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Abstract— This paper evaluates the use of breath sound
recordings to automatically determine the respiratory health
status of a subject. A number of features were investigated and
Wilcoxon Rank Sum statistical test was used to determine the
significance of the extracted features. The significant features
were then passed to a feature selection algorithm based on
mutual information, to determine the combination of features
that provided minimal redundancy and maximum relevance.
The algorithm was tested on a publicly accessible respiratory
sounds database. With the testing dataset, the trained classifier
achieved accuracy of 87.1%, sensitivity of 86.8% and specificity
of 93.6%. These are promising results showing the possibility
of determining the presence or absence of respiratory disease
using breath sounds recordings.

I. INTRODUCTION

Respiratory diseases are estimated to affect in excess
of 1 billion people in the world, out of whom 4 million
per year suffer from premature mortality [1]. This high
prevalence together with rising healthcare costs and the loss
of productivity, not just from patients themselves, but from
those caring for them, have massive negative socio-economic
impact globally [1].

The most common method for early diagnosis of respi-
ratory disease is auscultation. Auscultation is the process
of listening to sounds generated by the heart and lungs
with a stethoscope. It is a non-invasive and straight-forward
procedure, and hence, because of this, it is possibly the most
widely used diagnostic method in medicine. However, to
draw meaningful conclusions and perform diagnosis, auscul-
tation requires the practitioner to undergo training and have
prior experience in the field. Based on the findings from
auscultation, further tests can be prescribed to confirm or
refine the diagnosis.

Breathing sounds can be separated into two categories:
normal and abnormal (adventitious). Examples of abnormal
sounds include stridors, wheezes, crackles and rhonchi. The
presence of adventitious respiratory sounds have been shown
to indicate underlying respiratory conditions. For instance,
the occurrence of wheezes and crackles have been linked to
diseases such as asthma and Chronic Obstructive Pulmonary
Disease (COPD) [2].

Unfortunately, considering the highly subjective nature
of the auscultation process, unintentional misdiagnosis is
not unusual, if performed by an unskilled or inexperienced
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person [3]. This can lead to patients not receiving the
appropriate treatment and care, and consequently the dete-
rioration of their condition. Many studies have investigated
automatic and computerized methods to detect the presence
of abnormal lung sounds and reduce the subjectivity of the
process [4]. The drawback of reported methods, which is also
a problem with short time auscultation, is that they are based
on individual breath segments or phases. Breath segments
typically last between 1.5 to 3 seconds long, and breath
phases are even shorter. Moreover, wheezes and crackles are
also occasionally present in breathing sounds of subjects who
do not have respiratory diseases [5]. Hence, the presence
of adventitious sounds in breath segments is insufficient to
determine if the subject suffers from respiratory disease.

An alternative that has not been thoroughly explored is
the use of longer term acoustic breath sound recordings ac-
quired from wearable continuous monitoring devices. Longer
recordings will provide a clearer picture if the occurrences
of abnormal lung sounds are isolated incidents or if they are
indicative of a respiratory condition.

This paper aims to show the feasibility of using acoustic
breath recordings to determine if a subject suffers from
respiratory disease. Section II discusses the database and
methods used in the experiment. Section III examines the fea-
tures explored, and the selection of features using hypothesis
testing and a mutual information (MI) based method. Section
IV provides an overview of the classification algorithm used,
as well as the classifier evaluation metrics. Section V presents
the results obtained from testing the algorithm and the
discussion.

II. MATERIALS AND METHODS

The database used in this paper was obtained from the
2017 ICBHI Challenge [6]. This database consists of 920
recordings obtained from two different research teams and
contains breath sounds recordings from 26 healthy subjects
as well as 100 patients suffering from a range of respiratory
diseases, such as Chronic Obstructive Pulmonary Disease
(COPD), bronchitis, lower and upper respiratory tract infec-
tions. The recordings were also segmented and annotated by
healthcare professionals to indicate the presence of wheezes,
crackles or both, wheezes and crackles, in each segment. The
average duration of the recordings in this database is 21.5
seconds.

The number of recordings from the respiratory disease pa-
tient group is 885. The average duration of these recordings
is 21.6 seconds. Annotation files for 259 of these recordings
do not indicate the presence adventitious sounds. The median



number of segments of all annotated abnormal sounds per
recording is 3, with a standard deviation of 3.3. Individually,
the number of labelled wheezes, crackles and both wheezes
and crackles are 0 ± 2.1, 0 ± 2.9 and 0 ± 1.5 respectively.
The remaining 35 recordings were obtained from healthy
subjects, with an average duration of 20 seconds. Seven of
these contain adventitious respiratory sounds. Six recordings
contained crackles, two had wheezes and one had both
wheezes and crackles. These are summarized in Table I.

TABLE I
DETAILS OF HEALTHY SUBJECT RECORDINGS CONTAINING

ADVENTITIOUS SOUNDS

Subject Recording #Crackles #Wheezes #Both #Normal
No. No.
113 66 2 0 0 4
114 67 3 0 0 7
147 302 0 1 0 11

162 455 2 0 1 5
456 2 1 0 4

163 463 5 0 0 2
464 2 0 0 2

A high level overview of the proposed method is shown
in Fig. 1. The entire process can be broken down into three
parts: pre-processing, feature extraction, and classification.
The signal pre-processing steps include resampling the sig-
nals to 8000 Hz, to ensure a consistent sampling rate is used
across all recordings. The resulting signal is then passed
through a band-pass filter to retain components in the range
of 100 to 2000 Hz, since these correspond to frequencies
of breath sound signals [7]. As the data were collected
from different sources and devices, the recordings were all
normalized to the range [-1,1] before features were extracted.

Fig. 1. High level overview of the proposed method

III. FEATURE EXTRACTION AND SELECTION
The abnormal sounds annotated in the database, i.e. ad-

ventitious sounds, are sounds which appear superimposed
onto normal respiratory ones. But, in addition, lung sounds
in patients with respiratory disease also have a lower in-
tensity [2]. The additional frequency components as well as
reduction in amplitude support the hypothesis that the right
chosen features would have differing values between healthy
subjects and respiratory disease patients. The following fea-
tures were explored as potential candidates, to lead to an
algorithm which would distinguish recordings from healthy
and respiratory disease patients.

A. Features Extracted
1) Mel-Frequency Spectral Coefficients (MFCC): MFCC

is widely used in the domain of automatic speech recog-
nition. The success of this feature can be attributed to

its ability to model the features and characteristics of the
human auditory system. This was the reason why it was
chosen as a candidate feature, since adventitious sounds
can often be heard with auscultation. Thirteen coefficients
were extracted along with their differential coefficients, also
known as delta coefficients. The delta term measures the
rate of change of the coefficients. Hence, its inclusion can
allow for more information about the signal dynamics to be
included for analysis and training. The library [8] was used
in the extraction of MFCC features.

2) Discrete Wavelet Transform (DWT): From the charac-
teristics of respiratory disease recordings, the presence of
certain frequencies can indicate the existence of adventitious
sounds. Lung sounds contain frequencies ranging from 100
Hz to 2500 Hz, while adventitious sounds such as wheezes
and crackles are generally between 100 and 1000 Hz [7].

The wavelet transform is a method that allows analysis
of signals in the time-frequency domain and the spectral
components in the recordings can be mapped with time. This
is useful in breath sound recordings as it allows abnormal
sounds to be localized.

The wavelet transform coefficients indicates the similarity
between a signal and its analyzing wavelet, the greater
the resemblance the higher the value of coefficients [9].
The analyzing wavelet selected was hence based on the
likeness to the adventitious sounds that are present in the
breath recordings. As adventitious breath sounds only occur
periodically, and depending on whether these sounds are
present, the resulting coefficients will fluctuate over time.
It is because of this that the wavelet transform coefficients
were considered as a candidate features in this study. The
discrete wavelet transform, in particular, was used, as the
result is less redundant than the continuous form.

A 6-level decomposition was performed on the pre-
processed signal using a range of different analyzing
wavelets (Daubechies 1 to 10, Symlet 2 to 10 and Coiflet 1 to
5). The detail coefficients (cD) of levels 2 to 5 were retained
for further analysis as they represented frequency ranges of
lung sounds, as described earlier. Each level corresponds
to frequencies 1000-2000 Hz, 500-1000 Hz, 250-500 Hz
and 125-250 Hz, respectively. To quantify the changes in
the coefficients, statistical features describing the retained
coefficients were calculated. They included energy, entropy,
bounded variation, and variance.

3) Time Domain Features: In diseased patient recordings
with no adventitious sounds, the coefficients from the wavelet
transforms would be similar to those from a healthy subject
with no abnormal sounds. However, it is still possible to
tell them apart due to the differences in their amplitudes
in the time domain. To explore the differences between the
two subject groups, the power, mean, variance, skewness
and kurtosis were measured. The power of the acoustic
signals in the diseased group was expected to be lower
than in the healthy subjects group. The variance, skewness
and kurtosis are the second, third and fourth higher order
statistical features that are used to describe the signal with
respect to the mean.



B. Feature Selection
The Wilcoxon Sum of Rank test (also known as the Mann-

Whitney U-Test) was used to determine if and which of the
features extracted were statistically significant. This test was
suitable because the data were not normally distributed and
had a small number of samples in one of the classes [10]. The
null hypothesis for the test was that there is no difference in
the extracted features between healthy subjects and patients
diagnosed with respiratory disease. Features with a p-value of
less than 5% were considered statistically significant and the
null hypothesis could be rejected in favour of the alternative
hypothesis.

As shown in Table II, eight of the most significant (i.e.
lowest p-values) features extracted were the MFCC Delta
coefficients, followed by the energy and variance in the
5th level DWT coefficient. The coefficients from this level
corresponded to the frequency range of 125 Hz to 250 Hz,
which is within the range where most of the frequency
components of adventitious lung sounds are located. All
the features that were found to be statistically significant
were then tested with a minimum Redundancy Maximum
Relevance (mRMR) test [11]. The algorithm would find the
most relevant feature and each additional feature would be
ranked according to their redundancy. The top 20 features
from the mRMR test are shown in Table III.

TABLE II
15 MOST SIGNIFICANT FEATURES FROM RANK SUM TEST IN

ASCENDING ORDER

Features Names p–Values
5th MFCC Delta Coefficient 1.68E-13
1st MFCC Delta Coefficient 1.00E-12
3rd MFCC Delta Coefficient 2.02E-12
2nd MFCC Delta Coefficient 4.61E-11
11th MFCC Delta Coefficient 1.05E-09
4th MFCC Delta Coefficient 2.45E-09
8th MFCC Delta Coefficient 1.21E-08
12th MFCC Delta Coefficient 2.41E-08
sym7 cD5 Energy 2.68E-08
sym7 cD5 Variance 2.68E-08
db8 cD5 Energy 2.75E-08
db8 cD5 Variance 2.76E-08
sym10 cD5 Energy 3.84E-08
sym10 cD5 Variance 3.86E-08
coif3 cD5 Variance 3.87E-08

IV. CLASSIFICATION
The classification task was performed using the RUSBoost

algorithm [12]. RUSBoost is a combination of random under
sampling (RUS) and Boosting technique. This algorithm was
chosen because the combination of these two techniques
is particularly useful for dealing with datasets that have
imbalanced classes.

The number of iterations (T) used for all the trained clas-
sifiers in this paper was 30. Two minority class proportions
(N) were examined, specifically 35% and 50%. The base
classifier used was a Decision Tree.

The performance of the trained classifier was evaluated
using the accuracy, sensitivity and specificity metrics. For the

TABLE III
FIRST 20 FEATURES RETURNED BY THE MIN-REDUNDANCY

MAX-RELEVANCE (MRMR) ALGORITHM

Features Names rank
1st MFCC Delta Coefficient 1
sym4 cD3 Energy 2
Kurtosis 3
11th MFCC Coefficient 4
db3 cD5 Energy 5
Arithmetic Mean 6
db2 cD2 Coefficient 7
db9 cD5 Coefficient 8
8th MFCC Delta Coefficient 9
db9 cD2 Bounded Variation 10
db6 cD3 Coefficient 11
4th MFCC Delta Coefficient 12
6th MFCC Delta Coefficient 13
coif1 cD4 Energy 14
13th MFCC Delta Coefficient 15
db4 cD2 Coefficient 16
8th MFCC Coefficient 17
sym7 cD5 Bounded Variation 18
2nd MFCC Delta Coefficient 19
sym10 cD5 Energy 20

purpose of these metrics, a True positive (TP) was defined
as the correct identification of a recording corresponding to
respiratory disease, and True Negative (TN) as the correct
identification of a recording corresponding to no respiratory
disease. A healthy recording classified as diseased was a false
positive (FP), and a diseased recording wrongly classified
as healthy was a False Negative (FN). These metrics are
mathematically defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)

Sensitivity =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)

V. RESULTS AND DISCUSSION

The classification results from the trained models are
presented in this section. The first part presents the results
obtained with the individual group of features (i.e. MFCC,
DWT and Time Domain) whereas the second presents the
results from models using the significant features, as selected
using the Wilcoxon Rank Sum test and mRMR algorithm.

The models trained with MFCC and its derivative per-
formed the best among the groups of features; achieving
accuracy, sensitivity and specificity of 87.5%, 88.1% and
87.3% respectively. The comparison of different feature types
is presented in Table IV and Table V. The trained models
using features from the mRMR test are better than those
using individual types of features, as presented in Table VI
and Table VII, particularly in the cases of time domain and
DWT coefficient features. With MFCC however, there is only
a marginal improvement when twenty of the top mRMR
ranked features were used in classification.



The models trained with minority class proportion (N) set
at 35% resulted in a higher sensitivity than those using 50%.
As the dataset contained a significantly larger number of
recordings from patients with respiratory disease, a lower
N means more samples from the respiratory disease group
were used in the training of individual base classifiers.
The results showed that, in general, when the value of
sensitivity increases, specificity decreases (or vice versa) as
a consequence. As a result, the decision on the choice of the
classifier would very much be linked to the final intended
clinical use of the algorithm.

The proposed algorithm can potentially be of use for early
or timely diagnosis of respiratory diseases. Chronic respira-
tory diseases are generally slow-developing and symptoms
in the early stages are infrequent and less pronounced. It
is also at this stage that the patient is more likely to be
underdiagnosed. In COPD for example, the misdiagnosis
rate is higher when done by general practitioners (GPs) as
compared to experts [3]. For these misdiagnosed patients,
the implications are severe. They would not have access
to the appropriate care, education and treatment to control
the disease progression. With GPs being the first point of
contact, it is hence crucial that they are supported with tools
to conduct more accurate diagnosis.

TABLE IV
CLASSIFICATION RESULT (MINORITY CLASS RATIO, N = 0.5)

MFCC DWT TD
Accuracy (%) 85.5 63.1 62.9
Sensitivity (%) 85.4 62.8 62.8
Specificity (%) 87.3 70.9 64.6

TABLE V
CLASSIFICATION RESULT (MINORITY CLASS RATIO, N = 0.35)

MFCC DWT TD
Accuracy (%) 87.5 72.9 74.5
Sensitivity (%) 88.1 73.7 75.5
Specificity (%) 74.6 55.5 51.8

TABLE VI
CLASSIFICATION RESULT BASED ON THE NUMBER OF RANKED MRMR

FEATURES USED (MINORITY CLASS RATIO, N = 0.5)

Num. Features
5 10 15 20

Accuracy (%) 81.7 82.9 82.6 87.1
Sensitivity (%) 81.2 82.6 82.3 86.8
Specificity (%) 91.8 89.1 89.1 93.6

VI. CONCLUSIONS
This paper presented an algorithm that uses breath sound

recordings to determine whether or not a particular recording
originates from a patient with respiratory disease. The best
trained model achieved sensitivity of 86% and specificity
of 93% respectively, showing the potential of using breath

TABLE VII
CLASSIFICATION RESULT BASED ON THE NUMBER OF RANKED MRMR

FEATURES USED (MINORITY CLASS RATIO, N = 0.35)

Num. Features
5 10 15 20

Accuracy (%) 84.7 86.7 86.9 89.4
Sensitivity (%) 84.8 87.1 87.4 89.7
Specificity (%) 80.0 75.5 73.6 81.8

recordings to determine if a person might be suffering from
respiratory diseases. An area for improvement that would
further increase the accuracy of the proposed algorithm
would be to explore the optimum length of breath recordings
that would maximize the detection accuracy. The recordings
used in this paper had an average duration of 21.5 seconds.
Although this is much longer than individual breath seg-
ments, other recording duration might work better. Another
aspect that should be investigated is the conditions in which
breath signals are recorded. Different conditions may affect
the results since factors such as ambient noises, speech and
the position of the patient during the recordings could affect
both the characteristics, as well as the quality of the recorded
signals.
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