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Abstract: We show how to cast an interacting system of M–branes into manifestly gauge-
invariant form using an arrangement of higher-dimensional Dirac surfaces. Classical M–
theory has a cohomologically nontrivial and noncommutative set of gauge symmetries
when written using a “doubled” formalism containing 3-form and 6-form gauge fields.
We show how the arrangement of Dirac surfaces allows an integral subgroup of these
symmetries to be preserved at the quantum level. The proper context for discussing these
large gauge transformations is relative cohomology, in which the 3-form transformation
parameters become exact when restricted to the five-brane worldvolume. This structure
yields the correct lattice of M-theory brane charges.

1 Introduction

The bosonic sector of D = 11 supergravity is derived from the action

Ibulk11 =

∫

X

(R ∗ 1l− 1
2
G4 ∧ ∗G4 −

1
6
C3 ∧G4 ∧G4) , (1)

where G4 = dC3 and the relative coefficients are fixed by the requirement of D = 11 local
supersymmetry once the fermions have been included. The D = 11 spacetime X is taken
here to be without boundary.

The form-field C3 has the field equation

d ∗G4 +
1
2
G4 ∧G4 = 0 ; (2)

this is manifestly invariant under the gauge transformation δC3 = Λ3, where dΛ3 = 0.
This allows “large” gauge transformation if Λ3 is taken to be closed but not exact; δC3 is
“small” if Λ3 = dλ2, for λ2 globally defined.

Rewriting the C3 field equation as d(∗G4+
1
2
C3∧G4) = 0, notice that one can introduce

a dual field strength
G̃7 = dC̃6 −

1
2
C3 ∧G4 (3)

and impose the duality condition
G̃7 = ∗G4 ; (4)

§corresponding author : k.stelle@imperial.ac.uk
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then the C3 field equation becomes a Bianchi identity:

dG̃7 = −1
2
G4 ∧G4. (5)

In this way, the C3 field equation may be replaced by a duality condition for the “doubled”
(C3, C̃6) system.

This doubled system has a noncommutative ring of large gauge transformations:

δC3 = Λ3 , δC̃6 = Λ6 −
1
2
Λ3 ∧ C3

[δΛ3
, δΛ′

3
] = δΛ6

with Λ6 = Λ3 ∧ Λ′
3

[δΛ3
, δΛ6

] = [δΛ6
, δΛ′

6
] = 0 . (6)

This is the cohomology ring for 3-forms and 6-forms on the underlying spacetime. These
cohomologies are taken for the time being to be defined over the real numbers, but they
will soon be restricted to integral cohomologies when we consider the corresponding Dirac
quantization conditions.

In the rest of this article, which is based on [1], we will investigate the way in which
the algebra (6) is preserved a) in the presence of 2–branes and 5–branes, and b) at the
quantum level.

2 Current couplings to 2–branes and 5–branes

For an M2–brane worldvolume W3 ending on an M5–brane worldvolume W6, one has
∂W3 6= 0, so the basic M2 coupling

∫

W3
C3 fails to be gauge invariant even for small

gauge transformations Λ3 = dλ2. The cure for this problem is provided by a form-field
that exists on the W6 worldvolume: the self-dual 3–form h3, which has a potential b2.
Using the latter, one can take the combination

∫

W3
C3 −

∫

∂W3
b2, which is invariant under

small gauge transformations when taken together with a compensating Green-Schwarz
mechanism, δC3 = dλ2, δB2 = λ2.

Note that a self-dual 3–form field strength is precisely what is needed in order to
complete the bosonic part of the (2, 0) worldvolume fluctuation-field supermultiplet. The
transverse oscillations of the 5–brane provide 5 worldvolume scalar bosonic degrees of
freedom, while the 16 broken supersymmetries contribute 8 worldvolume fermionic degrees
of freedom (taking into account that the fermionic equations of motion are of first-order).
Thus, in order to have a bose–fermi balance on the W6 worldvolume, one needs to have
an additional 3 bosonic degrees of freedom. This is what is contributed by the self-dual
3-form, which contributes precisely 1

2
(4 · 3/2) = 3 degrees of freedom.

The gauge-invariant field strength for the C3 gauge field is accordingly the bulk ⊕

worldvolume combination
h3 = i∗C − db2 (7)

where i∗ is the pullback to the W6 worldvolume effected by the i : W6 →֒ X embedding
map.

The action for the M2, M5 system [2] can be written

Ibranes = Ikinetic + Ibraneforms + IWZ + Icounterterms (8)
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in which the various terms are

Ikinetic = T3

∫

W3

d3ξ
√

− det(γµν) + T6

∫

W6

√

− det(Gij) (9)

Ibraneforms = 1
2

∫

W6

h ∧ ∗h+ b

∫

W6

C̃ + e

∫

W6

h ∧ C + a

∫

W3

C + k

∫

W2

b (10)

IWZ = f

∫

W7

C ∧G+
q

2

∫

W8

G ∧G ; (11)

the values of the coefficients a, b, e, k, f, q shall be determined by requiring gauge invari-
ance. The selection of possible terms in (9–11) is made by taking all the relevant products
of operators, integrated over spaces of appropriate dimensionality. Clearly, the IWZ terms
are unusual, and their inclusion will need to be explained. The final term, Icounterterms, is
required for anomaly cancellation and will involve both worldvolume and bulk contribu-
tions.

In order to determine the values of the coefficients in (9–11), one has to impose the
requirements of gauge invariance but also take into account the fact that the “magneti-
cally” charged 5–brane and the string boundary of the 2–brane give rise to violations of
the normal Bianchi identities for the corresponding bulk and worldvolume form-fields.

3 Relative homology and cohomology, Bianchi identities and

gauge invariance

In order to express the violated Bianchi identities compactly, it is convenient to use
the language of relative cohomology.1 Consider a pair of form-fields of adjacent rank,
(Ck, Ck−1). The first element in a pair is taken to be valued in the bulk spacetime, but
the second element is taken to be valued in the subspace with respect to which the relative
cohomology is being defined, in this case the 5–brane worldvolume W6. Using the pull-
back i∗ from the bulk spacetime to the worldvolume W6 as above, one can define the
relative exterior derivative (or coboundary operator) as

d(Ck, Ck−1) := (dCk, i
∗Ck − dCk−1) . (12)

The group of forms closed in this sense, taken for now over the real numbers, is denoted
Hk(X,W6;R).

The pair of field strengths (G4, h3), valued respectively in the bulk and in the worldvol-
ume W6, is thus given locally in terms of the exterior derivative (12): (G4, h3) = d(C3, b2),
so the näıve Bianchi identity is d(G4, h3) = 0. In the presence of magnetically charged
sources, however, this must be violated on the corresponding source loci:

d(G4, h3) = (κT6δ(W6), T2→֒6δ(W2)) , (13)

where T6 and T2→֒6 are real coefficients; κ is the gravitational coupling constant, needed
on dimensional grounds. T6 has been chosen to equal the 5–brane tension, as is necessary
in order for the 5–brane to be a 1

2
supersymmetric BPS soliton.

After some analysis [1], the various conditions for small gauge invariance, taken to-
gether with the form (13) of the violated Bianchi identities plus use of the field equations

1For some original applications of relative cohomology to branes, see [3, 4].
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yield the following relationships between the coefficients in (9–11):

T3 = −a = 2k (14)

T6 = −2e = 6f (15)

T2→֒6 = −
k

e
=

T3

T6
(16)

b = 0 . (17)

These relations are fully consistent with the “brane surgery” relations [5, 6] expected
on the basis of charge conservation for a (q− 1) brane intersecting a (p− 1) brane over a
(k − 1) brane,

Tk→֒qTq = Tk→֒pTp , (18)

where Tk→֒q and Tk→֒p represent the tension of the (k − 1) brane as seen within the
(q − 1) brane or as seen within the (p− 1) brane. The relations (14–17) fit this rule for
T2→֒6 = T3/T6 if one takes T2→֒3 = 1.

In addition to the coefficient relations (14–17), one obtains also the following homology
relations from the gauge invariance requirements:

W2 = ∂W3 , W6 = ∂W7 ; (19)

the first of these is of course expected since the string is always located at the boundary
of the 2–brane on the 5–brane; the second establishes W7 as a “Dirac surface” for the
5–brane worldsheet W6.

Homology relations are of course dual to cohomology relations, and so one has an
appropriate boundary relation that is dual to the relative exterior derivative/coboundary
operator defined in (12). For cycles (Wk,Wk−1) in (X,W6) one has the relative boundary
relation

∂(Wk,Wk−1); = (Wk−1 − ∂Wk, ∂Wk−1) . (20)

Thus in relative homology, the statement that a pair has no boundary means

∂(Wk,Wk−1) = 0 ⇒ Wk−1 = ∂Wk ⊂ W6 , ∂Wk−1 = 0 . (21)

The group of homology chains in this sense, again taken for the time being over the reals,
is denoted Hk(X,W6;R).

Pairs of cycles and pairs of forms can be integrated as follows:
∫

(Wk,Wk−1)

(Ck, Ck−1) :=

∫

Wk

Ck −

∫

Wk−1

Ck−1 . (22)

The duality of relative homology and cohomology is then expressed via Stokes’ Theorem:

∫

(Dk+1,Dk)

d(Ck, Ck−1) = −

∫

∂(Dk+1,Dk)

(Ck, Ck−1) . (23)

One can also give the following meaning to integrals over linear combinations of spaces:
∫

αW+βU

C := α

∫

W

C + β

∫

U

C , α, β ∈ R . (24)

Relative cohomology language can now be used to describe the sense in which the
gauge transformations (6) remain “large” in the presence of 2–branes and 5–branes. The
transformation parameters (Λ3, λ2) for the form-fields (C3, b2) are taken to be elements of
H3(X,W6;R). Thus, Λ3 may remain cohomologically nontrivial on X −W6, but it must
reduce to an exact form dλ2 when restricted to the 5–brane worldvolume W6.
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4 Dirac-Schwinger-Zwanziger quantization relations

The above real relative homology and cohomology groups become restricted to integral
subgroups when quantum effects are taken into account. The basic requirement is that
adiabatic deformations of a dual pair of electric and magnetic solitons through a closed
deformation path should not produce any change in the quantum generating functional
path-integral. Thus, variations of the action I by amounts 2πk, k ∈ Z are allowed since
the integrand exp(iI) becomes multiplied in that case just by exp(2πik) = 1. A Wu-Yang
style argument [1] then shows that if an M2 brane worldvolume W3 is deformed through a
closed path Σ4 around an M5 brane worldvolume W6, one must for quantum consistency
have at most a phase change

T3

∫

Wfinal
3

C − T3

∫

W initial
3

C = T3

∫

Σ4

G
!
= 2πℓ , ℓ ∈ Z , (25)

i.e. the class
T3

2π
[G4] (26)

must be integral when integrated over closed manifolds Σ4 that do not intersect the 5–
brane worldvolume W6 itself.

Taking then Σ4 = ∂D5 and using the violated Bianchi identity dG = κT6δ(W6) yields
the M2-M5 brane Dirac quantization rule for the cell units of the brane charge/tension
lattice:

κT3T6
!
= 2π . (27)

In addition, one has a quantization relation for the self-dual (i.e. dyonic) string on
the 5–brane worldvolume W6. Firstly, note that the dimension here is in the sequence
d = 4n + 2, n ∈ Z, for which the Dirac-Schwinger-Zwanziger quantization condition for
dyons with (electric,magnetic) charges (ei, gi) is symmetric [7]:

e1g2 + e2g1 = 2πℓ , ℓ ∈ Z . (28)

Thus, for dyons with e = g, one has the charge relation e1e2 = πℓ, ℓ ∈ Z. This might
appear to give a unit cell that is out by a factor of 1

2
with respect to the unit expected,

but one needs to recall that the coefficient k of
∫

W2
b in (10) also contained a factor of 1

2
in

the coefficient relations (14). Taking this factor into account and performing an adiabatic
closed deformation similar to those above, one obtains

T3

∫

(W3,W2)final
(C3, b2)− T3

∫

(W3,W2)initial
(C3, b2) = T3

∫

(Σ4,Σ3)

(G4, h3)
!
= 2πℓ , ℓ ∈ Z . (29)

Then taking (Σ4,Σ3) = ∂(D5, D4) and using the violated Bianchi identities (13), one
finds out that of the two terms, only the D4 integral contributes because the D5 integral
of δ(W6) vanishes since dim(D5 ∩W⊥

6 ) = 1 only. Thus one obtains T3

∫

(Σ4,Σ3)
(G4, h3) =

T3

∫

D4
T2→֒6δ(W6) and accordingly there is a second quantization rule for the charge/tension

lattice-cell units:
T3T2→֒6

!
= 2π . (30)

Combining this with the relation (17) for T2→֒6, one obtains the quadratic cell unit rule

(T3)
2 !
= 2πT6 , (31)

The quantization rules (27) and (31) yield the correct charge lattice for M–theory solitons
[8, 9, 10, 11, 12].
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5 D = 12 Formulation and Dirac Surfaces

The bulk plus brane-source action discussed so far for M–theory needs to be completed by
gravitational counterterms in order to cancel diffeomorphism anomalies on the 5–brane
worldvolume W6 that arise from loops of worldvolume chiral fermion modes [13]. In order
to write these, it is convenient to introduce a D = 12 spacetime Y such that

X = ∂Y . (32)

Using this, the Chern-Simons term in the bulk action can be conveniently written− 1
6κ

∫

Y
G4∧

G4 ∧G4.
The main advantage of the D = 12 formulation, however, is in the way it gives to

express the Dirac surfaces needed to maintain manifest gauge invariance. For this purpose,
we need to introduce two surfaces bounded by W6: V7, which extends into Y in such a
way that

i∗δY (V7) = δX(W6) , (33)

and another surface W7 ⊂ X ; for both one has the boundary relation

∂V7 = ∂W7 = W6 . (34)

Since V7 and W7 share a boundary, one may flip the orientation of V7 and glue it onto W7

in order to make a closed surface W7 ∪ (−V7) = W7 − V7 :

∂(W7 − V7) = W6 −W6 = 0 . (35)

Hence, one can find a ball V8 ⊂ Y such that

∂V8 = W7 − V7 . (36)

A similar construction can be made on the 5–brane worldvolume for surfaces bounded
by W2. Letting i : W6 →֒ W7, introduce U3 ⊂ W7 with ∂U3 = W2 such that

i∗δW7
(U3) = δW6

(W2) . (37)

Since also one has ∂W3 = W2, one can flip the orientation of W3 and glue it onto U3 along
W2 to produce a closed surface U3 ∪ (−W3) = U3 −W3 which can similarly be taken to
be the boundary of a ball U4 :

∂U4 = U3 −W3 . (38)

Taken all together, one has the following relative homology relations for the Dirac
surfaces:

∂(V8,W7) = (V7,W6)
∂(U4, U3) = (W3,W2) . (39)

At this point, we can also state the gauge invariance requirement for the integration
domain in the remaining term q

2

∫

W8
G4 ∧ G4 in the action (11), with a coefficient to be

understood in the sense of Eq. (24):

qW8 = −
T6

3
V8 . (40)
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Taken all together, the gauge-field part of the action is then

Igauge =

∫

X

1

2κ
G4 ∧ ∗G4 + T3G4 ∧ Ω7(R)−

∫

Y

1

6κ
G4 ∧G4 ∧G4

−1
2
T6

∫

(V8,W7)

(

G4 ∧G4 − 2κT3 Ω8, h3 ∧ i∗G4

)

(41)

+
T6

4

∫

W6

h3 ∧ ∗h3 + T3

∫

U4

G4 −
T3

2

∫

U3

h3 ,

where the integration domains satisfy the relations (32,39). The terms involving Ω8 and Ω7

are parts of the counterterm structure needed to cancel the diffeomorphism anomalies on
the W6 worldvolume. Ω8 = dΩ7 generates the anomaly compensator A6 by transgression:

δdiffΩ7 = dA6 . (42)

A6 then cancels a part of the anomaly from loops of chiral fermions and of the self-dual
h3 field in the 5–brane’s W6 (2, 0) supersymmetric worldvolume theory.

6 Dependence on Dirac surfaces

The presence of terms like
∫

V8
G4∧G4 in the action (41) may give rise to concern whether

the action as presented describes correctly the 2–brane/5–brane system, or whether extra
degrees of freedom have sneaked in via the dynamics of surfaces like V8.

The answer is “no.” One has just the required degrees of freedom and nothing more.
This is demonstrated by showing that variations of the Dirac surfaces in the action (41)
produce effects that vanish modulo 2π as a result of appropriate integrality and relative
homology conditions.

Independence from variations of Y and V8 under shifts by closed surfaces boils down
to requiring that the classes

1

2πκ

[

1

3!
G3

4

]

and
T6

2π

[

1

2!
G2

4

]

(43)

be integral. From the flux integrality condition (26) that
[

T3

2π
G4

]

∈ H4(Y ;Z) , (44)

one sees that the needed integrality conditions follow from the charge-lattice unit condi-
tions

(2π)2

κ
= (T3)

3 and 2πT6 = (T3)
2 , (45)

which follow from (27,31).
Independence from variations of W7, V7, U4 and U3 is more complicated because some

of these surfaces are subsurfaces of others that can be varied, and so are carried along.
Thus, varying Y and W7 by closed surfaces ∂Z and ∂D8, one induces variations

Y ′ = Y + ∂Z ⇒ V ′
7 = V7 + ∂Z8

W ′
7 = W7 + ∂D8 ⇒ U ′

3 = U3 + ∂D4 . (46)
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At the same time, one should also consider the variations

V ′
8 = V8 + T8

U ′
4 = U4 + T4 . (47)

The shift in the action (41) under these Dirac surface variations is [1]

T6

2

∫

D8−T8−Z8

G4 ∧G4 + 2π

∫

T8

Ω8 + T3

∫

T4−D4

G4 +
T3

2

∫

(D4,∂D4)

(G4, h3) . (48)

Using again the flux integrality condition (44), one finds that this shift is in 2πZ provided
one has the boundary conditions for the integration domains

∂(−D8 + T8 + Z8) = ∂T8 = ∂(T4 −D4) = 0 , (49)

which follow from the Dirac surface relative homology relations (39). In addition, one
needs to require that

[Ω8] ∈ H8(Y ;Z) . (50)

This condition is known to be required also by membrane tadpole cancellation require-
ments [14, 15].

7 Lattice of Large Gauge Transformations

Finally, we return to the large gauge transformations. Since the various Dirac and DSZ
quantization conditions restrict the M–theory charges to lie on the charge lattice deter-
mined by (27,30,31), the large gauge transformations are also restricted. From the flux
integrality condition (44), it follows that gauge transformations relating the gauge fields
on different hemispheres must also lie on an integral lattice,

[

T3

2π
Λ3

]

∈ H3(Y ;Z) . (51)

Similarly, the flux integrality condition
[

T3

2π
(G4, h3)

]

∈ H4(Y,W6;Z) (52)

requires the gauge transformation integrality condition
[

T3

2π
(Λ3, λ2)

]

∈ H3(Y,W6;Z) (53)

and for the 6-form transformations one likewise finds the requirement
[

T6

2π
Λ6

]

∈ H6(Y ;Z) . (54)

Remembrance

The work of Ref. [1] on which this article is based was significantly aided by early pen-
etrating discussions with Sonia Stanciu, who is sadly no longer with us. Her gentleness
and her keen intelligence will be much missed.

8



References

[1] J. Kalkkinen and K.S. Stelle, “Large Gauge Transformations in M–theory,” to appear
in J. Geom. and Phys., hep-th/0212081.

[2] E. Witten, “Five-brane effective action in M-theory,” J. Geom. Phys. 22 (1997) 103
[hep-th/9610234];
P. Pasti, D. Sorokin and M. Tonin, “Covariant action for a D=11 five-brane with the
chiral field,” Phys. Lett. B 398 (1997) 41, [hep-th/9701037];
M. Aganagic, J. Park, C. Popescu and J.H. Schwarz, “World-volume action of the
M-theory five-brane,” Nucl. Phys. B 496 (1997) 191, [hep-th/9701166];
M. Cederwall, B.E. Nilsson and P. Sundell, “An action for the super-5-brane in D=11
supergravity,” JHEP 9804 (1998) 007, [hep-th/9712059].

[3] S. Stanciu, “A note on D-branes in group manifolds: Flux quantization and D0-
charge,” JHEP 0010 (2000) 015, [hep-th/0006145].

[4] J.M. Figueroa-O’Farrill and S. Stanciu, “D-brane charge, flux quantization and rel-
ative (co)homology,” JHEP 0101 (2001) 006, [hep-th/0008038].

[5] P.K. Townsend, “Brane surgery,” Nucl. Phys. Proc. Suppl. 58 (1997) 163,
[hep-th/9609217].

[6] G. Papadopoulos, “Brane surgery with Thom classes,” JHEP 9905 (1999) 020,
[hep-th/9905073].
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