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The Weinberg angle is an important parameter in Grand Unified Theories (GUT) as its size is crucially 
influenced by the assumption of unification. In scenarios with different steps of symmetry breaking, in 
particular in models that involve gauge-Higgs unification, the connection of the ultraviolet theory and the 
TeV scale-relevant, effective Standard Model description is an important test of the models’ validity. In 
this work, we consider a 6D gauge-Higgs unification GUT scenario and explore the TeV scale-GUT relation 
using a detailed RGE analysis in the 4D and 5D regimes of the theory, including constraints from LHC 
measurements. We show that such can be consistent with unification in the light of current constraints, 
while the Weinberg angle likely translates into concrete conditions on the fermion sector in the higher 
dimensional setup.

© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The interaction structure of the Standard Model of Particle 
Physics (SM) strongly suggests a mechanism of unification. On the 
one hand, Grand Unified Theories (GUTs) elegantly address ques-
tions related to fermion charge assignments in addition to a range 
of other shortcomings that are present in the SM. Along these 
lines a range of less traditional approaches to grand unification 
have been proposed recently (for a recent review see e.g. [1]). 
A scenario that we will focus on in this work is grand unifica-
tion in the context of gauge-Higgs unification [2–8]. In partic-
ular, we will focus on the model of Refs. [9,10]. As shown in 
Ref. [11], this model is consistent with current LHC measure-
ments with future LHC measurements being able to extend the 
currently observed sensitivity to exotic states to the multi-TeV 
range.

If a new state is discovered in the future, a question that will 
arise as part of the ensuing characterisation programme is its role 
as a potential harbinger of unification. Answers to this question 
will be model-dependent but can be informed by theoretical con-
sistency arguments. One of these consistency arguments that is 
typically highlighted in GUT scenarios is the tree-level prediction 
of the Weinberg angle
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sin2 θW = 3

8
, (1)

as a consequence of an (intermediate) SU(5) unification [12–14]. In 
perturbative theories, reproducing this value in the UV is critical 
to support the hypothesis of unification. The relation of Eq. (1) re-
ceives perturbative corrections that will modify its value in the UV 
as a function of the theories fundamental input parameters. How-
ever, the dominant relation between UV and TeV scales is captured 
in the renormalisation group running of sin2 θW , i.e. starting from 
the observed value at the electroweak scale and including correc-
tions from new particles becoming accessible we should approach 
the relation of Eq. (1) or discover the necessity of additional model 
constraints.

This is the focus of this work in the context of the aforemen-
tioned gauge-Higgs unification scenario of Refs. [9,10]. We perform 
a detailed renormalisation group equation (RGE) investigation of 
the 4D and 5D phases of the scenario with a particular focus on 
the weak mixing angle. In Sec. 2 we briefly outline the model to 
make our work self-contained. In Sec. 3 we lay out the RGE solving 
methods within the respective 4D and 5D formalisms and discuss 
their qualitative behaviour using a particular parameter benchmark 
scenario. In Sec. 4 we comment on the Weinberg angle at the GUT 
scale as a means to gauge unification in the considered theoretical 
framework. Sec. 5 is devoted to a numerical RGE scan. Particular 
attention is given to the number of RGE-active fermion genera-
tions that can provide guidance for future model-building. Sec. 6
offers conclusions.
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by 
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Table 1
Field content of the model of Refs. [9,10]. The columns provide details of 
the fields content, their transformation properties under the S O (11) gauge 
symmetry, and their localisations in the 6D setup. α, β are generational 
indices where α = 1, 2, 3, 4 and β = 1, 2, 3.

Name Field S O (11) rep. Bulk/Brane

Gauge bosons AM (x, y, w) 55 6D Bulk
Dirac spinors �α

32(x, y, w) 32 6D Bulk
Dirac vectors �

β
11(x, y, w) 11 6D Bulk

Dirac vectors �
′β
11(x, y, w) 11 6D Bulk

Spinor scalar �32(x, w) 32 5D Brane at y = 0
Majorana spinor χ

β
1 (x, w) 1 5D Brane at y = 0

2. The model

The model of Refs. [9,10] is a 6D space-time with hybrid 
(warped+flat) compactification and an S O (11) gauge symmetry, 
described by a Randall-Sundrum–like metric [15]

ds2 = e−2σ (y)(ημνdxμdxν + dw2) + dy2 , (2)

where e−2σ(y) is the warp factor associated with the y ∈ [0, L5]
direction, w ∈ [0, 2π R6] is an euclidean direction, and ημν =
diag(−1, +1, +1, +1) is the 4D Minkowski space-time metric. 
A Z2 transformation (xμ, y, w) → (xμ, −y, −w) results in a 
M4 × (T 2/Z2) orbifold with 5D branes M4 × S1, at the fixed 
points y = 0, L5. We assume a compactification M−1

GUT ∼ R6 �
{πk/(zL − 1)}−1, where k is the AdS5 curvature and zL = ekL5 , im-
plying Kaluza-Klein (KK) mass scales of the 5th and 6th dimension 
mKK5 � mKK6 ∼ MGUT. The matter content as well as its localisation 
on the orbifold fixed points is given in Table 1.

Symmetry breaking to Quantum Chromodynamics (QCD) and 
Electrodynamics (QED) proceeds in three stages: Firstly, orbifold-
ing with appropriate parity assignments [16,17] breaks S O (11) →
GPS = SU (4)C × SU (2)L × SU (2)R , the Pati-Salam [18] group on 
the infrared (IR) brane at y = L5. Secondly, 5D brane-localised in-
teractions at y = 0 of �32 break S O (11) → SU (5) spontaneously, 
leading to a SU (5) ∩ GPS = GSM = SU (3)C × SU (2)L × U (1)Y zero 
mode spectrum in the gauge field KK decomposition. Finally, be-
low the 5D compactification scale (i.e. where a 4D description of 
the theory is appropriate), the Hosotani mechanism [19–21] breaks 
SU (2)L × U (1)Y → U (1)EM through a vacuum expectation value 
of a Wilson loop θH along the y direction that carries the quan-
tum numbers of the SM Higgs field. In addition to recreating the 
SM at the electroweak scale, the theory predicts KK towers for the 
S O (11) gauge bosons and bulk matter fields in Table 1. The masses 
of these modes are set by the various symmetry breaking stages 
and the two associated mass scales mKK5 , mKK6 .

For the purposes of exploring the model’s parameter space, as 
done in e.g. [9], we identify the Weinberg angle at the electroweak 
scale as sin2 θW = 0.2312. As shown in Ref. [11] the parameter re-
gion leading to an acceptable low energy phenomenology can be 
extended with adapted statistical sampling methods. This is high-
lighted in Fig. 1, where we identify a parameter point as “SM-like” 
when it reproduces the SM at the 95% confidence limit.1

3. RGE effects

3.1. General remarks

At the TeV scale the model is effectively the 4D SM and we 
evolve the parameters according to the 4D theory properties. This 
is admissible until we approach MKK5 where the 5D structure be-
comes apparent. At this stage we could continue using 4D RGE 

1 We refer the interested reader to Ref. [11] for details.
Fig. 1. Scatter plot of representative parameter space points for the S O (11) model 
as functions of the KK scale mKK5 and warp factor zL . The colour reflects the order 
parameter 〈θH 〉. Points highlighted as hexagons are points that are SM-like, i.e. they 
reproduce the SM in the low energy regime at the 95% confidence level [11]. Faded 
points do not meet the 95% confidence level criteria.

Fig. 2. Tower of EFTs that approximate the UV 6D theory. The 4D description 
is valid within [M Z , MKK5 ] with G�SM ≡ SU (3)C × U (1)EM gauge symmetry and 
within [MKK5 , 1/L5] with GPS gauge symmetry. The 5D description is valid within 
[MKK5 , �Max] with a GPS gauge symmetry. Above �Max the full 6D description 
comes into effect.

equations including the additional KK states that have non-trivial 
quantum numbers under the SM gauge group. Alternatively, one 
can directly work in a 5D approximation [22] of the theory to ob-
tain identical results, see Fig. 2. Above the MKK5 scale additional 
KK states of the 5D theory become accessible which correct the 
behaviour of the 5D running.

The 5D regime is determined by the Pati-Salam symmetry 
group together with the active KK states and thresholds. 6D com-
pactification effects are not relevant in this context as we assume 
MKK5 � MGUT ∼ 1/R6. Without a 6D RGE formalism, a complete 
evolution to the GUT scale in our one-loop analysis is not possible 
since there is a scale

�Max ∼ 16π2

g2
5

� MGUT , (3)

which signifies a loss of perturbative control of the 5D regime be-
fore the unification scale. In this work, we opt to understand this 
scale as a lower bound on the GUT scale itself and use the differ-
ence of the Weinberg angle with respect to Eq. (1) as a measure to 
gauge unification qualitatively.

The gauge-related states with masses O(MKK5 ) relevant for our 
discussion are gauge fields that transform under the symmetries

AM ∼

⎧⎪⎨
⎪⎩

GPS/GSM

GSM

S O (5)/S O (4)

. (4)
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In the theory’s 5D regime, these states have defined trans-
formation properties under the Pati-Salam GPS symmetry. The 
coset S O (5)/S O (4) sector which transforms as (1, 2, 2) under 
GPS and eventually triggers electroweak symmetry breaking via 
the Hosotani mechanism, induces corrections to the gauge cou-
plings g2L, g2R . Note that the w gauge component KK states of 
S O (5)/S O (4) obtain large masses via brane interactions (see [9]) 
and are therefore not relevant for our discussion.

The fermionic matter content relevant in the same regime, is 
again characterised by symmetry properties under GPS. States with 
masses O(MKK5 ) are given by

(4,2,1)L,R , (4,1,2)L,R ,

(6,1,1)
(+)
L,R , (6,1,1)

(−)
L,R ,

(1,2,2)
(+)
L,R , (1,2,2)

(−)
L,R , (1,1,1)

(+)
L,R , (1,1,1)

(−)
L,R ,

(5)

which all originate from the �α
32, �

β
11, �

′β
11 bulk fields. The signs ±

refer to parity assignments to guarantee 6D S O (11) chiral anomaly 
cancellation, see Ref. [9].

We divide the full energy range in which the 5D EFT is valid 
(i.e. [M Z , �Max]) into two regions. The first region is given by the 
energy range in which the 5D EFT is well-approximated by its 
4D EFT counterpart. This region’s cut-off energy is dictated by the 
MKK5 mass threshold around where the gauge bosons of the Pati-
Salam symmetry are resolved. This corresponds to a scale given by 
the first non-zero mode of the photon tower.2 Thus, the first re-
gion is very well approximated by a GSM theory with additional 
matter states (that correspond to the θH shifted KK towers), which 
is valid between [M Z , MKK5 ]. We describe the remaining energy 
range [MKK5 , �Max] in the 5D GPS formalism following [22], where 
the cut-off represents the energy at which we lose perturbative 
control of the 5D theory, and the more fundamental 6D theory is 
required. The tower of theories is schematically shown in Fig. 2.

We now turn to the discussion of the 4D evolution, which 
will provide the IR boundary conditions for the 5D theory. We 
first fix our (electroweak) input parameters at M Z by setting 
α3C , αEM, sin θW to their experimentally observed values [23,24]

α3C = 0.11822 ,

α−1
EM = 127.916 ,

sin2 θW = 0.2312 ,

(6)

where α3C , αEM denote the strong and electric structure constants, 
respectively (we will discuss the impact of uncertainties on our 
results below). Subsequently, we then evolve α3C , αEM, sin θW via 
the GSM RGEs in the broken phase (using the formalism outlined 
in [25]) until we reach the energy scale at which a new KK state 
becomes available.

At this scale, we include new RGE contributions arising from 
resolved KK states until we reach MKK5 , where we include thresh-
old corrections λi corresponding to integrating out the heavy states 
corresponding to the GPS → GSM breaking (we do not include log-
arithmic threshold corrections arising from the matter fields).

The 4D/5D matching requires the identification of coupling con-
stants at the relevant scale. The electroweak couplings of the un-
broken SU (2)L × U (1)Y phase, α1Y , α2L are related to their broken 
phase counterparts by3

2 For warp factor choices zL > 10 that yield realistic low energy spectra, the so-
lutions for the first photon mode and the PS gauge bosons are almost degenerate.

3 This is done in the 4D framework, and we have adopted the standard 3/5 GUT 
normalisation for the hypercharge coupling.
1

α1Y (μ)

∣∣∣∣
μ=MKK5

= 3

5
(1 − sin2 θW )

1

αEM(μ)

∣∣∣∣
μ=MKK5

,

1

α2L(μ)

∣∣∣∣
μ=MKK5

= sin2 θW
1

αEM(μ)

∣∣∣∣
μ=MKK5

.

(7)

With this we can now find the values of the Pati-Salam gauge cou-
plings α4C , α2L, α2R at the MKK5 scale

1

α4C
= 1

α3C
+ 1

12π
,

1

α2R
= 5

3

1

α1Y
− 2

3

1

α3C
+ 8

45π
,

(8)

(α2L is already given as the coupling of the SU (2)L group). These 
serve as the boundary conditions for the 5D theory, where

g5D

√
L5 = g4D

∣∣∣∣
μ=MKK5

. (9)

We evolve the Pati-Salam couplings α4, α2L, α2R within the 5D for-
malism described in Ref. [22] in the energy range [MKK5 , �Max]. 
Using this running we then extract the coupling values and com-
pare the Weinberg angle

sin2 θW (μ) =
(

1

α2Lα4C

(
α2Lα4C + 2

3
α2Lα2R+

α2Rα4C − 5

3
α2Lα2Rα4C

8

45π

))−1∣∣∣∣
μ

(10)

to its predicted GUT value.
Before we discuss the RGEs in detail below, it is instructive to 

define a reference point to guide our discussion. To get a qual-
itative understanding of how the KK thresholds modify the RG 
evolution of the theory, we consider the set of parameters from [9], 
which provide a SM-like physical mass spectrum

Psample :=
{

k = 89130, zL = 35, c1 = 0, c2 = −0.7,

c′
0 = 0.5224,μ1 = 11.18,μ11 = 0.108,

μ̃2 = 0.7091,μ′
11 = 0.108

}
.

(11)

c1, c2, c′
0 are the fermion bulk mass parameters along the warped 

direction, and μ1, μ̃2, μ11, μ′
11 are couplings localised on the 5D 

brane at y = 0 (for details see [9]). This choice results in the tower 
of states shown in Fig. 3, which we will use as a reference point in 
the following.

3.2. 4D approximation and RGEs

By performing the RGE analysis in the broken phase, we evolve 
the QCD gauge coupling g3, along with the electromagnetic cou-
pling gEM, which in turn determines the Weinberg angle sin θW

RGE evolution via the matter content. To facilitate an unambigu-
ous transition to the Pati-Salam phase we then proceed to relate 
the latter to the unbroken U (1)Y hypercharge and SU (2)L weak 
couplings.

The renormalisation group equations are expressed in terms of 
the gauge couplings gi as

μ
∂ gi

∂μ
= βi(gi,μ) ,

1

αi
= 4π

g2
i

, (12)

where βi are the beta coefficients arising from the group repre-
sentations of the SU (N) gauge group. The QCD beta function βg3 , 
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Fig. 3. Tower of states from M Z to the next states at scales beyond MKK5 . The labels indicate the relevant fermion and boson fields, and their markers show the mass of the 
respective KK state. W ±

μ refer to the W boson tower, Z 0
μ to the Z boson tower, ψt denotes the top quark tower, ψb is the bottom quark tower, ψD is the “dark fermion” 

multiplet tower, W R
μ is the Pati-Salam SU (2)R W boson tower, γμ is the photon tower, A4,11

z is the Higgs tower, and ψτ is the tau tower.
has the generic form arising from a SU (N) gauge theory [26] with 
fermions and scalars in representations Fi and Si ,

βg3 = g3
3

(4π)2

{
−11

3
C2 (SU (3)) + 4

3
κ S2 (Fi) + 1

6
ηS2 (Si)

}
where C2 (Gi) is the quadratic Casimir of the group Gi , S2 (Fi) ,

S2 (Si) are the Dynkin indices for the fermion/scalar representa-
tions, κ = 1/2, 1 for Weyl and Dirac fermions, respectively, and 
η = 1, 2 for real and complex scalar fields.

For the RGE runnings of the QED gauge coupling gEM and Wein-
berg angle sin θW , we use the formalism presented in Ref. [25]. The 
QED beta function is

βgEM = g3
EM

(4π)2

1

6

{∑
i

Nc
i γi Q 2

i

}
,

where Nc
i are the fermion colour factors, Q i are the EM charges 

and γi = {−22, 8, 4, 2} correspond to gauge bosons, Dirac/chiral 
fermions and complex scalar fields.

We begin our RGE evolution at M Z � 91 GeV. The QCD and QED 
couplings have beta function coefficients

βg3 = −7
g3

3

(4π)2
, βgEM = 22

g3
EM

(4π)2
, (13)

which are determined by the SM matter content and their SU (3)C

and U (1)EM charges. As we evolve the couplings and encounter 
new states, the beta functions pick up new contributions. The ad-
ditional contributions to the QCD beta function take the form

βg3 → βg3 +

⎧⎪⎨
⎪⎩

− 11
3 C2(SU (3))

+ 4
3κ S2(Fi) · NG

+ 1
6

∑
ηS2(Si)

(14a)

depending on the nature of the state. Analogously, for the QED 
beta function we have,

βgEM → βgEM +

⎧⎪⎨
⎪⎩

−22Nc
i γi Q 2

i

+8Nc
i γi Q 2

i · NG

+2Ncγ Q 2

. (14b)
i i i
In Eqs. (14), we have introduced the NG factor in the fermionic 
contributions to account for the number of matter generations 
present in the model. In this paper we examine the NG = 1, 3
cases. For NG = 3 we assume that all three SM generations con-
tribute and that the mass differences between the associated KK 
states is negligible for the non-zero modes. Similarly for NG = 1
we assume that there is a mass separation mechanism between 
the third family and the other two which effectively decouples the 
non-zero states from the theory, leaving only the third as relevant, 
as in [9]. Comparing the different assumptions will point towards 
future model building directions (see below) in the light of ex-
pected unification.

With this framework in place we can now form a piecewise 
system of differential equations. As shown in [25] the Weinberg 
angle’s RGE running is fully determined by its experimental value 
at M Z , the matter content of the theory, and the running of αEM

sin2 θW (μ) = αEM(μ)

αEM(μ0)
sin2 θW (μ0)

+
∑

i Nc
i γi Q i T i∑

i Nc
i γi Q 2

i

[
1 − αEM(μ)

αEM(μ0)

]
, (15)

where Ti is the third component of the weak isospin (T3 = +1/2
for ui, νi , T3 = −1/2 for di, ei , T3 = ±1 for W ±). The RGE running 
for the Weinberg angle starting at M Z is determined by the matter 
content of the SM and has a growth coefficient∑

i Nc
i γi Q i T i∑

i Nc
i γi Q 2

i

= −19

22
. (16)

Therefore, using the numerical solution for αEM we can now create 
an analogous piecewise solution for sin θW based on the present 
matter content. The fields’ charges under SU (3)C × U (1)EM, along 
with their T3 values are given in Table 2.

When we reach MKK5 , we recover the hypercharge and weak 
couplings from the evolved values of αEM and sin θW via

1

α2L(μ)
= 1

αEM(μ)
sin2 θW (μ) ,

1 = 3 1
(1 − sin2 θW (μ)) .

(17)
α1Y (μ) 5 αEM(μ)
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Table 2
Charge assignments for fields contributing to the RGE runnings.

Name SU (3)C Charge U (1)EM Charge T3

Tau (τ ) 1 -1 -1/2
Bottom (b) 3 -1/3 -1/2
Top (t) 3 +2/3 +1/2
Neutrino (ν) 1 0 +1/2
W ± 1 ±1 ±1
Dark Fermion ψν

D 1 0 +1/2
Dark Fermion ψu

D 3 +2/3 +1/2
Dark Fermion ψu

D 3 -2/3 -1/2
Dark Fermion ψe

D 1 -1 +1/2

Fig. 4. Piecewise RGE evolution for the SM couplings g3C , g2L , g1Y with the different 
β function changes at the multiple encountered KK states marked as dashed lines. 
(MKK5 itself is the furthest right dashed line.) Note that the piecewise forms for 
g2L , g1Y are obtained via Eq. (17).

Since MKK5 is the energy threshold at which the Pati-Salam states 
become available, we transition to the PS phase of the theory 
where we obtain the gauge couplings based on the symmetry 
breaking SU (4)C × SU (2)L × SU (2)R → SU (3)C × SU (2)L × U (1)Y . 
This in turn provides us with the aforementioned 4D/5D boundary 
conditions of Eq. (8) evaluated at MKK5 . Following this procedure, 
the GSM gauge coupling running in the energy range [M Z , MKK5 ]
for the spectrum of Fig. 3 is shown in Fig. 4.

3.3. 5D RGEs and cut-offs

We now turn to the 5D running with the boundary conditions 
at MKK5 detailed above as input. The matter content in our approx-
imated 5D theory was mentioned earlier in Eq. (5), in addition to 
the (1, 2, 2) ∼ S O (5)/S O (4) state.

The formalism in [22] specifies the 5D RGE running for generic 
5D field parity assignments on a S1/Z2 ×Z′

2 orbifold. Since we 
started with a 6D theory defined on M4 × T 2/Z2, the S1/Z2 ×Z′

2
assignments arise from the orbifold assignments along the warped 
direction. These assignments are tabled for fermions, gauge bosons 
and scalars in Tables 3, 4, and 5, respectively.

The 5D RGEs take the generic form [22]

1

g2
a (μ)

= π L5

g2
a5D (�Max)

+ 1

8π2

∑
ξ

�a (ξ ;μ, ln �Max) , (18)

where ga is the 4D gauge coupling corresponding to the respec-
tive gauge group in SU (4)C × SU (2)L × SU (2)R (where by a we 
denote 4C, 2L, 2R), g2

a5D
is the squared 5D gauge coupling (which 

has mass dimension M−1). �a (see Appendix A.1) denote the one 
loop corrections due to the theory’s field content labelled with 
ξ ∈ {φ,ψ, Aμ

}
for scalars, fermions and gauge bosons. �N (ξ) for a 

gauge group SU (N) and a field ξ are given in Ref. [22] and repro-
duced in the appendix for completeness.
Table 3
Fermion parity assignments under S1/Z2 ×
Z′

2.

GPS rep. Parent Field (Z2,Z′
2)

(4,2,1)L �α
32 (+,+)

(4,2,1)R �α
32 (−,−)

(4,1,2)R �α
32 (+,+)

(4,1,2)L �α
32 (−,−)

GPS rep. Parent Field (Z2,Z′
2)

(4,2,1)L �4
32 (+,−)

(4,2,1)R �4
32 (−,+)

(4,1,2)L �4
32 (−,+)

(4,1,2)R �4
32 (+,−)

GPS rep. Parent Field (Z2,Z′
2)

(6,1,1)
(+)
R �

β
11 (+,+)

(6,1,1)
(−)
L �

β
11 (+,+)

(6,1,1)
(+)
L �

β
11 (−,−)

(6,1,1)
(−)
R �

β
11 (−,−)

GPS rep. Parent Field (Z2,Z′
2)

(1,2,2)
(+,−)
L,R �

β ′
11 (+,+)

(1,1,1)
(+,−)
R,L �

β ′
11 (+,+)

(1,2,2)
(+,−)
R,L �

β ′
11 (−,−)

(1,1,1)
(+,−)
L,R �

β ′
11 (−,−)

Table 4
Gauge boson parity assignment under 
S1/Z2 ×Z′

2. Note that we have to treat the 
GPS, and GSM representations separately due 
to the mixed parity assignments in the full 6D 
model.

GSM rep. Parent Field (Z2,Z′
2)

(1,3,0) Aμ ∈ GSM (+,+)

(8,1,0) Aμ ∈ GSM (+,+)

(1,1,0) Aμ ∈ GSM (+,+)

GSM rep. Parent Field (Z2,Z′
2)

(3,1,0) Aμ ∈ GPS/GSM (−,+)

(3,1,0) Aμ ∈ GPS/GSM (−,+)

GPS rep. Parent Field (Z2,Z′
2)

(1,2,2) Aa,11
μ ∈ S O (5)/S O (4) (−,−)

(1,1,3) W ±
R , Z R ∈ GPS/GSM (−,+)

Table 5
Scalar parity assignment under S1/Z2 × Z′

2. In 
the 5D RGE formalism they are treated as scalars 
originating from either the gauge boson projec-
tions or as remnants from the 6D approximation.

GPS rep. Parent Field (Z2,Z′
2)

(15,1,1) A y ∈ GPS (−,−)

(1,1,3) A y ∈ GPS (−,−)

(1,3,1) A y ∈ GPS (−,−)

GPS rep. Parent Field (Z2,Z′
2)

(15,1,1) Aw ∈ GPS (−,−)

(1,1,3) Aw ∈ GPS (−,−)

(1,3,1) Aw ∈ GPS (−,−)

GPS rep. Parent Field (Z2,Z′
2)

(1,2,2) A4,11
y ∈ S O (5)/S O (4) (+,+)
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Fig. 5. Effective 4D SU (4)C × SU (2)L × SU (2)R gauge couplings obtained via the 5D 
Pati-Salam approximation, using the evolved coupling values originating from the 
4D formalism. The dotted line corresponds to the MKK5 threshold at which we start 
our 5D runnings.

We can define a cut-off �Max as the scale at which we lose 
perturbative control of the 5D theory,

�Max � 16π2

g2
a5D(�Max)

. (19)

This is the scale where the formal expansion parameter becomes 
too large (see Ref. [27]) to deliver reliable results within the con-
text of our leading order RGE analysis. To get a numerical estimate 
for �Max we can use the RGEs evaluated at MKK5 , i.e.

1

g2
a
(
MKK5

) = π L5

g2
a5D (�Max)

+ 1

8π2

∑
ξ

�a
(
ξ ; MKK5 , ln �Max

)

≡ Ca
5 (�Max) + 1

8π2

∑
ξ

�a
(
ξ ; MKK5 , ln �Max

)
. (20)

This is an implicit equation for our unknown 5D gauge coupling at 
the cut-off scale. To find the unknown dimensionless Ca

5 (and scale 
�Max), we can recast the above as a functional equation and solve 
it numerically for Ca

5. More specifically we can recast �Max as

�Max = 16π

L5
Ca

5 , (21)

which then provides us with the functional form when substituted 
into Eq. (20),

Ca
5 = 1

g2
a
(
MKK5

) − 1

8π2

∑
ξ

�a

(
ξ ; MKK5 , ln

(
16π

L5
Ca

5

))
. (22)

Solving this equation numerically yields cut-off scales for each of 
the gauge couplings �4C

Max, �
2L
Max, �

2R
Max. For the remainder of this 

paper we will refer to the smallest of the three when discussing 
the cut-off of the theory where a more fundamental 6D theory 
should come into effect

�Max = min
{
�4C

Max,�
2L
Max,�

2R
Max

}
. (23)

The running in the 5D regime for our sample point is shown in 
Fig. 5.
4. Weinberg angle: S U (5) prediction vs running

We can now turn to an analysis of the RGE-corrected Wein-
berg angle. Switching from the broken SU (3)C × U (1)EM phase, to 
the GSM phase, the Weinberg angle sin θW and the electromagnetic 
fine structure constant αEM, determine the weak and hypercharge 
couplings according to Eq. (17). Similarly the GSM couplings are 
related to the GPS ones as expressed in Eq. (8), leading to the 
Weinberg angle expression of Eq. (10). At the unification scale, i.e. 
the energy at which the first non-zero GUT KK state becomes avail-
able mKK6 ∼ 1/(2π R6), we can write a series of identities between 
the 4D, 5D, 6D couplings based on the principle that there is only 
one fundamental gauge coupling.

Before gauge symmetry breaking, the 5D and 4D equivalent 
S O (11) couplings at the 5D Planck and IR branes are related to 
the 6D gauge coupling by,

α
S O (11)
6D = α

S O (11)−IR
5D

2π R6
= α

S O (11)−Pl
5D

2π R6

= α
S O (11)−IR
4D

2π R6L5
= α

S O (11)−Pl
4D

2π R6L5
.

On the Planck brane the gauge symmetry is broken down to 
SU (5) via the vacuum expectation value (VEV) 〈�32〉. In terms of 
the equivalent 4D gauge couplings, the identification at 1-loop is 
equivalent to [28,29]

1

α
SU (5)−Pl
4D

= 1

α
S O (11)−Pl
4D

− 1

12π
[C2(S O (11)) − C2(SU (5))] .

(24)

Recasting this in terms of the 6D coupling, we have

1

α
SU (5)−Pl
4D

=
{

1

α
S O (11)
6D

− 2π R6L5
λ11→5

12π

}
1

2π R6L5
, (25)

where λ11→5 = [C2(S O (11)) − C2(SU (5))]. Similarly, on the IR 
brane we break S O (11) → SU (4)C × SU (2)L × SU (2)R via bound-
ary conditions, which produce the gauge identifications at 1 loop,

1

α
SU (4)C −IR
4D

= 1

α
S O (11)−Pl
4D

− λ11→4

12π
,

1

α
SU (2)L−IR
4D

= 1

α
S O (11)−Pl
4D

− λ11→2

12π
,

1

α
SU (2)R−IR
4D

= 1

α
S O (11)−Pl
4D

− λ11→2

12π
,

where λ11→4 = C2(S O (11)) − C2(SU (4)), λ11→2 = C2(S O (11)) −
C2(SU (2)). In terms of the 6D couplings this means,

1

α
SU (4)C −IR
4D

=
{

1

α
S O (11)−Pl
6D

− 2π R6L5
λ11→4

12π

}
1

2π R6L5
,

1

α
SU (2)L−IR
4D

=
{

1

α
S O (11)−Pl
6D

− 2π R6L5
λ11→2

12π

}
1

2π R6L5
,

1

α
SU (2)R−IR
4D

=
{

1

α
S O (11)−Pl
6D

− 2π R6L5
λ11→2

12π

}
1

2π R6L5
.

(26)

Ignoring the Casimir terms for a moment to keep the discussion 
transparent, at the unification scale, instead of the Eqs. (25), (26), 
we have



C. Englert et al. / Physics Letters B 807 (2020) 135548 7
Fig. 6. Numerical impact of the Casimir correction (blue line) as a function of the 
unknown inverse unified coupling (αS O (11)

4D )−1. The green line represents the low 
bound for the ∼ 0.4% deviation occurring at (α

S O (11)
4D )−1 � 20. The orange line 

represents the GUT hypothesis 3/8. The smaller α, the less impact the Casimir cor-
rections have on the prediction as they weighted by αS O (11)

4D .

1

α
SU (4)C −IR
4D

= 1

α
SU (2)L−IR
4D

= 1

α
SU (2)R−IR
4D

= 1

α
SU (5)−Pl
4D

= 1

α
S O (11)−Pl
6D

1

2π R6L5
.

(27)

When combined with the expression for the Weinberg angle in the 
Pati-Salam phase, Eq. (10), these relations lead to the expected

sin2 θW (μ)

∣∣∣∣
μ=(2π R6)−1

= 1
2
3 + 1 + 1

= 3

8
. (28)

In essence, this is the SU (5) prediction translated from the Planck 
brane to the IR brane.4 Again, we emphasise that this scale is not 
accessible within our 5D formalism, but we can infer some useful 
conclusions depending on the values of the RGE runnings at �Max, 
as we will see in Sec. 5.

Including the Casimir corrections, we find the slightly modified 
relation

sin2 θW (μ) = 36 − 18πα
S O (11)
4D

96 − 1

π
20α

S O (11)
4D − 44πα

S O (11)
4D

∣∣∣∣∣
μ=(2π R6)−1

.

(29)

Since the Casimir-corrected Weinberg angle requires a value for 
the S O (11) 4D equivalent gauge coupling, we examine the possible 
deviation from the 3/8 GUT prediction as a function of the possible 
values of αS O (11)

4D , as shown in Fig. 6. For reasonable αS O (11)
4D cou-

pling values (e.g. Ref. [29]) we see that deviations arising from the 
Casimir-corrected values amount to � −0.0013, see Fig. 6. Since 
this ∼ 0.4% deviation is negligible, we can safely ignore the Casimir 
contributions in the following without qualitatively changing our 
results.

5. Results and conclusions

The running is crucially influenced by the number of active 
fermion generations NG . We will therefore comment on our re-
sults for NG = 1, 3 separately.

In the first case, we include only the third fermion generation 
as mentioned before. This implicitly assumes that there is a large 

4 The scale of SU (5) breaking is dictated by 〈�32〉 ∼ R−1
6 , which is localised on 

the UV brane y = 0, i.e. the scale in Eq. (28) is consistent.
mass gap between the third family and the remaining two, de-
coupling the associated zero-mode KK states from the RGE flow 
(see Ref. [9]). In the second case, we assume that all three SM 
generations are present and that different generational mass states 
are nearly degenerate. The comparison of these avenues contrasted 
with implications for unification can therefore act as a guideline 
for future model-building in the fermion sector.

To examine the extent to which the gauge couplings converge 
in the 4D, 5D regimes tensioned against the unification value of 
the Weinberg angle, we introduce a “unification measure”

�(G; M2, M1) =

∑
i, j∈G|i 
= j

|αi(M2) − α j(M2)|
∑

i, j∈G|i 
= j

|αi(M1) − α j(M1)|
, (30)

i.e. we consider the ratio of the sum of the mutual coupling de-
viations between two scales M2 > M1. αi are the gauge group 
couplings of the subgroups that form the gauge group G . This ra-
tio measures how quickly the gauge couplings approach each other 
as a function of the energy scale. Since we are interested in gauge 
coupling unification at M2 > M1, values of �(G; M2, M1) refer to

�(G; M2, M1)

⎧⎪⎨
⎪⎩

> 1 ⇔ departure from unification

< 1 ⇔ approaching unification

∼ 0 ⇔ unification

. (31)

We plot this unification measure in the 4D SM phase between 
M Z , MKK5 , along with the Weinberg angle value at MKK5 in 
Figs. 7(a), 8(a) for the NG = 1 and NG = 3 cases. Figs. 7(b) and 
8(b) show the same measure for NG = 1 and NG = 3 in the 5D PS 
phase between MKK5 , �Max.

We start our discussion with the NG = 1 case. Examining 
Fig. 7(a) we can see that within the 4D SM phase, all the points 
that are consistent with the SM have a unification measure smaller 
than unity, where the evolved Weinberg angle is around sin2 θW �
0.25.

The Weinberg angle evolves towards its predicted unified value 
with a converging behaviour of the gauge couplings. The numerical 
results are similar between the NG = 1, 3 cases, where in the NG =
3 case, the unification measure is smaller due to the additional 
positive fermionic contributions which increase the slope of the 
running of the hypercharge coupling. We note that this effect is 
in competition with the weak corrections which tend to be strong 
enough to result in a change in the direction of the gauge coupling 
running away from asymptotic freedom. This in turn leads to a 
smaller Weinberg angle in the UV. We can see this behaviour for 
the NG = 1, 3 cases in Figs. 9 and 10.

In the 5D phase shown in Fig. 7(b), we see that the converging 
behaviour is maintained, where the unification measure increases 
compared to its 4D phase. The measure remains below unity while 
the Weinberg angle also increases via the RGE flow. This reflects 
the need for a complete set of RGEs to be performed within higher 
dimensional theories (see e.g. Refs. [30,31]). Under the assumption 
that in the 6D phase of the theory the coupling behaviour remains 
similar, we can infer that gauge coupling unification is consistent 
with the predicted value for the Weinberg angle. Put differently, 
the cut-off scale depicted in Fig. 7(b) provides us with a lower 
bound for the unification scale MGUT > �Max which is dictated by 
gauge coupling unification and consistency with the Weinberg an-
gle prediction.

Let us turn to the NG = 3 case, where we observe an amplified 
behaviour of the aforementioned effect of the KK states (Fig. 8(a)) 
due to their increased number. In total, this leads to gauge cou-
plings getting increasingly pushed away from unification in the 5D 
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Fig. 7. (a) Scatter plot of the parameter space points for the NG = 1 case, where we use the same convention as in Fig. 1. We now represent each point’s value for the 
unification measure �(GSM; MKK5 , M Z ) in the 4D SM phase between the Kaluza-Klein scale MKK5 , and M Z , the respective KK scale, and the colour shading denotes the 
value of the Weinberg angle sin2 θW (MKK5 ). (b) Correlation of the NG = 1 case in the 5D phase, �(GPS; �Max, MKK5 ), shown as a function of the cut-off scale �Max where 
perturbativity is lost (see text for details). The colour shading again represents the Weinberg angle at the cut-off. Highlighted hexagon points refer to realistic low energy 
spectra compatible with exotics searches.

Fig. 8. Scatter plots analogous to Figs. 7(a) and 7(b) for the degenerate NG = 3 case.

Fig. 9. Comparison between the piecewise RGE evolutions of the hypercharge couplings for the sample point in Eqn. (11) between the NG = 1 and NG = 3 cases.
phase, while the Weinberg angle flow is still consistent with its 
unification value. Under the assumption, that this behaviour con-
tinues in the 6D theory, we could face a potential inconsistency 
arising from reaching the predicted SU (5) value for the Wein-
berg angle, but not achieving gauge coupling unification. While 
this could be compensated by large radiative corrections that shift 
the Weinberg angle away from the GUT hypothesis, this sets fairly 
tight constraints on the dynamics of the fermion sector.

We finally comment on the impact of uncertainties, in particu-
lar uncertainties of the input parameters α3C and sin2 θW at the 
weak scale. Errors as small as σ(α3C ) = ±0.00074 are possible 
from a theoretical perspective (e.g. Ref. [23]), and we consider a 
conservative 5% uncertainty in the value of the Weinberg angle 
where σ(sin2 θW ) = ±0.01156 for demonstration purposes. Taking 
into account both of these uncertainties, we perform our analysis 
for the sample point highlighted in Eq. (11).

In both the NG = 1 and NG = 3 cases the percentage difference 
arising in the unification measure at MKK5 amounts to ∼ 2%. This 
effect is less pronounced at �Max, decreasing to ∼ 0.2% for NG = 1
and ∼ 0.1% for NG = 3. In the NG = 1 case the Weinberg angle 
at MKK5 is affected by ∼ 4.7%, and decreases at �Max to ∼ 3.9%. 
In the NG = 3 case the impact on the Weinberg angle is similar; 
at MKK5 we obtain ∼ 4.8%, and at �Max we have an increase to 
∼ 4.92%.
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Fig. 10. Comparison between the piecewise RGE evolutions of the weak couplings for the sample point in Eqn. (11) between the NG = 1 and NG = 3 cases.
6. Conclusions

Grand Unified Theories are attractive solutions to shortcomings 
of the Standard Model of Particle Physics. In non-supersymmetric 
realisations, scale separations can be achieved by employing higher 
dimensional background geometry [15], where electroweak sym-
metry breaking can also be implemented elegantly as a radiative 
phenomenon [19]. Transitioning through the different phases of 
such scenarios is less straightforward compared to applications in 
“standard” 4D GUTs (see e.g. [29,32–38]).

This is the purpose of our study: a detailed analysis of the 4D 
and 5D phases of the model of [9,10], contrasted with electroweak 
scale measurements as well as LHC constraints. We pay particu-
lar attention to the Weinberg angle, whose size is determined by 
SU (5) relations, and can therefore be used to test gauge unifica-
tion (or lack thereof). While a fully conclusive test will need a 
full investigation of the 6D phase of the theory, which we leave 
for future work, we gather evidence that the 4D and 5D effec-
tive theories can remain under perturbative control up to scales 
of ∼ 107 GeV. If unification is to be approached in a controlled 
way, new dynamics should appear at scales about two orders of 
magnitude above the 5D compactification scale. This scale can be 
interpreted as a lower limit on the GUT scale ∼ 5000 TeV in the 
light of observed physics at and around the electroweak scale.

Fermionic thresholds crucially impact the running of couplings 
and as a consequence, the model-building aspects related to the 
three fermion generations plays an important role in the high en-
ergy behaviour of the theory. Unless there is a hierarchical ap-
proach to lifting the zero modes of the fermion fields to their 
observed SM values, the 6D theory will play a more important role 
in achieving unification in the sense of Eq. (28).
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Appendix A

A.1. 5D RGE contributions

The form of the SU (N) corrections �N (ξ) for a generic field ξ
are specified in [22]. Starting with SU (4)C , the corrections due to 
scalars, gauge fields and fermions are,

�4C (φ) = 2�
−−
4C (15) ,

�4C (ψ) =
3
(
�

++
4C (4L) + �

++
4C (4R) + �

−−
4C (4L) + �

−−
4C (4R)

)
+ 3
(
�

++
4C (6L) + �

++
4C (6R) + �

−−
4C (6L) + �

−−
4C (6R)

)
+ �

+−
4C (4L) + �

−+
4C (4R) + �

−+
4C (4L) + �

+−
4C (4R) ,

�4C (A) = �
++
3C (8) + �

−+
3C (3) + �

−+
3C (3) ,

where the ± signs refer to the parity assignments, the factor of 2 
arises from the A y,w components, and the factors of 3 arise from 
generational indices α = 1, 2, 3 and β = 1, 2, 3.

The contribution of the gauge fields is obtained by decompos-
ing the adjoint 15 of SU (4) under the breaking chain SU (4) →
SU (3) × U (1), and adding each subcomponent’s contribution sep-
arately based on their parity assignment. Concretely, 15 → (8, 0) ⊕
(3, +4/3) ⊕ (3, −4/3) ⊕ (1, 0). For the singlet representation we 
have �3(1) = 0. Given that we effectively deal with a symmetry 
projection SU (5) ∩ GPS = GSM, we treat these multiplets separately 
due to their different effective parity assignments, see Tables 4
and 5.

Moving on to SU (2)L , the corrections are

�2L(φ) = �
++
2L (2) + 2�

−−
2L (3) ,

�2L(ψ) = 3
(
�

++
2L (2L) + �

−−
2L (2R)

)
+ 3
(
�

++
2L (2L) + �

++
2L (2R) + �

−−
2L (2L) + �

−−
2L (2R)

)
+
(
�

+−
2L (2L) + �

−+
2L (2R)

)
,

�2L(A) = �
++
2L (3) + �

−−
2L (2) ,

where the factors of 3 arise from α = 1, 2, 3 and β = 1, 2, 3. 
SU (2)R has almost identical corrections apart from those origi-
nating from �4

32 , where (+, −) and (−, +) are swapped for R, L 
indices, and the gauge contribution,
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�2R(φ) = �
++
2R (2) + 2�

−−
2R (3) ,

�2R(ψ) = 3
(
�

++
2R (2L) + �

−−
2R (2R)

)
+ 3
(
�

++
2R (2L) + �

++
2R (2R) + �

−−
2R (2L) + �

−−
2R (2R)

)
+
(
�

−+
2R (2L) + �

+−
2R (2R)

)
,

�2R(A) = �
−+
2R (3) + �

−−
2R (2).

The explicit form of the corrections are listed below.

• 5D scalars: φ(xμ, y) have a contribution to the gauge coupling 
ga , corresponding to SU (Na), of the form:

�a(φ;μ)

= 1

12

[
Ta(φ++)

⎡
⎣ln

(
�

k

)
− 3

1∫
0

du F (u) ln Nφ++

(
iu

2

√
μ2

)⎤⎦

− 3Ta(φ+−)

1∫
0

du F (u) ln Nφ+−

(
iu

2

√
μ2

)
−

− 3Ta(φ−+)

1∫
0

du F (u) ln Nφ−+

(
iu

2

√
μ2

)
−

− Ta(φ−−)

⎡
⎣ln

(
�

k

)
+ 3

1∫
0

du F (u) ln Nφ−−

(
iu

2

√
μ2

)⎤⎦
]

,

where Ta(φ) is the Dynkin index of the SU (Na) representation 
for φ, F (u) = u(1 − u2)

1
2 , and Nφ±,± are the N-functions from 

Appendix A.2 with,

(Zφ, Z ′
φ, {Pφ}) = (±,±,4,0,0,2), (32)

where parameter set {Pφ} is defined in Appendix A.2.
• 5D fermion fields ψ(xμ, y) have a contribution to the gauge 

coupling ga , corresponding to SU (Na), of the form:

�a(ψ;μ)

= 1

3

[
Ta(ψ++)

[
2 ln

(
k

μ

)
− kL5

+ 3

1∫
0

du G(u) ln Nψ++

(
iu

2

√
μ2

)⎤⎦

+ Ta(ψ+−)

⎡
⎣−kL5 + 3

1∫
0

du G(u) ln Nψ+−

(
iu

2

√
μ2

)⎤⎦

+ Ta(ψ−+)

⎡
⎣kL5 + 3

1∫
0

du G(u) ln Nψ−+

(
iu

2

√
μ2

)⎤⎦
+ Ta(ψ−−)

[
2 ln

(
k

μ

)
− kL5

+ 3

1∫
0

du G(u) ln Nψ−−

(
iu

2

√
μ2

)⎤⎦] ,

where Ta(ψ) is the Dynkin index of the SU (Na) representa-

tion for ψ , G(u) = u(1 − u2)
1
2 − u(1 − u2)− 1

2 , and Nψ±,± are 
the N-functions from Appendix A.2, where

(

•

A.2

e−2

pen
war
{Pξ

the

sξ =

and

α =

Not
ma
fun
Zφ, Z ′
φ, {Pφ}) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−,−, {1,+c,+c, |c − 1
2 |}) for Nψ++

(−,−, {1,−c,−c, |c + 1
2 |}) for Nψ−−

(+,−, {1,−c,−c, |c + 1
2 |}) for Nψ+−

(−,+, {1,−c,−c, |c + 1
2 |}) for Nψ−+

.

(33)

5D Gauge fields AM(xμ, y) have a contribution to the gauge 
coupling ga , corresponding to SU (Na), of the form:

�a(A;μ)

= 1

12

[
Ta(A++)

[
23 ln

(μ

�

)
+ 21 ln

(μ

k

)
+ 22kL5

+
1∫

0

du K (u) ln N A++

(
iu

2

√
μ2

)⎤⎦

+ Ta(A+−)

⎡
⎣−kL5 +

1∫
0

du K (u) ln N A+−

(
iu

2

√
μ2

)⎤⎦

+ Ta(A−+)

⎡
⎣kL5 +

1∫
0

du K (u) ln N A−+

(
iu

2

√
μ2

)⎤⎦

+ Ta(A−−)

[
23 ln

(
�

k

)
+ 2 ln

(
k

μ

)
− kL5

+
1∫

0

du K (u) ln N A−−

(
iu

2

√
μ2

)⎤⎦] ,

where Ta(A) is the Dynkin index of the SU (Na) representation 
for A, K (u) = −9u(1 − u2)

1
2 + 24u(1 − u2)− 1

2 , and Nψ±,± are 
the N-functions from Appendix A.2, where

(Zφ, Z ′
φ, {Pφ}) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−,−, {4,2,2,0}) for N A++
(−,−, {2,0,0,1}) for N A−−
(+,−, {2,0,0,1}) for N A+−
(−,+, {2,0,0,1}) for N A−+

. (34)

. N(±,±)(μ) functions

The N-functions for a generic field ξ where ξ ∈ {Aμ, φ,
kL5|y|ψL, e−2kL5|y|ψR} with (Z2, Z′

2) parity assignments de-
d on the renormalisation scale μ, the AdS curvature k, the 
p factor zL = exp(kL5), the ξ field set of defining parameters 
} = {sξ , (r0)ξ , (rπ )ξ , α}, where s is associated with the spin of 
 field,

{2,4,1,1, } for ξ ∈
{

Aμ,φ, e−2kL5|y|ψL, e−2kL5|y|ψR

}
,

(35)

 is related to α as√( s

2

)2 + M2
ξ where M2

ξ ∈ {0,0, c(c + 1), c(c − 1)} .

(36)

e that the model explored in this paper does not have any bulk 
sses present for the gauge fields. The closed form for the N−
ctions is given by
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Nξ(+,+)
(μ; {Pξ }) = −

[[ sξ

2
− (r0)ξ

]
Jα
(μ

k

)
+ μ

k
J ′
α

(μ

k

)]

×
[[ sξ

2
− (rπ )ξ

]
Yα

(
μ

kzL

)
+ μ

kzL
Y ′

α

(
μ

kzL

)]

+
[[ sξ

2
− (rπ )ξ

]
Jα

(
μ

kzL

)
+ μ

kzL
J ′
α

(
μ

kzL

)]

×
[[ sξ

2
− (r0)ξ

]
Yα

(μ

k

)
+ μ

k
Y ′

α

(μ

k

)]
,

Nξ(+,−)
(μ; {Pξ })

= −Yα

(
μ

kzL

)[[ sξ

2
− (r0)ξ

]
Jα
(μ

k

)
+ μ

k
J ′
α

(μ

k

)]

+ Jα

(
μ

kzL

)[[ sξ

2
− (r0)ξ

]
Yα

(μ

k

)
+ μ

k
Y ′

α

(μ

k

)]
,

Nξ(−,+)
(μ; {Pξ })

= + Jα
(μ

k

)[[ sξ

2
− (rπ )ξ

]
Yα

(
μ

kzL

)
+ μ

kzL
Y ′

α

( μ

kzL

)]

− Yα

(μ

k

)[[ sξ

2
− (rπ )ξ

]
Jα
( μ

kzL

)
+ μ

kzL
J ′
α

( μ

kzL

)]
,

Nξ(−,−)
(μ; {Pξ }) = Jα

(μ

k

)
Yα

(
μ

kzL

)
− Jα

(
μ

kzL

)
Yα

(μ

k

)
,

(37)

where (r0)ξ , (rπ )ξ denote the 5D mass parameters at the branes. In 
our case, they take the simplified form for ξ ∈ {Aμ, φ, e−2kL5|y|ψL,

e−2kL5|y|ψR}, of

(r0)ξ = (rπ )ξ = {0,0,−cξ , cξ } , (38)

where cξ corresponds to the parent field’s original 5D mass param-
eter cξ ∈ {c0, c1, c2, c′

0}. Note that we do not have any artificially 
introduced brane masses for the scalar fields in the 5D limit.
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