
Imperial College London
Department of Computing

Sparse octree algorithms for
scalable dense volumetric

tracking and mapping

Emanuele Vespa

January 5, 2020

Supervised by: Prof. Paul H. J. Kelly, Dr. Stefan Leutenegger

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing

of Imperial College London
and the Diploma of Imperial College London





Declaration

I herewith certify that the material in this thesis that is not my own work
has been properly acknowledged and referenced.

Emanuele Vespa

The copyright of this thesis rests with the author. Unless otherwise in-
dicated, its contents are licensed under a Creative Commons Attribution-
Non Commercial 4.0 International Licence (CC BY-NC). Under this li-
cence, you may copy and redistribute the material in any medium or for-
mat. You may also create and distribute modified versions of the work.
This is on the condition that: you credit the author and do not use it, or
any derivative works, for a commercial purpose. When reusing or sharing
this work, ensure you make the licence terms clear to others by naming
the licence and linking to the licence text. Where a work has been adapted,
you should indicate that the work has been changed and describe those
changes. Please seek permission from the copyright holder for uses of
this work that are not included in this licence or permitted under UK
Copyright Law.

i





Abstract

This thesis is concerned with the problem of Simultaneous Localisation and
Mapping (SLAM), the task of localising an agent within an unknown envi-
ronment and at the same time building a representation of it. In particu-
lar, we tackle the fundamental scalability limitations of dense volumetric
SLAM systems. We do so by proposing a highly efficient hierarchical data-
structure based on octrees together with a set of algorithms to support the
most compute-intensive operations in typical volumetric reconstruction
pipelines.

We employ our hierarchical representation in a novel dense pipeline
based on occupancy probabilities. Crucially, the complete space represen-
tation encoded by the octree enables to demonstrate a fully integrated sys-
tem in which tracking, mapping and occupancy queries can be performed
seamlessly on a single coherent representation. While achieving accuracy
either at par or better than the current state-of-the-art, we demonstrate
run-time performance of at least an order of magnitude better than cur-
rently available hierarchical data-structures.

Finally, we introduce a novel multi-scale reconstruction system that ex-
ploits our octree hierarchy. By adaptively selecting the appropriate scale
to match the effective sensor resolution in both integration and rendering,
we demonstrate better reconstruction results and tracking accuracy com-
pared to single-resolution grids. Furthermore, we achieve much higher
computational performance by propagating information up and down the
tree in a lazy fashion, which allow us to reduce the computational load
when updating distant surfaces.

We have released our software as an open-source library, named su-
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pereight, which is freely available for the benefit of the wider commu-
nity. One of the main advantages of our library is its flexibility. By care-
fully providing a set of algorithmic abstractions, supereight enables SLAM
practitioners to freely experiment with different map representations with
no intervention on the back-end library code and crucially, preserving
performance. Our work has been adopted by robotics researchers in both
academia and industry.
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Chapter 1

Introduction

We are fast approaching a future where autonomous robots, mixed real-
ity devices and virtual reality will be ubiquitous in our daily life activi-
ties. Fully autonomous self-driving cars will radically change the way our
cities are lived. Virtual reality headsets promise to change the way we
interact with our colleagues or family members. Autonomous robots are
already being employed for a variety of activities, from domestic cleaning
to search and rescue missions in hazardous environments. Common to all
these scenarios is the ability of the device or agent to accurately sense its
surrounding environment and have an understanding of it.

In the past decade, motivated by the ever increasing and diverse appli-
cations which require real-time positional and mapping data, Simultane-
ous Localisation and Mapping (SLAM) research has evolved at an unprece-
dented pace. The widespread availability of commodity depth sensors
fuelled a true paradigm shift from sparse systems, in which typically the
maps consisted of sparse landmarks, to fully dense methods where es-
sentially the full scene geometry can be reconstructed. The richness of
the geometric information which dense methods are able to estimate is of
fundamental importance for a variety of downstream applications, such as
autonomous cars or unmanned aerial vehicles, which exploit knowledge
about surfaces to perform safe navigation and plan obstacle-free paths.

In this thesis we focus on dense SLAM algorithms. We specifically
tackle the scalability issues that dense representations incur into. As we
will show, we develop an efficient octree library which supports the es-
sential operations required by dense reconstruction pipelines and it does
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so in a generic way. This is justified by the need of different field rep-
resentations depending on the application at hand. For example, while
in surface reconstruction signed-distance function mapping is extremely
popular, many path-planning or object avoidance algorithms in robotics
assume an occupancy based map. Our framework naturally supports ar-
bitrary continuous field representations and allows the application pro-
grammer to freely experiment with alternative designs without sacrificing
performance.

To demonstrate the effectiveness of our approach, we i) implement a
standard dense pipeline using our framework and compare it to the cur-
rent state-of-the-art in volumetric SLAM; ii) introduce a novel, fully in-
tegrated SLAM system based on occupancy mapping, where occupancy
queries and tracking and mapping can be performed on a single, unified
representation; iii) propose a novel multi-resolution dense tracking and
mapping pipeline that adaptively select the best integration and render-
ing scale given the effective sensor resolution.

1.1. Thesis outline and contributions

The thesis is centred around two main topics: i) the design and develop of
a high performance octree library which targets volumetric SLAM appli-
cations; ii) the investigation of novel surface representations which can be
used in dense SLAM pipelines. These two aspects are tightly related: we
propose abstract interfaces which seamlessly allow us to experiment with
alternative surface representations.

The thesis comprises seven chapters, including introduction and conclu-
sions. In Chapter 2 we review the literature related to this work, providing
its context and motivation. Furthermore, the essential mathematical tools
used in the thesis are briefly discussed. Chapters 3, 4 and 5 present our
main contributions, as follows:

Chapter 3 In this technical chapter we report in detail the design of su-
pereight, our high-performance octree library and first contribution.
First, we discuss the general design principles and how they af-
fect what computations are possible to express using our library.
Secondly, perhaps more importantly, we introduce the algorithms
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which allow supereight to reach its performance level. We then
proceed by describing the implementation of a dense reconstruc-
tion pipeline, based on the seminal KinectFusion algorithm (New-
combe et al. [2011a]). A thorough quantitative evaluation is given,
where we compare our supereight-based implementation against the
current state-of-the-art in volumetric reconstruction (InfiniTAM of
Kähler et al. [2015]). The main outcome is that our hierarchical data-
structure offers performance levels on par with flat hash tables, but
with the advantage of providing a complete spatial indexing of the
scene. Furthermore, as expected the accuracy of the overall SLAM
pipeline is at par or better than the state-of-the-art. When presenting
our results we also discuss our benchmarking process and justify the
choices taken to enable a fair comparison between differently engi-
neered systems.

Chapter 4 In this chapter we introduce a novel dense reconstruction
pipeline based on a fully probabilistic surface representation. We
adopt the surface reconstruction framework introduced by Loop
et al. [2016] and adapt it to the needs of real-time incremental fusion
which characterise dense SLAM algorithms. The result is a complete
system based on occupancy mapping which is able to precisely re-
construct surfaces with a rigorous probabilistic interpretation. Cru-
cially, the same representation can be used to seamlessly fuse new
information, to render model views for camera tracking and perform
spatial occupancy queries, enabling fully integrated tracking, map-
ping and planning operations. Finally, we provide a qualitative and
quantitative analysis of our pipeline. Our occupancy-based pipeline
achieves tracking accuracy on par or better than TSDF-based sys-
tems, but crucially is at least one order of magnitude faster than the
state-of-the-art in robotics occupancy mapping, enabling real-time
operations which where simply not possible with the tools previ-
ously available to the community.

Chapter 5 In this chapter we propose a multi-resolution dense tracking
and mapping system based on our octree structure which adaptively
selects the adequate level of detail in both measurement integration
and scene rendering. With the goal of reducing aliasing artefacts,
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this is done according to the effective pixel resolution given the dis-
tance from the observed surface. We introduce a novel algorithm
to perform lazy propagation of information across octree levels to
keep the hierarchy consistent on a per-frame basis. Our strategy
reaches considerably higher computational performance compared
to equivalent single-resolution grids. More importantly, we demon-
strate how reducing aliasing artefacts yields much better reconstruc-
tion of scenes with high-frequency details that are observed at dif-
ferent scales over time.

1.2. Dissemination

The body of work presented in this thesis has been made available to the
wider community through various publications and presentations. The
software projects that have been developed in this thesis have been re-
leased under open-source licences and are being used to carry further
research.

Publications This thesis is based on the following publications:

• Vespa et al. [2018]: E. Vespa, N. Nikolov, M. Grimm, L. Nardi,
P. H. J. Kelly and S. Leutenegger, ”Efficient Octree-Based Volumet-
ric SLAM Supporting Signed-Distance and Occupancy Mapping” in
IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1144-
1151, April 2018.

• Vespa et al. [2019]: E. Vespa, N. Funk, P. H. J. Kelly, and
S. Leutenegger, “Adaptive resolution octree-based dense SLAM”.
2019 International Conference on 3D Vision (3DV), Quebec City,
Canada, September 2019.

Additionally, the following papers have been co-authored:

• Zia et al. [2016]: M. Z. Zia, L. Nardi, A. Jack, E. Vespa, B. Bodin,
Paul H J Kelly, A. J. Davison, ”Comparative design space explo-
ration of dense and semi-dense SLAM” 2016 IEEE International
Conference on Robotics and Automation (ICRA), Stockholm,
2016, pp. 1292-1299.
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• Nardi et al. [2017]: L. Nardi, B. Bodin, S. Saeedi, E. Vespa, A.
J. Davison and P. H. J. Kelly, ”Algorithmic Performance-Accuracy
Trade-off in 3D Vision Applications Using HyperMapper” 2017 IEEE
International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), Lake Buena Vista, FL, 2017, pp. 1434-
1443.

• Saeedi et al. [2018]: Saeedi et al., Navigating the Landscape for
Real-Time Localization and Mapping for Robotics and Virtual and
Augmented Reality, Proceedings of the IEEE, November 2018.

In Vespa et al. [2018] we introduce the first two technical con-
tributions of this thesis. We describe the algorithmic solutions
used in our octree-library (Chapter 3) and a novel real-time dense
SLAM pipeline based on occupancy probabilities (Chapter 4). In
Vespa et al. [2019] we present the adaptive-resolution reconstruction
method reported in Chapter 5.

Zia et al. [2016] and Nardi et al. [2017] are collaborative works
that have been conducted as part of a large inter-university project
known as the PAMELA project. Specifically, we investigate and ex-
tend the benchmarking methodologies and tools first introduced by
Nardi et al. [2015], which constitute the backbone of the rigorous ex-
perimental work conducted in this thesis. All the work carried over
in the PAMELA project has been subsequently summarised in the
invited paper Saeedi et al. [2018].

Presentations Various presentations have been given, both in oral and
poster format. A selection, in chronological order:

• Comparative design space exploration of dense and semi-dense SLAM,
International Conference on Robotics and Automation (ICRA),
Stockholm, 2016.

• Real-time 3D scene understanding: volumetric SLAM using Octrees
and Morton numbers, ARM Research Summit, Cambridge, 2017.

• Efficient Octree-Based Volumetric SLAM Supporting Signed-
Distance and Occupancy Mapping, International Conference on
Robotics and Automation (ICRA), Brisbane, 2018.
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• supereight: Real-time Dense SLAM with Signed-Distance and Occu-
pancy Mapping, Microsoft HoloLens, Redmond, 2018

Videos • Efficient Octree-Based Volumetric SLAM Supporting Signed-
Distance and Occupancy Mapping: https://youtu.be/n-
18Lcx1LTU

• Adaptive resolution octree-based dense SLAM:
https://youtu.be/sXEzLGJozQQ

Software As part of the present work, we developed a generic C++ soft-
ware library, named “supereight”, which we have released1 under a
permissive open-source licence.

1.3. Funding

We would like to thank ARM (through an EPSRC Industrial CASE stu-
dentship), the EPSRC grants PAMELA (EP/K008730/1) and (HiPEDS
EP/L016796/1), and Imperial College London for generously funding this
research.

1https://github.com/emanuelev/supereight
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Chapter 2

Background

In this chapter we discuss the research context of the work presented in
this thesis. We first give an a brief historical review of the field, followed
by a detailed discussion of the research literature more closely related to
our work. Finally, we present the notation and the fundamental mathe-
matical tools used throughout this thesis.

2.1. Visual Simultaneous Localisation and Mapping

The task of localising an agent as it moves through an unknown envi-
ronment has being subject of research for the past thirty years. Given a
stream of measurements coming from one or multiple sensors, it is possi-
ble to accurately compute the agent location. Additionally, the abundant
information collected may be used to estimate a consistent map of the
environment being explored. When these two tasks are carried out con-
currently, the general estimation problem is referred to as Simultaneous
Localisation and Mapping, in short SLAM.

While a variety of sensors may be employed to solve the SLAM prob-
lem, in this work we focus on systems that rely primarily on visual in-
formation. Furthermore, we are particularly interested in solutions that
are able to achieve real-time performance. Satisfying such a constraint es-
sentially means that both agent position and map should be updated at
sensor frame-rate. The SLAM problem has strong connections to what
in photogrammetry is known as bundle adjustment (Triggs et al. [2000]) or
in computer vision communities as structure from motion (Szeliski [2010]).
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(a) Microsoft HoloLens (b) ANYmal

Figure 2.1.: (a) Microsoft’s HoloLens mixed reality device (image from
www.microsoft.com/en-us/hololens). Equipped with multiple cameras
and depth sensors, supports fully untethered operations. (b) ANYbotics
quadrupedal robot ANYmal (image from www.anybotics.com) . Its advanced
stability and perceptions capabilities combined with its rugged design allow
it to operate autonomously in harsh conditions.

While the underpinning principles are the same, the main discriminant is
the online nature of SLAM estimation, as opposed to the batch optimisa-
tion nature of bundle adjustment and structure from motion.

Real-time localisation and mapping systems have a wide range of appli-
cability and provide a foundational platform for a variety of applications.
Mobile robotics, in which autonomous robots equipped with sensors ex-
plore and interact with the environment, has long been one of the main
drivers behind SLAM research and one of the major adopters of the tech-
nology. Nowadays, dozens of industrial solutions in different markets de-
liver products that exploit some form of SLAM algorithms, ranging from
domestic vacuum cleaners, autonomous drones or self-driving cars.

Recently, enormous steps forward have been made in the augmented
and virtual reality communities. A plethora of devices and services, target-
ing both the consumer and the professional markets have been released,
bringing to the general population entirely new experiences. Augmented
reality (AR) devices, such as the Microsoft HoloLens, virtual objects are
superimposed into the user’s visual field of view. In order to achieve
precise placements of synthetic objects, both headset’s position and real
world geometry must be accurately recovered. Virtual reality (VR) head-
sets, such as the Oculus Quest, use vision-based localisation systems to

8



enable completely untethered operations. Finally, AR/VR applications
are now widely available on mobile devices such as smartphones, with
each major OS platform providing native development kits to application
developers (notably, Apple’s ARKit and Google’s ARCore).

Despite the evident differences between the aforementioned applica-
tions, a common trait is the basic requirement for fast and precise lo-
calisation, as well as awareness of the surrounding environment, being
it for enabling interaction or for safe navigation. This is precisely what
SLAM algorithms provide and the main reason behind their success in
various fields. Although being subject of intensive research for the past
tree decades, the field is still very active. Modern advances in machine
learning research begun to heavily influence and cross-pollinate SLAM
research. Several works in recent years consider not only the geometry
estimation problem but also the object classification task at the same time,
incorporating semantic information into the maps estimated by the SLAM
system. Effectively, SLAM is rapidly evolving in a technique to achieve
full scene understanding in a broad sense.

2.2. Related Work

We structure the literature review presented in this section in three main
parts. Section 2.2.1 gives an historical perspective on the field of Simul-
taneous Localisation and Mapping. Section 2.2.2 discusses in detail the
body of work most closely related to our research, mainly focusing on
RGB-D dense reconstruction systems. Finally, in Section 2.2.3 we give a
review of hierarchical spatial data-structures.

2.2.1. A brief review of sparse and semi-dense visual SLAM

Historically, a variety of sensors have been successfully used in SLAM
systems, such as sonar, radar or laser range finders. However, in the past
decade systems based on visual information have gained enormous pop-
ularity in the computer vision community. Typically, the maps estimated
by such systems would consists of a collection of sparse, distinctive image
features with associated 3D position which are easy to track in frame se-
quences, like corners or interestingly textured colour patches. Complete
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models would be made of hundreds or up to thousands of points.
One of the earliest examples of a real-time system based purely on vi-

sual information is the breakthrough work MonoSLAM of Davison et al.
[2007]. Using a single monocular camera, the system is able to estimate
full 6DoF camera pose and the 3D positions of distinctive features in the
scene. Both the state of the camera and the landmarks locations are jointly
represented with a unimodal, multivariate Gaussian distribution. Proba-
bilistic state estimation is then performed using an Extended Kalman Filter
(EKF). Crucially for the agility of the system, covariance estimates are ex-
ploited to predict features positions in new frames, considerably reducing
the search radius and hence speeding up matching.

One of the major drawbacks of EKF-based methods is the computa-
tional and space complexity associated with the covariance of the state
vector. In fact, while the state grows linearly with the number of tracked
features, its covariance grows quadratically, strictly bounding the size of
the map which can be estimated in real-time. To overcome such limita-
tions, alternative filtering methods have been proposed. FastSLAM (Mon-
temerlo et al. [2002]) employs a Rao-Blackwelised particle filter in which
the poses distribution is estimated independently from the landmarks po-
sitions, which are associated with an individual Kalman Filter for each
particle. This approach was further developed and applied to monocular
SLAM by Eade and Drummond [2006].

In the meantime, optimisation methods derived from offline bundle ad-
justment have started to appear. One of the key differences between batch
and filter-based approaches is how the previous poses are handled. While
filtering marginalises all historical poses except the current one, graph-
based approaches retain the whole history and solve the whole graph
from scratch every time. Since in a real-time setting this would be unfea-
sible as more poses are recorded, hence typically the graph is carefully
sparsified and only a small subset of poses are retained.

Nister et al. [2004] implement a real-time visual odometry system for
monocular and stereo cameras, where the camera trajectory is estimated
in closed form and 3D points are triangulated from 2D correspondences.
The lack of a mechanism to deal with re-observation of past landmarks
leads inevitably to pose drift over time. Engels et al. [2006] demonstrate
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Figure 2.2.: Example of sparse maps produced by the PTAM system (image from ?). Dots
indicates successfully tracked feature points, while the grid shows an esti-
mated planar surface which can be used to draw virtual objects on the scene.

that applying bundle adjustment in a sliding window fashion drastically
improves the accuracy and robustness of the system, while still allowing
for real-time operations.

An large contribution to the field has been made by ? with their Parallel
Tracking and Mapping (PTAM) system (Figure 2.2). Their crucial intuition
was to decouple the tracking and mapping stage. In PTAM, camera track-
ing given a known map is performed at high frame-rates by a tracking
front-end. Map estimation and pose optimisation is carried out in a con-
current thread, which can perform bundle-adjustment at a much slower
frequency. Importantly, the map is made of a set of carefully selected,
wide baseline keyframes, which cover the area of operation. The real-time
camera pose is then robustly recovered by minimising the re-projection er-
ror of matching feature points belonging to the key-frames map projected
onto live camera frames.

The trade-offs between filtering and keyframes based approaches have
been thoroughly investigated by Strasdat et al. [2012]. The main conclu-
sion is that optimisation-based systems over a large set of features but
lacking joint distribution estimates support greater accuracy and robust-
ness compared to filter-based methods over fewer map points.
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Figure 2.3.: Large scale reconstruction obtained with the LSD-SLAM system (figure from
Engel et al. [2014]). Notice how compared to sparse methods the reconstruc-
tion is significantly denser and geometric structure is easily recognizable.

A number of works addressed the scaling limitations of PTAM, such
as the sub-maps approach of Castle et al. [2011] and the FrameSLAM
systems of Konolige and Agrawal [2008] which specifically address large-
scale mapping and global loop-closures. Strasdat et al. [2010] intelligently
observe that monocular exploration over long trajectories eventually also
leads to scale drift. Their system perform live 6DoF camera alignment
and sliding window bundle adjustment for map optimisation. However,
when a loop-closure is detected, a lightweight pose-graph optimisation
is performed over 7DoF, i.e. a similarity transform between keyframes
is computed, compensating for scale drift. Finally, structure-only bundle
adjustment is performed over the whole map. These approaches have
been adopted and further refined in the ORB-SLAM system of Mur-Artal
et al. [2015].

Common to the methodologies described in the above is their reliance
on accurate feature detection and matching. Recently, a number of sys-
tems have been proposed that directly work with pixel intensities as an
alternative to higher level descriptors. Instead of minimising a geomet-
ric re-projection error, such systems optimise a photometric cost function.
Typically, methods belonging to this family are called direct methods, as
opposed to feature-based indirect methods.
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Engel et al. [2013] introduce a novel approach to monocular reconstruc-
tion and SLAM where depth information is recovered only for high gradi-
ent pixel, obtaining what is called a semi-dense reconstruction (Figure 2.3).
Their initial visual odometry work has been subsequently extended to a
complete keyframe-based SLAM system which supports both monocular
(Engel et al. [2014]) and stereo (Engel et al. [2015]) camera set-ups.

Forster et al. [2014] develop an efficient hybrid visual odometry system
which combines elements of direct tracking and mapping with indirect
back-end optimisation. Depth of points and live camera poses are esti-
mated using a direct formulation which minimises the photometric error
between the reference and live frame for each point patches. In the back-
end, poses and structure are optimised jointly with an indirect formula-
tion which uses the correspondences found with the direct model.

Finally, it should be noted that several methodologies have been pro-
posed to increase the accuracy and robustness of visual odometry and
SLAM systems by incorporating Inertial Measurements Units (IMU) read-
ings in the estimation problem. Such sensors can provide higher accuracy
and robustness in challenging scenarios, such as rapid camera motions
or navigation through environments which do not offer enough visual
features. Furthermore, metric scale become directly observable, provid-
ing monocular systems with scale information which would be not re-
coverable from purely visual information. Consequently, IMU estimates
have been integrated both in filter-based approaches (as in Mourikis and
Roumeliotis [2007], Li and Mourikis [2013] and Bloesch et al. [2015]) and
iterative optimisation frameworks (such as in Jones and Soatto [2011],
Leutenegger et al. [2015], Forster et al. [2017] or Qin et al. [2018]).

Up to this point, we have considered systems which rely purely on
passive visual information, being it monocular or stereo. However, the
recent advances in depth sensing technologies changed the landscape of
SLAM algorithms, by bringing to the forefront of research dense tracking
and mapping. This family of algorithms is strictly related to the work
presented in this thesis and will be presented in depth in the following
section.
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2.2.2. Dense Visual SLAM

As opposed to sparse and semi-dense methods, dense algorithms try to
exploit all the visual information available. This is reflected both in how
the camera tracking and pose optimisation is performed and the type of
geometry that algorithms are able to produce. One of the earliest real-time
reconstruction pipelines was proposed by Newcombe and Davison [2010].
Their system use PTAM to obtain local camera poses and point estimates.
A dense surface is then fitted to the sparse map and subsequently refined
to obtain a watertight photo-consistent surface estimate. Shortly after,
Newcombe et al. [2011b] published their monocular DTAM system, where
fully dense depth maps are estimated for selected keyframes. Differently
from their earlier work, DTAM does not utilise an external SLAM system
for pose estimation, but performs dense model-to-live frame alignment
to recover the 6DoF camera motion. A different approach is taken by
Pizzoli et al. [2014] with their REMODE framework, where probabilistic
per-pixel depth estimation is combined with spatial regularisation, using
SVO (Forster et al. [2014]) as tracking system.

The advent of compact and cheap depth sensors at the beginning of this
decade brought a considerable paradigm shift in the SLAM landscape. Pi-
oneered by Microsoft with their Kinect sensor, these new devices provide
accurate depth information and, importantly, they do so at high frame-
rate (i.e. 30Hz). Depth estimation is achieved via active vision techniques,
such as structured light or time-of-flight approaches. Structured light sen-
sors such as Kinect v1 or the Structure Sensor1 project a pattern on the
world surfaces and infer depth by observing the pattern distortion from
a secondary camera. Time-of-flight sensors, such as the Azure Kinect2,
instead measure the time that is required for a light ray emitted by an
illumination unit to reach the observed object and back to the sensor. We
refer the reader to the excellent comparison of the two approaches by Sar-
bolandi et al. [2015]. It must be noted that even if able to provide dense
depth maps, active vision sensors have a series of limitations which im-
pair their ability to work in general settings. In particular, error sources

1https://structure.io
2https://azure.microsoft.com/en-in/services/kinect-dk/
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Figure 2.4.: Dense reconstruction obtained with KinectFusion (figure from Newcombe
et al. [2011a]). On the left is shown the raw point cloud obtained from the
Kinect sensor. In the middle is represented the surface normal map and on
the right the Phong-shaded render of the surface.

such as ambient background light or multi-path effects affect their usabil-
ity in outdoor scenarios, where passive stereo cameras may still be the
better choice. Furthermore, most sensors offer a limited operating range,
usually below 10m, that may be too limiting even in medium scale indoor
scenario.

Despite the above limitations, researchers readily adopted the new tech-
nology and a vast number of systems specifically using RGB and Depth (in
short RGB-D) information have been published. Henry et al. [2012] pro-
pose one of the earliest methods were feature-based RGB alignment and
depth-based Generalised Iterative Closest Point (GICP) are fused together to
incrementally build a pose-graph. This is subsequently optimised using
Sparse Bundle Adjustment (SBA) and a global surfel map is obtained. Simi-
larly, Endres et al. [2012] exploit visual features and depth information to
grow a pose-graph, but then fuse a globally consistent point-cloud into an
octree-based 3D occupancy grid. Kerl et al. [2013] use a direct alignment
formulation which consists of both photometric and geometric error terms
for visual odometry. The map is represented by a graph of keyframes and
a globally consistent point-cloud can be obtained after loop-closure detec-
tion and map optimisation.

Newcombe et al. [2011a], with their seminal KinectFusion system, di-
verged from more traditional, keyframes-based SLAM solutions to achieve
real-time high quality 3D reconstruction (Figure 2.4). KinectFusion adopts
the volumetric representation of Curless and Levoy [1996], where the map
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is represented with an implicit Truncated Signed Distance Function (TSDF).
The explored region is discretised in a voxel grid in which each point
holds the distance to the closest surface. Actual surface boundaries can be
recovered by extracting the zero-isosurface. Visual odometry is obtained
by performing dense frame-to-model alignment via with a modified ICP
algorithm. Thanks to GPGPU acceleration, KinectFusion was the first sys-
tem to provide real-time tracking and mapping with fully textured, sub-
centimetre resolution reconstruction.

After the release of KinectFusion, a whole body of research has ap-
peared to address its limitations. One line of work, aimed at improving
the accuracy of the pipeline by providing alternate fusion and tracking
formulations. Canelhas et al. [2013] and Bylow et al. [2013] suggest to
replace ICP-based tracking with direct point-cloud to TSDF alignment.
A new scan is registered to the global TSDF by minimising a cost func-
tion which penalises divergence from the surface zero crossing. Slavcheva
et al. [2016] further develop this approach by proposing a signed func-
tion to signed distance function alignment. After the online fusion and
tracking stage, their system also performs a final offline refinement of the
model.

Nguyen et al. [2012] turn their attention to accurately modelling sensor
noise model and incorporate it in the reconstruction pipeline. They em-
pirically derive a noise model for the Kinect V1 sensor and demonstrate
interesting improvements in accuracy and reconstruction precision. Simi-
larly, Fankhauser et al. [2015] derive a noise model for the Kinect V2 and
use it to improve depth-based navigation in a robotics setting. Both Bylow
et al. [2013] and Oleynikova et al. [2017] provide noise-aware voxel update
equations in the form of dynamically sized truncation bandwidth.

Another line of research tackled one of the major limitations of Kinect-
Fusion, i.e. is its scalability. Voxel grids scale poorly as the number of
voxels grows cubically as a function of resolution or area covered. In
its initial implementation, KinectFusion was consequently able to oper-
ate only on small, desktop-sized areas. Roth and Vona [2012] extend the
range of operation by spatially shifting and rotating a fixed size grid as
the camera moves through the environment. The TSDF values for the
transformed grid are computed via trilinear interpolation. The Kintinu-
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ous system of Whelan et al. [2012] takes a similar approach, but contrary
to the work of Roth and Vona [2012] it allows only volume translation,
constrained to voxel units. This permits to efficiently implement shifting
operations with circular buffer and no interpolation is needed to recover
information. In a following work (Whelan et al. [2015a]), Kintinuous is
extended to support real-time triangular mesh extraction and deforma-
tion upon loop-closure. The global mesh is obtained incrementally as the
volume moves through space, i.e. slices of volume that leave the current
operational range are converted to an explicit mesh. Interestingly, instead
of running expensive algorithms such as marching cubes (Lorensen and
Cline [1987]) a point cloud is extracted via an axis aligned ray-casting and
subsequently triangulated.

Zeng et al. [2013] propose a GPU-based octree structure to represent the
TSDF volume which is able to map considerably larger areas compared
to preallocated grids. However, their rendering algorithm does increase
the chances of drift as no trilinear interpolation is used to recover the
surface. Furthermore, the computational performance gains compared to
a standard KinectFusion implementation are very marginal despite the
considerable reduction in memory usage.

Steinbrucker et al. [2014] develop a fully multi-resolution octree struc-
ture in which contiguous bricks of voxels are stored at different height
of the tree explicitly and hence explicitly encoding the signed distance
function at different scales. However, contrary to Zeng et al. [2013] they
employ an external RGB-D SLAM system for pose estimation and the vol-
ume is computed after all the input frames have been processed.

Chen et al. [2013] introduce a GPU-based regular hiearchical data-
structure which exploits a parametric number of subdivisions per level.
This can be interpreted as a squashed octree where levels are compressed
together as a function of level and aggregation factor. Furthermore, they
introduce an intelligent streaming mechanism which allows to download
inactive voxels to the CPU when the camera moves towards the edges of
the currently mapped area. Contrarily to Kintinuous, inactive voxels may
also be reactivated and reintegrated in the live reconstruction, however no
mechanism for global loop-closure is provided.

Nießner et al. [2013] move away from hierarchical data-structures and
develop a very efficient reconstruction pipeline based on voxel hashing.
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Brick of voxels are dynamically allocated and indexed via pointers stored
in a GPU-friendly hash-table. Similarly to the previous work of Chen
et al. [2013], blocks are streamed in and out the GPU, allowing for vir-
tually unbounded reconstructions. Variations of this strategy has been
subsequently re-implemented in a number of works (Klingensmith et al.
[2015], Oleynikova et al. [2017], Millane et al. [2018]).

Voxel hashing is adopted also by the InfiniTAM reconstruction frame-
work of Kähler et al. [2015] which demonstrate impressive state-of-the-
art computational and accuracy performance. A multi-resolution version
of this work is introduced in Kähler et al. [2016], where a hierarchy of
hash-tables, each representing a grid at different resolution, is exploited
to compress planar surfaces into a progressively coarser grid.

Recently, a number of works have appeared that tackle volumetric loop-
closure in real-time. In general, one of the biggest problems when using a
volumetric representation is the difficulty of updating the surface estimate
upon loop-closure correction. Dai et al. [2017] propose a complex pipeline
in which all the historical frames are taken into account when solving for
the optimal global trajectory and model. In order to keep the problem
tractable, local alignment is computed over small batches of input frames
while global optimisation is performed over a selection of carefully chosen
keyframes. Importantly, their TSDF fusion allows for both integration and
deintegration of measurements.

Kähler et al. [2016] extend InfiniTAM with loop-closure detection, but
contrarily to the work of Dai et al. [2017] they propose an approach based
on sub-maps. The global map is subdivided into a number of sub-maps
which are spawned according to a visibility criteria. Loop closures are
detected via the keyframe-based relocalisation method of Glocker et al.
[2015]. Once the constraints have been gathered, sub-maps are densely
aligned and a globally consistent reconstruction is obtained.

Over the years, researchers have investigated alternative map represen-
tations to dense voxel grids. Notably, Keller et al. [2013] introduce a surfel-
based reconstruction pipeline, in which input depth scans are fused into
an explicit global point-cloud. Synthetic views for frame-to-model align-
ment are then obtained via surface splatting (Pfister et al. [2000]).

State-of-the-art reconstruction and tracking accuracy are demonstrated
by Whelan et al. [2015b] with their ElasticFusion system (Figure 2.5).
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Figure 2.5.: ElasticFusion reconstruction output (figure from Whelan et al. [2015b]). The
surfel density ensure a nearly holes-free reconstruction and impressive visual
results.

While adopting the point-based representation of Keller et al. [2013] they
significantly improve the algorithm by providing small and large scale
loop-closure with non-rigid map deformations. Subsequently, a number
of works adapted ElasticFusion’s base pipeline to more specific scenarios,
such as the extension to support inertial measurements of Laidlow et al.
[2017] or the Co-Fusion system of Rünz and Agapito [2017] that explicitly
deals with non-static objects. Recently, Schops et al. [2019] introduced a
surfel-based dense SLAM algorithm which jointly optimises camera tra-
jectory and surface geometry. In contrast to ElasticFusion, surfels are as-
sociated to key-frames which are selected based on a temporal criteria. To
keep the problem size tractable, geometry and pose-graph optimisation
are alternated until convergence. While providing very impressive visual
results, the main drawbacks of surfel-based methods is their inability to
capture surface connectivity or explicitly represent empty space that has
been observed, which is a desirable features in many application scenar-
ios.

Enabled by the recent advances in deep learning technologies, SLAM
researchers started to evolve classic algorithms, which essentially aimed
at solving a geometry estimation problem, to more complete scene under-
standing methodologies. Salas-Moreno et al. [2013] presents one of the
first object-level prototype SLAM systems, where instead of building a
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fully dense 3D model of the environment, a graph of known objects (with
their individual model and position) is grown and optimised over time.
McCormac et al. [2017] extend ElasticFusion to include a per-surfel se-
mantic label inferred via a Convolutional Neural Network which provides
semantic annotation on a per-pixel basis. In a similar spirit, the aforemen-
tioned Co-Fusion work of Rünz and Agapito [2017] densely recognize and
reconstruction objects with the aim of robustly tracking them in a dynamic
scene. A further step forward towards truly semantic SLAM has been re-
cently made by McCormac et al. [2018], with their Fusion++ system. A
pose-graph of per-object volumetric models is employed as space repre-
sentation. Objects models are spawned and incrementally refined as new
depth data is observed and are used for tracking, loop-closure detection
and object-graph optimisation.

2.2.3. Spatial indexing

Efficient data-structures for indexing spatial data have been widely re-
searched in a variety of fields, ranging from graphics, vision or physics.
The work presented in this thesis specifically adopts octrees as its spa-
tial representation. An octree is a regular data-structure which partitions
3D space into eight cubes, which in turn can be recursively subdivided
(see Section 3.4 for a detailed presentation). While many systems in the
context of volumetric mapping and more generally SLAM have success-
fully applied octrees, our work is more heavily influenced by the high
performance graphics community. Of particular relevance, are the tree
construction algorithms of Lauterbach et al. [2009], Garanzha et al. [2011]
or Zhou et al. [2011] that exploit Morton numbering (Section 3.4.1) and
breadth-first traversal strategies to efficiently build the hierarchy. Their
work has been later improved by Karras [2012] who provide a fully paral-
lel method which avoids synchronisation at tree levels. Similar algorithms
are given by Bédorf et al. [2012] and Burtscher and Pingali [2011], where
octree decomposition is used to accelerate n-bodies simulations.

In robotics, octrees have also been successfully applied to accelerate oc-
cupancy mapping (Section 4.2). Fairfield et al. [2007] employ an efficient
octree data-structure to implement a particle-filter based SLAM system.
The current de-facto standard is the OctoMap framework of Hornung
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et al. [2013]. While achieving good memory compression and ease of
use, its performance is completely inadequate for real-time usage. Our
work aims to provide a considerably more flexible system while improv-
ing both computational and accuracy performance, which we thoroughly
discuss in Chapter 4.

In the context of partial differential equations (PDE) solvers, The adap-
tive mesh refinement (AMR) framework of Burstedde et al. [2011] employs
an efficient octree representation known as linear octrees, firstly introduced
by Gargantini [1982], in which only leaves of the tree are stored and sorted
according to their morton code and scale. The linear representation does
not keep explicit parent-child pointers, but individual nodes can be re-
trieved by searching the linear buffer according to their relative sorted or-
der. Their work is later extended by Isaac et al. [2015] to support complex
queries such as mesh-polytope intersection and tree balancing operations.

Miller et al. [2011] propose an interesting approach where shallow oc-
tree hierarchies are represented as bit strings and actual data stored in
separate buffers in breadth-first order. Large scale mapping is achieved
by allocating and maintaining a forest of shallow trees. However, the data
layout poses significant challenges when growing or refining tree cells
which must be done every frame at interactive frame-rates.

In this section we have discussed the research context of the work pre-
sented in this thesis. While there is a large number of systems that provide
dense localisation and mapping, most of them are unable to either provide
the level of performance required for real-time operations on CPU or the
flexibility to work with different surface representations. In the following
chapters we will describe our methods and how we address the limita-
tions of the current state-of-the-art frameworks. Specifically, in Chapter 3
we detail our octree-based mapping library, which shares many aspects
with InfiniTAM system (Kähler et al. [2015]) but complement it in two
ways: i) providing a complete space index of the reconstructed scene; ii)
providing adequate facilities to work with different data-types with min-
imal intervention on user code. In Chapter 4 we detail our occupancy-
based dense SLAM pipeline. Compared to the current standard in occu-
pancy mapping, that is the OctoMap framework of Hornung et al. [2013],
we believe our system significantly advances the state-of-the-art and can
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be successfully used in real-world robotics systems. Finally, in Chapter
5 we report our recent progress in multi-resolution volumetric mapping
and rendering and how that can be exploited to achieve overall better ac-
curacy in both tracking and reconstruction, while achieving much better
computational performance.

2.3. Technical Background

In this section we introduce the mathematical notation and tools that will
be used throughout this work.

2.3.1. Mathematical notation

Matrices and vectors are denoted with boldface letters. Homogeneous
vectors are indicated with the dot notation:

ẋ ⌘
"

x
1

#
2 R

n+1, where x 2 R
n

We denote the rigid body transformations from a reference frame b to
reference frame a with elements of the special Euclidean group Tab 2 SE3,
defined as

Tab =

"
Rab tab

0 1

#
(2.1)

where tab 2 R
3 is the translational component and Rab 2 R

3x3 is the rota-
tion component belonging to the special orthogonal group SO3 of three-
dimensional rotations, which satisfies RabRT

ab = I and det(Rab) = 1.
An inhomogeneous vector x can be transformed using its homogeneous

representation via direct multiplication to an element of the SE
3 group:

ẋa = Tabẋb

where the subscripts a and b indicates the vectors’ reference frames.
Equivalently, such transformation can be expressed in inhomogeneous co-
ordinates as

xa = Rabxb + tab

When using the homogeneous representation, transformations can be eas-
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Figure 2.6.: Basic camera geometry. c is the camera centre, f is the focal length and p is
the principal point. The 2D coordinates on the image plane of 3D point x are
found at the intersection between the ray x� c and the focal plane f .

ily chained. For example, if we have the pose of two cameras, Twa and Twb,
relative to a common world frame w, we may transform a point seen from
the first one to the second passing through the common reference frame:

ẋa = T�1
wa Twbẋb

Finally, we define an operator p which performs de-homogenisation:

p(ẋ) =
1
xn

2

66664

x0

x1
...

xn�1

3

77775
, where ẋ =

2

66664

x0

x1
...

xn

3

77775

2.3.2. Camera geometry

We assume a basic pinhole camera model where 3D world points are im-
aged on the camera focal plane via central projection. More formally,
given a 3D point x, its 2D coordinates p are obtained by finding the inter-
section between the line that passes through the point and the centre of
projection with the image plane, as shown in Figure 2.6.
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This is expressed by the mapping:

p ⌘
"

u
v

#
=

"
f x/z + p0x

f y/z + p0y

#
= f p(x) + p0

where p0 is the principal point on the image plane. Equivalently, this can
be expressed in homogeneous coordinates as:

ṗ =

2

64
f 0 p0x

0 f p0y

0 0 1

3

75

2

64
x
y
z

3

75 (2.2)

The matrix

K =

2

64
f 0 p0x

0 f p0y

0 0 1

3

75

is known as the camera calibration matrix.

Given a 3D point in the world reference frame, its projected camera
coordinates are given by:

pc = p (KTcwẋw)

Conversely, the back-projection of an image point to 3D coordinates is ob-
tained as:

xw = TwcK�1ṗc

2.3.3. Numerical optimisation

Given a scalar field f (x) : R
n ! R, we denote its first derivative as the

vector field r f (x) : R
n ! R

n. This is known as the gradient of f and it is
defined as

r f (x) =
h

∂ f (x)
∂x1

∂ f (x)
∂x2

· · · ∂ f (x)
∂xn

iT
(2.3)
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The second derivatives of the field f is a function H : R
n ! R

n⇥n, known
as the Hessian matrix, defined as

H =

2

664

∂2 f (x)
∂x1∂x1

· · · ∂2 f (x)
∂x1∂xn

... . . . ...
∂2 f (x)
∂xn∂x1

· · · ∂2 f (x)
∂xn∂xn

3

775 (2.4)

Given a vector field f(x) : R
n ! R

m its first derivative is expressed by the
matrix J 2 R

m⇥n, known as the Jacobian:

rf(x) =

2

664

∂ f1(x)
∂x1

· · · ∂ f1(x)
∂xn

... . . . ...
∂ fm(x)

∂x1
· · · ∂ fm(x)

∂xn

3

775 (2.5)

where fi with i = 1 . . . m are the individual components of the vector
valued function f. Finally, its second derivative is given by the three-
dimensional Hessian matrix H 2 R

n⇥m⇥n.

We are often interested in optimising a cost function in order to estimate
a set of parameters, i.e. we aim at finding the minimum of f :

arg min
x2Rn

f (x) (2.6)

For a general cost function f there is no guarantee that the global min-
imum is reachable in a finite number of steps. Hence, we seek to find
a local minimum around an initial parameter estimate x0 and iteratively
refine it in its local neighbourhood, that is we try to find a displacement
xk+1 = xk + dx that reduces the cost function.

2.3.4. Second-order methods

A quadratic local approximation of non-linear cost function f can be ob-
tained using its second-order Taylor expansion:

f (x + dx) ⇡ f (xk) +r f (xk)Tdx +
1
2

dxTHdx (2.7)
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Setting the derivative with respect to the increment dx equal to zero we
obtain:

r f (xk) + Hdx = 0

dx = �H�1r f (xk)
(2.8)

By iteratively solving Equation 2.8 and applying the computed increment

xk+1 = xk �H�1r f (xk) (2.9)

we perform what is known as the Newton method.

2.3.5. Gauss-Newton method

Let us consider a case in which the cost function is a summation of
quadratic error terms, in the following form:

E(x) =
1
2 Â

i
wi(zi � fi(x))2 (2.10)

where zi is the i-th observation and fi(x) is a prediction model. Denoting
as ri(x) = zi � fi(x) the i-th residual and stacking each contribution in a
vector, Equation 2.10 can be rewritten in matrix form:

E(x) =
1
2

r(x)TWr(x) (2.11)

Differentiating with respect to the parameter set gives the gradient and
Hessian matrix in terms of the Jacobian and Hessian matrix of the predic-
tion model:

rE(x) = Jr(x)TWr(x)

HE = Jr(x)TWJr(x) + Hr(x)Wr(x)
(2.12)

The Hessian tensor Hr of the prediction model may be too complex and
costly to implement. However, if the prediction error is small or the local
model is nearly linear, it is likely that Hr will be small compared to the
first order term in HE. Dropping it gives the Gauss-Newton approximation:

HE ⇡ Jr(x)TWJr(x) (2.13)
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Plugging Equations 2.12 and 2.13 in Equation 2.8 leads to the Gauss-
Newton or normal equations:

⇣
Jr(x)TWJr(x)

⌘
dx = �Jr(x)TWr(x) (2.14)

The incremental update dx can then be obtained by solving the above
linear system.

2.4. Summary

In this chapter we have discussed the most closely related literature to the
research presented in this thesis. While more detailed bibliographical re-
marks will be made in each chapter when appropriate, our goal is to give
the reader a thorough overview of the research field. In the remainder
of the chapter we have introduced the fundamental notations and mathe-
matical tools in order to make this document as self-contained as possible.
We have given a brief overview to the numerical optimisation techniques
used to solve non-linear least-square problems. This is motivated by the
fact that such techniques are used and referenced in the reconstruction
pipelines described in this thesis.
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Chapter 3

supereight: a high
performance template octree
library for spatial mapping

In this chapter we introduce our template octree library, named
supereight, and the fundamental algorithms behind our dense volumet-
ric mapping system. We will show quantitative and qualitative results of
a KinectFusion implementation using our octree volume and a thorough
comparison with the current state-of-the-art dense SLAM systems.

3.1. Motivation

Volumetric SLAM systems such as KinectFusion (Newcombe et al.
[2011a]), represent the mapped environment as an implicit projective
truncated signed-distance function (TSDF), discretised in a regular voxel
grid. However, this representation induces considerable overheads in both
space and time, as the number of voxels to be stored and processed grows
cubically with either the resolution or the space covered. It is well under-
stood that in order to mitigate these penalties, the inherent sparsity of the
world can be exploited to significantly reduce the amount of information.
On top of this, the continuous TSDF itself exposes further compression
opportunities. Figure 3.1 shows a typical TSDF curve in one dimension.
In red is represented the line of sight from the camera to the actual sur-
face measurement, while in blue is represented the corresponding TSDF
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Figure 3.1.: One dimensional truncated signed-distance function (TSDF) along the line of
sight (in red) from the camera centre.

curve for the given measurement. The salmon shaded area indicates the
truncation region, with bandwidth 2µ. As the signal is constant outside
the truncation region, it can be efficiently compressed or represented im-
plicitly in a sparse data structure.

Different works have successfully exploited such a property and
demonstrated significant speed-ups. In the literature we can distinguish
two predominant approaches: hierarchical data structures, such as octrees
(Zeng et al. [2013]) or N3 trees (Chen et al. [2013]), and flat hash-tables
(Nießner et al. [2013]). Although enormous speed-ups have been demon-
strated with voxel hashing, the performance of tree based data structures
have not been very satisfactory. However, hierarchical data structures may
be desirable in a variety of scenarios as they provide a full, explicit spatial
indexing of a scene. Furthermore, information can be naturally stored at
different levels of detail and consequently it is possible to easily compress
uniform regions of the map. Publicly available hierarchical frameworks
fall either short in terms of performance or in terms of flexibility, being
tied to a particular continuous map representation. With this work, we
aim to provide the wider community with a high performance octree li-
brary suitable for real-time operations on a CPU, which can be easily
extended to support different data-types without sacrificing performance
and allow to fast and efficient prototyping. We achieve this by: i) pro-
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viding a set of core data-type independent algorithms which provide the
most common operations required by typical dense SLAM systems; ii) ex-
posing a template based interface to interact with the core container for
user-defined data-types.

Summarising, the contributions that we present in this chapter are:

• A set of algorithms for mapping and interpolation on structured
sparse grids;

• An open-source octree library for real-time CPU-based dense simul-
taneous localisation and mapping;

• An implementation of a TSDF-based SLAM pipeline using our oc-
tree container and a thorough evaluation against the current state-
of-the-art.

3.2. Concepts

Supereight is an octree template library specifically targeting dense volu-
metric simultaneous localisation and mapping. In the supereight model,
we assume that the underlying data stored in the container is a three-
dimensional, differentiable scalar field. The scalar field itself may be com-
prised of more than one channel, which can be logically thought of as hav-
ing multiple fields stacked on top of each other. As described in Section
3.4, the unit of information is a voxel, i.e. a unit cube in integer coordinate
space. Each voxel is associated with a field value which covers its whole
volume. This is equivalent to a piece-wise constant representation of the
encoded space. Higher order approximations may be recovered via tri-
linear interpolation, while gradients and higher order derivatives can be
found via finite difference.

While its interface is quite generic and in principle it can handle any
data type, some functionalities are restricted to types having certain char-
acteristics. In particular, the scalar field assumption may be relaxed for
other data types, such as signed or unsigned integers as long as they can
be trivially converted to real data-types, as required by the interpolation
and gradient functions.
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3.3. Type interface

In order to provide support for arbitrary data-types, supereight provides
a flexible type traits interface, as shown in Listing 3.1. There are three
main elements to be defined:

• value type specifies the data actually stored in the octree container.
Notice that this could be different from the type for which the trait
class is being specialised. In this way, the user can decouple the
external data-type (my field t in this case) from its internal repre-
sentation. This can be particularly useful if the target application
can afford computation at reduced precision, for instance storing
real values as 16bits integer in memory.

• the static function value type init value() specifies the default
voxel value.

• the static function value type empty() specifies what value should
be returned in case of missing data from the container. This is used
in spatial queries to signal absence of data. If information is not use-
ful in the target application it can be simply set equal to init value.

1 typedef struct {
2 float x;
3 float y;
4 } my_field_t;
5
6 template<>
7 struct se::voxel_traits <my_field_t > {
8 typedef my_field_t value_type;
9 static inline value_type init_val(){ return {1.f, 0.f}; }

10 static inline value_type empty(){ return {1.f, -1.f}; }
11 };

Listing 3.1: Type traits specialisation for user-define data types.

3.4. Octree representation

An octree is a recursive tree data structure in which each node, or octant,
of the tree has eight children. Typically, the root of the tree is associated
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Figure 3.2.: Tree-based octree representation

with a cuboid of a certain extent. Recursively, each child defines a smaller
cuboid of half the edge size of the parent till a maximum tree depth is
reached. The regular decomposition scheme implies that descending of
one level in the hierarchy doubles the resolution in each side.

Figure 3.2 displays a graphical representation of our tree data structure.
Similarly to Nießner et al. [2013] and Kähler et al. [2015] we aggregate
voxels at the finest resolution into aggregated contiguous blocks of para-
metric size, by default 83 voxels. This is in contrast to previous work on
octrees by Zeng et al. [2013], where the deepest level stores individual
voxels. In this perspective, the map simply becomes a collection of un-
ordered sparsely allocated voxel blocks and the tree a spatial index of the
scene that allows the correct piece of data to be retrieved given its integer
coordinates.

Listing 3.2 shows the structure of the node and aggregated voxel block
structure. For each node we keep an explicit list of pointers to its children
plus with a corresponding bitmask, which we can be used to perform fast
queries on the number of active children. Each node is uniquely identi-
fied by its linearised coordinates, stored in a single 64bit unsigned integer
which we will discuss in the next section. For a voxel block instead, we
also keep in memory its 3D coordinates, as the extra memory required
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1 template <typename T>
2 class Node {
3 key_t code_; // octant code
4 unsigned char children_mask_; // children validity mask
5 Node* children_[8]; // child pointers array
6 };
7
8 template <typename T>
9 class VoxelBlock : Node<T> {

10 static constexpr unsigned side = 8;
11 Vec3i coordinates; // 3D lower left corner coordinates
12 T block_data_[side*side*side]; // aggregated voxel data
13 };

Listing 3.2: Octree node structure

is negligible and they are frequently used in their de-linearised form to
compute the corresponding entry in the block_data_ array given a point
belonging to the block. Notice that while in this work we have opted
for a pointer-based structure, there are several viable alternatives, such
as pointer-less representations, as shown in Burstedde et al. [2011] and
Thomas et al. [2010]. Usually such schemes are implemented via hashing,
which makes individual octant queries more efficient, while requiring a
more complex strategy to manage the hash-table, especially in concur-
rent applications. These approaches are logically equivalent and could be
easily adopted in our framework with no impact on the user code.

3.4.1. Information access

Each point in an n-dimensional grid can be uniquely identified via their
linearised coordinates. This is achieved via a bijective mapping from the
multidimensional to the linear domain, known in the literature as space-
filling curves, see Bader [2012] for an extensive treatment of the subject.
In this work, we employ the Z-order curve, also known as Morton [1966]
order, which is defined as it follows.

Definition 1. Given an n-dimensional vector (x0, x1, . . . , xn) 2 N
n, where

xi 2 [0, 2b], a Morton number is constructed by interleaving the individual
bits from each component in a single number

m =
h

xb
nxb

n�1 . . . xb
0, · · · , x0

nx0
n�1 . . . x0

0

i
2
h
0, 2n⇤b

i
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Figure 3.3.: Morton codes and traversal ordering for a 2D grid.

where the superscript indicates the i-th bit from the n-th coordinate.
To perform the interleaving/deinterleaving we use a method based on
magic numbers1, which we detail in Appendix A. Throughout this work
we assume three-dimensional coordinate vectors unless stated otherwise.
Notice, however, that the algorithms shown in the following hold for any
number of dimensions.

Figure 3.3 shows an illustrative example on a two-dimensional four-by-
four grid. As we can see, interleaved bits from the x and y coordinate
form a unique code for each cell. A crucial property of these numbers
is that they not only uniquely identify voxels in a regular grid, but that
the higher bits recursively represent the location of an ancestor cell in a
coarser grid, effectively specifying a full traversal of the correspondent
tree and implicitly defining its structure. As an example, if we consider
cell (x, y) = (2, 1) with its associated code 0110, starting from the root we
would first descend to the top-right sub-grid (code 01) and then select the
child with code 10, i.e. our target pixel with code 0110.

Given the properties discussed above, several operations on octants’
coordinates can be performed directly on their linear representations. Al-
gorithms 1 and 2 show key operations that can be performed directly on
the Morton codes and that are extensively used in the library. Algorithm
1 computes the parent code of a given octant via a bitwise AND opera-

1See https://graphics.stanford.edu/~seander/bithacks.html for a list of alternative al-
gorithms.
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ALGORITHM 1: Compute parent’s code given an octant
Global: prefix mask[MAX BITS] // precomputed array of prefixes

1 Function parent(morton t code, int level) : morton t code
2 {
3 parent code code & prefix mask[level-1];
4 return parent code;
5 }

ALGORITHM 2: Compute the child id of a given octant
1 Function child id(morton t octant, int level) : int id
2 {
3 int shift max depth - level;
4 octant octant >> shift*3;
5 int idx = (octant & 0x01) | (octant & 0x02) | (octant & 0x04);
6 return idx;
7 }

tion between the octant code and the corresponding upper level bitmask.
Each level of the tree is associated with a bitmask in which all the most
significant bits till the corresponding bit depth are set to one, while the
remainder of the code is set to zero. Intuitively, in terms of integer coordi-
nates this is equivalent to rounding a given point to its enclosing octant in
the corresponding coarser grid. The pre-computed prefix mask for 64bit
keys is given in Appendix A. Similarly, Algorithm 2 computes the octant
position amongst its siblings by extracting the lower 3 bits of an octant
code at a desired level.

3.4.2. Voxel block allocation

Our library targets real-time mapping applications, hence it assumes a
continuously growing mapped space. This implies that the allocation of
new voxel blocks in the hierarchy must be performed extremely fast and
with the lowest overhead possible. Parallel tree allocation strategies have
been widely explored in the computer graphics domain as hierarchical
data structures are common accelerators for ray-tracing and collision de-
tection algorithms (Laine and Karras [2010], Garanzha et al. [2011]). To
maximise parallelism in the tree construction, we adopt a technique based
on Morton numbers inspired by Garanzha et al. [2011] and Bédorf et al.
[2012].
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ALGORITHM 3: Top-bottom voxel list allocation
1 Function allocate(morton t key list[N] : int allocated
2 {
3 key list sort (key list);
4 unique keys [M] sort (key list);
5 unique keys compact (unique keys);
6 for level  root.level to aggregate level do
7 unique keys [ k & prefix mask [level] for k in unique keys ];
8 unique keys compact (unique keys);
9 parallel alloc (unique keys, level);

10 end for
11 }

101 101 101 101 101 100 101 110 111 101 110 101 101 111 101

101 101 101 101 101 100 101 110 111 101 110 101 110 111 101 111 111 000

111 111 111

Morton codes bit-mask

level 1

level 2&

&

101 101 101 101 101 100 101 110 111 101 110 101 110 111 101 111 000 000

level 3

&

Figure 3.4.: Bit-masking the key-set at each allocation level, coloured boxes indicate du-
plicate codes.

We use a breadth-first top-to-bottom allocation which takes full advan-
tage of this numbering property. Algorithm 3 describes the main algo-
rithm. As input, it expects a list of Morton numbers, produced in a pre-
processing step. The list of keys is then sorted and possible duplicates
are removed via a compaction operation. For each level in the tree, we
filter the key list by masking each code with the appropriate prefix mask
for the current level. The bit-mask for a given level sets the lower bits
corresponding to finer sub-grids to zero. This procedure will generate
duplicate keys which are then filtered out, as illustrated in Figure 3.4.
This, together with the fact that by construction the structure to reach a
given node would have been allocated at a previous step, allows us to
allocate all the nodes in parallel without requiring any synchronisation
between threads. This technique still requires a lock-step execution from
one level to the next, however we found its performance satisfactory. More
complex algorithms that avoid the synchronisation step are found in the
literature, e.g. Karras [2012], if faster allocation is needed. Notice that, in
a typical reconstruction scenario, after a transient initial phase the number
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1 struct update_valid
2 {
3 template <typename DataHandlerT >
4 void operator()(DataHandlerT& handler,
5 const Eigen::Vector3i vox&,
6 const Eigen::Vector3f& pos,
7 const Eigen::Vector2f& pixel)
8 {
9 // if depth sample is valid

10 if(depth[pixel.x + depthSize.x * pixel.y] > 0.f)
11 {
12 int val = handler.get(); // get the current value

13 handler.set(val++); // set the new value
14 }
15 }
16
17 update_valid(const float * d, const Eigen::Vector2i framesize) :
18 depth(d), depthSize(framesize) { };
19
20 const float * depth;
21 Eigen::Vector2i depthSize;
22 };

Listing 3.3: Defining a function object which performs an update operation on a single
voxel.

1 void mark_as_seen(OctreeInt& map,
2 float* depth, // depth frame

3 const Eigen::Vector2i& imageSize , // frame size

4 const Eigen::Matrix4f& K, // pinhole camera matrix

5 const Eigen::Matrix4f& Tcw) // world-to-camera SE3

transform

6 {
7 struct update_valid update_funct(depth, imageSize);
8 se::projective_map(map, Tcw, K, imageSize , update_funct);
9 }

Listing 3.4: Applying the function defined in Listing 3.3 to an se::Octree instance using
the se::projective map functor .

of voxel blocks to be allocated per frame decreases considerably as new
blocks will most likely be required at the frame border or in previously
occluded regions.

3.4.3. Field update

One of the crucial operations in reconstruction pipelines is that of map
update. This is usually performed by associating world data, i.e. a voxel
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Figure 3.5.: View frustum - voxels intersection.

in global coordinates to a corresponding sensor measurement in sensor
space, e.g. current depth estimate or colour information. There are two
main approaches to achieve this association: ray-casting, as used in Oc-
toMap (Hornung et al. [2013]) and projection, as used in KinectFusion
(Newcombe et al. [2011a]) and Bylow et al. [2013]. In the ray-casting ap-
proach, for each valid range measurement a ray is marched from the cam-
era centre through the corresponding pixel. Each voxel intersected along
the ray is updated accordingly. Notice that this implies that a given voxel
may be updated more than once per frame, as it might be intersected by
different rays. In the projection method instead, voxels are projected back
onto the camera frame and the corresponding set of measurements is used
for the update. In practice, this is often approximated via nearest neigh-
bour interpolation, effectively obtaining a one-to-one mapping between
voxels and sensor measurements. We refer the reader to Klingensmith
et al. [2015] for an interesting comparison between these two techniques.

Our library supports high level constructs to easily perform projective
updates. We provide a functor, named projective map, which applies a
user-defined update function to all the voxels which fall inside the camera
frustrum. Listings 3.3 and 3.4 provide an example of such a function. The
user-defined function should expect:

1. DataHandler: opaque object to access the underlying voxel data.
Whilst we could have simply provided a reference to the actual
data, we chose to keep the data-handling opaque in such a way
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to maximise flexibility in the way data is managed in the back-end.
Although not currently implemented, this would allow us to experi-
ment with different data layout storages with minimal, if any, impact
on the user code.

2. xw 2 N
3: voxel coordinates, in world integer space.

3. pc 2 R
3: transformed voxel coordinates to camera reference frame,

in metric units. This is computed by transforming the voxel into
camera coordinates and scaling it according to the actual voxel res-
olution.

4. uc 2 R
2: corresponding 2D pixel location in camera frame. We

provide the floating point coordinates in such a way that the user
may then decide what kind of interpolation use to sample the data.

The projective map functor instantiation requires the following data:

1. Octree<T>& map: a mutable reference to an object of the Octree tem-
plate class, target of the transformation.

2. Tcw 2 SE3: world-to-camera coordinate transform.

3. K 2 R
4⇥4: homogeneous pinhole camera matrix.

4. W 2 N
2: camera frame size.

5. UnaryOp op: function object which satisfies the signature specified
in the above.

Notice that in our implementation we use the Eigen template library
(Guennebaud et al. [2010]) for matrix and vector algebra.

The use of generic functors brings many advantages. First, it provides
a flexible and compact way to express how the map should be updated.
Crucially, compile-time resolution of function calls via function objects
results into fully in-lined code, hence performance are preserved. Second,
and perhaps more importantly, it allow us to abstract away computational
details of the geometric transformations involved in the map projection
update.
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Volume projection to camera frame can be understood as:

ṗ(v) = KTcwav 8v 2 V (3.1)

where V ✓ Z
n is the set of all allocated voxels, Tcw is the SE3 world-to-

camera transform, K is the camera matrix and a is a scalar factor to map
integer voxels to the actual world scale. In general, since voxel updates
are independent of each other, the grid traversal can be performed in
any order. Usually, most efficient traversal strategies perform a scan-line
iteration over the volume along an axis aligned direction, which can be
expressed as:

ṗ(v) = KTcwa · (b + i · dir) 8i 2 0 . . . n� 1 ^ b + i · dir 2 V (3.2)

where dir is an axis aligned vector (e.g. dir = [1, 0, 0]T) which indicates
the direction of iteration, b is the base voxel and i represents unit stride in-
crements without loss of generality. Given that b and dir remain constant
between iterations and given the linearity of the transform operations,
they can be precomputed:

P = KTcwa

ṗ(v) = Pb + i · P · dir 8i 2 0 . . . n� 1 ^ b + i · dir 2 V
(3.3)

Consequently, the final voxel coordinates can be obtained with just one
scalar multiplication and one vector addiction. Furthermore, decoupling
the geometry computation from the actual data update operation allow
us to easily change iteration strategy without impacting user code.

3.4.4. Field interpolation

Iso-surface extraction algorithms, such as ray-casting and marching cubes,
rely heavily on repeated field sampling, hence it is crucial to have efficient
ways of querying the underlying representation. To this purpose, our
framework provides optimised nearest neighbour and tri-linear interpo-
lation functions. In line with the framework philosophy, we provide a
simple template interface to allow the user to specify which field should
be interpolated, as shown in Listing 3.5. The interp function expects a
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(a) (b)

Figure 3.6.: Different access patterns for a 4-points square stencil on a 2D blocked grid.
Green shaded pixels indicate the optimal case, where all the accessed data is
local to a block. Red denotes the worst case, where all the pixels belong to
different blocks. In 5.6a it is shown the sub-optimal gathering order for the
remaining case where the base pixel lies on a block edge (in yellow). Accessing
the data in row-major order (red arrow) implies jumping from one block to
the other. In 3.6b instead is depicted the optimal access pattern for this case
(green arrow), where block-local pixels are accessed first.

sampling location and a function object which specifies which on which
channel to operate. Such function should take a reference to a field ele-
ment as input and return the interpolation target channel, as done by the
lambda get y in the example snippet.

1 // Data type: struct Foo { float x; float y; }

2 // se::Octree<Foo> tree;
3
4 Eigen::Vector3f pos(110.2f, 54.5f, 65.67f);
5 auto get_y = [](const Foo& val) { return val.y; }:
6 float res = tree.interp(pos, get_y);

Listing 3.5: interp calling procedure.

Tri-linear interpolations require the eight discrete voxels surrounding
the sampling points to be gathered. In a sparsely allocated grid this could
be expensive as several tree traversals are required to gather the desired
points. We limit such performance penalty by observing that there is a
finite number of access patterns that can occur. Figure 3.6 shows a graphi-
cal representation of the possible cases, on a two-dimensional grid for the
sake of clarity. First, if the point to be interpolated falls in the middle of
a voxel block, then all eight points will be local to that block and hence
only one tree traversal is required. This scenario is indicated in green in
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Figure 3.6. The other extreme case is when the point falls exactly on the
corner of a voxel block, denoted in red, in which case eight tree traversals
will be needed. There are six remaining configurations which correspond
to the case in which the sampling point is on a voxel block edge along one
or two dimension. In this case the query order is particularly important
as we should ensure as much locality as possible, since a bad ordering
might imply more tree traversals than actually needed. The pattern access
shown in Figure 5.6a, denoted by the red arrow, requires three times more
traversals compared to the optimal shown in Figure 3.6b, denoted by the
green arrow.

In Kähler et al. [2015] this issue is addressed by caching the last-accessed
block, but this still does not help if the gathering order jumps from one
block to another invalidating the cached block. Instead, we pre-compute
statically a traversal order for all the possible configurations and at run-
time we simply select the optimal order for the requested sampling point
position. This can be achieved by simple integer arithmetic as follows. For
a given base point, we need to estimate if it lies inside, at a corner or along
the edge of its containing voxel block. As shown below, this can be done
by taking each individual coordinate, computing its relative position and
checking if it lies at the boundary:

1 unsigned dx = (pos.x() % block_size) == (block_size - 1);
2 unsigned dy = (pos.y() % block_size) == (block_size - 1);
3 unsigned dz = (pos.z() % block_size) == (block_size - 1);
4 unsigned mask = (dx << 2) | (dy << 1) | (dz);

We then combine the result of each individual coordinate into a single
mask which can be used to select the appropriate order traversal given the
base point. Notice that when mask == 0 then all the required points will
be local to the block. When mask == 7 all the points belong to different
blocks. Finally, the remaining 6 cases indicate the different combinations
of boundary violations:
For each case, we then alternate block fetching and local point gathering,
as exemplified below in Listing 3.6, where gather points is the function
which populates N entries in the points array.

The method described above guarantees the optimal reuse of tree traver-
sals without resorting to any complicated caching strategy. Furthermore
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1 mask == 1; /* z crosses */

2 mask == 2; /* y crosses */

3 mask == 3; /* y, z cross */

4 mask == 4; /* x crosses */

5 mask == 5; /* x, z cross */

6 mask == 6; /* x, y cross */

1 Scalar points[8];
2 ...
3 case 1:
4
5 VoxelBlock <T>* block = tree.fetch(pos);
6 gather_points <4>(block, pos, points);
7
8 // Cross the z boundary

9 block = tree.fetch(pos + Eigen::Vector3i(0, 0, 1));
10 gather_points <4>(block, pos, points + 4);
11 break;
12 ...

Listing 3.6: Point gathering example.

it eliminates unnecessary run-time control flow which a caching strategy
implies, further simplifying the computation. Notice also that our tech-
nique is quite general and can be applied to any sparse data structure
with fixed-size block decomposition, such as hash tables or N3 trees.

3.5. SDF tracking and mapping

Preprocessing Tracking Integration Raycasting

Allocation list Allocate Update voxels

Figure 3.7.: KinectFusion algorithmic pipeline.

In this section we describe our implementation of the KinectFusion al-
gorithm (Newcombe et al. [2011a]) with supereight as the back-end con-
tainer. A high level view of the algorithm is shown in pipeline structure is
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shown in Figure 3.7, where each stage performs the following operations:

Preprocessing : depth data coming from the sensor is transformed into
its corresponding vertex and normal map.

Tracking : camera ego-motion is estimated against a rendered view of the
model synthesised at a previous time.

Integration : given the estimated camera pose, the depth data is integrated
into the volumetric map.

Raycasting : render a synthetic depth and normal map to be used for
tracking at the next frame.

3.5.1. Preprocessing

At each time-step t a new depth map is acquired from the sensor. Op-
tionally, it can be de-noised with an appropriate filter. In our case we use
bilateral filtering (Tomasi and Manduchi [1998]), as per Equation 3.4:

Dt(i, j) =
Âu,v Dt(u, v)w(i, j, u, v)

Âu,v w(i, j, u, v)

w(i, j, u, v) = exp(wp(i, j, u, v) + wi(i, j, u, v))

wp(i, j, u, v) = � (i� u)2 + (j� v)2

2s2
p

wi(i, j, u, v) = �kDt(i, j)�Dt(u, v)k2

2s2
i

(3.4)

where Dt is a depth frame at time-step t and w(·) is the weighting coeffi-
cient.

Once the depth image has been de-noised, vertex and normal maps are
generated using back-projection and cross-product respectively:

Vt(x, y) = Dt(x, y)(K�1[x, y, 1]T)

Nt(x, y) = (Vt(x + 1, y)�Vt(x� 1, y))⇥ (Vt(x, y + 1)�Vt(x, y� 1))
(3.5)
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3.5.2. Tracking

Camera egomotion is estimated via a variant of the well known iterative
closest point (ICP) algorithm (Besl and McKay [1992]). Other approaches
have been proposed in the literature, notably Canelhas et al. [2013], By-
low et al. [2013] and Slavcheva et al. [2016], where the camera position
is tracked directly against the volumetric signed-distance function. Even
if such techniques show levels of accuracy on par with point-based align-
ment methods, in this work we opted for a more traditional ICP alignment
as it relies only on point-clouds and can be easily reused between different
map representations. Hence we minimise the following energy function
via Gauss-Newton:

Et = Â
u2Wt

k(TtVt(u)�WV̂t�1(û))T
WN̂t�1(û)k2

2 (3.6)

where Wk is the set of all pixels in image frame. û is the corresponding
pixel in the reference depth frame, obtained via projective data associa-
tion:

û = p(T�1
t�1TtVt(u)) (3.7)

if kVt(u)� V̂t�1(û)k2 < fdist (3.8)

and NT
t (u)N̂t�1(û) < fnormal (3.9)

where WV̂k�1 and WN̂k�1 are the vertex and normal maps represented in
the world frame rendered from the previous camera pose. Equations 3.8
and 3.9 state that a data association is successful only if the corresponding
vertex are sufficiently close in 3D space and the normals difference is
below a certain threshold. The overall minimisation problem is solved
using an iterative, coarse-to-fine scheme using three pyramid levels.

3.5.3. Integration

As briefly outlined in Section 3.1, KinectFusion represents the mapped
space in a truncated signed-distance function (TSDF) which is discretised
into a regular grid, as shown in Figure 3.8. In a TSDF, points that fall out-
side the truncation region do not carry any meaningful information and
consequently do not need to be explicitly represented. Hence, we modify
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Figure 3.8.: Truncated signed-distance function encoded in a two-dimensional grid. Val-
ues different from one are assigned to pixels inside the truncation region.
Positive values correspond to observed space in in front of the surface, while
negative values indicate space behind the surface.

the standard KinectFusion integration pipeline to explicitly allocate space
for newly seen regions. In particular, we break the integration stage into
three sub tasks, as depicted in Figure 3.7: i) from the current depth frame
Dt and the current map estimate Mt we infer which blocks need to be allo-
cated; ii) once the list is constructed, we allocate the required blocks using
supereight’s allocation routines detailed in 3.4.2; iii) finally, we update the
TSDF field using our projective map operator.

3.5.3.1. Scene allocation

In the literature, different techniques have been proposed. Zeng et al.
[2013] and Chen et al. [2013] sweep over the hierarchical grid project-
ing voxels from coarse to fine grain resolution, marking which voxels fall
within truncation region of the current frame. A similar approach, pro-
posed in Klingensmith et al. [2015], is to allocate all the blocks that fall
within the camera view-frustum bounding box. However this method
significantly over-allocates and requires garbage collection to deallocate
voxels that fall outside the truncation region. Instead, we choose to fol-
low the ray-casting method proposed in Nießner et al. [2013], Chen et al.
[2013]. As shown in Figure 3.9, for each pixel in the image frame we ray-
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Figure 3.9.: Rays originating from the camera intersect the voxel grid. Voxels that fall close
to the surface, in pink, are added to an allocation buffer.

cast along the line of sight within the user specified µ bandwidth enclos-
ing the corresponding depth measurement and collect all the intersected
voxels [x0, x1, . . . , xn]. Mathematically:

[x | bTtVt(u) + s · dc with s 2 �µ, ..,+µ]

d =
RtVt(u)
kRtVt(u)k 2

(3.10)

where Rt is the rotational component of T. Furthermore, we discard the
ones that are already allocated in the map. We build this list in paral-
lel, where each thread writes in a shared buffer via atomically protected
writes.

3.5.3.2. Depth fusion

Once the new parts of the scene have been allocated, the measurement
integration is done in the same fashion as in Newcombe et al. [2011a].
Each voxel at position x is projected into the current depth image Dt with
known pose Tt and its TSDF value ft ⌘ ft(x) from the corresponding
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depth measurement is computed, as

h(x) = Dt(p(T�1
t x))� xz,

ft = min(1,
h(x)

µ
) iff h � �µ,

Ft = max
✓

min
✓

yt�1Ft�1 + ft

yt�1 + 1
, 1
◆

,�1
◆

,

yt = min(ymax, yt�1 + 1).

(3.11)

The computed TSDF sample ft is then integrated in the global TSDF Ft by
means of block averaging, where yt ⌘ yt(x) denotes the weight associated
with voxel x.

It should be noted that, as shown in the original work of Curless and
Levoy [1996], assuming statistical independence between depth measure-
ments and a Gaussian noise distribution, the above weighted average cor-
responds to a maximum-likelihood least square estimate of the true TSDF.
While here we use a simple unitary weight for the new samples, other pos-
sibilities exists. Nguyen et al. [2012] empirically derive a noise model for
the Kinect sensor and use it to weight SDF values proportionally to the
inverse quadratic square depth of the measured surface. Oleynikova et al.
[2017] adopt a similar weighting but with a sharper behind-surface drop-
off to limit the influence of unobserved voxels. Notice that the update
formula of Equation 3.11 implies that all the space between the camera
and the surface boundary is updated. Intuitively, this is consistent with
the fact that observing empty space is information, although not explicitly
encoded in the TSDF representation. From a correctness point of view,
this is required as non-null values lying between the camera and a cur-
rent surface observation would be a free-space violation and hence need
to be removed or smoothed out. A typical scenario in which this may
occur is in presence of moving objects.

3.5.4. Surface prediction

Estimating the camera motion as described in Section 3.5.2 requires a syn-
thetic view of the mapped scene in order to perform frame-to-model align-
ment. As in Newcombe et al. [2011a] a depth map is rendered via ray-
casting the signed-distance field. Hierarchical data structures such as the
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1

2 3
4

Figure 3.10.: Hierarchical ray-casting. The darker shade indicate voxels which are tra-
versed for the example ray while the numbering correspond to the voxels
traversal order.

one presented in this work are well known accelerators for a ray-casting
algorithm. Implicitly the structure of the mapped space is encoded in the
tree and it can be leveraged to advance each ray as close as possible to the
first visible surface along the ray direction. Given the TSDF field represen-
tation discussed in the previous sections, the actual surface boundaries are
found at the zero-crossings of the TSDF function. Hence, for each pixel in
image frame, we cast a ray passing through it onto the volume and search
for the first zero-crossing on the line of sight. We adopt a modified version
of the top-down ray-casting algorithm by Laine and Karras [2010] where
for a given ray, the tree is traversed depth-first, collecting all the nodes
along its path. A graphical representation of the descent order is given in
Figure 3.10. The darker shades indicate voxel that are traversed, while the
numbering corresponds to the traversal order. We provide it as a forward
iterator class:
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1 se::Octree<FieldType > map(...);
2 Eigen::Vector3f origin(...);
3 Eigen::Vector3f direction(...);
4 float nearPlane = 0.3f;
5 float farPlane = 4.f;
6 se::ray_iterator ray(map, origin, direction , nearPlane , farPlane);
7
8 VoxelBlock <FieldType > * block = ray_iterator.next();
9 if(block != nullptr) {

10 ...
11 }

Listing 3.7: The ray-iterator class.

Each successive increment of the iterator position returns the next block
along the ray. Given the current observed block, the zero-crossing search
may proceed locally via repeated trilinear interpolation sampling. As this
may not be found in the currently examined block, the search must pro-
ceed to the next. One option is to alternate hierarchical visits to the tree
via the ray-iterator and local dense sampling. However, the hierarchical
traversal is relatively expensive compared to the efficient tri-linear inter-
polation functions described in Section 3.4.4. As voxel blocks are allocated
only close to the surface measurement, it is reasonable to assume that a
zero-crossing can be found close to the ray entry point on the first visi-
ble block. We exploit this fact and use the ray-iterator only to prune the
search space for a given pixel. Once the first block is retrieved, the search
continue by iteratively sampling the map without resorting to the iterator
after the first call. We have found this methodology to give the best results
in term of performance.

3.6. Experimental results

In this section we will detail our experimental results. All our tests have
been performed within the SLAMBench framework of Nardi et al. [2015]
on a Skylake i7-6700HQ CPU at 2.60GHz, with 16GB of memory, Ubuntu
16.10 and frequency scaling disabled. The software has been compiled
with GCC 5.4.1 and -O3 optimisations enabled. We compare our volu-
metric SLAM pipeline implementation against the current state-of-the-art
InfiniTAM by Kähler et al. [2015].
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3.6.1. Algorithmic configuration

In Listing 3.1 are reported the default values for the main algorithmic pa-
rameters. The values have been chosen in way that the pipeline performs
well across different scenes and data-sets. In general, algorithmic, com-

Parameter Value
input resolution 320x240
voxel resolution 1cm
icp threshold 1e-5
pyramid levels 3
truncation bandwidth 10cm

Table 3.1.: TSDF-fusion algorithmic parameters.

pilation and architectural parameters have high influence on the overall
performance of the reconstruction algorithm. Furthermore, their relation-
ship is highly complex and it is not clear at all how to pick sensible values
that maximise the desired performance. Selecting the key performance
indicators themselves is an intricate task and suitable choices are usually
dependent on the final use case of the SLAM system. In general, is de-
sirable to optimise for multiple metrics at the same time, e.g. tracking
accuracy and speed. In Zia et al. [2016] and in Nardi et al. [2017] we in-
vestigated more complex strategies to navigate this complex configuration
space. We consider multi-objective optimisation goals to which a single
solution does not exists. Instead, the focus is shifted to Pareto-optimal con-
figuration points, i.e. points where improvements in any objective would
imply deterioration on others. The parameter space is explored by us-
ing an active learning strategy in conjunction with random forest decision
trees.

Even if the benefits of the parameter search strategy described above
are significant, in this evaluation we chose to not use the HyperMapper
optimisation framework and instead use a reasonable default configura-
tion for all the algorithms tested in this section. The reason is twofold:
first, different implementations of similar algorithms may behave very
differently and hence tuning the respective pipelines could lead to un-
fair comparisons. Secondly, we want to test default configurations which
port reasonably well to a variety of datasets or input sensors. This is par-
ticularly important in case of algorithmic parameters such as truncation
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bandwidth and ICP convergence threshold as they are effectively defined
by the sensor noise and motion characteristics.

3.6.2. Tracking accuracy

System ATE (m)
LR 0 LR 1 LR 2 LR 3

Ours 0.0113 0.0117 0.0040 0.7582
InfiniTAM 0.3052 0.0214 0.1725 0.4858

Table 3.2.: Absolute trajectory error (ATE) comparison between our TSDF fusion, and In-
finiTAM on ICL-NUIM dataset.

System ATE (m)
fr1 xyz fr1 desk fr2 desk fr3 office

Ours 0.0295 0.1030 0.0641 0.0686
InfiniTAM 0.0273 0.0647 0.0598 0.0996

Table 3.3.: Absolute trajectory error (ATE) comparison between our TSDF fusion and In-
finiTAM on the TUM dataset.

We evaluate the accuracy of our pipeline across two widely used
datasets, i.e. TUM RGB-D (Sturm et al. [2012]) and the ICL-NUIM (Handa
et al. [2014]). The former provides RGB-D sequences with trajectory
ground truth, estimated via a high frequency motion capture system.
Likewise, the latter provides synthetic RGB and depth data, together with
ground truth poses. Furthermore, the ICL-NUIM dataset provides also
the ground truth synthetic model that we use for surface reconstruction
evaluation in Sections 4.6 and 5.7. The metric chosen is the mean absolute
trajectory error (ATE), which estimates the absolute distance between the
ground truth and computed trajectories (Sturm et al. [2012]), defined as:

ATE =
1
N

N

Â
t=0
kgt � ttk2

were gt and tt are respectively the ground-truth and estimated position
at time t. As detailed above, for a fair comparison, we use the same pa-
rameters throughout. Tables 3.2 and 3.3 report our experimental results,
where boldface values indicate the best result per sequence. We compare
the volumetric pipeline described in Section 3.5 to the state-of-the-art vol-
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umetric pipeline InfiniTAM (Kähler et al. [2015]). This has been tested
using the default tracker with depth only tracking to ensure a fair com-
parison with our solution. As we can see, our system obtains accuracy
levels on par with the state-of-the-art. Interestingly, on some sequences,
all systems lose track completely (as in fr3 floor and fr3 plant, not shown
in Tables for the sake of compactness), and on others, at least some sys-
tems fail partly. Note that the extension to use combined geometric and
photometric tracking would be straightforward, and we consider this as
future work.

3.6.3. Runtime performance

Figure 3.11.: Per-frame performance evaluation of InfiniTAM (ITM), and supereight-
based TSDF fusion.

Figure 3.11 reports the runtime performance of each pipeline bench-
marked in the previous section. For each implementation, we provide
timings for the depth fusion and ray-casting stage, plus an aggregated
time for the rest of the pipeline which accounts for preprocessing and
tracking. It is worth stressing that we are comparing fully engineered
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pipelines which have very different code-bases, hence part of the differ-
ences in runtime performance are attributable to different implementation
choices.

First, we want to highlight how our supereight-based TSDF mapping
offers performance comparable or even superior to the state-of-the-art In-
finiTAM’s voxel hashing implementation. Note that apart from the voxel
allocation and retrieval, the two pipelines are in fact very similar in prin-
ciple. Clearly, the traversal and interpolation strategies described in Sec-
tions 3.4.4 and 3.5.4 allow us to amortise the overall cost of querying the
tree. Furthermore, despite being asymptotically slower compared to the
hash based algorithms presented by Kähler et al. [2015], the allocation
routines introduced in Section 3.4.2 have a small footprint on the overall
computation.

3.6.4. Memory consumption

Dataset TSDF
LR 0 7.67%
LR 1 8.45%
LR 2 13.77%
LR 3 13.33%

Dataset TSDF
fr1 xyz 1.95%
fr1 desk 7.70%
fr2 desk 10.15%
fr3 office 12.50%

Table 3.4.: Relative memory consumption compared to a pre-allocated grid covering the
same area at the same resolution.

In Table 3.4 we provide the relative memory consumption compared to
a pre-allocated grid. To make a fair comparison, we ran the KinectFusion
implementation provided by Nardi et al. [2015], and for a fixed resolu-
tion (i.e. 1cm) we allocated the minimum volume required to cover the
entire sequence. As expected, memory savings are significant and this is
reflected in both memory usage and computational performance. In this
analysis we have not included the InfiniTAM framework since the open-
source implementation pre-allocates a large pool of memory, as also noted
in Bodin et al. [2018], making it difficult to isolate the effective memory
consumption for voxel data.
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3.7. Conclusions

In this chapter we have presented our octree library supereight. Our contri-
bution is twofold. First, our hierarchical algorithms offer competitive per-
formance compared to state-of-the-art hashing methods while providing
a full spatial index of the scene. Secondly, we move away from software
frameworks tightly coupled with the underlying map representation. In-
stead, we provide a generic interface which does not compromise perfor-
mance while allowing the end-user to freely experiment with alternative
data-types.

3.7.1. Limitations

One of the assumptions of the octree container is that meaningful infor-
mation is stored exclusively at the deepest level of the tree, i.e. at full res-
olution. The octree is consequently used as a space index of the mapped
environment, but no data information can be recovered where space is
not allocated at full resolution. While this is acceptable in a TSDF map
setting, it may not work in other scenarios, e.g. occupancy mapping. We
will discuss how to lift this assumption in the next chapter.

Currently, the field update operations supported by our
projective map operators are unary, meaning that for a given voxel, the
next value may depend only on its previous and has no visibility of its
neighbourhood. This means that stencil operations, e.g. convolutions on
the tree, are not supported.

3.7.2. Future work

There are several directions in which we want to take this work forward.
Performing arbitrary stencil updates on the tree is a topic of high interest
which we plan to tackle in future work as we believe it will gain more
importance in SLAM pipelines with the advent of semantic and deep
learning-based methods. The challenge will be to find a proper compu-
tational abstraction in such a way to generate efficient code. Approaches
based on domain-specific languages have recently gained significant at-
tention in neighbouring fields such as image processing, notably Halide
(Ragan-Kelley et al. [2013]). We believe that similar models may be ap-

56



plied to dynamic, tree-like data structures such as the one presented in
this chapter.

Connected to the above, we are interested in extending the interpolation
algorithms presented in this chapter to more general access patterns, like
the ones found in computation of higher order derivatives. We believe a
set-theoretic approach may help formalising and consequently generalis-
ing the optimal traversal scheme discussed in Section 3.4.4
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Chapter 4

Dense probabilistic tracking
and mapping

In this chapter we present a dense probabilistic SLAM pipeline based on
occupancy maps. Furthermore, we detail the algorithmic extensions to our
supereight library necessary to accommodate full occupancy mapping.

4.1. Motivations

Many vision applications require a complete description of the mapped
space. This is especially true in the robotics context, where space maps
may be used for path planning and collision avoidance purposes. Occu-
pancy maps (Elfes [1987], Moravec [1988]) are a popular representations
that meet the above requirement. Occupancy maps partition the space
(either 2D or 3D) into a regular grid of voxels. Each voxel is then assigned
with a probability of being occupied or free space according to rigorous
Bayesian inference rules. However, one of the limitations of such an ap-
proach is its inability to express precise, sub-voxel surface boundaries.
On the other hand, TSDF-based maps such as the one described in the
previous chapter, do not have a strong probabilistic interpretation and it
cannot properly capture information about empty space. Loop et al. [2016]
bridge this gap by introducing a new occupancy map framework in which
the surface geometry is well defined by construction and hence it could be
used for precise 3D reconstruction, while retaining all the semantic prop-
erties of an occupancy grid. This implies that precise surface contours can
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be extracted via ray-casting, and hence such representation can be easily
incorporated into the dense SLAM pipeline described in Chapter 3.

The adoption of an occupancy-based representation brings important
advantages for a variety of applications. First, all the mapped space is
precisely labelled. Free space carries as much information as occupied
space and this is expressed explicitly in the map. Being able to reason
about free space is of paramount importance for a variety of navigation
tasks, as the longevity of occupancy-based solutions in the robotics com-
munity testify. Second, a fully probabilistic map allows to naturally take
into account the inherent non-determinism in the mapping process, ei-
ther in the form of sensor noise or in terms of noisy pose estimation. In
TSDF-based maps this is achieved with an additional layer of logic, usu-
ally via non-uniform and sensor dependent weighting, as in Nguyen et al.
[2012] or Oleynikova et al. [2017]. Finally, being able to perform track-
ing and mapping on an occupancy grid also enables path planning on a
single, tightly integrated pipeline, without the need for external tracking
systems, as usually assumed by occupancy mapping systems.

In the following sections, we will first give an overview of the classical
occupancy grid methods and how Loop et al. [2016] overcome some of
their limitations. We will then describe our extensions to their Bayesian
fusion framework to adapt it to a online SLAM setting, together with our
extensions to supereight. Summarising, our contributions are:

• An extension of the Bayesian fusion framework of Loop et al. [2016]
to allow incremental mapping in a SLAM context;

• An updated version of our supereight library (Chapter 3) which of-
fer state-of-the-art performance in occupancy mapping;

• A full dense SLAM pipeline based on 3D occupancy mapping to-
gether with a thorough evaluation and comparison against the cur-
rent state-of-the-art TSDF-based SLAM systems.

4.2. Occupancy Mapping

Occupancy maps aim to fully describe the explored space given agent
positions and sensor data. In other words, they compute the posterior
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probability over possible maps given the data:

p(S | z1:t, T1:t) (4.1)

where S is the map, z1:t is the set of sensor measurements taken from
known poses T1:t. The map is discretised into a regular grid, hence it
consists of a set of voxels:

S = {Sx} (4.2)

where the subscript x indicates the 3D position of cell Sx. Each voxel is as-
sociated with an occupancy probability which specifies whether the voxel
is occupied or not, respectively indicated by 1 and 0. Such probability is
expressed as p(Sx = 1). The dimensionality of the problem expressed in
Equation 4.1 makes it impractical to be solved even for modest size maps.
For instance, a room-sized map of 53 meters with voxel size of 10cm per
side would imply 125,000 voxels, leading to 2125,000 possible map config-
urations. From early approaches, such as in Elfes and Matthies [1987],
the estimation problem has been simplified by assuming independence
between cells and dividing it into smaller, separate problems

p(Sx | z1:t, T1:t) (4.3)

and then computing the full posterior as

p(S | z1:t, t1:t) = ’
x2S

p(Sx | z1:t, T1:t) (4.4)

Map estimation is then reduced to a binary estimation problem, which can
be solved individually for each cell using a binary filter over the two pos-
sible states. We refer to Thrun et al. [2005] for full details on the method-
ology.

While easy to implement, the above factorisation does not properly
model any dependency between adjacent cells. In particular, given a
surface from which a corresponding sensor measurement is obtained, no
other surface can exist between the sensor and such surface. This imposes
a visibility constraint on the intersected voxels along the ray from the
sensor. Furthermore, voxel dependencies become more and more com-
plex as multiple frames are integrated together. A number of methods
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that explicitly deal with such dependencies have appeared. In the context
of image-based reconstruction, Liu and Cooper [2014] and Ulusoy et al.
[2015] formulate the reconstruction problem as inference on the Markov
Random Field implied by the visibility constraints between multiple ob-
servations. However, their algorithm considers all the input images at
once, meaning that the whole inference process should be repeated for
each new image in an online setting. The earlier method of Woodford
and Vogiatzis [2012], which assumes RGB-D input data, sports a similar
formulation to that of Ulusoy et al. [2015], but propose a simpler inference
process and furthermore provide an incremental update rule for online re-
construction. However, their strategy requires a per-frame re-sampling of
the estimated state, leading to significantly poorer performance compared
to standard TSDF grids.

4.3. Bayesian fusion equations

For completeness, in this section we will briefly report the main ideas
behind the Bayesian fusion framework by Loop et al. [2016], which we
employ as space representation for the occupancy-based SLAM system
presented in this chapter. In the following, continuous and discrete prob-
ability distributions will be denoted respectively with lower-case p and
upper-case P. As usual, subscript t indicates current time stamp, while
boldface x 2 Z

3 denotes voxel coordinates.
We start by considering the probability of a single voxel being occupied

given a set of measurements Z, that is P(Sx=1 | Z). Using Bayes’ Theorem,
this can be written as:

P(Sx = 1 | Z) =
p(Z | Sx = 1)P(Sx = 1)

Â1
s=0 p(Z | Sx = s)P(Sx = s)

(4.5)

The surface prior P(Sx = s) and the conditional probability p(Z | Sx =

s) now need to be defined. The former is set to a minimum informative
value:

P(Sx = s) =
1
2

(4.6)

For the latter, Loop et al. [2016] make the following key observations.
First, since {Sx} are independent and identically distributed, the set of
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Figure 4.1.: B-spline noise distribution. The dotted line at µr corresponds to the location
of the surface along the ray.

rays Zx
.
= {zr | zr 2 x} that pass through x are conditionally independent

given Sx as x is the only point that they have in common. Furthermore,
the set of rays that do not pass through x, Zx

.
= Z \ Zx, is primarily

dependent on Zx. Hence:

p(Z | Sx = s) = p(Zx | Zx)p(Zx | Sx = s)

= p(Zx | Zx) ’
zr2Zx

p(zr | Sx = s) (4.7)

Plugging 4.6 and 4.7 into 4.5 and simplifying gives:

P(Sx = 1 | Z) =
’zr2Zx p(zr | Sx = 1)

Â1
s=0 ’zr2Zx p(zr | Sx = s)

(4.8)

Finally, again using Bayes’ theorem

p(zr | Sx = s) =
P(Sx = s | zr)p(zr)

P(Sx = s)

we obtain:

P(Sx = 1 | Z) =
’zr2Zx P(Sx = 1 | zr)

Â1
s=0 ’zr2Zx P(Sx = s | zr)

(4.9)

The single ray behaviour is described in terms of the occupancy dis-
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Figure 4.2.: Occupancy distribution given true depth. The dotted line at µr corresponds to
the location of the surface along the ray and t denotes the surface thickness.

tribution given the true surface and the true surface distribution given a
noisy measurement, mathematically:

P(Sx = 1 | zr) =
Z •

0
P(Sx = 1 | µr)p(µr | zr)dµr (4.10)

The true surface distribution p(µr | zr) is modelled with a quadratic
b-spline, graphically shown in Figure 4.1, defined as:

p(µr | zr) = q(s) =

8
>>>>>><

>>>>>>:

1
16 (3 + s)2 if � 3  s  �1,
1
8 (3� s2) if � 1  s  1,
1

16 (3� s)2 if 1  s  3,

0 otherwise.

(4.11)

where
s :=

(µr � zr)
sr

(4.12)

denotes the distance from the camera centred around the true distance
and normalised with the standard deviation sr of the measurement. Im-
portantly, we can now set sr to be proportional to z2

r corresponding to a
more realistic triangulation-based depth camera noise model than assum-
ing it constant (Gallup et al. [2008]). The occupancy probability given the
true surface, P(Sx = 1 | µr), is modelled as zero in front of the true sur-
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face, 1 from the true surface to a certain minimum thickness t, and then
followed by 0.5, as shown in Figure 4.2. Conveniently, the convolution
integral of Equation 4.10 has an analytic solution

P (Sx = 1 | zr) = h(s) = qcdf(s)�
1
2

qcdf(s� 3), (4.13)

with

qcdf(s) =

8
>>>>>>>>><

>>>>>>>>>:

0 if s < �3,
1
48 (3 + s)3 if� 3  s  �1,
1
2 +

1
24 s(3 + s)(3� s) if � 1 < s < 1,

1� 1
48 (3� s)3 if 1  s  3,

1 if 3 < s.

(4.14)

We visualise an example of this per-ray occupancy “measurement” func-
tion in Figure 4.3. Setting the surface thickness t equal to three times the
standard deviation sr gives an occupancy probability of exactly 1

2 in cor-
respondence of the unit-pulse transition from empty to occupied space,
which defines the precise location of the surface. It is worth noting that
the adoption of a finite support b-spline noise model, as opposed to a
more common Gaussian distribution, is justified by the fact that the lat-
ter results in inconsistent occupancy estimates, even when Equation 4.10
is evaluated using exact surface measurements (see Section 4.2.3 of Loop
et al. [2016] for a detailed discussion).

Figure 4.3.: Example occupancy probabilities along a ray resulting from Equation 4.10
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Occupancy measurements ot(x) associated with the above values h(s)
along every ray observing depth can now be used for fusion into our
octree-based map volume storing occupancy values Ot(x) at each position
x. However, instead of the multiplicative update following direct appli-
cation of Bayes’ rule (as used in Loop et al. [2016]), we adopt the log-odd
space which is mathematically equivalent. The incremental update ac-
cordingly is:

lt(x) = log
ot(x)

1� ot(x)
, (4.15)

Lt(x) = Lt�1(x) + lt(x), (4.16)

where L0 = log 0.5
1�0.5 = 0.

The h(s) function, although it correctly encodes the visibility constraints
discussed in Section 4.2, has a mayor drawback, i.e. the finite support of
the b-spline model admits zero-probability values. This breaks incremen-
tal mapping in two ways. First, zero-values make it impossible to recover
from related outliers or to deal with more realistic scenes in which dy-
namic elements are present. Second, zero-values are not admissible in
the log-odds formulation, hence we clamp h to the interval [Pmin, Pmax].
In our experiments, we choose the admissible interval as [0.03, 0.97]. In
contrast to typical occupancy mapping formulations, the crucial feature
of the above model is that the surface boundary is well defined by con-
struction, and it can be found where the occupancy probability transitions
from Ot(x) < 1

2 to Ot(x) > 1
2 , or, equivalently in log-odd space, from

Lt(x) < 0 to Lt(x) > 0. However, whilst the surface location does not
change its position as more accurate estimates are combined, the gradient
of the occupancy curve quickly increases, and the occupancy estimate be-
comes overconfident. For this reason, we choose to extend the Bayesian
fusion model with a windowed update step which introduces uncertainty
proportionally to the time difference between subsequent updates, in or-
der to accommodate for otherwise unmodelled effects, most importantly
dynamic scene content and uncertainty of the tracking. Specifically, we
apply a moving average before each measurement is fused into the map.
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Thus, our final update rule is defined as:

L+
k�1 = Lk�1(p)

1
1 + Dt

t

, (4.17)

Lk(p) = L+
k�1(p) + lk(p), (4.18)

where Dt is the time difference since the last update for the current cell
and t is a time constant. In our experiments we chose t = 5sec. Note that
this also acts as a forgetting feature: when Dt ! •, O+

t�1(p) ! 0.5. In
other words, we assume that if we have not updated a specific cell for a
long period of time, we don’t know its occupancy state.

4.4. Multi-scale octant operations

The occupancy field defined in Section 4.3 fully describes the mapped
space, both empty and occupied. Hence, it is desirable to have a finer
control over which parts of the map are allocated and at which resolution.
One of the assumptions made in Section 3.4 is that supereight’s octree
structure is used for indexing a sparsely allocated pool of fine resolution
blocks, but the nodes belonging to the tree structure itself do not con-
tain any data. While this is reasonable in case of TSDF mapping, where
meaningful data can be found only close to the surface boundaries, in this
chapter we need to lift this assumption. Specifically, occupancy values for
free space are not constant and hence need to be represented explicitly. In
the next sections we will cover in detail how we approach this problem in
supereight.

4.4.1. Node representation

As defined in Section 3.4, internal octree nodes have structural signifi-
cance, but they do not hold any information regarding the underlying
represented field. We extend the basic node structure to also store field
information, as shown in Listing 4.1. Instead of assigning one value per
node, we associate a data value per child octant, regardless of whether the
child is actually allocated or not. In other words, children data values are
completely described by their parents. In this way, given a node at an
arbitrary tree height, its partition at the children resolution will be uni-
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1 template <typename T>
2 class Node {
3 key_t code_; // octant descriptor
4 unsigned char children_mask_; // children validity mask
5 Node* children_[8]; // child pointers array
6 T data_[8]; // field data
7 };

Listing 4.1: Octree node structure with associated data.

(a) (b)

Figure 4.4.: (a) Partial and (b) full subdivision of a quadrant. Dots represent the quadrant
anchors and sampling points.

form, even if a subset of its children is not recursively refined. Figure
4.4 depicts the sample point distribution according to the data association
scheme implemented in Listing 4.1. Notice how the refinement of Figure
4.4a induces an asymmetrical segmentation of the covered area. Associ-
ating a data point to each potential child solves this problem, as Figure
4.4b shows. This is semantically equivalent to a full octree, i.e. where each
node has either zero or eight children, but it achieves the same while spar-
ing the memory overhead induced by the node structure. Octants which
share the same physical location but have different sizes (e.g. parent and
first child) will be encoded with the same Morton number. In order to
fully identify a node, we append the height of the tree at which it resides,
in a similar fashion to Sundar et al. [2008].

As described in Section 3.4 the finest resolution voxel blocks are stored
contiguously in memory in blocks of 83 voxels, hence only one positional
key is required to identify 512 elements. This is reflected on the generated
morton codes: being max depth� 3 the deepest level of the tree, the lowest
9 bits are always zero. We use the trailing bits to store the node level,
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scale

Figure 4.5.: Logical layering of nodes at different height of the tree. Nodes with the same
color correspond to the same physical location but have different extension.

starting from the root which has zero depth. A pleasant property of such
an augmented key is that it preserves ordering between octants, implying
that an octant will come before its descendants in sorted order. We exploit
this property to perform duplicate removal and parallel allocation.

morton codereserved scale

9487

Figure 4.6.: 64 bit positional code of an octree node.

Figure 4.6 displays the final structure of our 64 bit node descriptor. As
discussed above, the lowest 9 bits specifies the node level. The following
48 bits section stores the Morton number, allowing for a 16 level-deep
octree. Finally we keep the last 7 bits reserved. These bits can be used for
various purposes, such as node-specific flags or further extending the tree
maximum height.

4.4.2. Node encoding

According to the encoding scheme presented in the previous section,
coarser octree nodes can be uniquely identified and consequently should
be possible to selectively allocate them. To do so, supereight provides en-
coding and decoding functions, shown in Listing 4.2. Octants, regardless
of their scale, are addressed in terms of their coordinates at the finest res-
olution. Exact location is not required, as given a tuple (x, y, z) and
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1 key_t encode(const int x, const int y, const int z,
2 const int level, const int max_depth) {
3 const int offset = MAX_BITS - max_depth + level - 1;
4 return (compute_morton(x, y, z) & MASK[offset]) | level;
5 }
6
7 Eigen::Vector3i decode(const se::key_t key) {
8 return unpack_morton(key & ˜SCALE_MASK);
9 }

Listing 4.2: Octant encoding and decoding.

a level l, coordinates are rounded to the left-most bottom corner of their
enclosing octant at level l. Practically, this is achieved by selecting the
appropriate prefix mask (line 3) and applying it to the corresponding full
Morton code (line 4). Finally, the complete node descriptor is obtained by
appending the level to the computed key.

4.4.3. Node allocation

In contrast with the allocation strategy presented in Section 3.4.2 where
internal nodes are implicitly allocated, we provide allocation functions
which permit explicit allocation of nodes at any level of the tree. Hence,
allocation requests may arise for:

1. A voxel at a level deeper than the leaf aggregation level. In this case
the allocation stops at the aggregation level and the whole voxel
block containing the requested voxel is allocated.

2. A voxel at a level higher than the aggregation level. The allocation
procedure stops at the specified level.

In both cases, any ancestors of a node will be implicitly allocated. We
modify Algorithm 3 in order to take into account the multi-scale node
allocation in two ways. First, from the allocation list redundant nodes
have to be removed. A node is considered redundant if any octant in
the allocation buffer implies its allocation, i.e. any of its descendants are
present in the allocation list. Algorithm 5 is used to check if two octants
are in an ancestor-descendant relationship. This is done by checking the
condition that the octant has a smaller scale and it shares the prefix with
the ancestor up to the ancestor’s level.
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ALGORITHM 4: Top-bottom multiscale voxel list allocation
1 Function allocate(key t key list[N] : int allocated
2 {
3 key list sort (key list);
4 unique keys filter ancestors (key list);
5 for level  root.level to aggregate level do
6 unique keys [ k & prefix mask [level] for k in unique keys ];
7 unique keys compact (unique keys, level);
8 parallel alloc (unique keys, level);
9 end for

10 }

ALGORITHM 5: Test ancestry relationship between two octants. Returns
true if octant is a descendant of ancestor

1 Function descendant(key t ancestor, key t octant) : bool
2 {
3 int level a ancestor.level();
4 int level o octant.level();
5 octant octant.code() & MASK[level a];
6 ancestor ancestor.code();
7 return level o � level a && !(ancestor � octant);
8 }

Algorithm 6 filters ancestors from a sorted input list of descriptors.
When an ancestor-descendant relationship is detected, the ancestor is sim-
ply overwritten with its descendant. Finally, the compact operation at

ALGORITHM 6: Filter ancestors from octant list
1 Function filter ancestors(key t key list[N]) : int new size)
2 {
3 last 0;
4 for i 0 to key list.size() do
5 if descendant (key list [last], key list [i]) then
6 key list [last] key list [i];
7 else
8 key list [++last] key list [i];
9 end if

10 end for
11 return last + 1;
12 }

line 7 of Algorithm 4 eliminate duplicates and filters out nodes which are
coarser than the currently allocated level. This is required to guarantee
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depth sample

Figure 4.7.: Raycast-based allocation from depth sample. The salmon triangle represents
the camera frustum, pale yellow squares 2D orthogonal projections of octree
octants (in 2D for visualisation purposes) and black dots sampling points.

that octants are allocated only up to their maximum resolution, specified
via the scale field in the node descriptor.

4.5. Reconstruction pipeline

The extended Bayesian fusion equations described in Section 4.3 provide
us with a probabilistic field representation that can be used for various
tasks, such us mapping, tracking and planning. Indeed, one of the main
objective of this work is to demonstrate a fully integrated pipeline for
autonomous robotic navigation, in which path planning and SLAM occur
on the same tightly integrated loop and not as a collection of different
subsystems. In order to achieve this, we introduce a modified version of
the reconstruction pipeline of Section 3.5.

4.5.1. Scene allocation

As usual, the system bootstraps with an empty scene which need to be
populated given the sensor data. Similarly to our TSDF-based pipeline,
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we find the missing nodes via ray-casting. However, contrary to a TSDF
field the empty space representation is not constant. There are several
different ways to approach this problem. Naively, it could be recognised
that empty-seen space effectively is valuable yet non-uniform information
and so it needs to be represented explicitly. However, this would lead
to an unreasonable memory footprint for scenes bigger than modestly
sized environments. OctoMap, the de-facto standard for occupancy map-
ping by Hornung et al. [2013], in a first pass allocates and processes the
whole volume implied by the view frustum. In a subsequent pass, empty
space which is considered uniform below a certain occupancy threshold
is compressed and the tree pruned. While this certainly helps in terms
of memory footprint, computationally is not very efficient as keeping the
tree sparse requires repeated pruning operations as new frames are in-
tegrated. We take a different approach: we allocate space close to the
surface boundary at maximum resolution and then progressively allocate
coarser voxels in correspondence of empty space. There are two main ad-
vantages with our approach: first, it does not require an explicit pruning
step to coarsen blocks covering empty space. Second, fusing new depth
measurements does not invalidate the allocations done at the previous
step, i.e. if the environment is static coarse blocks will stay coarse.

Algorithm 7 implements the logic described above. As usual, in parallel
each pixel is back-projected to its 3D position in world coordinates by
applying the inverse camera matrix function p�1 and the camera to world
transform Twc. Then a ray is marched from the camera centre to the point
collecting all the intersected octants along the ray. Crucially, the step size
is not uniform, but rather adjusted dynamically depending on the distance
from the measured surface. Functions step function and step to level
respectively adjust the step size (line 16) and select the appropriate octant
scale, which is then used to synthetise the corresponding node descriptor
for the visited octant (line 14). If the currently visited node is not found
in the map, it is atomically enqueued in an allocation buffer. Figure 4.7
shows a graphical depiction of the resulting allocation list for a single
ray. Notice how octants become more refined as the ray gets closer to the
depth sample.
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ALGORITHM 7: Variable step raycast for scene allocation.
1 Function compute octants(Image depthmap, Octree map, Transform T wc,

Function step function, Function step to level) : key t [n]
2 {
3 key t keylist[n] 0;
4 int2 pix (0, 0);
5 float3 origin T wc.translation();
6 foreach pix 2 depthmap do
7 float3 dir normalise (T wc * p�1 (pix) - origin);
8 float dist 

��T wc ⇤ p�1(pix)� origin
��;

9 float3 pos origin;
10 float t 0;
11 float step step function (t, dist);
12 while t  dist do
13 if (pos + t * dir) 62 map then
14 keylist map.encode(pos + t * dir, step to level (step));
15 end if
16 step step function (t, dist);
17 t t + step;
18 end while
19 end foreach
20 return keylist;
21 }

4.5.2. Field update and interpolation

The algorithms presented in Section 3.4.3 and 3.4.4 are basically un-
changed. Given the sample point voxel model discussed in the previous
chapter we can employ the same projective functors operators on inter-
mediate nodes with minimal changes in the library back-end, chiefly to
take into account the wider spacing between data points in intermediate
nodes. This is easily achieved as node descriptors have all the informa-
tion required to compute the size of an octant and its children. Figure 4.8
shows an example of an occupancy grid map after 180 frames have been
fused. Blue shades indicate empty space, salmon unseen space and white
to red gradients occupied space. Notice how empty and occupied space
grows in confidence as more data is fused into the map. Furthermore,
the gradient between empty and occupied space becomes steeper but still
smooth thanks to our windowed update step. Another key aspect that can
be observed from the occupancy renderings is how we handle rays that lie
on the frustum boundaries. While in theory the boundary between seen
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(a) Frame 0 (b) Frame 30

(c) Frame 60 (d) Frame 180

Figure 4.8.: 2D slice of the occupancy map along the x-z plane after 0, 30, 60 and 180 fused
frames from the ICL-NUIM Living Room 2 trajectory. Blue shades indicate
empty space, salmon unseen space and white to red gradients occupied space.

and unseen space can be treated as a surface and resolved to an arbitrary
resolution, we do not handle them differently than any other ray in cam-
era frame. This is key for performance, since as the camera moves around
and new space is discovered, empty space at frustum boundaries would
be overly detailed and it would accumulate in time, requiring explicit
pruning to sparsify the map. On the other hand, the system never loses
accuracy in presence of real surfaces, hence we found this simplification
to work very well in practice.

As stated in Section 4.4.2, voxels can be retrieved using their coordi-
nates at the finest level of detail, but we also provide routines that accept
an extra scale argument to stop the recursive search at a given height of
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the tree. Tri-linear interpolation is instead limited to voxels which are allo-
cated at the maximum resolution. If such information is not available, the
system falls back to nearest neighbour approximation. We found this an
acceptable compromise as the applications which supereight targets allo-
cate voxels at the maximum resolution where trilinear interpolation is ef-
fectively needed, while they can tolerate less accuracy anywhere else. Full
trilinear interpolation on non-uniformly spaced grids will be addressed in
Chapter 5, where we lift this constraint.

Conveniently, as in TSDF-based maps, surface boundaries can be found
at the zero-crossing of the log-odd field (Equation 4.16). However, the
ray-casting operation differs in that once a ray-block intersection is found,
the ray should be marched advancing in unitary steps. This is different
from TSDF maps where steps proportional to the interpolated distance
value can be taken. This indeed implies slower ray-casting performance
as shown in our quantitative experiments.

4.6. Experimental results

In this section we provide quantitative results for our occupancy-based
SLAM pipeline. Using the same experimental set-up of Section 3.6 we
compare our solution against the TSDF-based pipeline, InfiniTAM (Kähler
et al. [2015]) and OctoMap (Hornung et al. [2013]).

The TSDF and Occupancy Mapping pipelines are set up using the same
values for shared parameters, such as voxel resolution or ICP convergence
thresholds. These, together with the occupancy fusion (in short OFusion)
specific parameters are summarised in Table 4.1.

4.6.1. Tracking and reconstruction accuracy

Tables 4.2 and 4.3 reports the absolute trajectory errors (ATE) for the three
pipelines on sequences from the ICL-NUIM and TUM RGB-D datasets.
According to our experiments, tracking and mapping based on fused oc-
cupancy probabilities matches and often exceeds the tracking accuracy of
TSDF based pipeline, both in ours or InfiniTAM’s implementation, scor-
ing the best accuracy on challenging trajectories such as LR 3, fr1 desk
and fr3 office. Notice that in this experiment set our TSDF based pipeline
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Parameter Value
input resolution 320x240
voxel resolution 1cm
icp threshold 1e-5
pyramid levels 3
stddev scaling (k) 0.01
sliding window (t) 5sec
Pmin 0.03
Pmax 0.97

Table 4.1.: Default algorithmic parameters for the occupancy fusion reconstruction
pipeline.

loses track on the LR 3 sequence, which is particularly challenging due
to the extensive close-up views with very little geometric structure. We
also evaluated the reconstruction precision of our pipelines against the
ground-truth mesh provided with ICL-NUIM and using the companion
evaluation tool SurfReg1 which computes the Root Mean Square Error
(RMSE) distance of the reconstructed mesh from the ground truth model.
The output reconstruction is extracted from the TSDF and occupancy
fields via marching cubes (Curless and Levoy [1996]). Table 4.4 reports
our quantitative evaluation. Note that SurfReg performs a pre-alignment
of the compared meshes before evaluating the surface distance, hence off-

1https://github.com/mp3guy/SurfReg

System ATE (m)
LR 0 LR 1 LR 2 LR 3

TSDF 0.0113 0.0117 0.0040 0.7582
OFusion 0.0236 0.0185 0.0046 0.1095
InfiniTAM 0.0850 0.0214 0.1584 0.1354

Table 4.2.: Absolute trajectory error (ATE) comparison between our TSDF fusion, and Oc-
cupancy Fusion and InfiniTAM on ICL-NUIM dataset.

System ATE (m)
fr1 xyz fr1 desk fr2 desk fr3 office

TSDF 0.0295 0.1030 0.0641 0.0686
OFusion 0.0149 0.0524 0.1080 0.0266
InfiniTAM 0.0273 0.0647 0.0598 0.0996

Table 4.3.: Absolute trajectory error (ATE) comparison between our TSDF fusion occu-
pancy fusion and InfiniTAM on the TUM dataset.
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setting part of the error due to pose drift. This is reflected by the more
uniform results across the different systems in terms of reconstruction
accuracy.

System RMSE (m)
LR 0 LR 1 LR 2 LR 3

TSDF 0.0054 0.0066 0.0051 0.0541
OFusion 0.0061 0.0060 0.0051 0.0440
InfiniTAM 0.0060 0.0057 0.0504 0.0585

Table 4.4.: Root Mean Square Error (RMSE) of the distance of the reconstruction from the
ground-truth mesh.

4.6.2. Run-time performance

Figure 4.9.: Per-frame performance evaluation of InfiniTAM (ITM), supereight-based
TSDF and Occupancy fusion.

Figure 4.9 shows the runtime performance of each pipeline. As usual,
we provide timings for the fusion and rendering stages, plus an aggre-
gated time for the rest of the pipeline. Evidently, the occupancy grid
mapping formulation is more expensive. This is inherent to the method
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itself as the b-spline sampling and the log-odd update is more costly than
the simple weighted average performed by the TSDF method. Further-
more, occupancy mapping has to process a larger amount of informa-
tion as empty-seen space is explicitly stored and updated. Additionally,
finding the zero-crossing in ray-casting is more efficient in a TSDF field
compared to occupancy mapping, since the distance encoding allows to
skip empty space with larger steps in a safe way (that is without skipping
valid intersections). In contrast, occupancy mapping requires the rays to
be marched one voxel at the time once the first intersected voxel block is
reached. A possible way to mitigate this penalty would be to implement
a mapping from occupancy probability to distance.

We also benchmarked OctoMap on the test sequences used in this ex-
periment set, configured with 5cm voxel size, but we omitted these re-
sults from Figure 4.9 for visualisation purposes. Mapping times per frame
range between 338ms (fr1 desk) to over 1500ms (fr2 desk). The large per-
formance gap compared to our pipeline is attributable to the slower algo-
rithm OctoMap employs, i.e. ray-casting based measurement integration
(discussed in Section 3.4.3), and a lack of a proper parallelisation strategy.
Oleynikova et al. [2017], in their VoxBlox mapping framework, propose
various optimisations for ray-cast based map update and demonstrate in-
teresting speed-ups, but still requiring at least 60ms per scan at 5cm voxel
resolution. Notice that for use cases in which a coarser map is suitable,
other approaches are possible. Saarinen et al. [2013] demonstrate how us-
ing normal distribution transform occupancy maps (NDT-OM) they are able
to achieve comparable results to OctoMap while using an 8 times coarser
grid, achieving 20 times faster measurement integration.

4.6.3. Memory consumption

Dataset TSDF OFusion
LR 0 7.67% 11.15%
LR 1 8.45% 13.68%
LR 2 13.77% 22.52%
LR 3 13.33% 17.68%

Dataset TSDF OFusion
fr1 xyz 1.95% 3.01%
fr1 desk 7.70% 8.81%
fr2 desk 10.15% 17.70%
fr3 office 12.50% 17.95%

Table 4.5.: Relative memory consumption compared to a pre-allocated grid covering the
same area at the same resolution.
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Figure 4.10.: Schematic representation of our integrated dense SLAM pipeline with sup-
port for online spatial queries.

Table 4.5 shows a side by side comparison of memory consumption
between our TSDF and Occupancy Mapping based pipelines, relative to a
common baseline of a pre-allocated, tightly fitting voxel grid at the same
resolution. As expected, the memory footprint of the occupancy-based
system is larger compared to the TSDF solution. This clearly is due to the
allocation of voxels in correspondence of seen-empty space. Although this
results in more memory used, the adaptive allocation scheme described
in Section 4.5.1 mitigates the requirement, without impacting the overall
accuracy of the SLAM pipeline.

4.6.4. An application to path planning

In Vespa et al. [2018] we also demonstrated and analysed our occupancy-
based mapping pipeline in a path planning application for a multicopter
Micro Aerial Vehicle (MAV). The full algorithmic pipeline is depicted
in Figure 4.10. We used the Open Motion Planning Library (OMPL) of
Şucan et al. [2012] to generate collision-free paths in our occupancy-based
environment, with the MAV modelled as an axis aligned bounding box
(AABB). We used Informed RRT* Gammell et al. [2014] for the straight-
line segment planning. Furthermore, we compared our supereight im-
plementation against an OctoMap-based map. The times needed to find
the first feasible path for an obstructed 2.83 m start-goal distance can be
seen in Table 4.6. They were obtained on an Intel Core i7-6600U CPU at
2.60GHz, compiled on GCC version 5.4.0, averaged over 10,000 executions.

Furthermore, we calculated a smooth trajectory from the initial RRT*
plans based on polynomial planning as described in Richter et al. [2016].
We fixed the start and goal position in both mapping implementations
and recorded the time needed to linearly optimize a collision-free poly-
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(a)

(b)

Figure 4.11.: 3D (4.11a) and top (4.11b) views of an example trajectory (green) for a multi-
copter Micro Aerial Vehicle (MAV) computed with the Informed RRT* plan-
ning algorithm (with smoothing) depicted on a fine-grained occupancy map
obtained by our SLAM system. Starting and target positions are represented
respectively by the red and green circles.
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nomial trajectory. The timings averaged over 1,000 executions are listed
in Table 4.7. It can be seen in the recorded timings in Table 4.6 and Ta-
ble 4.7 that the straight-line planning and the linear polynomial trajectory
optimisation is faster with our implemented method. For illustration, we
have plotted an example trajectory into a map rendering in Figure 4.11.
These results confirm that our octree-based occupancy map is at least as
fast at handling spatial queries as OctoMap, the de-facto standard used in
research for robotic planning.

4.7. Conclusions

In this chapter we have presented an efficient octree-based dense SLAM
system based on occupancy mapping. We contribute with an extension
to a fully probabilistic fine-grained occupancy mapping formulation. The
resulting representation is not only used for surface reconstruction and
camera tracking, but enables real-time, in-the-loop path planning on the
very same representation. We experimentally evaluate our formulation in
a variety of sequences, demonstrating state-of-the-art accuracy and per-
formance results, including a comparison. We furthermore demonstrated
the capabilities for planning using a probabilistic planner and trajectory
smoothing. Importantly, efficient spatial queries as needed for planning
are intrinsically not supported by flat hashing architectures as employed
by competing SLAM systems. We thus believe this work will help to
further bridge the gap between SLAM and down-stream operations and
increase related efficiency by sharing a map representation of wider use-

time std dev min max
OFusion 12.6ms 14.6ms 4.29ms 109.6ms
OctoMap 17.7ms 11.4ms 5.16ms 113.2ms

Table 4.6.: Timings for straight-line planning for a start-goal distance of 2.83 metres aver-
aged over 10,000 executions.

time std dev min max
OFusion 1.57ms 0.59ms 0.43ms 3.47ms
OctoMap 2.06ms 0.78ms 0.32ms 4.17ms

Table 4.7.: Timings for the linear trajectory optimisation averaged over 1,000 executions.
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fulness. Concluding, we see this as an interesting alternative to the most
common approach of implementing tracking and mapping as two sep-
arate sub-systems that do not share common information. However, we
acknowledge that, especially in resource constrained systems where dense
rendering and alignment may be prohibitive, a hybrid approach based on
sparse tracking could still be a more suitable choice.

4.7.1. Limitations and further work

Occupancy probabilities are computed and updated independently for
each node (Section 4.5.2). However, no mechanism to keep the hierarchy
consistent is used. In the next chapter, we lay the foundations to achieve
this in a real-time setting. This will eventually allow to perform occupancy
queries at any scale with the guarantee that all the available information
is being consistently used.

Another issue with the occupancy mapping formulation is its lower
computational performance compared to TSDF mapping. This is particu-
larly noticeable in ray-casting, as spatial information encoded by the TSDF
can be used to skip larger portions of empty space. To achieve this with
an occupancy map, an interesting approach would be to relate occupancy
values to distances at interpolation time, in a way reversing the ray model
described by Equation 4.10.
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Chapter 5

Adaptive resolution
octree-based dense SLAM

The effective resolution of visual information may dramatically vary on a
per-pixel basis. Surfaces close to the camera are resolved at higher resolu-
tion compared to distant surfaces. Consequently, as the sensor browses a
scene, the same objects may be observed at different scales throughout the
mapping process. This effect should be taken into account in any recon-
struction system. In this chapter, we propose an adaptive-resolution dense
SLAM pipeline that leverages the multi-scale representation provided by
our octree structure to perform dynamic resolution fusion and rendering
of RGB-D data.

5.1. Motivations

Reconstructing high-fidelity models of the environment brings many chal-
lenges. First, dense methods are notoriously expensive, both in terms of
computational cost and memory footprint. Second, faithfully capturing
the fine details of the scene is challenging, as maintaining a uniformly
high resolution map is neither feasible, nor necessary. Any depth esti-
mation system, whether variable baseline multi-view stereo, stereo rigs or
active depth cameras, provide information at different scales. Close-up
views capture fine details that are not preserved when observed at farther
distances. Hence, fusing such data at uniform scale is wrong for two rea-
sons: i) aliasing artefacts arising from a resolution mismatch between the
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map and sensor data may result in degraded map quality; ii) fine details
recovered from close-up views may be lost when the scene is observed
from a greater distance. While most recent research has addressed the
scalability limitations of dense SLAM systems, very few have explicitly
tackled these issues.

In this chapter we introduce a novel multi-scale dense SLAM pipeline
that supports variable resolution integration and rendering of depth data.
As in the systems described in Chapters 3 and 4, our algorithm alternates
between fusion of new information coming from the sensor and pose esti-
mation against synthetic views of the scene being reconstructed. Crucially,
in both integration and rendering the appropriate voxel resolution is cho-
sen dynamically. Although we use an RGB-D camera as input, our system
is sensor agnostic as long as depth is provided. In this work we employ
a signed distance function as the implicit surface representation (Section
3.5.3). To represent the volume with variable level of detail (LOD), we
further extend supereight and build upon the multi-resolution facilities
presented in Chapter 4. Specifically, we propose a new method for select-
ing the appropriate fusion and rendering scale adaptively, together with a
set of algorithmic solutions to guarantee a true multi-scale representation
at any level of the octree. As we discuss in the following sections, the
main challenge is to keep the hierarchy consistent when fusing at variable
scales.

Our pipeline achieves much higher performance compared to single-
resolution grids but more importantly it obtains a better reconstruction
quality of cluttered scenes with thin structure. In addition for better recov-
ery of map details, the proposed approach substantially improves runtime
thanks to more efficient map updates at larger distance. The hierarchical
map nature allows for integration of new information up to the selected
resolution, while only propagating updates further down when needed,
effectively implementing a form of lazy information propagation up and
down the octree.

Summarising, our contributions in this chapter are the following:

1. An extension to supereight to support multi-resolution queries at
any level of detail;

2. An efficient fusion algorithm that adaptively selects the appropriate
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resolution and maintains the surface representation consistent across
the hierarchy;

3. A qualitative and quantitative evaluation on synthetic and real
datasets, which reveals that we substantially improve map accuracy,
as well as runtime.

5.2. Related work

A common trait among the real-time volumetric systems discussed in Sec-
tion 2.2 is that the underlying grid discretisation has uniform resolution.
Even hierarchical approaches, such those of Zeng et al. [2013] and Chen
et al. [2013], integrate sensor data at the finest level of the detail and use
the tree representation for acceleration purposes. Instead, we want to
harness the inherently multi-scale nature of visual information. Off-line
algorithms that explicitly take into account the effective pixel resolution
have been recently proposed. Fuhrmann and Goesele [2011] introduce an
incremental fusion algorithm where each depth map is first triangulated
and each triangle is associated with a scale according to its corresponding
pixel footprint. The resulting mesh is then used to build a signed-distance
function stored in an octree. Multi-scale integration is achieved by fusing
triangles only at the corresponding level of the tree given their associ-
ated scale. In a subsequent work, Fuhrmann and Goesele [2014] propose
a reconstruction algorithm which employs an implicit signed function as
surface representation, built from oriented surface samples. The final iso-
surface is extracted from discrete sampling positions corresponding to the
corners of octree cells. Ummenhofer and Brox [2017] present a global
reconstruction approach which uses a finite element scheme to infer a
regularised signed distance function and its gradient from a global point
cloud. Also in this case, an octree is used to process input points at the
appropriate volumetric scale. While achieving impressive reconstruction
results, these methods are computationally very expensive and hence un-
suitable to be employed in real-time settings, such as augmented/virtual
reality applications or mobile robotics.

In the context of real-time methods, our work shares many aspects with
the multi-scale reconstruction framework of Steinbrucker et al. [2014],
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where an octree data-structure is used to store a signed-distance func-
tion representation at multiple level of detail. However, no facilities for
real-time multi-scale rendering are provided and consequently it relies on
an external SLAM system for pose estimation. Kähler et al. [2016] pro-
pose a hierarchical hashing system in which the scene is represented with
multiple hash-tables each with a different resolution. Interestingly, the
level of refinement is chosen according to surface curvature rather than
distance from the sensor. Their method is complementary to ours and
we plan to unify both approaches in future work. Stückler and Behnke
[2014] develop a complete tracking and mapping pipeline using adaptive
resolution surfel maps organised in an octree. Recently, Zienkiewicz et al.
[2016] propose a reconstruction framework based on 2.5D height-maps
with adaptive mesh refinement. While achieving sub-millimetre recon-
structions in real-time, their method cannot handle generic 3D shapes,
which is limiting it to a small number of application scenarios. However,
their incremental coarse-to-fine surface refinement is certainly related to
the down-propagation strategies we exploit in our work.

5.3. Overview

From a high-level perspective, we adopt the same dense tracking and
mapping pipeline presented in Chapter 3. The computation is structured
as a closed loop divided in three main stages:

1. A tracking stage, where the camera egomotion is estimated by align-
ing the most recent depth map Dt coming from the sensor against
a synthetic view of the model Dt�1 obtained at the previous time
step. This is achieved using a variant of the well-known Iterative
Closest Point (ICP) algorithm using point-to-plane distance and pro-
jective data-association Besl and McKay [1992]. We stress that our re-
construction method is agnostic to the tracking algorithm employed
and alternatives exist. A popular choice is to use a sparse SLAM
system as the tracking front-end while performing dense fusion, as
in Steinbrucker et al. [2014] or Zienkiewicz et al. [2016].

2. An integration stage, where sensor data is fused into the volume.
Crucially, and in contrast to previous volumetric approaches, we
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do this by dynamically selecting the level of detail at which data is
fused. Furthermore, we maintain the hierarchy of voxels consistent
across octree levels in a subsequent step. We report our method in
detail in Section 5.5.

3. A rendering stage, where the volume is ray-cast from the most recent
camera position and surface points are extracted at the zero-crossing
of the TSDF function. The produced renderings are then used for
dense ICP tracking and visualisation. Also in this case, we exploit
multi-resolution information by selecting the appropriate interpola-
tion scale depending on distance from the camera. We detail our
approach in Section 5.6.

In the next sections we present the details of our method. After a brief
description of the underlying data-structure and extensions to supereight,
we describe our reconstruction pipeline. Finally, we show qualitative and
quantitative experimental results on both custom sequences and standard
evaluation data-sets.

5.4. Data representation

Fundamentally, as a means to avoid aliasing we store the TSDF values
at a selectable resolution – where we have to keep the values consistent.
The octree regular subdivision exposes a simple relationship between re-
finement levels – octant’s TSDF values can be expressed as a function
(normally the mean) of their children.

As discussed in previous chapters, there is a wide spectrum of possible
octree layouts. The simplest solution is to keep the full tree structure ex-
plicit, as in Zeng et al. [2013]. While this allows fine grained control over
which voxels are allocated, it is subject to significant overheads when it
comes to depth integration and ray-casting. To mitigate this, a common
solution is to aggregate the last levels of the tree into contiguous blocks of
voxels, usually of size 83, (Nießner et al. [2013], Kähler et al. [2015], Chen
et al. [2013], Vespa et al. [2018]). However, as a consequence the multi-
scale representation of the bottom levels is lost. Steinbrucker et al. [2014]
address this issue by allocating voxel blocks of the same aggregation fac-
tor at each level of the tree, effectively resulting in a hierarchy of stacked
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Figure 5.1.: High-level representation of our octree structure. Coarser nodes are connected
via pointers up to a maximum depth at which voxels are aggregated in con-
tinuous blocks. In this bi-dimensional representation the focused block shows
its internal structure, were progressively coarser grids are logically overlaid
on top of each other (red, green and blue dots).

bricks. For efficiency reasons, we choose an intermediate approach. We
keep an 83 aggregation factor at the finest level of the tree, but we also
store its mipmapped representation contiguously, i.e. blocks of 43 and 23

voxels. This is in fact equivalent to instantiating a full octree of three lev-
els for each voxel block, but without the pointers’ connectivity overhead
and with guaranteed spatial locality. Figure 5.1 depicts the architecture
described in the above. An unordered set of voxel blocks is stored in a
contiguous, yet dynamically grown array and indexed via a pointer-based
tree structure. Voxel blocks are allocated at the deepest level (leaves) of
the tree, which also corresponds to the maximum resolution attainable.
The magnified voxel block shows its internal structure. Logically, in this
two-dimensional 4x4 grid example, a coarser grid (green dots) is overlaid
on top of its underlying finer resolution grid (red dots). In practice, we
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store the grids contiguously one after the other. Compared to single reso-
lution blocks, this implies only a 14% increase in memory footprint, while
significantly simplifying block management operations.

5.4.1. Data indexing and retrieval

a b

c d

f

g

1 1/2 1/4 

Figure 5.2.: Example of quad-tree with cell-centred sampling locations.

The layout described in the previous section enables voxel retrieval in
their corresponding coarser or finer grids efficiently and in a simple man-
ner. While we retain the indexing scheme of Section 4.4, we add the pos-
sibility to address voxels in the mip-mapped blocks. Voxels at any scale
are denoted by their integer coordinates (3D indices) xl

w at the finest res-
olution possible. A scale parameter determines the factor to be applied
to retrieve the corresponding entry in coarser grids. If d is the maximum
depth of the tree and l the desired voxel depth, the scaling factor is given
by s = 2d�l , with d � log2(8)  l  d. Hence, index coordinates to ac-
cess the multi-resolution grid at any scale l can be obtained by simple
arithmetic as: xl

w = s
⌅
xd

w/s
⇧
. Also, we distinguish the world frame index

coordinate representation xw from block index coordinates xb, where we
store the block offset bw.

Finally, to access a value from memory relative to the dynamically allo-
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cated block, we linearise the block coordinate index as

i = offset(s) +
xl

bx
s

+
xl

by

s
vl +

xl
bz
s

vl2
, (5.1)

where offset(·) is a precomputed function that returns the starting posi-
tion of the local sub-grid and vl is the number of voxels per side at scale
l.

Another significant difference compared to Section 3.4.1 is the adoption
of cell-centred voxels: we place the sampling location at the centre of its
enclosing octant. While this can be trivially achieved by linear shifting,
it has important consequences in terms of local consistency. As shown in
Figure 5.2, in a cell-centred grid parent voxels are exactly the linear combi-
nation of its children. This is crucial in that it allows node-local exchange
of data between tree levels. We exploit this property extensively in the
algorithms described in Section 5.5. Notice that if no information is ex-
changed between octree levels, anchored voxels as used in Chapter 3 allow
for easier computation of interpolation points and scale independent cell
projection, as sampling locations coincide with voxel coordinates. In our
implementation we keep the choice between the two modes parametric,
so that the best can be selected for the particular use case.

5.5. Multi-resolution mapping

We structure the field update into two distinct phases. First, the last ac-
quired depth map is fused into the map. In contrast to previous volumet-
ric approaches, this is done by selecting the appropriate scale proportional
to the distance from the camera. If the currently selected scale is finer than
the scale at which integration was last performed, we first do a coarse-to-
fine propagation of the available information from parent octants (Section
5.5.3). In a second step, we propagate fine-to-coarse the newly fused in-
formation to the coarser nodes (Section 5.5.2). This is done in a lazy way:
we perform upward and downward propagation only up to the tree levels
which are needed for the fusion and rendering operations at the current
time step. In the following, we report our method in detail.
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5.5.1. Single level update

Each new depth measurement will observe regions of space that possibly
have not yet been allocated on the tree hierarchy. Hence, as detailed in
Section 4.5.1, we allocate the scene via ray-casting and collect all the in-
tersected voxels around the truncation region ±µ. However, we select the
allocation scale dynamically, such that voxels far away from the camera
that do not reach the aggregation layer of the tree will not be allocated as
contiguous blocks. Processing the depth frame at time t, the TSDF sam-
ple ft for each allocated voxel at scale l, at position pl

w, is computed by
projecting it into camera frame and taking the signed distance to the cor-
responding depth measurement, as shown in Equation (5.2), where l is a
factor that transforms a distance along the z-axis to a range distance.

d = l(Dt(p(Tcwpl
w))� pl

cz),

ft(pl
c) = min

✓
1,

d
µ

◆
,

(5.2)

where p(·) denotes the projection from 3D coordinates in camera frame
to pixels. The current sample is then integrated in the global map Fl

t in an
incremental fashion:

Fl
t = max

 
min

 
yl

t�1Fl
t�1 + f l

t

yl
t�1 + 1

, 1

!
,�1

!
,

yl
t = min(ymax, yl

t�1 + 1),

Dyl
t = Dyl

t�1 + 1,

(5.3)

where yl denotes the weighting and is clamped to a maximum weight
of ymax (we use ymax = 100) and Fl

t�1 is either the function value at the
previous time step or the down-propagated value in case of integration
scale change. Note that we also keep track of the increment on yl in the
form of Dyl

t, which will be needed later for down propagation. Notice
that for compactness we omit the voxel parameter and denote ft(pl

c) ⌘ f l
t

when clear from the context.

We are left with the issue of selecting the fusion scale l. We aim to
keep the ratio between the back-projected pixel size and the correspond-
ing voxel as close as possible to one. Hence, we select the appropriate
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resolution proportional to the distance from the camera. In principle, each
voxel can be updated at a different scale as long as it is consistent among
its siblings. However, this would imply unnecessary overhead when up-
dating the densely allocated voxel blocks and complicate the subsequent
up-propagation operations. Instead, we simplify the problem by assign-
ing each block a uniform scale. This works very well in practice and it has
the main advantage of enabling uniform iteration over the appropriate
mipmapped grid (see Section 5.5.2).
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(a) 2mm

(b) 4mm

(c) 8mm

Figure 5.3.: Synthetic rendering at run-time using progressively coarser voxel resolutions.

95



5.5.2. Fine-to-coarse propagation

Once a depth map has been integrated, we propagate the updated in-
formation along the hierarchy in the upward direction. As we report in
Section 5.6, this is required to guarantee scale consistency amongst neigh-
bouring blocks and octants. Furthermore, we stop the up-propagation at
the coarsest scale observed during the current frame, bounding the num-
ber of octants to be updated. The cell-centred data-model ensures that
each octant is fully described by its children by means of simple linear
interpolation:

Fl =
Â8

i=1 Fl+1
i

8
,

yl =
Â8

i=1 yl+1
i

8
,

(5.4)

where the subscript i denotes the i-th child at scale l + 1. In the rare event
that not all children are initialised, we compute the mean of the initialised
ones. Figure 5.3 demonstrates the soundness of our approach. In an artifi-
cial experiment, we fuse information at the finest resolution possible and
up-propagate. We then render the same frame at progressively coarser
voxel resolution via ray-casting, obtaining consistent results. Notice how
the reconstruction appears smoother as the voxel size used for interpola-
tion and gradients grows.

5.5.3. Coarse-to-fine propagation

We perform downward propagation of information when the camera
moves closer to the surface and requires a finer resolution for depth in-
tegration. However, coarse-to-fine propagation is significantly more chal-
lenging compared to upward propagation. One possible approach is to
tri-linearly interpolate field values from the coarser grid, in a similar fash-
ion to multi-grid methods (Golub and Van Loan [1996]), but this would
smooth already reconstructed details which are then revisited. Instead, we
take an approach similar to that of Zienkiewicz et al. [2016] in the context
of height map reconstruction. In order to preserve details, we propagate
to the children octant a fixed delta which represents the difference be-
tween the last updated values at the parent scale. In order to enable lazy
propagation we need to keep track of all the updates performed in the
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Figure 5.4.: Progressive initialisation of fine resolution voxels from parent octants. Images
display a horizontal slice of the TSDF volume ordered top-to-bottom from the
older to the newer. Red shades indicate empty and unseen space, salmon-to-
white shades denote space in front of the surface and blue shades correspond
to back surfaces. Regions of space that appear blocky have not yet been refined
at the rendering resolution. Notice how the field is progressively smoothed
in proportion to the scale refinement caused by the camera moving closer
towards to the surface (highlighted by the yellow boxes).

time interval [t, . . . , t + n]. A key observation is that this would be equal
to the difference between the children’s means F̄l

t at time t and the last
parent value Fl

t+n at time t + n. Since F̄l
t is unchanged between consec-

utive frames in which children’s values have not been up-propagated, it
holds that F̄l

t+n = F̄l
t . Using similar reasoning for the weight values, we
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can formulate down-propagation in compact form as:

DFl
t = Fl

t�1 � F̄l
t�1,

Fl+1
t,i = Fl+1

t�1,i + DFl
t ,

yl+1
t,i = min(ymax, yl+1

t�1,i + Dyl
t),

Dyl+1
t = Dyl

t�1 + Dyl+1
t�1,

Dyl
t+1 = 0.

(5.5)

Finally, to achieve smoother propagation, we enforce scale changes in uni-
tary steps, i.e. the current integration scale can be at most double or half
the resolution of the previous used.

One subtle issue that remains is how to deal with voxels at finer scales
that have yet to be initialised, since the delta propagation described in this
section clearly would not work. Instead, on initialisation we interpolate
the values from the parent grids. To keep computation as local as possible,
we resort to extrapolation in order to compute values for voxels at the
boundaries of contiguous blocks. This avoids complex synchronisation
issues to guarantee that the neighbouring blocks are up-to-date and it
ensures a smooth initialisation, as we show in Figure 5.4.

5.6. Adaptive-resolution volume rendering

Volume rendering is implemented via the hierarchical traversal algorithm
described in Section 3.5.4. Once in the proximity of the surface the ray is
marched in steps proportional to the distance from the zero-crossing. At
each step, the SDF field is sampled via tri-linear interpolation. Once the
ray transitions from positive to negative space the accurate 3D position
of the surface is computed as in KinectFusion (Newcombe et al. [2011a]).
Our fusion method and delayed propagation impacts the way that inter-
polation and gradient calculations have to be performed. The key issue is
that interpolating points at the boundaries of voxel blocks requires access
to neighbouring blocks. However, there is no guarantee that the lastly
integrated data has the same resolution. This would mean interpolating
between points with variable spacing (i.e. akin to an unstructured grid)
and consequently simple tri-linear interpolation rules would not work.
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fetch_points(xw, l)

discretise(pw, l)

interp(pw, xw[8], l)

point pw, scale l

l = l - 1

is resolution 
uniform?

No

Yes

xw[8]

xw

Figure 5.5.: Schematic representation of the interpolation point-search algorithm. Given
a point pw and a scale l, the point is converted to voxel coordinates xl

w and
the corresponding 8-neighbour is fetched (fetch function). If the resolution is
uniform among the neighbouring points, interpolation is performed at scale l
via the interp function, otherwise the search is repeated at a coarser scale.

There are several ways to solve this problem. Kähler et al. [2016] build a
linear system and solve it to derive the interpolation coefficients. How-
ever, this is computationally expensive. While the occurrence of interpo-
lation across blocks of different resolution should be relatively rare and
restricted to the depth regions at which the switch occurs, we opted for a
simpler strategy, schematically shown in Figure 5.5. Given a 3D sampling
point, we look for its corresponding voxel in the hierarchy at the finest,
most recently updated resolution. Once we have found the base point in
voxel space, we search for the neighbouring points at the same resolution.
If any of the required points violates the resolution constraint, i.e. its last
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(a) ICL-NUIM liv traj 2 (b) TUM fr2 desk

(c) Desk dataset (d) Helmet dataset

Figure 5.6.: Example of multi-resolution ray-cast rendering on different scenes. The colour
coding indicates the variable resolution used (green finest, orange intermedi-
ate and purple coarsest).

updated scale is greater than the current one, we repeat the search process
of fetching points at the coarser scale. In other words, we perform the in-
terpolation on the common finest grid between neighbouring voxel blocks.
Figure 5.6 shows an example of renderings obtained with the ray-casting
strategy detailed in the above. The colour-coding denotes progressively
coarser interpolation scales proportionally to the surface distance. Notice
how surfaces at the interface of scale changes are smoothly rendered.

5.7. Experimental evaluation

In this section, we report our experimental results. All our tests have
been performed on a Intel Haswell i7-4770 CPU at 3.40GHz with 16GB
of memory, Ubuntu 16.10 and frequency scaling disabled. The software
has been compiled with GCC 8.0 with OpenMP acceleration and -O3 op-
timisations. We evaluate our dense SLAM system, which we refer to as
multires, against the single resolution pipeline of Chapter 3, denoted as
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baseline. We have configured both systems with 2mm maximum voxel res-
olution and 5cm truncation bandwidth. ICP tracking uses a three level
image pyramid with 10�5 convergence threshold. As the finest resolution,
we use QVGA, 320x240 pixels, i.e. downsampling the VGA resolution by
a factor of two. In our experiments we have not found any gain in terms
of tracking accuracy using full resolution images, while ray-casting one
forth of the pixels provides significant speed-ups. We stress that the same
set of parameters has been used for all the datasets.

5.7.1. Qualitative evaluation

To demonstrate the effectiveness of our multi-scale fusion approach we
have recorded a series of sequences with fine structure components, such
as scissors, cables, handles and objects with more complex geometry such
as a helmet or a drone. The sensor used for this data collection was an
ASUS Xtion Pro Live. In all the recorded sequences we have simulated a
realistic scanning scenario, where first the scene is observed closely and
then the camera slowly moves away to scan other parts of the environ-
ment. We believe this kind of scenario is particularly relevant for instance
in case of augmented reality (AR) applications. It is common that in a
bootstrap phase, the user is required to scan the surrounding environ-
ment. Then virtual characters and objects may be placed on desktops or
cluttered scenes and have to navigate and interact with the map in an
accurate way. Similarly, the scenario is very relevant in robotic explo-
ration, e.g. using a drone, with the aim of accurately reconstructing an
indoor space. Figures 5.7a and 5.7b compare the output of our novel re-
construction pipeline against a traditional single-resolution system. Both
meshes are extracted via marching cubes (Curless and Levoy [1996]) at
the maximum available resolution. Our method is able to preserve the
fine structure details and furthermore provides a smoother estimate of
planar surfaces. We attribute this to the reduction of aliasing and better
smoothing of sensor noise at coarser resolutions.

5.7.2. Tracking and reconstruction accuracy

We evaluated the tracking accuracy of our pipeline on standard synthetic
(ICL-NUIM Handa et al. [2014]) and real (TUM RGB-D Sturm et al. [2012])
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(a) Helmet sequence

(b) Desk sequence

Figure 5.7.: Reconstruction comparison between a single resolution pipeline (left and in
red) and our multi-resolution approach (on the right and in green) on the
helmet and desk sequences.

data-sets using the SLAMBench framework (Nardi et al. [2015]). In this
quantitative evaluation we also show accuracy and run-time performance
results of InfiniTAM (Kähler et al. [2015]), the current state-of-the-art voxel
hashing implementation. For the sake of a fair comparison, we have
configured InfiniTAM with the same algorithmic parameters of our two
pipelines, including tracking parameters. Table 5.1 shows the absolute
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ATE (m)
Dataset Baseline Multires InfiniTAM
ICL LR 0 0.1315 0.0031 0.1384
ICL LR 1 0.0024 0.0061 0.0044
ICL LR 2 0.0083 0.0052 0.0065
ICL LR 3 0.1213 0.0539 0.1071
TUM fr1 xyz 0.0137 0.0140 0.0273
TUM fr1 desk 0.0633 0.0622 0.0492
TUM fr2 desk 0.0838 0.0853 0.0887
TUM fr3 office 0.0226 0.0227 0.1022

Table 5.1.: Absolute trajectory error (ATE) comparison between our multi-resolution al-
gorithm (multires), a single resolution pipeline (baseline) and voxel hashing
(InfiniTAM).

RMSE (m)
Dataset Baseline Multires InfiniTAM
ICL LR 0 0.0532 0.0054 0.0541
ICL LR 1 0.0048 0.0080 0.0057
ICL LR 2 0.0051 0.0048 0.0049
ICL LR 3 0.0568 0.0110 0.0547

Table 5.2.: Reconstruction accuracy comparison between our multi-resolution algorithm
(multires), a single resolution pipeline (baseline) and voxel hashing (InfiniTAM)
in terms of the root mean squared distance from the ground truth mesh.

trajectory error (ATE) across different sequences from each data-set. With
regard to accuracy, our multi-resolution system achieves same or better
results than the single resolution grids. This is particularly noticeable on
synthetic sequences from the ICL-NUIM dataset. We attribute this to the
fact that being noise-free, discretisation artefacts stemming from aliasing
are a major source of inaccuracy, while on real data sensor noise becomes
predominant. Also, as expected, voxel hashing accuracy is in line with
our single resolution pipeline.

We validated our reconstruction approach against the synthetic ground
truth of the ICL-NUIM dataset (Table 5.2). As shown in Table 5.2 our
multi-resolution beats the baseline in virtually all cases. It also achieves
the same accuracy levels as voxel hashing, however it should be noted
that the results reported in Kähler et al. [2015] are slightly superior to
what we report, but were obtained at VGA resolution and at coarser voxel
resolution, while for fairness we used the same voxel and input resolu-
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Figure 5.8.: Runtime comparison of our multi-resolution reconstruction pipeline (mul-
tires), single-resolution grid (baseline) and voxel hashing (ITM). The top row
indicates timings for the ICL-NUIM synthetic benchmark while the bottom
row for the TUM RGB-D real dataset.

tions (2mm, QVGA) across all experiments. Also note that we manually
tuned various InfiniTAM parameters such as the truncation distance and
found that best results were obtained when using the same parameters
as our approach. Finally, we highlight that these sequences are not the
best to showcase the merits of a multi-resolution reconstruction approach,
as most surfaces are observed at uniform scale and the scene lacks thin
structure components. Consequently, given the same tracking accuracy, it
is expected to have a reconstruction precision very close to single resolu-
tion grids.

5.7.3. Runtime performance

The timings shown in Figure 5.8 demonstrate how our multi-resolution
approach brings reductions in computational cost, achieving up to 3x
higher frame rate compared to the baseline and reaching consistently bet-
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ter performance compared to voxel hashing. This is due to the combina-
tion of our dynamic resolution fusion, as it reduces the number of voxels
updated per frame according to the distance from the camera, and the
delayed propagation of newly fused information. The timings difference
between our single resolution pipeline and InfiniTAM are attributable to
the deeper hierarchy required to reach the fine resolution used in this ex-
periments. It is also worth observing that the difference is negligible in
sequences where short range views are predominant, such as liv traj 1,
fr1 xyz and fr1 desk. Notice that rendering is faster when using a single
resolution grid. In our current implementation, the extra control logic re-
quired by the interpolation scheme described in Section 5.6 induces a non-
negligible execution time penalty compared to the simpler interpolation
algorithm usable in case of uniform scale. Overall, the system presented
in this chapter achieves frame rates between 5hz and 10hz on a commod-
ity CPU, while providing very fine scale reconstructions. This is a strong
indication that the method is scalable and if ported to GPU accelerators
could reach levels of performance far exceeding the camera’s frame rate
of 30fps even at the full VGA resolution.

5.8. Conclusions

We have presented a method for the online volumetric integration of depth
images at adaptive levels of detail. Our system dynamically selects the
best fusion and rendering scale to match the sensor resolution and prop-
agates up and down the octree hierarchy as required in a lazy fashion,
guaranteeing reconstruction consistency and significantly improved run-
time performance compared to equivalent single-resolution grids.

There are several directions in which we plan to extend our work. The
surface refinement criteria based on local curvature proposed by Kähler
et al. [2016] allows for significant reduction of memory usage in corre-
spondence of flat surfaces. We believe that this can be combined with our
distance-based criteria and yield significantly better performance while
preserving reconstructed details. Another interesting direction could be to
further increase the computational and accuracy performance by avoiding
to update confident cells when observed from larger distances. However,
discarding information could be undesirable in the case of movement of
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previously static objects, hence more complex change detection mecha-
nisms would be required. Finally, we also plan to port our approach to
occupancy mapping, specifically extending the formulations introduced
in Chapter 4. This would allow us to better take into account sensor
noise and information exchange between octree levels in a probabilisti-
cally sound framework.
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Chapter 6

Conclusions

In this chapter, we review the main contributions of this thesis. We then
highlight its principal limitations and discuss future research directions.

6.1. Summary

The contributions of this work are centred around two main themes: i) the
design and implementation of a high-performance sparse octree library
for volumetric tracking and mapping; ii) the research of novel hierarchical
algorithms and representations for volumetric SLAM pipelines. We have
developed these themes in each chapter of this thesis, which we highlight
in the following:

• In Chapter 3, we introduce our novel octree library, named su-
pereight. The main principles behind its design are flexibility and
performance. We achieve the former via generic interfaces which al-
low the end-users to experiment freely and with minimum interven-
tion with different underlying surface representations. Performance
is guaranteed via a careful choice of parallel algorithms and novel
optimisations that particularly target the operations common to vol-
umetric SLAM pipelines. Importantly, we quantitatively demon-
strate the effectiveness of our approach against the current state-of-
the-art, showing how our hierarchical representation achieves per-
formance on-par with voxel hashing while providing a complete
spatial index of the scene.
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• In Chapter 4 we introduce a novel dense SLAM pipeline based on
occupancy probabilities. We extend the Bayesian fusion framework
of Loop et al. [2016] to work under prolonged mapping sessions
and employ it as an underlying surface representation. We then in-
troduce a complete SLAM pipeline which employs supereight as a
volumetric data-structure, and demonstrate a fully integrated sys-
tem on which tracking, mapping and spatial occupancy queries can
be performed seamlessly on the same representation, a desirable
feature for several down-stream applications such as robotic path
planning. Finally, we show how our system is considerably faster
than the current de-facto standard in occupancy mapping and offers
comparable performance to TSDF-mapping.

• In Chapter 5 we leverage the multi-scale representation of our octree
framework to perform resolution-aware tracking and mapping. We
introduce a novel mapping algorithm based on a multi-scale TSDF
representation which adaptively select the appropriate fusion scale
according to the effective measurement resolution. Crucially, and in
contrast to previous work, we provide a novel algorithm to preserve
the consistency across octree levels, which propagates information
in a lazy fashion. This allow us to achieve much higher mapping
performance, but perhaps more importantly can preserve fine struc-
ture details when observing a scene from farther distances. We also
use the multi-scale information when rendering the synthetic depth
maps for frame-to-model alignment, effectively reducing aliasing by
dynamically matching the sensor resolution. We demonstrate ex-
perimentally how this is beneficial in terms of tracking accuracy and
reconstruction quality.

6.2. Limitations

While particular limitations have been discussed in each chapter, here we
focus on what perhaps are the common limitations among all the recon-
struction methods described in this thesis. At the present time, supereight
does not support loop-closure detection and correction, a feature which
is of fundamental importance when mapping over long trajectories and
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large scale environments. On one hand, this is an intentional choice, as
the focus of this thesis is on the building blocks of volumetric mapping,
both in the form of efficient data-structures and novel field representa-
tions. In this sense, loop-closure can be tackled as a separate issue and
added as a separate stage to the pipelines presented in this work. On
the other hand, volumetric loop-closure correction is not a trivial task,
and would require specific research effort. More specifically, we believe
it would be particularly interesting to investigate correction mechanisms
that preserve the multi-scale representation presented in Chapter 5.

Another aspect which is not treated in this thesis, but that would be
straightforward to implement, is the usage of additional sensors in the
odometry estimation, such as colour images for photometric alignment
and inertial measurement unit (IMU) measurements. In particular, IMU
readings may greatly increase the robustness and precision of the ICP
alignment, as shown for example in the dense surfel-based system of Laid-
low et al. [2017]. This is mainly due to the additional information that can
be exploited when depth is non-informative, for instance when observing
flat surfaces with little structure. In terms of colour integration, we are
interested in evaluating if our multi-scale fusion approach is beneficial in
reducing colour artefacts stemming from aliasing, and hence improving
frame-to-model RGB-D alignment.

From an algorithmic standpoint, the set of operations efficiently sup-
ported by our library is somewhat limited. While parallel projective func-
tors and trilinear interpolation routines are sufficient to express most
dense volumetric SLAM pipelines (notice, with either octrees or voxel
hashing as concrete data-structure), more complex operations such as ar-
bitrary stencils are not supported yet. We believe that supporting such
access patterns efficiently will be of great importance. For example, three-
dimensional convolutional networks such as OctNet (Riegler et al. [2017])
or O-CNN (Wang et al. [2017]) exploit the tree structure to perform effi-
cient convolution operations only in region of space which contain useful
data. We believe that the access pattern optimisations presented in Section
3.4.4 can be generalised and benefit this kind of computations.
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6.3. Further work

The work presented in this thesis leaves many doors open for future re-
search directions, which we discuss in the following.

Loop-closure for volumetric reconstruction There are various ap-
proaches that can be taken in order to incorporate loop-closure correc-
tions in volumetric grids. In the literature, two main approaches have
been proposed. Dai et al. [2017] propose a complex global optimisation
strategy that considers the entire history of input frames. Consecutive
frames are partitioned into fixed size chunks which are locally optimised.
A sparse inter-chunk alignment is then performed to recover globally con-
sistent poses for all the input frames. Similarly to Nießner et al. [2013], a
TSDF-based model is maintained and continuously updated. Crucially, in
order to enforce global consistency depth data is both integrated and de-
integrated upon pose correction. This is possible as all the input frames and
poses are retained. While able to achieve impressive results, the method
is computationally very expensive, requiring two high-end GPUs to reach
real-time performance.

A different approach is taken by Kähler et al. [2016]. Again, a TSDF-
based map is constructed from RGB-D data. The global map is partitioned
into sub-maps which are spawn according to a visibility criteria. Upon
loop-closure detection, sub-maps are globally aligned via pose-graph op-
timisation. Contrarily to the method of Dai et al. [2017], voxel data is not
re-sampled, but rather reconstructed on-the-fly by combining TSDF values
from different sub-maps which are simultaneously visible. The system is
able to achieve real-time performance exploiting high-end GPU hardware.

It is clear that the current state-of-the-art is too computationally de-
manding for a variety of scenarios where volumetric loop closure is de-
sired. Furthermore, is not clear if the sub-mapping approach is able to
handle local loop-closures in a way that methods such as the one of Whe-
lan et al. [2015b] are able to correct. We believe that an interesting re-
search direction would be to investigate non-rigid surface corrections in
volumetric maps. The idea would be to actually warp the signed-distance
field instead of rigidly transforming the sub-maps. Doing this efficiently
is still an open research problem. One of the main issues is to identify
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which areas are affected by the map correction and apply the warp con-
sequently. For instance, in Kintinuous (Whelan et al. [2015a]) the TSDF
is first converted to a compact mesh representation and then non-rigidly
deformed, but no correction is propagated back to the volumetric rep-
resentation, meaning that upon revisiting the TSDF information is not
consistent with the global mesh. BundleFusion (Dai et al. [2017]) works
around this issue maintaining the whole history of integrated frames, such
that upon loop closure information can be de-integrated and re-integrated
from the newly optimised camera poses. However this approach is clearly
not scalable. Hence, we aim at investigating novel approaches in future
research.

Domain-specific languages for dense SLAM As often highlighted in
this thesis, real-time performance is a strong requirement of modern
SLAM systems. In practice, given the pipelines’ complexity and the many
variables that influence both computational and algorithmic performance,
this is often very hard to achieve. Obtaining maximum accuracy and tar-
get frame-rates force SLAM developers to carefully select algorithmic pa-
rameters and low-level design choices. This comes at huge engineering
cost. First, the resulting implementation may be very rigid and hard to
change or adapt to different algorithmic scenarios. For instance, a recon-
struction pipeline as the one described in Chapter 3 may also fuse into
the map other types of information, such as colour or semantics. Even if
superficially this could seem a simple addition, the final, optimised code
might differ drastically from one version to another. This issues are ex-
acerbated by the diversity of the possible target execution platforms: a
GPU powered mobile device may have very different architectural con-
straints from a self-driving car or a flying drone. Ideally, one should be
able to express algorithmic ideas at a higher level of abstraction, closer
to the actual meaning of the computation, and let the tool-chain gener-
ate optimised code for a given execution platform. The need for better
programming abstractions has driven the scientific community into devel-
oping domain-specific languages (DSLs) and active libraries. DSLs provide
constructs closer to the application domain, considerably reducing devel-
opment time but still achieving competitive performance by intelligently
generating target-specific code in the back-end. As an example, the Eigen
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library may be seen as a linear-algebra DSL embedded in C++. Behind
the C++ interface, Eigen’s back-end constructs a chain of expression tem-
plates which are then used to generate at compile time optimised code for
a variety of CPU platforms.

In our work, we moved the first steps towards defining higher-level ab-
stractions. The fusion and interpolation operators defined in Sections 3.4.3
and 3.4.4 were designed with this goal in mind: to allow the SLAM de-
veloper to freely experiment with different field representations without
having to change the underlying algorithms implementation. Expressive-
ness is not the only desirable feature of a domain-specific language or
library. Performance has to be competitive with hard-coded, hand-tuned
implementations. While our operators exploit Eigen’s vectorisation capa-
bilities, much can be done to significantly improve the library’s perfor-
mance. In terms of low-level optimisations, we highlight the following
key opportunities:

1. Memory layout transformations. Our framework offers a simple in-
terface to the user in order to specify the desired data-type. Un-
fortunately, the resulting memory organisation is quite rigid. Since
the C++ language does not offer any facility for static reflection out
of the box, we store the user-specified data-types as packed data-
structures, a layout that is commonly known as Array of Structures
(AoS). However, this may be sub-optimal in a variety of cases. First,
SIMD parallelisation greatly benefits from data stored unpacked and
contiguously in memory, known as Structure of Array (SoA) layout
(see Listing 6.1 for an example). Contiguous vector loads and saves
offer much better performance as opposed to gather/scatter opera-
tions.

To better understand the implications of the memory layout, let us
consider an example. The fusion rules detailed in Equation 3.11
require reading both the SDF and weight values for each voxel. For
simplicity, let’s assume that a vector architecture supports 256 bit
registers, each with 32 bit lanes. We can than load 8 SDF values and
8 weights in two different registers and perform the block averaging
in parallel. However, if the data is stored in an AoS layout, the load
(and symmetrically the save) operations are not so trivial. A single
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1 struct AoS {
2 float x;
3 float y;
4 };
5 AoS data_aos[N];
6
7 struct SoA {
8 float x[N];
9 float y[N];

10 };
11 SoA data_soa;

Listing 6.1: AoS vs SoA memory layout

load instruction will fill a vector register with interleaved data that
ultimately need to be unpacked and copied to the target register.
Alternatively, data can be loaded from memory with a non-unitary
stride access, but it would be sub-optimal compared to contiguous
memory accesses. If instead a SoA layout is used, contiguous voxel
data can be simply loaded into registers with two contiguous loads,
without any extra instruction or memory access overhead.

Independently from the data-structure layout, we can also consider
the order in which 2D or 3D arrays are stored. Common choices are
either row-major or column-major orders, but other possibilities exist,
such as blocked or Morton order (see Thiyagalingam et al. [2006] for a
thorough discussion). The latter in particular may be beneficial for
the interpolation procedures described in Section 3.4.4, as adjacent
voxels in 3D space would be stored contiguously in memory.

2. Whole pipeline vectorisation. At the moment, supereight exploits
explicit vectorisation only in the geometric back-end. User-defined
kernels, such as the one provided to the projective-map operators
(Section 3.4.3) are not explicitly vectorised. Even with the use of
automatic vectorisation tools such as OpenMP’s #pragma omp simd
the success is not granted, as typical kernels are not trivial to auto-
vectorise. Rendering is another obvious area in which vectorisa-
tion may be beneficial, but the complexity of hierarchical ray-casting
makes it very challenging. Regardless of these difficulties, we know
that whole-pipeline vectorisation brings significant performance in-
creases, as we have demonstrated in Nica et al. [2018] for a standard
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KinectFusion pipeline.

3. Loop transformations. An important class of compiler optimisa-
tions is that of loop transformations. For instance, given a series
of nested loops, the order of two or more loops in the loop nest can
be exchanged in order to expose parallelism or increase data-locality.
Consecutive loop-nests may be fused together to achieve better data
reuse and minimise looping overheads. There exist a plethora of
possible transformations, we refer the reader to the survey of Bacon
et al. [1994] for an in depth discussion. For a concrete example of
scenario where these may be beneficial, we can consider the color
fusion algorithm of Whelan et al. [2015a]. In their system, a TSDF
map is built together with colour information. To reduce artefacts,
each voxel is projected into the corresponding colour image and a
colour sample is obtained by averaging the 7x7 neighbourhood of
the pixel the voxel projects to. It is clear as in this scenario a proper
reordering of the iteration over voxels may increase reuse of image
data, as spatially close voxels are likely to project to the same im-
age area. Hence, this kind of computation may take advantages of
techniques such as loop tiling. Similarly, when ray-casting the TSDF
volume (Section 3.5.4), tiling the pixel iteration space is advanta-
geous, as we have shown in Nica et al. [2018]. Regardless which
particular transformation is appropriate for a given loop-nest or se-
quence, we believe that this space should be explored automatically
and facilitated as much as possible.

Once identified key optimisations, one has to face the question of how to
deliver them. One obvious choice is to commit to one set of optimisations
and code those by hand. However, we argue that is neither scalable nor
desirable. First the process of producing hand-optimised code is tedious
and most importantly error prone. Exploring the whole design-space is
simply not feasible, hence the developer has to rely on his experience
and intuition. In contrast, auto-tuning tools have been demonstrated to
be very effective in finding design points which meet or exceed perfor-
mance targets. In Zia et al. [2016] and Nardi et al. [2017] we have demon-
strated the effectiveness of said approach on different pipelines, where we
explored the design-space of algorithmic parameters, compiler optimisa-
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tions and execution platforms. However, we believe that even more inter-
esting performance can be reached by exploring alternative algorithm im-
plementations. The effects of combining data-layout transformations, loop
reordering and parallelisation are not trivial to predict and capture in a
cost model.

We believe domain-specific languages are very attractive tools that ease
most of the difficulties highlighted in the above. Automatic code gener-
ation relieves the application developer from writing low-level code, and
at the same time exploration of the design space is hugely facilitated by
it. While we do not want to provide a thorough survey on DSLs in this
section, we believe it is worthwhile highlighting few success stories and
how these are related to the work done in this thesis. Image processing
DLSs have been extensively researched in the past and have been demon-
strated particularly effective. Cornwall et al. [2009] proposed an active
library targeting task-graph computations on images. The main idea be-
hind this work is to enable powerful optimisations by means of metadata
describing parallelism and data access patterns, effectively eliminating the
need of complex data-dependence analysis by the general purpose com-
piler. This enable the run-time code generator to implement aggressive
inter-component optimisations, such as loop fusion and array contractions
based on execution-dependent conditions.

Ragan-Kelley et al. [2013] introduce Halide, a functional language to
express image processing pipelines embedded in C++. Image manipula-
tion is usually implemented as a series of interconnected passes, which
may consist of regular stencil operations or complex reductions applied
to image data. Similarly to Cornwall et al. [2009], stencils are expressed as
pure functions on 2D coordinates domains. In this perspective, a multi-
stage pipeline is nothing but a chain of functions, effectively hiding the
data manipulation at the loop level. Optimised code is then generated at
run-time, and various architectural targets are supported (such as SIMD
CPUs, GPGPUs or OpenGL). Interestingly, Halide comes with an auto-
tuner which permits to explore the performance of different optimisation
combinations. They demonstrate that the inferred configurations can run
up to 5x faster than hand-optimised code by domain experts. It is evident
that DSLs like these may be very well suited to express part of the SLAM
pipelines discussed in this thesis, such as image de-noising or pyramid
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creation (Section 3.5.2).
Image manipulation is only one aspect of virtually every SLAM algo-

rithm. Optimisation obviously plays a central role as ego-motion and
structure computation are formulated as non-linear optimisation prob-
lems. DeVito et al. [2017] develop a domain-specific language for ex-
pressing and solving non-linear least squares minimisation in the graph-
ics domain, appropriately named the Opt language. Interestingly, they
demonstrate its applicability to the kind of problems often encountered
in real-time SLAM, such as pose-graph optimisation or surface deforma-
tion. In a nutshell, their framework allow the specification of high-level
energy functions, in a formalism very close to the actual mathematical for-
mulation, and automatically generate the code for the non-linear solver.
Crucially, they demonstrate how a generative approach offers much better
performance compared to state-of-the-art solver libraries.

There are few examples of DSLs for volume processing, such as Diderot
(Chiw et al. [2012]) or Vivaldi (Choi et al. [2014]). However, none of them
supports sparse volumes, making their adoption in volumetric SLAM un-
feasible. We believe that there are significant opportunities for further
research in this space. One thing that is clear to us is that any approach
that tries to find a single, unifying abstraction to express SLAM algorithms
as a whole is very likely destined to fail. The computational structure is
too diverse and sub-stages operate on very heterogeneous data. Instead,
we advocate the use of multiple DSLs that address different aspects of the
pipelines. In our opinion, a combination of an optimisation-oriented high-
level language such as Opt (targeting numerical optimisation stages) and
a more flexible, stencil-based language for mapping and rendering would
offer sufficient expressiveness. Specifically, we believe that a DSL such as
Halide, combined with the abstractions defined in Chapter 3, would pro-
vide an attractive programming model and competitive performance for a
variety of volumetric algorithms. However, as demonstrated in this thesis,
efficient support for sparse data processing is of paramount importance.
To this end, we have confidence that supereight would be an excellent
candidate as a back-end data-structure.
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Appendix A

Morton encoding and
decoding functions

In our implementation, we compute the Morton number of three-
dimensional integer coordinates using the magic numbers method. In
this appendix we review how this works. As explained in Section 3.4.1,
the goal is to interleave the bits from each coordinate component into a
single number. To do so, each component has to be dilated or expanded
in order to make space for the bits belonging to the others. Listing A.1
shows the dilation operation.

1 inline uint64_t expand(const uint64_t value) {
2 uint64_t x = value & 0x1fffff;
3 x = (x | x << 32) & 0x1f00000000ffff;
4 x = (x | x << 16) & 0x1f0000ff0000ff;
5 x = (x | x << 8) & 0x100f00f00f00f00f;
6 x = (x | x << 4) & 0x10c30c30c30c30c3;
7 x = (x | x << 2) & 0x1249249249249249;
8 return x;
9 }

Listing A.1: Expands a 21bit integer into a 64bit integer

It is quite interesting to see in detail how these masking operations
affect the bit pattern of a given input. Listing A.2 shows the effect of
each operation of the expand function on the 20bit number 0xFFFFF. The
first 21bits of the input number are extracted at line 1. This is to ensure
that if the number exceed the 21bits limit, there will not be leftover bits
in the dilated integer. The bit groups are then iteratively split in half by
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1 inline uint64_t expand(const uint64_t value = 0xFFFFF) {
2 ____________________________________________11111111111111111111
3 ____________1111________________________________1111111111111111
4 ____________1111________________11111111________________11111111
5 ____________1111________1111________1111________1111________1111
6 ________11____11____11____11____11____11____11____11____11____11
7 ______1__1__1__1__1__1__1__1__1__1__1__1__1__1__1__1__1__1__1__1
8 }

Listing A.2: Expansion by magic numbers of integer 0xFFFFF, visualised. Underscores
correspond to zeros in the bit strings and each line shows the effect of the
corresponding operation in Listing A.1

a left shift and a bitwise OR operation. Duplicate bits are removed by
masking the resulting value against the corresponding magic number. In
total, five iterations are required to dilate the bits such that each one is 2
bits apart from the next, as shown in Line 7 of Listing A.2. Consequently,
a Morton number can be constructed by computing the dilated version
of each coordinate and combining them via bitwise OR, in the following
way:

Listing A.3: Construct a Morton number given three integer coordinates.

1 inline uint64_t compute_morton(uint64_t x, uint64_t y, uint64_t z)
{

2 uint64_t code = 0;
3 x = expand(x);
4 y = expand(y) << 1;
5 z = expand(z) << 2;
6 code = x | y | z;
7 return code;
8 }

Notice how, by respectively left-shifting of one and two positions the bits
from the y and z coordinates, they end up in the free slots left by the dilate
operation.

Conversely, a Morton number can be de-linearised by applying the in-
verse transformations, as shown by Listings A.4 and A.5.
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1 inline uint64_t compact(const uint64_t value) {
2 uint64_t x = value & 0x1249249249249249;
3 x = (x | x >> 2) & 0x10c30c30c30c30c3;
4 x = (x | x >> 4) & 0x100f00f00f00f00f;
5 x = (x | x >> 8) & 0x1f0000ff0000ff;
6 x = (x | x >> 16) & 0x1f00000000ffff;
7 x = (x | x >> 32) & 0x1fffff;
8 return x;
9 }

Listing A.4: Compact a 64bit integer into a 20bit integer.

Listing A.5: Extract individual 3D coordinates from a Morton number.

1 inline auto unpack_morton(uint64_t code){
2 return std::make_tuples(compact(code),
3 compact(code >> 1),
4 compact(code >> 2));
5 }
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