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Abstract. In this paper we will develop a general approach which shows that generalized
“critical relations” of families of locally defined holomorphic maps on the complex plane unfold
transversally. The main idea is to define a transfer operator, which is a local analogue of the
Thurston pullback operator, using holomorphic motions. Assuming a so-called lifting property
is satisfied, we obtain information about the spectrum of this transfer operator and thus about
transversality. An important new feature of our method is that it is not global: the maps we
consider are only required to be defined and holomorphic on a neighbourhood of some finite set.

We will illustrate this method by obtaining transversality for a wide class of one-parameter
families of interval and circle maps, for example for maps with flat critical points, but also for
maps with complex analytic extensions such as certain polynomial-like maps. As in Tsujii’s
approach [48, 49], for real maps we obtain positive transversality (where > 0 holds instead of
just 6= 0), and thus monotonicity of entropy for these families, and also (as an easy application)
for the real quadratic family.

This method additionally gives results for unimodal families of the form x 7→ |x|` + c for
` > 1 not necessarily an even integer and c real.
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1. Introduction

This paper is about bifurcations in families of (real and complex) one dimensional dynamical
systems.1 For example, for real one-dimensional dynamical systems, we have a precise combina-
torial description on the dynamics in terms of the so-called kneading sequences. One simple but
very important question is how the kneading sequence varies in families of such systems. For
the real quadratic family fa(x) = x2 + a, it is known that the kneading sequence depends mono-
tonically on the parameter a (with respect to the natural order defined for kneading sequences).
Interestingly the proofs of this result, by Milnor-Thurston, Douady-Hubbard and Sullivan, make

Date: 24 Jan 2019.
1This paper is based on the preprint Monotonicity of entropy and positively oriented transversality for families

of interval maps, see https://arxiv.org/abs/1611.10056
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use of Teichmüller theory, uniqueness in Thurston’s realisation theorem, or quasiconformal rigid-
ity theory and that the map fa is quadratic, see [37, 47] and also [11].

To answer the above monotonicity question it is enough to show that when fna′(0) = 0 for
some a′ ∈ R, then there exists no other parameter a′′ ∈ R for which fna′′(0) = 0 and for which
fa′ and fa′′ also have the same (periodic) kneading sequence.

If d
daf

n
a (0) |a=a′ 6= 0 (which is called transversality) then one has local uniqueness in the

following sense: there exists ε > 0 so that the kneading invariant of fa for a ∈ (a′ − ε, a′),
for a ∈ (a′, a′ + ε) and for a = a′ are all different. It turns out that global uniqueness and
monotonicity follows from

Q :=
d
daf

n
a (0) |a=a′

Dfna′(fa′(0))
> 0

(which we call positive transversality). Tsujii gave an alternative proof of the above monotonicity
for the quadratic family by showing that this inequality holds [48, 49].

For general (complex) holomorphic families of maps with several critical points which all are
eventually periodic there exists a similar expression Q. Again Q 6= 0 implies that the bifurcations
are non-degenerate and hence the corresponding critical relations unfold transversally. In this
paper we show that the inequality Q 6= 0 holds provided the spectrum of some operator A does
not contain 1, and that Q > 0 holds if additionally the spectrum of A is contained in the closed
unit disc and the family of maps is real.

We define this operator A by considering how the speed of a (holomorphic) motion of the
orbits of critical points is lifted under the dynamics. The novelty of our method, described
in Proposition 5.1 and Theorem 6.1, is to show if these holomorphic motions have the lifting
property, i.e. can be lifted infinitely many times over the same domain, then the operator A has
the above spectral properties.

It turns out that the lifting property makes minimal use of the global dynamics of the holo-
morphic extension of the dynamics. Thus we can obtain transversality properties of families ft
of maps defined on open subsets of the complex plane so that f0 has a finite invariant marked
set, e.g., f0 is ‘critically finite’.

The methods developed in this paper give a new and simple proof of well-known results for
families of polynomial maps, rational or entire maps, but also applies to many other families for
which no techniques were available. For example we obtain monotonicity for the family of maps

fc(x) = be−1/|x|` + c

having a flat critical point at 0. We also obtain partial monotonicity for the family

fc(x) = |x|` + c

when ` is large.
As mentioned, the aim of this paper is to deal with families of maps which are only locally

holomorphic. This means that the approach pioneered by Thurston, and developed by Douady
and Hubbard in [13], cannot be applied. In Thurston’s approach, when f is a globally defined
holomorphic map, P is a finite f -forward invariant set containing the postcritical set and the
Thurston map σf : Teich(Ĉ\P )→ Teich(Ĉ\P ) is defined by pulling back an almost holomorphic
structure. It turns out that σf is contracting, see [13, Corollary 3.4]. In Thurston’s result on
the topological realisation of rational maps, Douady & Hubbard [13] use that the dual of the
derivative of the Thurston map σf is equal to the Thurston pushforward operator f∗.

The pushforward operator acts on space of quadratic differentials, and the injectivity of f∗−id
has been used to obtain transversality results for rational maps or even more general spaces of
maps, see Tsujii [48, 49], Epstein [16], Levin [28, 29, 30], Makienko [32], Buff & Epstein [6] and
Astorg [1]. See also earlier [31], [14, Proposition 222], [15]. For a short and elementary proof that
critical relations unfold transversally in the setting of rational maps, see [22]. For the spectrum
of f∗ see also [25], [26], [27], [18] and [7]. In [45], transversality is shown for rational maps for

2This reference was provided by the author.
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which each critical point is mapped into a hyperbolic set, using the uniqueness part of Thurston’s
realisation result.

However if for example f : U → V is a polynomial-like map then each point in the boundary
of V is a singular value, Teich(V \P ) is infinite dimensional, Thurston’s algorithm is only locally
well-defined and it is not clear whether it is locally contracting.

The purpose of our paper is to bypass this issue, by going back to the original Milnor-Thurston
approach. Milnor and Thurston [37] associated to the space of quadratic maps and the combi-
natorial information of a periodic orbit, a map which assigns to a q tuple of points a new q tuple
of points,

F : (z1, ...zq) 7→ (ẑ1, ..., ẑq)

where ẑq = 0 and
fz1(ẑi) = zi+1 mod q

where fc(z) ≡ z2 + c. Since F is many-valued, Milnor & Thurston considered a lift F̃ of this
map to the universal cover and apply Teichmüller theory to show that F̃ is strictly contracting
in the Teichmuller metric of the universal cover.

We bypass this issue by rephrasing their approach locally (via holomorphic motions). This
is done in the set-up of so-called marked maps (and their local deformations) which include
particularly critically finite maps with any number of critical (singular) points. In the first part
of the paper we prove general results, notably the Main Theorem, which show that under the
assumption that some lifting property holds for the deformation, either some critical relation
persists along some non-trivial manifold in parameter space or one has transversality, i.e. the
critical relation unfolds transversally. Here the lifting property is an assumption that sequences
of successive lifts of holomorphic motions are compact. In the second part of the paper, we then
show that this lifting property holds not only in previously considered global cases but also for
interesting classes of maps where the ‘pushforward’ approach breaks down.

More precisely, we define a transfer operator A by its action on infinitesimal holomorphic
motions on P . It turns out that if the lifting property holds, then the spectrum of the operator
A lies inside the unit disc. Moreover, if the operator A has no eigenvalue 1 then transversality
holds; in the real case one has even positive transversality (the sign of some determinant is
positive). One of the main steps in the proof of the Main Theorem is then to show that if
the operator has an eigenvalue 1 then the critical relation persists along a non-trivial manifold
in parameter space. It turns out that for globally defined critically finite maps f the transfer
operator A can be identified with (dual of) f∗.

By verifying the lifting property we recover previous results such as transversality for rational
maps, but also obtain transversality for many interesting families of polynomial-like mappings
and families of maps with essential singularities. For real local maps our approach gives the
‘positive transversality’ condition which first appeared in [48, 49] and therefore monotonicity of
entropy for certain families of real maps.

2. Statement of Results

2.1. The notion of a marked map. A marked map is a map g from the union of a finite set
P0 and an open set U ⊂ C mapping into C such that

• there exists a finite set P ⊃ P0 such that g(P ) ⊂ P and P \ P0 ⊂ U ;
• g|U is holomorphic and g′(x) 6= 0 for x ∈ P \ P0.

Let {c0,1, . . . , c0,ν} denote the (distinct) points in P0 and write c0 = c0(g) = (c0,1, . . . , c0,ν) and

c1 = c1(g) = (g(c0,1), . . . , g(c0,ν)) := (c1,1, c1,2, . . . , c1,ν).

Remark 2.1. So P is a forward invariant set for g, and g is only required to be holomorphic
(and defined) on a neighbourhood of P \ P0. A marked map g does not need to be defined in a
neighbourhood of P0. In applications, points in P0 will be where some extension of g has a critical
point, an (essential) singularity or even where g has a discontinuity. In this sense marked maps
correspond to a generalisation of the notion of critically finite maps.
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2.2. Holomorphic deformations. A local holomorphic deformation of g is a triple (g,G,p)W
with the following properties:

(1) W is an open connected subset of Cν containing c1(g);
(2) p = (p1, p2, . . . , pν) : W → Cν is a holomorphic map, so that p(c1) = c0(g) (and so all

coordinates of p(c1) are distinct).
(3) G : (w, z) ∈W × U 7→ Gw(z) ∈ C is a holomorphic map such that Gc1 = g|U .

Example 2.2. (i) The simplest local holomorphic deformation of g is of course the trivial one:
Gw(z) = g(z), p(w) = c0, ∀w.
(ii) If g is a marked map with ν = 1, i.e., P0 = {c0}, then Gw(z) = g(z)+(w−g(c0)), p(w) ≡ c0,
defines a local holomorphic deformation of g.
(iii) If g is rational map with ν critical points c1, . . . , cν with multiplicity µ1, . . . , µν then there
exists a local holomorphic deformation (g,G,p)W of g so that wi = Gw(pi(w)) is a critical value
of Gw for each w = (w1, . . . , wν) ∈W and each i = 1, . . . , ν, see Appendix C.

2.3. Transversal unfolding of critical relations. Let us fix (g,G,p)W as above. Since
g(P ) ⊂ P and P is a finite set, for each j = 1, 2, . . . , ν, exactly one of the following critical
relations holds:

(a) There exists an integer qj > 0 and µ(j) ∈ {1, 2, . . . , ν} such that gqj (c0,j) = c0,µ(j) and
gk(c0,j) 6∈ P0 for each 1 ≤ k < qj ;

(b) There exist integers 1 ≤ lj < qj such that gqj (c0,j) = glj (c0,j) and gk(c0,j) 6∈ P0 for all
1 ≤ k ≤ qj .

Relabelling these points c0,j , we assume that there is r such that the first alternative happens
for all 1 ≤ j ≤ r and the second alternative happens for r < j ≤ ν.

Define the map
R = (R1, R2, . . . , Rν)

from a neighbourhood of c1 ∈ Cν into Cν as follows: for 1 ≤ j ≤ r,

(2.1) Rj(w) = G
qj−1
w (wj)− pµ(j)(w)

and for r < j ≤ ν,

(2.2) Rj(w) = G
qj−1
w (wj)−G

lj−1
w (wj),

where w = (wj)
ν
j=1.

Definition 2.3. We say that the holomorphic deformation (g,G,p)W of g satisfies the transver-
sality property, if the Jacobian matrix DR(c1) is invertible.

Example 2.4. (i) Assume that (g,G,p)W is a local holomorphic deformation so that for each
w = (w1, . . . , wν) ∈ W , the critical values of Gw are w1, . . . , wν and p1(w), . . . ,pν(w) are the
critical points of Gw. Then Gw(pi(w)) = wi. Hence Rj ≡ 0 in (2.1) or (2.2) correspond to

G
qj
w (pj(w))− pµ(j)(w) ≡ 0 resp. Gqjw (pj(w))−Gljw(pi(w)) ≡ 0.

These equations define the set of parameters w for which the corresponding ‘critical relation’ is
satisfied within the family Gw.
(ii) In Example 2.6(ii) we will consider a holomorphic deformation (g,G,p)W of a map g so
that Gw is not defined (as an analytic map) in pj(w), but nevertheless the above interpretation
is valid.
(iii) If we take the trivial deformation Gw(z) = g(z), p(w) = c0, ∀w ∈ W , then defini-
tions (2.1) or (2.2) take the form Rj(w) = gqj−1(wj) − c0,j′ respectively Rj(w) = gqj−1(wj) −
glj−1(wj). Then DR(c1) is a diagonal matrix with entries Dgqj−1(wj) for 1 ≤ j ≤ r and
Dglj−1(wj)[Dg

qj−lj (glj−1(wj)) − 1] for r < j ≤ ν. So the matrix DR(c1) is non-degenerate iff
Dgqj−lj (glj−1(wj)) 6= 1 for r < j ≤ ν. It follows immediately that the holomorphic deformation
(g,G,p)W satisfies the transversality property if and only if Dgqj−lj (glj (c0,j)) 6= 1 for r < j ≤ ν.
We should emphasise that in this setting the condition R(w) = 0 has nothing to do with the
presence of critical relations.
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2.4. Real marked maps and positive transversality. A marked map g is called real if P ⊂ R
and for any z ∈ U we have z ∈ U and g(z) = g(z). Similarly, a local holomorphic deformation
(g,G,p)W of a real marked map g is called real if for any w = (w1, w2, . . . , wν) ∈W , z ∈ U and
j = 1, 2, . . . , ν, we have w = (w1, w2, . . . , wν) ∈W , Gw(z) = Gw(z), and pj(w) = pj(w).

Definition 2.5. Let (g,G,p)W be a real local holomorphic deformation of a real marked map g.
We say that the unfolding (g,G,p)W satisfies the ‘positively oriented’ transversality property if

(2.3) Q :=
det(DR(c1))∏ν
j=1Dg

qj−1(c1,j)
> 0.

The sign in the previous inequality means that the intersection of the analytic sets Rj = 0
j = 1, . . . , ν, is not only in general position (i.e. ‘transversal’), but that the intersection pattern
is everywhere ‘positively oriented’.

2.5. The lifting property. Let X ⊂ C and Λ be a domain in C which contains 0. As usual,
we say that hλ is a holomorphic motion of X over (Λ, 0), if hλ : X → C satisfies:
(i) h0(x) = x, for all x ∈ X,
(ii) hλ(x) 6= hλ(y) whenever x 6= y and λ ∈ Λ, x, y ∈ X and
(iii) Λ 3 λ 7→ hλ(z) is holomorphic.

Given a holomorphic motion hλ of g(P ) over (Λ, 0), where Λ is a domain in C which contains
0, we say that ĥλ is a lift of hλ over Λ0 ⊂ Λ (with 0 ∈ Λ0) with respect to (g,G,p)W if for all
λ ∈ Λ0,

• ĥλ(c0,j) = pj(c1(λ)) for each j = 1, 2, . . . , ν, with c0,j ∈ g(P ), where

c1(λ) = (hλ(c1,1), hλ(c1,2), . . . , hλ(c1,ν));

• Gc1(λ)(ĥλ(x)) = hλ(g(x)) for each x ∈ g(P ) \ P0.
Clearly such a lift exists, provided Λ0 is contained in a sufficiently small neighbourhood of 0.

We say that the triple (g,G,p)W has the lifting property if for each holomorphic motion h(0)
λ

of g(P ) over (D, 0) there exist ε > 0 and a sequence of holomorphic motions h(k)
λ , k = 1, 2, , . . .

of g(P ) over (Dε, 0) such that for each k ≥ 0,

• h(k+1)
λ is a lift of h(k)

λ over (Dε, 0);
• there exists M > 0 such that |h(k)

λ (x)| ≤M for all x ∈ g(P ) and all λ ∈ Dε.
In the case (g,G,p)W is real, we say it has the real lifting property if the corresponding property
holds for any real-symmetric holomorphic motions h(0)

λ .

2.6. Statement of the Main Theorem.

Main Theorem. Assume that g does not have a parabolic periodic point in P \ P0 and that
(g,G,p)W satisfies the lifting property. Then exactly one of the following holds:

(1) the holomorphic deformation (g,G,p)W of g satisfies the tranversality property;
(2) there exists a neighborhood W ′ of c1 such that {w ∈W ′ : R(w) = 0} is a smooth complex

manifold of positive dimension.
Moreover, if (g,G,p)W is real and satisfies the real lifting property then in (1) ‘the transversality
property’ can be replaced by ‘the ‘positively oriented’ transversality property’.

The statement of this theorem is a combination of the more detailed statements in Theo-
rems 4.1 and 6.1.

2.7. Classical settings where the lifting property holds. In many cases it is easy to check
that the lifting property holds, and therefore the previous theorem applies. Indeed, it is easy to
see that this holds in the setting of polynomial or rational maps, see Section C.
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2.8. Transversality for new families of maps corresponding to classes F , E, Eo. In this
subsection we will discuss two new settings where the current approach can be applied to obtain
transversality.

Let us first consider families of maps fc(z) = f(z) + c. Here f is contained in the space F of
holomorphic maps f : U → V where

(a) U is a bounded open set in C such that 0 ∈ U ;
(b) V is a bounded open set in C;
(c) f : U \ {0} → V \ {0} is an unbranched covering;
(d) V ⊃ B(0; diam(U)) ⊃ U .

Examples of such families are

Example 2.6. (i) fc(z) = zd + c, where U, V are suitably large balls and c ∈ U .
(ii) fc(x) = be−1/|x|` + c where ` ≥ 1, b > 2(e`)1/`, c ∈ U . Here U = U− ∪ U+, U+ = −U−

are topological disks symmetric w.r.t. the real axis and V is a punctured disc. That
f0 ∈ F is proved in Corollary 7.3.

Theorem 2.1. Let f ∈ F , let g = fc1 and for each w ∈W := C define Gw(z) = g(z) + (w− c1)
and p(w) = 0 where we assume that c1 ∈ U . Moreover, assume that there exists q so that
cn = gn−1(c1) ∈ U for all n < q and either cq = 0 or cq ∈ {c1, . . . , cq−1}. Moreover, assume
cn /∈ {0, c1, . . . , cn−1} for 0 < n < q. Then

• (g,G,p)W satisfies the lifting property and transversality holds.
• if (g,G,p)W is real, then positive transversality holds.

Our methods also apply to families of the form fw(z) = wf(z) where f is contained in the
spaces E and Eo defined as follows. Consider holomorphic maps f : D → V such that:

(a) D,V are open sets which are symmetric w.r.t. the real line so that f(D) = V
(b) Let I = D ∩ R then there exists c > 0 so that I ∪ {c} is a (finite or infinite) open

interval and 0 ∈ I, c ∈ int(I). Moreover, f extends continuously to I, f(I) ⊂ R and
limz∈D,z→0 f(z) = 0.

(c) Let D+ be the component of D which contains I ∩ (c,∞), where D+ might be equal to
D. Then u ∈ D \ {0} and v ∈ D+ \ {0}, v 6= u, implies u/v ∈ V .

Let E be the class of maps which satisfy (a),(b),(c) and assumption (d):
(d) f : D → V has no singular values in V \ {0, 1} and c > 0 is minimal such that f has a

positive local maximum at c and f(c) = 1.
Similarly let Eo be the class of maps which satisfy (a),(b),(c) and assumption (e):

(e) f is odd, f : D → V has no singular values in V \ {0,±1} and c > 0 is minimal such that
f has a positive local maximum at c and f(c) = 1.

Here, as usual, we say that v ∈ C is a singular value of a holomorphic map f : D → C if it is a
critical value, or an asymptotic value where the latter means the existence of a path γ : [0, 1)→ D
so that γ(t)→ ∂D and f(γ(t))→ v as t ↑ 1. Note that we do not require here that V ⊃ D.

Classes E and Eo are rich even in the case D = C. See [19] for a general method of constructing
entire (or meromorphic) functions with prescribed asymptotic and critical values. These classes
are also non-empty when V = C and the domain D is a topological disk or even if D not
simply-connected [17]. V can also be a bounded subset of C, see example (v) below.

Concrete examples of functions f of the class E are, where in (i)-(iv) we have D = V = C,
(i) f(z) = 4z(1− z),
(ii) f(z) = 4 exp(z)(1− exp(z)),
(iii) f(z) = [sin(z)]2,
(iv) f(z) = m−m(ez)m exp(−z) when m is a positive even integer.
(v) the unimodal map f : [0, 1]→ [0, 1] defined by

f(x) = exp(2`)
(
− exp(−1/|x− 1/2|`) + exp(−2`)

)
satisfies f(0) = f(1) = 0, f(1/2) = 1 and has a flat critical point at c = 1/2; this map
has an extension f : D → V which is in E and for which V a punctured bounded disc
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provided ` is big enough and D = D− ∪ D+ are disjoint open topological discs so that
D− ∩ R = (0, 1/2) and D+ ∩ R = (1/2, 1), see Lemma 7.5.

Examples of maps in the class Eo are
(vi) f(z) = sin(z) and
(vii) f(z) = (m/2)−m/2em/2zm exp(−z2) when m is a positive odd integer.

Theorem 2.2. Let f ∈ E ∪Eo and for each w ∈W := D+ define Gw(z) = w ·f(z) and p(w) = c.
Take c1 ∈ D, g = Gc1 and assume that there exists q so that cn = gn−1(c1) ∈ D for all n ≤ q
and either cq = c or cq ∈ {c1, . . . , cq−1}. Moreover, assume cn /∈ {c0, c1, . . . , cn−1} for 0 < n < q.
Then

• (g,G,p)W satisfies the lifting property and transversality holds.
• if (g,G,p)W is real, then positive transversality holds.

2.9. Applications to monotonicity of topological entropy of interval maps.

Corollary 2.7. Take f ∈ F and consider the family fc = f + c, c ∈ J = U ∩ R. Then the
kneading sequence K(fc) is monotone increasing in c ∈ J . Moreover, whenever c∗ ∈ J is so that
f qc∗(0) = 0 and fkc∗(0) 6= 0 for all 1 ≤ k < q the following positive transversality condition

(2.4) Q =
d
dcf

q
c (0) |c=c∗

Df q−1
c∗ (c∗)

> 0.

holds and the topological entropy of fc is decreasing in c ∈ J .
The same statement holds for fc = c · f for f ∈ E ∪ E0, except in this case we consider the

topological entropy of the unimodal map f |(0, b) where b = sup{b′ ∈ I : b′ > 0, f(y) > 0 ∀y ∈
(0, b′)}.

Monotonicity of entropy was proved in the case fc(x) = x2 + c in the 1980s as a major result
in unimodal dynamics. By now there are several proofs, see [37, 47, 11, 48, 49]. All these proofs
use complex analytic methods and rely on the fact that fc extends to a holomorphic map on the
complex plane. These methods work well for fc(x) = |x|` + c when ` is a positive even integer
but break down for general ` > 1 and also for other families of non-analytic unimodal maps. No
approach using purely real-analytic method has so far been successful in proving monotonicity
for any ` > 1. The approach to prove monotonicity via the inequality (2.4) was also previously
used by Tsujii [48, 49] for real maps of the form z 7→ z2 + c, c ∈ R.

Remark 2.8. Let U denote the collection of unimodal maps f : R → R which are strictly
decreasing in (−∞, 0] and strictly increasing in [0,∞). The Milnor-Thurston kneading sequence
of f ∈ U is defined as a word K(f) = i1i2 · · · ∈ {1, 0,−1}Z+ , where

ik =


1 if fk(0) > 0
0 if fk(0) = 0
−1 if fk(0) < 0.

For g ∈ U with K(g) = j1j2 · · · , we say that K(f) ≺ K(g) if there is some n ≥ 1 such that ik = jk
for all 1 ≤ k < n and

∏n
k=1 ik <

∏n
k=1 jk.

Remark 2.9 (Positive transversality and topological entropy). Because f has a minimum
at 0, x 7→ f qc∗(x) has a local maximum (minimum) at 0 if Df q−1

c∗ (fc∗(0)) < 0 (resp. > 0). Hence
Equation (2.4) implies that if 0 has (precisely) period q at some parameter c∗, then

d
dcf

q
c (0)

∣∣
c=c∗

< 0 if f qc∗ has a local maximum at 0,
d
dcf

q
c (0)

∣∣
c=c∗

> 0 if f qc∗ has a local minimum at 0.

Hence the number of laps of fnc (and therefore the topological entropy) is non-increasing when
c increases. These inequalities also show that the multiplier λ(c) of the (local) analytic contin-
uation p(c) of this periodic point of period q is strictly increasing. Note that there is a result
of Douady-Hubbard which asserts that in each hyperbolic component of the family of quadratic
maps, the multiplier of the periodic attractor is a univalent function of the parameter. Proving
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(2.4) complements this by also showing that on the real line the multiplier of the periodic point
is increasing.

When fc(x) = |x|` + c, and ` is not an integer, we have not been able able to prove the lifting
property. The next theorem, which will be proved in Appendix A, gives monotonicity when ` is
a large real number (not necessarily an integer), but only if not too many points in the critical
orbit are in the orientation reversing branch.

Theorem A.1. Let `−, `+ ≥ 1 and consider the family of unimodal maps fc = fc,`−,`+ where

fc(x) =

{
|x|`− + c if x ≤ 0
|x|`+ + c if x ≥ 0.

For any integer L ≥ 1 there exists `0 > 1 so that for any q ≥ 1 and any periodic sequence
i = i1i2 · · · ∈ {−1, 0, 1}Z+ of period q so that

(2.5) #{1 ≤ j < q; ij = −1} ≤ L,
and any pair `−, `+ ≥ `0 there is at most one c ∈ R for which the kneading sequence of fc is
equal to i. Moreover, if i is realisable (i.e. if c = c∗ exists) and i has minimal period q then
positive transversality holds

(2.6) Q =
d
dcf

q
c (0) |c=c∗

Df q−1
c∗ (c∗)

> 0.

The proof of this theorem uses delicate geometric arguments, see Appendix A. Note that
there is an elegant algebraic proof of transversality for critically finite quadratic polynomials in
[12, Chapter 19]. This proof also works for x 7→ |x|2n+1 + c provided n is a positive integer, but
it does not give the sign, so no monotonicity for this family can be deduced.

2.10. Monotonicity along curves with one free critical point. The above results require
that all critical points are eventually periodic. Nevertheless, they also give information about
the bifurcations that occur for example along a curve L∗ in parameter space corresponding to
(ν − 1)-critical relations. The results in Section 8 informally state:

Informal Statement of Theorem 8.1. Critical relations unfold everywhere in the same direc-
tion along L∗.

This makes it possible to obtain information about monotonicity of entropy along the bone
curves considered in [38, Figure 11] and [40, Figure 8]. Indeed we obtain an alternative proof for
one of the main technical steps in [38] in Theorem 8.2. Could such a simplification be made in
the case with at least three critical points?

Indeed, it would be interesting to know whether the sign in (2.3) makes it possible to simplify
the existing proofs of Milnor’s conjecture. This conjecture is about the space of real polynomials
with only real critical points, all of which non-degenerate, and asks whether the level sets of
constant topological entropy are connected. The proof of this conjecture in [38] in the cubic case
and in [5] for the general case relies on quasi-symmetric rigidity, but does having a positive sign
in (2.3) everywhere allow for a simplification of the proof of this conjecture?

2.11. Other applications. Our approach can also be applied to many other settings, such as
families of Arnol’d maps, families of piecewise linear maps and to families of intervals maps with
discontinuities (i.e. Lorenz maps), see [23, 24].

Even though we deal with the polynomial and rational case in Appendix C, since it is so
important, in a separate paper [22] we have given a very elementary proof of transversality
and related results in that setting, but without the sign in (2.6) and (2.3). In that paper the
postcritical set is allowed to be infinite. See [16] for an alternative discussion on transversality
for maps of finite type, and [6] when the postcritical set is finite.

Acknowledgment. We are indebted to Alex Eremenko for very helpful discussions concerning
Subsection 7.3. The first author acknowledges the support of ISF grant 1226/17 grant, the second
author acknowledges the support of NSFC grant no: 11731003, and the last author acknowledges
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the support of ERC AdG grant no: 339523 RGDD. We would also like to thank the referee for
some very useful suggestions.

3. Organisation of this paper and outline of the proof

In this paper we consider holomorphic maps g : U → C where U is an open subset of the
complex plane, together with a finite forward invariant marked set P , for example the postcritical
set. These maps do not necessarily have to be rational or transcendental. The aim is to show that
critical relations of such a marked map unfold transversally under a holomorphic deformationG of
g. We do this as follows. First, in Section 4, we associate a linear operator A : C#g(P ) → C#g(P )

by the action of G induced by lifting holomorphic motions on g(P ) and show

1 /∈ spec(A)⇔ transversality,

spec(A) ⊂ D \ {1} and G real =⇒ positive transversality.
More precisely, it is shown in Theorem 4.1 that the dimension of kernel of DR(c1) is equal to
the geometric multiplicity of the eigenvalue 1 of A. In Section 5 we then show

lifting property =⇒ spec(A) ⊂ D

Then in Section 6 we show that provided the lifting property holds, {w;R(w) = 0} is locally
a smooth submanifold whose dimension is equal to the geometric multiplicity of the eigenvalue
1 of A. In applications, it is usually quite easy to show that the parameter set {w;R(w) = 0}
cannot be a manifold of dimension > 0, and therefore that 1 6∈ spec(A) and so transversality
holds.

It follows that transversality essentially follows from the lifting property. In Section C we show
that the lifting property holds in some classical settings. In Sections 7 we will show the lifting
property holds for polynomial-like mappings from a separation property, and for maps from the
classes E , Eo. In this way, we derive transversality for many families of interval maps, for example
for a wide class of one-parameter families of the form fλ(x) = f(x)+λ and fλ(x) = λf(x). As an
easy application, we will recover known transversality results for the family of quadratic maps,
and address some conjectures from the 1980’s about families of interval maps of this type.

In Appendix A we will study the family x 7→ |x|` + c. When ` is not an even integer, we have
not been able to prove the lifting property in general. Nevertheless we will obtain the lifting
property under additional assumptions.

In Appendix B we give some examples for both transversality and the lifting property fails to
hold.

In a companion paper we show that the methods developed in this paper also apply to other
families, including some for which separation property does not hold, such as the Arnol’d family.
We also obtain positively oriented transversality for piecewise linear interval maps and interval
maps with discontinuities (i.e. Lorenz maps), see also [23]

4. The spectrum of a transfer operator A and transversality

In this section we define a transfer operator A associated to the analytic deformation of
a marked map, and show that if 1 is not an eigenvalue of A then transversality holds. If
the spectrum of A is inside the closed unit circle, we will obtain additional information about
transversality, see Section 4.3.

4.1. A transfer operator associated to a deformation of a marked map. In §2.5, we
defined lift of holomorphic motions of g(P ) associated to (g,G,p)W . Obviously there is a linear
map A : C#g(P ) → C#g(P ) such that whenever ĥλ is a lift of hλ, we have

A

({
d

dλ
hλ(x) |λ=0

}
x∈g(P )

)
=

{
d

dλ
ĥλ(x) |λ=0

}
x∈g(P )

.

We will call A the transfer operator associated to the holomorphic deformation (g,G,p)W of g.
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If both g and (g,G,p)W are real, then A(Rν) ⊂ Rν . In this case, we shall often consider real
holomorphic motions, i.e. Λ 3 0 is symmetric with respect to R and hλ(x) ∈ R for each x ∈ g(P )
and λ ∈ Λ ∩ R. Clearly, a lift of a real holomorphic motion is again real.

Example 4.1. Let g be a marked map with P ⊃ P0 = {c0 = 0}, so that P = {c0, . . . , cq−1},
ci = gi(c0), 0 ≤ i < q are distinct and gq(c0) = c0. Consider a deformation (g,G,p)W where
W is a neighbourhood of c1 and let p : W → C be so that p ≡ 0. Consider the holomorphic
motion of g(P ) = P defined by hλ(ci) = ci + viλ. Then ĥλ(ci) = ci + v̂iλ + O(λ2) is defined by
ĥλ(c0) = 0, Ghλ(c1))(ĥλ(ci)) = hλ(ci+1) = ci+1 + vi+1λ, i = 1, . . . , q − 1 where we take cq = c0,
vq = v0. Writing Li = ∂Gw(ci)

∂w and Di = Dg(ci) we obtain

v̂0 = 0, Liv1 +Div̂i = vi+1.

So

A =



0 0 0 0 . . . 0
0 −L1/D1 1/D1 0 0
0 −L2/D2 0 1/D2 . . . 0
...

...
...

...
. . .

...
0 −Lq−2/Dq−2 0 0 . . . 1/Dq−2

1/Dq−1 −Lq−1/Dq−1 0 0 . . . 0


.

Hence

I − ρA =



1 0 0 0 . . . 0
0 1 + ρL1/D1 −ρ/D1 0 0
0 ρL2/D2 1 −ρ/D2 . . . 0
...

...
...

...
. . .

...
0 ρLq−2/Dq−2 0 0 . . . −ρ/Dq−2

−ρ/Dq−1 ρLq−1/Dq−1 0 0 . . . 1


.

So

(4.1) det(I − ρA) = 1 +
L1

D1
ρ+

L2

D1D2
ρ2 + · · ·+ Lq−1

D1D2 . . . Dq−1
ρq−1.

So if the spectrum of A is contained in the open unit disc and Li, Di are real, then (4.1) is strictly
positive for all ρ ∈ [−1, 1]. Note that when Gw(z) = g(z) + (w − c1), the expression (4.1) agrees
with (2.4) for ρ = 1.

4.2. Relating the transfer operator with transversality. It turns out that transversality
is closely related to the eigenvalues of A:

Theorem 4.1. Assume the following holds: for any r < j ≤ ν, Dgqj−lj (clj ,j) 6= 1. Then the
following statements are equivalent:

(1) 1 is an eigenvalue of A;
(2) DR(c1) is degenerate.

More precisely, the dimension of kernel of DR(c1) is equal to the dimension of the eigenspace of
A associated with eigenvalue 1.

Proof. We first show that (1) implies (2), even without the assumption. So suppose that 1 is an
eigenvalue of A and let v = (v(x))x∈g(P ) be an eigenvector associated with 1. For t ∈ D, define
ht(x) = x+ tv(x) for each x ∈ g(P ) and w(t) = (c1,j + tv(c1,j))

ν
j=1. Then for each x ∈ g(P ) \P0,

(4.2) Gw(t)(ht(x))− ht(g(x)) = O(t2),

and for each x = c0,j ∈ g(P ) ∩ P0, we have

(4.3) ht(x)− pj(w(t)) = O(t2).

For each 1 ≤ j ≤ ν, and each 1 ≤ k < qj , applying (4.2) repeatedly, we obtain

(4.4) Gkw(t)(ht(c1,j)) = ht(g
k(c1,j)) +O(t2).
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Together with (4.3), this implies that

Rj(w(t)) = O(t2),

holds for all 1 ≤ j ≤ ν. It remains to show w′(0) 6= 0. Indeed, otherwise, by (4.4), it would
follow that v(gk(c1,j)) = (gk)′(c1,j)v(c1,j) = 0 for each 1 ≤ j ≤ ν and 1 ≤ k < qj , and hence
v(x) = 0 for all x ∈ g(P ), which is absurd. We completed the proof that (1) implies (2).

Now let us prove that (2) implies (1) under the assumption of the lemma. Suppose that
DR(c1) is degenerate. Then there exists a non-zero vector (w0

1, w
0
2, · · · , w0

ν) in Cν such that
Rj(w(t)) = O(t2) as t → 0 for all j = 1, . . . , ν, where w(t) = (wj(t))

ν
j=1 = (c1,j + tw0

j )
ν
j=1. We

claim that w0
j = w0

j′ holds whenever c1,j = c1,j′ , 1 ≤ j, j′ ≤ ν. Indeed,
Case 1. If 1 ≤ j ≤ r then 1 ≤ j′ ≤ r and µ(j) = µ(j′), qj = qj′ . Then

G
qj−1

w(t) (wj(t))−G
qj−1

w(t) (wj′(t)) = Rj(w(t))−Rj′(w(t)) = O(t2)

which implies that wj(t)− wj′(t) = O(t2), i.e. w0
j = w0

j′ .
Case 2. If r < j ≤ ν then r < j′ ≤ ν and l̂j = l̂j′ , q̂j = q̂j′ where we define for any r < j ≤ ν

the integers l̂j < q̂j minimal so that gq̂j (c0,j) = g l̂j (c0,j). By the chain rule it follows that

G
qj−1

w(t) (wj(t))−G
lj−1

w(t) (wj(t)) = O(t2)

implies

G
q̂j−1

w(t) (wj(t))−G
l̂j−1

w(t) (wj(t)) = O(t2)

under the assumption Dgqj−lj (clj ,j) 6= 1.
Thus we obtain

G
q̂j−1

w(t) (wj(t))−G
q̂j−1

w(t) (wj′(t)) = G
l̂j−1

w(t) (wj(t))−G
l̂j−1

w(t) (wj′(t)) +O(t2),

which implies that

(Dgq̂j−1(clj ,j)−Dg
l̂j−1(clj ,j))(wj(t)− wj′(t)) = O(t2).

If such j and j′ exist then clj ,j is a hyperbolic periodic point, hence Dgq̂j−1(clj ,j) 6= Dg l̂j−1(clj ,j).
It follows that w0

j = w0
j′ .

Thus the Claim is proved. To obtain an eigenvector for A with eigenvalue 1, define v(c1,j) =

w0
j , v(c0,j) = d

dtpj(w(t))|t=0. For points x ∈ g(P ) \ P0, there is j and 1 ≤ s < qj such that
x = gs(c0,j), define v(x) = d

dtG
s−1
w(t)(wj(t))|t=0. Note that v(x) does not depend on the choice of

j and s. (This can be proved similarly as the claim.)
The above argument builds an isomorphism between {v ∈ Cν : DR(c1, v) = 0} and the

eigenspace of A associated with eigenvalue 1. So these two spaces have the same dimension. �

4.3. The spectrum of A and the determinant of some matrix D(ρ). Define D(ρ) =
(Dj,k(ρ))1≤j,k≤ν as follows: Put

Lk(z) =
∂Gw(z)

∂wk
|w=c1 ; pj,k =

∂pj
∂wk

(c1);

L0
j,k = 0 and Lmj,k =

m∑
n=1

ρnLk(cn,j)

Dgn(c1,j)
for m > 0;

Djk(ρ) = δjk + Lqj−1
j,k − ρqj

pµ(j),k

Dgqj−1(c1,j)

when 1 ≤ j ≤ r and

Djk(ρ) = δjk + Lqj−1
j,k − ρqj−lj

Dgqj−lj (clj ,j)

(
Llj−1
jk + δj,k

)



12 GENADI LEVIN, WEIXIAO SHEN AND SEBASTIAN VAN STRIEN

when r < j ≤ ν. Note that

(4.5) det(DR(c1)) =
ν∏
j=1

Dgqj−1(c1,j) det(D(1)).

We say that ρ ∈ C is an exceptional value if there exists r < j ≤ ν such that Dgqj−lj (clj ,j) =

ρqj−lj .

Proposition 4.2. For each non-exceptional ρ ∈ C, we have

(4.6) det(I − ρA) = 0⇔ det(D(ρ)) = 0.

Proof. For ρ = 0, det(I) = det(D(0)) = 1. Assume ρ 6= 0. Define a new triple (gρ, Gρ,pρ) as
follows.

• For each x ∈ P \ P0, G
ρ
w(z) = Gw(x) + Dg(x)

ρ (z − x) in a neighbourhood of x;
• gρ(x) = g(x) for each x ∈ P0 and gρ(z) = Gρc1(z) in a neighbourhood of P \ P0;
• pρ(w) = c0 + ρ ∂p∂w (c1) · (w − c1).

Let Aρ be the transfer operator associated with the triple (gρ, Gρ,pρ). Then it is straightforward
to check that

Aρ = ρA.
We can define a map Rρ = (Rρ1, R

ρ
2, · · · , R

ρ
ν) for each ρ 6= 0 in the obvious way:

Rρj (w) = (Gρw)qj−1(wj)− pρµ(j)(w)

for 1 ≤ j ≤ r and
Rρj (w) = (Gρw)qj−1(wj)− (Gρw)lj−1(wj)

for r < j ≤ ν. As long as ρ is non-exceptional for the triple (g,G,p), the new triple (gρ, Gρ,pρ)
satisfies the assumption of Theorem 4.1, thus

det(I −Aρ) = 0⇔ DRρ(c1) is degenerate.

Direct computation shows that the (j, k)-th entry ofDRρ(c1) is equal toDj,k(ρ)Dgqj−1(c1,j)/ρ
qj−1.

Indeed, for each 1 ≤ j ≤ r,

Dρ
j,k(ρ) =

∂(Gρw)qj−1(c1,j)

∂wk
|w=c1 +

Dgqj−1(c1,j)

ρqj−1 δjk − ρ
∂pµ(j)

∂wk

=
Dgqj−1(c1,j)

ρqj−1

δjk +

qj−1∑
n=1

ρnLk(cn,j)

Dgn(c1,j)
− ρqj

pµ(j),k

Dgqj−1(c1,j)

 ,

and for r < j ≤ ν,

Dρ
jk(ρ)

=
∂((Gρw)qj−1(c1,j)− (Gρw)lj−1(c1,j))

∂wk
|w=c1 + δjk

(
Dgqj−1(c1,j)

ρqj−1 − Dglj−1(c1,j)

ρlj−1

)
=
Dgqj−1(c1,j)

ρqj−1 Lqj−1
j,k − Dglj−1(c1,j)

ρlj−1
Llj−1
j,k + δjk

(
Dgqj−1(c1,j)

ρqj−1 − Dglj−1(c1,j)

ρlj−1

)
Therefore det(I − ρA) = 0 if and only if det(D(ρ)) = 0. �

4.4. Positive transversality in the real case. To illustrate the power of the previous propo-
sition we state:

Corollary 4.3 (Positive transversality). Let (g,G,p)W be a real local holomorphic deformation
of a real marked map g. Assume that one has |Dgqj−lj (clj ,j)| > 1 for all r < j ≤ ν. Assume
furthermore that all the eigenvalues of A lie in the set {|ρ| ≤ 1, ρ 6= 1}. Then the ‘positively
oriented’ transversality condition holds.
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Proof. Write the polynomial det(D(ρ)) in the form
∏N
i=1(1−ρρi), where ρi ∈ C\{0}. Because of

(4.5) it suffices to show that det(D(1)) > 0. Since det(D(ρ)) is a real polynomial in ρ, this follows
from ρi 6∈ [1,∞) for each i. Arguing by contradiction, assume that ρi ≥ 1 for some i. Then 1/ρi
is a zero of det(D(ρ)). As |1/ρi| ≤ 1, 1/ρi is not an exceptional value. Thus det(I −A/ρi) = 0,
which implies that ρi ≥ 1 is an eigenvalue of A, a contradiction! �

4.5. A remark on an alternative transfer operator. Proposition 4.2 shows that for non-
exceptional ρ, one has (4.6). One can also associate to (g,G,p) another linear operator AJ for
which

(4.7) detD(ρ) = det(I − ρAJ)

holds for all ρ ∈ C. Here J denotes a collection of all pairs (i, j) such that 1 ≤ j ≤ ν, 0 ≤
i ≤ qj − 1 and if i = 0 then j = µ(j′) for some 1 ≤ j′ ≤ ν. Given a collection of functions
{ci,j(λ)}(i,j)∈J which are holomorphic in a small neighbourhood of λ = 0, there is another
collection of holomorphic near 0 functions {ĉi,j(λ)}(i,j)∈J such that ĉ0,j(λ) = pj(c1(λ)) where
c1(λ) = (c1,1(λ), · · · , c1,ν(λ)) and, for i 6= 0, G(c1(λ), ĉi,j) = ci+1,j(λ). Here we set cqj ,j(λ) =

c0,µ(j)(λ) for 1 ≤ j ≤ r and cqj ,j(λ) = clj ,j(λ) for r < j ≤ ν. Define the linear map AJ : C#J →
C#J by taking the derivative at λ = 0: AJ({c′i,j(0)}(i,j)∈J) = {ĉ′i,j(0)}(i,j)∈J . Explicitly, we get:

ĉ′i,j(0) =



∑ν
k=1 pj,k if i = 0 and j = µ(j′) for some j′
1

Dg(ci,j)
(vi+1,j −

∑ν
k=1 Lk(ci,j)v1,k) if 1 ≤ i < qj − 1, 1 ≤ j ≤ ν

1
Dg(cqj−1,j)

(
v0,µ(j) −

∑ν
k=1 Lk(cqj−1,j)v1,k

)
if i = qj − 1, 1 ≤ j ≤ r

1
Dg(cqj−1,j)

(
vlj ,j −

∑ν
k=1 Lk(cqj−1,j)v1,k

)
if i = qj − 1, r < j ≤ ν

Elementary properties of determinants being applied to the matrix I−ρAJ lead to (4.7). Observe
that AJ = A if (and only if) all points ci,j , (i, j) ∈ J are pairwise different. Therefore, we have:

det(I − ρA) = detD(ρ)

for every ρ ∈ C provided
∑ν

j=1(qj − 1) + r = #P .

5. The lifting property and the spectrum of A

The next proposition shows that the lifting property implies that the spectrum of A is in the
closed unit disc.

Proposition 5.1. If (g,G,p)W has the lifting property, then the spectral radius of the associated
transfer operator A is at most 1 and every eigenvalue of A of modulus one is semisimple (i.e.
its algebraic multiplicity coincides with its geometric multiplicity). Moreover, for (g,G,p)W real,
we only need to assume that the lifting property with respect to real holomorphic motions.

Proof. For any v = (v(x))x∈g(P ), construct a holomorphic motion h
(0)
λ over (Λ, 0) for some

domain Λ 3 0, such that d
dλh

(0)
λ (x) |λ=0 = v(x) for all x ∈ g(P ). Then

Ak(v) =

(
d

dλ
h

(k)
λ (x) |λ=0

)
x∈g(P )

for every k > 0. By Cauchy’s integral formula, there exists C = C(M, ε) such that | ddλh
(k)
λ (x) |λ=0 | ≤

C holds for all x ∈ g(P ) and all k. It follows that for any v ∈ C#g(P ), Ak(v) is a bounded se-
quence. Thus the spectral radius of A is at most one and every eigenvalue of A of modulus one
is semisimple.

Suppose (g,G,p)W is real. Then for any v ∈ R#g(P ), the holomorphic motion h
(0)
λ can be

chosen to be real. Thus if (g,G,p)W has the real lifting property, then {Ak(v)}∞k=0 is bounded
for each v ∈ R#g(P ). The conclusion follows. �

To obtain that the radius is strictly smaller than one, we shall apply the argument to a suitable
perturbation of the map g. For example, we have the following:



14 GENADI LEVIN, WEIXIAO SHEN AND SEBASTIAN VAN STRIEN

Proposition 5.2 (Robust spectral property). Let (g,G,p)W be as above. Let Q be a polynomial
such that Q(c0,j) = 0 for 1 ≤ j ≤ ν and Q(x) = 0, Q′(x) = 1 for every x ∈ g(P ). Let
ϕξ(z) = z − ξQ(z) and for ξ ∈ (0, 1) let ψξ(w) = (ϕ−1

ξ (w1), · · · , ϕ−1
ξ (wν)) be a map from a

neighbourhood of c1 into a neighbourhood of c1. Suppose that there exists ξ ∈ (0, 1) such that the
triple (ϕξ ◦ g, ϕξ ◦ G,p ◦ ψξ) has the lifting property. Then the spectral radius of A is at most
1− ξ.

Proof. Note that g̃ := ϕξ ◦ g is a marked map with the same sets P0 ⊂ P . Furthermore,
g̃i(c0,j) = gi(c0,j) = ci,j , Dg̃(ci,j) = (1 − ξ)Dg(ci,j),

∂ϕξ◦G
∂wk

(c1, z) = (1 − ξ) ∂G∂wk (c1, z) for each

z ∈ g(P ) \ P0, and
p◦ψξ
∂wk

(c1) = (1 − ξ)−1 ∂p
∂wk

(c1). Therefore, the operator which is associated
to the triple (ϕξ ◦ g, ϕξ ◦G,p ◦ ψξ) is equal to (1− ξ)−1A, Since the latter triple has the lifting
property, by Proposition 5.1, the spectral radius of (1− ξ)−1A is at most 1. �

For completeness we include:

Lemma 5.3. Assume that the spectrum radius of A is strictly less than 1. Then the lifting
property holds.

Proof. Let Φ(Z) = (ϕx(Z))x∈g(P ) be the holomorphic map defined from a neighbourhood V of
the point z := g(P ) ∈ C#g(P ) by

GZ1(ϕx(Z)) = zg(x), x ∈ g(P ) \ P0,

ϕc0,j (Z) = pj(Z1), 1 ≤ j ≤ ν,
where z1 = (zc1,j )

ν
j=1, Z = (zx)x∈g(P ). Then Φ(z) = z. Moreover, if hλ is a holomorphic motion

of g(P ) over (Λ, 0) with hλ = (hλ(x))x∈g(P ) ∈ V for all λ, then ĥλ(x) := (Φ(hλ))x is the lift of
hλ over (Λ, 0).

So the derivative of Φ at z is equal to A, and hence z is a hyperbolic attracting fixed point
of Φ. Therefore, there exist N > 0 and a neighborhood U of z such that ΦN is well-defined on
U and such that ΦN (U) is compactly contained in U0. It follow Φn converges uniformly to the
constant z in U .

Let us prove that (g,G,p)W has the lifting property. Indeed, if hλ is a holomorphic motion
of g(P ) over (D, 0), then there exists ε > 0 such that hλ := (hλ(x))x∈g(P ) ∈ U , so that h(k)

λ :=

Φk(hλ) is well-defined. Let h(k)
λ (x), x ∈ g(P ), be such that h(k)

λ = (h
(k)
λ (x))x∈g(P ). Then for each

k ≥ 0, h(k)
λ is a holomorphic motion of g(P ) over (Dε, 0) and h(k+1)

λ is the lift of h(k)
λ . �

6. The lifting property and persistence of critical relations

The main technical result in this paper is the following theorem:

Theorem 6.1. Assume that either the triple (g,G,p)W has the lifting property or (g,G,p)W is
real and has the real lifting property. Assume also that for all r < j ≤ ν, Dgqj−lj (clj ,j) 6= 1.
Then

(1) All eigenvalues of A are contained in D.
(2) There is a neighborhood W ′ of c1 in W such that

(6.1) {w ∈W ′ |R(w) = 0}
is a smooth submanifold of W ′, and its dimension is equal to the geometric multiplicity
of the eigenvalue 1 of A.

The second statement is useful to conclude that DR is non-degenerate at c1, or equivalently,
that 1 is not an eigenvalue of A. Indeed, if ν = 1 and if 1 is an eigenvalue of A, the manifold (6.1)
must contain a neighbourhood of c1 and hence R(w) = 0 holds for every w ∈ C near c1 ∈ C,
which only happens for trivial family (g,G,p)W . It is also possible to apply this statement in
a more subtle way, see [24].

Let Λ be a domain in C which contains 0. A holomorphic motion hλ(x) of g(P ) over (Λ, 0) is
called asymptotically invariant of order m (with respect to (g,G,p)W ) if there is a subdomain
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Λ0 ⊂ Λ which contains 0 and a holomorphic motion ĥλ(x) which is the lift of hλ over (Λ0, 0),
such that

(6.2) ĥλ(x)− hλ(x) = O(λm+1) as λ→ 0.

Obviously,

Lemma 6.1. 1 is an eigenvalue of A if and only if there is a non-degenerate holomorphic motion
which is invariant of order 1.

Here, a holomorphic motion hλ(x) is called non-degenerate if d
dλhλ(x) |λ=0 6= 0 holds for some

x ∈ g(P ).
A crucial step in proving this theorem is the following Lemma 6.4 whose proof requires the

following easy fact and its corollary.

Fact 6.2. Let F : U → C be a holomorphic function defined in an open set U of CN , N ≥ 1.
Let γ, γ̃ : Dε → U be two holomorphic curves such that

γ(λ)− γ̃(λ) = O(λm+1) as λ→ 0.

Then

F (γ(λ))− F (γ̃(λ)) =
N∑
i=1

∂F

∂zi
(γ(0))(γi(λ)− γ̃i(λ)) +O(λm+2) as λ→ 0.

Proof. For fixed λ small, define δ(t) = (1− t)γ̃(λ) + tγ(λ) and f(t) = F (δ(t)). Then

f ′(t) =
N∑
i=1

∂F

∂zi
(δ(t))(γi(λ)− γ̃i(λ)).

Since δ(t)− γ(0) = O(λ), and F (γ(λ))− F (γ̃(λ)) =
∫ 1

0 f
′(t)dt, the equality follows. �

Corollary 6.3. A holomorphic motion hλ of g(P ) is asymptotically invariant of order m if and
only if

(1) For each x ∈ g(P ) \ P0,

Ghλ(c1,1),··· ,hλ(c1,ν)(hλ(x)) = hλ(g(x)) +O(λm+1) as λ→ 0.

(2) For x = c0,j ∈ g(P ),

pj(hλ(c1,1), · · · , hλ(c1,ν)) = hλ(c0,j) +O(λm+1) as λ→ 0.

Proof. If hλ is asymptotically invariant of order m, we get (1) applying Fact 6.2 to the func-
tion F (z1, z2, · · · , zν , zν+1) = G(z1,z2,··· ,zν)(zν+1), and we get (2) applying it to the function
F (z1, z2, · · · , zν) = pj(z1, z2, · · · , zν). Vice versa, assume that (1)-(2) hold. Given x ∈ g(P ) \P0,
let F (z1, z2, · · · , zν , zν+1) be a local branch of G−1

(z1,z2,··· ,zν)(zν+1) which is a well defined holo-
morphic function in a neighborhood of (c1, g(x)). Let V (λ) = Ghλ(c1,1),··· ,hλ(c1,ν)(hλ(x)) and
V̂ (λ) = hλ(g(x)). By (1), V (λ)− V̂ (λ) = O(λm+1). Hence, by Fact 6.2,

hλ(x)− ĥλ(x) = F (hλ(c1,1), · · · , hλ(c1,ν), V (λ))− F (hλ(c1,1), · · · , hλ(c1,ν), V̂ (λ)) = O(λm+1).

For x = c0,j , the claim is straightforward. �

Lemma 6.4. One has the following:
(1) Assume (g,G,p)W has the lifting property. Suppose that there is a holomorphic motion

hλ of g(P ) over (Λ, 0) which is asymptotically invariant of order m for some m ≥ 1.
Then there is a non-degenerate holomorphic motion Hλ of g(P ) over some (Λ̃, 0) which
is asymptotically invariant of order m+ 1. Besides, Hλ(x)−hλ(x) = O(λm+1) as λ→ 0
for all x ∈ g(P ).

(2) Assume (g,G,p)W is real and has the real lifting property. Suppose that there is a real
holomorphic motion hλ of g(P ) over (Λ, 0) which is asymptotically invariant of order m
for some m ≥ 1. Then there is a non-degenerate real holomorphic motion Hλ of g(P ) over
some (Λ̃, 0) which is asymptotically invariant of order m+ 1. Besides, Hλ(x)− hλ(x) =
O(λm+1) as λ→ 0 for all x ∈ g(P ).
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Proof. We shall only prove the first statement as the proof of the second is the same with obvious
change of terminology. Let hλ be a non-degenerate holomorphic motion of g(P ) over (Λ, 0) which
is asymptotically invariant of order m. By assumption that (g,G,p)W has the lifting property ,
there exists a smaller domain Λ0 ⊂ Λ and holomorphic motions h(k)

λ over Λ0, k = 0, 1, . . . such
that h(0)

λ = hλ and such that h(k+1)
λ is the lift of h(k)

λ over (Λ0, 0) for each k ≥ 0. Moreover, the
functions h(k)

λ are uniformly bounded. For each k ≥ 1, define

ψ
(k)
λ (x) =

1

k

k−1∑
i=0

h
(i)
λ (x),

and

ϕ
(k)
λ (x) =

1

k

k∑
i=1

h
(i)
λ (x).

By shrinking Λ0, we may assume that there exists kn → ∞, such that ψ(kn)
λ (x) converges uni-

formly in λ ∈ Λ0 as kn → ∞ to a holomorphic function Hλ(x). Shrinking Λ0 furthermore if
necessary, Hλ defines a holomorphic motion of g(P ) over (Λ0, 0). Clearly, ϕ(kn)

λ (x) converges
uniformly to Hλ(x) as well.

Let us show that Hλ is asymptotically invariant of order m + 1 by applying the fact above.
Due to Corollary 6.3 (and taking k = kn →∞ in the next equations) this amounts to showing:

(i) For each x ∈ g(P ) \ P0, and any k ≥ 1,

G
ψ
(k)
λ (c1,1),··· ,ψ(k)

λ (c1,ν)
(ϕ

(k)
λ (x)) = ψ

(k)
λ (g(x)) +O(λm+2) as λ→ 0.

(ii) For x = c0,j ∈ g(P ),

pj(ψ
(k)
λ (c1,1), · · · , ψ(k)

λ (c1,ν)) = ϕ
(k)
λ (c0,j) +O(λm+2) as λ→ 0.

Let us prove (i). Fix x ∈ g(P )\P0 and k ≥ 1. Let F (z1, z2, · · · , zν , zν+1) = G(z1,z2,··· ,zν)(zν+1).
By the construction of h(k)

λ , we have

F (h
(i)
λ (c1,1), · · · , h(i)

λ (c1,ν), h
(i+1)
λ (x)) = h

(i)
λ (g(x))

for every i ≥ 0. Thus

(6.3) ψ
(k)
λ (g(x)) =

1

k

k−1∑
i=0

F (h
(i)
λ (c1,1), · · · , h(i)

λ (c1,ν), h
(i+1)
λ (x)).

Since all the functions h(i)
λ (x),ψ(k)

λ (x), ϕ(k)
λ (x) have the same derivatives up to order m at λ = 0,

applying Fact 6.2, we obtain

F (h
(i)
λ (c1,1), · · · , h(i)

λ (c1,ν), h
(i+1)
λ (x))− F (ψ

(k)
λ (c1,1), · · · , ψ(k)

λ (c1,ν), ϕ
(k)
λ (x))

=
ν∑
j=1

∂F

∂zj
(c1, x)(h

(i)
λ (c1,j)− ψ(k)

λ (c1,j)) +
∂F

∂zν+1
(c1, x)(h

(i+1)
λ (x)− ϕ(k)

λ (x)) +O(λm+2),

as λ → 0. Summing over i = 0, 1, · · · , k − 1 and using the definition of ψ(k)
λ (x) and ϕ(k)

λ (x) we
obtain

1

k

k−1∑
i=0

F (h
(i)
λ (c1,1), · · · , h(i)

λ (c1,ν), h
(i+1)
λ (x))

= F (ψ
(k)
λ (c1,1), · · · , ψ(k)(c1,ν), ϕ

(k)
λ (x)) +O(λm+2).

Together with (6.3), this implies the equality in (i).
For (ii), we use F (z1, · · · , zν) = pj(z1, · · · , zν) and argue in a similar way. �
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Proof of the Main Theorem. By Proposition 5.1, all eigenvalues of A are contained in D. It
remains to prove (2). Let L = {v ∈ Cν : DR(c1, v) = 0} and let d be the dimension of L.
By Theorem 4.1, L has the same dimension as the eigenspace of A associated with eigenvalue
1. Moreover, by Lemma 6.4, for each m ≥ 1 and each v ∈ L, there is a holomorphic motion
hλ(x) of g(P ) over Dε for some ε > 0 which is asymptotic invariant of order m and satisfies
hλ(c1,j) = c1,j + v(c1,j)λ+O(λ2) as λ→ 0. Putting wj(λ) = hλ(c1,j), we obtain a holomorphic
curve λ 7→ w(λ) = (wj(λ))νj=1, λ ∈ Dε, such that w′j(0) = v(c1,j) and

Rj(w(λ)) = O(λm+1) for all j = 1, . . . , ν.

If d = 0, i.e., L = {0}, then DR(c1) is invertible, so R is a local diffeomorphism, and for a
small neighborhood W ′ of c1, the set in (6.1) consists of a single point c1.

Now assume d = ν, i.e., L = Cν . We claim that R(w) ≡ 0. Otherwise, there exists m ≥ 1 such
that R(w) =

∑∞
k=m Pk(w−c1) in a neighborhood of c1, where Pk(u) is a homogeneous polynomial

in u of degree k and Pm(u) 6≡ 0. Therefore, there exists v ∈ Cd such that Pm(λv) = Aλm for
some A 6= 0. By the argument above, there is holomorphic curve λ 7→ w(λ) passing through c1

and tangent to v at λ = 0, such that |R(w(λ))| = O(λm+1). However,

R(w(λ)) = Pm(w(λ)− c1)) +
∑
k>m

Pk(w − c1(λ)) = Aλm +O(λm+1),

a contradiction.
The case 0 < d < ν can be done similarly. To be definite, let us assume that

(6.4)
∂(R1, R2, · · · , Rd′)
∂(w1, w2, · · · , wd′)

∣∣∣∣
w=c1

6= 0,

where d′ = ν − d. By the Implicit Function Theorem, there is holomorphic map Φ : B → Cd′ ,
where B is a neighborhood of u0 = (c1,d′+1, c1,d′+2, · · · , c1,ν) in Cd such that

(6.5) Rj(Φ(u), u) = 0 for all 1 ≤ j ≤ d′, u ∈ B,
and t = Φ(u) is the only solution of Rj(t, u) = 0, 1 ≤ j ≤ d′, in a fixed neighborhood of
(c1,1, c1,2, · · · , c1,d). It suffices to prove that

Rj(Φ(u), u) = 0 for u close to u0, d
′ < j ≤ ν.

To this end, we only need to show that for any m ≥ 1, and any e ∈ Cd, there is a holomorphic
curve u(λ) in B which passes through u0 at λ = 0, such that u′(0) = e and

(6.6) Rj(Φ(u(λ)), u(λ)) = O(λm+1), as λ→ 0, d′ < j ≤ ν.
Indeed, the curve w̃(λ) = (Φ(u0 + λe),u0 + λe) is tangent to L at c1. Thus by the argument
in the first paragraph of the proof, there is a curve w(λ) = (t(λ), u(λ)) ∈ Cd′ × Cd, tangent to
w̃(λ) at λ = 0 such that

(6.7) Rj(w(λ)) = O(λm+1) as λ→ 0, 1 ≤ j ≤ ν.
Together with (6.4) and (6.5), this implies that

|Φ(u(λ))− t(λ)| = O(λm+1).

Finally, by (6.7), we obtain (6.6), completing the proof of the Main Theorem. �

7. Families of the form fλ(x) = f(x) + λ and fλ(x) = λf(x)

In this section we will apply these techniques to show that one has monotonicity and the
transversality properties (2.4) and (2.3) within certain families of real maps of the form fλ(x) =
f(x) + λ and fλ(x) = λ · f(x) where x 7→ f(x) has one critical value (and is unimodal - possibly
on a subset R) or satisfy symmetries. There are quite a few papers giving examples for which
one has non-monotonicity for such families, see for example [4, 21, 39, 50]. In this section we
will prove several theorems which show monotonicity for a fairly wide class of such families.

In Subsection 7.1 we show that the methods we developed in the previous section apply if
one has something like a polynomial-like map f : U → V with sufficiently ‘big complex bounds’.
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This gives yet another proof for monotonicity for real families of the form z` + c, c ∈ R in the
setting when ` is an even integer. We also apply this method to a family of maps with a flat
critical point in Subsection 7.2. In Subsection 7.3 we show how to obtain the lifting property in
the setting of one parameter families of the form fa(x) = af(x) with f in some rather general
class of maps.

7.1. Families of the form fλ(x) = f(x) + λ with a single critical point. Let f : U → V be
a map from the class F defined in Subsection 2.8. Consider a marked map g with g = f + g(0)
for some f ∈ F from a finite set P into itself with P ⊃ P0 = {0}, P \ P0 ⊂ U . In other words, g
extends to a holomorphic map g : Ug → Vg where

• Ug is a bounded open set in C such that Ug ⊃ P \ {0} and 0 ∈ Ug;
• Vg is a bounded open set in C such that c1 := g(0) ∈ Vg;
• g : Ug \ {0} → Vg \ {c1} is an unbranched covering;
• Vg ⊃ B(c1; diam(Ug)) ⊃ Ug.

Next define a local holomorphic deformation (g,G,p)W of g as follows: Gw(z) = g(z)+(w−g(0))
and p(w) = 0 for all w ∈W := C.

Theorem 7.1. Let (g,G,p)W be as above. Then
(1) (g,G,p)W satisfies the lifting property;
(2) the spectrum of the operator A is contained in D \ {1}.

If, in addition, the robust separation property Vg ⊃ B(c1; diam(Ug)) ⊃ Ug holds, then the spectral
radius of A is strictly smaller than 1 and

det(I − ρA) =

q−1∑
i=0

ρi

Dgi(c1)
6= 0

holds for all |ρ| ≤ 1. In particular, if g,G are real then
∑q−1

i=0
1

Dgi(c1)
> 0 .

Proof. Let us show that (g,G,p)C satisfies the lifting property. For each domain ∆ 3 0 in C,
letM∆ denote the collection of all holomorphic motions hλ of g(P ) over (∆, 0) such that for all
λ ∈ ∆,

(7.1) hλ(x) ∈ Ug for all x ∈ g(P ) \ {0} and hλ(0) = 0.

Claim. Let ∆ 3 0 be a simply connected domain in C. Then any holomorphic motion hλ in
M∆ has a lift ĥλ which is again in the classM∆.

Indeed, g(P \ {0}) ⊂ g(Ug \ {0}) = Vg \ {g(0)}. So for each x ∈ P \ {0}, g(x) 6= g(0), thus for
any λ ∈ ∆,

0 < |hλ(g(x))− hλ(g(0))| < diam(Ug),

hence by Vg ⊃ B(c1; diam(Ug)) ⊃ Ug,
hλ(g(x))− hλ(g(0)) + g(0) ∈ Vg \ {g(0)}.

Since g : Ug \ {0} → Vg \ {g(0)} is an unbranched covering and ∆ is simply connected, there is
a holomorphic function λ 7→ ĥλ(x), from ∆ to Ug \ {0}, such that ĥ0(x) = x and

g(ĥλ(x)) = hλ(g(x))− hλ(g(0)) + g(0), i.e. Ghλ(g(0))(ĥλ(x)) = hλ(g(x)).

Define ĥλ(0) = 0 if 0 ∈ g(P ). Then ĥλ is a lift of hλ over ∆.
For any holomorphic motion hλ of g(P ) over (Λ, 0) with hλ(0) = 0, there is a simply connected

sub-domain ∆ 3 0 such that the restriction of hλ to ∆ belongs to the classM∆. It follows that
(g,G,p)W has the lifting property.

Therefore the assumptions of the Main Theorem are satisfied. The operator A cannot have an
eigenvalue 1 because otherwise for all parameters w ∈W the Gw would have the same dynamics.
Hence, (2) in the conclusion of the theorem follows.

If the robust separation property Vg ⊃ B(c1; diam(Ug)) ⊃ Ug holds, then Proposition 5.2
applies and therefore the spectral radius of A is strictly smaller than 1. As in Example 4.1 the
conclusion follows. �
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Corollary 7.1. For any even integer d, transversality condition (2.3) holds and the topological
entropy of gc(z) = zd + c depends monotonically on c ∈ R.

7.2. A unimodal family map f ∈ F with a flat critical point. Fix ` ≥ 1, b > 2(e`)1/` and
consider

fc(x) =

{
be−1/|x|` + c for x ∈ R \ {0},

c for x = 0.

Note that R+ 3 x 7→ 2xe1/x` has a unique critical point at x = `1/` corresponding to a minimum
value 2(`e)1/`. Therefore the assumption on b implies that b = 2xe1/x` has a unique solution
x = β ∈ (0, `1/`). This implies in particular that the map f−β has the Chebeshev combinatorics:
f−β(0) = −β and f−β(β) = β. Note that

Df−β(β) = be−1/β` `

β`+1
=

2`

β`
> 2.

Therefore, there exists x1 > x0 > β such that f−β(x0) = x1 and x1 − β > 2(x0 − β). Choosing
x0 close enough to β, we have

R := f0(x0) = x1 + β < b.

For a bounded open interval J ⊂ R, let D∗(J) denote the Euclidean disk with J as a diameter.
This set corresponds to the set of points for which the distance to J w.r.t. the Poincaré metric
on CJ = C \ (R \ J) is at most some k0 > 0. Also, let B∗(x,R) = B(x,R) \ {x} where B(x,R)
is the open disc with radius R and centre at x.

Lemma 7.2. The map f0 : (−x0, 0) ∪ (0, x0) → (0, R) extends to an unbranched holomor-
phic covering map F0 : U → B∗(0, R), where U ⊂ D∗((−x0, 0)) ∪ D∗((0, x0)). In particular,
diam(U) = 2x0 < R.

Proof. Let Φ(reiθ) = r`ei`θ denote the conformal map from the sector {reiθ : |θ| < π/(2`)} onto
the right half plane, let U+ = Φ−1(D∗((0, x

`
0))). Since Φ−1 : C(0,x`0) → C(0,x0) is holomorphic,

by the Schwarz Lemma Φ−1 contracts the Poincaré metrics on these sets, and therefore U+ ⊂
D∗((0, x0)). Define U− = {−z : z ∈ U+}, U = U+ ∪ U− and

F0(z) =

{
be−1/Φ(z) if z ∈ U+

be−1/Φ(−z) if z ∈ U−.
It is straightforward to check that F0 maps U+ (resp. U−) onto B∗(0, R) as an un-branched
covering. �

Corollary 7.3. F0 ∈ F . Moreover, if c ∈ U then Fc = F0 + c satisfies the robust separation
property in Theorem 7.1. In particular, the kneading sequence of Fc depends monotonically on
c ∈ [−β,∞).

Proof. Take U as in the previous lemma and take V = B(c,R). Then Fc : U → V \ {c} is an
unbranched covering, and since diam(U) < R the robust separation property in Theorem 7.1 is
satisfied. �

Figure 1. The graphs of fc : [−2, 2] → [−2, 2] (in orange) and f2c : [−2, 2] → [−2, 2]
(in red) for various choices of c when b = 2(e`)1/`. For b < 2(e`)1/` there exists no
Chebychev parameter c, and b > 2(e`)1/` there exists two such parameters.
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Figure 2. A bifurcation diagram. Here for c ∈ [−4, 0] (drawn in the horizontal axis),
the last 100 iterates from the set {fk(0)}1000k=0 are drawn (in the vertical direction). Notice
that for b = 2(e`)1/` + 0.1 the interval [−βc, βc], where βc > 0 is the repelling fixed point
of fc (when it exists), is not invariant for parameters c ≈ −1 and for these parameter
almost every point is the basin of an attracting fixed point in R+. The entropy decreases
for c ∈ [−β, 0] where for b = 2(e`)1/` + 0.1, we have β ≈ −0.831.

Remark 7.4. When b < 2(e`)1/`, there no longer exists c so that fc is a Chebychev map,
i.e. so that f2

c (0) = βc where βc > 0 is a fixed point. Indeed, otherwise f2
c (0) = βc and

therefore since βc is a fixed point and fc is symmetric, c = fc(0) = −βc = −fc(βc) = −f−βc(βc)
which implies that βc is a solution of b = 2xe1/x` . As we have shown above, this equation has
no solution when b < 2(e`)1/`. Also note that when b = 2(e`)1/` then c = −β = −`1/` and
dβc
dc = 1/(1−Dfc(βc)) = 1/(1− 2) = −1, and therefore the positive oriented transversality of fc
fails at c = −β.

7.3. Families of the form fa(x) = af(x). There are quite a few papers which ask the question:
For which interval maps f , has one monotonicity of the entropy for the family
x 7→ fa(x), a ∈ R?

This question is subtle, as the counter examples to various conjectures show, see [39, 21, 4, 50].
In this section we will obtain monotonicity and transversality for such families provided f is
contained in the large classes E , Eo defined in Subsection 2.8. For convenience, let us recapitulate
the definitions of the spaces E and Eo. Consider holomorphic maps f : D → V such that:

(a) D,V are open sets which are symmetric w.r.t. the real line so that f(D) = V
(b) Let I = D ∩ R then there exists c > 0 so that I ∪ {c} is a (finite or infinite) open

interval and 0 ∈ I, c ∈ int(I). Moreover, f extends continuously to I, f(I) ⊂ R and
limz∈D,z→0 f(z) = 0.

(c) Let D+ be the component of D which contains I ∩ (c,∞), where D+ might be equal to
D. Then u ∈ D \ {0} and v ∈ D+ \ {0}, v 6= u, implies u/v ∈ V .

Let E be the class of maps which satisfy (a),(b),(c) and assumption (d):
(d) f : D → V has no singular values in V \ {0, 1} and c > 0 is minimal such that f has a

positive local maximum at c and f(c) = 1.
Similarly let Eo be the class of maps which satisfy (a),(b),(c) and assumption (e):

(e) f is odd, f : D → V has no singular values in V \ {0,±1} and c > 0 is minimal such that
f has a positive local maximum at c and f(c) = 1.

Here, as usual, we say that v ∈ C is a singular value of a holomorphic map f : D → C if it is a
critical value, or an asymptotic value where the latter means the existence of a path γ : [0, 1)→ D
so that γ(t)→ ∂D and f(γ(t))→ v as t ↑ 1. Note that we do not require here that V ⊃ D.
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Using qs-rigidity, it was already shown in [41] that the topological entropy of R 3 x 7→ af(x)
is monotone a, where f(x) = sin(x) or more generally f is real, unimodal and entire on the
complex plane and satisfies a certain sector condition. Here we strengthen and generalise this
result as follows:

Theorem 7.2. Let f be either in E or in Eo. Assume that the local maximum c > 0 is periodic
for fa(x) = af(x) where 0 < a < b. Then the following ‘positive-oriented’ transversality property
holds:

(7.2)
d
dλf

q
λ(c) |λ=a

Df q−1
a (fa(c))

> 0.

(A similar statement holds when c is pre-periodic for fa.) In particular, the kneading sequence
of the family fa(x) : J → R is monotone increasing.

Proof. Let f ∈ E ∪ Eo. Denote g(x) = af(x) and let Va = a · V . Let P0 = {c}, P = {ci =
gi(c) : i ≥ 0}. Since 0 < a < b, fa maps (0, b) into itself, and so P ⊂ (0, b). We may also assume
that g(c) > c because otherwise q = 1 and the result is again trivial. By the assumptions, g is a
holomorphic map g : D → Va, g(P ) ⊂ P and Dg(x) 6= 0 for any x ∈ P \ P0. In particular, g is a
real marked map. For each w ∈W := C∗ = C\{0}, Gw(z) := wf(z) is a branched covering from
U := D \ {0} into C. Define p(w) ≡ c. Then (g,G, p)W is a local holomorphic deformation of
g. It suffices to prove that (g,G, p)W has the lifting property so that the Main Theorem applies.
Indeed, if 1 is an eigenvalue of A then by the Main Theorem {R(w) = 0} is an open set and
therefore this critical relation holds for all parameters, which clearly is not possible.

Let us first consider the case f ∈ E . In this case, w is the only critical or singular value
of Gw. Given a simply connected domain ∆ 3 0 in C, let M∆ denote the collection of all
holomorphic motions hλ of g(P ) over (∆, 0) with the following property that for all λ ∈ ∆ we
have hλ(x) ∈ U for all x ∈ g(P ) \ {c} and hλ(c) = c. Given such a holomorphic motion, for
each x ∈ g(P ) there is a holomorphic map λ 7→ ĥλ(x), λ ∈ ∆, with ĥ0(x) = x and such that
f(ĥλ(x)) = hλ(g(x))/hλ(g(c)). Indeed, for x = c, take ĥλ(x) ≡ c and for x ∈ g(P ) \ {c}, we have
by property (c) that hλ(g(x))/hλ(g(c)) ∈ V \ {0, 1}. Note that we use here that g(c) ∈ D+ since
c < g(c) < b. So the existence of ĥλ follows from the fact that f : D \ f−1{0, 1} → V \ {0, 1} is
an unbranched covering. Clearly, ĥλ is a holomorphic motion inM∆ and it is a lift of hλ over
∆. It follows that (g,G, p)W has the lifting property. Indeed, if hλ is a holomorphic motion of
g(P ) over (Λ, 0) for some domain Λ 3 0 in C, then we can take a small disk ∆ 3 0 such that the
restriction of hλ on (∆, 0) is in the classM∆. Therefore, there exists a sequence of holomorphic
motions h(k)

λ of g(P ) over (∆, 0) such that h(0)
λ = hλ and h(k+1)

λ is a lift of h(k)
λ over ∆ for each

k ≥ 0. If x = c then h(k)
λ (x) ≡ c for each k ≥ 1 while if x ∈ g(P )\{c}, h(k)

λ (x) avoids values 0 and
c. Restricting to a small disk, we conclude by Montel’s theorem that λ 7→ h

(k)
λ (x) is bounded.

The case f ∈ Eo is similar. In this case, Gw has two critical or singular values w and −w,
but it has additional symmetry being an odd function. Given a simply connected domain ∆ 3 0
in C, let Mo

∆ denote the collection of all holomorphic motions hλ of g(P ) over (∆, 0) with the
following properties: for each λ ∈ ∆,

• hλ(x) ∈ U for all x ∈ g(P ) \ {c} and hλ(c) = c;
• hλ(x) 6= −hλ(y) for x, y ∈ g(P ) and x 6= y.

Then similar as above, we show that each hλ inMo
∆ has a lift which is again in the classMo

∆.
It follows that (g,G, p)W has the lifting property. �

Let us now show that this theorem applies to a unimodal family with a flat critical point:

Lemma 7.5. The unimodal map f : [0, 1]→ [0, 1] defined by

(7.3) f(x) = exp(2`)
(
− exp(−1/|x− 1/2|`) + exp(−2`)

)
has a holomorphic unbranched extension f : D− ∪ D+ → B∗(1, 1). Here D−, D+ are domains
with D− ⊂ B∗(0, 1/2), D+ ⊂ D∗(1/2, 1) and B∗(x, r) is the ball with radius r centered and
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punctured at x. There exists `0 > 0 so that for all ` > `0, one can slightly enlarge V , D−, D+

and obtain a map in E.

Proof. Let us consider f as a composition of a number of maps. First z 7→ (1/2 − z)` and
z 7→ (z − 1/2)` map some domains U−, U+ which are contained in D∗(0, 1/2) and D∗(1/2, 1)
onto D∗(0, 1/2`) when ` ≥ 1. Next z 7→ −1/z maps D∗(0, 1/2`) onto a half-plane Re(z) ≤ −2`.
Then z 7→ exp(z) maps this half-plane onto the punctured disc B∗(0, exp(−2`)) centered at 0
and with radius exp(−2`) (and with a puncture at 0). Applying the translation z 7→ exp(−2`)
to this punctured disc we obtain the punctured disc centered at B∗(exp(−2`), exp(−2`)). Then
multiplying this disc by exp(2`) shows that f maps U−, U+ onto B∗(1, 1). (Note that this final
punctured disc touches the imaginary axis.) Since 0 is a repelling fixed point of f with multiplier
> 2, and U−, U+ are close to the intervals (0, 1/2) and (1/2, 1) when ` is large, we can enlarge
the domain and range, and obtain a map as in (a)-(d). �
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Figure 3. A bifurcation diagram for the family fλ(x) = λf(x), λ ∈ [0, 1] where f is
as formula (7.3). Note that this unimodal family with a flat critical point is monotone.

8. Application to families with one free critical point

Let us apply the method along a curve in parameter space corresponding to where some
ν-parameter family of maps Gw has ν − 1 critical relationships.

Let us say that (G,p)W is a partially marked family of maps if
(1) W is an open connected subset of Cν and U is an open subset of C;
(2) p = (p1, p2, . . . , pν) : W → Cν is a holomorphic map and so that all coordinates of p(w)

are distinct. Let P0,w = {p1(w), . . . , pν(w)}.
(3) G : (w, z) ∈ W × U 7→ Gw(z) ∈ C is a holomorphic map and DGw(z) 6= 0 for each

w ∈W and z ∈ U .
(4) associated to each j = 1, . . . , ν − 1 there exists a positive integer qj so that Gkw(wj) ∈ U

for k = 1, . . . , qj − 1 and w = (w1, · · · , wν−1, wν) ∈W .
Assume that the family map Gw is real. That is, assume that the properties defined below

Definition 2.3 hold: for any w = (w1, w2, . . . , wν) ∈ W , z ∈ U and j = 1, 2, . . . , ν, we have
w = (w1, w2, . . . , wν) ∈W , z ∈ U , and

Gw(z) = Gw(z), and pj(w) = pj(w).

Choose for each j = 1, . . . , ν − 1 either µ(j) ∈ {1, 2, . . . , ν} or 1 ≤ lj < qj . Given this choice,
let L be the set of w = (w1, · · · , wν) ∈W for which the following hold:

(5) if µ(j) is defined then Gqj−1
w (wj) = pµ(j)(w) and Gkw(wj) 6∈ P0,w for each 1 ≤ k < qj ;

(6) if lj is defined then Gqj−1
w (wj) = G

lj−1
w (wj) and Gkw(wj) 6∈ P0,w for all 0 ≤ k ≤ qj − 1.

Relabelling these points w1, . . . , wν−1, we assume that there is r such that the first alternative
happens for all 1 ≤ j ≤ r and the second alternative happens for r < j ≤ ν − 1.
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Remark 8.1. So for each w ∈ L, Gw has ν−1 critical relations which start with p1(w), . . . , pν−1(w).
Hence the terminology of partially marked family of maps.

Define for w ∈W , for 1 ≤ j ≤ r,

(8.1) Rj(w) = G
qj−1
w (wj)− pµ(j)(w)

and for r < j ≤ ν − 1,

(8.2) Rj(w) = G
qj−1
w (wj)−G

lj−1
w (wj),

where w = (wj)
ν
j=1. Then L is precisely the set

L = {w ∈W ; R1(w) = · · · = Rν−1(w) = 0}.

Let L∗ be a maximal connected subset of L ∩ Rν such that for each w ∈ L∗, the ν × (ν − 1)
matrix

(8.3) Vw :=

[
1

DGq1−1
w (w1)

∇R1(w), . . . ,
1

DG
qν−1−1
w (wν−1)

∇Rν−1(w)

]
has rank ν − 1. Here ∇Ri(w) is the gradient of Ri. By the implicit function theorem, L∗ is a
real analytic curve.

Now, let us assume that for some c1 = (c1,1, . . . , c1,ν) ∈ L∗, Gc1 has an additional critical
relation starting with pν(w), i.e., g = Gc1 is a marked map and G extends to a local holomorphic
deformation of g: there is a neighborhood Wc1 ⊂ W of c1, an open set Uc1 ⊃ U such that
G : Wc1 × U →Wc1 × C extends to a holomorphic map G : (w, z) ∈Wc1 × Uc1 7→ (w,Gw(z)) ∈
Wc1 × C and DGw|Uc1 6= 0 for each w ∈ Wc1 and there exists either µ(ν) ∈ {1, 2, . . . , ν} or
lν < qν so that either

• if µ(ν) is defined then gqν (pν(c1)) = pµ(ν)(c1), gk(c1,ν) 6∈ P0,c1 for each 1 ≤ k < qν then
define

Rν(w) = Gqν−1
w (wν)− pµ(ν)(w)

• if lν exists then gqνc1 (pν(c1)) = glν (pν(c1)) and gk(wν) 6∈ P0,c1 for all 1 ≤ k ≤ qν , then we
define

Rν(w) = Gqν−1
w (wν)−Glν−1

w (wν).

Notice that Rν is only defined in a small neighbourhood Wc1 of c1.
The following theorem gives a condition implying that along the curve L∗ all bifurcations are

in the same direction.

Theorem 8.1. For each w ∈ L∗, define Ew ∈ TwCν to be the unique unit vector in Rν orthogonal
to the range of the matrix Vw and so that

det

[
1

DGq1−1
w (w1)

∇R1(w), . . . ,
1

DG
qν−1−1
w (wν−1)

∇Rν−1(w), Ew

]
> 0.

Then
• Ew is a tangent vector to L∗ at w and L∗ 3 w 7→ Ew is real analytic. In particular, Ew
defines an orientation on the entire curve L∗ which we will call ‘positive’.
• If for some c1 ∈ L∗ the corresponding map g = Gc1 is a marked map as above and the pos-
itively oriented transversality property (2.3) holds for the local holomorphic deformation
(g,G, p)Wc1

, then
1

Dgqν−1(c1,ν)
∇ERν(c1) > 0

where Dgqν−1(c1,ν) is the spatial derivative, and ∇ERν(c1) is the derivative in the direc-
tion of the tangent vector E = Ec1 of L∗ at c1.
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Figure 4. The sets Γ3(±a) = {(a, b); f3a,b(±a) = ±a} for the cubic family fa,b =

x3−3a2x+ b (with critical points ±a). The two curves in the left panel crossing at (0, 0)
correspond to the sets where one of the critical points of fa,b is a fixed point, i.e. where
{fa,b(±a) = ±a}. The two points marked with ∗ in the magnification on the right are
where the two critical points ±a lie on the same orbit. By Theorem 8.2, the topological
entropy is monotone on the components of Γ3(±a) minus these points. This information
was already obtained by Milnor and Tresser in [37] but here we derive it from the local
methods derived in this paper.

Proof. Let A = [A1, . . . , Aν ] be the ν × ν matrix with the first (ν − 1)-columns equal to the

columns of Vc1 and the last column equal to
1

DGqν−1
c1 (c1,ν)

∇Rν(c1). Note that the determinant

of this matrix is positive by the positive oriented transversality condition (2.3). There exists λ
so that Aν = λEc1 + v where v is in the range of the matrix Vc1 . So det(A1, . . . , Aν−1, Aν) =
det(A1, . . . , Aν−1, λEc1 +v) = λdet(A1, . . . , An−1, Ec1). Since the first and the last determinants
are positive, we have λ > 0 and so Aν · Ec1 > 0. This is precisely the expression claimed to be
positive in the theorem. �

Remark 8.2. Applying this theorem to the setting of a family of globally defined real analytic
maps, we obtain monotonicity of entropy along such curves L∗. This holds because the topological
entropy is equal to the growth rate of the number of laps for continuous piecewise monotone
interval or circle maps, [36].

8.1. Application to ‘bone’ curves in the space of real cubic maps. For every (a, b) ∈
Σ := R2 \ {a = 0}, let fa,b(x) = x3 − 3a2x + b. Then fa,b has critical points ±a. It is clear
that for any (a, b) ∈ C2 \ {a = 0}, fa,b is locally parametrized by its (different) critical values
w1,2 = ±2a3 + b. For q > 0 consider a connected component Lq of the set

{(a, b) ∈ Σ : f qa,b(a) ∈ {±a}, fka,b(a) /∈ {±a}, k = 1, · · · , q − 1}.

By [22], the corresponding 2×1 matrix (8.3) has rank one and hence Lq = Lq∗ is a simple smooth
curve. In fact, the positively oriented transversality property holds for any critically-finite fa,b;
this follows similar to the proof of Theorem 7.1 of the next Section (see [24] for a general result
though). By Theorem 8.1 we have a positive orientation on Lq = L∗q and the entropy increases
or decreases along this curve as mentioned in Remark 8.2.

For q > 0 consider a connected component Γq of the set

{(a, b) ∈ Σ : f qa,b(a) = a}

which was called a bone in [37]. The next theorem proves a crucial property of this set, which was
derived in [37] using global considerations (including Thurston rigidity for postcriticallly finite
maps). Here we will derive this property from positive transversality.
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Theorem 8.2 (Properties of bones). Assume that for some (ã, b̃) ∈ Γq the integer q > 0 is
minimal so that f q

ã,b̃
(ã) = ã. Then for all (a, b) ∈ Γq one has that f ia,b(a) 6= a for all 0 < i < q.

Moreover,
(1) there exists at most one (a∗, b∗) ∈ Γq so that f ia∗,b∗(a∗) = −a∗ for some 0 ≤ i ≤ q.
(2) the kneading sequence of fa,b is monotone on each of the components of Γq \ {(a∗, b∗)};

more precisely, it is non-decreasing on one component and non-increasing on the other
component.

Proof. That f ia,b(a) 6= a for all 0 < i < q, (a, b) ∈ Γq follows from the implicit function theorem
because the multiplier of this q-periodic orbit is not equal to 1. It is well known that Γq is a
smooth curve (this also follows for example from [22]). The curve Γq is a component of the zero
set of

R̃(a, b) = f qa,b(a)− a.
As remarked, the critical values w = (w1, w2) are local parameters along the curve Γq and we

define a direction on the curve Γq by the tangent vector V(a,b) = (− ∂R̃

∂w2
,
∂R̃

∂w1
).

Assume that for some (a∗, b∗) ∈ Γq the orbit of a∗ contains the other critical point, i.e. assume
that f ia∗,b∗(a∗) = −a∗ for some 0 < i < q. The idea of the proof below is as follows. We will show
that as the point (a, b) ∈ Γq passes through (a∗, b∗), the point −a crosses f ia,b(a) in a direction
which depends only on the sign of ∆i(a∗, b∗) where

(8.4) ∆i(a, b) :=
∏

1≤k<q,k 6=i
Dfa,b(f

k
a,b(a))

so
∆i(a∗, b∗) = Df i−1

a∗,b∗
(fa∗,b∗(a∗))Df

q−i−1
a∗,b∗

(fa∗,b∗(−a∗)).
Now as (a, b) moves further along Γq, on the one hand (for the same reason) −a cannot cross

f ia,b(a) in the opposite direction, and on the other hand −a cannot cross a neighbour f ja,b(a) of
f ia,b(a) at some other (a•, b•) ∈ Γq because ∆i(a∗, b∗) and ∆j(a•, b•) have opposite signs. Let us
explain this in more detail.

Since the map fa∗,b∗ is critically finite, one has positive transversality at this parameter. More
precisely, define

R1(a, b) = f ia,b(a)− (−a), R2(a, b) = f q−ia,b (−a)− a.
Now observe that (

∂R2

∂w1
,
∂R2

∂w2

)
(a∗,b∗)

=

(
∂R̃

∂w1
,
∂R̃

∂w2

)
(a∗,b∗)

.

Hence the positive transversality condition can be written as

1

∆i(a∗, b∗)
det


∂R1

∂w1

∂R1

∂w2

∂R̃

∂w2

∂R̃

∂w1


(a∗,b∗)

> 0

As in the proof of Theorem 8.1 we obtain

(8.5)
1

∆i(a∗, b∗)
DV(a∗,b∗)

R1(a∗, b∗) > 0

where DV(a∗,b∗)
stands for the directional derivative of R1 in the direction V(a∗,b∗). To be definite,

let us consider the case that

(8.6) ∆i(a∗, b∗) < 0.

This implies that

(8.7) DV(a∗,b∗)
R1(a∗, b∗) < 0
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and so the derivative of

(8.8) Γq 3 (a, b) 7→ f ia,b(a)− (−a) is negative at (a∗, b∗).

By contradiction, assume that there exists another parameter (a•, b•) ∈ Γq which is the nearest
to the right of (a∗, b∗) for which there exists 0 < j < q so that f ja•,b•(a•) = −a•. In what follows
we use that the ordering of the points a, . . . , f q−1

a,b (a) in R does not change along the curve Γq.
Let Γ•q be the open arc between (a∗, b∗) and (a•, b•). Notice that because of (8.6)

(8.9) ∆i(a, b) < 0

for all (a, b) ∈ Γ•q . Observe that j 6= i because when j = i then (8.9) holds on the closure
of Γ•q and so DV(a•,b•)

R1(a•, b•) < 0. Therefore (8.8) also holds at (a•, b•) which is clearly a
contradiction. Therefore, j 6= i and

(8.10) f ia,b(a) < −a < f ja,b(a)

along the open arc Γ•q and there are no points of the orbit of a between f ia,b(a), f ja,b(a). The sign
of

(8.11) ∆j(a, b) := Df j−1
a,b (fa,b(a))Df q−j−1

a,b (fa,b(−a))

is constant for (a, b) near (a•, b•). Therefore for (a, b) ∈ Γ•q ,

sign ∆j(a•, b•) = sign ∆j(a, b) = sign

[
∆i(a, b)

Dfa,b(f
i
a,b(a))

Dfa,b(f
j
a,b(a))

]
.

Because of (8.9) we therefore have

sign ∆j(a•, b•) = −sign

[
Dfa,b(f

i
a,b(a))

Dfa,b(f
j
a,b(a))

]
.

The key point is that the sign of the ratio in the r.h.s. of this expression is negative because −a
is a folding critical point and because of (8.10). It follows that ∆j(a•, b•) > 0 and so arguing as
before the derivative of

(8.12) Γq 3 (a, b) 7→ f ja,b(a)− (−a) is positive at (a•, b•).

But by (8.10) we have that f ja,b(a) − (−a) > 0 on Γ•q . This and (8.12) imply that f ja•,b•(a•) −
(−a•) > 0 which is a contradiction.

The 2nd assertion follows immediately from Theorem 8.1 and Remark 8.2. �

Remark 8.3. The proof of the previous theorem can also be applied to the setting of polynomials
of higher degrees.

Appendix A. The family fc(x) = |x|`± + c with `± > 1 large

In this section we obtain monotonicity for unimodal (not necessary symmetric!) maps in the
presence of critical points of large non-integer order, but only if not too many points in the
critical orbit are in the orientation reversing branch.

A.1. Unimodal family with high degrees.

Theorem A.1. Fix real numbers `−, `+ ≥ 1 and consider the family of unimodal maps fc =
fc,`−,`+ where

fc(x) =

{
|x|`− + c if x ≤ 0
|x|`+ + c if x ≥ 0.

For any integer L ≥ 1 there exists `0 > 1 so that for any q ≥ 1 and any periodic kneading
sequence i = i1i2 · · · ∈ {−1, 0, 1}Z+ of period q so that

#{0 ≤ j < q; ij = −1} ≤ L,
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and any pair `−, `+ ≥ `0 there is at most one c ∈ R for which the kneading sequence of fc is
equal to i. Moreover,

(A.1)
q−1∑
n=0

1

Dfnc (c)
> 0.

Notations. As usual, for any three distinct point o, a, b ∈ C, let ∠aob denote the angle in
[0, π] which is formed by the rays oa and ob. We shall often use the following obvious relation:
for any distinct four points o, a, b, c,

∠aob+ ∠boc ≥ ∠aoc.
For θ ∈ (0, π), let

Dθ = {z ∈ C \ {0, 1} : ∠0z1 > π − θ}
and let

Sθ = {reit : t ∈ (−θ, θ)}.
For 0 < t < 1, we shall only consider zt in the case z 6∈ (−∞, 0) and zt is understood as the
holomorphic branch with 1t = 1.

Let us fix a map f = fc,`−,`+ with a periodic critical point of period q and let P = {fn(0) :
n ≥ 0}. So P is a forward invaraint finite set. Denote

` = min{`−, `+}.

Definition A.1. A holomorphic motion hλ of P over (Ω, 0), is called θ-regular if
(A1). For a ∈ P ,

hλ(a) ∈ S4θ/` , if a > 0

and
hλ(a) ∈ −S4θ/` , if a < 0;

(A2). For a, b ∈ P , |a| > |b| > 0 and ab > 0,

hλ(b)

hλ(a)
∈ Dθ.

Given a θ-regular holomorphic motion hλ of P over Ω, with θ ∈ (0, π), one can define another
holomorphic motion h̃λ of P over the same domain Ω as follows: h̃λ(0) = 0; for a ∈ P with
a > 0,

h̃λ(a) = (hλ(f(a))− hλ(f(0)))1/`+ ;

for a ∈ P with a < 0, define

h̃λ(a) = −(hλ(f(a))− hλ(f(0)))1/`− .

The new holomorphic motion is called the lift of hλ which clearly satisfies the condition (A1),
but not necessarily (A2) in general.

Main Lemma. There is `0 depending only on the number L such that for any ` ≥ `0 and each
θ small enough, the following holds: If #{0 ≤ j < q; ij = −1} ≤ L and if a θ-regular motion can
be successively lifted q − 1 times and all these successive lifts are θ-regular, then the q-th lift of
the holomorphic motion is θ/2-regular.

Proof of Theorem A.1. Given L, choose `0 as in the Main Lemma. It is enough to prove (A.1)
provided ` ≥ `0. Consider a local holomorphic deformation (fc, fw,p)W where W ⊂ C is a small
neighbourhood of c, fw = fc + (w − c) and p = 0. Let hλ be a holomorphic motion of P over
(∆, 0). Let us fix θ > 0 small enough. Restricting hλ to a smaller domain ∆ε, we may assume
that hλ is θ-regular and that hλ can be lifted successively for q times. Therefore by the Main
Lemma, we obtain a sequence of holomorphic motions h(n)

λ of P over (∆ε, 0), such that h(0)
λ = hλ

and h(n+1)
λ is the lift of h(n)

λ and such that h(n)
λ (x) ∈ ±Sθn for all n and all x ∈ P where θn → 0 as

n→∞. Thus (fc, fw,p)W has the lifting property and by the Main Theorem, the transversality
condition (A.1) holds.
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Alternatively, the uniqueness of c follows directly from the Main Lemma. Indeed, let f̃ = fc̃
be a map with the same kneading sequence as fc. Then one can define a real holomorphic motion
hλ over some domain Ω 3 0, 1 such that hλ(fn(0)) = f̃n(0) for λ = 1. As above, for i > 0 let
h

(i)
λ be the lift of h(i−1)

λ . As we have just shown, h(i)
λ (c) is contained in the sector −Sθn with

θn → 0, this sequence of functions λ→ h
(i)
λ (c) has to converge to a constant function. Since by

construction of the lifts c̃ = h
(n)
1 (c) for each n ≥ 1 we conclude that c̃ = c. �

A.2. Proof of the Main Lemma.

Lemma A.2. For any θ ∈ (0, π) and 0 < t < 1, if z ∈ Dθ then zt ∈ Dθ.

Proof. This is a well-known consequence of the Schwarz lemma, due to Sullivan. �

When ∠01z is much smaller than ∠10z, we have the following improved estimate.

Lemma A.3. For any ε > 0, there is δ > 0 such that the following holds. For z ∈ Dθ with
θ ∈ (0, π/2] and ∠01z < δθ and for any 0 < t < 1, we have ∠01zt < εθ.

Proof. Write z = reiα where r > 0 and α ∈ (0, θ) and write α′ = tα and β′ = ∠01zt. By
assumption, α+ β ≤ θ. By the sine theorem,

r =
sinβ

sin(α+ β)

and
rt =

sinβ′

sin(tα+ β′)
.

If α+ β < εθ then by Lemma A.2, α′+ β′ ≤ α+ β < εθ. Assume now α+ β ≥ εθ. Let K > 0
be a large constant such that

t

Kt − 1
< ε for any 0 < t < 1.

Assume β < δθ for δ small. Then r < 1/K. Thus

tanβ′ =
rt sin tα

1− rt cos tα
≤ trt

1− rt
α ≤ t

Kt − 1
α < εθ.

�

Lemma A.4. Let ϕλ be a θ-regular motion with θ ∈ (0, π/10] and let ψλ be its lift. For x, y ∈ P
so that xy ≥ 0 let xλ = ψλ(x), yλ = ψλ(y), uλ = ϕλ(f(x)), vλ = ϕλ(f(y)) and cλ = ϕλ(f(0)).

For any ε > 0 there is `0 and δ > 0 such that if ` > `0 then the following hold.
(1) If f(x) ≤ 0 ≤ f(y) then ∠0xλyλ ≥ π − εθ for all λ.
(2) Let 0 < f(x) < f(y). Then (i) ∠0xλyλ ≥ ∠0uλvλ − 8θ

` . If, moreover, cλ ∈ −Sθ1 and
uλ, vλ ∈ Sθ1 for some θ1 ∈ (0, 4θ/`] then (ii) xλ, yλ ∈ ±Sθ1/` and ∠0xλyλ ≥ ∠0uλvλ−2θ1.

(3) Suppose f(x) < f(y) < 0 and

α = π −min(∠cλvλ0,∠uλvλ0) < δθ.

Then
∠0xλyλ ≥ π − εθ.

Proof. Note that 40xy is the image of 4cλuλvλ under an appropriate branch of z 7→ (z − cλ)t.
Since ∠xoy < 8θ/`, an upper bound on ∠oyx implies a lower bound on ∠oxy.

(1) In this case, we have uλ ∈ −S4θ/` and vλ ∈ S4θ/`, so

∠0uλvλ ≤ 4θ/`,

and
∠0vλuλ ≤ 4θ/`.

In particular,
∠cλuλvλ ≥ ∠cλuλ0− ∠0uλvλ ≥ π − θ − 4θ/` ≥ π − 5θ.

By Lemma A.3, the statement follows.
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(2) In this case,
∠cλuλvλ ≥ ∠0uλvλ − ∠0uλcλ ≥ ∠0uλvλ − 8θ/`.

Thus by Lemma A.2, the conclusion (i) follows; (ii) is similar.
(3) In this case,

∠cλuλvλ ≥ ∠cλuλ0− ∠vλuλ0 ≥ π − θ − α ≥ π − 2θ

and
∠cλvλuλ ≤ 2π − (∠cλvλ0 + ∠0vλuλ) ≤ 2α.

So the conclusion follows from Lemma A.3. �

Now suppose that we have a sequence of θ-regular holomorphic motions h(i)
λ of P , i =

0, 1, . . . , q − 1 over the same marked domain (Ω, 0), such that h(i)
λ is a lift of h(i−1)

λ for all
1 ≤ i < q. Then h(q)

λ , lift of h(q−1)
λ is well-defined and satisfies the condition (A1) with the same

constant θ. For each 0 ≤ i ≤ q, λ ∈ Ω and x, y ∈ P so that 0 < |x| < |y| and xy > 0, let

θiλ(x, y) = π−

inf{∠0h
(i)
λ (z1)h

(i)
λ (z2) : z1, z2 ∈ P, 0 < |z1| ≤ |x| < |y| ≤ |z2|, xz1 > 0, xz2 > 0}

≥π − ∠0h
(i)
λ (x)h

(i)
λ (y).

Furthermore, given any x, y ∈ P , xy > 0 (but not necessarily |x| < |y|), denote

θ̂i(x, y) = θi(x ∧ y, x ∨ y)

where x ∧ y = x/|x|min(|x|, |y|) and x ∨ y = x/|x|max(|x|, |y|).

Lemma A.5. Consider 0 ≤ i < q, x, y ∈ P where xy > 0 and λ ∈ Ω. For any ε > 0 there is
δ > 0 and `0 > 0 such that if ` ≥ `0, then the following hold.

(1) If f(x) ≤ 0 ≤ f(y) then

θ̂i+1
λ (x, y) ≤ εθ.

(2) Let r ≥ 1 be such that i+ r ≤ q. If 0 < f j(x) < f j(y) for all 1 ≤ j ≤ r, then

θ̂i+rλ (x, y) ≤ θ̂iλ(f r(x), f r(y)) + εθ.

(3) If f(x) < f(y) < 0 and θ̂iλ(f(x), f(y)) < δθ, then

θ̂i+1
λ (x, y) ≤ 4 max(εθ, θ̂iλ(f(x), f(y))).

Proof. Note that f(x) < f(y) implies |x| < |y|.
(1) For each 0 < |z1| ≤ |x| < |y| ≤ |z2| as in the definition of θiλ(x, y) we have f(z1) ≤ 0 and

f(z2) ≥ 0. So by Lemma A.4 (1), (applying to ϕ = h(i) and ψ = h(i+1)), ∠0h
(i+1)
λ (z1)h

(i+1)
λ (z2) ≥

π − εθ. Thus the statement holds.
(2) Consider 0 < |z1| ≤ |x| < |y| ≤ |z2| so that z1z2 > 0. Then f(z2) > 0. If f(z1) ≤ 0, then

by Lemma A.4 (1), ∠0h
(i+r)
λ (z1)h

(i+r)
λ (z2) ≥ π − εθ. Assume f(z1) > 0 and let r1 ∈ {1, · · · , r}

be maximal such that 0 < f j(z1) ≤ f j(x) < f j(y) ≤ f j(z2) for all 1 ≤ j ≤ r1. Notice that then

0 < f r1(z2) ≤ f r1−1(f2(0)) < f r1−2(f2(0)) < · · · < f2(0).

Let us show that for all k ∈ {0, · · · , r1 − 1},

(A.2) h
(k+i+r−r1)
λ (f(0)) ∈ −S4θ/`k+1 ,

and

(A.3) h
(k+i+r−r1)
λ (f r1−k(z1)), h

(k+i+r−r1)
λ (f r1−k(z2)) ∈ S4θ/`k+1 .
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Indeed, this holds for k = 0 as h(i+r−r1)
λ is θ-regular. Now, for 1 ≤ k ≤ r1−1, (A.2)-(A.3) follows

by a successive application of the second part of Lemma A.4 (2). This proves (A.2)-(A.3). In
turn, using (A.2)-(A.3) and again applying successively Lemma A.4 (2),

∠0h
(i+r)
λ (z1)h

(i+r)
λ (z2) > ∠0h

(i+r−r1)
λ (f r1(z1))h

(i+r−r1)
λ (f r1(z2))− 2

∞∑
k=0

4θ

`k+1
=

∠0h
(i+r−r1)
λ (f r1(z1))h

(i+r−r1)
λ (f r1(z2))− 8θ

`− 1
.

Consider two cases. If r1 < r, then f r1+1(z1) ≤ 0 and f r1+1(z2) > 0 and by Lemma A.4 (1),

∠0h
(i+r−r1)
λ (f r1(z1))h

(i+r−r1)
λ (f r1(z2)) ≥ π − εθ

for any ` large enough. If r1 = r,

∠0h
(i)
λ (f r(z1))h

(i)
λ (f r(z2)) ≥ π − θiλ(f r(x), f r(y)).

In any case,
∠0h

(i+r)
λ (z1)h

(i+r)
λ (z2) > π − θiλ(f r(x), f r(y))− εθ

provided ` is large enough. Thus the statement holds.
(3) Notice that in this case θ̂iλ(f(x), f(y)) = θiλ(f(y), f(x)). Consider 0 < |z1| ≤ |x| < |y| ≤

|z2| so that z1z2 > 0. If f(z2) > 0 then by Lemma A.4 (1), ∠0h
(i+1)
λ (z1)h

(i+1)
λ (z2) ≥ π − εθ.

Assume f(z2) < 0. Then 0 > f(z2) ≥ f(y) > f(x) > f(z1) > c. So

∠h(i)
λ (c)h

(i)
λ (f(z2))0 ≥ π − θiλ(f(y), f(x))

and
∠h(i)

λ (f(z1))h
(i)
λ (f(z2))0 ≥ π − θiλ(f(y), f(x)).

By Lemma A.4 (3),

∠0h
(i+1)
λ (z1)h

(i+1)
λ (z2) ≥ π − 4 max(θiλ(f(y), f(x)), εθ),

provided that θiλ(f(y), f(x))/θ is small enough and ` is large enough. �

Completion of proof of the Main Lemma. It is easy to check that hqλ satisfies the condition (A1)
with S4θ/` replaced by S2θ/`. It remains to check that for x, y ∈ P , 0 < |x| < |y| and xy > 0

implies ∠0hqλ(x)hqλ(y) > π − θ/2. Since the critical point is periodic, there is a minimal integer
p, less than the period q of the critical point, such that

fp([x, y]) 3 0.

Let us define p − 1 = m0 > m1 > · · · > mj0−1 > mj0 = 0 inductively as follows. Given mi, let
mj+1 ∈ {0, 1 · · · ,mj − 1} be the maximal so that fmj+1([x, y]) ⊂ R− if it exists and mj+1 = 0
otherwise. Note that j0 ≤ L+ 1. Let

κmj = θ̂
q−mj
λ (fmj (x), fmj (y))/θ, j = 0, 1, . . . , j0.

Fix ε > 0 small. Assume that ` is large. Then by Lemma A.5 (1),

κm0 = κp−1 ≤ ε.

For each 0 < j ≤ j0, by Lemma A.5 (2) and (3),

κmj+1 ≤ 4κmj + 4ε

provided that κmj is small enough and ` is large enough. Therefore, provided that ` is large
enough, we have κ0 < 1/2. It follows that

∠0h
(q)
λ (x)h

(q)
λ (y) ≥ π − κ0θ ≤ π − θ/2.

�
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Appendix B. Families without the lifting property

In this appendix we will give a few examples of families for which the lifting property does
not hold.

B.1. Remark on the lifting property for the flat family. Using the notations of Section 7.2
let b = 2(e`)1/`, c = −β = −`1/` and f = Fc so that 0 7→ c 7→ β 7→ β by f . By Remark 7.4
the transversality fails for (f, F,p). (It can be also checked directly that the function R(w) =
F 2
w(w)− Fw(w) vanished at w = c, not identically zero but R′(c) = 0.) Therefore, by the Main

Theorem, this triple does not have the lifting property.
The purpose of this remark is to give a more direct argument that the lifting property does

not hold for (f, F,p)W . So let us assume by contradiction that (f, F,p) has the lifting property.
Fix r > 0 small so that the function E(z) := exp{−z−`} is univalent in a disk B(β, r) ⊂ U+. By
assumption, given an arbitrary holomorphic motion h0

λ of {c, β} there exist ε > 0 and a sequence
of holomorphic motions {h(k)

λ }
∞
k=0 of {c, β} over Dε such that for all λ ∈ Dε and all k ≥ 0 we

have that −h(k)
λ (c), h

(k)
λ (β) ∈ B(β, r). Therefore,

bE(−h(k+1)
λ (c)) + h

(k)
λ (c) = h

(k)
λ (β),

bE(h
(k+1)
λ (β)) + h

(k)
λ (c) = h

(k)
λ (β)

and h
(k+1)
λ (c) = −h(k+1)

λ (β). Let us now choose h0
λ(c) = c − λ and h0

λ(β) = −h0
λ(c) = β + λ.

Then h(k)
λ (c) = −h(k)

λ (β) holds for all k ≥ 0. Hence, for ak(λ) := h
(k)
λ (β) and all λ ∈ Dε, k ≥ 0,

b exp{− 1

ak+1(λ)`
} = 2ak(λ).

On the other hand, it is easy to check that the for function f : (0,+∞)→ (0,+∞),

f(x) =
b

2
exp{− 1

x`
},

we have: f(β) = β, Df(β) = 1, D2f(β) < 0, f : [β,+∞) → [β, b/2) is an increasing homeo-
morphism so that fk(x) → β as k → +∞ for all x ∈ [β,+∞). Let U : [β, b/2) → [β,+∞) be a
branch of f−1 such that U(β) = β. Since ak(0) = β and functions ak are continuous in Dε, it
follows that

ak(λ) = Uk(a0(λ))

for all k > 0 and all λ provided a0(λ) = β + λ ≥ β. Fix λ0 ∈ (0, ε) so that a0(λ0) = β + λ0 > β.
It follows that h(k)

λ0
(β) = ak(λ0) = Uk(a0(λ0)) → +∞ as k → ∞, a contradiction with the

definition of the lifting property.

B.2. Spectrum of the transfer operator and linear coordinate changes of the quadratic
family. Consider the standard holomorphic deformation of a critically finite quadratic map
(g,G,p), that is, p(w) = 0, Gw(z) = z2 + w and g = Gc1 is so that 0 is periodic for g of period
q ≥ 2.

Given a function ν which is locally holomorphic in a neighborhood of a point v1 ∈ C \ {0} so
that ν(v1) = c1, let w = ν(v) and ϕ(w) = ϕ(ν(v)) = ν(v)/v. Define

Gνv(z) =
1

ϕ(w)
Gw(ϕ(w)z) =

ν(v)

v
z2 + v

and gν = Gνv1 .
Then (gν , G

ν ,p) is a local holomorphic deformation of gν . Denote by A respectively Aν the
transfer operator of (g,G,p) respectively of (gν , G

ν ,p). Note that 1/2 is always in the spectrum
of A (see [26]).

Proposition B.1.

det(1− ρAν) =
1− 1

2
v1ν′(v1)

c1

1− ρ
2

det(1− ρA).
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Proof. Let Lν(z) = ∂Gνv(z)/∂v|v=v1 , vn = gnν (0),

Dν(ρ) = 1 +

q−1∑
n=1

ρn
Lν(vn)

(gnν )′(v1)
,

D(ρ) = 1 +

q−1∑
n=1

ρn
1

(gn)′(c1)
.

We have to varify the following identity:

Dν(ρ) =
1− ρ(1− 1

2
v1ν′(v1)
ν(v1) )

1− ρ
2

D(ρ).

Let us indicate its proof. We have: (gnν )′(v1) = (gn)′(c1), vn = cn/ϕ(c1) (in particular, ϕ(c1) =
c1/v1, and

Lν(vn) = (
ν(v)

v
)′|v=v1v

2
n + 1.

Then the above identity turns out to be equivalent to the following one:

2(1− ρ

2
)

1

c1

q−1∑
n=1

ρn−1 c2
n

(gn)′(c1)
= D(ρ)

which is checked directly using cn+1 − c2
n = c1 for 1 ≤ n ≤ q − 2 and −c2

q−1 = c1. �

Corollary B.2. The transversality of (gν , G
ν ,p) fails if and only if ν ′(v1) = 0.

Corollary B.3. Let c1 and ν be real. Then (gν , G
ν ,p) has the lifting property if and only if the

positive transversality property holds.

Proof. By the Main Theorem, the lifting property yields the positive transversality. Conversaly,
by Proposition B.1, Dν(1) > 0 implies that the spectrum of Aν belongs to the open unit disk
which in turn implies the lifting property. �

Appendix C. The lifting property in the setting of rational mappings

The goal of this section is to show how to apply the method developed in this paper to deal
with transversality problems in the classical case of polynomials and rational maps. It is natural
to assume that the maps involved are suitably normalized, so we shall only consider the following
situations:

(a) f is a map in Pd, the family of monic centered polynomials of degree d ≥ 2;
(b) Z is a set with #Z = 3 and RatZd is the family of all rational maps f of degree d such

that f(Z) = Z and such that Z is disjoint from the critical orbit of f .
Note that for each rational map f of degree d ≥ 2, it is possible to find Z, consisting of either

a cycle of period 3, or a fixed point and a cycle of period 2, such that f ∈ RatZd . Let U = Pd in
case (a) and U = RatZd in case (b).

In case (b), we assume without loss of generality that critical points and their orbits avoids
the point at ∞. Let c1, c2, · · · , cν be the distinct (finite) critical points of f with multiplicities
µ1, µ2, · · · , µν and let vj = f(cj). In the following, we fix f and let Uf denote the subcollection of
maps in U which have exactly ν critical points with multiplicity µ1, µ2, . . . , µν . It is well-known
that Uf is a complex manifold of dimension ν and the critical values are holomorphic coordinates.
See for example [22].

Proposition C.1. There is a neighbourhood W of (v1, v2, · · · , vν) in Cν such that W 3 w 7→ fw
in Pd (resp. RatZd ) is biholomorphsim from W to a neighborhood of f in Uf , and a holomorhic
function p : W → Cν , such that pj(w) is a critical point of fw of multiplicity µj and

w = (fw(p1(w)), fw(p2(w)), · · · , fw(pν(w))).
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Now we assume that f is critically finite. Let P = P (f), P0 = {c1, c2, . . . , cν} and let U be a
small neighborhood of P \ P0. Then f , restricting to P0 ∪ U , is a marked map in the sense of
§2.1. We shall use the same notation f for the marked map. Moreover, defining F (w, z) = fw(z),
(f, F,p)W is a holomorphic deformation of f in the sense of §2.2.

Theorem C.1. The holomorphic deformation (f, F,p)W satisfies the lifting property.

Proof. Let h(0)
λ be an arbitrary holomorphic motion of f(P ) over (D, 0). By Bers-Royden [3],

there exists ε > 0 such that h(0)
λ , λ ∈ Dε, extends to a holomorphic motion of C over (Dε, 0)

which satisfies the following: in case (a), for |z| large enough, h(0)
λ (z) is holomorphic in z and

h
(0)
λ (z) = z + o(1) near infinity, moreover, fix a big enough disk V such that f−1(V ) ⊂ V and

such that the complex dilatation µ(0)
λ of h(0)

λ is supported in V for all λ ∈ Dε, and in case (b),
hλ(z) = z for all z ∈ Z. Moreover, the complex dilatation µ(0)

λ of h(0)
λ depends holomorphically

in λ. Define µ(k)
λ = (fk)∗(µ

(0)
λ ) for each k ≥ 1 (here f is considered as a globally defined map)

and let h(k)
λ denote the unique qc map with complex dilatation µ(k)

λ and such that the following
holds: in case (a), h(k)

λ (z) = z + o(1) near infinity; and in case (b), h(k)
λ (z) = z for all z ∈ Z.

Then by the Measurable Riemann Mapping Theorem, h(k)
λ is a holomorphic motion of C over

(Dε, 0). Let us show that for each k ≥ 0, h(k+1)
λ , restricting to f(P ), is a lift of h(k)

λ , restricting
to f(P ), with respect to (f, F,p)W . This amounts to prove the following:
Claim. For |λ| small enough, we have

h
(k)
λ ◦ f ◦ (h

(k+1)
λ )−1 = f

(h
(k)
λ (v1),h

(k)
λ (v2),··· ,h(k)λ (vν))

.

Proof of Claim: for each λ ∈ Dε, the complex dilatation of h(k+1)
λ is the f -pull back of that of

h
(k)
λ , and therefore the function gλ := h

(k)
λ ◦ f ◦ (h

(k+1)
λ )−1 is holomorphic in C. It is a branched

covering of degree d, so it is either a polynomial or a rational function of degree d. By the
normalization of both h

(j)
λ , j = k, k + 1, in case (a), gλ ∈ U , and hence g ∈ Uf . Clearly the

critical values of gλ are h(k)
λ (vi). The claim follows.

To complete the proof, notice that in the case (a), µ(k)
λ are supported in f−k(V ) ⊂ V and by

compactness of K-qc maps the conclusion follows. �

Corollary C.2. Under the circumstances above, either (f, F,p)W satisfies the transversality
property or or f is a flexible Lattés map.

Proof. Suppose that (f, F,p)W does not satisfies the transversality property. Then by the Main
Theorem, there is a non-trivial local holomorphic family ft passing through f of critically finite
rational maps. By McMullen-Sullivan [34], f carries an invariant line field in its Julia set. Since
the postcritical set of f is finite, f must be a flexible Lattés map, see e.g. Corollary 3.18 of
[33]. �
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