ(·,w)(s)‖p
F ds is finite as long as p ≤ 4.

Now, all we have to do is show that

∫ T

0

∥∥K∗(ψ(·,w2) − ψ(·,w1)
)
(s)
∥∥2

F
ds ≤ C|w2 − w1|2λ′

, (23)

for all w1,w2 ∈ [0, T ], where without loss of generality, we let w1 < w2. Observe that

∫ T

0

∥∥K∗(ψ(·,w2) − ψ(·,w1)
)
(s)
∥∥2

F
ds

=
∫ w1

0

∥∥K∗(ψ(·,w2) − ψ(·,w1)
)
(s)
∥∥2

F
ds +
∫ w2

w1

∥∥K∗(ψ(·,w2) − ψ(·,w1)
)
(s)
∥∥2

F
ds (24)

as the integrand vanishes when s ≥ w2. For the first term above, for s ∈ [0,w1), we have (using (13))

K∗(ψ(·,w2) − ψ(·,w1)
)
(s) = (ψ(s,w2) − ψ(s,w1)

)
K(w2, s)

+
∫ w2

s

[
ψ(r,w2) − ψ(s,w2) − ψ(r,w1) + ψ(s,w1)

]
K(dr, s)

= (ψ̃(s,w2) − ψ̃(s,w1)
)
K(w2, s) +

∫ w1

s

ψ̃

(
s r

w1 w2

)
K(dr, s)

+
∫ w2

w1

[
ψ̃(r,w2) − ψ̃(s,w2) + ψ̃(s,w1)

]
K(dr, s). (25)

Since ψ̃ is strongly λ′-Hölder bi-continuous, we have

∥∥(ψ̃(s,w2) − ψ̃(s,w1)
)
K(w2, s)

∥∥
F

≤ C|w2 − w1|λ′
s−α(w2 − s)−α, (26)

and ∥∥∥∥
∫ w1

s

ψ̃

(
s r

w1 w2

)
K(dr, s)

∥∥∥∥
F

≤ C|w2 − w1|λ′
(w1 − s)λ

′−α. (27)
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For the last integral in (25), we let q1 denote 1
1−λ′ and use Hölder’s inequality to derive

∥∥∥∥
∫ w2

w1

[
ψ̃(r,w2) − ψ̃(s,w2) + ψ̃(s,w1)

]
K(dr, s)

∥∥∥∥
F

≤ C|w2 − w1|λ′
(∫ w2

w1

∣∣∣∣∂K(r, s)

∂r

∣∣∣∣
q1

dr

) 1
q1

≤ C|w2 − w1|λ′
(∫ w2

w1

1

(r − s)q1(α+1)
dr

) 1
q1

≤ C|w2 − w1|λ′
(w1 − s)−(α+λ′). (28)

Putting estimates (26), (27) and (28) together, when s < w1 we have∥∥K∗(ψ(·,w2) − ψ(·,w1)
)
(s)
∥∥

F
≤ C|w2 − w1|λ′

f (s), (29)

for some f (s) ∈ L2([0, T ]) since λ′ > α and 2(α + λ′) < 1. This gives∫ w1

0

∥∥K∗(ψ(·,w2) − ψ(·,w1)
)
(s)
∥∥2

F
ds ≤ C|w2 − w1|2λ′

.

Returning to the second term in (24), we let q2 denote 1
1−2λ′ and use Hölder’s inequality again to obtain

∫ w2

w1

∥∥K∗(ψ(·,w1) − ψ(·,w2)
)
(s)
∥∥2

F
ds ≤ |w2 − w1|2λ′

(∫ T

0

∥∥K∗(ψ(·,w1) − ψ(·,w2)
)
(s)
∥∥2q2

F
ds

) 1
q2

.

Since λ′ < 1
4 , we have 2q2 ≤ 4 and this gives (

∫ T
0 ‖K∗(ψ(·,w1) − ψ(·,w2))(s)‖2q2

F ds)
1
q2 < ∞ from (22). Now that we

have shown that h is strongly λ′-Hölder bi-continuous, we will show that

∫
[0,T ]2

∥∥K∗ ⊗K∗(ψπ − ψ
)
(s, t)
∥∥2

F
ds dt =

∫ T

0

(
K∗ ⊗K∗(hπ − h

))
(t, t)dt,

and then invoke Theorem 3.8 to complete the proof.
Let g(s, t) denote K∗(ψ(·, t))(s), and note that g(s, t) = 0 when s ≥ t . We first compute

K∗ ⊗K∗h(t, t) = h(t, t)K(T , t)2 + K(T , t)AK
(
h(·, t))(t) + K(T , t)AK

(
h(t, ·))(t) + BK(h)(t, t)

=
∫ T

0

〈
g(s, t), g(s, t)

〉
F
K(T , t)2 ds

+ 2K(T , t)

∫ T

t

(∫ T

0

〈
g(s, r) − g(s, t), g(s, t)

〉
F

ds

)
K(dr, t)

+
∫ T

t

∫ T

t

(∫ T

0

〈
g(s, r1) − g(s, t), g(s, r2) − g(s, t)

〉
F

ds

)
K(dr1, t)K(dr2, t). (30)

The second term on the right vanishes when s ≥ t , and when s < t , using (22) and (29) gives us

∣∣〈g(s, r) − g(s, t), g(s, t)
〉
F

∣∣∣∣∣∣∂K(r, t)

∂r

∣∣∣∣≤ C|r − t |λ′−α−1f̃ (s)

for some f̃ (s) ∈ L1([0, T ]), and thus we can swap the integral with respect to s outside the integral with respect to r .
Similarly, the third term on the right of (30) is bounded by

C

(∫ T

s

1

(r − t)α+1
dr

)2

when s > t since the integrand vanishes when r1 ≤ s or r2 ≤ s. Furthermore, when s < t , its integrand is bounded by

C|r1 − t |λ′−α−1|r2 − t |λ′−α−1f 2(s).
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Hence, we can also pull out the integral with respect to s, and we get

K∗ ⊗K∗h(t, t) =
∫ T

0
K∗ ⊗K∗(〈g(s, ·), g(s, ·)〉

F

)
(t, t)ds.

Observe that

K∗ ⊗K∗(〈g(s, ·), g(s, ·)〉
F

)
(t, t) = 〈K∗(g(s, ·))(t),K∗(g(s, ·))(t)〉

F

= ∥∥K∗(g(s, ·))(t)∥∥2
F
,

where here we use (16), and Fubini’s theorem in the case when F = L2(�;Re).
Fixing s, note that for all t > s, g(s, ·) is λ′-Hölder continuous on [t, T ] (with the Hölder norm depending on t ) from

(29). Thus, K∗(g(s, ·))(t) is well defined for all t > s, vanishes when t < s, and we can apply Lemma 3.2 in [23] to obtain

K∗(g(s, ·))(t) =K∗ ⊗K∗ψ(s, t)

for all s �= t . This concludes the proof. �

We will use the previous proposition to show that Hd
1 ⊗ Hd

1 contains functions ψ : [0, T ]2 → R
d ⊗ R

d of the form
ψ(u, v) = 1[0,v)(u)ψ̃(u, v) whenever ψ̃ is strongly λ-Hölder bi-continuous.

Proposition 3.11. Let ψ : [0, T ]2 → R
d be of the form ψ(u, v) = 1[0,v)(u)ψ̃(u, v), where ψ̃ is strongly λ-Hölder bi-

continuous, and let K∗ ⊗K∗ be defined as in Definition 3.6, where the Volterra kernel K satisfies Condition 2 for some
α ∈ [0, 1

4 ).
Then if λ > α, ψ is an element of Hd

1 ⊗Hd
1 , with norm given by

‖ψ‖Hd
1⊗Hd

1
=
∫

[0,T ]2

∣∣K∗ ⊗K∗ψ(s, t)
∣∣2
Rd⊗Rd ds dt, (31)

and with ψπ defined as in (21), we have∥∥ψπ − ψ
∥∥
Hd

1⊗Hd
1
→ 0 (32)

as ‖π‖ → 0.

Proof. Given a d-by-d matrix function A(s), let a
(i)
j (s) denote the i, j th entry of A(s). Using the canonical identification

A(s)1[a,b)(t) 
d∑

j=1

d∑
i=1

a
(i)
j (s)ei ⊗ 1[a,b)(t)ej , a, b ∈ [0, T ], (33)

it is clear that ψπ is a member of d
α ⊗Hd

1 , and thus lies in Hd
1 ⊗Hd

1 by Proposition 3.5. Furthermore, ‖ψπ‖2
Hd

1⊗Hd
1

is

equal to, using the notation 1�i
= 1[ri ,ri+1),

∑
k,l

∫ T

0

d∑
j=1

〈
K∗(ψj(·, rk)

)
(s),K∗(ψj (·, rl)

)
(s)
〉
Rd ds

∫ T

0
K∗(1�k

)(t)K∗(1�l
)(t)dt

=
∑
k,l

∫
[0,T ]2

〈
K∗ ⊗K∗(ψ(·, rk)1�k

(·))(s, t),K∗ ⊗K∗(ψ(·, rl)1�l
(·))(s, t)〉

Rd⊗Rd ds dt,

=
∫

[0,T ]2

∣∣K∗ ⊗K∗ψπ(s, t)
∣∣2
Rd⊗Rd ds dt,

which we know is Cauchy as ‖π‖ → 0 by Proposition 3.10. We now take any sequence of partitions π(n) with vanishing
mesh and identify ψ with the limit of ψπ(n) in Hd

1 ⊗Hd
1 . Invoking Proposition 3.10 again then gives us (31) and (32). �
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3.4. The Itô–Skorohod isometry revisited

We now give another formulation for the Itô-Skorohod isometry for Volterra processes (cf. Theorem A.6 in [12] for the
specific case of fractional Brownian motion).

Theorem 3.12. Let X be a Volterra process which satisfies Condition 1 for some ρ ∈ [1,2), and assume that its kernel
satisfies Condition 2 for α = 1

2 − 1
2ρ

. Given λ > α, let Y be a process which satisfies, almost surely,

(i) Y ∈ Cλ-Höl
pw ([0, T ];Rd),

(ii) DY : [0, T ]2 → R
d ⊗R

d is a function of the form 1[0,t)(s)g(s, t), where g is strongly λ-Hölder bi-continuous (recall
that DY is the Malliavin derivative).

Then lim‖π‖→0 Yπ = Y in D
1,2(Hd

1 ) if and only if

lim‖π‖→0
E

[∫ T

0

∣∣K∗(Yπ − Y
)
(t)
∣∣2
Rd dt

]
= 0,

and

lim‖π‖→0
E

[∫
[0,T ]2

∣∣K∗ ⊗K∗(DYπ −DY
)
(s, t)
∣∣2
Rd⊗Rd ds dt

]
= 0,

in which case lim‖π‖→0 E[δX(Yπ − Y)2] = 0 and E[δX(Y )2] is equal to

E

[∫ T

0

∣∣K∗Y(t)
∣∣2
Rd dt

]
+E

[∫
[0,T ]2

tr
(
K∗ ⊗K∗DY(s, t)K∗ ⊗K∗DY(t, s)

)
ds dt

]
.

Proof. Itô-Skorohod isometry (see [27]) gives us

E
[
δX(Y )2]= E

[‖Y‖2
Hd

1

]+E
[
trace(DY ◦DY)

]
= lim‖π‖→0

E
[∥∥Yπ
∥∥2
Hd

1

]+ lim‖π‖→0
E
[
trace
(
DYπ ◦DYπ

)]
.

The first term is equal to lim‖π‖→0 E[∫ T0 |K∗Yπ(t)|2
Rd dt], with limit E[∫ T0 |K∗Y(t)|2

Rd dt].
For the second term, it can be shown that the trace E[trace(DYπ ◦DYπ)] is equal to (see Theorem 4.8 of [7])

E

[∑
i,j

d∑
k,l=1

〈
D(k)· Y

(l)
tj

,1�i
(·)〉H1

〈
D(l)· Y

(k)
ti

,1�j
(·)〉H1

]
,

which is the same as

E

[∑
i,j

d∑
k,l=1

∫ T

0
K∗(D(k)· Y

(l)
tj

)
(s)K(�i, s)ds

∫ T

0
K∗(D(l)· Y

(k)
ti

)
(t)K(�j , t)dt

]

for a Volterra process. Using Lemma 3.2 in [23], this last expression equals

E

[∫
[0,T ]2

tr
(
K∗ ⊗K∗DYπ(s, t)K∗ ⊗K∗DYπ(t, s)

)
ds dt

]
,

and it converges as ‖π‖ → 0 to

E

[∫
[0,T ]2

tr
(
K∗ ⊗K∗DY(s, t)K∗ ⊗K∗DY(t, s)

)
ds dt

]
. �

In the case of Brownian motion both K∗ and K∗ ⊗ K∗ are identity operators and Theorem 3.12 recovers the usual
Itô-Skorohod isometry:

E
[
δX(Y )2]= E

[∫ T

0
|Yt |2 dt

]
+E

[∫
[0,T ]2

tr(Dt YsDsYt )ds dt

]
.
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3.5. Approximation of the Skorohod integral

We will now put together the results of the previous subsections to show that the Skorohod integral of the discrete
approximations to the solution of an RDE converge. Before we proceed, let Y ∈ Cp-var([0, T ];L(Rd ;Rm)) denote the
path-level solution to

dYt = V (Yt ) ◦ dXt , Y0 = y0,

where V ∈ C�p�+1
b (Rm ⊗R

d ;Rm ⊗R
d ⊗R

d).
Given a Hilbert space H , we will denote an element of y of Rm ⊗ H as

y =
m∑

j=1

ej ⊗ [y]j , (34)

where [y]j ∈ H for j = 1, . . . ,m. (Note that there may be several ways to perform the decomposition.)
Now fix 0 ≤ s < t ≤ T . Since V (Ys) ∈ R

md ⊗R
d R

m ⊗R
d ⊗R

d , we can decompose V (Ys) as

V (Ys) =
m∑

j=1

ej ⊗ [V (Ys)
]
j
,

where

[
V (Ys)
]
j

:=
d∑

i,k=1

V
(d(j−1)+i)
k (Ys)ei ⊗ ek.

If we canonically identify R
md ⊗ R

d with the space of md-by-d matrices, then [V (Ys)]j simply denotes the d-by-d
sub-matrix of V (Ys) which starts at the (d(j − 1) + 1)th row and ends at the dj th row. Contrast this with Vj (Ys), which
denotes the j th column of V (Ys).

Similarly, we can do the same with Ys ∈ R
md  R

m ⊗ R
d and J X

t←sV (Ys) ∈ R
md ⊗ R

d  R
m ⊗ R

d ⊗ R
d , J X

t←s :=
J X

t (J X
s )−1.

Proposition 3.13. Let X ∈ C0,p-var([0, T ];G�p�(Rd)), 1 ≤ p < 4, be a Volterra rough path which satisfies Condition
1, and assume that its kernel satisfies Condition 2 with α < 1

p
. Let Y ∈ Cp-var([0, T ];L(Rd;Rm)) denote the path-level

solution to

dYt = V (Yt ) ◦ dXt , Y0 = y0,

where V ∈ C�p�+1
b (Rm ⊗R

d ;Rm ⊗R
d ⊗R

d). Then Y ∈ D
1,2(Rm ⊗Hd

1 ) and

∫ T

0
Yr dXr = lim‖π={ri }‖→0

∑
i

[
Yri (Xri ,ri+1) −

m∑
j=1

(∫ ri

0
tr
[
J X

ri←sV (Ys)
]
j
R(�i, ds)

)
ej

]
,

where the limit is taken in L2(�).

Proof. We first use integration-by-parts to obtain

〈
δX
(
Yπ
)
, ej

〉
Rm =
∑

i

[〈[Yri ]j ,Xri ,ri+1

〉
Rd −
∫ ri

0
tr
[
J X

ri←sV (Ys)
]
j
R(�i, ds)

]
,

for all j = 1, . . . ,m. Next, we invoke Theorem 3.12, which requires us to prove that

E

[∫ T

0

∣∣K∗(Yπ − Y
)
(t)
∣∣2
Rm⊗Rd dt

]
→ 0, (35)
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and

E

[∫
[0,T ]2

∣∣K∗ ⊗K∗(DsY
π
t −DsYt

)
(s, t)
∣∣2
Rm⊗Rd⊗Rd ds dt

]
→ 0. (36)

We will show that Y is 1
p

-Hölder continuous in L2(�;Rm ⊗R
d), and then invoke Proposition 3.2 to obtain (35). We have

(see equation (10.15) in [16])

|Ys,t | ≤ C
(‖X‖p-var;[s,t] ∨ ‖X‖p

p-var;[s,t]
)≤ C‖X‖ 1

p
-Höl;[0,T ]

(
T

1− 1
p ∨ 1
)
(t − s)

1
p (37)

almost surely, and thus√
E
[|Ys,t |2
]≤ C1|t − s| 1

p

since ‖X‖ 1
p

-Höl;[0,T ] has moments of all orders (corollary 66 in [15]).

To show (36), we will apply Proposition 3.10 with ψ(s, t) = DsYt = 1[0,t)(s)J
X
t (J X

s )−1V (Ys). To do so, we have to
show that ψ̃(s, t) := J X

t (J X
s )−1V (Ys) is strongly 1

p
-Hölder bi-continuous in L2(�;Rmd ⊗ R

d). By Lemma 3.6 in [23],

this is equivalent to showing that J X· and (J X· )−1Y· are both 1
p

-Hölder continuous.
Using equation (4.10) in [8], we have

∣∣J X
s,t

∣∣≤ C1‖X‖p-var;[s,t] exp
(
C2N

X
1;[s,t]
)≤ C1(t − s)

1
p ‖X‖ 1

p
-Höl;[0,T ] exp

(
C2N

X
1;[0,T ]
)
,

where Nx
1 is defined in (44) of [7], and essentially gives a count of the number of times the p-variation of x increases by

1 in [0, T ]. This yields 1
p

-Hölder continuity for J X· as the expression to the right of (t − s)
1
p is in Lq(�) for all q > 0

(Theorem 6.3 in [8]). The same is true for (J X· )−1 since the inverse obeys the same bound.
Finally, (J X· )−1V (Y·) is also 1

p
-Hölder continuous, since V is C1 smooth and both Y and (J X· )−1 are 1

p
-Hölder

continuous. �

4. Augmenting the Skorohod integral with higher-level terms

The main purpose of this section is to show that the usual Riemann-sum approximation to the Skorohod integral can be
augmented with (suitably corrected) second-level and third-level rough path terms which vanish in L2(�) as the mesh of
the partition goes to zero.

Before we do so, we will consider the theory of controlled rough paths [17,18] in the case 3 ≤ p < 4, and give bounds
on the higher-directional derivatives of a controlled rough path satisfying an RDE.

4.1. Estimates for controlled rough paths of lower regularity

To construct the rough integral of controlled rough paths for 3 ≤ p < 4, we need the following definition. In what follows,
let U , V denote finite-dimensional vector spaces.

Definition 4.1. Let x = (1, x,x2,x3) ∈ Cp-var([0, T ];G3(Rd)), where 3 ≤ p < 4, and let q be such that 1
p

+ 1
q

> 1. Let

(φ,φ′, φ′′) be such that φ ∈ Cp-var([0, T ];U), φ′ ∈ Cp-var([0, T ];L(Rd;U)) and φ′′ ∈ Cp-var([0, T ];L(Rd ⊗R
d ;U)).

Then we say that (φ,φ′, φ′′) (or φ) is controlled by x if for all s, t ∈ [0, T ] we have

φs,t = φ′
sxs,t + φ′′

s x2
s,t + R

φ
s,t , φ′

s,t = φ′′
s xs,t + R

φ′
s,t , (38)

where the remainder terms satisfy

Rφ ∈ Cq-var([0, T ];U), Rφ′ ∈ C
p
2 -var([0, T ];U).

Thus, φ is controlled by x if ‖φ‖p,q-cvar < ∞, where the controlled variation norm is defined as

‖φ‖p,q-cvar := ‖φ‖Vp;[0,T ] + ∥∥φ′∥∥
Vp;[0,T ] + ∥∥φ′′∥∥

Vp;[0,T ] + ∥∥Rφ
∥∥

q-var;[0,T ] + ∥∥Rφ′∥∥
p
2 -var;[0,T ].
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Before we continue, note that 3 ≤ p < 4 implies that p
3 <

p
p−1 ≤ p

2 . Since ‖Rφ‖q-var ≥ ‖Rφ‖q ′-var for q ′ ≥ q , we can
replace q with q ′ where

p

3
≤ q ′ < p

p − 1
≤ p

2
(39)

in the subsequent analysis when working with p in the interval [3,4) without affecting the results.
The following theorem and the next two propositions are the lower-regularity analogues of Theorem 2.20, Proposi-

tion 2.22 and Proposition 2.21 respectively from [7]. The proofs are routine and can be found in Section 5.1 of [22].

Theorem 4.2. Let x = (1, x,x2,x3) ∈ Cp-var([0, T ];G3(Rd)), where 3 ≤ p < 4, and let q be such that 1
p

+ 1
q

> 1. Let

(φ,φ′, φ′′) satisfy

φ ∈ Cp-var([0, T ];L(Rd;Re
))

,

φ′ ∈ Cp-var([0, T ];L(Rd;L(Rd ;Re
)))

and

φ′′ ∈ Cp-var([0, T ];L(Rd ⊗R
d;L(Rd ;Re

)))
.

If (φ,φ′, φ′′) is controlled by x with remainder terms Rφ and Rφ′
of bounded q-variation and p

2 -variation respectively,
we can define the rough integral

∫ t

0
φr ◦ dxr := lim‖π‖→0,π={0=r0<···<rn=t}

n−1∑
i=0

(
φri xri ,ri+1 + φ′

ri
x2
ri ,ri+1

+ φ′′
ri

x3
ri ,ri+1

)
, (40)

where we have made use of the canonical identification L(Rd;L(Rd;Re))  L(Rd ⊗ R
d;Re) and L(Rd ⊗ R

d ;L(Rd;
R

e))  L(Rd ⊗R
d ⊗R

d;Re). Furthermore, if q ≥ p
3 , then denoting

zt :=
∫ t

0
φr ◦ dxr , z′

t := φt , z′′
t := φ′

t ,

(z, z′, z′′) is again controlled by x, and we have

‖z‖p,q ≤ Cp,q‖φ‖p,q-cvar
(
1 + ‖x‖p-var;[0,T ] + ∥∥x2

∥∥
p
2 -var;[0,T ] + ∥∥x3

∥∥
p
3 -var;[0,T ]

)
. (41)

For the next proposition, given maps A ∈ L(Rd;L(U;V)) and B ∈ L(Rd;U), we will identify them as tensors (either
L(U;V)-valued or U -valued)

A =
d∑

j=1

aj dej , aj ∈ L(U;V), B =
d∑

j=1

bj dej , bj ∈ U ,

and use the following notation

AB := ai(bj )dei ⊗ dej , BA := aj (bi)dei ⊗ dej ,

Sym(AB) := 1

2
(AB + BA).

Proposition 4.3 (Leibniz rule). For 3 ≤ p < 4, let

φ ∈ Cp-var([0, T ];L(U;V)
)
,

φ′ ∈ Cp-var([0, T ];L(Rd;L(U;V)
))

and

φ′′ ∈ Cp-var([0, T ];L(Rd ⊗R
d;L(U;V)

))
.

Assume that (φ,φ′, φ′′) is controlled by x ∈ Cp-var([0, T ];G3(Rd)), with remainder terms Rφ and Rφ′
of bounded q-

variation and p
2 -variation respectively, where 1

p
+ 1

q
> 1 and q ≥ p

3 .
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(i) Let ψ ∈ Cp-var([0, T ];U), ψ ′ ∈ Cp-var([0, T ];L(Rd;U)) and ψ ′′ ∈ Cp-var([0, T ];L(Rd ⊗ R
d ;U)). If (ψ,ψ ′,ψ ′′) is

controlled by x, then the path φψ ∈ Cp-var([0, T ];V) given by the composition of φ and ψ is also controlled by x,
with first and second derivative processes

(φψ)′ = φ′ψ + φψ ′ and (φψ)′′ = φ′′ψ + 2Sym
(
φ′ψ ′)+ φψ ′′.

In addition, we have the bound

‖φψ‖p,q-cvar ≤ 4‖φ‖p,q-cvar‖ψ‖p,q-cvar
(
1 + ‖x‖p-var;[0,T ] + ∥∥x2

∥∥
p
2 -var;[0,T ]

)
. (42)

(ii) Suppose that ψ ∈ Cq-var([0, T ];U). Then φψ ∈ Cp-var([0, T ];V) is also controlled by x, with first and second deriva-
tive processes

(φψ)′ = φ′ψ and (φψ)′′ = φ′′ψ.

Moreover, we have the bound

‖φψ‖p,q-cvar ≤ ‖φ‖p,q-cvar‖ψ‖Vq ;[0,T ]. (43)

Proposition 4.4. Let x ∈ Cp-var([0, T ];G3(Rd)) where 3 ≤ p < 4. We assume that

y ∈ Cp-var([0, T ];U), y′ ∈ Cp-var([0, T ];L(Rd,U
))

and y′′ ∈ Cp-var([0, T ];L(Rd ⊗R
d;U)).

We also assume that (y, y′, y′′) is controlled by x with remainder terms Ry and Ry′
of bounded q-variation and p

2 -
variation respectively, where 1

p
+ 1

q
> 1 and q ≥ p

3 . Let φ ∈ C3
b(U ,V) and define

(
zs, z

′
s , z

′′
s

) := (φ(ys),∇φ(ys)y
′
s ,∇φ(ys)y

′′
s + ∇2φ(ys)

(
y′
s , y

′
s

))
for all s ∈ [0, T ]. Then (z, z′, z′′) is controlled by x, and we have the following bounds

‖z‖p-var;[0,T ] ≤ ‖φ‖C3
b
‖y‖p-var;[0,T ],∥∥z′∥∥

p-var;[0,T ] ≤ ‖φ‖C3
b
‖y‖Vp;[0,T ]

∥∥y′∥∥
Vp;[0,T ],∥∥z′′∥∥

p-var;[0,T ] ≤ ‖φ‖C3
b
‖y‖Vp;[0,T ]

(∥∥y′′∥∥
Vp;[0,T ] + ∥∥y′∥∥2

Vp;[0,T ]
)
,

and ∥∥Rz
∥∥

q-var;[0,T ],
∥∥Rz′∥∥

p
2 -var;[0,T ] ≤ ‖φ‖C3

b

(
1 + ‖y‖p,q-cvar

)3(1 + ‖x‖p-var;[0,T ] + ∥∥x2
∥∥

p
2 -var;[0,T ]

)2
. (44)

The following theorem extends Theorem 3.1 in [7].

Theorem 4.5. Consider the system of RDEs

dyt = V (yt ) ◦ dxt , y0 = a ∈ R
e,

dJ x
t = ∇V (yt )(◦dxt )J

x
t , J x

0 = Ie,

where V = (V1, . . . , Vd) is a collection of Re-valued vector fields. If x = (1, x,x2,x3) ∈ Cp-var([0, T ];G3(Rd)), 3 ≤ p <

4, and V is in C4
b , then both (y,V (y),V 2(y)) and (J x, (J x)′, (J x)′′) are controlled by x. In addition,

‖y‖p,
p
3 -cvar ≤ Cp

(
1 + ‖V ‖C3

b

)10(1 + ‖x‖p-var;[0,T ]
)8

, (45)

and ∥∥J x∥∥
p,

p
3 -cvar ≤ C1

(
1 + exp

(
C2N

x
1;[0,T ]
))10(1 + ‖x‖p-var;[0,T ]

)8
, (46)

where C1, C2 depend on p and ‖V ‖C4
b
.



Skorohod and rough integration for Volterra SDEs 151

4.2. Upper bounds on the high-order Malliavin derivatives

We now use the results from the proceeding section to obtain upper bounds on the directional derivative. The following
result extends Proposition 3.5 in [7].

Proposition 4.6. Let p ∈ [2,4) and q be such that 1
p

+ 1
q

> 1. Let x ∈ C0,p-var([0, T ];G�p�(Rd)), and y be the solution
to the RDE

dyt = V (yt ) ◦ dxt , y0 ∈R
e given,

where V ∈ C�p�+n
b (Re;Re ⊗R

d). Then there exists a polynomial Pd(n) :R+ ×R+ →R+ of finite degree d(n) for which

∥∥Dn
g1,...,gn

y·
∥∥
Vp;[0,T ] ≤ Pd(n)

(‖x‖p-var;[0,T ], exp
(
CNx

1;[0,T ]
)) n∏

i=1

‖gi‖q-var;[0,T ], (47)

for any g1, . . . , gn ∈ Cq-var([0, T ];Rd). The constant C as well as the coefficients of Pd(n) depend only on ‖V ‖C�p�+n
b

, p

and q (= p
2 when 2 ≤ p < 3).

Proof. We shall omit the details of the proof as it proceeds in virtually the same manner as in Proposition 3.5 in [7],
for which the reader is invited to consult. The key again is to use the explicit expression of Dn

g1,...,gn
yt as the sum of the

integrals

n∑
i=2

∫ t

0
J x

t

(
J x

s

)−1∇ iV (ys)A
n
i (s) ◦ dxs +

n−1∑
i=1

n∑
j=1

∫ t

0
J x

t

(
J x

s

)−1∇ iV (ys)B
n
i,j (s)dgj (s) (48)

as derived in Corollary 3.4 of [7]. Here, An
i and Bn

i,j are respectively defined as

An
i (t) :=

∑
π={π1,...,πi }∈P({g1,...,gn})

D|π1|
π1

yt⊗̃ · · · ⊗̃D|πi |
πi

yt , t ∈ [0, T ], (49)

and

Bn
i,j (t) :=

∑
π={π1,...,πi }∈P({g1,...,gj−1,gj+1,...,gn})

D|π1|
π1

yt⊗̃ · · · ⊗̃D|πi |
πi

yt . (50)

The only difference is that when p ≥ 3, we use Theorems 5.2 and 5.5, as well as Propositions 5.3 and 5.4 in lieu of
Theorem 2.20 and 3.5, and Propositions 2.22 and 2.21 respectively in [7]. �

4.3. Augmenting the higher-order iterated integrals

For this section, we will use π(n) := {tni } to denote the nth dyadic partition of [0, T ], i.e. tni = iT
2n for i = 0, . . . ,2n, and

�n
i to denote the interval [tni , tni+1]. In addition, ρ′ will denote the Hölder conjugate of ρ, i.e. 1

ρ
+ 1

ρ′ = 1.
One of the main results (Proposition 5.1) in [7] is the following: given a Gaussian process X and a stochastic process

ψ , under certain conditions on the covariance of X and bounds on the Malliavin derivatives of ψ , one can show that

lim
n→∞

∥∥∥∥∥
2n−1∑
i=0

ψtni

(
X2

tni ,tni+1
− 1

2
σ 2(tni , tni+1

)
Id

)∥∥∥∥∥
L2(�)

= 0. (51)

Recall that σ 2(s, t) denotes E[X(1)
s,t ]2, and that the presence of this compensating term was critical in the proof of the

correction formula in [7]. We will now proceed to show that for the third-order terms, this is not needed for the L2 norm
to vanish. We begin with the following lemma.

Lemma 4.7. For any h1, . . . , h6 ∈Hd
1 , we have

E

[
ψtni

ψtnj

6∏
k=1

I1(hk)

]
= E
[
D6

h1,h2,h3,h4,h5,h6
ψtni

ψtnj

]+∑
σ∈S6

Cσ,1Aσ,1 + Cσ,2Aσ,2 + Cσ,3Aσ,3,
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where

Aσ,1 := E
[
D4

hσ(1),hσ(2),hσ(3),hσ(4)
ψtni

ψtnj

]〈hσ(5), hσ(6)〉Hd
1
,

Aσ,2 := E
[
D2

hσ(1),hσ(2)
ψtni

ψtnj

]〈hσ(3), hσ(4)〉Hd
1
〈hσ(5), hσ(6)〉Hd

1
,

Aσ,3 := E[ψtni
ψtnj

]〈hσ(1), hσ(2)〉Hd
1
〈hσ(3), hσ(4)〉Hd

1
〈hσ(5), hσ(6)〉Hd

1
,

S6 denotes the symmetric group of permutations on {1, . . . ,6}, and the Cσ,k’s are constants that depend on the permuta-
tion σ .

Proof. Using the product formula (cf. [27]), we have

6∏
k=1

I1(hk) = I6(h1 ⊗ h2 ⊗ h3 ⊗ h4 ⊗ h5 ⊗ h6)

+
∑
σ∈S6

Cσ,1I4(hσ(1) ⊗ hσ(2) ⊗ hσ(3) ⊗ hσ(4))〈hσ(5), hσ(6)〉Hd
1

+ Cσ,2I2(hσ(1) ⊗ hσ(2))〈hσ(3), hσ(4)〉Hd
1
〈hσ(5), hσ(6)〉Hd

1

+ Cσ,3〈hσ(1), hσ(2)〉Hd
1
〈hσ(3), hσ(4)〉Hd

1
〈hσ(5), hσ(6)〉Hd

1
. (52)

Applying integration-by-parts finishes the proof. �

Proposition 4.8. Let X ∈ C0,p-var([0, T ];G3(Rd)), 3 ≤ p < 4, be a geometric Gaussian rough path which satisfies Con-
dition 1, and assume that its covariance function satisfies, for all s, t ∈ [0, T ],
∥∥R(t, ·) − R(s, ·)∥∥

q-var;[0,T ] ≤ C|t − s| 1
ρ ,

for some finite constant C and ρ ∈ [1,2).
Let ψ : � × [0, T ] → R

d ⊗ R
d ⊗ R

d be a stochastic process satisfying ψt =∑d
a,b,c=1 ψ

(a,b,c)
t dea ⊗ deb ⊗ dec ∈

D
6,2(Rd ⊗R

d ⊗R
d) for all t ∈ [0, T ]. Furthermore, assume there exists C < ∞ such that we have

∣∣E[ψ(a,b,c)
s ψ

(a,b,c)
t

]∣∣≤ C, (53)

and for k = 2,4,6, we have

∣∣E[Dk
h1,...,hk

(
ψ(a,b,c)

s ψ
(a,b,c)
t

)]∣∣≤ C

k∏
i=1

∥∥�(hi)
∥∥

q-var;[0,T ], (54)

for all h1, . . . , hk ∈Hd
1 , s, t ∈ [0, T ] and a, b, c = 1, . . . , d . Then

lim
n→∞

∥∥∥∥∥
2n−1∑
i=0

ψtni

(
X3

tni ,tni+1

)∥∥∥∥∥
L2(�)

= 0. (55)

Proof. First note that∥∥∥∥∥
2n−1∑
i=0

ψtni

(
X3

tni ,tni+1

)∥∥∥∥∥
L2(�)

≤
∥∥∥∥∥

2n−1∑
i=0

ψtni

((
X3

tni ,tni+1

)S)∥∥∥∥∥
L2(�)

+
∥∥∥∥∥

2n−1∑
i=0

ψtni

((
X3

tni ,tni+1

)NS)∥∥∥∥∥
L2(�)

, (56)

where (X3)S denotes the symmetric part of X3 and

(
X3

s,t

)NS = X3
s,t − (X3

s,t

)S
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denotes the non-symmetric part. The two parts will be tackled separately, and since∥∥∥∥∥
2n−1∑
i=0

ψtni

((
X3

tni ,tni+1

)S)∥∥∥∥∥
L2(�)

≤
d∑

a,b,c=1

∥∥∥∥∥
2n−1∑
i=0

ψ
(a,b,c)

tni

((
X3

tni ,tni+1

)S)(a,b,c)

∥∥∥∥∥
L2(�)

,

and similarly for the non-symmetric part, we will study the convergence of each fixed (a, b, c)th tensor component
individually and henceforth suppress the notation for the component in the superscript of ψ .

(a) To begin, we will prove that

lim
n→∞

∥∥∥∥∥
2n−1∑
i=0

ψtni

(
X3

tni ,tni+1

)S∥∥∥∥∥
L2(�)

= 0. (57)

Since

(
X3

s,t

)S = 1

6
Xs,t ⊗ Xs,t ⊗ Xs,t ,

this is equivalent to showing that

E

[(
2n−1∑
i=0

ψtni

((
X3

tni ,tni+1

)S)(a,b,c)

)2]
= 1

36

2n−1∑
i,j=0

E
[
ψtni

ψtnj
X

(a)

�n
i
X

(b)

�n
i
X

(c)

�n
i
X

(a)

�n
j
X

(b)

�n
j
X

(c)

�n
j

]

converges to zero as n → ∞. First define

h1 := 1(a)

�n
i
, h2 := 1(b)

�n
i
, h3 := 1(c)

�n
i
, h4 := 1(a)

�n
j
, h5 := 1(b)

�n
j

and h6 := 1(c)

�n
j
.

Note that for k = 1, . . . ,6, we have∥∥�(hk)
∥∥

q-var;[0,T ] = ∥∥R(tni+1, ·
)− R
(
tni , ·)∥∥

q-var;[0,T ] or
∥∥R(tnj+1, ·

)− R
(
tnj , ·)∥∥

q-var;[0,T ]

≤ C2− n
ρ

and

‖hk‖Hd
1
=
√

σ 2
(
tni , tni+1

)
or
√

σ 2
(
tnj , tnj+1

)
≤
√∥∥R(tni+1, ·

)− R
(
tni , ·)∥∥

q-var;[0,T ] or
√∥∥R(tnj+1, ·

)− R
(
tnj , ·)∥∥

q-var;[0,T ]

≤ C2− n
2ρ .

Recall from Lemma 4.7 that

E

[
ψtni

ψtnj

6∏
k=1

I1(hk)

]
=: E[D6

h1,h2,h3,h4,h5,h6
ψtni

ψtnj

]+∑
σ∈S6

Cσ,1Aσ,1 + Cσ,2Aσ,2 + Cσ,3Aσ,3.

For the first term on the right side of the above expression, we have

2n−1∑
i,j=0

E
[
D6

h1,h2,h3,h4,h5,h6
ψtni

ψtnj

]≤ C

2n−1∑
i,j=0

6∏
k=1

∥∥�(hk)
∥∥

q-var;[0,T ] ≤ C2−2n( 3
ρ
−1)

,

which vanishes as n → ∞ since ρ < 2.
For the Aσ,1 terms we have

2n−1∑
i,j=0

E
[
D4

hσ(1),hσ(2),hσ(3),hσ(4)
ψtni

ψtnj

]〈hσ(5), hσ(6)〉Hd
1
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≤
2n−1∑
i,j=0

4∏
k=1

∥∥�(hσ(k))
∥∥

q-var;[0,T ]‖hσ(5)‖Hd
1
‖hσ(6)‖Hd

1

≤ C2−2n( 5
2ρ

−1) → 0,

and similarly for the Aσ,2 terms we have

2n−1∑
i,j=0

E
[
D2

hσ(1),hσ(2)
ψtni

ψtnj

]〈hσ(3), hσ(4)〉Hd
1
〈hσ(5), hσ(6)〉Hd

1

≤
2n−1∑
i,j=0

∥∥�(hσ(1))
∥∥

q-var;[0,T ]
∥∥�(hσ(2))

∥∥
q-var;[0,T ]

6∏
k=3

‖hσ(k)‖Hd
1

≤ C2−2n( 2
ρ
−1) → 0.

Finally for the Aσ,3 terms we have two cases: either

〈hσ(1), hσ(2)〉Hd
1
〈hσ(3), hσ(4)〉Hd

1
〈hσ(5), hσ(6)〉Hd

1
= R

(
tni tni+1
tnj tnj+1

)3

,

or

〈hσ(1), hσ(2)〉Hd
1
〈hσ(3), hσ(4)〉Hd

1
〈hσ(5), hσ(6)〉Hd

1
= R

(
tni tni+1
tnj tnj+1

)
σ 2(tni , tni+1

)
σ 2(tnj , tnj+1

)
.

In either case, since∣∣∣∣R
(

tni tni+1
tnj tnj+1

)∣∣∣∣ , σ 2(tni , tni+1

)
, σ 2(tnj , tnj+1

)≤ C

2
n
ρ

,

we have

2n−1∑
i,j=0

E[ψtni
ψtnj

]〈hσ(1), hσ(2)〉Hd
1
〈hσ(3), hσ(4)〉Hd

1
〈hσ(5), hσ(6)〉Hd

1

≤ C

⎛
⎝2n−1∑

i,j=0

R

(
tni tni+1
tnj tnj+1

)ρ⎞⎠
1
ρ (2n−1∑

i,j=0

2
−2nρ′

ρ

) 1
ρ′

≤ C‖R‖ρ-var;[0,T ]2 2
−2n( 1

ρ
− 1

ρ′ )

≤ C‖R‖ρ-var;[0,T ]2 2−2n( 2
ρ
−1) → 0.

(b) We will now move on to show that

lim
n→∞

∥∥∥∥∥
2n−1∑
i=0

ψtni

(
X3

tni ,tni+1

)NS

∥∥∥∥∥
L2(�)

= 0. (58)

Let Xπ(k) denote the piece-wise linear approximation of X over π(k), and let Xπ(k) = (1,X1(π(k)),X2(π(k)),

X3(π(k))) = S3(X
π(k)) denote its canonical lift to a geometric rough path.

Next, define

(
X3

s,t

)NS
(�l+1) := (X3

s,t

)NS(
π(l + 1)

)− (X3
s,t

)NS(
π(l)
)
.
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Since (X3
tni ,tni+1

)NS(π(n)) = 0, we have

(
X3

tni ,tni+1

)NS = lim
m→∞

m∑
k=1

(
X3

tni ,tni+1

)NS
(�n+k) for every n ∈ N and i = 0,1, . . . ,2n − 1,

where the limit is taken in L2(�).
We want to show that∥∥∥∥∥

2n−1∑
i=0

ψtni

((
X3

tni ,tni+1

)NS(
π(n + m)

))(a,b,c)

∥∥∥∥∥
L2(�)

→ 0

uniformly for all m as n → ∞. To begin, let

sk,i
u := tni + u

2n+k
= tn+k

u+i2k , (59)

and we will denote the intervals

�i
uL := [sk+1,i

2u , s
k+1,i
2u+1

]
, �i

uR := [sk+1,i
2u+1 , s

k+1,i
2u+2

]
,

�i
u := �i

uL ∪ �i
uR = [sk,i

u , s
k,i
u+1

]⊂ [tni , tni+1

]
, ∀u = 0, . . .2k − 1.

(60)

Note that we suppress the dependence on k and n in the notation for the variables on the left. The following computation
on G3(Rd) can be verified easily; for f,g ∈R

d we have

exp(f ) ⊗ exp(g) =
(

1, f + g,
(f + g)⊗2

2
+ 1

2
[f,g], (f + g)⊗3

6
+ N(f,g)

)
,

where

N(f,g) := 1

4

(
(f + g) ⊗ [f,g] + [f,g] ⊗ (f + g)

)+ 1

12

([
f, [f,g]]+ [g, [g,f ]]).

Using the above expression with f = X�i

uL
and g = X�i

uR
, for k = 1, . . . ,m we obtain the following identity on T 3(Rd):

2k−1⊗
u=0

exp(X�i

uL
) ⊗ exp(X�i

uR
) −

2k−1⊗
u=0

exp(X�i
u
)

=
2k−1⊗
u=0

[(
1,X�i

u
,

1

2
X⊗2

�i
u
,

1

6
X⊗3

�i
u

)
+
(

0,0,
1

2
[X�i

uL
,X�i

uR
],0

)
+ (0,0,0,N(X�i

uL
,X�i

uR
)
)]

−
2k−1⊗
u=0

(
1,X�i

u
,

1

2
X⊗2

�i
u
,

1

6
X⊗3

�i
u

)

=
2k−1∑
u=0

(
0,0,

1

2
[X�i

uL
,X�i

uR
],M(X�i

uL
,X�i

uR
) + N(X�i

uL
,X�i

uR
)

)
,

where

M(X�i

uL
,X�i

uR
) :=

u−1∑
r=0

X�i
r
⊗ 1

2
[X�i

uL
,X�i

uR
] + 1

2
[X�i

uL
,X�i

uR
] ⊗

2k−1∑
r=u+1

X�i
r

= X
tni ,s

k,i
u

⊗ 1

2
[X�i

uL
,X�i

uR
] + 1

2
[X�i

uL
,X�i

uR
] ⊗ X

s
k,i
u+1,t

n
i+1

.
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This means that

X3
tni ,tni+1

(
π(n + k + 1)

)− X3
tni ,tni+1

(
π(n + k)

)= 2k−1∑
u=0

Mu + Nu,

where we use Mu and Nu as short-hand for M(X�i

uL
,X�i

uR
) and N(X�i

uL
,X�i

uR
) respectively. This in turn gives us

(
X3

tni ,tni+1

)NS
(�n+k) =

2k−1∑
u=0

Mu + Nu,

since

X3
tni ,tni+1

(
π(n + k + 1)

)− X3
tni ,tni+1

(
π(n + k)

)
= (X3

tni ,tni+1

)S(
π(n + k + 1)

)− (X3
tni ,tni+1

)S(
π(n + k)

)+ (X3
tni ,tni+1

)NS
(�n+k)

= exp(Xtni ,tni+1
) − exp(Xtni ,tni+1

) + (X3
tni ,tni+1

)NS
(�n+k)

= (X3
tni ,tni+1

)NS
(�n+k).

Thus, we obtain

E

[(
2n−1∑
i=0

ψtni

((
X3

tni ,tni+1

)NS(
π(n + m)

))(a,b,c)

)2]

= E

[(
2n−1∑
i=0

ψtni

m∑
k=1

((
X3

tni ,tni+1

)NS
(�n+k)
)(a,b,c)

)2]

=
2n−1∑
i,j=0

E

[
ψtni

ψtnj

m∑
k=1

((
X3

tni ,tni+1

)NS
(�n+k)
)(a,b,c)

m∑
l=1

((
X3

tnj ,tnj+1

)NS
(�n+l )
)(a,b,c)

]

=
2n−1∑
i,j=0

m∑
k,l=1

2k−1∑
u=0

2l−1∑
v=0

E
[
ψtni

ψtnj
(Mu + Nu)

(a,b,c)(Mv + Nv)
(a,b,c)
]
. (61)

In what follows, it does not matter to the analysis which particular subinterval of �i
u, �

j
v , �n

i or �n
j is present in the

terms. Hence we will use the notation

�u∗ = �i
uL,�i

uR or �i
u, �v∗ = �

j

vL,�
j

vR or �j
v,

�i∗ = [tni , sk,i
u

]
or
[
s
k,i
u+1, t

n
i+1

]
, �j∗ = [tnj , sl,j

v

]
or
[
s
l,j

v+1, t
n
j+1

]
,

and

R

(
�u∗
�v∗

)
:= 〈1�∗

u
,1�∗

v
〉H1 = R

(
a1 a2
b1 b2

)
,
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where [a1, a2] = �i
uL,�i

uR or �i
u, and [b1, b2] = �

j

vL,�
j

vR or �
j
v . R
(�u∗

�i∗
)
, R
(�u∗

�j∗
)
, R
(�u∗

�u∗
)
, R
(�v∗

�i∗
)
, R
(�v∗

�j∗
)

and

R
(�v∗

�v∗
)

can be defined in the same manner, and we have the bounds

∣∣∣∣R
(

�u∗
�v∗

)∣∣∣∣ ,
∣∣∣∣R
(

�u∗
�u∗

)∣∣∣∣ ,
∣∣∣∣R
(

�u∗
�i∗

)∣∣∣∣ ,
∣∣∣∣R
(

�u∗
�j∗

)∣∣∣∣≤ ∥∥R(�u∗ , ·)∥∥
q-var;[0,T ]

= ∥∥�(1�u∗ )
∥∥

q-var;[0,T ] ≤ C

2
n+k
ρ

,

∣∣∣∣R
(

�u∗
�v∗

)∣∣∣∣ ,
∣∣∣∣R
(

�v∗
�v∗

)∣∣∣∣ ,
∣∣∣∣R
(

�v∗
�i∗

)∣∣∣∣ ,
∣∣∣∣R
(

�v∗
�j∗

)∣∣∣∣≤ ∥∥R(�v∗ , ·)∥∥
q-var;[0,T ]

= ∥∥�(1�v∗ )
∥∥

q-var;[0,T ] ≤ C

2
n+l
ρ

.

(62)

Using the notation

R
�i

u×�
j
v
:=
∣∣∣∣∣R
(

s
k,i
2u s

k,i
2u+1

s
l,j

2v s
l,j

2v+1

)∣∣∣∣∣+
∣∣∣∣∣R
(

s
k,i
2u+1 s

k,i
2u+2

s
l,j

2v s
l,j

2v+1

)∣∣∣∣∣+
∣∣∣∣∣R
(

s
k,i
2u s

k,i
2u+1

s
l,j

2v+1 s
l,j

2v+2

)∣∣∣∣∣+
∣∣∣∣∣R
(

s
k,i
2u+1 s

k,i
2u+2

s
l,j

2v+1 s
l,j

2v+2

)∣∣∣∣∣ ,
note that

2n−1∑
i,j=0

2k−1∑
u=0

2l−1∑
v=0

∣∣∣∣R
(

�u∗
�v∗

)∣∣∣∣
ρ

≤
2n−1∑
i,j=0

2k−1∑
u=0

2l−1∑
v=0

R
ρ

�i
u×�

j
v

≤ 4ρ‖R‖ρ

ρ-var;[0,T ]2

for all k, l ∈ N.
For k = 1, . . .6, let yk denote a, b or c. Returning to (61), we see that the last line can be expanded to include terms of

the type M
(a,b,c)
u M

(a,b,c)
v :

E
[
ψtni

ψtnj
X

(y1)
�u∗ X

(y2)
�u∗ X

(y3)
�i∗ X

(y4)
�v∗ X

(y5)
�v∗ X

(y6)
�j∗
]
, (63)

terms coming from N
(a,b,c)
u N

(a,b,c)
v :

E
[
ψtni

ψtnj
X

(y1)
�u∗ X

(y2)
�u∗ X

(y3)
�u∗ X

(y4)
�v∗ X

(y5)
�v∗ X

(y6)
�v∗
]
, (64)

and terms arising from M
(a,b,c)
u N

(a,b,c)
v :

E
[
ψtni

ψtnj
X

(y1)
�u∗ X

(y2)
�u∗ X

(y3)
�i∗ X

(y4)
�v∗ X

(y5)
�v∗ X

(y6)
�v∗
]
. (65)

To account for the remaining N
(a,b,c)
u M

(a,b,c)
v terms, we simply swap u and v in the third case. Note also that with our

short-hand notation, as an example, X
(y1)
�u∗ may not be equal to X

(y2)
�u∗ even if y1 = y2 since �u∗ may be one of several

intervals.
Since Mu is anti-symmetric with respect to X�

uL
and X�

uR
, we can assume that y1 �= y2 in (63) and (65), and y4 �= y5

in (63). In each of the three cases, we will use I1(hk) to denote X(yk) for k = 1, . . . ,6; for example in (63), h1 := 1(y1)
�∗

u

and I1(h1) = X
(y1)
�u∗ . Now applying Lemma 4.7, we have

E

[
ψtni

ψtnj

6∏
k=1

I1(hk)

]
= E
[
D6

h1,h2,h3,h4,h5,h6
ψtni

ψtnj

]

+
∑
σ∈S6

Cσ,1Aσ,1 + Cσ,2Aσ,2 + Cσ,3Aσ,3,

where we recall that

Aσ,1 := E
[
D4

hσ(1),hσ(2),hσ(3),hσ(4)
ψtni

ψtnj

]〈hσ(5), hσ(6)〉Hd
1
,
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Aσ,2 := E
[
D2

hσ(1),hσ(2)
ψtni

ψtnj

]〈hσ(3), hσ(4)〉Hd
1
〈hσ(5), hσ(6)〉Hd

1
,

Aσ,3 := E[ψtni
ψtnj

]〈hσ(1), hσ(2)〉Hd
1
〈hσ(3), hσ(4)〉Hd

1
〈hσ(5), hσ(6)〉Hd

1
.

We will show that for each of these terms, the sum over all the sub-intervals converges to zero as n → ∞.
For the first term, from (54) we have

E
[
D6

h1,h2,h3,h4,h5,h6
ψtni

ψtnj

]≤ C

6∏
i=1

∥∥�(hi)
∥∥

q-var;[0,T ].

Looking at each of the three types of terms (63), (64) and (65), we see that at least two of the hi ’s are 1�u∗ , and another
two of the hi ’s are 1�v∗ . Thus we obtain

2n−1∑
i,j=0

m∑
k,l=1

2k−1∑
u=0

2l−1∑
v=0

E
[
D6

h1,h2,h3,h4,h5,h6
ψtni

ψtnj

]≤ C

2n−1∑
i,j=0

m∑
k,l=1

2k−1∑
u=0

2l−1∑
v=0

1

2(n+k) 2
ρ

1

2(n+l) 2
ρ

≤ C

2n−1∑
i,j=0

1

22n( 2
ρ
)

∞∑
k,l=1

1

2k( 2
ρ
−1)

1

2l( 2
ρ
−1)

≤ C

22n( 2
ρ
−1)

→ 0

since ρ < 2.
For the Aσ,1 terms, we have two cases:

(i) 〈hσ(5), hσ(6)〉Hd
1
= R
(�u∗

�v∗
)
:

In all three types of terms (63), (64) and (65), at least one of {hσ(1), hσ(2), hσ(3), hσ(4)} equals 1�u∗ , and another
one in the set equals 1�v∗ . Applying the bounds in (62), we get

2n−1∑
i,j=0

m∑
k,l=1

2k−1∑
u=0

2l−1∑
v=0

E
[
D4

hσ(1),hσ(2),hσ(3),hσ(4)
ψtni

ψtnj

]〈hσ(5), hσ(6)〉Hd
1
,

≤ C

2n−1∑
i,j=0

m∑
k,l=1

2k−1∑
u=0

2l−1∑
v=0

4∏
r=1

∥∥�(hσ(r))
∥∥

q-var;[0,T ]
∣∣〈hσ(5), hσ(6)〉Hd

1

∣∣

≤ C

2n−1∑
i,j=0

m∑
k,l=1

2k−1∑
u=0

2l−1∑
v=0

2
−(n+k)

ρ 2
−(n+l)

ρ

∣∣∣∣R
(

�u∗
�v∗

)∣∣∣∣

≤ C

m∑
k,l=1

⎛
⎝2n−1∑

i,j=0

2k−1∑
u=0

2l−1∑
v=0

R

(
�u∗
�v∗

)ρ⎞⎠
1
ρ (2n−1∑

i,j=0

2k−1∑
u=0

2l−1∑
v=0

2−(n+k)(
ρ′
ρ

)2−(n+l)(
ρ′
ρ

)

) 1
ρ′

≤ C2
−2n( 1

ρ
− 1

ρ′ )‖R‖ρ-var;[0,T ]2

m∑
k,l=1

2
−k( 1

ρ
− 1

ρ′ )2
−l( 1

ρ
− 1

ρ′ )

≤ C2−2n( 2
ρ
−1)‖R‖ρ-var;[0,T ]2

∞∑
k,l=1

2−k( 2
ρ
−1)2−l( 2

ρ
−1) → 0.

(ii) 〈hσ(5), hσ(6)〉Hd
1
�= R
(�u∗

�v∗
)
:

We will go through each of the three types of terms (63), (64) and (65) to count the number of quantities with

increments �u∗ or �v∗ , which yield the factors 2
−(n+k)

ρ and 2
−(n+l)

ρ respectively.
(a) M

(a,b,c)
u M

(a,b,c)
v terms:
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We have five possibilities:

〈hσ(5), hσ(6)〉Hd
1
= R

(
�u∗
�i∗

)
,R

(
�u∗
�j∗

)
,R

(
�v∗
�i∗

)
,R

(
�v∗
�j∗

)
or R

(
�i∗
�j∗

)
; (66)

we need not consider the cases R
(�u∗

�u∗
)

or R
(�v∗

�v∗
)

since y1 �= y2 and y4 �= y5 in (63).
If 〈hσ(5), hσ(6)〉Hd

1
is equal to either of the first two quantities on the right of (66), then one of {hσ(1), hσ(2),

hσ(3), hσ(4)} must be equal to 1�u∗ and another two in the set must be equal to 1�v∗ . If 〈hσ(5), hσ(6)〉Hd
1

is equal
to the third or the fourth quantity in (66), we have the same count with u and v switched.

If 〈hσ(5), hσ(6)〉Hd
1
= R
( �i∗

�j∗
)
, then without loss of generality,

hσ(1) and hσ(2) = 1�u∗ , hσ(3) and hσ(4) = 1�v∗ .

(b) N
(a,b,c)
u N

(a,b,c)
v terms:

If 〈hσ(5), hσ(6)〉Hd
1

= R
(�u∗

�u∗
)
, then one of {hσ(1), hσ(2), hσ(3), hσ(4)} must equal 1�u∗ and another two in

the set must equal 1�v∗ . By switching u and v, we can resolve the only other case 〈hσ(5), hσ(6)〉Hd
1

= R
(�v∗

�v∗
)

similarly.
(c) M

(a,b,c)
u N

(a,b,c)
v terms:

There are only three possibilities

〈hσ(5), hσ(6)〉Hd
1
= R

(
�u∗
�i∗

)
,R

(
�v∗
�v∗

)
or R

(
�v∗
�i∗

)
,

and we need not consider the case R
(�u∗

�u∗
)

since y1 �= y2 in (65). If 〈hσ(5), hσ(6)〉Hd
1

is equal to R
(�u∗

�i∗
)
, then

one of {hσ(1), hσ(2), hσ(3), hσ(4)} must be equal to 1�u∗ and another two in the set must be equal to 1�v∗ . If
〈hσ(5), hσ(6)〉Hd

1
is equal to the second or third quantity, the same count applies with u and v switched.

Thus in each case, applying the bounds in (62) yields

4∏
r=1

∥∥�(hσ(r))
∥∥

q-var;[0,T ]
∣∣〈hσ(5), hσ(6)〉Hd

1

∣∣≤ C2
−2(n+k)

ρ 2
−2(n+l)

ρ , (67)

which gives us

2n−1∑
i,j=0

m∑
k,l=1

2k−1∑
u=0

2l−1∑
v=0

E
[
D4

hσ(1),hσ(2),hσ(3),hσ(4)
ψtni

ψtnj

]〈hσ(5), hσ(6)〉Hd
1

≤ C

2n−1∑
i,j=0

m∑
k,l=1

2k−1∑
u=0

2l−1∑
v=0

2−(n+k) 2
ρ 2−(n+l) 2

ρ

≤ C2−2n( 2
ρ
−1)

∞∑
k,l=1

2−k( 2
ρ
−1)2−l( 2

ρ
−1) → 0.

For the Aσ,2 terms, when we consider 〈hσ(3), hσ(4)〉Hd
1

and 〈hσ(5), hσ(6)〉Hd
1
, we have three cases: either both, one, or

none of them are equal to R
(�u∗

�v∗
)
.

(i) 〈hσ(3), hσ(4)〉Hd
1

and 〈hσ(5), hσ(6)〉Hd
1
= R
(�u∗

�v∗
)
:

(Note that this does not imply that they are equal to one another since �u∗ and �v∗ can be one of several intervals.)
Observe that

∣∣〈hσ(3), hσ(4)〉Hd
1

∣∣≤ ∣∣∣∣R
(

�u∗
�v∗

)∣∣∣∣
ρ
2
∣∣∣∣R
(

�u∗
�v∗

)∣∣∣∣
1− ρ

2 ≤ CR
ρ
2

�i
u×�

j
v

2
−(n+k)

ρ
(1− ρ

2 )
,
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and

∣∣〈hσ(5), hσ(6)〉Hd
1

∣∣≤ ∣∣∣∣R
(

�u∗
�v∗

)∣∣∣∣
ρ
2
∣∣∣∣R
(

�u∗
�v∗

)∣∣∣∣
1− ρ

2 ≤ CR
ρ
2

�i
u×�

j
v

2
−(n+l)

ρ
(1− ρ

2 )
.

Thus we obtain

2n−1∑
i,j=0

m∑
k,l=1

2k−1∑
u=0

2l−1∑
v=0

E
[
D2

hσ(1),hσ(2)
ψtni

ψtnj

]〈hσ(3), hσ(4)〉Hd
1
〈hσ(5), hσ(6)〉Hd

1

≤ C

m∑
k,l=1

2
−(n+k)

ρ
(1− ρ

2 )2
−(n+l)

ρ
(1− ρ

2 )
2n−1∑
i,j=0

2k−1∑
u=0

2l−1∑
v=0

R
ρ

�i
u×�

j
v

≤ C2−2n( 1
ρ
− 1

2 )
∞∑

k,l=1

2−k( 1
ρ
− 1

2 )2−l( 1
ρ
− 1

2 )‖R‖ρ

ρ-var;[0,T ]2 → 0,

since 1
ρ

− 1
2 > 0.

(ii) WLOG, assume 〈hσ(3), hσ(4)〉Hd
1
= R
(�u∗

�v∗
)
, 〈hσ(5), hσ(6)〉Hd

1
�= R
(�u∗

�v∗
)
:

As before, we will use the bounds in (62) to show that

∥∥�(hσ(1))
∥∥

q-var;[0,T ]
∥∥�(hσ(2))

∥∥
q-var;[0,T ]

∣∣〈hσ(5), hσ(6)〉Hd
1

∣∣≤ C2
−(n+k)

ρ 2
−(n+l)

ρ . (68)

(a) M
(a,b,c)
u M

(a,b,c)
v terms:

Again we have five possibilities,

〈hσ(5), hσ(6)〉Hd
1
= R

(
�u∗
�i∗

)
,R

(
�u∗
�j∗

)
,R

(
�v∗
�i∗

)
,R

(
�v∗
�j∗

)
or R

(
�i∗
�j∗

)
, (69)

and we need not consider the cases R
(�u∗

�u∗
)

or R
(�v∗

�v∗
)

since y1 �= y2 and y4 �= y5 in (63).
If 〈hσ(5), hσ(6)〉Hd

1
is equal to either of the first two quantities on the right of (69), then either hσ(1) or hσ(2)

is equal to 1�v∗ . If 〈hσ(5), hσ(6)〉Hd
1

is equal to the third or fourth quantity, then either hσ(1) or hσ(2) is equal to
1�u∗ .

If 〈hσ(5), hσ(6)〉Hd
1
= R
( �i∗

�j∗
)
, then we must have hσ(1) = 1�u∗ and hσ(2) = 1�v∗ , or vice versa.

(b) N
(a,b,c)
u N

(a,b,c)
v terms:

If 〈hσ(5), hσ(6)〉Hd
1
= R
(�u∗

�u∗
)

(resp. R
(�v∗

�v∗
)
), then both hσ(1) and hσ(2) must be equal to 1�v∗ (resp. 1�u∗ ).

(c) M
(a,b,c)
u N

(a,b,c)
v terms:

There are only three possibilities,

〈hσ(5), hσ(6)〉Hd
1
= R

(
�u∗
�i∗

)
,R

(
�v∗
�v∗

)
or R

(
�v∗
�i∗

)
,

and we need not consider the case R
(�u∗

�u∗
)

since y1 �= y2 in (65). If 〈hσ(5), hσ(6)〉Hd
1

is equal to R
(�u∗

�i∗
)
, then

both hσ(1) and hσ(2) are equal to 1�v∗ . If 〈hσ(5), hσ(6)〉Hd
1

is equal to R
(�v∗

�v∗
)

or R
(�v∗

�i∗
)
, then either hσ(1) or

hσ(2) is equal to 1�u∗ .
Thus we obtain

2n−1∑
i,j=0

m∑
k,l=1

2k−1∑
u=0

2l−1∑
v=0

E
[
D2

hσ(1),hσ(2)
ψtni

ψtnj

]〈hσ(3), hσ(4)〉Hd
1
〈hσ(5), hσ(6)〉Hd

1

≤
m∑

k,l=1

⎛
⎝2n−1∑

i,j=0

2k−1∑
u=0

2l−1∑
v=0

∣∣∣∣R
(

�u∗
�v∗

)∣∣∣∣
ρ
⎞
⎠

1
ρ (2n−1∑

i,j=0

2k−1∑
u=0

2l−1∑
v=0

2−(n+k)(
ρ′
ρ

)2−(n+l)(
ρ′
ρ

)

) 1
ρ′
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≤ ‖R‖ρ-var;[0,T ]2

m∑
k,l=1

2
−2n( 1

ρ
− 1

ρ′ )2
−k( 1

ρ
− 1

ρ′ )2
−l( 1

ρ
− 1

ρ′ )

≤ C‖R‖ρ-var;[0,T ]22−2n( 2
ρ
−1) → 0.

(iii) 〈hσ(3), hσ(4)〉Hd
1

and 〈hσ(5), hσ(6)〉Hd
1
�= R
(�u∗

�v∗
)
:

We will show that∥∥�(hσ(1))
∥∥

q-var;[0,T ]
∥∥�(hσ(2))

∥∥
q-var;[0,T ]

∣∣〈hσ(3), hσ(4)〉Hd
1

∣∣∣∣〈hσ(5), hσ(6)〉Hd
1

∣∣ (70)

is bounded above by C2
−2(n+k)

ρ 2
−2(n+l)

ρ , which gives us

2n−1∑
i,j=0

m∑
k,l=1

2k−1∑
u=0

2l−1∑
v=0

E
[
D2

hσ(1),hσ(2)
ψtni

ψtnj

]〈hσ(3), hσ(4)〉Hd
1
〈hσ(5), hσ(6)〉Hd

1

≤ C

2n−1∑
i,j=0

m∑
k,l=1

2k−1∑
u=0

2l−1∑
v=0

2−(n+k) 2
ρ 2−(n+l) 2

ρ

≤ C2−2n( 2
ρ
−1)

m∑
k,l=1

2−k( 2
ρ
−1)2−l( 2

ρ
−1) → 0.

(a) M
(a,b,c)
u M

(a,b,c)
v terms:

Note that in this scenario, neither hσ(1) nor hσ(2) can be equal to 1�i∗ or 1�j∗ , so we essentially have two
cases.

If hσ(1) and hσ(2) = 1�u∗ , we must have

〈hσ(3), hσ(4)〉Hd
1
= R

(
�v∗
�i∗

)
and 〈hσ(5), hσ(6)〉Hd

1
= R

(
�v∗
�j∗

)
,

or vice versa. (The case hσ(1) and hσ(2) = 1�v∗ can be resolved similarly by swapping u and v.)
If instead we have hσ(1) = 1�u∗ and hσ(2) = 1�v∗ , or vice versa, then without loss of generality, it must be the

case that

〈hσ(3), hσ(4)〉Hd
1
= R

(
�u∗
�i∗

)
or R

(
�u∗
�j∗

)
, 〈hσ(5), hσ(6)〉Hd

1
= R

(
�v∗
�j∗

)
or R

(
�v∗
�i∗

)
.

(b) N
(a,b,c)
u N

(a,b,c)
v terms:

Without loss of generality, we have

hσ(1) = 1�u∗ , hσ(2) = 1�v∗ , 〈hσ(3), hσ(4)〉Hd
1
= R

(
�u∗
�u∗

)
, 〈hσ(5), hσ(6)〉Hd

1
= R

(
�v∗
�v∗

)
.

(c) M
(a,b,c)
u N

(a,b,c)
v terms:

Without loss of generality, either

hσ(1), hσ(2) = 1�u∗ , 〈hσ(3), hσ(4)〉Hd
1
= R

(
�v∗
�i∗

)
and 〈hσ(5), hσ(6)〉Hd

1
= R

(
�v∗
�v∗

)
,

or

hσ(1) = 1�u∗ , hσ(2) = 1�v∗ ,

〈hσ(3), hσ(4)〉Hd
1
= R

(
�u∗
�i∗

)
and 〈hσ(5), hσ(6)〉Hd

1
= R

(
�v∗
�v∗

)
.



162 T. Cass and N. Lim

For the Aσ,3 terms, when we consider the three inner-products 〈hσ(1), hσ(2)〉Hd
1
, 〈hσ(3), hσ(4)〉Hd

1
and 〈hσ(5), hσ(6)〉Hd

1
,

we have two cases: either one of them is equal to R
(�u∗

�v∗
)
, or two or more of them are. Observe that it is not possible for

none of them to equal R
(�u∗

�v∗
)
.

(i) If two or more of the inner-products are equal to R
(�u∗

�v∗
)
, then we can use the same computation as in the first case

for the Aσ,2 terms to show that

∣∣〈hσ(1), hσ(2)〉Hd
1

∣∣∣∣〈hσ(3), hσ(4)〉Hd
1

∣∣∣∣〈hσ(5), hσ(6)〉Hd
1

∣∣≤ CR
ρ

�i
u×�

j
v

2
−(n+k)

ρ
(1− ρ

2 )2
−(n+l)

ρ
(1− ρ

2 )
,

and this gives us

2n−1∑
i,j=0

m∑
k,l=1

2k−1∑
u=0

2l−1∑
v=0

E[ψtni
ψtnj

]〈hσ(1), hσ(2)〉Hd
1
〈hσ(3), hσ(4)〉Hd

1
〈hσ(5), hσ(6)〉Hd

1

≤ C2−2n( 1
ρ
− 1

2 )
∞∑

k,l=1

2−k( 1
ρ
− 1

2 )2−l( 1
ρ
− 1

2 )‖R‖ρ

ρ-var;[0,T ]2 → 0.

(ii) Assume that 〈hσ(1), hσ(2)〉Hd
1
= R
(�u∗

�v∗
)
, and 〈hσ(3), hσ(4)〉Hd

1
, 〈hσ(5), hσ(6)〉Hd

1
�= R
(�u∗

�v∗
)
.

Then without loss of generality, we have:
(a) M

(a,b,c)
u M

(a,b,c)
v terms:

〈hσ(3), hσ(4)〉Hd
1
= R

(
�u∗
�i∗

)
or R

(
�u∗
�j∗

)
, 〈hσ(5), hσ(6)〉H1

d
= R

(
�v∗
�i∗

)
or R

(
�v∗
�j∗

)
.

(b) N
(a,b,c)
u N

(a,b,c)
v terms:

〈hσ(3), hσ(4)〉Hd
1
= R

(
�u∗
�u∗

)
, 〈hσ(5), hσ(6)〉Hd

1
= R

(
�v∗
�v∗

)
.

(c) M
(a,b,c)
u N

(a,b,c)
v terms:

〈hσ(3), hσ(4)〉Hd
1
= R

(
�u∗
�i∗

)
, 〈hσ(5), hσ(6)〉Hd

1
= R

(
�v∗
�v∗

)
.

In each case, applying the bounds in (62) gives us

∣∣〈hσ(3), hσ(4)〉Hd
1

∣∣∣∣〈hσ(5), hσ(6)〉Hd
1

∣∣≤ C2
−(n+k)

ρ 2
−(n+l)

ρ ,

which in turn yields

2n−1∑
i,j=0

m∑
k,l=1

2k−1∑
u=0

2l−1∑
v=0

E[ψtni
ψtnj

]〈hσ(1), hσ(2)〉Hd
1
〈hσ(3), hσ(4)〉Hd

1
〈hσ(5), hσ(6)〉Hd

1

≤
m∑

k,l=1

⎛
⎝2n−1∑

i,j=0

2k−1∑
u=0

2l−1∑
v=0

∣∣∣∣R
(

�u∗
�v∗

)∣∣∣∣
ρ
⎞
⎠

1
ρ (2n−1∑

i,j=0

2k−1∑
u=0

2l−1∑
v=0

2−(n+k)(
ρ′
ρ

)2−(n+l)(
ρ′
ρ

)

) 1
ρ′

≤ ‖R‖ρ-var;[0,T ]2

m∑
k,l=1

2
−2n( 1

ρ
− 1

ρ′ )2
−k( 1

ρ
− 1

ρ′ )2
−l( 1

ρ
− 1

ρ′ )

≤ C‖R‖ρ-var;[0,T ]2 2−2n( 2
ρ
−1) → 0. �

Corollary 4.9. For 2 ≤ p < 4, let Y ∈ Cp-var([0, T ];L(Rd;Rm)) denote the path-level solution to

dYt = V (Yt ) ◦ dXt , Y0 = y0,
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where X ∈ C0,p-var([0, T ];G�p�(Rd)) satisfies Condition 1 and its covariance function satisfies

∥∥R(t, ·) − R(s, ·)∥∥
q-var;[0,T ] ≤ C|t − s| 1

ρ , ∀s, t ∈ [0, T ].

Then if V ∈ C�p�+4
b (Rmd;Rmd ⊗R

d), we have

lim‖π(n)‖→0

∥∥∥∥∑
i

V (Ytni
)

(
X2

tni ,tni+1
− 1

2
σ 2(tni , tni+1

)
Id

)∥∥∥∥
L2(�)

= 0. (71)

Furthermore, if 3 ≤ p < 4 and V ∈ C9
b(Rmd ;Rmd ⊗R

d), we have

lim‖π(n)‖→0

∥∥∥∥∑
i

∇V (Ytni
)
(
V (Ytni

)
)(

X3
tni ,tni+1

)∥∥∥∥
L2(�)

= 0. (72)

Proof. We have to show that bounds (91) and (92) of Proposition 5.1 in [7] are satisfied with

ψt = [V (Yt )
]
j

∈R
d ⊗R

d, j = 1, . . . ,m,

to show (71). Similarly, proving bounds (53) and (54) in Proposition 4.8 are satisfied with

ψt = [∇V (Yt )
(
V (Yt )
)]

j
∈ R

d ⊗R
d ⊗R

d, j = 1, . . . ,m,

will yield (72). (53), as well as (91) in Proposition 5.1 of [7], is trivially true since V ∈ C1
b . To show that the bounds hold

for the higher Malliavin derivatives, recall Proposition 4.6, which states that almost surely we have

∥∥Dn
h1,...,hn

Y·
∥∥∞ ≤ Pd(n)

(‖X‖p-var;[0,T ], exp
(
CNX

1;[0,T ]
)) n∏

i=1

∥∥�(hi)
∥∥

q-var;[0,T ]. (73)

As both ‖X‖p-var;[0,T ] and exp(CNX
1;[0,T ]) belong to

⋂
r>0 Lr(�), we have

∥∥Dn
h1,...,hn

Yt

∥∥
Lr(�)

≤ Cn,q

n∏
i=1

∥∥�(hi)
∥∥

q-var;[0,T ] (74)

for any r > 0. Now we simply use the product and chain rule of Malliavin differentiation in conjunction with the fact that
V has bounded derivatives up to the appropriate order. �

5. Correction formula

We are now ready to prove the main result of the paper. As before, π(n) := {tni }, tni := iT
2n , denotes the sequence of dyadic

partitions on [0, T ].
5.1. Main theorem

Theorem 5.1. For 3 ≤ p < 4, let Y ∈ Cp-var([0, T ];L(Rd;Rm)) denote the path-level solution to

dYt = V (Yt ) ◦ dXt , Y0 = y0,

where V ∈ C9
b(Rmd ;Rmd ⊗ R

d), and X ∈ C0,p-var([0, T ];G�p�(Rd)) is a Volterra process which satisfies Condition 1,
and whose kernel satisfies Condition 2 with α < 1

p
. Furthermore, we assume the covariance function satisfies

∥∥R(t, ·) − R(s, ·)∥∥
q-var;[0,T ] ≤ C|t − s| 1

ρ , (75)

for all s, t ∈ [0, T ], and ‖R(·)‖q-var;[0,T ] < ∞. Then almost surely, we have

∫ T

0
Yt ◦ dXt =

∫ T

0
Yt dXt +

m∑
j=1

(
1

2

∫ T

0
tr
[
V (Ys)
]
j

dR(s) + U
(j)
T

)
ej , (76)
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where for j = 1, . . . ,m, U
(j)
T is the limit in L2(�) of

∑
i

∫ tni

0
tr
[
J X

tni ←sV (Ys) − V (Ytni
)
]
j
R
(
�n

i , ds
)

(77)

along the dyadic partitions {tni } of [0, T ].

Proof. Using bounds (41), (45) together with the integrability of X, we can apply dominated convergence theorem to
(40) in Theorem 4.2 to show that

∫ T
0 Yt ◦ dXt is the L2(�) limit of

lim
n→∞
∑

i

Ytni
(Xtni ,tni+1

) + V (Ytni
)
(
X2

tni ,tni+1

)+ ∇V (Ytni
)
(
V (Ytni

)
)(

X3
tni ,tni+1

)
.

Now applying Proposition 3.13 in conjunction with Corollary 4.9 gives us

∫ T

0
Yt dXt = lim

n→∞
∑

i

[
Ytni

(Xtni ,tni+1
) −

m∑
j=1

(∫ tni

0
tr
[
J X

tni ←sV (Ys)
]
j
R
(
�n

i ,ds
))

ej + Ai

]
,

where the limit is also in L2(�) and

Ai := V (Ytni
)

((
X2

tni ,tni+1

)− 1

2
σ 2(tni , tni+1

)
Id

)
+ ∇V (Ytni

)
(
V (Ytni

)
)(

X3
tni ,tni+1

)
.

Following the procedure in Theorem 6.1 of [7], subtracting the two integrals and re-balancing the terms gives us

∫ T

0
Yt ◦ dXt −

∫ T

0
Yt dXt

=
m∑

j=1

(
lim

n→∞
∑

i

∫ tni

0
tr
[
J X

tni ←sV (Ys)
]
j
R
(
�n

i ,ds
)+ 1

2
σ 2(tni , tni+1

)
tr
[
V (Ytni

)
]
j

)
ej

=
m∑

j=1

(
lim

n→∞
∑

i

∫ tni

0
tr
[
J X

tni ←sV (Ys) − V (Ytni
)
]
j
R
(
�n

i , ds
)

+ 1

2
lim

n→∞
∑

i

tr
[
V (Ytni

)
]
j

(
R
(
tni+1, t

n
i+1

)− R
(
tni , tni
)))

ej . (78)

The second term in the last line of the expression above is dominated by

C
∥∥V (Y·)
∥∥

p-var;[0,T ]
∥∥R(·)∥∥

q-var;[0,T ]

by Young’s inequality, and thus converges in L2(�) to

1

2

∫ T

0
tr
[
V (Ys)
]
j

dR(s).

This in turn guarantees the convergence of the first term in L2(�) to the random variable U
(j)
T . Now extracting an almost

sure subsequence allows us to equate both sides of (76) almost surely, and the proof is thus complete. �

In the more regular case 2 ≤ p < 3, we can be more precise in identifying the second term (77) when X is a Volterra
process (cf. Theorem 6.1 in [7]).

Proposition 5.2. For 2 ≤ p < 3, let Y ∈ Cp-var([0, T ];L(Rd;Rm)) denote the path-level solution to X

dYt = V (Yt ) ◦ dXt , Y0 = y0,
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where X ∈ C0,p-var([0, T ];G�p�(Rd)) is a Volterra process satisfying Condition 1 with some ρ ∈ [1, 3
2 ), and whose kernel

satisfies Condition 2 with α < 1
2p

.

Furthermore, assume that V ∈ C6
b(Rmd;Rmd ⊗R

d), and the covariance function satisfies

∥∥R(t, ·) − R(s, ·)∥∥
ρ-var;[0,T ] ≤ C|t − s| 1

ρ , (79)

for all s, t ∈ [0, T ], and ‖R(·)‖q-var;[0,T ] < ∞. Then almost surely we have

∫ T

0
Yt ◦ dXt =

∫ T

0
Yt dXt + ZT ,

where the correction term is given by

Z
(j)
T = 1

2

∫ T

0
tr
[
V (Ys)
]
j

dR(s) +
∫

[0,T ]2
hj (s, t)dR(s, t)

= 1

2

∫ T

0
tr
[
V (Ys)
]
j

dR(s) +
∫ T

0
K∗ ⊗K∗hj (r, r)dr, j = 1, . . . ,m. (80)

with

hj (s, t) := 1[0,t)(s) tr
[
J X

t←sV (Ys) − V (Yt )
]
j
.

Proof. Under the conditions of the theorem, we can invoke Theorem 6.1 from [7] to obtain the first line of (80). To obtain
the second line, we will use Proposition 4.3 from [23], which states that if φ : [0, T ]2 → R is a λ-Hölder bi-continuous
function (one that satisfies Definition 3.7 without necessarily satisfying (17)) with λ > 2α, then

∫
[0,T ]2

φ(s, t)dR(s, t) =
∫ T

0
K∗ ⊗K∗φ(r, r)dr. (81)

Thus, the proof is complete once we show that hj (s, t) is 1
p

-Hölder bi-continuous for all j = 1, . . . ,m since 1
p

> 2α.
Using the fact that

h̃j (s, t) := tr
[
J X

t←sV (Ys) − V (Yt )
]
j

is 1
p

-Hölder bi-continuous, we have, assuming v2 > v1 without loss of generality,

∣∣hj (u, v2) − hj (u, v1)
∣∣= ∣∣h̃j (u, v2 ∨ u) − h̃j (u, v1 ∨ u)

∣∣, u, v1, v2 ∈ [0, T ],
≤ C1|v2 ∨ u − v1 ∨ u| 1

p

≤ C2|v2 − v1|
1
p ,

and similarly,

∣∣hj (u2, v) − hj (u1, v)
∣∣≤ C|u2 − u1|

1
p , v,u1, u2 ∈ [0, T ]. �

Remark 5.3. In the case 3 ≤ p < 4, due to the lack of complementary regularity, we cannot apply the standard criterion
to ensure the 2D integral exists even though 1[0,t)(s) tr[J X

t←sV (Ys) − V (Yt )]j is continuous almost surely on [0, T ]2.
Furthermore, although the integrand is strongly 1

p
-Hölder bi-continuous away from the diagonal, one can check that in

general, (17) fails at the diagonal, which means that we cannot employ (81) from Proposition 4.3 in [23] (it can also be
verified that there would be insufficient Hölder regularity in the weaker sense). Hence, we can only show convergence
in L2(�) rather than almost surely. The question of whether the second part of the correction term can be identified as a
proper 2D Young–Stieltjes integral requires further investigation.

An interesting special case of Theorem 5.1 is when the vector fields defining the RDE commute. In this situation the
UT terms in the correction formula (76) disappear.
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Corollary 5.4. Under the conditions of Theorem 5.1, if in addition the vector fields commute, i.e. [Vi,Vj ] = 0 for all
i, j = 1, . . . , d , then

∫ T

0
Yt ◦ dXt =

∫ T

0
Yt dXt + 1

2

m∑
j=1

(∫ T

0
tr
[
V (Ys)
]
j

dR(s)

)
ej ,

Proof. For any vector field W ∈ C1(Rmd;Rmd), we have

(
J X

t

)−1
W(Yt ) = W(y0) +

d∑
i=1

∫ t

0

(
J X

s

)−1[Vi,W ] ◦ dX(i)
s ,

which can be computed using the RDEs satisfied by Y and (J X)−1, cf. Chapter 20 (Section 4.2) in [16]. Hence, if the
Vi ’s commute, then each Vi is invariant under the flow of Y , and we have

J X
t←sV (Ys) = V (Yt ), 0 ≤ s < t ≤ T . �

5.2. Applications of the correction formula

We present applications of the main theorem to two important special cases. The first is to fractional Brownian motion
in the regime H > 1

4 . The second is to use the commuting case discussed in Corollary 5.4 to obtain Itô formulas for
Gaussian processes.

Theorem 5.5 (Correction formula fBM, H > 1
4 ). For 1 ≤ p < 4, let Y ∈ Cp-var([0, T ];L(Rd;Rm)) denote the path-

level solution to

dYt = V (Yt ) ◦ dXt , Y0 = y0,

where we assume that V ∈ Ck
b (Rmd;Rmd ⊗R

d), with

k =

⎧⎪⎨
⎪⎩

2, 1 ≤ p < 2,

6, 2 ≤ p < 3,

9, 3 ≤ p < 4,

(82)

and X ∈ C0,p-var([0, T ];G�p�(Rd)) is the geometric rough path constructed from the limit of the piecewise-linear approx-
imations of standard fractional Brownian motion with Hurst parameter H > 1

4 . Then almost surely, we have

∫ T

0
Yt ◦ dXt =

∫ T

0
Yt dXt + ZT ,

where the correction term ZT = (Z
(1)
T , . . . ,Z

(m)
T ) is given by

Z
(j)
T = H

∫ T

0
tr
[
V (Ys)
]
j
s2H−1 ds +

∫
[0,T ]2

hj (s, t)dR(s, t), j = 1, . . . ,m,

= H

∫ T

0
tr
[
V (Ys)
]
j
s2H−1 ds +

∫ T

0
K∗ ⊗K∗hj (r, r)dr,

(
when

1

3
< H ≤ 1

2

)
, (83)

with

hj (s, t) := 1[0,t)(s) tr
[
J X

t←sV (Ys) − V (Yt )
]
j
, j = 1, . . . ,m.

Remark 5.6. For simplicity, we use the same notation for the second term of Z
(j)
T for all H > 1

4 , with the understanding
that it denotes the L2(�) limit of (77) when 1

4 < H ≤ 1
3 .

Proof. The proof rests entirely on the following Proposition 5.7, which tells us that fractional Brownian motion fulfills
all the requirements needed to apply Theorem 6.1 of [7] when H > 1

3 , and Theorem 5.1 when 1
4 < H ≤ 1

3 . �
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Proposition 5.7. Let BH be standard fractional Brownian motion with Hurst index H ∈ ( 1
4 ,1), and let K be the square-

integrable kernel associated with it [11]. We have:

(i) For any p > 1
H

the sample paths of BH are almost surely 1
p

-Hölder continuous. Furthermore, there exists a geomet-

ric rough path X ∈ C0,p-var([0, T ];G�p�(Rd)) which is the dp-var -limit of the paths S�p�(Xπ) as ||π || → 0.
(ii) BH satisfies Condition 1 with ρ = 1

2H
and

q =
{

2ρ
ρ+1 if 1

4 < H ≤ 1
3 ,

ρ ∨ 1 if 1
3 < H ≤ 1.

(iii) If 1
4 < H ≤ 1

2 , then the kernel K satisfies Condition 2 with α = 1
2 − H .

(iv) The covariance function, R(s, t) := 1
2 (s2H + t2H − |t − s|2H ), of BH satisfies:

(a) ‖R(t, ·) − R(s, ·)‖q-var;[0,T ] ≤ C|t − s| 1
ρ , if 1

4 < H ≤ 1
2 ,

(b) R(t) = t2H is of bounded variation and thus of finite q-variation for any q ≥ 1.

Proof. The proof uses standard arguments and can be found in Proposition 1.2.5 of [22]. �

We now show that we can recover Itô’s formulas; cf. [2,3,20,28] and [29].

Theorem 5.8 (Itô formulas for Gaussian processes). For 1 ≤ p < 4, let X ∈ C0,p-var([0, T ];G�p�(Rd)) satisfy Condi-
tion 1. Depending on p, we further impose the following conditions:

(i) 1 ≤ p < 2: σ 2(s, t) ≤ C|t − s|θ for some θ > 1 and ‖R(·)‖q-var;[0,T ] < ∞.
(ii) 2 ≤ p < 3: The covariance function satisfies

∥∥R(t, ·) − R(s, ·)∥∥
q-var;[0,T ] ≤ C|t − s| 1

ρ , (84)

for all s, t ∈ [0, T ].
(iii) 3 ≤ p < 4: X is a Volterra process whose kernel satisfies Condition 2 with α < 1

p
. Furthermore, its covariance

function satisfies (84) and ‖R(·)‖q-var;[0,T ] < ∞.

Then almost surely, for f ∈ Ck+2
b (Rd ;R), k defined as in (82), we have

f (XT ) − f (0) =
∫ T

0

〈∇f (Xt ),◦dXt

〉= ∫ T

0

〈∇f (Xt ),dXt

〉+ 1

2

∫ T

0
�f (Xt)dR(t).

Proof. Let Yt = (Y
(1)
t , . . . , Y

(2d)
t ) denote the augmented process(

∂f

∂e1
(Xt ), . . . ,

∂f

∂ed

(Xt ),X
(1)
t , . . .X

(d)
t

)
.

In this case Y satisfies the RDE

dYt = V (Yt ) ◦ dXt , Y0 = (y0,0),

where V (Y ) ∈ R
2d ⊗R

d is represented by the 2d-by-d matrix

V (Yt ) =
[∇2f (Yt )

Id

]
,

and note that ∇2f (Yt ) = ∇2f (Y
(d+1)
t , . . . , Y

(2d)
t ) = ∇2f (Xt ).

Now one can check that [Vi,Vj ] = 0 for all i, j = 1, . . . , d , apply Corollary 5.4, and project back onto the first d

components to obtain the result. �
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