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Approximately 50% of early-stage non-small cell lung cancer (NSCLC) patients that 35 

undergo surgery with curative intent will relapse within 5 years1,2. Detection of 36 

circulating tumour cells (CTCs) at the time of surgery may represent a tool to identify 37 

patients at higher risk of recurrence where more frequent monitoring is advised. 38 

Here, we asked whether CellSearch detected pulmonary venous CTCs (PV-CTCs) 39 

at surgical resection of early stage NSCLC represent subclones responsible for 40 

subsequent disease relapse. PV-CTCs were detected in 48% of 100 patients 41 

enrolled into the TRACERx study3 and were associated with lung cancer specific 42 

relapse, and remained an independent predictor of relapse in multivariate analysis 43 

adjusted for tumour stage. In a case study, genomic profiling of single PV-CTCs 44 

collected at surgery revealed a higher mutation overlap with a metastasis detected 45 

10 months later (91%) compared to the primary tumour (79%), suggesting that early 46 

disseminating PV-CTCs were responsible for disease relapse. Together, PV-CTC 47 

enumeration and genomic profiling highlight the potential of PV-CTCs as early 48 

predictors of NSCLC recurrence after surgery. However, limited sensitivity of PV-49 

CTCs to predict relapse suggests further studies using a larger, independent cohort 50 

are warranted to confirm and better define this potential clinical utility of PV-CTCs in 51 

early stage NSCLC.  52 

 53 

Lung cancer is the leading cause of cancer related deaths worldwide with a 5 year 54 

relative survival rate of 4% in the metastatic setting4. NSCLC is the most common 55 

form of lung cancer. Patients presenting with early-stage NSCLC may undergo 56 

surgery with or without adjuvant chemotherapy and/or adjuvant radiotherapy in an 57 

attempt to achieve cure. However, disease recurrence following surgery is common, 58 

with 5-year relapse rates ranging from ~20% in patients with stage I disease to ~50% 59 

in those with stage III disease1,2. 60 
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Strategies to understand the biology of early dissemination and to identify patients at 61 

high risk of relapse may inform novel therapeutic approaches for adjuvant treatment 62 

to improve cure rates. CTCs are the assumed ‘foundations of metastasis’5, though 63 

this has not been formally proven in NSCLC. CTCs enriched from breast cancer, 64 

melanoma, NSCLC and small cell lung cancer (SCLC) patients’ peripheral blood can 65 

form tumours in immune compromised mice confirming their tumorigenic potential6-9. 66 

CTC number, measured using the CellSearch® platform, is a Food and Drug 67 

Administration (FDA) approved prognostic test in breast, colorectal and prostate 68 

cancers and is also prognostic in NSCLC10. Although peripheral blood CTCs (using 69 

CellSearch that captures only cells expressing EpCAM and Cytokeratin) are rare in 70 

early stage NSCLC patients, we previously demonstrated in a pilot study that 71 

CellSearch CTCs obtained from the draining pulmonary vein of the cancer-affected 72 

lung (PV-CTCs) are more frequent and we observed a trend towards worse disease-73 

free survival (DFS) and overall survival (OS)11. To determine whether our preliminary 74 

findings that PV-CTCs at resection are associated with relapse holds in a larger 75 

patient cohort, we enumerated PV-CTCs from 100 NSCLC patients enrolled onto the 76 

TRACERx study12.  77 

 78 

In our current cohort of 100 TRACERx patients (46% stage I, 34% stage II and 20% 79 

stage III; median follow-up 993 days), (Figure 1a, Table 1 and Supplementary Table 80 

1), 48% (48/100) harboured at least 1 PV-CTC per/7.5mL blood (mean ± SD, 42.2 ± 81 

127.3, median 0, range 0-896) (Figure 1b). PV-CTC count was not significantly 82 

associated with clinicopathological factors such as age, gender, pathological stage, 83 

smoking status and treatment received (Figure 1c and Supplementary Table 2). In 84 

contrast to circulating tumour DNA (ctDNA)13, PV-CTC count was not significantly 85 

different between adenocarcinoma (LUAD) and non-LUAD (p=0.554, t-test) 86 
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suggesting that factors that control release of ctDNA and the dissemination of intact 87 

CTCs are distinct.  88 

In our previous pilot study of 30 patients11, there was an association between the 89 

PV-CTC 'high' count (18 PV-CTCs/7.5ml blood) and DFS (p=0.055). When we 90 

applied this cutpoint in the TRACERx cohort there was a significant association with 91 

poorer DFS (p=0.019 log-rank, HR=2.28, Figure 2a) and this remained an 92 

independent predictor in multivariate analysis when adjusted for tumour stage 93 

(p=0.021, HR=2.4, 95% CI 1.14-5.2, Figure 2b). However, the performance of this 94 

cutpoint in predicting DFS, defined by time-dependent receiver operating 95 

characteristic (tdROC) curves, revealed limited sensitivity (sensitivity = 31.7%, 96 

specificity = 84.9%). We therefore conducted futher exploratory analysis to refine the 97 

‘PV-CTC high’ cutpoint to predict lung cancer specific relapse events and investigate 98 

the biological relevance of PV-CTCs in NSCLC metastasis. Briefly, of the 37 99 

recorded DFS events in the TRACERx cohort, 22 were due to lung cancer specific 100 

relapse. The remaining events occurred either without evidence of lung cancer 101 

relapse before death (n=9, Supplementary Table 3) due to a second non-lung 102 

primary cancer (n=4, confirmed by histology, imaging and clinical discussion, 103 

Supplementary Table 3) or lacked sufficient clinical information to determine cause 104 

(n=2, Supplementary Table 3). tdROC curves showed that the sensitivity and 105 

specificity in predicting lung cancer specific relapse at two years was optimal when a 106 

75th quantile cutpoint was applied (≥7 PV-CTCs/7.5ml blood, Extended Data Fig.1a). 107 

A ‘PV-CTC high’ status of ≥7 PV-CTCs/7.5ml blood showed significant association 108 

with lung cancer relapse in Kaplan-Meier analysis (p=0.009 log-rank, HR=2.78, 109 

Extended Data Fig.1b) and remained an independent predictor in multivariate 110 
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analysis when adjusted for tumour stage (p=0.027, HR = 2.6, 95% CI 1.1-6.2, 111 

Extended Data Fig.1c).  112 

Analysis of PV-CTCs as a continuous variable showed that each doubling of PV-113 

CTC count was a significant prognostic factor for DFS when modelled as a sole 114 

covariate (p=0.035, HR=1.113) and when modelled with other significant prognostic 115 

factors (p=0.040, HR=1.116, 95% CI 1.005-1.239, Wald test two-sided, 116 

Supplementary Table 4). Each doubling of PV-CTC count was also significantly 117 

associated with lung cancer specific relapse in both uni-variate (p=0.029, HR=1.148) 118 

and multi-variate analysis (p=0.024, HR=1.170, 95% CI 1.021-1.341, Wald test two-119 

sided, Supplementary Table 5). We also noted a significant association between PV-120 

CTCs as a continuous variable and intracranial disease present at clinical relapse 121 

(p=0.028, t-test two-sided, Supplementary Table 2). 122 

Collectively, these data raise the possibility that patients with a ‘high’ CellSearch PV-123 

CTC count at resection may benefit from increased minimal residual disease (MRD) 124 

monitoring post-surgery. We have shown that increasing PV-CTC count as a 125 

continuous variable is associated with poor prognosis. To use PV-CTCs in a clinical 126 

setting, a pre-defined cutpoint will be required to prospectively stratify patients. 127 

Although the previously defined cutpoint of ≥18 PV-CTCs/7.5ml blood11 was verified 128 

here and the further exploratory analysis of a ≥7 PV-CTC/7.5ml blood increased the 129 

performance of PV-CTCs in predicting lung cancer specific relapse, sensitivity 130 

remained modest (45.2% for ≥7 PV-CTCs/7.5ml blood vs 32.8% for ≥18 PV-131 

CTCs/7.5ml blood, Extended Data Fig.2a) and further studies are clearly required 132 

before clinical utility can be evaluated.   133 

 134 
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We next sought to assess the degree of genomic similarity between early-135 

disseminated PV-CTCs and metastatic disease by comparing  the primary tumour, 136 

the PV-CTCs and subsequent metastatic disease from the same patient. Single PV-137 

CTCs and white blood cell (WBCs) controls were successfully isolated from 14 138 

patients (Extended Data Fig. 2a and online methods). Of these 14 patients, five 139 

experienced a lung cancer specific relapse event (Extended Data Fig.2b); with an 140 

evaluable metastatic tissue biopsy available for one patient (CRUK0242). This 74-141 

year old male was diagnosed with stage IIIA, invasive adenocarcinoma in the right 142 

lung and underwent tumour resection, at which point 28 PV-CTCs were detected. 143 

The patient received adjuvant chemotherapy and radiotherapy and at 10 months 144 

post-surgery, positron-emission tomography (PET) identified relapse involving the 145 

right pleura. At this time a biopsy from the right pleural lesion was sequenced and 146 

peripheral blood samples collected for circulating free DNA (cfDNA) analysis. After 147 

receiving palliative chemotherapy and radiotherapy, the patient progressed and died 148 

the following year (Figure 3a). In this case study, three spatially-separated primary 149 

tumour regions, PV-CTCs, cfDNA isolated from pulmonary and peripheral veins at 150 

resection and again from the periphery at disease relapse, and the pleural 151 

metastasis were genetically profiled and compared.  152 

From the 28 PV-CTCs detected by CellSearch, we successfully isolated and 153 

amplified six single PV-CTCs (Extended Data Fig. 2c). Low-pass whole genome 154 

sequencing was performed which revealed that 3/6 PV-CTCs harboured copy 155 

number alterations (CNA) that matched the primary tumour. The remaining cells, 156 

although phenotypically CTC candidates by CellSearch criteria, showed flat copy 157 

number profiles as observed in WBC controls (Figure 3b, Extended Data Fig. 2d). 158 

We have termed these cells 'circulating epithelial cells' (CECs) and propose these 159 
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are likely to be normal epithelial cells that enter the blood along with PV-CTCs; 160 

similar cells have recently been described in non-cancer patients14. In order to 161 

identify somatic mutations present in the PV-CTCs, we performed whole exome 162 

sequencing (WES) followed by targeted deep sequencing of the 3 PV-CTCs, 3 CECs 163 

and 2 WBC controls. This identified 198 mutations (single nucleotide variants, SNVs) 164 

in the PV-CTCs and none in the CECs (Figure 3c). After accounting for technical 165 

drop-out due to the single cell sequencing approach (loci drop-out = 102/441 in 166 

tumour, 81/342 in metastasis)15 (Supplementary Table 6 and 7, methods online), 167 

46% (157/339) of all primary tumour mutations were also detected in PV-CTCs 168 

(Figure 3c and Extended Data Fig. 3a). Along with the CNA data this confirms the 169 

tumour origin of the PV-CTCs, but the presence of PV-CTC mutations not detected 170 

in the primary tumour suggests these cells may represent a minor subclone of the 171 

tumour. Although a resolvable tumour specific CNA pattern was not observed in the 172 

metastasis (Figure 3b), due to low tumour content, WES and targeted deep 173 

sequencing revealed 91% of the PV-CTC mutations were seen in the metastasis 174 

(181/198), which is a higher mutational overlap than between the PV-CTCs and 175 

primary tumour (157/198, 79%) (Figure 3c and Extended Data Fig.3a). In addition, 176 

96.8% (120/124) of the primary tumour mutations that were not detected in the 177 

metastasis were also not detected in the PV-CTCs (Figure 3c). Strikingly, of the 41 178 

PV-CTC private mutations that were not detected in the primary tumour, 28 (68.3%) 179 

were identified in the relapse biopsy WES (Figure 3c and Extended Data Fig.3a) 180 

suggesting that the PV-CTCs present in the patient’s blood at surgery share a 181 

common progenitor with the metastasis that was detected 10 months later. The 182 

evolutionary origin of the PV-CTCs and metastasis was confirmed by phylogenetic 183 

analysis that revealed both PV-CTCs and metastasis are part of the same specific 184 
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branch, which is distinct from all other subclones of the primary tumour (Figure 3d). 185 

The identification of PV-CTC specific mutations that are undetectable by bulk tumour 186 

analysis, yet are present in the relapse samples, strongly suggests that the PV-CTCs 187 

belong to a minor tumour subclone which is responsible for eventual relapse.  188 

Examination of the mutations shared between PV-CTCs and the metastatic biopsy 189 

yet absent from the primary tumour has the potential to give insight into the 190 

mechanisms of metastasis. In this patient, the 28 PV-CTC/metastatic associated 191 

mutations not detected in the primary tumour included a putative inactivating driver 192 

mutation in the tumour suppressor gene LZTS1 (p.Pro104His) (Supplementray Table 193 

8) which has been shown to inhibit tumour migration and whose lower expression 194 

has been linked to poor overall survival in NSCLC16.  195 

Finally, to address the question whether the 13 private PV-CTC mutations not initially 196 

detected in the primary tumour or relapse biopsy, were in fact present at low 197 

frequency, additional targeted deep-sequencing of the tumour and metastasis was 198 

performed. All 13 mutations were present in either the primary tumour (5/13), the 199 

metastasis (12/13) and/or relapse cfDNA (7/13) (Figure 3e, Extended Data Fig.3b 200 

and Extended Data Fig.4). Interestingly, even using targeted deep-sequencing none 201 

of the 520 pre-identified mutations were detected in either baseline pulmonary or 202 

peripheral blood cfDNA samples (Extended Data Fig.4), highlighting the unique 203 

aspect of molecular analysis of PV-CTCs at resection. 204 

Previous studies have shown a genetic link between CTCs, primary tumour and 205 

metastasis with clonal and subclonal mutations detected in CTCs in both colorectal 206 

and prostate cancer17,18. However, these studies were performed in metastatic 207 

patients and to our knowledge, this case report is the first to show that CTCs at 208 

surgery are phylogenetically linked to subsequent metastatic disease. This is 209 
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exemplified by the larger mutational overlap between the PV-CTCs and the 210 

metastatic tumour that arose 10 months post PV-CTC isolation, than between the 211 

PV-CTCs and primary tumour which were collected at the same time in our case 212 

study. Comprehensive molecular analysis of early disseminating PV-CTCs also 213 

raises the opportunity to identify putative mechanisms of metastatic spread from the 214 

primary tumour prior to establishment of recurrent disease. 215 

 216 

In early-stage NSCLC disease recurrence post-surgery occurs frequently and in this 217 

scenario survival is dismal; therefore, strategies that enable the identification of 218 

patients at higher risk of recurrence are an unmet medical need. We show here PV-219 

CTC count (using the CellSearch platform) is associated with DFS and lung cancer 220 

specific survival in the TRACERx cohort, reinforcing the biological importance of PV-221 

CTCs as founders of NSCLC metastasis. However, the clinical strength of a PV-CTC 222 

count to predict lung cancer specific relapse is modest and requires further validation 223 

in an independent and prospective patient cohort.  Reasons underpinning the 224 

modest predictive strength of PV-CTC counts for NSCLC specific relapse could 225 

include the co-existence of CECs and bonafide epithelial CTCs as seen in the blood 226 

sample of the case study. This mixed population of EpCAM positive cells could  227 

confound the true PV-CTC count and the inability of CellSearch to detect 228 

mesenchymal CTCs further reduce the sensitivity of this approach. Additional 229 

detailed investigations are warranted to differentiate between epithelial  and 230 

mesenchymal CTCs and CECs and to incorporate this greater understanding into 231 

NSCLC relapse prediction models. This study highlights the benefit of combining PV-232 

CTC, tumour and cfDNA analysis to unearth new biological insights into the process 233 

of NSCLC metastasis.   234 
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Figure Legends 337 

Fig. 1: PV-CTC detection in early NSCLC. a, TRACERx consort diagram. 149 338 

patients consented for pulmonary vein blood sampling between June 2014 and 339 

March 2017. 27 samples were excluded because of failures in CellSearch® 340 

enrichment and enumeration. 22 patients were defined ineligible post-surgery and 341 

the remaining 100 patients constituted the final cohort for PV-CTC 342 

enumeration. b, Distribution of the number of PV-CTCs enumerated by CellSearch® 343 

from 100 patients with early NSCLC. LUAD (blue circle) and non-LUAD (red circle)  344 

patients are indicated. c, Heat map showing clinicopathological and PV-CTC 345 

detection data; Patients are stratified according to PV-CTC detection. Histological 346 

disease type is indicated by coloured bar above the heatmap.  347 

 348 

Fig.2: PV-CTCs as independent predictors of disease-free survival. a, Kaplan–349 

Meier curves showing disease-free survival (DFS) of 100 patients stratified as PV-350 

CTC high or low based on the previously published threshold from our pilot study 351 

(18 PV-CTCs/7.5ml blood)11. The number of patients at risk for every time point is 352 

indicated below the time point and colour coded according to the high or low groups. 353 

P value, HR and relative 95% confidence intervals (CI) (two-sided log-rank test) are 354 

indicated. b, Forest plot showing the results of multivariable regression analysis for 355 

PV-CTC high or low patients (18 PV-CTCs/7.5ml blood). The x-axis represents the 356 

hazard ratio with the reference line (dashed) and significance is calculated using a 357 

Cox proportional hazards model. The estimated hazard ratios and their 95% CI are 358 

presented as error bars. The log-rank test used was two-sided. 359 

 360 

Fig.3: Mutations present in the relapse tumour are detected 10 months earlier 361 

in PV-CTCs and not in the primary tumour. a, Patient timeline from diagnosis to 362 

death (FU=follow up; PET=positron emission tomography; MR=magnetic 363 

resonance). b, Heat map showing the comparison between CNA detected in PV-364 

CTCs or circulating epithelial cells (CECs), in primary tumour regions (R1-3), in 365 

relapse tumour (Met) and in a WBC control. Regions of loss are coloured blue, 366 

regions of gain are coloured red. Chromosomes are indicated at the top of the figure. 367 
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c, Heat map showing the comparison of SNVs detected in PV-CTCs, primary tumour 368 

regions and the metastasis. Mutations are ordered according to their clonality as 369 

established by primary tumour analysis. Green dashed boxes indicate mutations that 370 

are seen in the primary tumour, but not metastasis or PV-CTCs. Blue dashed box 371 

indicates the overlap between mutations considered metastatic private by primary 372 

tumour analysis and PV-CTCs. No mutations were found in the three CECs and two 373 

WBCs. d, Evolutionary tree encompassing tumour and PV-CTCs: the relationships 374 

between identified subclones is depicted, with size of circle reflecting the number of 375 

mutations in each subclone relative to largest. Length of lines connecting tumor 376 

subclones does not carry information. The beehive plots indicate the subclonal 377 

architecture of each tumour region, with 100 representative cells shown for each 378 

region and the nested colours corresponding to the ancestry of each cell. e, Heat 379 

map showing PV-CTC private mutations that are detected in primary tumour, 380 

metastasis and cfDNA following targeted deep sequencing. 381 

 382 

Extended Data Fig.1: a, Time-dependent receiver operating characteristic (ROC) 383 

curves showing true positive and false positive rates for the 65th , 75th, 85th PV-CTC 384 

quantiles (3, 7 and 39 PV-CTCs/7.5ml blood respectively) alongside the 385 

previously published threshold from our pilot study (18 PV-CTCs/7.5ml blood)11. All 386 

predictions were made at 720 days. Sensitivity and specificity of each category is 387 

shown along with area under ROC curve (AUROC) value. b, Kaplan–Meier curve 388 

showing lung cancer specific relapse free survival for 98 patients stratified as PV-389 

CTC high or low according to the 75th quantile (7 PV-CTCs/7.5ml blood). The 390 

number of patients at risk for every time point is indicated below the time point and 391 

colour coded according to the high or low groups. P value, HR and relative 95% 392 

confidence intervals (CI) (two-sided log-rank test) are indicated. c, Forest plot 393 

showing the results of multivariable regression analysis for PV-CTC high or low 394 

patients (7 PV-CTCs/7.5ml blood). The x-axis represents the hazard ratio with the 395 

reference line (dashed) and significance is calculated using a Cox proportional 396 

hazards model.   397 

 398 
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Extended Data Fig.2: a, Consort diagram describing samples used for downstream 399 

analysis. Only patients with ≥5 PV-CTCs (29) were processed through single cell 400 

isolation (DEPArray™). Single cells were not isolated from 6 out of the 29 samples 401 

due to failures during sample loading into the DEPArray™ machine. From the 402 

remaining 23 samples, 7 patients whose single CTCs isolated did not meet 403 

morphology criteria (see methods) were excluded. 16 samples were processed for 404 

whole genome amplification (WGA) and 2 patients whose CTCs did not show good 405 

quality genomic integrity index in QC post-WGA were removed (see methods). b, 406 

Table showing cases of relapse among the patients with single PV-CTCs isolated. c, 407 

Agarose gel showing results of a QC–PCR assay used to determine the genome 408 

integrity of each sample. 0–4 bands determine the overall DNA integrity of each 409 

sample. DEPArray images of corresponding PV-CTC (cytokeratin (CK)+ stained 410 

green, CD45+ stained blue, DAPI+ stained purple) are shown above. d, Examples of 411 

copy number profiles detected in single PV-CTCs, CECs and WBC control. Blue and 412 

red indicate regions of copy number loss and gain respectively. 413 

  414 

Extended Data Fig.3: a, Venn diagram showing the overlap of somatic mutations 415 

detected between single PV-CTCs, primary and metastatic tumour. b, Venn diagram 416 

showing the overlap of somatic mutations detected between single PV-CTCs, 417 

metastatic tumour and cfDNA isolated at the time of relapse. 418 

  419 

Extended Data Fig.4: Heat map showing the comparison of SNVs detected in 420 

primary tumour regions, metastasis, PV-CTCs, CECs, WBCs, and cfDNA samples 421 

(cfDNA pre-surgery was isolated from peripheral blood, cfDNA surgery was isolated 422 

from the pulmonary vein and cfDNA relapse was isolated at the time of relapse). 423 

Mutations are ordered according to their clonality established by primary tumour 424 

analysis. 425 

 426 

 427 

  428 
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Table 1- Baseline characteristics of 100 patients and presence of 
PV-CTCs  

Characteristics 
PV-CTC positive,  

n (%)  
PV-CTC negative,  

n (%) 

Age, in years     
Average age  68 67 

Range 39-85 48-82 
      

Gender     
Male (n=61) 28 (46%) 33 (54%) 

Female (n=39) 20 (51%) 19 (49%) 
      

Tumour Histology      
Adenocarcinoma 

(n=59) 28 (47%) 
31 (53%) 

Non-adenocarcinoma 
(n=43)  20 (47%) 

23 (53%) 

      

Pathological Stage     
I (n=47) 22 (47%)  25 (53%) 
II (n=34) 15 (44%)  19 (56%) 
III (n=19) 11 (58%)  8 (42%) 

      

Smoking Status     
Current smokers 

(n=14) 7 (50%)  7 (50%) 
ex smokers (n=78) 38 (49%)  40 (51%) 

never smokers (n=8) 3 (37%) 5 (63%) 

  429 
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Online Methods  430 

Patients and pathology review  431 

The cohort of 100 patients evaluated here for PV-CTC detection within this study 432 

comprises patients analysed by the lung TRACERx study 433 

(https://clinicaltrials.gov/ct2/show/NCT01888601).  Patient eligibility and exclusion 434 

criteria for TRACERx enrolment is described in Jamal-Hanjani et al12 but briefly 435 

patients had given their informed written consent to participate in the study, were at 436 

least 18 years of age, had received a diagnosis of NSCLC in stages IA through IIIA 437 

and not received previous systemic therapy. The study has received a favourable 438 

opinion from the NRES Committee London – Camden & Islington Research Ethics 439 

Committee. The clinical data used in this study was derived from the “February 2019 440 

TRACERx data release”. The NSCLC cohort in this study consisted of lung 441 

adenocarcinoma (LUAD) (59%) and remaining 41% of non-adenocarcinoma 442 

histology (Extended Data Fig. 1b and Supplementary  Tables 1 and 2). The median 443 

age of patient was 68 and the population consisted of 61 males and 39 females 444 

(Table 1).   445 

Digital images of diagnostic tumour sections from all cases were reviewed in detail 446 

centrally by at least one pathologist, and in cases of uncertainty, by two. Histological 447 

subtype and mitotic rate (number of visible mitoses per high-power field) were 448 

evaluated on digital images from scanned diagnostic slides blinded to the PV-CTC 449 

detection status of the patient in question. 450 

 451 

Statistical analysis  452 

All statistical tests were 2-sided unless otherwise stated. The association of PV-CTC 453 

count with individual clinical characteristics, including gender, stage, histology, 454 
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smoking status, chemotherapy received, sites of relapse were evaluated using 455 

ANOVA, while age and mitotic rate were evaluated using Pearson’s correlation. PV-456 

CTC count was log2 transformed in all analysis. 457 

 458 

Cox proportional hazard regression analysis 459 

The association between PV-CTC count and patient survival (DFS or lung cancer 460 

specific relapse) was assessed by including it as a sole covariate in a Cox 461 

proportional hazards model. Assumption of proportionality was verified based on 462 

Schoenfeld residuals19. A plot of the Martingale residuals was examined for evidence 463 

of nonlinearity20. The same uni-variate analysis was carried out on each clinical 464 

characteristic. Significant covariates in the uni-variate analysis were selected for 465 

subsequent multi-variate analysis, where a backward stepwise method was applied 466 

to investigate the impact of PV-CTC count on survival with other significant clinical 467 

characteristics under control. 468 

Time-dependent receiver operating characteristics (tdROC) curves were applied to 469 

evaluate the performance of predicting lung cancer specific relapse using PV-CTC 470 

counts stratified by the 65th, 75th, 85th quantiles and the previously published 471 

threshold from our pilot study11 (18 PV-CTCs/7.5ml blood) within 720 days post-472 

surgery. This analysis showed the upper quartile (75th quantile) had the highest 473 

AUROC (0.58, Extended Data Fig.1a). The diagnostic odds ratio (DOR) was also 474 

calculated for each PV-CTC cutoff. In order to avoid data overfitting, these DOR 475 

values were fitted into a polynomial curve, and the optimal cutoff for PV-CTC counts 476 

was selected as the one that corresponds to the maximum point of the curve.  477 
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All analysis were performed according to REMARK guideline 21, using R version 478 

3.5.122. R packages survival (v2.38)23, and survminer (v0.3)24 and survivalROC 479 

(v1.0.3)25 were applied. 480 

 481 

Lung cancer specific relapse event analysis 482 

We collected available clinical data from all 37 patients who had been reported as 483 

having experienced a DFS event (defined as the time from study enrolment until 484 

recurrence of tumour or death from any cause) in the February 2019 TRACERx data 485 

release. Clinical data was available for 35 of 37 patients, 2 patients without available 486 

data (CRUK0005 and CRUK0770) were excluded from this analysis. We defined a 487 

lung cancer specific relapse event as histological or imaging confirmed NSCLC 488 

relapse. Nine of 37 patients who experienced a DFS event died without evidence of 489 

a lung cancer specific relapse event (details in Supplementary Table 3). These 490 

patients were either censored at the point of last computed tomography (CT) scan 491 

imaging prior to death showing the absence of metastatic disease (CRUK0056, 492 

CRUK0431, CRUK0416, CRUK0260, CRUK0017, CRUK0301) or in the event of 493 

immediate post-operative death (death within 30 days of surgery), at the point of 494 

death (CRUK0196, CRUK0223, CRUK0681). Four of 37 patients experienced 495 

metastatic disease unrelated to their original lung primary (CRUK0768, 496 

CRUK0068,CRUK0759, CRUK0085) and were censored at the point of last CT 497 

imaging prior to death showing absence of metastatic NSCLC. These cases were 498 

classified as second primary malignancies based on consensus imaging, histological 499 

and clinical agreement. For 1 of 37 patients there was high clinical suspicion of a 500 

second malignancy based on CT imaging but due to lack of investigation this was 501 

not conclusively determined, therefore this patient was excluded from the analysis 502 
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(CRUK0073). Initial site of clinical relapse was defined as extracranial if no brain 503 

metastasis were clinically confirmed within 60 days of clinical relapse or intracranial if 504 

a patient presented with brain metastases within 60 days of clinical relapse. 505 

 506 

Blood collection 507 

A blood sample (10mL) was taken intra-operatively from the cancer-draining 508 

pulmonary vein prior to vessel ligation and tumour resection for each patient. A 509 

second sample was taken from the peripheral vein of patients recruited in 510 

Manchester. Blood samples were stored at room temperature for up to 96 hours in 511 

CellSave vacutainers prior to analysis.  512 

 513 

CTC enrichment enumeration and single cell isolation  514 

Blood samples were processed using the CellSearch system (Menarini), according 515 

to the manufacturer's instructions. Epithelial CTCs (via EpCAM dependent capture) 516 

were classified and counted based on an intact DAPI stained nucleus and positive 517 

immunofluorescent staining for pan-cytokeratins (CK) and negative staining for the 518 

WBC marker CD45. Following CellSearch® enrichment, single cells were isolated 519 

using the DEPArray™ system (Menarini) according to the manufacturer's 520 

instructions. Images of isolated PV-CTCs were manually inspected by two 521 

independent operators to confirm that the following morphological criteria were met: 522 

(1) cells were unambiguous positive for cytokeratin, (2) had an intact nucleus and (3) 523 

were clear of contaminating WBCs. Cells that failed to meet any of the three criteria 524 

were considered “ambiguous” and excluded from all downstream analysis. 525 

 526 

Whole genome amplification    527 
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Whole genome amplification (WGA) was performed using the Ampli1 WGA kit 528 

(Menarini) according to the manufacturer's instructions.  The efficacy of WGA was 529 

then evaluated by a multiplex quality control PCR (Ampli1 QC kit, Menarini) as 530 

previously described 26 followed by visualization of PCR bands on a 1.5% (w/v) 531 

agarose gel. This quality control step allowed us to establish a Genome Integrity 532 

Index (GII) of 0–4 for each sample and single cells with GII≥2 were considered with 533 

good quality DNA and eligible for subsequent downstream analysis. 534 

 535 

Circulating cell-free DNA and tumour samples preparation  536 

Plasma from CellSave blood samples was separated for cfDNA extraction as 537 

previously described27. Genomic DNA from primary and relapse tumours was 538 

isolated as described in Jamal-Hanjani et al12, sheared and quantified along with 539 

cfDNA and germline samples using the TaqMan RNase P Detection Kit (Life 540 

Technologies) as per manufacturer’s instructions.  541 

 542 

DNA library preparation, targeted enrichment and next-generation sequencing 543 

DNA libraries for PV-CTCs and WBCs were prepared using NEBNext Ultra DNA 544 

Library Prep Kit for Illumina (New England BioLabs) with 50 ng of DNA added per 545 

library preparation. DNA libraries for cfDNA, tumour DNA and germline were 546 

prepared using NEBNext Ultra II End Repair/dA-Tailing Module (New England 547 

BioLabs) and KAPA Hyper Library Prep Kit (KAPA Biosystems) using an input of up 548 

to 25 ng DNA. Each library was quantified (KAPA library quantification kit, KAPA 549 

Biosystems) and equimolar amounts were pooled and shallow-depth whole genome 550 

sequencing was performed on Illumina MiSeq or NextSeq 500 desktop sequencers 551 

(paired end, 300 cycles).  552 
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PV-CTC and WBC Libraries from patient CRUK0242 were additionally subjected to 553 

targeted exome enrichment using SureSelect Human All Exon V6 (Agilent) and 554 

Whole Exome Sequencing (WES) was performed on Illumina NextSeq 500 desktop 555 

sequencer for the detection of somatic mutations (paired end, 300 cycles). WES of 556 

corresponding excised primary tumour regions was performed as previously 557 

described3. For patient CRUK0242, libraries of cfDNA, isolated at surgery and at 558 

relapse, were enriched for a panel of 520 (SureSelectXT Custom, Agilent) pre-559 

identified mutations and sequenced as above.  560 

Sequence alignment and data processing 561 

After trimming of sequencing adapters, the single cell sequencing reads (fastq 562 

format) were aligned to human genome assembly 19 (hg19), using the Burrows-563 

Wheeler Aligner (BWA) mem (v0.7.13) algorithm28 to generate SAM files. SAMtools 564 

(v0.1.19) was used to convert the SAM files to BAM files, to remove reads with low 565 

mapping quality (MQ < 10) and to merge files from the same cell. Picard tools 566 

(v1.96) was used to sort the BAM files by chromosome coordinates and to remove 567 

PCR duplicates. The BAM files were converted to BED files using Bedtools29. A 568 

combination of Picard tools, Bedtools and FastQC30 was used to generate quality 569 

control metrics. 570 

 571 

WGA Capture-rate 572 

To establish the capture-rate of the WGA process, we used targeted sequencing 573 

data (described above) for comparisons of the germline (GL), WGA germline (WGA-574 

GL) and individual single cells (including WBC controls) following WGA. A list of 575 

heterozygous single nucleotide polymorphisms (SNPs) detected within the targeted 576 

regions of the germline sample was generated using Mutect (v1.1.7)31.  SAMtools 577 
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mpileup was then used to check which of these SNPs were detected in each WGA 578 

sample, requiring a minimum of ten reads to call the SNPs (average read depth in 579 

successfully amplified regions is ~230 reads) and a Variant Allele Frequency (VAF) 580 

of 0.2-0.8 to consider it to still be heterozygous. The WGA-GL sample shows a 581 

complete locus drop-out of 18% due to lack of amplification in the WGA process. Of 582 

the 113 heterozygous SNPs that are present in the WGA-GL, 51 and 54 are also 583 

called as heterozygous in the two WBC controls. In addition 16 loci became 584 

homozygous for the SNP in each cell, and 12 and 13 loci becoming homozygous for 585 

the reference allele due to allele drop out (Supplementary Table 6). This gives an 586 

estimate for the allele capture-rate of 58-61% of the 113 WGA-GL SNPs due to the 587 

single cell sequencing. 588 

 589 

Copy Number Analysis  590 

Illumina whole-genome data for PV-CTCs, WBCs and tumour samples were aligned 591 

to the human genome using BWA. For CNA analysis we only analysed samples with 592 

a minimum of 2 million reads (after duplicate removal). Copy number alterations 593 

were identified using the R Bioconductor package HMMcopy (v1.18)32 with the 594 

genome divided into 1 Mb windows. Reads in each window were normalized by GC-595 

content and mappability, and a Hidden Markov Model-based approach was used to 596 

segment the data into regions of similar copy-number profile and to predict a CNA 597 

event for each segment.  598 

 599 

Somatic Mutation analysis from whole exome and targeted sequencing data  600 

For the tumour WES, high-confidence variant calls from tumour were obtained as 601 

previously described3, using a combination of Varscan2 and MuTect. 602 
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MuTect (v1.1.7)31 was used to detect SNVs utilising annotation files contained in 603 

GATK bundle. All variants called by MuTect were filtered according to the filter 604 

parameter ‘PASS’ in the judgement column. All variants were annotated using 605 

ANNOVAR33. Only variants with at least 20 reads were considered for further 606 

filtering. 607 

To generate a high-confidence set of variant calls from PV-CTCs, the following filters 608 

were applied: 609 

1. Using the annotations as provided by ANNOVAR, all variants that were 610 

present  in either 1000g or the Exac03 databases are removed. 611 

2. A blacklist filter, relating to the genomic location of the variant, was applied. 612 

The blacklisted genomic regions were obtained from UCSC Genome Table Browser 613 

and include regions excluded from the Encode project (both DAC and Duke list), 614 

simple repeats, segmental duplications and microsatellite regions. 615 

3. Variants with VAF < 0.2 are removed. 616 

4. Variants had to be either present in the Tumour tissue (Primary or Relapse) or 617 

in at least one other single PV-CTC.  618 

5. Lastly, if any variant is called in any of the WBC controls, then those were 619 

filtered out.  620 

Supplementary Tables 9-10 and Supplementary Table 11 contain the information 621 

relative to coverage and VAF for each mutation detected in the primary tumour and 622 

single cells by WES and targeted deep sequencing respectively.  623 

 624 

For the two WBC controls from patient CRUK0242, the first three filtering steps give 625 

134 and 253 variants, none of which are shared with the tumour or any other single 626 

cells while the non-matching three CECs have 254, 260 and 307 private SNVs. The 627 
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rate of false positives due to sequencing artefacts, with a range of 134-1960 variants  628 

seen in white blood samples from two other patients (see Supplementary Table 12) 629 

has very little overlap between them. The requirement that a mutation must be 630 

present in two or more samples (whether tumour or single cell) therefore eliminates 631 

the vast majority of false positives as a very conservative proceedure. 632 

 633 

Regions containing mutations detected in the primary tumour or metastasis which 634 

were not covered in at least 1 of the three PV-CTC samples were removed for the 635 

calculation of overlaps, although they are shown in the  Extended Data Fig.5.  636 

 637 

All somatic variants detected in PV-CTCs were analysed by using cancer genome 638 

interpreter platform34 to interpret whether the variants detected had potential as 639 

drivers in NSCLC as well as in other solid cancers.  640 

 641 

Phylogenetic Analysis 642 

Phylogenetic analysis was performed as previously described3. In brief, using the 643 

pigeon-hole principle (if the average cancer cell fraction of two subclones sums to 644 

more than 1, the smaller subclone must be nested within the larger) as well as the 645 

crossing rule (if the cancer cell fraction of subclone A and subclone B sums to less 646 

than 1 and the cancer cell fraction of subclone A exceeds that of subclone B in one 647 

region but the inverse is true in another region, subclone A and B must exist on 648 

separate branches of the evolutionary tree), the evolutionary relationships between 649 

subclones was determined and a phylogenetic tree inferred.   650 

  651 
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Data Availability Statement 652 

The majority of data generated or analysed during this study are included in this 653 

published article. The sequencing data are available through the Cancer Research 654 

UK & University College London Cancer Trials Centre for non-commercial research 655 

purposes and access will be granted upon review of a project proposal that will be 656 

evaluated by a TRACERx data access committee and entering into an appropriate 657 

data access agreement subject to any applicable ethical approvals. 658 

  659 
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