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ABSTRACT 

This paper presents the performance of 26 μm and 50 µm diameter planar Ge-on-Si single-photon avalanche diode (SPAD) 

detectors. The addition of germanium in these detectors extends the spectral range into the short-wave infrared (SWIR) 

region, beyond the capability of already well-established Si SPAD devices. There are several advantages for extending the  

spectral range into the SWIR region including: reduced eye-safety laser threshold, greater attainable ranges, and increased 

depth resolution in range finding applications, in addition to the enhanced capability to image through obscurants such as 

fog and smoke. The time correlated single-photon counting (TCSPC) technique has been utilized to observe record low 

dark count rates, below 100 kHz at a temperature of 125 K for up to a 6.6 % excess bias, for the 26 µm diameter devices. 

Under identical experimental conditions, in terms of excess bias and temperature, the 50 µm diameter device consistently 

demonstrates dark count rates a factor of 4 times greater than 26 µm diameter devices, indicating that the dark count rate 

is proportional to the device volume. Single-photon detection efficiencies of up to ~ 29 % were measured at a wavelength 

of 1310 nm at 125 K. Noise equivalent powers (NEP) down to 9.8 × 10-17 WHz-1/2 and jitters  < 160 ps are obtainable, both 

significantly lower than previous 100 μm diameter planar geometry devices, demonstrating the potential of these devices 

for highly sensitive and high-speed imaging in the SWIR. 
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1. INTRODUCTION

Devices which are capable of the detection of single-photons using impact ionization in avalanche diodes have become 

vital for in several emerging applications areas. These applications include Light Detection and Ranging (LiDAR) and 3D 

imaging using time-of-flight 1-3 or range-gating 4, quantum key distribution (QKD) 5, fiber/free space quantum 

communications 6,7 and quantum optics 8.  CMOS based single-photon avalanche diode (SPAD) detectors have been 

commercially available for a number of years and are well-established as highly-sensitive, large area detector arrays with 

integrated electronics 9,10. The drawback of these devices, however, is that they are limited to operation below wavelengths 

of λ ~ 1 µm because of the wide bandgap of Si. There are many advantages for extending the operating range of such 

devices beyond this limit and into the short-wave infrared (SWIR) spectral region. The ability to operate at the low-loss 

optical fiber telecommunications wavelengths of 1310 nm and 1550 nm is clearly essential for quantum communications 

applications which require high-speed and ultra-sensitive SWIR SPAD detectors. Free space applications, such as LiDAR, 

can also benefit greatly from operating in the SWIR because the eye-safety laser threshold increases substantially in this 

spectral range compared to wavelengths < 1 µm, thus much higher power optical sources can be utilized in active imaging 

resulting in improved depth resolution and longer obtainable maximum range 11.  In addition to this, solar radiation which 

considerably increases the background level in many SPAD based LIDAR applications is significantly reduced in the 

SWIR 12. Finally, atmospheric transmission is greatly improved particularly when imaging through obscurants including, 

for example: smoke, dust, haze and snow, due to decreased Mie scattering in the SWIR spectral region 13,14. In the SWIR 

spectral region, the two most commonly used single-photon detectors are InGaAs/InP based SPADs and superconducting 

nanowire detectors. The latter provide particularly high performance for single-photon detection [15], 
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however, their practicality is limited for some applications due to cryogenic cooling requirements, as they are typically 

operated at temperatures less than 3 K. InGaAs/InP SPADs have been extensively developed to the point that high-

performance imaging array cameras have been developed and demonstrated in several single-photon depth imaging 

applications 3,15-17. Typically, InGaAs/InP based SPADs exhibit single-photon detection efficiencies (SPDEs) ranging from 

20 % to > 50 % in the SWIR and operate at Peltier-cooled temperatures between 220 K and 255 K 18-23, this is advantageous 

because Peltier-cooling has less stringent requirements for size, weight and power consumption in comparison to cryogenic 

cooling, facilitating the development of compact detector modules. Another challenge associated with InGaAs based 

SPADs is that the achievable count rates are markedly restricted by prominent afterpulsing effects 24-26, however, progress 

continues to be made in mitigating this issue 21,27. 

 

An alternative to these methods is to use germanium as an absorber; the bandgap of Ge allows for efficient photon 

absorption at wavelengths up to ~ 1600 nm at room temperature. Dual temperature growth techniques have resulted in 

high quality Ge layers grown on Si 28, facilitating the fabrication of optical detectors capable of absorption potentially up 

to λ ~ 1600 nm and the potential to be fabricated in Si foundries. Effective and reliable fabrication techniques have made 

possible many demonstrations of Ge-on-Si PIN diodes and linear avalanche photodetectors with impressive 

performance 28-30. The first single-photon detector using a Ge-containing absorber adjacent to a Si multiplication layer was 

reported in 2002 by Loudon et al. in which they utilized a SiGe/Si multiple quantum well structure to absorb 1210 nm 

wavelength photons 31. In 2011 Lu et al. presented a Ge-on-Si SPAD with SPDE up to 14 % and dark count rates (DCRs) 

of the order of 100s of Mcps (counts per second) at a temperature of 200 K, for a wavelength of 1310 nm 32. Shortly after, 

Warburton et al. reported a mesa etched design which at the same wavelength obtained an SPDE of 4 % and DCR of 

6 Mcps at 100 K 24, and also for the first time demonstrated single-photon detection at 1550 nm from a Si based device. 

The disadvantage of the mesa geometry associated with the SPADs reported in 24,32, is that the exposed sidewalls of the 

devices contribute significantly to the DCR, resulting in high values of the order of Mcps, which places serious restrictions 

on the device performance. Martinez et al. demonstrated a solution to this in 2017 through the use of a waveguide coupled 

Ge-on-Si SPAD at 80 K, which exhibited an SPDE of 5.27 % and much improved DCR of 534 kcps at a wavelength of 

1310 nm 33. Another alternative design which avoids the limitations imposed by the exposed sidewalls is that of a planar 

geometry design ensuring that the high field region is maintained far from any sidewall. We previously reported a planar 

device with an active area diameter of 100 µm exhibiting an impressive SPDE of 38 % at 1310 nm for a temperature of 

125K. Due to a relatively large diameter, however, the device exhibited a rather high DCR of 2 Mcps 25. A planar geometry 

100 μm diameter Ge-on-Si SPAD was subsequently utilized for laboratory-based-LiDAR experiments at short ranges 

which allowed modelling of performance under more realistic scenarios of operation 34, clearly demonstrating the potential 

of these devices in 3D imaging applications. 

 

In this paper, we report on the performance of 26 µm and 50 µm diameter planar Ge-on-Si SPADs and compare the results 

to prior planar devices. A significant reduction in the DCR is observed with these smaller area devices and we conclude 

that the DCR scales proportionally with volume. SPDEs up to ~ 29 % are demonstrated at 125 K for a wavelength of 

1310 nm, although less than the 38 % reported for a larger 100 µm diameter device 25, it is proposed that this is limited by 

experimental design rather than the device itself. The particularly low DCR displayed by the 26 µm diameter detector 

indicates a highly sensitive single-photon detector, quantified by a noise equivalent power (NEP) of 9.8 × 10-17 WHz-1/2; 

seven times lower than that observed from the 100 µm diameter planar geometry devices, at the same temperature. 

Furthermore, low jitter performance is demonstrated; down to 157 ± 10 ps. 

 

2. EXPERIMENTAL PROCEDURE  

2.1 Device fabrication 

The SPADs were grown on 150 mm diameter n++-Si (001) substrates. First, a 1.5 μm thickness of nominally undoped Si 

was grown epitaxially using a commercial reduced pressure chemical vapor deposition (RPCVD) system. Subsequently, 

photolithography was used to define windows for the charge sheet layers for each SPAD device. The doping level and 

thickness of the charge sheet layer controls the relative electric field profiles in the Ge absorber and Si avalanche region. 

The devices were implanted using boron at 10 keV and activated with a 30s anneal at 950˚C. The wafers were cleaned, 
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then 1 μm of undoped Ge was grown before a 50 nm p++-Ge cap which constitutes the top contact. The p++-Ge top contact 

area was etched using photolithography and a fluorine inductively coupled plasma reactive ion etch (ICP-RIE). 

Photolithography was also used to define trenches between the SPAD devices and a fluorine ICP-RIE etched through the 

Ge epilayers to provide lateral electrical isolation. The device was planarized with hydrogen silsesquioxane (HSQ) and 

plasma enhanced chemical vapor deposition (PECVD) SiO2. Next, Ti/Al was evaporated onto the backside of the wafers 

and annealed to form a bottom Ohmic contact to the n++-Si substrate followed by photolithography again to form holes to 

the p++ cap, then Ti/Al  was deposited to form an Ohmic contact to the top of the device. Lastly, a silicon nitride anti-

reflection coating was deposited by PECVD on top of the device to reduce surface reflections. A detailed description of 

the whole process can be found in 25. A cross-section of a single planar geometry Ge-on-Si SPAD is shown in Figure 1(a) 

and a microscope image of the top view of a chip containing planar Ge-on-Si SPADs is shown in Figure 1(b). 

 

 

Figure 1. (a) A cross-section of a planar Ge-on-Si SPAD. This diagram shows the silicon bottom contact, multiplication and 

charge sheet layers, as well as the germanium absorption and top contact layers and finally, the planarization, passivation, AR 
coating and metallization layers (i = intrinsic). (b)A microscope image at × 5 magnification of a chip containing three rows of 

50 µm diameter and 2 rows of 26 µm diameter Ge-on-Si SPADs, the metal bond pad and device active area are highlighted.  

 

2.2 Detector characterization using time-correlated single-photon counting (TCSPC)  

A schematic diagram of the experimental set-up used to measure the SPDE, DCR and jitter parameters is shown in Figure 

2.  
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Figure 2. A schematic diagram of the TCSPC experimental set-up. The SPAD was mounted in a variable temperature cryostat 

on a translation stage with 3D movement. The optical alignment of the focused attenuated beam onto the detector active area 

was performed using an illuminated SWIR camera arrangement (not shown in the diagram). 

 

The chip containing the SPADs was mounted in a variable temperature Oxford Instruments cryostat which was maintained 

at a temperature of 125 K for these measurements. The laser used was a pulsed NKT Supercontinuum laser, tunable in the 

wavelength range of 1150 – 2000 nm. The laser’s output was coupled into a single mode optical fiber and directed into an 

in-fiber 50:50 beam splitter. One output from the splitter was measured by a calibrated power meter to allow continuous 

monitoring of the power level to the optical system. The other output was directed to through a calibrated optical attenuator 

with a maximum attenuation of 100 dB, and then a lens focused the output from this onto the device active area. A second, 

removable, power meter was utilized to measure the power after the lens and thus calculate the attenuation required to 

result in less than 0.01 photons per pulse incident upon the SPAD, ensuring the probability of > 1 photon per pulse was 

statistically negligible. A fixed direct current (DC) voltage at a level just below the avalanche breakdown voltage was 

applied to the device under investigation and a gated voltage supplied by the pulse generator was applied to periodically 

take the device above the avalanche breakdown level for a gate of ~ 50 ns. This gated signal was applied in synchronization 

with the incident optical attenuated pulses from the laser, allowing the SPAD to operate in the Geiger mode whilst the 

photons are incident. Outside of the gating pulses, the detector was held below avalanche breakdown until the next optical 

pulse was incident. The cathode of the SPAD was connected to the photon counting data acquisition unit and the 

measurements were taken at a low repetition rate of 10 kHz to minimize the probability of afterpulsing affecting the 

measurements.   

 

3. RESULTS 

The SPDE and DCR for both the 26 µm and 50 µm diameter devices are displayed in Figures 3(a) and (b) respectively as 

a function of excess bias. 
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Figure 3.  (a) The SPDE and (b) DCR of the 26 µm and 50 µm diameter Ge-on-Si SPADs as a function of excess bias at a 

temperature of 125 K. The SPDE values were measured at an incident photon wavelength of 1310 nm.  

          

As can be observed in Figure 3(a), the maximum SPDEs measured were 28 % and 29 % for the 26 µm and 50 µm diameter 

devices respectively, at a 6.5 % excess bias. This is 10 % lower than that of the 100 μm device reported previously, it is 

proposed that this may be partly because the 26 μm and 50 μm diameter devices at present may not collect all photons 

during the SPDE measurements. Further work is needed in order to identify any other mechanisms which may account for 

the decrease in SPDE for these smaller area devices. In Figure 3(b), it can be seen that the DCR for the 26 µm device 

remains below 100 kcps for excess bias up to the maximum of 6.5 %. The DCR for the larger 50 µm device is consistently 

~ 4 times greater than for the smaller device, reaching a maximum of ~ 380 kcps for an excess bias of 6.5 %. This is 4.4 

times greater than the DCR for the 26 µm device at the same bias, which measured ~ 86 kcps. These results suggest that 

the DCR is proportional to the device volume, indicating that surface contributions to the total DCR are minimal.  With 
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reference to our previous work 25, under the same experimental conditions in terms of wavelength and temperature, the 

DCRs reported for the 100 μm diameter planar device vary between 13.5 and 51 times greater than the 50 µm DCR levels 

reported here, up to an excess bias of 5.5 %. Although it may be expected that the DCR for the 100 µm diameter device 

should again be 4 times greater for twice the diameter, the former device was fabricated much earlier and the fabrication 

processes where significantly improved since, thus this has led to much improved DCR levels. 

 

The NEP is a useful parameter for indicating the sensitivity of a SPAD detector and it is calculated from the SPDE and 

DCR using equation (1) 

NEP= 
hv

SPDE
√2DCR                                                                            (1)        

where h represents Planck’s constant and v is the frequency of the incident photons. The NEP is useful for comparing 

detectors, with lower values indicating higher optical sensitivity. For the 26 µm diameter device, the minimum NEP was 

calculated as 9.8 × 10-17 WHz-1/2 at an excess bias of ~ 3.5 % and for the 50 µm device the lowest NEP calculated was 

1.6 × 10-16 WHz-1/2 recorded at an excess bias of ~ 2.5 %. These figures represent a 7 and 4 fold reduction in this parameter 

respectively compared the 100 µm diameter SPAD in 25. Whilst not as low as that of InGaAs/InP SPADs which have 

demonstrated NEP values down to 1 × 10-17 WHz-1/2 for λ = 1550 nm at 223 K, these devices have shown considerable 

improvement compared to mesa geometry and larger area planar Ge-on-Si SPADs. Thus, work is ongoing to improve these 

devices by reducing the DCR to allow operation at higher temperatures consistent with Peltier-cooling.  

 

The jitter of each device was measured as a function of excess bias and is expressed as the full-width-at-half-maximum of 

the timing histogram recorded in each case. The minimum jitter measured was 157 ± 10 ps, this was recorded for the 26 μm 

diameter device at an excess bias of 6.5 % and the timing histogram is displayed in Figure 4 (a). Figure 4 (b) shows the 

jitter measured for both the 26 μm and 50 μm diameter devices as a function of the excess bias, as expected the jitter 

decreases with increasing excess bias. The 50 µm diameter device exhibited a  minimum jitter of  ~ 210 ± 10 ps for an 

excess bias of 6.5 %.The jitter reported for the 100 µm diameter planar SPAD in 25 was 310 ps for an excess bias of 5.5 %, 

measured at a lower temperature of 78 K. Therefore, the smaller area detectors improve the speed capability of the device 

as seen in other material systems, as a result of the restricted lateral extent of the avalanche build-up 35.  
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Figure 4. (a) Timing histogram for the minimum jitter recorded, this was obtained by the 26 μm diameter device at an excess 
bias of 6.5 %. (b) Temporal jitter, expressed as full-width-at-half-maximum, of the 26 µm and 50 µm diameter Ge-on-Si 

SPADs as a function of excess bias at a temperature 125 K for an incident wavelength of 1310 nm. 

 

4. CONCLUSIONS 

In summary, the performance of 26 µm and 50 µm diameter planar geometry Ge-on-Si SPADs has been investigated. At 

a wavelength of 1310 nm and temperature of 125 K, the 26 µm and 50 µm diameter SPADs exhibited maximum SPDE 

values of 28 % and 29 % respectively. The DCR observed from the 26 µm device was extremely low; staying below 

100 kcps for an excess bias up to 6.5 %. The 50 µm diameter device DCR was approximately 4 times greater than 26 µm 

device at each excess bias level recorded and so proportional to the device volume. This preliminary result indicates that 

surface contributions to the overall DCR are minimal, an important result to help our understanding of the devices and 

developing the design and fabrication processes going forward. High-speed operation was also observed; the smaller 

diameter device exhibited the best performance with jitter down to 157 ± 10 ps, the results conclusively show that smaller 

devices reduce the device jitter as previously seen in SPADs fabricated in other material systems. Furthermore, high-

sensitivity operation was also observed, this is quantified by a minimum NEP value of 9.8 × 10-17 WHz-1/2 for the 26 µm 

diameter device representing a 7 fold reduction compared to a larger 100 µm diameter planar Ge-on-Si SPAD under similar 

experimental conditions. The results presented show that utilizing smaller diameter devices significantly improves the 

performance of Ge-on-Si Geiger mode detectors demonstrating the potential for highly efficient, fast and affordable single-

photon detectors in the SWIR for a variety of applications.  
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