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Abstract 

Background: The growing threat of Antimicrobial Resistance (AMR) requires innovative methods to 

promote the sustainable effectiveness of antimicrobial agents.  

Hypothesis: This thesis aimed to explore the hypothesis that personalised decision support interventions 

have the utility to enhance antimicrobial management across secondary care.  

Methods: Different research methods were used to investigate this hypothesis. Individual physician 

decision making was mapped and patient experiences of engagement with decision making explored using 

semi-structured interviews. Cross-specialty engagement with antimicrobial management was investigated 

through cross-sectional analysis of conference abstracts and educational training curricula. Artificial 

intelligence tools were developed to explore their ability to predict the likelihood of infection and provide 

individualised prescribing recommendations using routine patient data. Dynamic, individualised dose 

optimisation was explored through: (i) development of a microneedle based, electrochemical biosensor for 

minimally invasive monitoring of beta-lactams; and (ii) pharmacokinetic (PK)-pharmacodynamic (PD) 

modelling of a new PK-PD index using C-Reactive protein (CRP) to predict the pharmacodynamics of 

vancomycin. Ethics approval was granted for all aspects of work explored within this thesis.  

Results: Mapping of individual physician decision making during infection management demonstrated 

several areas where personalised, technological interventions could enhance antimicrobial management. 

At specialty level, non-infection specialties have little engagement with antimicrobial management. The 

importance of engaging surgical specialties, who have relatively high rates of antimicrobial usage and 

healthcare associated infections, was observed. An individualised information leaflet, co-designed with 

patients, to provide personalised infection information to in-patients receiving antibiotics significantly 

improved knowledge and reported engagement with decision making. Artificial intelligence was able to 

enhance the prediction of infection and the prescribing of antimicrobials using routinely available clinical 

data. Real-time, continuous penicillin monitoring was demonstrated using a microneedle based 

electrochemical sensor in-vivo. A new PK-PD index, using C-Reactive Protein, was able to predict 

individual patient response to vancomycin therapy at 96-120 hours of therapy.  

Conclusion: Through co-design and the application of specific technologies it is possible to provide 

personalised antimicrobial management within secondary care.  
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CHAPTER ONE 

1.0 Improving antimicrobial management in secondary care 

1.1 Evidence-based medicine 

In 1996, Sackett and colleagues outlined their perspective of evidence-based medicine 

(EBM) in the British Medical Journal [1]. This definition, in conjunction with the work of 

Eddy and Cochrane, formed a paradigm that has guided empirical practice and clinical 

decisions for the last 25 years [2–5].  

EBM is the process of integrating the best available evidence, individual clinical 

judgement, and patient values and preferences to make decisions about the care of 

individual patients [1]. This definition is based on three epistemological principles that 

were explored by Djulbegovic and Guyatt in 2017 [5].  

1. Not all evidence is created equal. Therefore, the practice of medicine must be 

based on the best available evidence for the particular situation that it is being 

applied to.  

2. In the pursuit of truth, this is best accomplished by evaluating the totality of 

available evidence, rather than selecting the evidence that favours a particular 

claim.  

3. Finally, evidence alone is not sufficient for effective decision making. It is vital 

that evidence is considered within the social context that the decision is being 

made.  

Within infection management, which is the focus of this thesis, a number of dynamic 

processes occur during decision making. These dynamic processes create another level 
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of complexity to supporting evidence-based practice. Moreover, for many of the aspects 

of antimicrobial management, there is a paucity of evidence supporting decision making. 

Therefore, within this thesis I set out to investigate a number of methods to provide 

better evidence to support decision making during antimicrobial management. This 

would focus on both prescribers and patients. However, firstly it is important to put the 

problem of antimicrobial resistance (AMR) into context. This will focus primarily on the 

hospital setting, which is the scope of this thesis.  
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1.2 Antimicrobial Resistance  

AMR is a global threat to patient safety [6]. Currently in Europe, it is estimated that 

25,000 people die every year because of drug-resistant-infections [6,7]. This costs the 

UK approximately £1 billion per year [6,7]. Worldwide, mortality is estimated to be at 

least 700,000 people per year [6,7]. By 2050, up to 10 million people per year will die 

because of drug-resistant-infections, costing the global economy trillions of pounds and 

threatening the way that we currently practice medicine [6,8].  

AMR is not a new phenomenon. In the early 1900’s Ehrlich observed an increase in 

micro-organism resistance to early antimicrobials whilst experimenting with azo dyes, 

arsenicals, and triphenylmethane derivatives. Shortly after the discovery of penicillin, 

Fleming famously reported his observation of penicillin resistance developing in 

organisms where the drug had previously been effective [9,10].  

In fact, AMR can occur naturally in the environment in the absence of antimicrobial 

pressure. This occurs as part of natural selection when it provides a survival advantage 

to the micro-organism [11,12]. An example of this was when several resistance genes 

for a newly licenced antibiotic, daptomycin, were observed in the environment before it 

was used in clinical practice [13–15]. This observation of resistance in the environment 

is often described as the “soil resistome” and can easily be transferred into human 

pathogens when selective pressure is placed upon them, such as by the use of 

antimicrobial agents [16]. This is a complex process with exposure to antimicrobials 

occurring throughout the environment, acting as a major driver of AMR. This process is 

often exaggerated in areas where antimicrobials are used in concentration, such as the 

hospital environment [17–19]. These areas of high antimicrobial usage can be thought of 

as “enrichment zones” for the expansion of drug-resistant populations [17–19].  
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AMR develops through several mechanisms, which can be either intrinsic to that species 

or acquired [9]. Intrinsic resistance to an antimicrobial refers to a situation when the 

entire species of organism are resistant to an antimicrobial agent [9]. For example, 

Gram-negative organisms are resistant to glycopeptide antimicrobials, such as 

vancomycin, due to their thick lipopolysaccharide cell wall [9]. This prevents the agent 

penetrating the cell wall and binding to its intra-cellular target [9]. In contrast, acquired 

resistance occurs when an agent that has been previously effective becomes ineffective 

within a species [9]. This is often followed by the rapid expansion of resistant strains 

within the cohort causing a reduction in the therapeutic value of that antimicrobial as 

more and more of the population become resistant to its action [9,20]. No antimicrobial 

introduced into human medicine has so far escaped this phenomenon [21]. 

There are two main mechanisms by which acquired resistance occurs: mutational 

resistance and transmissible resistance [9,20]. Mutational resistance describes changes 

that occur within the DNA of a micro-organism by error during DNA synthesis. These 

variations in DNA may lead to phenotypic variability [22]. This variable phenotype may 

confer resistance to an antimicrobials action. This can then be selected for when 

antimicrobial selection pressure is applied to the population [22]. Transmissible 

resistance describes the most common mechanism by which organisms develop drug 

resistance. This involves a micro-organism acquiring genetic elements that encode drug-

resistance from another organism [23]. Many of these genetic elements tend to be 

acquired from organisms within the “soil resistome” [23].  Both mutational and 

transmissible methods confer resistance to antimicrobials via three core mechanisms: 

preventing access to the target site, changing the target site structure, and direct 

modification (inactivation) of the antimicrobial [16].  
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Despite resistance occurring in the absence of selective pressure, exposure of 

organisms to antimicrobials is by far the greatest driver of AMR [20]. With the expanding 

use of antimicrobial agents, in particular broad spectrum antimicrobials, the rate of 

selection of drug-resistant organisms will also exponentially grow [24]. In 2014 in the UK, 

approximately 30% of all hospital in-patients were prescribed an antimicrobial agent [24]. 

Internationally, large multi-centre studies have suggested that up to 60% of hospital in-

patients will receive at least one antimicrobial during their stay [25,26]. Furthermore, 

many of these prescriptions will be inappropriate in some way, being prescribed for too 

long, for non-bacterial or non-infectious syndromes, or redundantly in combination [25–

27]. This approach to prescribing creates a huge amount of unnecessary exposure of 

organisms to antimicrobial agents, increasing the potential for resistant mutants to be 

selected. Therefore, when we consider potentially modifiable drivers of AMR, it is clear 

that the overuse / misuse of antimicrobials in both humans and agriculture is one of the 

most significant factors that must urgently be addressed [20][28]. 

A particularly important consideration when considering the misuse of antimicrobials is 

the observation of different mutation events that occur at differing concentrations of 

antimicrobial agent (Figure 1) [17–19]. At low concentrations of antibiotics, typically 

below minimum inhibitory concentration of the organism (MIC), but above the minimum 

selection concentration (MSC); we observe low level mutations that accumulate [17–19]. 

These preserve the fitness of the micro-organism in conjunction to promoting resistance 

to the antimicrobials action. In contrast, selection of mutants at supra-MIC levels often 

drives single point mutations, which will not lead to the development of a resistant 

population as there is a significant fitness cost associated with these mutations [17–19] 

[20]. 
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Figure 1. The effects of antimicrobial concentration on antimicrobial resistance mutant 

selection.  

 

 

 

 

 

 

 

 

 

 

 

The observation of low fitness cost – high resistance selection at low concentrations is 

important to consider for several reasons. Firstly, misuse / overuse of antimicrobials will 

increase the low-level exposure in the environment (through bodily secretions, 

contamination, and aerosol formation) to sub-MIC levels of antimicrobial, increasing 

environmental selective pressures. Secondly, inappropriate dosing (e.g. under dosing) 

and length of treatment in individuals can also have a similar effect exposing organisms 

to sub-therapeutic antimicrobial concentrations. These actions will lead to the 

accumulation of multiple mechanisms or drug-resistance, often to multiple antimicrobials, 

Legend: MIC = Minimum inhibitory concentration.  

Figure adapted from Andersson et al. Drug Resistance Updates. 2012. 
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whilst preserving the fitness of the organism attaining them [23]. Finally, these types of 

mutational event make reversing the problem of AMR challenging [23]. This is because 

reducing the rate of use of a single antimicrobial is unlikely to have an impact on trends 

in overall resistance to antimicrobials as the mutations tend to confer resistance to more 

than one agent when low-level mutations occur [17–19,23].  
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1.3 Defining overuse / misuse and appropriateness of antimicrobial 

therapy 

If I am to consider overuse and misuse of antimicrobials, I must also define “appropriate” 

antimicrobial usage. During severe infection, which causes sepsis, there is evidence that 

early and appropriate antimicrobial therapy is a significant determinant of clinical 

outcome for patients [29,30]. However, the definition of appropriateness of antimicrobial 

therapy is often heterogeneous and commonly only refers to selection of the most 

appropriate antimicrobial agent for the organism that is being targeted [31,32]. This fails 

to account for other factors that are critical to the outcome of antimicrobial therapy 

(including the development of AMR), such as providing an optimal dose for the individual 

patient, ensuring an appropriate length of treatment, and providing the narrowest 

spectrum of agent(s) available for the organism being treated [8,31–33]. It also fails to 

take into account the other aspects of evidence-based practice, such as clinical 

judgement and the social context in which prescribing occurs [5]. 

In the context of antimicrobial stewardship, the Society of Healthcare Epidemiology 

(SHEA) define appropriate antimicrobial therapy as selection of the optimal drug regimen 

including: dosing, duration of therapy, and route of administration [33]. Other studies 

have explored the use of in-vitro susceptibility data, adherence to guidelines, expert 

opinion, and specific scoring systems based on literature such as Micromedex or Clinical 

Pharmacology departments [32,34,35]. However, wide variability in scoring systems  has 

made it challenging to identify a robust and reproducible measure of appropriateness of 

antimicrobial therapy [32].  

Within this thesis, I have opted to take a pragmatic approach built around the SHEA 

definition [33] linked with the objective measures described above, where available, to 
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take a holistic approach to exploring the concept of appropriateness [32,34,35]. This will 

consider a range of markers for appropriateness of therapy that are specific to the 

patient, the organism being targeted, the drug being administered, and the context in 

which the prescribing behaviour is being considered.  

By building on these factors I hope to ensure that the principles of EBM have been fully 

considered during the review of decisions that are made [1,5]. In particular, it is 

important to determine whether the best available evidence has been applied to the 

selection of an antimicrobial for the given situation. This includes, not just selecting the 

antimicrobial based on organism factors, but also taking into consideration the patient’s 

individual factors, preferences, and the wider social context in which the prescribing 

event has taken place [1,5].  
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1.4 Strategies to address Antimicrobial Resistance  

The work within this thesis must also take into account current strategies that have been 

deployed to address AMR. To address the growing threat of AMR, a number of core areas 

for research and development have been proposed. The core strategic areas of focus being 

used to address AMR are outlined in the Jim O’Neill report on AMR to the UK government, 

which highlighted 10 areas of urgent action [6,7]. These are:  

1. New antimicrobial development  

2. Rapid diagnostics 

3. Public awareness of the issue of AMR 

4. Improvements in sanitation and hygiene 

5. A one-health focus including antimicrobial use in agriculture and the environment 

6. Development of vaccines and alternatives to antimicrobials 

7. Surveillance of AMR 

8. Utilising human capital  

9. Development of an international coalition for action 

10. Development of a global innovation fund to support research and development  

Running throughout all of these key areas is the need to better utilise available data and 

generate more information to support the evidence-based practice of antimicrobial 

management [6,7]. This often falls under the term of antimicrobial stewardship (AMS), which 

will be described in more detail below.  

It is my belief that the development of techniques to optimise the use of current 

antimicrobials is of core importance. Not only will this enable us to prolong the life of our 

current antimicrobials, but also will allow lessons to be learnt and prevent the same mistakes 

being made with new therapies as they come onto the market [36].  
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1.4.1 Antimicrobial Stewardship 

In 2017, the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) 

study group for antimicrobial stewardship (ESGAP) reviewed the origins of AMS, citing the 

terms initial use in 1996 [37,38]. The authors cite that since its inception the definition of 

AMS has broadened significantly, moving from a locally focused set of interventions relating 

to the hospital level, to a tiered system that now encompasses national and international 

policy makers, ethical principles, and the individual prescriber [37].  

However, whatever level you evaluate AMS at a commonly acknowledged definition is the 

one cited by Pope and colleagues on behalf of the Infectious Disease Society of America 

(IDSA) [39]:  

“Optimising the indication, selection, dosing, route of administration and duration of 

antimicrobial therapy to maximise clinical cure or prevention of infection while 

limiting the collateral damage of antimicrobial use, including toxicity, selection of 

pathogenic organisms, and emergence of resistance” 

In their review of AMS, the ESCMID ESGAP agree with this definition but also add that the 

definition has begun to broaden to take into account the societal and cultural context that 

also govern our approaches to antimicrobial usage [39]. They also focus on the implied 

responsibility of the steward to make appropriate judgements. 

From my own perspective, I see this description given by the ESCMID ESGAP as a mirror or 

that defined by Sackett and colleagues for the practice of EBM [1]. AMS requires the 

selection of the most appropriate therapy for the individual situation, based on the best 

available evidence that the decision maker has available to them, considering the context in 

which the decision is being made. Furthermore, a problem with the focus on AMS has been 

that it has often been considered as a different problem to the optimal management of 

infections, sepsis, or preventative interventions as part of infection prevention and control 

(IPC) strategy [24,40,41]. This has only recently begun to be addressed by international 
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organisations such as the United Nations General Assembly, International Coordination 

Group on Antimicrobial Resistance, and the World Health Organisation (WHO) [42–44]. 

These three aspects (AMS, sepsis, and IPC) are all in-fact a continuum of “infection 

management” from the prevention of infection and AMR on one side, and the optimal 

management of sepsis and critical illness at the other.  

 

1.4.1.1 International focus on antimicrobial stewardship and antimicrobial resistance 

Internationally, there has been a significant focus on the problem of AMR and supporting 

AMS. Notably, in 2016 the United Nations General Assembly (UNGA) held a high level 

meeting setting out a political declaration aiming to support research into combatting the 

problem of AMR [45]. Furthermore, the WHO has supported this through the production of a 

policy package that aimed to support nations to engage with and address the issue of AMR 

[46,47].  

Surveillance has formed a key part of this focus with organisations such as the European 

Centre for Disease Control (ECDC), the Centre for Disease Control (CDC), and WHO all 

undertaking international surveillance programmes [48–50]. This has helped to document 

the rise in AMR and high rates of antimicrobial prescribing globally. It also enables policy 

makers to begin making decisions on critical areas of focus and drives the allocation of 

resources to the problem of AMR [42–44,48–50].  

Together, the high level meetings and generated evidence describing the rise in AMR has 

led to commitments from global leaders to address AMR through allocation of resources and 

setting of targets for the reduction in antimicrobial usage in human health, agriculture, and 

the environment [42–44]. 
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1.4.1.2 National focus on antimicrobial stewardship and antimicrobial resistance 

At national levels, the focus has primarily been on the development of policy to improve the 

usage of antimicrobials. The UK, USA, and Australia have taken been prominent in the 

development of national strategy [8,33,51]. In the UK, the department of health issued a five-

year strategy to combat AMR in 2013. This focused on seven core areas for future action [8]:  

1. Improving IPC 

2. Optimising the practice of prescribing antimicrobials 

3. Education, training, and public engagement 

4. New drug development 

5. Enhancing access to and the use of surveillance data  

6. Identification and prioritisation of AMR research needs 

7. International collaboration 

This strategy was led by the department of health, Public Health England (PHE), and the 

Department for Environment, Food, and Rural Affairs (DEFRA) in collaboration with experts 

in the field, research councils, and external consultees, such as international Non-

Government-Organisations [8].  

Examples of how this strategy was implemented in secondary care has been demonstrated 

through the implementation of:  

1. The “start-smart and focus” guidelines for antimicrobial prescribing [52,53]. A national 

AMS policy for all hospitals in the UK. 

2. The English surveillance programme for antimicrobial utilisation and resistance 

(ESPAUR) [24] to monitor and evaluate prescribing and AMR.  

3. The introduction of quality premium’s for antimicrobial prescribing in 2017, targeting 

reduction in important broad-spectrum antibiotics and Gram-negative blood stream 

infection rates [54,55]. 



 

29 
 

1.4.1.3 Local strategy for antimicrobial stewardship and antimicrobial resistance 

A high-level focus on AMR and improving antimicrobial prescribing linked with real-world 

experience of increasing drug-resistant infections in local hospitals has ensured the 

response of individual organisations to AMR. Within organisations, there are a wide variety 

of unique challenges to consider when addressing this issue [56]. At the organisational level, 

there is the need for strong leadership and the maintenance of visibility of AMR [56]. There is 

also the need to ensure that policy is implemented at the local level. This has led to 

interventions such as the creation of Director of Infection Prevention and Control (DIPC) and 

consultant antimicrobial pharmacists [56,57]. However, within organisations the influence of 

culture and team dynamics is also a critical barrier to changing behaviours when it comes to 

antimicrobial therapy [58–61]. This was first described by Charani and colleagues at the 

hospital Trust where my thesis will be conducted. Within this study, the authors described 

the significant influence of prescribing etiquette and the culture of non-interference in 

prescribing practices that are observed within teams and hierarchies [58]. This highlighted 

the critical importance of addressing cultural and social contexts at the local level when 

developing interventions to improve antimicrobial prescribing. This includes when 

considering evidence to support decision making. 
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1.5 Hypothesis 

For this thesis, I have generated the following hypothesis that I wish to investigate: 

 

Personalised decision support interventions have the utility to enhance 

antimicrobial management across secondary care. 

 

1.5.1 Aims and Objectives 

My aim is to investigate personalised decision support approaches to antimicrobial 

management and determine whether these provide an opportunity to enhance the 

precision with which we use antimicrobials within secondary care.  

In this case, personalisation will be defined as customisation of healthcare where 

medical decisions, practices, and products are tailored to the individual patient, 

prescriber, pathogen, or antimicrobial agent [62].  

Given the increased use of technologies such as electronic health records and clinical 

decision support systems (discussed below in Chapter two), I aimed to explore the role 

that technology can play in enhancing the precision of antimicrobial therapy in secondary 

care.   

 

Personalised approaches will target areas which are currently available for 

implementation in clinical practice and can help support evidence-based practice of 

antimicrobial usage: 

• Individualisation of antimicrobial selection using decision support technologies. 
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• Optimising the therapeutic outcomes of antimicrobial chemotherapy through 

mechanisms of precision dosing.  

• Enhancing patient engagement in the decision making process. 

• Exploring prescriber engagement with antimicrobial stewardship and 

antimicrobial resistance. 

 

To achieve this, I have set the following objectives: 

1. To review current clinical decision support systems for antimicrobial 

management. 

2. To understand the current decision processes prescribers’ use in secondary 

care during infection management. 

3. To explore the level that different clinical specialties are currently engaged with 

AMS and AMR across the UK.  

4. To understand patient experiences of engagement with antimicrobial decision 

making in secondary care and explore the consequences of this. 

5. To explore mechanisms of personalising antimicrobial selection through the 

development of artificial intelligence driven decision support tools. 

6. To explore the utility of individualised dosing of antimicrobials across secondary 

care pathways. 
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1.6 Project overview 

Figure 2. Overview of thesis. 
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CHAPTER TWO 

2.0 A systematic review of clinical decision support systems for 

antimicrobial prescribing 

2.1 Introduction 

Given the current focus on improving the accuracy of antimicrobial prescribing, research has 

turned to investigate whether technology can provide an avenue to achieve this. Globally, 

there has been a dramatic annual increase in the uptake of electronic health record (EHR) 

and computerised prescriber order entry (CPOE) systems [63–65]. This means that there is 

an increasing amount of routinely available electronic health data available to support 

decision making. In line with the increase in EHR system adoption, there has also been an 

increase in the reporting of clinical decision support systems (CDSS) for antimicrobial 

prescribing [66].  

CDSS are defined as computerised tools that help healthcare professionals (and patients) 

make decisions about clinical care. Outside of the field of infection, CDSS have been 

demonstrated to improve the practice of EBM [67]. Furthermore, they can enhance the 

efficiency and safety of healthcare [67]. Therefore, it seems logical that CDSS have been 

explored as a potential avenue for improving the practice of antimicrobial prescribing.  

CDSS to support antimicrobial management were first reported in the 1980’s.  Since then, 

several systematic reviews of experimental and quasi-experimental studies have explored 

the potential of CDSS to improve antimicrobial management at different levels of care [68–

70]. However, these reviews have only tended to focus on single care pathways, such as the 

hospital setting or primary care, they have failed to include qualitative studies, and have 
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focused on outcomes neglecting to evaluate the way that current CDSS are developed, 

implemented, and evaluated in practice.  
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2.2 Chapter objectives 

To inform the development and direction of my thesis, I decided to perform a systematic 

review of original literature (qualitative and quantitative) on CDSS. This aimed to understand 

the current scope of CDSS for antimicrobial management and analyse existing methods 

used to evaluate and report such systems.  

My aim was to use this review to create a pragmatic picture of CDSS for antimicrobial 

management and produce recommendations for future research and interventions, which 

may optimise the effectiveness of CDSS within this field. This understanding would form the 

basis of my subsequent direction taken within this thesis.  
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2.3 Method  

To review the current literature on CDSS for antimicrobial prescribing I performed a literature 

search. The Medline, EMBASE, HMIC Health and Management, and Global Health 

databases were searched from 1st January 1980 to 31st October 2015 using the search 

criteria described in Table 1. I selected broad based search criteria to capture all information 

technology products which have been labelled as “clinical decision support systems” for 

antimicrobial management.  
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Table 1. Search Criteria used for systematic review of clinical decision support systems for 

antimicrobial prescribing.   

Supplementary table 1. Search criteria used for systematic review of clinical decision support 

systems for antimicrobial prescribing 

 

     

 

 

 

 

 

 

Legend: * wildcard 
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2.3.1 Study selection 

I included all prospective and retrospective articles in English that reported original research 

on clinical patient or product outcomes of CDSS for antimicrobial management in primary 

and secondary care. Study designs included were:  

i. Randomised trials, including cluster randomised. 

ii. Observational studies, including case-control, cross-sectional, cohort, before-after, 

and interrupted time series. 

iii. Diagnostic tool evaluation. 

iv. Development reports that included the training of systems on real patient data. 

v. Mixed-method evaluations of CDSS. 

vi. Qualitative (survey, semi-structured interview, or ethnographic) studies. 

Interventions that focused on critical care were excluded from this review as the CDSS 

within these studies are implemented differently to primary and secondary care. Within 

critical care, these tools are used by doctors in conjunction with infection specialist advice, 

where these close working relationships significantly improve patient outcomes [71–75]. This 

is in comparison to primary and secondary care where CDSS are often used to supplement 

the expert support observed in critical care. As well as critical care, CDSS designed 

specifically for paediatric antimicrobial management were excluded. This was because of the 

differences in prescribing compared to adult antimicrobial management. Studies that did not 

present original data were not carried forward.  

Myself and another researcher (either Luke Moore [LSPM], Esmita Charani [EC], or Enrique 

Castro-Sanchez [ECS]) independently screened all of the study titles and abstracts against 

the inclusion and exclusion criteria described above. Data were extracted and tabulated for 

comparison (described below). Inter-rater reliability was assessed by calculating Cohen’s 

kappa statistic. Where there was disparity between opinions, we (myself and the other 

researcher) discussed these to reach a consensus. 
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2.3.2 Grouping decision support systems and data extraction  

Following the selection of studies for inclusion, myself and another researcher (either LSPM, 

EC, or ECS) independently reviewed each study. We grouped studies describing the same 

CDSS and extracting data for systems instead of studies. Data recorded included: 

i. The CDSS characteristics, including what decision support was provided, the 

platform, and system infrastructure. 

ii. The study design(s) used to evaluate the CDSS. 

iii. Any comparator or control used.  

iv. Primary and secondary outcomes were recorded when available with the outcome of 

these.  

Qualitative studies were analysed using a thematic synthesis approach [76]. For this, I used 

an inductive approach to perform line-by-line coding of the text. This allowed me to draw out 

descriptive themes from the study. I was then able to work with three of my colleagues 

(LSPM, EC, and ECS) to re-coded and discuss the studies and agree upon analytical 

themes that emerged from the text [76].   

Finally once data were extracted, the CDSS were evaluated against an analytical framework 

that I adapted from the Stage Model of Behaviour Intervention Development [77] and the 

Medical Research Council’s Developing and Evaluating complex interventions guidance [78]. 

The framework is outlined in Table 2. CDSS were evaluated as systems, with individual 

studies reporting the same system pooled.  

This framework uses four domains to evaluate CDSS:  

i. Development;  

ii. Feasibility and piloting;  

iii. Evaluation of the system; and 

iv. Implementation.  
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The description for each domain is outlined in Table 2. The aim of this framework was to 

allow me to evaluate CDSS based on core areas that should be reported. This would allow 

me to holistically review the evidence presented for a CDSS and provide rationale for why 

and how the tool was developed and how its effectiveness was evaluated [77,78]. 
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Table 2. Analytic framework for the assessment of clinical decision support systems applied to the studies within this review. 

Table 1. Analytical framework for the assessment of clinical decision support systems applied to the studies in  this review 

 

 

Legend: Analytical framework adapted from Stage Model of Behaviour Intervention Development [22] and the Medical Research Council’s Developing and Evaluating complex 

interventions guidance [23]. 

Domain 1: Development Domain 2: Feasibility & Piloting Domain 3: Evaluation Domain 4: Implementation  

Literature describing a system should 
demonstrate: 
 
A definition of stakeholder behaviours 
that are being targeted and how 
stakeholders have been engaged with 
during the development phase   
 
A rationale for how the intervention 
may influence these behaviours 
 
An outline of how the system was 
developed 
 
 

Literature describing a system should 
outline: 
 
How pilot testing was performed and 
the findings of this  
 
A understanding of the mechanism of 
behaviour change witnessed and how 
the intervention may be having its 
effect 

Literature describing a system 
should demonstrate: 
 
Efficacy testing in a “real world” 
setting 
 
High levels of control maintained to 
confirm internal validity of 
intervention 
 
Confirm how the intervention 
changes practice and quantify its 
impact 

Literature describing a system 
should outline: 
 
How it was tested in the real world 
with real-world providers  
 
Strategies for implementation and 
adoption of intervention that were 
used and how these may of 
impacted on observations 
 
Plans for (or evidence of) long term 
surveillance / follow up of the 
system  

Legend: framework adapted from the Stage Model of Behaviour Intervention Development [77] and the Medical Research Council’s Developing and Evaluating complex 

interventions guidance [78]. 
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2.3.3 Quality assessment 

During data extraction, it became clear that there was a wide heterogeneity in the type of 

studies that were to be included within this review of the literature. Therefore, I opted to use 

the Integrated quality Criteria for the Review Of Multiple Study designs (ICROMS) criteria 

[79] to evaluate the quality of studies supporting CDSS development and evaluation. 

ICROMS is a quality assessment tool for infectious disease studies focused on behaviour 

change interventions, such as CDSS. It allows the reviewer to evaluate multiple study 

designs including Randomised Control Trials (RCT’s) (including cluster-RCT’s), cohort, 

before-after, and interrupted time series studies, as well as qualitative studies [79]. However, 

certain study types are not included in ICROMS, such as cross-sectional and case studies, 

economic evaluations, diagnostic studies, and development reports containing patient data. 

For these types of study, I performed quality assessment using other validated frameworks 

within the literature. These were the Strengthening the Reporting of Observational Studies in 

Epidemiology (STROBE) criteria;[80] the Consolidated Health Economic Evaluation 

Reporting Standards (CHEERS) criteria [81]; and the Standards for Reporting Diagnostic 

Accuracy Studies (STARD), respectively [82]. For development reports, I was unable to 

assign a quality criterion and therefore opted to label these studies as a high risk of bias.   

Using my selected quality criteria, studies were scored as advised by ICROMS [79]. To 

achieve this, a study was awarded 2 points if a specific criterion was met, 0 points if the 

criterion was not met, and 1 point if it was unclear. The sum of the quality criterion was taken 

to represent the global quality score for each individual study. Within ICROMS scores <60% 

of the maximum attainable score are recommended to be labelled as high risk of bias / low 

reliability (referred to as “high risk”) [79]. Scores of 60-80% are recommended to be labelled 

as medium risk of bias / medium reliability (“medium risk”). Studies with >80% of the total 

score are recommended to be labelled as a low risk of bias / high reliability (“low risk”). 

Given that my objective was to capture all relevant literature, I decided not to exclude data 

based on the quality of evidence provided.  
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2.3.4 Summary measures  

Following data extraction and synthesis, I reviewed the CDSS information to identify current 

barriers and facilitators to success in practice. To achieve this, I classified major primary 

outcome measures from the studies into patient level, prescriber level, or unit/hospital level 

outcomes. The level of evidence, determined using the Grading of Recommendations 

Assessment, Development and Evaluation (GRADE) criteria [83], for the overall 

achievement of each primary outcome demonstrated within the literature was determined.  
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2.4 Results and discussion  

2.4.1 Study selection and characteristics 

Figure 3 describes the process of study identification and extraction that was undertaken. 

My initial search identified 402 individual titles and abstracts for screening. Of these, 131/402 

(33%) abstracts were carried forward for eligibility screening and 58/131 (44%) were 

included in the review. Cohen’s kappa for agreement was 0.88. The 58 studies selected for 

inclusion described 38 independent CDSS. Table 3 summarises the CDSS attributes. 

Supplementary Table 1 (Appendix 2) outlines the full findings from the evaluation CDSS.  

Using ICROMS, risk of bias for studies supporting CDSS were found to be low to medium 

risk in primary care (7/18;39% and 8/18;44%, respectively). This was in contrast to 

secondary care, where the majority of studies were medium to high risk (15/40;38% and 

22/40;55%, respectively) of bias.  
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Figure 3. PRISMA flow diagram outlining study selection for inclusion within my systematic 

review of clinical decision support for infection management in primary and secondary care. 
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Table 3.  Summary of clinical decision support systems evaluated. 

 

  

CDSS characteristics   n = (%) 

System setting 
  

 
Primary care 11 (29) 

 
Secondary care 27 (71) 

 
  

Types of decision support    

 
Antibiotic prescribing 29 (76) 

 
Physician feedback 1 (3) 

 
Alerts / prompts 7 (18) 

 Dose optimisation 3 (8) 

 De-escalation 2 (5) 

 Surveillance 2 (5) 

   

CDSS Platform   

 Integrated into EMR 28 (74) 

 On PDA device 3 (8) 

 Web-based application 5 (13) 

 Standalone software 2 (5) 

   

System Attributes   

 Rule based* 29 (76) 

 Causal Probabilistic Networks 1 (3) 

 Drug-bug logic 1 (3) 

 Pharmacokinetic modelling* 2 (5) 

 Fuzzy cognitive mapping 1 (3) 

 Guidelines 2 (5) 

 Predictive models 1 (3) 

 N/A 2 (5) 

Legend:  CDSS = clinical decision support systems; EMR = electronic medical records; 

N/A =not available; PDA = personal digital assistant.  

* One system had multiple attributes. 
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2.4.2 Decision support systems reported in the literature 

The majority of reported CDSS in the literature targeted antimicrobial prescribing 

(29/38;76%). All 11 CDSS in primary care focused on antimicrobial prescribing for specific 

syndromic presentation in adults. The syndromic presentations targeted were acute 

respiratory tract infections (ARIs) with two CDSS also including urinary tract infections (UTIs) 

[84–101]. In secondary care, CDSS that targeted antimicrobial prescribing tended to focus 

on empirical and prophylactic antimicrobial prescribing rather than individual syndromes 

[102–140] . The exceptions to this included CDSS that focused on prescribing in pneumonia, 

UTI, MRSA, Clostridium difficile infection [102–140]. Other aspects of decision support 

provided by CDSS included: electronic prompts / alerts (7/38; 18%), optimising antimicrobial 

dosing (3/38; 8%), supporting antimicrobial de-escalation (2/38; 5%), surveillance (2/38; 

5%), and prescriber feedback (1/38: 3%). 

Although several different platforms for delivering CDSS were reported, systems that were 

integrated into hospital EHR (28/38; 74%) were the most prominent. Other approaches 

included use of web-based platforms (5/38; 13%), personal digital assistants (3/38; 9%), and 

standalone software (2/38; 5%). The majority of CDSS reported infrastructure that used 

rules-based approaches to provide decision support (29/38; 76%). There were artificial 

intelligence approaches reported within secondary care that included the use of neural 

networks (2/38; 5%), association rule learning algorithms (1/38; 3%) and predictive models 

(1/38; 3%).  

 

2.4.3 Analysis of CDSS development and pilot and feasibility testing domains 

Comparing the observed results for CDSS for the analytical framework proposed in Table 2, 

a paucity of evidence exists to describe stakeholder involvement in the development and 

piloting of tools (domains 1 & 2). This includes limited evidence demonstrating pre-

intervention stakeholder analysis, exploration of end-user decision processes, and an 
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understanding of how interventions will fit into routine clinical workflows. For example, 

Andreassen and colleagues describe the development of an intelligent CDSS using Causal 

Probabilistic Networks (TREAT) for use in secondary care [122]. For this CDSS, the authors 

place much emphasis on the construction of pathophysiological model for the diagnosis of 

infection and antimicrobial selection. However, no evidence is provided to describe 

prescriber’s decision pathways and how the system will integrate into this process in clinical 

practice. In contrast, McDermott and colleagues report during the development of the eCRT 

study engagement with a small number of stakeholders (n = 33) in the design of the 

intervention based on behaviour change theories [97]. However, post implementation review 

of this intervention identified problems with variations in individuals prescribing behaviours, 

lack of end-user engagement with implementation, and rigidity of the guidelines incorporated 

limiting the use of the system [95]. These identified aspects of the clinician’s decision making 

process were not explored during the development phase. This observation of the 

requirement for greater end-user engagement in the development and pilot phases is 

supported by Zaidi and colleagues. Within their evaluation of CDSS development they 

highlight significant workflow related issues of their CDSS with junior medical staff during the 

post-intervention qualitative evaluation of their tool [134]. 

 

2.4.4 Analysis of evidence domain  

For domain 3 of the framework, examination of experimental design studies in primary care 

reveals primary outcome measures were heterogeneous. These tended to focus on the 

overall rate of prescribing of antibiotics either overall or for a defined syndrome. These 

studies demonstrated zero to minor clinically significant improvements in antimicrobial use 

[84–86,92,94,96,97]. Failures in demonstrating primary outcome measures were often linked 

to poor uptake of the CDSS intervention by clinicians [85,96]. For example, Linder and 

colleagues, reported a cluster-RCT of a rule-based (guideline driven) CDSS embedded in an 

EHR for antimicrobial prescribing in ARI’s [87]. During the intervention period, 21,961 visits 
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were made by patients with ARI’s. 11,954 visits were in primary care clinics where the CDSS 

was implemented. Of these, the CDSS was accessed and used in 6% of visits [86]. The 

study did not demonstrate improvement in reducing overall rates of prescribing for ARI visits 

(43% in control vs 39% in intervention, OR; 0.8, 95%CI;0.6 - 1.2). In experimental 

interventions where primary outcomes were met, such as the RCT reported by McGinn and 

colleagues testing the Clinical Prediction Rules (CPR) CDSS, outcomes focused on a rules-

based system designed for specific types of ARI. This study demonstrated a 10% reduction 

in antimicrobial prescribing (adjusted RR: 0.74, 95%CI; 0.60 - 0.92) [94]. However, clinical 

outcomes and unintended consequences of reducing antimicrobial prescribing for this cohort 

were not investigated. CDSS adoption rates in this study were reported as 62.8% [94]. 

Therefore, there is a large variation in uptake of such interventions between studies, which 

appears to influence the achievement of clinical and statistical outcomes.   

In secondary care, three experimental studies were identified evaluating two CDSS. 

Outcome measures were variable making comparison between interventions difficult. One 

trial, reported by McGregor and colleagues described an electronic alert system for AMS 

teams. This CDSS demonstrated a significant financial benefit with the trial stopped early 

after savings of over $84,000 were demonstrated over a three month period [135]. During 

this time, the intervention was used on 359 patients versus 180 controls [135]. The 

remaining two experimental studies reported were for a CDSS incorporating Causal-

Probabilistic Networks (TREAT). These studies did not show significant improvements in 

primary outcomes following adjustment. Primary outcome measures were the 

appropriateness of empirical prescribing and 180-day survival following treatment, 

respectively [124,126]. Analysis of the appropriateness of empirical therapy compared to 

prescriptions to subsequent organism sensitivity profiles. Within this evaluation, TREAT 

demonstrated a 9% improvement in appropriateness of prescribing [141]. However, 

adjustment for medical ward clustering and site, using multivariate regression, the findings 

did not reach significance (OR: 1.48, 95%CI; 0.95 - 2.29). This may have been partly due to 
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under powering due to financial and time constraints [141]. The second study of TREAT 

assessed 180-day survival. Once again, upon intention-to-treat (ITT) TREAT failed to 

demonstrate significant benefit. However, per-protocol analysis did demonstrate 

improvements in mortality using the system (6% increase in survival, p = 0.04) [126]. This 

suggests once again that clinical uptake of interventions may be a contributing factor, along 

with appropriate powering of cluster-RCT’s [126]. 

  

2.4.5 Analysis of implementation and prescriber engagement with systems  

For framework domain 4, I identified that many of the investigated CDSS failed to 

demonstrate significant results on ITT analysis. This appears to be linked with poor 

physician adoption of the CDSS. This finding is supported on review of published qualitative 

studies investigating CDSS implementation in both primary and secondary care. In these 

studies, a common theme emerges describing barriers to physician engagement with such 

systems. In primary care, a number of patient, physician, and technical aspects causing a 

lack of engagement with interventions were identified by McDermott and Litvin [89,95]. For 

example, both groups cite technical aspects, like usability and work flow of the intervention in 

normal clinical practice as potential barriers to use [89,95]. This was reported to be 

exacerbated when end-users felt that using the system would reduce time with or detract 

from engagement with the patient [89,95]. Furthermore, physician factors such as perceived 

level of clinical experience and agreement with conventional CDSS were reported as 

influencing adoption of interventions. Physician engagement was similarly found to be an 

issue by Zaidi and colleagues, who assessed the implementation of a CDSS in an Australian 

hospital [133,134]. Finally, a further area of importance was the lack of information available 

to describe mechanisms to support implementation and adoption of CDSS upon 

implementation. Furthermore, end-user follow up and long-term surveillance of interventions 

to support adoptions were also under reported.  
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2.4.6 Reported primary outcome measures of CDSS  

Figure 4 outlines the major primary outcome measures identified. Outcome measures were 

classified according to whether they demonstrated evidence at the hospital/unit, patient, or 

prescriber level. Evidence was rated as medium to high at supporting the benefit of CDSS at 

the hospital and prescriber level. However, there was little evidence to support the impact of 

CDSS on patient level outcomes, including mortality and experience of complications. 

Outcome measures tended to be proxy indicators of success, such as appropriateness 

compared to guidelines or rates of prescribing. They often failed to investigate direct patient 

outcomes from implementation of CDSS.  
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Figure 4. Primary outcome measures reported for CDSS in the literature.  
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Overall, the majority of evidence is low to medium in support of improved clinical 

outcomes. However, there is high quality evidence supporting CDSS at a unit/healthcare 

organisation level to reduce the cost of antimicrobial therapy. This is supported by the 

RCT reported by McGregor and colleagues in secondary care [135]. At the prescriber 

level, high quality evidence is available and suggests that CDSS have the potential to 

directly influence individual prescribing behaviours. For example, McGinn and 

colleagues reported a RCT which implemented clinical decision algorithms within a 

primary care EHR system. This demonstrated significant reductions in antimicrobial 

prescribing and investigations ordered at the individual physician level [94]. However, 

there remains a paucity of high quality evidence for patient specific outcome measures, 

such as mortality or complications of treatment selection, such as adverse drug events 

(ADE’s), healthcare associated infections (HCAI’s), and other unintended 

consequences. This type of evidence is probably not currently available due to the need 

for longitudinal follow up of individuals across complex care pathways and difficulties 

with powering such studies. 

 

2.4.7 Limitations 

There were several potential limitations associated with this systematic review that I 

must consider. Firstly, when considering impact of CDSS on different outcomes I was 

unable to perform meta-analysis of the data. I chose not to explore this option given the 

heterogenous nature of definitions used between studies for appropriateness of 

antimicrobial therapy and the fact that use of cluster-RCT design for experimental 

studies does not allow individualisation of data.  
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Secondly, many of the CDSS interventions appeared to have been implemented with a 

number of other AMS-based interventions, such as educational sessions and prescriber 

feedback [142,143]. In many cases, it was challenging to dissect the individual merits of 

each facets of the overall intervention, making the direct impact of the CDSS challenging 

to determine. Furthermore in certain cases, such as with TREAT, although the authors 

denied that the system was implemented with other supportive measures audit and 

physician feedback was performed during the study period, which may of influenced the 

study results [124].  

Finally, although broad based search terms were used to try and capture a broad 

representation of appropriate studies, some may have been missed. This includes 

commercially developed products that are not reported within the literature and were not 

within the scope of this review. My review methodology included hand searching of 

reference lists of identified studies in order to identify missed references where possible.      

 



 

55 
 

2.4 Conclusion and key messages 

On review and analysis of the literature, I observed that current decision support 

systems are associated with limited evidence of direct clinical impact on patient 

outcomes [66]. Furthermore, several key gaps were identified with the development and 

reporting of CDSS for antimicrobial management. The key gaps identified included: 

1. The narrow focus of systems currently under development, which tend to 

focus primarily on antimicrobial selection only. In the context of promoting 

evidence-based practice of antimicrobial management these tools fail to 

consider other key aspects such as the role of dose optimisation and patient 

engagement, which could augment this. 

2. A lack of flexibility and personalisation of interventions. This means that 

there is limited ability within current systems to adapt decision support to 

variations that are observed in clinical practice. Therefore, evidence provided 

tends to not be the best available for the individual clinical situation being 

considered by the clinician.  

3. Failure to consider the end-users workflow and needs during the design and 

implementation of interventions. 

4. Broad failures in the adoption of decision support interventions for 

antimicrobial management upon implementation in practice. Furthermore, there 

was a paucity of reporting of patient-facing interventions associated with the 

development of CDSS. 

5. A lack of consensus on how to define appropriateness of antimicrobial 

therapy makes comparison between interventions challenging.  
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These gaps have informed the development of my hypothesis, my aims and objectives, 

and the design of studies to be undertaken within this thesis as I outlined in Chapter one 

(section 1.5).  
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CHAPTER THREE 

3.0 How do physicians’ make decisions for the management of 

infections in acute care? 

Figure 5. Overview of thesis. 

 

 

 

 

 

 

 

 

 

 

 

3.1 Introduction 

The reasons for the misuse of antimicrobials in humans are complex and multifaceted. 

However, a number of factors have been described and investigated. At the individual 

prescriber level, prescribers often prioritise the management of the patient in front of 

them, paying little regard to the long term consequences (on future patients and 

generations) of overusing antimicrobials [144]. Moreover, the majority of antimicrobial 

prescribing is performed by individuals who are not experts in infection management and 
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may have limited understanding of antimicrobials and AMR [20,145–147]. At the hospital 

or team level, a number of barriers to the effective use of antimicrobials have been 

described, including the role of team hierarchies and prescribing etiquette, which can 

often hinder external interventions to optimise prescribing behaviours [58,60,148]. 

Finally, patient involvement in the decision making process for antimicrobial prescribing 

is now recognised to also shape the decisions made by physicians, with patient 

expectations and their understanding of antimicrobials important in guiding the choices 

made by physicians during the management of infections [149–151].  

It therefore seems appropriate that behaviour change interventions are now thought of 

as a cornerstone for improving the long term use of antimicrobials [60,61,148]. However, 

despite evidence describing the knowledge, attitudes, and cultural determinants of 

antimicrobial prescribing [58,145,152], a paucity of data exists mapping the clinicians 

decision pathway during infection management within secondary care. This has often 

been neglected during development, evaluation, and implementation of CDSS [66] as I 

outlined within Chapter two. 

When considering mechanisms for personalising approaches for antimicrobial 

management, such as developing new tools to support clinician decision making, it 

seems logical to first understand the end-user decision making pathway and what 

factors influence it. This detailed understanding of decision making may also facilitate a 

better understanding of areas for further development and customisation beyond the 

current scope of research within the field.  
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3.2 Chapter Objectives 

The objectives of this chapter are:  

1. To investigate and map the decision making process of individual physicians 

managing acute infections within secondary care. 

2. To determine the factors that influence different aspects of physician decision 

making for infection management. 

3. To determine potential target areas for future personalised interventions to 

enhance decision making for antimicrobial management.  

 

 

 

 



 

60 
 

3.3 Methods 

3.3.1 Study design 

Firstly, it was important to determine the optimal method to explore and understand the 

decision making process of physicians during the management of acute infections in 

secondary care.  

Within this study, I did not expect there to be a single truth or reality (the ontology) for 

each situation that would be evaluated. Therefore, this would require interpretation to 

discover the underlying reasons that drive individual physicians to make the decisions 

that they do (epistemology). I would therefore need to try to understand the individual’s 

perception of reality in the context that it is described [153–155]. To achieve this, I felt 

that a qualitative approach would be optimal. This would allow me to interpret and 

understand the physician decision making process through analysis of in-depth 

interviews with physicians, which would explore the choices that they make when 

managing infections. The theoretical perspective that I believed would best allow me to 

achieve this was by following an interpretive paradigm using Grounded Theory 

methodology [153–155]. This would be achieved by employing semi-structured 

interviews. 

Briefly, Grounded Theory is a qualitative methodology that was developed in the 1960’s 

with the aim of bringing some of the perceived rigors of positivism based research into 

the qualitative field [153–155]. It was developed to allow data analysis to begin in 

advance of any prior assumptions, with theories emerging during the data analysis 

process, thus allowing theories to be “grounded” in the data [153–155]. As a physician 

conducting this study, it is important for me not to make prior assumptions or theories 

about approaches that others take whilst making decisions during infection 



 

61 
 

management. Therefore, I felt that the Grounded Theory approach would be more 

appropriate than, for example, trying to act as an observer on the wards and 

triangulating my findings with interviews (ethnography) [153]. This is because I am very 

familiar with the setting that I would be investigating. I have previously worked in the 

hospitals where the study would take place as a doctor managing infections. However, 

by choosing Grounded Theory I also need to ensure that I address the concerns over 

reflexivity when using this methodology [155]. By acknowledging this limitation whilst 

planning my study design; I hoped that this would allow me to be mindful of it during the 

data analysis process and put steps in place to help increase my awareness during this 

process.   

To ensure that reporting of this study was to a high standard I chose to report it in line 

with the Consolidated Criteria for Reporting Qualitative Research (COREQ) checklist 

[156]. This is a 32-point checklist developed by Tong and colleagues, through a 

systematic review of the literature [156]. It provides a comprehensive guide, reporting all 

checklist items in one of three domains:  

(i) The research team and reflexivity: Characterised as describing both the 

research team’s personal characteristics as well as the relationship of the interviewer 

with the participants.  

(ii) Study design: Including theoretical frameworks, participant selection, the 

setting that the study was performed in, and how data were collected.  

(iii) Analysis and findings: Including describing how data were analysed and 

how it should be reported.  
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3.3.2 Setting  

Recruitment of physicians took place across Imperial College Healthcare NHS Trust 

(ICHNT), which comprises three main university teaching hospitals in North West 

London. Interviews were semi-structured face-to-face interviews with individual 

physicians. No one else was present for the interviews apart from myself (who 

performed all interviews) and the interviewee.  

 

3.3.3 Researcher background 

I personally undertook all interviews within this study. I am a junior doctor, who before 

commencing my PhD worked for one year at ICHNT. Therefore, I am familiar with the 

protocols and procedures for infection management within the Trust, particularly in 

certain clinical specialties (namely acute medicine and haematology). At the time of 

undertaking the interviews, I was no longer working within the Trust, acting as a full-time 

research student. I had led several semi-structured interviews prior to undertaking this 

study as part of other antimicrobial related research projects (not within ICHNT) [157] as 

well as received formal training in qualitative research methods as part of a two year 

postgraduate diploma in medical education that I have previously undertaken with 

Cardiff University.  

 

3.3.4 Participant recruitment 

The sampling frame that I selected was medical physicians who were not specialists in 

infectious disease or microbiology (defined as either; (i) clinical specialties who practiced 

general internal medicine, such as cardiology, respiratory, and geriatric medicine; or (ii) 

augmented care specialties, such as haematology and nephrology). Medical physicians 
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from those in training (i.e. foundation year 1 to specialist trainees) to consultant grade 

were included.  

As most antimicrobials in the UK are prescribed by doctors, I excluded other healthcare 

professionals involved in infection management (e.g. pharmacists and nurses) from 

inclusion in this study. Primary care physicians, surgeons, intensive care specialists, and 

focused specialties such as psychiatry were excluded. This was for two reasons. Firstly, 

many of these specialist areas tend to engage in a broader range of antimicrobial 

prescribing activities that are out of the scope of my thesis (e.g. prophylactic therapy in 

surgery) and often rely on support with infection management through multi-disciplinary 

(MDT) collaboration with medical and/or infection teams. This MDT approach has been 

shown to improve patient outcomes of infection within these settings [71–75,158,159].  

As the goal of this study was to understand the decision pathways used by potential 

end-user of CDSS for managing infections, infection specialists were also excluded from 

this study.  

Using purposive sampling, I invited physicians to participate in the study [154,160]. This 

was facilitated through a single email being circulated to the hospital general medical 

doctors mailing list, which was then followed up with single targeted emails to identified 

clinicians, who I felt would be suitable for purposive sampling. All respondents to the 

emails were contacted a second time to organise a time to participate in the interviews 

followed by a final email on the day of the interviews confirming their attendance. 

Participants were purposively sampled at different levels of training (on-rotation, 

specialist trainee, and consultant) with deliberate selection. This aimed to reflect the 

diversity of medical specialties within the hospital environment. To achieve this, I 

sampled physicians in the eleven major medical specialties (excluding infectious 

diseases) within the hospitals who were responsible for in-patients. Participants were 



 

64 
 

contacted via email and invited to participate in face to face semi-structured interviews. 

Two follow up emails were sent if there was no reply from the initial invitation at weekly 

intervals. I stratified respondents to the email into on-rotation (foundation years to core 

medical training), specialist trainee, and consultant physicians for interviews.  

All participants were consented to participate and be anonymously audio recorded 

during the interviews. All interviews were conducted between August 2015 and April 

2016. I worked with a multidisciplinary team comprising two infection doctors, a 

pharmacist, a nurse, and a social scientist all of whom worked in the field of AMR. With 

their support we developed and piloted a 10 question semi-structured interview guide 

(Appendix 3) which would act to structure my initial interviews with participants. This 

was piloted on a junior doctor, a research pharmacist, and senior infection doctor. 

Participants from each of the stratifications described were interviewed [154,160,161] 

and these were continued for each stratified grade and specialty until saturation was 

reached and no new themes were found to emerge [154,155,160,162]. All data were 

anonymised with only myself knowing participant identities. The interviews were audio 

recorded and then transcribed verbatim. I also took notes at certain times during the 

interviews, often noting aspects that I wanted to return to at a later point in the interview 

or highlighting key emotions or actions that may not necessarily be reflected in the audio 

recording. No repeat interviews were performed and transcripts were not returned to 

participants for comment or correction.   

 

3.3.5 Ethics 

The study protocol was submitted and reviewed by the West London Regional Ethics 

Committee (REC) in August 2015. It was considered to meet criteria for monitoring 
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under service evaluation governance structures, which were subsequently registered 

with ICHNT (REC 15/LO/1269 / ICHNT; Service Evaluation SE113). 

 

3.3.6 Data analysis 

As per Grounded Theory, an iterative approach was applied to data analysis with 

simultaneous analysis and interviewing undertaken [153–155]. Following rounds of 

analysis, future interviews were guided by findings and theories as they emerged from 

the data [154,155,160,162]. NVIVO Pro 11.0 (QSR Software Products) software was 

used to support data analysis.  

The initial analysis was performed by me alone, reviewing all transcripts and performing 

initial line-by-line coding. Emerging themes and theories were then discussed with the 

multi-professional team who were described above in section 3.3.4. This aimed to 

increase reflexivity and allow me to be more aware of my own perceptions during the 

data analysis [163]. I also sought out deviant statements that could contradict emerging 

themes to improve the rigor of the analysis and ensure that theories and themes were 

appropriately challenged [155,164]. Thus, this allowed theoretical sampling to be 

undertaken during subsequent interviews until it was deemed that theoretical saturation 

was achieved [165]. This was defined as being when all of the concepts within the 

substantive theory surrounding physician decision making for infection management 

were felt to be understood and supported by the data [154,165]. 
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3.4 Results 

3.4.1 Data analysis 

In total, 34 physicians from 10 specialties responded to the invitation email agreeing to 

participate in the study. However, the study was stopped at 20 participants as saturation 

was reached. Seven of the participants were on-rotation physicians, four were specialist 

trainees, and nine were consultants. Of those that participated, the majority were male 

(12/20, 60%) and the majority of participants were from acute internal medicine (4/20, 

20%), haematology (3/20, 15%), care of the elderly (3/20, 15%), and respiratory 

medicine (3/20, 15%). The remaining participants were from gastroenterology (2/20, 

10%), cardiology (1/20, 5%), endocrinology (1/20, 5%), stroke medicine (1/20, 5%), 

clinical pharmacology and therapeutics (1/20, 5%), and renal medicine (1/20, 5%). The 

interviews ranged in duration from 12 minutes to 32 minutes, with a median length of 20 

minutes.  

On final analysis of coding performed within this study, a total of 178 initial codes were 

generated, these were supported by a total of 1094 references from the 20 transcripts.  

 

3.4.2 Mapping the decision making process 

Analysis and interpretation of the data identified six themes that describe the stages of 

reported physician decision making processes during infection management. Physicians 

reported that they begin decision making by estimating the likely risk of an infection 

being present in this particular situation. They then systematically add further information 

in a stepwise process. This allows them to optimise their decisions on diagnosis and 

management in a dynamic fashion. Although this process could also be viewed as 
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cyclical and in fact even branching, with physicians returning to step 1 every time they 

re-assess the patient or hand over care to another physician, the steps and common 

variables reported as considered within each step have been mapped in a linear fashion 

for simplicity in Figure 6. 
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Figure 6. Reported decision making pathway for infection management in secondary care.  

 

 

 

 

 

 

 

Legend:  O2 = Oxygen; GCS = Glasgow Coma Scale; CRP = C-Reactive Protein; WCC = White Cell Count; FBC = Full Blood Count; SIRS = Systemic 

Inflammatory Response Syndrome. Represented in a linear fashion for clarity. 
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Table 4 provides supporting quotations for the thematic construction of the decision 

making pathway described in Figure 6. Physicians report that the antibiotic decision 

making process begins by looking for changes in the patient’s physiological parameters, 

with temperature being an important factor at this point. The second reported stage of 

the decision making process involves attempting to localise and confirm that infection is 

present in the patient. This was reported to involve searching for symptoms reported by 

the patient or their carer / family and then backing this up with identification of clinical 

signs. Thirdly was the review of current and planning of further investigations. C-reactive 

protein (CRP) was reported as being regarded as a key biological indicator of infection 

during infection management. Following this step, physicians reported using the 

information that was present in steps one to three to determine the severity of the 

infection. Judgement of this was widely reported to be based on the overall “clinical 

picture” created during steps one to three. Interestingly, more junior physicians reported 

a higher reliance on the use of diagnostic criteria such as the “septic six” or “Systemic 

Inflammatory Response Syndrome (SIRS) criteria” during this process compared to 

senior physicians. These criteria are evidence based scoring systems that have been 

designed to help physicians determine the severity of an infection, in particular whether it 

is classified as sepsis [166].  

Following determination of the severity of the infection, physicians reported step five as 

primarily a decision regarding the initiation of antimicrobial therapy. Within this step local 

microbiology guidance (written or electronic) provided within the hospital was a major 

factor that determined what therapy would be prescribed. However, it must also be noted 

that physicians, particularly more senior individuals, reported that therapy would not 

always be initiated at this point with deferring therapy (or ‘watch and wait’) also regarded 

as an option. The final step is the review and refinement stage, which can occur in two 
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separate and or overlapping routes. The first of these was reported as an internal 

process, with the individual physician returning to stage one of the decision making 

pathway and reviewing each stage. This allowed them to revise their decision making 

based on dynamic changes to individual components over time. The second route was 

reported to be external review by another physician (often reported as more senior or 

specialist). By taking this pathway the new reviewer would use stages one to five to 

review and refine the management decision made by the prescriber in a similar fashion 

as described above.   
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Table 4. Thematic construction of medical physicians’ decision making pathways for the 

management of acute infections in secondary care.  

   

No. Quote  

1 

“I think I know when would be an easy enough time as a junior doctor 
to go, yeah, I think this warrants Tazocin, this warrants cefuroxime IV.  
So for some drugs I think you have a little bit more of an ease of 
prescribing because you're not too worried about the downsides” 

On-rotation acute medicine [1] 

2 

“So nights, I think obviously it becomes much more of a zoo doesn’t it 
really, so people tend to start broad spectrum agents without really 
looking through previous microbes and patients have a tendency to stay 
on that till it’s reviewed in daytime hours” 

On-rotation acute medicine [2] 

3 
“if the patient is septic or something, you have to start antibiotics within 
your hour, Sepsis Six, but then you’re also under pressure to get the 
right source” 

On-rotation acute medicine 

[2] 

4 
“Yeah, definitely in terms of how you go but I think anyone who’s done 
hospital medicine now sees that Tazocin is basically the port of call for 
most things” 

On-rotation cardiology 

5 

“When I look back at years gone past, I think I was probably quite gung-
ho with antibiotics because it was the easy option because you didn’t 
want to get in trouble and I’m sure plenty of patients in [region - UK] got 
BenPen [benzylpenicillin] and Cipro [ciprofloxacin] when they might 
have lived without it.  But this is a situation in which, I think the way I’ve 
changed is that I tend to look at what the risks of deferring here versus 

not” 

SpR Cardiology 

6 

“I've got a bit of a nice cushion from all the senior levels about even if I 
prescribe the wrong antibiotic, I don't mean of course prescribing 
penicillin when someone's penicillin allergic, that's not what I mean. I 
mean prescribing for example flucloxacillin when it's an E.coli bacteria, 
wrong bacteria, wrong antibiotic of choice or bacteria, but an antibiotic 
nonetheless.” 

On-rotation acute medicine [3] 

7 

“I think a lot of people, myself included, would say if you are admitting 
the patient to hospital and they have an infection severe enough to 
come into hospital then you should, and I know this is not what 
microbiologists would say, but in my mind you like to feel like you are 
doing something that they couldn’t have at home and that’s why you 
give them some intravenous antibiotics when they come into hospital 
with a view to stepping them down very quickly afterwards, and I think 
it makes everyone feel better whether it’s the patient and more 
significantly the doctor” 

Consultant General Internal 

Medicine 

8 “I would not expect an SHO to decline to give antibiotics” SpR Geriatrics 
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3.4.1.2 Factors influencing decision making 

In addition to the six themes defining the physician decision making pathway; there were 

several key themes that emerged from the interviews describing factors that influence 

the decision making process beyond the components that map onto the pathway in 

Figure 6. Two of these were hierarchical systems in teams and prescribing etiquette, 

which have previously been reported in the literature and therefore will not be analysed 

in detail within this chapter [58,59,167]. However, several concepts that had been less 

widely reported at the time of this study in 2016 were also identified. These themes were 

associated with stopping/de-escalating therapy, the role of guidelines and microbiology 

advice, and physician’s feelings of responsibility to provide optimal care for the patient in 

front of them. Many of these factors appeared to mostly influence the latter half of the 

decision pathway, surrounding initiation and review of antimicrobial therapy and will be 

explored in detail below.  

 

(i) Physician skills used when assessing the patient 

During the interviews, a common theme reported was the feeling of overall responsibility 

of the team, and in particular the consultant, for the patient under their care (Table 5). 

These feelings of responsibility were reported to lead consultants to make autonomous 

decisions regarding the management of their own patients. To support this, they 

reported using previous experiences and accumulated knowledge from years of clinical 

practice to make subjective assessments of the patient. In contrast were junior team 

members who whilst often making the initial decision about the management of patients 

with acute infections, were not considered a final decision maker. This task was reported 

as remaining with the consultant who perceived their job in antimicrobial management as 

being to review and refine the decisions of junior colleagues.  
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This perception of responsibility was also projected down through the medical team 

hierarchy with specific expectations placed on junior colleagues’ actions. For example, 

during the interviews on-rotation doctors reported how they begin to develop their clinical 

assessment and decision making skills through clinical practice. They are usually the 

first individuals to respond to an unwell patient, and during the assessment of the patient 

tend to rely on objective parameters, such as the patient’s heart rate or temperature. 

These were reported as more highly considered compared to more subjective measures, 

such as clinical examination and the general impression of the patient. However, these 

subjective factors were reported to be much more important during consultant and senior 

registrars’ assessment and decision making.  

Furthermore, on-rotation doctors report a significant fear of missing the patient with 

sepsis. It appears that this fear of sepsis, coupled to the expectations that are placed on 

juniors to prescribe antibiotics, often drives inappropriate views and decision making 

regarding antimicrobial prescribing. This culminates in there being an overwhelming 

need to commence antimicrobials as soon as a patient is suspected of having an 

infection so as not to miss sepsis. 

 

(ii) Antibiotic prescribing is a key component to providing optimal care 

A further theme that emerged from analysis of the transcripts was a recurring factor of 

the physician’s view of what was optimal care for the individual patient with an infection 

in hospital. In particular, when prescribing antibiotics for a patient requiring 

hospitalisation with infection, intravenous therapy was often felt by the physician to be 

more optimal than oral. This was regardless of whether the decision was evidence 

based or not. Table 5 also provides supporting quotes in for this theme.  
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Table 5. Selected quotes surrounding participants’ experiences and expectations of 

prescribing antibiotics. 

  
 

No. Quote  

1 

“I think I know when would be an easy enough time as a junior doctor 
to go, yeah, I think this warrants Tazocin, this warrants cefuroxime IV.  
So for some drugs I think you have a little bit more of an ease of 
prescribing because you're not too worried about the downsides” 

On-rotation acute medicine 
[1] 

2 

“So nights, I think obviously it becomes much more of a zoo doesn’t it 
really, so people tend to start broad spectrum agents without really 
looking through previous microbes and patients have a tendency to stay 
on that till it’s reviewed in daytime hours” 

On-rotation acute medicine 
[2] 

3 
“if the patient is septic or something, you have to start antibiotics within 
your hour, Sepsis Six, but then you’re also under pressure to get the 
right source” 

On-rotation acute medicine 
[2] 

4 
“Yeah, definitely in terms of how you go but I think anyone who’s done 
hospital medicine now sees that Tazocin is basically the port of call for 
most things” 

On-rotation cardiology 

5 

“When I look back at years gone past, I think I was probably quite gung-
ho with antibiotics because it was the easy option because you didn’t 
want to get in trouble and I’m sure plenty of patients in [region - UK] got 
BenPen [benzylpenicillin] and Cipro [ciprofloxacin] when they might 
have lived without it.  But this is a situation in which, I think the way I’ve 
changed is that I tend to look at what the risks of deferring here versus 

not” 

SpR Cardiology 

6 

“I've got a bit of a nice cushion from all the senior levels about even if I 
prescribe the wrong antibiotic, I don't mean of course prescribing 
penicillin when someone's penicillin allergic, that's not what I mean. I 
mean prescribing for example flucloxacillin when it's an E.coli bacteria, 
wrong bacteria, wrong antibiotic of choice or bacteria, but an antibiotic 
nonetheless.” 

On-rotation acute medicine 
[3] 

7 

“I think a lot of people, myself included, would say if you are admitting 
the patient to hospital and they have an infection severe enough to 
come into hospital then you should, and I know this is not what 
microbiologists would say, but in my mind you like to feel like you are 
doing something that they couldn’t have at home and that’s why you 
give them some intravenous antibiotics when they come into hospital 
with a view to stepping them down very quickly afterwards, and I think 
it makes everyone feel better whether it’s the patient and more 
significantly the doctor” 

Consultant General Internal 

Medicine 

8 “I would not expect an SHO to decline to give antibiotics” SpR Geriatrics 
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(iii) Ambiguity in stopping / de-escalating antibiotic therapy 

Whilst junior physicians report having a huge weight of expectation to start antibiotics as 

quickly as possible in patients suspected of having an infection, the opposite appears 

true of them with regards to stopping or de-escalating therapy (Table 6). A key factor 

reported throughout the interviews was that on-rotation doctors are not expected to stop 

or de-escalate therapy, with this responsibility seen as something only consultants and 

specialist registrar trainees (SpR) undertake. Furthermore, it was widely reported by 

junior physicians that there is often variable feedback on the decisions that they have 

made following review and refinement by an external reviewer. This caused a great deal 

of frustration with junior prescribers, who often did not fully appreciate why their 

decisions had been over-ruled or changed. This was reported to leave them feeling that 

they do not develop a deep understanding of the skill of antimicrobial prescribing, due to 

a lack of feedback and explanation.  

A further area of frustration reported by junior doctors was the heterogeneity in the 

approaches of senior clinicians to stopping or de-escalating therapy. When this was 

combined with a paucity of feedback it was reported to often deter trainees from 

attempting to make or suggest changes to antimicrobial therapy. This is something that 

was supported by senior participants, who reflected on the current lack of evidence base 

for many of the decisions they make surrounding length of treatment for example.  
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Table 6. Reported expectations around the review and de-escalation of antimicrobial 

therapy. 

  

No. Quote  

1 

“We are responsible for everything on the ward as well as all the 
decisions and I think we’ve got these practices in place which make sure 
that the antibiotics are stopped at a particular time when they needed to 
be stopped” 

Haematology consultant 

2 

“I'm complete disempowered [to stop antibiotics], completely because 
they're so complicated and the consultants who know their patients 
have their own ways of prescribing.  It's very unusual that anyone would 
actually explain to you what they're thinking.  I think I've had one 

explanation which was like a ray of sunshine” 

On-rotation renal 

3 

“In terms of stopping antibiotics yeah, I think stopping antibiotics is a 
very nebulous thing in itself... it is pretty random and is not really a huge 
amount of evidence out there.... I feel very happy with making decisions 
as to whether to stop after three times, seven ten days whatever.  I don’t 
think that’s a big issue” 

Consultant general medicine 

4 

“So I feel quite, I wouldn't say disempowered, but I feel like the seniors 
make most of the decisions. So I'm quite reluctant to make any 
decisions about [de-escalating] antibiotics” 

On-rotation gastroenterology 

5 
“Stopping them is generally, from my experience, has been a senior’s 

[decision]” 
On-rotation acute medicine [1] 

6 

“De-escalating can be a little bit more tricky, it's very much individually 
based. [For] Some people it's easier but if there's no plan in place, if 
someone hasn't said for five days, go for IVs and then deescalate to PO 
I would be hesitant.  I would tend to want to get a little bit of 
reassurance.”  

On-rotation acute medicine [2] 
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(iv) The role of guidelines and clinical microbiology advice 

Despite reports of senior physicians often acting autonomously and making decisions 

due to the feeling of overall responsibility for their patients, it was also clearly reported 

that antimicrobial prescribing guidelines and clinical microbiology services have a large 

influence on the decision making process. Within this study, on-rotation and registrar 

physicians reported a rigid adherence to guidelines (Table 7). A common point-of-view 

was that they realise that strict adherence is the expectation placed upon them by more 

senior colleagues and the hospital. As highlighted above, consultants reported their role 

was to act as the overseers of management decisions, often reviewing the decisions 

made against guidelines and then refining either the diagnosis or the prescribing 

decision made to ensure concordance with guidelines where they see it as appropriate. 

However, they also retain a level of autonomy over the guidelines driven by their overall 

responsibility for the individual patient and their desire to provide optimal care for them. 

This allows them the flexibility to be able to adapt guidelines based on their own 

experience and feel for the situation. 

A similar situation was reported regarding clinical microbiology services provided within 

the hospital. For on-rotation and registrar physicians, these services and the advice 

given is seen as valuable and convenient. This is viewed as an easy point of access, 

being referred to as a safety-net for challenging decisions that are not covered in the 

local antimicrobial guidelines. Furthermore, they can also be called upon when a junior 

physician is not confident in the treatment decision that they have made. It is at this point 

that physicians tend to “just call microbiology and ask….”. However, senior physicians 

tend to view the reliance on this service in a more sceptical fashion when it comes to 

supporting the making of what is viewed as optimal decisions. Some of the issues 

considered by senior clinicians include:  
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i. Poor communication pathways during microbiology discussions,  

ii. A lack of microbiologist responsibility for the outcome of treatment decisions that 

they recommend, and  

iii. A lack of continuity in the service provided due to rotation of trainees.  

This perceived lack of responsibility led consultants to report that they are often reluctant 

to change decisions based on the advice of junior microbiology or infection colleagues, 

such as registrars. This was reported as being driven primarily by concerns that 

members of the other team may not be fully aware of all the patient factors outlined in 

the decision process for the reasons outlined above.  
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Table 7. Selection of participant quotes surrounding their antimicrobial guidelines, clinical microbiology services and some problems 

associated with information provided by these sources. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reliance on guidelines  

Quote  

“Does that really change your management?  With the majority of cases it hasn't.  So you strap them on the standard hospital 
protocol for CAP/infective exacerbation and you tend to just carry it on” 

On-rotation acute medicine [1] 

“Well because we’re almost held down now by [antibiotic app guidelines] or whatever your Trust uses, so you end up, if you 

haven’t done something by that choice you will go, or normally a pharmacist will go, why haven’t you done that?” 
On-rotation acute medicine [2] 

“I do find antibiotic guidelines very helpful, and actually in the last couple of trusts I’ve worked in, they’ve been so comprehensive 
that I’ve not really used any other sources at all” 

SpR geriatrics 

“I think in terms of decision making I have to say I don’t keep up to date with the antibiotic formula because I look it up if I need 

it” 
SpR cardiology 

“Quite often on a post-take ward round say, why are we giving this, has anyone checked the policy, is this in line with policy 
because I don’t think it is?” 

Consultant respiratory 

  

Reliance on microbiology  

“If I think it clearly isn't within guideline or I’m not sure, it doesn't easily fit into the guideline I’m going to say, speak to micro” Consultant respiratory 

“I think when you call the microbiologist the fact that you’ve made the call has already told them that you’re concerned so you’re 

almost saying, I want a change, give me further guidance” 
Consultant geriatrics 

“If the patient has a lot of allergies for example, then that often makes it more difficult and I often end up speaking to micro if 
that's the case” 

On-rotation respiratory 
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Problems with guidelines and microbiology 

1 
“I mean I’m a complete pedant I hate this idea that microbiologists have just given antibiotics broad spectrum for sepsis of 

unknown origin because that’s not what I’m about as a physician” 
Consultant gastroenterology 

2 

“I think the difficult thing which sometimes arises that microbiology are often the more conservative end of the antibiotic 
spectrum and say, OK, you’ve had your course, stop and I may agree with that as a registrar.  But the problem is that actually 
suggesting for me to do it is the wrong person because it’s my decision once  I’ve seen the patient on the ward round, but once 
you’ve got a consultant [microbilogist] that’s come and ratified the decision  then that becomes their decision” 

SpR cardiology 

3 
“They tend to give more of a patient specific approach but the difficulty in that is that they haven't seen the patient.  So they're 
sort of just giving you advice over the telephone” 

On-rotation gastroenterology 

4 

“A lot of the time is I would maybe rather wait and speak to someone whose opinion and knowledge seems more valuable, 
where sometimes maybe the opinion that you get out of hours [from junior microbiologists] is someone who is just answering 
a question to get it dealt with, and so it’s too broad, it’s too much” 

Consultant respiratory 

5 
“Well it's not patient specific [local guidelines] so it's quite generalised and it won't always have all the information about the 
patient” 

On-rotation respiratory 

6 
“I always think that people and especially microbiologists recommend changing antibiotics far too soon.  You ring up a micro 
registrar who just says, oh immediately I want to change from Augmentin to Tazocin.  Well why?” 

Consultant gastroenterology 
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3.5 Discussion 

As of December 2016 when this study was published [168], this was the first study of its 

kind to look at describing the decision making pathway of physicians managing acute 

infections in secondary care in this manner. This has provided an insight into how 

decision making is perceived by antimicrobial prescribers who are the targets of decision 

support interventions that I aim to explore within this thesis. Moreover, the understanding 

generated through analysis of the decision making process has provided me with a 

structure to explore the potential impact of current decision support tools identified in my 

review of the literature (Chapter two) on the decision making process. 

   

3.5.1 Physician decision making  

Physicians reported a common stepwise approach to decision making during acute 

infection management in secondary care. This followed a Bayesian-like process with 

new information constantly being considered against prior knowledge or assumptions to 

constantly review and refine the decisions being made. Despite there being a common 

overall approach, a number of factors also appeared to be weighed differently depending 

on the specific situation being described. Many of these factors tended to focus on the 

later phases of the decision process, and in particular, decisions surrounding 

antimicrobial management.  

Overall, there were four defined spheres of influence that appeared to affect the reported 

decision making pathway. Thematically, these were identified on analysis and 

interpretation of the data as acting either consciously or subconsciously. I chose to 

classify the themes as: 
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  (i) Implicit factors influencing decision making: For example, the variables 

outlined in the decision mapping diagram in Figure 6 above. These factors are known 

and acknowledged by both the individual prescriber and the wider medical team and are 

influences that are commonly incorporated into guidelines and protocols for antimicrobial 

management. For example, the start-smart-and-focus campaign within the UK [53].  

 (ii) Explicit factors influencing decision making: These are often blind spots 

to the individual prescriber but may be appreciated by others within the team. For 

example, the influence of team hierarchies and prescribing etiquette on decision making 

[58,60,148].   

 (iii) Internalised rationale (or hidden reasoning) for decision making: This is 

known to the individual prescriber making the decision but is often not externalised to 

others. For example, when senior decision makers alter antimicrobial prescriptions but 

do not feedback their rationale to other members of the team who made the earlier 

prescribing decisions. This was reported as causing confusion and frustration when 

reasons for decisions are not shared beyond the individual who has made them.  

 (iv) Subconscious influences on decision making: These were neither 

identified by the individual or wider medical team within this study but are likely to have 

an influence on decision making. This could potentially include the role of other 

disciplines such as pharmacists and nursing staff who have been demonstrated to have 

a role in promoting optimal use of antimicrobials in several settings [169,170]. However, 

within this study, these factors were seldom reported to play a major role in the majority 

of interviews, even after exploration of this directly with participants during questioning. 

This finding could have been due to the exclusion of none prescribing healthcare 

professionals from this study. However, this may also reflect the local prescriber 
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hierarchies and systems that exist within the hospitals that participants were recruited 

through. Either way, this factor warrants further investigation given that the role of the 

pharmacist in the UK is often described as the corner stone of AMS as well as the 

expanding realisation of the role of nurses in AMS internationally [169,171–173].  

In terms of pharmacist involvement in the decision making process, what was reported 

was that at the level of seniority and proximity to the ward round appeared to be a major 

factor in influencing the decision making of the physician caring for the patient.  

“And the pharmacists are often good, I think when, we often have the 

pharmacists on the post-take ward round and it depends a bit on their seniority 

and confidence, so the ones who will speak up and challenge are excellent.” 

[Consultant, respiratory] 

This suggests that future interventions may also benefit from aiming to promote multi-

professional integration to help normalise the role of the pharmacist and other healthcare 

professionals within the decision making process. Thus, moving it from a subconscious 

influencing factor towards an implicit factor that is acknowledged by all as playing a key 

role in influencing decision making.  

 

3.5.2 Responsibility for the outcomes of decision making 

A significant theme that emerged from analysis of the data was that of responsibility for 

the decisions that are made for your patient. A key example highlighting this was when 

consultants reported how they consider clinical microbiology advice. Whilst overall 

clinical microbiology was seen as a great help, physicians reported that they often judge 

the quality of the advice provided by such services based on the level of seniority that it 

comes from. Furthermore, a lack of continuity in who provides the advice to a specific 
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team, and the limited responsibility on that person for the consequences of the choices 

made also played an important role. When combined with senior clinicians’ experience 

and feelings of autonomy in decision-making, this can cause frustration and lead 

physicians to consider alternative treatments that may not be evidence based.  

I believe that this observation offers an important learning point for those developing 

personalised decision support interventions, including CDSS. In particular, the 

requirement for the prescriber to have confidence in the tool developed to follow the 

guidance that it provides. This triangulates to the need for end-users to be engaged 

actively in the development of tools and for them to be made specifically to fit into the 

users workflow, as was highlighted as part of the qualitative synthesis raised in Chapter 

two [66]. 

 

3.5.3 Providing better data to support robust decisions 

Physicians reported how they develop skills in infection management through an 

ongoing reflective practice as they progress through training. As junior trainees, they 

described how they were often scared of sepsis and missing this diagnosis and therefore 

under treating their patient, causing harm. As a response to this concern, they focus 

solely on the short-term, preferring to prescribe broad-spectrum agents and seek senior 

physician support to refine the decisions that they make. This reported caution and 

tendency towards over prescribe is supported by the availability of local antimicrobial 

prescribing guidelines that provide junior physicians with justification for making 

prescribing decisions. Furthermore, they act as a form of protection from judgement by 

senior team members, even if those decisions are incorrect. This reported fear of sepsis 

and the need to prescribe on the suspicion of infection is propagated by the expectations 
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placed upon junior members of the team to prescribe antibiotics for infections by senior 

doctors. The opposite is true of stopping or de-escalating antimicrobials, which is seen 

as a more serious decision that could affect the patient negatively and is therefore 

deferred to the senior decision makers.  

To effectively promote improvements in antimicrobial management, these assumptions 

must firstly be effectively challenged to highlight the negative aspects of antimicrobial 

therapy and empower individuals to revise decisions when appropriate. A major 

hindrance to improving optimal decision making in this area is a lack of robust clinical 

data for many specific infections and antimicrobials [42,174,175] as well as the rigidity of 

clinical guidelines that are based on population level data. These fail to account for many 

of the observed variations both between individuals and during the course on an 

individual’s treatment for infection [66,176].  

Given these observations, it will be important for me to focus on mechanisms for 

improving how we use individual and population data that is available to physicians to 

help optimise the decisions that are made surrounding antimicrobial prescribing. This 

triangulates with the findings of the qualitative synthesis in Chapter two, which identified 

issues with the rigidity of guidelines within rule-based tools, the ability of decision 

support tools to educate prescribers in best practice, and the ability of certain tools to 

guide decision making through data visualisation [66]. 

 

3.5.4 Electronic decision support tools to enhance decision making  

Within Chapter two, the narrow focus and rigidity of most CDSS, which utilised rule-

based approaches to predominantly influence antimicrobial selection against guidelines 

was highlighted [66]. On reviewing these observations from Chapter two with the 
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decision making pathway outlined within this Chapter, it is possible to map the potential 

influence of common decision support interventions onto the decision making pathway 

(Figure 7).  

This demonstrates that these types of rules-based system are only likely to influence 

decision making in a small manner. This is because they are only likely to influence a 

small number of components, which predominantly focus on antimicrobial selection.  

By considering other types of technology and decision support intervention that may be 

available for development, it is possible to explore whether broader approaches to 

providing decision support may have a greater influence on decision making overall if 

implemented either in isolation or as integrated systems.    
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Figure 7. Mapping decision support interventions onto the physician decision making pathway in secondary care. 

 

 

  

 

 

 

 

 

 

 

Legend: Mapping current rule-based clinical decision 

support systems onto the individual physician decision 

pathway indicates that this type of tool only likely to 

influence one or two components that influence the 

“initiation of treatment” step in the pathway. 

Legend: Mapping other potential technologies reported 

in the literature to the decision making pathway for 

infection management. This demonstrates how taking a 

broader approach to developing decision support tools 

may in fact influence a greater number of components 

and steps in the physician decision making pathway.  
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Therefore, in line with the findings reported in Chapter two, I believe that the exploration 

of a number of different mechanisms for supporting decision making, which can then be 

integrated into a single decision support tool remains justified [66]. By focusing on 

personalising the process of antimicrobial management by integrating antimicrobial 

selection, dosing, patient engagement with decision making, and engagement of users 

with the tool this may have a broader impact on the decision making process overall. 

This is because incorporating a wide number of interventions will facilitate a broader 

influence over the components and steps of the decision making process described 

within this study [168]. 

 

3.5.5 Limitations and future work 

There are several limitations that I wish to highlight from this study. Firstly, as I chose to 

interview only medical physicians from one UK NHS hospital Trust there may be issues 

over the generalisability of my findings. This may include specialties not included within 

this study such as surgery, and other hospitals and regions in the world, where infection 

management and team structures may differ. 

Locally, the next steps for this process would be to: 

1. Understand the similarities and differences between decision making pathways 

of other specialties, such as surgery and paediatrics.  

2. Compare the reported decision making pathways explored within this study with 

observed decision making processes, using methods such as ethnography.  

This process has been explored by Dr Esmita Charani who led an ethnographic study of 

surgical and medical antimicrobial decision making during ward rounds in ICHNT [177]. 

The results of this work will allow further triangulation of my findings and facilitate the 
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comparison of reported versus observed decision making processes. However, for the 

focus of this thesis I believe that my decision to focus on medical specialties only is 

justified and has provided the depth of analysis required to help support the 

development of further interventions in following Chapters.  

Another challenge will be exploring the generalisability of these findings outside of the 

local hospital Trust. This will require further mapping of decision making processes 

before the implementation of interventions in external sites or other countries. This is 

something that has been built into future research plans to ensure that we will be able 

explore and contrast decision making processes within different clinical settings.  

Secondly, as a junior medical physician performing the interviews independently this 

may have introduced a potential source of bias in the responses from interviewees as 

well as during the data analysis process. As described above, I attempted to increase 

my awareness of this bias as much as possible through reviewing findings and data with 

a multi-professional group of researches in our department. This enabled me to consider 

areas of reflexivity that arose during my analysis.  

Finally, although my theoretical sampling methodology followed validated guidelines and 

I purposefully sought out deviant statements to contradict emerging themes, the reliance 

on individual responses to invited emails may have introduced selection bias as 

individuals interested in antimicrobial prescribing and stewardship may have been more 

likely to respond to invitations [155,164]. However, given that I opted to purposefully 

sample individuals, this is likely to of had a limited impact on the results of the 

investigation. 
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3.6 Conclusion and key messages 

Within Chapter two of this thesis, it was outlined that there is a need to better understand 

the decision making process for infection management employed by end-users who are 

the target of decision support interventions [66]. Within this Chapter, I have described 

the Bayesian-like process that physicians report using during infection management in 

secondary care and identified a number of factors that support the further exploration of 

personalised, decision support interventions for antimicrobial management.  

This Chapter also highlights several key factors that currently influence physician 

decision making. Development of specific interventions targeting these areas may 

enhance the way that antimicrobials are managed. These include addressing concerns 

around responsibility for the outcomes of prescribing recommendations made by 

specialists, such as clinical microbiology; addressing the harmful perceptions 

surrounding junior physicians requirements to urgently prescribe antimicrobials but avoid 

de-escalating therapy when appropriate; and working on mechanisms of increasing the 

awareness of the important role that pharmacists and other healthcare professionals 

play in influencing decision making for infection management.    
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CHAPTER FOUR 

4.0 Are clinicians engaging with antimicrobial resistance and 

antimicrobial stewardship in different clinical specialties? 

Figure 8. Overview of thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.1 Introduction 

The identification of poor end-user engagement with and adoption of CDSS for 

antimicrobial management, outlined in Chapter two, appears to be a major factor in their 

limited success to improve appropriate antimicrobial usage [66]. In Chapter three, I 

aimed to explore individual end-user decision making pathways during infection 

management that are targeted by such interventions. This provided new evidence for the 



 

92 
 

development and deployment of personalised interventions and facilitated an insight into 

several factors that influence the decision making process [168]. However, despite this 

study providing insight and evidence into individual decision making and potential areas 

for intervention, a broader understanding of clinical specialties engagement with 

antimicrobial management is missing.  

Methods for evaluating clinical specialty engagement may be useful for identifying “high 

risk” specialties who use high amounts of antimicrobials, experience high rates of 

complications of therapy, but currently appear to have very little engagement with AMS 

or AMR.  

As well as providing recommendations on priority specialties that require targeting, it is 

also important to understand the current level of behaviour change interventions being 

explored within those specialties. As described in Chapter one, restrictive AMS 

measures provide adequate short term outcomes for improving prescribing behaviours 

[60,148]. However, long term success to promote a sustainable change in behaviour 

towards antimicrobial management requires empowerment of staff [60,148,178]. This 

includes using innovation and improvement of routine care, such as by developing novel 

tools to support decision making, to bridge the gap between best and actual practice 

[60,148,178]. Thus, when considering the development of decision support tools, as I 

aim to do within this thesis, it is vital to understand the baseline level of engagement with 

AMS and AMR (AMS-AMR) and focus on behaviour change currently being deployed 

within the specialties that these interventions targets.  

Finally, it also has to be accepted that the development of change in behaviour and 

culture is likely to involve a multifaceted approach requiring a numerous interventions 

including; targeted educational, promotion of sustainable behavioural change, and 
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development of clinical leaders across all specialties [60,148,178]. Whilst each aspect of 

this may not be addressed within this thesis, the concept of evaluating the level of 

engagement within clinical specialties may act as a standard from which the impact of 

further interventions on individual specialties may be evaluated. 
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4.2 Chapter objectives 

The aim of this Chapter was to explore the degree to which medical professionals from 

different disciplines have engaged with the issue of AMS-AMR, and in-particular the 

promotion of behaviour change.  

The objectives of this Chapter were: 

1. To investigate surrogate markers for the perceived level of formal engagement of 

different clinical disciplines with AMS-AMR.  

2. To describe clinical disciplines engagement with behaviour change interventions 

for AMS-AMR. 

3. To investigate possible approaches to identifying “high risk” specialties, to allow 

prioritisation of interventions in specialties with high rates of antimicrobial usage 

and complications but low engagement with AMS-AMR.  

As described in further detail below, I hypothesised that two indicators may provide data 

that can act as a surrogate marker for the current awareness and attributed importance 

of AMS-AMR within different clinical disciplines. These were assessment of abstracts at 

state-of-the-art scientific conferences and assessment of national postgraduate training 

curricula [179–181]. 
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4.3 Methods 

4.3.1 Study design 

For this study, I aimed to identify two or more surrogate markers that would allow me to 

characterise the level of engagement of different specialties with AMS-AMR, whilst also 

undertaking an assessment of behaviour change techniques currently being employed 

within specialties.   

Within the literature, there is evidence to support the promotion of education and 

behaviour change toward AMS–AMR through engagement in state-of-the-art scientific 

conferences [182]. Clinical state-of-the-art conferences offer the individual the 

opportunity to participate in research and reporting, providing an educational benefit 

[152,182]. They also provide a platform for key opinion leaders and organisations to 

promote their current key agendas. Furthermore, state-of-the-art scientific conferences 

have an advantage over peer-reviewed publications and specialty guidelines that they 

have broader levels of engagement, which I felt would provide a more representative 

sample. This is because national leading conferences are often geared for both 

academic and non-academic clinicians and healthcare professionals, meaning that 

engagement and attendance is often broader than would be found engaging with the 

peer-review process. Furthermore, as leading specialty state-of-the-art scientific 

conferences are often organised by national organisations and for the benefit of their 

users, it is often easier to identify evidence of local quality improvement projects and 

other interventions reported at such events, which may never reach peer-reviewed 

publication. 

In a similar fashion, postgraduate training curricula have an important role to promote 

knowledge and practical skills related to the subject of AMS-AMR [152,180]. This occurs 
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both at the trainee’s current grade, but also in a linear fashion as the trainee progresses 

to more specialist training pathways and therefore advances through different training 

curricula. Whilst postgraduate training within infectious disease has been previously 

explored [183], there is little data describing engagement of clinical specialties with 

AMS-AMR at the strategic level of postgraduate medical education across other clinical 

disciplines. In the UK, a trainee will progress through several different training pathways 

after qualifying from medical school, where AMS-AMR teaching has previously been 

shown to be variable between medical schools by Castro-Sanchez and colleagues [184].  

 

To briefly describe the pathway taken upon graduation from medical school: all junior 

doctors initially undertake two years of foundation training. They then normally follow this 

by undertaking a core training rotation that lasts for a further two years (e.g. core 

medical or core surgical training). They will then progress onto speciality training. The 

trainee will remain as a specialist trainee for several years until they attain their 

certification of completion of training (CCT) [185]. Whilst some specialty training 

pathways may differ, often missing out core-training (e.g. general practice and obstetrics 

& gynaecology), these often still contain a core specialty-type pathway within their 

structure. Therefore, we can expect that all trainees will be exposed to a number of 

postgraduate training curricula in the years following graduation from medical school as 

they progress towards CCT over a range of approximately 6 to 10 years for most 

graduates [185]. As all physicians training in the UK are expected to meet the training 

requirements set out by these training pathways, I felt that this was an optimal surrogate 

marker to explore and compare what knowledge, skills, and thus behaviours physicians 

in different specialties are expected to develop in terms of AMS-AMR during the course 

of their training.  
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Finally, it is also important to understand the process of behaviour change and the 

factors that promote its sustained maintenance being implemented within these 

disciplines. Whilst there are numerous theoretical perspectives on what drives and 

maintains behaviour change [186–189], Kok and colleagues outline the importance of 

ensuring that taxonomies and theories applied are grounding in the context and culture 

of the intervention [187]. This ensures that techniques employed to change behaviours 

match the determinants that they desire to change (e.g. education on when to prescribe 

antibiotics for acute respiratory tract infections), have the desired impact on the 

behaviour (e.g. reduce prescribing in acute respiratory tract infections), and reinforce a 

behaviour that is in-fact appropriate (e.g. acute respiratory tract infections are likely to be 

viral in origin, therefore reducing the use of antibiotics in these cases is appropriate) 

[187]. This is opposed to other taxonomies that have previously been implemented in 

AMS-AMR interventions, such as that proposed by Michie and colleagues, which 

assumes a general structure and range of techniques are applicable across all settings 

[186]. Therefore, whilst I took into full consideration a number of different taxonomies for 

assessing behaviour change interventions in the following studies, I also planned to 

keep a level of flexibility in the framework I used to ensure that they were applicable to 

the situations being assessed.  

 

4.3.2 Exploring specialty engagement with AMS–AMR using state-of-the-art 

scientific conference abstracts 

In 2015, I led the analysis and publication of the first study exploring cross-specialty 

engagement with AMS-AMR at scientific conferences both in the UK and internationally 

[180]. I intended that this study would form the basis of this Chapter. However, whilst this 

study allowed me to demonstrate the ability of this indicator for assessing cross-specialty 
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engagement and develop the methodology that will be used below; there were also 

several limitations to my approach when I reflected on this. Firstly, for the analysis I did 

not include a range of surgical specialties, only focusing on one general surgery 

conference. Secondly, I did not collect data to allow me to analyse whether abstracts 

reporting AMS-AMR included behaviour change interventions within this study. Finally, I 

also felt that one of the major limitations of only analysing data from one year was that 

this only provided a snap-shot and did not allow for any inference as to whether this 

marker remained stable from year to year for levels of awareness / engagement. 

Therefore, using the same methodology this study was repeated, as described below, to 

address these limitations [181]. Whilst I will report data from both studies, the 

methodology used for the systematic identification and assessment of abstracts was 

identical unless otherwise stated below. Assessment of behaviour change reporting was 

only performed on the new data set.  

To identify specialties to include within this analysis I firstly identified all major clinical 

specialties that are recognised by the Royal College of Physicians, London, UK. I also 

selected to include major surgical specialties, which were identified by reviewing the 

intercollegiate surgical curriculum programme website. Furthermore, primary care, 

psychiatric, paediatrics, and obstetrics and gynaecology specialties were included. To 

identify leading UK state-of-the-art scientific conferences for each specialty, I contacted 

one or two specialists (specialist trainees or consultants) in each of the defined fields via 

email or in person and asked them to provide me with details of the largest clinical 

scientific/research conference within the UK or run by a UK organisation. For this study, I 

chose to exclude educational, continuing professional development, and sub-specialty 

conferences given that these types of conference often contain focused agendas, which 

may bias the findings and be less representative for the specialty as a whole.  
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For the study reported in the Chapter, conferences held in 2015 were identified, 

compared to conferences held in 2014 which were published in the initial investigation 

and was outlined above citing its limitations [180]. The following conference 

characteristics were collected; location, conference dates, estimated attendance, and 

total number of abstracts accepted (either as oral, poster, or publication only). Accepted 

conference abstracts (invited, oral, poster, and publication only) were then identified and 

interrogated using specified search criteria in Table 8 to identify all abstracts relating to 

AMS-AMR. 

  

Table 8. Abstract and curriculum search criteria and definitions of antimicrobial 

stewardship and antimicrobial resistance. 

 

 

 

Abstract search criteria: 

I. Anti* (wildcard search accepting antibiotic, antimicrobial or similar) 

II. Resist* (wildcard search accepting resistant, resistance or similar) 

III. Infect* (wildcard search accepting infection, infective, infected or similar) 

IV. Stewardship 

 

AMS and AMR definitions: 

 

AMS: “Optimising the indication, selection, dosing, route of administration and duration of antimicrobial therapy to 

maximise clinical cure or prevention of infection while limiting the collateral damage of antimicrobial use, including 

toxicity, selection of pathogenic organisms and emergence of resistance” 
 

 

AMR: “Resistance of an organism to an antimicrobial drug that was originally effective for the treatment of 

infections caused by it” 
 

AMS = Antimicrobial Stewardship: AMR = Antimicrobial Resistance 
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The identification and review process was performed in a systematic manner. Abstracts 

were searched using the broad based criteria in Table 8 with those identified being 

reviewed by two researchers independently (one of those was me at all times). Both 

reviewers were blinded to each person’s findings, as well as the specialty conference 

that the abstract was reported in. Abstracts were included if they were identified as 

describing an aspect of AMS [39] or AMR [190] that was deemed to have a direct effect 

on patients. For this reason, in-vitro studies with no translational benefit to patients were 

excluded. Furthermore, as anti-bacterial agents account for more than 93% of all 

antimicrobials prescribed for systemic use [191] I chose to focus on bacterial resistance 

and antibiotic stewardship with abstracts describing antiviral, antifungal, antiprotozoal, or 

antimycobacterial resistance / treatment excluded. Another reason for this choice was 

that the large variation in prescribing of other antimicrobial classes across different 

specialties may have caused bias to the results on the analysis. Where there was 

discrepancy in the findings of the independent reviewers, a third researcher was asked 

to review the abstracts and to provide their opinion. Once this had taken place, the three 

reviewers (including myself) met to discuss and agree upon abstract inclusion / 

exclusion for abstracts where discrepancies occurred.  

Once identification of AMS-AMR abstracts at the UK and international conferences was 

completed, sub-group analysis was performed and proportions of abstracts reporting 

AMS-AMR for each conference were compared. Abstracts were then re-read by two 

researchers (one being myself) independently and categorised into types of intervention 

reported in the abstracts. To categorise the types of interventions reported, I chose to 

use a modified version of the intervention and policy framework definitions provided by 

Michie and colleagues, based on the suggestions of Kok and colleagues [187]. The main 

constructs of Michie and colleagues behaviour change wheel were used (Table 9) [186]. 
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However, in the original taxonomy, three layers were described; policy, intervention, and 

behaviour systems [186]. Within the adapted classification that I chose to develop and 

use, behaviour systems were not included (capability, opportunity, motivation, and 

behaviour; COM-B) as the reported interventions in the abstracts were focused on the 

two levels of the framework above this, which aim to directly influence COM-B [186]. 

Therefore, on reviewing the abstracts I attempted, where possible, to categorise 

reported behaviour change interventions into one or more of the sixteen functions (split 

into policies and interventions) described within this framework. Although the framework 

was designed to provide flexibility and accommodate multiple interventions / policy 

combinations, where possible I attempted to strictly categorise reported interventions 

into the smallest number of categories possible. When there was discrepancy, a third 

researcher was asked to review the abstract and the group then met to discuss the 

findings until a consensus was reached.  
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Table 9. Behaviour change taxonomy used for the classification of interventions reported 

at state-of-the-art scientific conference abstracts in 2015. 

 

 

 

 

 

 

 

 

 

 

 

Legend: Adapted from Michie et al. Implementation Science 2011, 6:42 

http://www.implementationscience.com/content/6/1/42 

Intervention  Taxonomy Definition 

 Education Increasing knowledge & understanding 

 Persuasion 
Communication used to induce positive or negative feelings 
or drive actions 

 Incentivisation Creating expectation of rewards for actions  

 Coercion Creating expectation of punishment for actions 

 Training Developing new skills  

 Restriction 
Use of rules to reduce or increase the engagement in a 
target behaviour (whether positive or negative) 

 Environmental restructuring Changes in the physical or social context 

 Modelling Providing examples for people to aspire to / imitate 

 Enablement 
Increasing means or reducing barriers to increase capability 
to achieve a goal or behaviour 

Policy Taxonomy Definition 

 Communication Using print, electronic, telephonic, or broadcast media 

 Guidelines Creating documents that recommend or mandate practice. 

 Fiscal Taxing actions to reduce or increase a financial cost 

 Regulation Establishing rules or principles of behaviour or practice 

 Legislation Making or changing laws 

 Environmental Designing or controlling the social environment 

 Service Provision  Delivering service 

Legend: Adapted from Michie et al. Implementation Science 2011, 6:42 http://www.implementationscience.com/content/6/1/42 

http://www.implementationscience.com/content/6/1/42
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 4.3.3 Exploring specialty engagement with AMS–AMR using postgraduate training 

curricula 

In a similar manner as described in section 4.3.2, the level of engagement with AMS-

AMR in specialty postgraduate training curricula was explored [179]. Briefly, UK clinical 

specialties were identified and electronic postgraduate training curricula extracted for 

interrogation. All training curricula were reviewed by two researchers independently, one 

of those being myself at all times. Initially, all specialties were reviewed with those 

deemed to have a narrow or low clinical focus excluded from analysis. Curriculum 

characteristics were described including the date of initial publication, date of the most 

recent revision, and the total number of curriculum topics and individual learning points 

within each curriculum.  

The search criteria that were employed in Table 8 were piloted and validated to be used 

again within this study [180,181]. Curricula were reviewed independently by myself and 

another researcher who identified (i) all curriculum topics, and (ii) all curriculum learning 

points, which met the search criteria. Curriculum learning points in the context of UK 

training curricula were defined as individual learning goals that the trainee is expected to 

achieve during training. As these points are selected by the specialty education training 

board, their numbers varied between specialties depending on the number of topics and 

the depth in which the trainee is expected to demonstrate their knowledge and skills. 

Two researchers (including myself) then reviewed all electronically identified learning 

points independently, excluding those not directly related to AMS or AMR based on the 

definitions in Table 8. In keeping with the methodology employed in Section 4.3.2, only 

antibiotic and antibacterial resistance was included. Duplicate learning points within the 

same curriculum were not counted twice. Where disagreement arose during the 
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selection of learning points a third researcher was asked to review the learning point and 

the researchers then met to discuss this and reach a consensus. 

After the identification of curricula topics and learning points for inclusion, inter-specialty 

variation was assessed in two ways. Firstly, the overall proportions of AMS-AMR 

dedicated topics and individual learning points were calculated for each specialty using 

total number of topics or learning points as a denominator, respectively. However, after 

discussion with colleagues, we agreed that simply assessing and reporting the 

percentage of AMS-AMR topics or learning points in a curriculum would be difficult to 

quantify qualitatively in terms of whether or not this is appropriate. Therefore, as a 

comparator I decided on also collecting data for curricula topics and learning points 

relating to infection prevention and control (IPC). This data were extracted and analysed 

in an identical fashion to provide a reference for our observations of AMS-AMR coverage 

in different clinical specialties.  

I chose IPC as the comparator as it is another infection related patient safety issue, 

which has been a long-term, healthcare priority that has required cross-specialty 

engagement [192,193].  To achieve cross-specialty engagement, IPC has been 

promoted through a distributed model [194]. To identify IPC topics and learning points, I 

explored a number of different search criteria. However, the use of the same search 

criteria used to identify AMS-AMR learning points was finally selected as the search term 

“infect” was the most sensitive term for identifying IPC points. Other tested terms (such 

as, “aseptic”, “control”, and “prevent”) did not appear to add to the sensitivity of the 

search.  

To evaluate the impact of individual learning points in terms of promoting behaviour 

change within specialty training curricula, I wanted to develop a mechanism of 
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categorising the level of achievement the learning point was expected to display. To 

assess the level of achievement, I opted to evaluate and categorise each AMS-AMR 

learning point against a modified version of Miller’s pyramid for the assessment of 

clinical competence [195]. This allowed learning points to be weighted based on the type 

of knowledge or skill that the clinician would be deemed to be demonstrated on 

achievement (Figure 9) [195].  
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Figure 9. Adaption of Miller’s Pyramid that I developed to facilitate the assessment of clinical competence.  

 

 

 

 

 

 

 

 

 

 

 

Reproduced with permission from Rawson et al. Journal of Antimicrobial Chemotherapy, 2016 
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Within the classification there are several levels [195]:  

• Level one - demonstration of knowledge (i.e., “knows”) 

• Level two – demonstration of an ability to understand knowledge in a clinical 

context (“knows how”) 

• Level three – demonstration of a behaviour in a controlled environment (“shows 

how”) 

• Level four – demonstration of a behaviour in a free working environment (“does”).  

 

To rate individual learning points relating to AMS-AMR, I asked a colleague to 

anonymise the individual points, presenting them in a randomised order to three 

researchers (including myself). We then independently reviewed each learning point 

rating the expected level that completion of the learning point would demonstrate. 

Ratings were then compared, and the mode calculated. When consensus could not be 

reached using the mode, a fourth researcher reviewed the individual learning point and 

rated its level in the hierarchy. This rating was then compared against the three 

researchers’ scores, and discussion held to reach consensus on the appropriate level 

[179].  

 

4.3.4 Identifying high risk specialties with evidence of low engagement with AMS-

AMR 

Once data had been collected and behaviour change interventions analysed for both 

postgraduate training curricula and state-of-the-art scientific conferences, the individual 

specialties were classified and contrasted according to two measures of “risk”: 

(i) the proportion of patients in each specialty receiving antimicrobials 

(antimicrobial usage, AU) and; 
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 (ii) the proportion of patients who acquire healthcare associated infections 

(HCAI) within each specialty.  

 

This was derived from the European Centre for Disease Prevention and Control (ECDC) 

point-prevalence survey that was conducted in 2011/12 [196]. At the time of this study, 

this provided the most up-to-date and complete estimates available to use for the clinical 

specialties included within this study [196]. For primary care, data were not available to 

accurately estimate the rate of AU per population and rates of observed HCAI. 

Therefore, I opted to exclude them from this evaluation. For other clinical specialties not 

included in the ECDC report, they were given the average AU and HCAI rate for their 

respected field (i.e. medicine, surgery, critical care, or other). I then ranked each clinical 

specialty based on their reported proportion of HCAI and proportion of AU per 

population, respectively. These were ranked in ascending order and the range of HCAI 

and AU calculated. Based on this range, specialties were then assigned “risks” 

depending on which third of the range they fell within for HCAI and AU (high, medium, or 

low). This gave two “risk” scores for each specialty, based on rates of HCAI and one 

based on AU. The rates were then compared to the surrogate markers for apparent 

awareness and engagement with AMS-AMR to investigate whether these could be used 

to identify and prioritise specialties where more urgent interventions were required.   

 

4.3.1.3 Statistical analysis  

All statistical analysis was performed using SPSS 22.0 (IBM, Chicargo) software. 

Descriptive statistics performed included Chi-squared with Yates correction and Fishers 

exact test where appropriate. Figures were created using R and Igor Pro 7.0. 
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4.3.1.4 Ethics 

Ethics approval was not required for these observational studies of information freely 

available in the public domain. 
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4.4 Results 

4.4.1 Cross-specialty engagement 

4.4.1.1 State-of-the-art scientific conferences 

Thirty UK specialty state-of-the-art scientific conferences were identified for inclusion. 

From these, I identified and extracted electronic abstract booklets for analysis. The 30 

conferences ran over more than 110 days with greater than 57,000 delegates estimated 

to of attended them in total in 2015. Table 10 outlines the characteristics of individual 

conferences include within the study.  

The median (range) number of days that the reviewed conferences ran for in 2015 were 

3 (2 - 4) days. The median (range) number of delegates were 1100 (200 - 8190) 

accepting a median (range) or 278 (69 - 1945) abstracts. The most common cities where 

conferences were held were Manchester (6/30; 20%), Glasgow (4/30; 13%), and London 

(4/30; 13%). Half of the conferences took place between April and June 2015 (15/30; 

50%). Thirteen of thirty (43%) conferences were for medical specialties, 11/30 (37%) for 

surgical specialties, and the remaining 6/30 (20%) other specialties. 
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Table 10. Summary of 2015 UK specialty state of the art scientific conferences included 

for analysis.  

 

  

Speciality City 
Date 

commenced 
No 

Days 
No 

delegates 
No abstracts 

accepted 

Anaesthetics[197]  Edinburgh 23/09/2015 3 800 161 

Breast Surgery[198] Bournemouth 15/06/2015 2 870 221 

Cardiology[199] Manchester 08/06/2015 3 2448 235 

Dermatology[200]  Manchester 06/07/2015 4 1200 372 

Emergency Medicine[201] Manchester 28/09/2015 3 650 69 

Endocrinology[202] Edinburgh 02/11/2015 3 1000 526 

Gastroenterology[203] London 22/06/2015 4 4500 1240 

Primary Care[204] Glasgow 01/10/2015 3 1600 450 

General Surgery[205] Manchester 22/04/2015 3 1500 1065 

Surgery (ASiT)[206] Glasgow 27/02/2015 3 700 602 

Genitourinary Medicine[207] Glasgow 01/06/2015 3 500 299 

Geriatrics[208] Brighton 14/10/2015 3 500 76 

Haematology[209] Edinburgh 20/04/2015 3 1000 257 

Infection / Microbiology[210] Glasgow 21/11/2015 3 1000 375 

Intensive Care[211] London 07/12/2015 3 1250 154 

Nephrology[212] London 28/05/2015 4 8190 1945 

Neuro surgery[213] York 09/09/2015 3 200 139 

Neurology[214] Harrogate 20/05/2015 3 600 194 

Obstetrics & Gynaecology[215] Brisbane 12/04/2015 4 2300 770 

Ophthalmology[216]  Liverpool 18/05/2015 4 1700 228 

Orthopaedics[217] Liverpool 15/09/2015 4 1600 96 

Paediatric surgery[218] Cardiff 22/07/2015 3 346 83 

Paediatrics[219] Birmingham 28/04/2015 3 2000 546 

Plastic surgery[220] Birmingham 25/11/2015 3 400 78 

Psychiatry[221] Birmingham 29/06/2015 4 2500 79 

Respiratory[222] London 02/12/2015 3 2200 460 

Rheumatology[223] Manchester 28/04/2015 3 2000 677 

Transplant surgery[224]  Bournemouth 11/03/2015 3 700 382 

Urology[225] Manchester 15/06/2015 4 1200 161 

Vascular surgery[226] Bournemouth 11/11/2015 3 800 373 
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In total, 12,313 abstracts were extracted for inclusion in the analysis of 2015 UK 

scientific state-of-the-art conferences. Overall, 311/12,313 (2.5%) were identified as 

being AMS-AMR focused. Of these, 118/311 (38%) were presented at the UK’s 

infectious diseases/microbiology conference [210]. This made up 38% (144/375) of all 

the conference abstracts accepted for this conference. Genitourinary medicine [207] had 

the second greatest coverage of AMS-AMR with 9% (26/299), orthopaedics [217] third 

and plastic surgery [220] fourth with 8% of abstracts related to AMS-AMR each (8/96 & 

6/78, respectively). All other specialties had <5% AMS-AMR coverage (Figure 10). 

Notably, neurology [214], emergency medicine [201], psychiatry [221], geriatrics [208], 

and endocrinology [202] did not have any AMS-AMR abstracts in their state-of-the-art 

scientific conferences in 2015. 

On comparison to my previously published study comparing coverage at 2014 specialty 

scientific state-of-the-art conferences [180], there was no significant difference in the 

level of AMS-AMR reporting overall (311/12,313, 2.5%, in 2015 & 221/7843, 2.8%, in 

2014; p = 0.22). Furthermore, on direct specialty comparison the only specialty with a 

difference in reporting AMS-AMR abstracts between years was Infection/microbiology. In 

this specialty, the 2014 conference had a significantly larger proportion of AMS-AMR 

abstracts compared to all other specialties reviewed within this study (80/121; 66% in 

2014 versus 143/375; 38% in 2015; p < 0.01). 
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Figure 10. Comparison of antimicrobial stewardship and antimicrobial resistance coverage at state-of-the-art scientific conference in 

2015.  
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4.4.1.1.1 Reported behaviour change interventions for antimicrobial prescribing 

Of the AMS-AMR abstracts identified, I found that 56/311 (18%) described behaviour 

change interventions. Appendix 4 outlines the classification of these based on the 

modified taxonomy outlines in Section 4.3.2 mapping the taxonomy to specialty that it 

was observed in.  

Of the abstracts describing behaviour change, 28/56 (50%) were reported at the 

infection/microbiology conference. General surgery reported the second largest 

proportion with 7/56 (13%). In total, behaviour change interventions were reported 

across 12/30 (40%) specialty state-of-the-art conferences with infection/microbiology 

reporting a significantly greater amount than all other state-of-the art scientific 

conferences (p < 0.01). The most frequent abstracts reporting behaviour change 

interventions were quality improvement projects. These accounted for 44/56 (79%) of all 

AMS-AMR abstract reporting behaviour change interventions. However, overall this 

represented a minority the total number of AMS-AMR quality improvement projects 

identified in 2015 with 80/124 (65%) either not reporting any intervention or not reporting 

a specific behaviour change intervention. The remaining behaviour change interventions 

reported in abstract were included within observational studies (12/56; 21%). This also 

represented a minority of observational AMS-AMR studies across clinical specialties 

(12/54; 22%). 

As outlined in Appendix 4, 71 unique behaviour change functions were identified within 

the 56 abstracts reporting AMS-AMR behaviour change interventions. Eight abstracts 

were identified as describing more than one behaviour change intervention. Six out of 

eight were reported at the infectious diseases/microbiology conference [210] and the 

other two at the primary care conference [204].  
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Of the policy categories included in the taxonomy used in the study; “guidelines” (16/71) 

and “service provision” (11/71) were the most frequently reported. For the interventions 

function included; “education” (6/71), “persuasion” (7/71), “enablement” (9/71), and 

environmental restructuring (9/71) were also common. For the intervention categories, 

“incentivisation” and “coercion” were not reported. Similarly, the policy categories “fiscal” 

and “legislation” were not identified within the abstracts reporting behaviour change 

interventions.  

On analysis, only infection/microbiology and primary care reported multiple behaviour 

change functions in any one intervention. Furthermore, beyond these two clinical 

specialties the majority of behaviour change interventions reported in the remaining ten 

specialties describing AMS-AMR related behaviour change focused primarily on 

enablement (intervention) and guidelines or service provision (policy). Table 11 

described the types of behaviour change functions reported in abstracts that described 

multiple behaviour change interventions (8/56; 14%). Within these abstracts, there was a 

mix of policy and intervention functions with guidelines featuring in 6/8 (75%), 

environmental restructuring, education and persuasion all featuring in 4/8 (50%), and 

service provision in 3/8 (38%) of the AMS-AMR related abstracts.   
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Table 11. Outline of behaviour change functions reported in AMS-AMR abstracts that 

reported multiple behaviour change interventions at 2015 state-of-the-art scientific 

conferences.  

 

 

 

 

 

 

 

 

4.4.1.2 Postgraduate training curricula  

For analysis of postgraduate training curricula, I was able to identify 37 UK clinical specialty 

training curricula for inclusion within this study. Table 12 outlines the training curricula 

included and their characteristics. All curricula were initially published between 2009 and 

2015; eighteen (49%) had been updated since publication. In total, within the curricula I 

identified 2,318 curriculum topics and 42,527 individual learning points.  

Figure 11 describes the screening and selection process of curriculum topics and learning 

points, respectively. Overall, 8/2318 (0.3%) curriculum topics were identified relating to AMS-

AMR. These were all within the combined infectious diseases training curriculum (8/65; 12%) 

[227]. In contrast 184/42527 (0.4%) individual AMS-AMR learning points were identified 

across all specialties included. These were distributed across 33/37 (89%) specialties. The 

four specialties with no AMS-AMR learning points within their training curricula were 

psychiatry core training [228], rehabilitation medicine [229], nuclear medicine [230], and 

hepatology [231].  

 

Primary Care 1. Guideline, persuasion, & modelling  

 
2. Education, persuasion & environmental restructuring  

 
 

 
Infection/Microbiology  3. Guideline, persuasion & environmental 

 
4. Guideline, persuasion & service provision  

 
5. Guideline, environmental restructuring, education, communication  

 
6. Guideline, education, service provision, environmental restructure 

 
7. Guideline & service provision  

 
8. Education & environmental restructuring  
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In contrast to AMS-AMR, IPC made up 20/2318 (0.9%) curriculum topics, spread over 20/37 

(54%) specialty curricula. Furthermore, 278/42527 (0.7%) individual learning points were 

identified across the same 33/37 (89%) specialty curricula with the same four specialties not 

including IPC in their curricula also. Overall, coverage of IPC was significantly greater than 

coverage of AMS-AMR across specialty curriculum topics (p = 0.04) and individual learning 

points (p < 0.01).   
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Specialty curriculum Date of 

publication 

Date updated Total number 

of categories 

Total number of 

individual learning 

points 

Acute internal medicine[232] Aug-09 Aug-12 121 1680 

Cardiology[233] Aug-10 NA 91 1522 

Clinical Pharmacology and Therapeutics[234] Aug-10 Dec-11 42 870 

Core Medical Training[235] Aug-09 Aug-13 110 1752 

Core Surgical Training[236] Jul-13 NA 35 409 

Dermatology[237] Aug-10 Aug-12 53 789 

Endocrinology and Diabetes Mellitus[238] Aug-10 Aug-12 40 509 

Foundation year[239] Jul-12 Aug-14 42 435 

Gastroenterology[240] Aug-10 Aug-13 11 1290 

General Internal Medicine[241] Aug-09 Aug-12 112 1405 

General Surgery[242] Jul-13 NA 157 3290 

Genitourinary Medicine[243] Aug-10 Aug-12 44 776 

Geriatric Medicine[244] Aug-10 Aug-13 50 917 

Haematology[245] Aug-10 Aug-12 45 767 

Hepatology[231] Aug-10 Aug-13 10 91 

Immunology[246] Aug-10 NA 36 609 

Infectious diseases [227] May-14 NA 65 747 

Intensive Care[247–250] Jan-15 NA 164 3594 

Medical Oncology[251] Aug-10 NA 68 1424 

Medical ophthalmology[252] Aug-10 NA 38 530 

Metabolic Medicine[253] Aug-10 NA 44 707 

Neurology[254] Aug-10 Aug-13 51 289 

Nuclear medicine[230] Aug-14 NA 10 745 

Obstetrics & Gynaecology[255] Aug-13 NA 19 1250 

Paediatric surgery[256] Jan-15 NA 193 2488 

Paediatrics[257] Sep-10 NA 23 1802 

Palliative medicine[258] Jan-10 Oct-14 66 1105 

Primary Care[259,260] Oct-15 NA 37 1368 

Psychiatry[228] Jul-13 Mar-15 44 313 

Rehabilitation medicine[229] Aug-10 NA 36 490 

Renal Medicine[261] Aug-10 Aug-12 114 860 

Respiratory Medicine[262] Aug-10 May-14 81 1538 

Rheumatology[263] Aug-10 NA 58 809 

Stroke medicine[264] Aug-10 Aug-13 18 361 

Trauma and Orthopaedics[265] Aug-15 NA 27 1709 

Urology[266] Jan-15 NA 109 2208 

Vascular Surgery[267] Jul-14 NA 54 1079 

Table 12. Summary of current UK clinical specialty training curricula included in my analysis of 

surrogate markers of cross-specialty engagement with antimicrobial stewardship and antimicrobial 

resistance. 
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Figure 11. Identification of antimicrobial stewardship / antimicrobial resistance curriculum topics and learning points in UK clinical specialty 

training curricula.  
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Figure 11a. Curriculum topics Figure 11b. Curriculum learning points 
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electronic search criteria 

described in table 8 

(n = 1490) 
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meet inclusion criteria) 

following full review of  

(n = 1306) 

IPC = 278 

Other Infection = 818 

 

Topics detailing 

AMR/AMS (as defined in 

panel 1)  

(n =  184) 

Records NOT detailing 

AMR/AMS using 

electronic search criteria 

described in table 8 

(n = 41037) 

Legend: IPC = Infection Prevention and Control Point; Other infection = infection related point other 

than AMS-AMR or IPC   

Legend: IPC = Infection Prevention and Control Point; Other infection = infection related point other 

than AMS-AMR or IPC   
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Figure 12 describes the inter-specialty emphasis of AMS-AMR within curricula learning 

points. Combined infection training had the greatest proportion (43/747, 5.8%); 

significantly higher than the other clinical specialties (p < 0.01 for all). All other clinical 

specialties had less than 1% coverage. Core surgical training had the second greatest 

frequency (4/409; 0.98%) [236], endocrinology had the third (4/509; 0.8%) [238],  

gastroenterology fourth (9/1290; 0.7%) [240], and core medical training had the fifth 

(12/1752, 0.7%) [235].  
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Figure 12. The percentage of UK clinical specialty training curricula related to antimicrobial stewardship and/or antimicrobial 

resistance.  
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I then compared the frequency of individual AMS-AMR related learning points per 

curriculum to the number of learning points that met each level of the adapted version of 

Millers Pyramid describing the hierarchy of knowledge or skill demonstrated on 

achievement of each learning point. This is outlined in Figure 13. On analysis of the raw 

number of learning points described, infectious diseases had the greatest frequency 

related to AMS-AMR (n = 43). Intensive care was second (n = 14) [247,248,250], and 

core medical training third (n = 12).  

On analysis of the expected level of achievement to be demonstrated for each learning 

point, I observed that the median expectation was ”knows how” with 67/184 (36%) 

expecting the demonstration of “an ability to apply facts to a clinical context” [195]. Of 

those remaining, 44/184 (24%) were categorised as “knows”, 39/184 (21%) as “shows 

how”, and 34/184 as (18%) “does”. Therefore, overall within these curricula 60% 

(111/184) of perceived AMS-AMR learning outcomes do not currently require the 

demonstration of any behaviour as part of the expected level of achievement. This trend 

towards learning points focusing on the demonstration of knowledge rather than 

behaviours was observed across most specialties regardless of the frequency of 

learning points identified. For example, infectious diseases had the greatest number of 

individual AMS-AMR learning points, but 31/43 (72%) of them did not require any 

demonstration of behaviour in clinical practice (11/43 “knows” & 20/43 “knows how”). In 

contrast general curricula, such as general internal medicine (4/9 “shows how” or 1/9 

“does”), acute internal medicine (3/8 “shows how” or 1/8 “does”), and core medical 

training (3/12“shows how” or 4/12 “does”) demonstrated greater numbers of learning 

points requiring demonstration of behaviour in clinical practice, despite having low 

overall frequencies of AMS-AMR learning points. 
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Figure 13. Frequency of levels of achievement obtained upon completion of individuals antimicrobial stewardship and antimicrobial 

resistance curriculum learning points.
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4.4.2 Comparison of indicators  

Table 13 summarises the ranking of all specialties described within this Chapter. 

Specialties are ranked for their level of AMS-AMR coverage in postgraduate training 

curricula and at state-of-the-art scientific conferences in 2015. This is compared to 

rankings of the rate of observed health-care-associated-infection and antimicrobial 

usage by specialty. 

On interrogation of the ranking data for AU and HCAI in different specialties, several 

important observations could be made.  

• Firstly, there was a moderate association of increasing antimicrobial usage with 

experience of HCAI within individual patient populations within this data (r2 = 0.38; 

Figure 14) 

• Infection and microbiology are assumed to act as a benchmark for all other clinical 

specialties, which are observed to have significantly lower coverage of AMS-AMR. 

• In terms of antimicrobial usage, 11 specialties are ranked in the high rate of 

antimicrobial usage category with greater than 42% of their population receiving 

antibiotics.  

• Three specialties appear to experience much greater rates of HCAI compared to 

others. These were haematology, intensive care, and transplant surgery. All three 

of these specialties have some of the highest rates of antimicrobial usage, with only 

infection and microbiology having higher rates of antimicrobial prescribing.  

• High rate of AU did not always directly correlate with high rates of HCAI. For 

example, respiratory medicine, plastic surgery, general surgery, and breast surgery 

all use high amounts of antimicrobials, but had low rates of HCAI. 

 

 



 

125 
 

Figure 14. Antimicrobial usage versus observed rates of healthcare associated 

infections by clinical specialty. 

 

 

 

 

 

 

 

 

 

 

 

A further consideration is with regards to Primary Care, who could not be included due to 

missing data. This should also be taken into consideration given the large volume of 

antimicrobial prescribing undertaken within this specialty.   

Legend: r2 = 0.38 
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Table 13. Comparison of cross-specialty indicator ranking with antimicrobial usage and healthcare associated infection rates per 

specialty. 

 

Specialty curriculum AMS-AMR 

Learning 

Points % 

Rank 

learning 

points (High 

- low) 

AMS-AMR 

abstracts % 

Rank HCAI % HCAI 

Rank 

AU % AU 

Rank 

Anaesthetics  N/A N/A 1.242236025 L 5.1 L 34.7 M 

Acute internal medicine 0.535714286 L 

 

L 5.5 L 40.2 M 

Breast Surgery N/A N/A 0.904977376 L 6.4 L 54 H 

Cardiology 0.459921156 L 0.425531915 L 4.3 L 20.4 L 

Clinical Pharmacology and Therapeutics 0.229885057 L 

 

N/A 3.7 L 31.8 M 

Core Medical Training 0.684931507 L 

 

N/A 5.6 L 36 M 

Core Surgical Training 0.97799511 L 1.827242525 L 6.7 L 40.7 M 

Dermatology 0.633713561 L 1.075268817 L 1.3 L 29.9 M 

Emergency Medicine N/A N/A 0 L 6 L 35 M 

Endocrinology and Diabetes Mellitus 0.785854617 L 0 L 3.7 L 28.3 M 

Foundation year 0.459770115 L 

 

N/A 6 L 35 M 

Gastroenterology 0.697674419 L 0.564516129 L 5.2 L 34.8 M 

General Internal Medicine 0.640569395 L 

 

N/A 5.5 L 40.2 M 

General Surgery 0.060790274 L 2.629107981 L 6.9 L 43.1 H 

Genitourinary Medicine 0.773195876 L 8.695652174 L 5.6 L 36 M 

Geriatric Medicine 0.327153762 L 0 L 5.6 L 26.6 M 

Haematology 0.521512386 L 1.945525292 L 16.2 H 61.4 H 

Hepatology 0 L 

 

N/A 5.2 L 34.8 M 

Immunology 0.328407225 L 

 

N/A 5.7 L 17.7 L 

Infectious diseases & tropical medicine 5.756358768 H 38.4 H 8.3 M 66.3 H 

Intensive Care 1.036627505 L 1.948051948 L 19.7 H 56.5 H 

Medical Oncology 0.280898876 L N/A 6.6 L 31.6 M 
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Ophthalmology 0.377358491 L 0.438596491 L 0.8 L 19.9 M 

Metabolic Medicine 0.424328147 L 

 

N/A 3.7 L 31.8 L 

Neurology 0.346020761 L 0 L 5 M 14.3 M 

Neurosurgery N/A N/A 2.158273381 L 8.8 L 29.7 L 

Nuclear medicine 0 L 

 

N/A 5.7 L 17.7 L 

Obstetrics & Gynaecology 0.08 L 0.38961039 L 1.6 L 20.1 L 

Paediatrics 0.554938957 L 0.366300366 L 2.4 L 31.7 H 

Paediatric surgery 0.160771704 L 1.204819277 L 3.4 L 42.3 M 

Palliative medicine 0.180995475 L 

 

N/A 3.7 L 31.8 M 

Primary Care 0.14619883 L 2.888888889 L N/A N/A N/A N/A 

Plastic Surgery   N/A 7.692307692 L 6.4 L 54 H 

Psychiatry 0 L 0 L 1 L 3.5 L 

Rehabilitation medicine 0 L 

 

N/A 6.6 L 14 L 

Renal Medicine 0.348837209 L 0.719794344 L 7.9 M 48.5 H 

Respiratory Medicine 0.390117035 L 1.52173913 L 4.4 L 54.8 H 

Rheumatology 0.247218789 L 1.1816839 L 2.5 L 16.1 L 

Stroke medicine 0.27700831 L 

 

N/A 3.7 L 31.8 M 

Transplant Surgery  N/A N/A 1.047120419 L 16.2 H 62.2 H 

Trauma and Orthopaedics 0.058513751 L 8.333333333 L 6.2 L 35.3 M 

Urology 0.18115942 L 3.726708075 L 5.4 L 58.6 H 

Vascular Surgery 0.185356812 L 0.536193029 L 9.6 M 38.8 M 

Legend: AMS = Antimicrobial Stewardship; AMR = Antimicrobial Resistance; HCAI = Healthcare Associated Infection; AU = Antimicrobial Usage; 

H = “High Risk”; M = “Median Risk”; L = “Low Risk” 
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4.5 Discussion 

4.5.1 Summary of findings 

In this study, I have observed that outside of infection/microbiology there is a low rate of 

engagement with AMS-AMR using two proxy indicators; reporting at state-of-the-art 

scientific conferences and postgraduate training curricula. Furthermore, where 

specialties are engaging with AMS-AMR, there is little focus on promoting sustainable 

behaviour change. Using estimates for specialty rates of AU and HCAI, I have been able 

to identify specialties with high rates of AU and HCAI to potentially help guide the 

prioritisation of areas for intervention.  

Although infection related specialties may take the lead in AMS-AMR related activities, 

the failure in adoption of decision support tools outlined in Chapter two and the need for 

integration of interventions into the end-users workflow (Chapter three) highlights the 

need for greater awareness and ownership of AMS-AMR within clinical specialties 

[66,168]. Given the important role state-of-the-art scientific conferences and 

postgraduate education play in shaping clinicians knowledge, opinions, and priorities 

[152,182] these seemed like the most appropriate indicators to evaluate current levels of 

prioritisation of AMS-AMR for this study.  

This study also provides a mechanism for being able to monitor the formal changes in 

levels of awareness and engagement of different specialties with AMS-AMR over time if 

used in a longitudinal fashion. This was supported by the demonstration of stable results 

between 2014 and 2015 state-of-the-art scientific conferences [180,181]. 
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4.5.2 Prioritising specialties for engagement 

The findings from this study demonstrate that outside of infection/microbiology, AMS–

AMR is generally under represented [179–181]. Therefore, prioritising other specialties 

to target can be challenging given that compared to other infection related topics, such 

as IPC, there appears very little formal awareness across the board [179]. By prioritising 

interventions based on current data describing AU and HCAI rates this offers a potential 

mechanism to add further justification to prioritisation of interventions. In this case, 

analysis of AU and HCAI can direct a range of further questions to be explored.  

By identifying specialties with high rates of AU, it seems logical that these specialties 

may benefit most from urgent interventions. This is because improvements in the usage 

of antimicrobials within these specialties may have the greatest impact on reducing the 

burden of AMR due to overall selection pressure placed on a population by the volume 

of agents being used in these settings [17–19]. However, by also comparing groups with 

high and low rates of HCAI in this cohort, it may allow further identification of factors that 

drive or prevent complications in those specialities using high amounts of antimicrobials.  

Within this study, intensive care, transplant surgery, and haematology had both high 

rates of AU and HCAI. Respiratory medicine, general surgery, paediatrics, plastic 

surgery, breast surgery, and urology all had high rates of AU but reported low rates of 

HCAI. It may simply be the nature of these specialties that drives the differences 

observed. For example, AU relating to prophylactic antimicrobial prescribing or low HCAI 

reporting due to high rates of day case surgery. However, these observations do warrant 

further investigation to confirm the reasons for disparity between AU and HCAI and 

determine whether these rates of prescribing have effects downstream through the 

patient care pathway (i.e. in the community, other secondary care specialties, or on the 

intensive care unit).  
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A further challenge with prioritisation of current clinical specialties is the fact that primary 

care could not be included within the analysis of data. This is challenging given the fact 

that in the UK at the time of this study they were responsible for prescribing 74% of all 

antimicrobials [24].  

Focusing on the data that was available for evaluation, a significant finding was that the 

majority of specialties identified as “high risk” were surgical. This is a key area for 

consideration given that the majority of AMS-AMR work that has been implemented 

tends to focus on medical specialties, including that reported in Chapters two and three 

of this thesis. More recently, the role of surgical engagement with AMS has begun to be 

considered further, including multi-disciplinary publications aiming to draw surgeons 

attention to this as a problem [268–271]. This includes the “Global Alliance for Infections 

in Surgery” which aims to promote evidence based use of antimicrobials in surgical 

infections, advocating broader engagement with AMS [268,269].  

 

4.5.3 Promoting specialty engagement  

Specialty state-of-the-art scientific conferences and postgraduate training curricula offer 

potential avenues through which greater awareness and engagement can be fostered as 

well as monitored. As outlined in section 4.3.1, conferences provide an opportunity for 

clinicians to actively participate in research reporting [152,182] whilst also offering a 

platform for key opinion leaders and organisations to promote important agendas. 

Greater engagement by these actors within different specialties will offer a mechanism of 

broadening the reach of AMS and AMR beyond the scope of infection/microbiology 

[272]. This will help to broaden awareness and participation, promoting self-governance 

from within individual specialties who are responsible for high rates of antimicrobial 
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prescribing [8][196]. Likewise, broader engagement of postgraduate training for AMS-

AMR with a focus on demonstration of skills in clinical practice, will promote broader 

awareness of the topic and help change practices through formally mandating the 

practice of evidence-based prescribing [270,271]. Given the importance of education in 

promoting behaviour change towards the practice of EBM in other fields, this factor 

would likely have a significant impact on promoting greater engagement with AMS 

overall [270,271].  

 

Whilst there are several other methods through which specialty engagement can be 

fostered, the approaches outlined above are likely to have the broadest reach and 

provide an appropriate level of coverage of the topic across individual specialties. This is 

compared to alternative options, such as peer-reviewed publications, which are not 

always engaged with in as broad a setting as conferences and training curricula 

[273,274]. 

 

4.5.4 Longitudinal follow up  

As well as allowing the cross-sectional analysis of formal levels of awareness and 

engagement with AMS-AMR, the methodology developed within this Chapter provides 

an approach for the longitudinal assessment of AMS-AMR engagement over time. 

Coupled with a mechanism of mapping specialty AU and HCAI rates, it may also be a 

mechanism through which temporal relationships between increased engagement and 

improved usage of antimicrobials can be explored.  

Although there are potentially a large number of confounders, such as local policy and 

agendas that must be considered, this tool may facilitate the assessment of specialty 

engagement with AMS-AMR following national and international changes in policy and 
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publicity. This includes interventions such as the UN general assembly declaration on 

AMR [275] or national strategies, such as the follow on UK Antimicrobial Resistance 

Strategy, which is due for updated publication in 2018 [8]. Furthermore, within individual 

specialties, the implementation of policy or focus upon AMS-AMR may also be able to 

be monitored following similar methodological principles. 

 

4.5.5 Limitations and future work 

There are several important limitations that must be considered within this Chapter. 

Firstly, I relied on specialist opinion to confirm relevant conferences (both UK and 

international), which may have led to selection bias based on individual preferences. To 

address this, I ensured that where there was disagreement or multiple options provided 

by specialists, the conference with the largest attendance was selected. The selection of 

only large state-of-the-art conferences may have also narrowed the range of 

conferences available for inclusion. However, by selecting high profile national 

conferences I hoped that this would provide the broadest representation of the 

attributable importance of AMS-AMR within that specialty. This is because this approach 

would avoid including narrow agendas often found within sub-specialist, smaller 

conferences that may have either positively or negatively influenced the observations. In 

several instances data were not available from conference websites / journals meaning 

that the conference was excluded from the final analysis. For future investigation I would 

aim to directly contact the conference organisers to obtain this information.  

For evaluation of postgraduate training curricula I used a validated search criteria and 

quality assessment tool to identify and appraise learning points [180,195]. Inter-rater 

subjectivity was a potential bias during eligibility screening and quality assessment of 
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learning points. To account for this, I ensured that points were reviewed by multiple 

researchers independently. This approach obtained consistent results between 

reviewers. For example, on assessment of the level of achievement of individual learning 

points, two or more researchers agreed in 179/184 (97%) of cases. Only 5 learning 

points requiring review by a fourth researcher.  

For both approaches, it is important to acknowledge that these methods only act as 

proxy indicators for the attributed importance of AMS-AMR within UK clinical specialties. 

Therefore, it does not account for individual and informal promotion of the topic within 

different specialties. Furthermore, there is currently no agreed baseline for comparison 

to determine what an “appropriate level” of AMS-AMR coverage within a specialty is. I 

attempted to address this through comparison with another infection related topic, IPC, 

in the training curricula. This was because IPC has been the focus of similar national 

and international campaigns to AMS-AMR, but over a longer period of time [276]. Future 

work must explore the validity of IPC as a benchmark and investigate whether other 

makers are more justifiable within both state-of-the-art scientific conferences and training 

curricula. This may include the use of non-infection related benchmarks that are deemed 

to have an equal level of importance across all specialties.   

Finally, data in this Chapter only focused on UK based specialties. Outside of the UK, 

specialty training and international conferences must also be explored to give a more 

global perspective on the issue. However, heterogeneity between countries training 

pathways must firstly be considered when planning such studies [179,180]. 
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4.6 Conclusions and key messages  

With ongoing developments in international frameworks for the implementation and 

evaluation of AMS, there is a need to be able to encourage and monitor the engagement 

of clinical leaders across specialties. This will provide an ability to be able to assess the 

impact of interventions whilst also helping to promote self-governance of AMS within 

specialties. With the current focus on AMS and AMR from high level organisations, such 

as the UN General Assembly and government, the ability to demonstrate broad levels of 

engagement by clinicians will be vital to maintain ongoing support from these policy 

makers. Furthermore, as education is a critical component for promoting behaviour 

change in antimicrobial usage, the current lack of educational coverage of AMS-AMR 

within most specialties must be addressed. 

For this thesis, these findings support the critical importance of early engagement with 

end users in the development of decision support tools. Overall, the low level of 

engagement across most specialties supports potential reasons for failure in adoption of 

CDSS upon implementation in clinical practice identified within Chapter two. They also 

provide an insight into potential areas for deployment of such tools. This includes 

highlighting the need for consideration of surgical specialties, as well as areas beyond 

the focus of this thesis such as primary and intensive care.  

It is now important to consider potential interventions for personalising decision support 

in keeping with the arguments outlined in Chapters two to four. This will need to focus on 

both patient and prescriber-facing interventions.   
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CHAPTER FIVE 

5.0 Investigating patient engagement with antimicrobial decision 

making in secondary care 

Figure 15. Overview of thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

5.1 Introduction 

A core aspect of practicing EBM, and thus decision making, is the ability to be able to 

explore and incorporate patient views and perspectives into the decisions made [1]. To date, 

interventions to improve antimicrobial prescribing have mainly focused on health care 

providers. Where patient engagement interventions around AMR and AMS have been 

explored, these have mainly been via public health interventions, such as media and 

awareness campaigns, which have difficult to assess for efficacy [60,148,277–286]. 

Patient-centred interventions have been demonstrated to be vital for ensuring appropriate, 

effective, safe, and responsive provision of healthcare [287]. Despite a paucity of evidence 
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to support patient focused interventions within AMS programmes, a growing body of 

literature is emerging that describes physician and patient desire for increased collaboration 

in the decision making process surrounding the prescription of medications within secondary 

care [288]. However, there is currently no specific evidence describing patient experiences 

of infection management and antimicrobial prescribing within this setting.  

Within primary care, the role of shared decision making (SDM), where patients and clinicians 

come together, acknowledge that there is a decision to be made (i.e., between treatments 

and including no treatment), and consider the best available evidence with the patient’s 

values, preferences, and context have been demonstrated to reduce the rates of 

antimicrobial prescribing for respiratory tract infections [150]. However, in secondary care, 

where infections are often more serious, requiring urgent and highly protocol driven 

management, the role for the patient in this process remains unclear.  

As described in Chapter two very few decision support tools reported the incorporation or 

evaluation of patient engagement interventions within the interventions reviewed. This is 

despite evidence to support the influence of the patient’s role in decision making influencing 

antimicrobial prescribing decisions [149–151] and the role of engaging patients in decision 

making surrounding other medications being associated with improved patient reported 

outcomes in secondary care [288]. Furthermore, a paucity of information is available 

describing the impact of personalised information provision to patients regarding infections 

and their management. 
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5.2 Chapter objectives 

Within this Chapter, I aimed to explore current patient experiences of engagement with 

decision making around antimicrobial prescribing in secondary care. I aimed to use this 

information to develop and test an intervention to address problems identified with current 

practice.  

The objectives of this chapter are: 

1. To explore patient experiences of engagement in decision making for acute infection 

management in secondary care. 

2. To work with patients to co-design an intervention to address the current issues 

identified. 

3. To investigate the potential impact of a personalised intervention integrated into a 

decision support tool on patient engagement with decision making for infection 

management. 
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5.3 Method 

5.3.1 Study setting 

To accomplish the aims and objectives of this study, I opted to use a mixed methods 

approach. Initially, I undertook focus-group workshops with previous patients who had 

received antibiotic therapy from secondary care within the preceding 12 months. These 

participants were recruited through a specialist qualitative research company (Cherry 

Picked, London, UK). The workshops aimed to explore, and subsequently triangulate 

reported experiences and problems with engagement with infection management in current 

clinical practice. Subsequently, I aimed to engage participants in the workshops in the co-

design of an intervention that could be integrated into a clinical decision support system. 

The final objective of this Chapter was to pilot test the developed intervention on patients 

receiving antibiotic therapy in secondary care. This would be performed at ICHNT. I planned 

to recruit participants from a range of clinical specialties and wards to ensure that the 

influence of a single team would not bias the investigation. The details of both studies are 

outlined below.  

 

5.3.2 Patient focus-group workshops 

5.3.2.1 Participant recruitment 

In total, 30 previous patients who had received antibiotics in hospital during the preceding 12 

months (recruited through Cherry Picked, UK – a specialist qualitative recruitment company) 

participated in two separate 1-hour workshops. The first of these was held in September 

2015 and the second in May 2016. Citizens were recruited from a sample of 500 people 

whose data were held within a database of 20,000 individuals from around the UK who had 

signed up with the recruitment agency previously. An initial email was sent to all individuals 

in the database advertising the workshops. Respondents were then stratified according to 
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recruitment criteria and 30 individuals selected for inclusion (10 were selected for the first 

workshop and 20 for the second). The primary participant recruitment criteria for inclusion 

was that the patient had received antibiotics in hospital within the preceding 12 months. I 

also aimed to select an equal spread of age ranges (18-24; 25-49; 50-65; 65+), gender, and 

ethnicities for the workshops. Following the initial invitation email, two further emails were 

sent to individuals confirming their participation. 

Participants attended focus group interviews at Imperial College London (UK). A small 

sample size was selected in order to gain an in-depth understanding of individuals’ views, 

thus providing a richness to the data available for analysis [153].  Furthermore, focus groups 

were selected over individual interviews as these allowed for group exploration of new ideas, 

point-counterpoint discussion, and resolution of views; allowing identification and consensus 

on common themes within the groups [153]. All individuals were consented prior to 

participation. Participants completed a questionnaire collecting demographic data and 

previous healthcare experiences. For the first workshop in 2015, a validated Single Item 

Literacy Screener (SILS) screening tool was included to assess the participant’s level of 

health literacy [289]. This was used to allow a baseline estimation of the groups’ rate of 

health literacy and comparison to that of the general population. This was felt to be important 

for consideration, given that the findings of this study may be used to inform future 

interventions in clinical practice. A reimbursement of £65 was provided to participants for 

their time. Participants were consented and the workshops were audio-recorded. 

 

5.3.2.2 Focus groups 

For both workshops, the participants were divided into groups of 5-7 with the aim of creating 

diverse groups based on age categories and gender. Two healthcare professionals (myself 

with either LSPM or EC), following a pre-determined schedule (Appendix 5; developed from 

a critical analysis of the literature), facilitated a 120-minute focus groups. 
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These aimed to;  

i) Explore the participants’ experiences of engagement with decision making 

surrounding infection management and antimicrobial use in secondary care 

pathways; and  

ii) Co-develop an approach to improve experiences to be delivered as part of an 

integrated decision support tool.  

Two independent observers (one non-medical and one healthcare professional; Bernard 

Hernandez [BH] & ECS) directly observed the sessions and were asked to make notes of 

key observations. These were used to help triangulation of initial codes during analysis. 

 

5.3.2.3 Data analysis 

Focus groups were audio recorded and transcribed verbatim (using anonymous participant 

identifiers). Data analysis was performed using NVIVO pro 11.0 software. Thematic analysis 

of transcripts was performed using a mixed deductive and inductive approach [290]. 

Deductive categories were identified based on review of the literature and findings from 

previous work exploring the users role in infection control for workshop 1 [291]. For 

workshop 2, the key themes identified during workshop 1 [292] were used. I initially reviewed 

all transcripts and data generated during the workshops. For the inductive approach, two 

researchers (myself and LSPM), reviewed the focus group transcripts independently to allow 

initial codes to be generated from differing viewpoints by line-by-line coding for first order 

codes [164,293]. During line-by-line coding, the comments provided by the independent 

observers’ were considered with the aim of complementing areas of reflexivity caused by the 

analysts’ own prior experiences [156]. After familiarisation with the transcripts, the 

researchers independently coded the data generating a list of emerging categories from the 

first order codes and those identified deductively, addressing the aims of the study design. 

After meeting and agreeing on key categories and themes within the text, the two analysts 
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independently preceded to systematically cross-review the text, coding passages based on 

these agreed codes and categories, subsequently grouping them into overarching themes. 

On review, any discrepancies were discussed and consensus reached. Examples of key 

opinions and ideas from the text for each main theme identified were then charted to allow 

mapping and interpretation of the results [164]. 

 

5.3.3 Pilot study 

Following workshops 1 and 2, the co-designed intervention was piloted in ICHNT. Although 

described in detail below, briefly; the intervention co-designed was a personalisable PDF 

that was embedded within the CDSS described in detail in Chapter six and technical 

Appendix 8 (Section a8.1). Upon activation of the module, a personalised PDF document 

with infection and antimicrobial information would be generated, which could then be printed 

and discussed with the patient.  

 

The pilot involved a pre- and post-intervention questionnaire delivered 12-24 hours either 

side of the intervention. This was facilitated by two members of the research team (myself 

and Vivian Alividza [VA]). Participants were identified by clinical members of staff for 

inclusion from separate clinical wards across three university teaching hospitals making up 

ICHNT. These wards were staffed by a range of specialties (infectious diseases, care of the 

elderly, respiratory, gastroenterology, haematology, nephrology, general surgery, urology, 

and orthopaedics).  

 

Over a four-week period, between 7th August and 1st September 2017, 30 patients were 

invited to participate in the intervention. Consent was obtained from patients who agreed to 

participate by members of the research team; they remained enrolled in the study for 3 days. 

After obtaining consent, participants were asked to complete a 15-point questionnaire on day 

one (Appendix 6). On day two, a member of the research team, following a pre-determined 
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semi-scripted guide designed to simulate a discussion on infections / antibiotic prescribing 

during a ward round or brief clinical consultation (lasting less than 5 minutes), delivered the 

intervention. On day three, the participants were asked to complete a 20-point questionnaire 

(Appendix 6). The questionnaires were designed by the research team and were piloted on 

two healthcare professionals, four citizens not associated with the research team, and a 

medical student.  

 

The study was designed to assess:  

(i) Any short-term improvements in patient knowledge and understanding of their 

infection and antibiotics;  

(ii) What information was still being missed during the intervention; and  

(iii) Evaluate the acceptance and agreement of patients with the intervention.  

 

Where answers were marked as correct/incorrect, members of the research team met and 

agreed upon correct responses for the individual participant before deployment of the 

questionnaire. Free text answers were collected and independently analysed inductively by 

two members of the research team through line-by-line coding and categorisation of answers  

(myself & LSPM) [164,293].  

 

5.3.4 Ethical approval 

The study protocol was initially reviewed by the West London Regional Ethics Committee 

(REC) in September 2015 and considered to meet criteria for monitoring under service 

evaluation governance structures (REC 15/LO/1269 / ICHNT Service Evaluation SE113). In 

February 2017, a second ethical review was undertaken by Chelsea-London REC who 

granted favourable opinion for testing of the developed intervention in clinical practice (REC 

17/LO/0047). 
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5.4 Results 

5.4.1 Focus-groups 

5.4.1.1 Participant characteristics 

Within workshop 1, the median age of participants was 52 (21-69) years with an equal 

gender divide. Seven of the participants were white ethnicity. Six participants had experience 

of infection management as a hospital in-patient (in the non-critical care setting) with the 

remaining participants all having received antimicrobials from other secondary care 

pathways across a variety of South-East England healthcare institutes. These included the 

Emergency Department (ED), urgent care centres, or consultant led out-patient clinics. Two 

out of ten participants were identified on screening as potentially having a low health literacy, 

reporting that they sometimes, often, or always required help with written health information 

on the SILS screening tool [289].  This indicates that our cohort were likely to be more health 

literate than the average population, where approximately 43% of individual citizens would 

require assistance with written health information [289,294].  

Within workshop 2, only participant age ranges were provided. Five participants were aged 

18-25, five 26-40, five 41-64, and five 65+. There was an equal divide of genders. All 

participants had once again received antibiotics from a secondary care pathway across 

South-East England in the preceding 12 months.  The SILS screening tool was not used 

during this workshop.  

 

5.4.1.2 Current experiences of engagement with decision making in secondary care 

Following thematic analysis of participants current experience of engagement with decision 

making yielded 92 subcategories that fell into 12 categories. Three interlinking themes were 

identified (Figure 16). Table 14 summarises key quotes informing the individual categories 

and themes referred to within the text below. The participants described a failure in 
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communication and information provision from infection clinicians and support staff in 

secondary care which subsequently influences the individual’s future ideas about infections 

and their management. This alters the individual’s future actions towards infections and 

antimicrobials and can drive non-adherence to prescribed antimicrobial regimes and loss-to-

follow-up after discharge from secondary care. 
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Figure 16. Summary of identified categories and themes from workshop 1 exploring patient 

experiences of engagement with decision making surrounding antimicrobial prescribing in 

secondary care.  

 

 

 

 

 

  

Legend:  HCP = healthcare professional 
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Table 14. An analytical framework developing categories and themes for patients’ 

experiences of infection management in secondary care.  

 

 

 

 

 

 

 

 

 

 

Quote Category Theme 

 “I wasn’t given any education into what to do [with my antibiotics]. The 5thday I felt well and 

so thought I would just stop taking the treatment. I was fortunate that my sister explained to 

me and made me complete the course”  [24 year-old female] 

Adherence 

support 

Information  

provision 

“Especially I think that you are often given more information when you are taking other 

medication… I have allergies to penicillin so always I have to know what kind of antibiotic I 

have been given. So unless your issues are more complicated, that’s when they give you more 

information, otherwise I feel that they don t provide you with enough” [24 year old female No. 

2] 

Comparison with 

other treatments 
  

 “I like to go and see the doctor… Online can’t see me [sic]. Infection is a thousand different 

things and online can’t confidently tell you, this is what you have…” [65 year old male] 

“…you are not an individual to them [corporate pharmacists]. In our case, I think we have the 

option to be sort of individuals. That is what I find lovely about our current pharmacy!” [69 year 

old male] 

Sources  

“I think what the problem that I have experienced is, is that they will give you a leaflet to read 

and I will have to go and research it myself. This is rather than the doctor taking the time to sit 

down and talk about how it might affect you, what exactly is in it [the antibiotic] – you know a 

proper consultation. [23 year old female] 

“Rather than sitting down and taking the time to explain, because they use a lot of medical 

terminology that I do not know what they’re talking about to be honest. I think that they need 

to take more time to be honest to sit down and make sure that the patient knows exactly what 

they are putting in your body and exactly what all the side effects were. Because I didn’t know 

what I was reacting to…” [24 year old female] 

Quality  

Information 

provision / 

communication 

 “I think sometimes the doctors normally come and diagnose you they usually tell…. They don’t 

necessarily tell you what they are giving you, they usually prescribe it. Then the nurse just 

comes along with a pot full of drugs and you just take them. I think, unless you are intrigued 

and ask for it then the nurse will give you that information.” [30 year old female] 

HCP - Patient 

communication of 

information 

 

 “When you go into hospital, you feel as though the illness is not yours. You go in to hospital 

and everyone takes over, like ‘we do this then we do that later’. You have no ownership in a 

way. You are going through it but you have no ownership over what is being done for you or 

what medication you are receiving.” [23 year old female] 

Decision making 

process 
   

“Tell me yes or tell me no… If you can’t fix it I don’t want to see you again because there will 

be no point… We’ve tried this it’s not worked so we tried that… it is endless…” [65 year old 

male] 
Emotion   Communication 

 You know, the hospitals I have experienced in [region] – I am not really keen based on the 

lack of information. It is more about; we’re doing this operation – get you in, get you out.” [23 

year old female] 

Hospital 

variability 
  

 “When I went to A&E I visited my GP … It is more about telling your GP what the symptoms 

were and what treatment you had rather than exactly what the infection is” [30 year old female]  

“My GP never knew anything. She had scheduled me in to have the hernia, but the appendix 

went first. And she was “oh have you…” [53 year old male] 

 

HCP - HCP 

communication of 

information 

  

Legend: HCP = healthcare professional; A&E = accident and emergency; GP = general practitioner  
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5.4.1.2.1 Failures in communication 

Participants described their experiences of being diagnosed with an infection in secondary 

care as one where they completely lost ownership of their condition. Control of their illness 

was taken over by a multitude of healthcare professionals (HCPs). Recurring instances were 

identified where HCP communication with patients became unilateral when antimicrobial 

decisions were being made, with patients being “told” information, often devoid of key 

aspects such as names of medications, durations of treatment and prospective plans about 

time courses and potential escalation / de-escalation of therapy. This led to a significant 

amount of anxiety and frustration as the individual searched for answers. 

“I was told ‘you have an allergy [to penicillin], take this instead’ – Tell me what I am 

taking and exactly what it is going to do for me!” [65 year-old male] 

Moreover, in many cases participants did not feel as if they were involved in the decision 

making process around their infection management with two-way communication with 

healthcare professionals perceived as absent.  

As well as HCP communication with patients, participants reported becoming frustrated by 

communication between HCPs. This is centred primarily on the way in which information 

about infections is communicated from secondary care doctors to primary care doctors on 

discharge from hospital. Whilst patients are provided with a discharge summary of their stay 

on leaving hospital, it was perceived that this often-neglected information about their infection 

and the treatment which they received whilst in the hospital. Participants’ reported that they 

were often forced to communicate this information directly with their primary care physician 

on follow up visit or were otherwise lost to follow up after discharge due to lack of clear 

communication pathways. 
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5.4.1.2.2 Failures in information provision 

The current volume and quality of information provided to individuals by HCPs in secondary 

care causes problems for patients as it is often poorly explained, with medical terminology 

routinely used. This leads to a feeling of dis-empowerment with individuals frustrated that 

they then have to “go away and research it [their condition] themselves” [23 year-old female]. 

Fear and anxiety follows when participants see serious side-effects of treatment “like risk of 

death [and] no one has mentioned that to me!” [30 year-old male]. This in-turn causes 

frustration as participants compare delivery of information on infections and antimicrobials to 

that provided for operations and medications for chronic disease, such as hypertension. In 

this example, patients are provided with explanations of their procedure/condition, their 

management, and potential complications which may arise and how these will be dealt with. 

In contrast, information on infection management is seen as a “reactive” process where 

information is only often provided once complications have occurred. Furthermore, patients 

are often unaware of the timeline for their treatment and the potential complications. This 

lack of clarity drives individuals to stop treatments early or potentially ignore side effects 

experienced due to false assumptions and misinformation. 

Participants reported that this failure in communication about infections and antimicrobials 

drives them to seek information from a wide range of sources, often with varying degrees of 

quality. Participants commonly sought information independently due to “difficulties in 

accessing [healthcare professionals]” and the “[time] pressures of work and children” [65 

year-old male]. A number of avenues were preferred such as the internet, information leaflets 

provided with medications and local pharmacies. Individuals will seek out recommended or 

official NHS sources of information which they believe that they can trust to provide them 

with information on their infection or treatment. Whilst these sources are seen as helpful, 

patients still prefer to discuss their infection and its management with a HCP as this provides 

“individualised” information compared to the “standard-reply” provided by alternative sources 

[69 year-old male]. This is because the information provided is seen as being based on the 
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patient’s own specific situation and issues.  Furthermore, the HCP is a “trusted” source being 

viewed as an “expert” [69 year-old male].  

 

5.4.1.2.3 Influences of future attitudes and behaviours  

Participants clearly described how these individual experiences of poor communication and 

information provision influence their future ideas and actions towards infection management 

both in secondary care and in the community. Influences were described from three sources; 

personal understanding / experiences, understanding by proxy, and understanding through 

the media.  

For example, one personal experience was described by a participant who was told that he 

had an allergy to penicillin and told that he would be given a “weaker” type of antibiotic for his 

infection. When this was perceived not to be effective at clearing up the infection after two 

days, he stopped taking his medication as: 

“You know the weaker ones [antibiotics] never seem to clear the infection up. They 

are not as strong so they don’t clear it up. The infection lasts longer” [60 year-old 

male] 

This subsequently led to the participant having to return to secondary care for further 

treatment of his infection due to the poor information provision and engagement in the 

decision process surrounding his infection. 

The media’s role in developing the participants’ understanding of infection management 

arose and was further explored during the focus group. Participants reported that the medias 

influence occurred through the portrayal of stories about complications of treatment and the 

dangers of AMR. This created fear and mistrust of medical professionals within our 

participant group and caused participants to be “cautious” when interacting with medical 

professionals at they are perceived to “not say the full story” [21 year-old, female]. This 
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distrust was reported as driving non-adherence to therapy in the community by several 

members of the group. 

 

5.4.1.3 Co-development during workshops 

On analysis of participants reported views during co-development of the intervention 25 

categories were generated. Table 15 summarises the key themes that emerged from the 

workshops for the content and structure the participants felt was required from the 

intervention. There was consistency in identified themes across both workshops. 

Participants agreed upon the development of a personalised PDF document that could be 

generated using electronically available data specific to the individual. Participants reported 

that the PDF was the optimal approach as it allowed the maximum flexibility to either be 

printed and given to a patient at the bedside or transferred electronically. Other approaches 

considered included the development of a mobile application, text message services, and 

written summaries. The ability to be able to print the PDF was considered by participants to 

address some of the reported concerns about transferring confidential patient information 

electronically and would also be available for patients without access to electronic devices. 

 

“Couldn’t you have an interactive PDF so people can choose whether or not to include a list of 

side effects or just the link for further information?” (Female 1, workshop 1) 

 

“I like the idea of getting it electronically and downloading PDFs or something, but I would say 

an app’s just getting a little bit to gimmicky” (Male 1, workshop 2)  

 

“I feel like that a lot of people prefer forms as they can physically keep track of them [patient 

information]. I feel more in control of them then. If you are comfortable online then it is good, 

however with medical records I mean they are quite sensitive, so it might be nice to have 

them just in their paper form.” (Male 2, workshop 1) 
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Participants reported that the intervention could act as an important tool for promoting better 

communication about infections and antibiotic management between patients and healthcare 

professionals. In particular, participants reported that this may act as a prompt for further 

questions and support reflection on their infection and its management after the consultation 

has taken place.  

 

“I usually get home and think ‘oh wait’ I had a really important question which I forgot to ask. I 

like to be able to process things and then kind of gather my thoughts and find out what I want 

to know about the issue.” (Male 3, workshop 1) 
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Table 15. Key themes identified during workshops for the development of a patient engagement 

intervention for promoting enhanced communication and information provision surrounding 

infection management in secondary care.   

 

 

Category Summary of workshops decision on 
content 

Summary of workshops decision on 
structure 

Platform Needed to be flexible, to allow use on devices, 
paper, in and out of hospital, and by all age 

groups 

The platform should also be personalisable, to 
allow the patient and doctor to select relevant 

information depending on the patient’s wishes  

A PDF document that can be populated, printed, 
emailed, or uploaded onto an application was 

preferred.  

Mobile applications, websites, automated text 
systems were also considered but were felt not to 

have the same level of flexibility. 

Individualised The intervention should provide information about 
the individual’s current condition and treatment.   

Information provided should be in summary form.  

The provision of blood test results, or probabilities 
was not felt to be appropriate as it could be 

overwhelming and concerning to some patients.  

Health literate The information must be provided in language that 

the majority of citizens can understand. 

The quantity of information provide must be 
enough to provide key information but not 
overwhelming to someone who is unwell and in 
hospital.   

Colours and tables were not preferred.  

Participants opted for the minimum amount of 
presented information.  

Basic explanations of conditions with examples of 
medical terminology sometimes used was felt to 
be helpful for following discussions and searching 

for further information after the consultation.  

Sign post Detailed descriptions should not be included, but 
references for reputable sources of information 
should be provided to help guide those who want 
more information. 

Links to further information on reputable websites.  

Blood test results were not preferred on the leaflet.  

Practical advice Advice on common or important side effects of 
treatments should be included. 

Practical information, such as whether it is okay to 
drink alcohol, drive/operate heavy machinery, and 
interactions with the oral contraceptive pill whilst 

taking antibiotics should be included.  

Educational information to promote better 
understanding of the risks of drug resistant 
infections could be included. 

Adherence to therapy should be reinforced. 

Minimal numbers of side effects were preferred. 
The group decided on 3-4 key side effects would 

be optimal. 

A short description of antimicrobial resistance and 
where to find further information was included for 

reference. 

A tool to enhance 
communication 

The intervention should aim to enhance 
communication between patient and healthcare 

professionals.  

It should be designed to be delivered by all types 

of health care professional. 

It should provide a prompt to allow the patient to 
consider whether they have further questions, 
allowing them to pick this up during future 
interactions with the healthcare professional. 

Diagnosis, causative organism, and treatments 
(past and present) were included.  

Supporting follow 
up 

Information on next appointments 

Information on who to contact if you have 

problems or questions on discharge 

Removed from the leaflet as participants felt that it 
overlapped with discharge summaries that are 
often provided. In this case duplication of 
information at different times during hospital stay 
may be unhelpful.   
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There was agreement across both workshops that the information provided needed to be 

personalised to the individual patient’s current situation and treatment regime. Existing 

approaches, such as medication information leaflets, were reported to give generic 

information on infections and treatments that participants felt could be overwhelming and 

confusing. Participants reported the need to ensure that the quantity and complexity of 

information provided was at a level that could be understood by the majority of individuals. 

To address this, the workshops decided that a summary of key points to take away should 

be presented with links to reputable information sources for patients to seek further 

information if required. 

 

“Summarise it and then if you want more information you can always go on the internet” 

(Female 2, workshop 2) 

 

“Rather than it being ‘here’s all the information in one go’, more of the ‘you have had a 

positive bacteria reading on your test, click here to read more about it’.  And then if you don’t 

want to [don’t] click there” (Female 3, workshop 2) 

 

Furthermore, the groups focused on providing practical information that they felt was 

commonly missed during discussions with healthcare professionals regarding their 

medications in hospital. This included items such as whether it is safe to drink alcohol or 

drive whilst taking certain antibiotics.  

 

“When I had an infection and they said don’t take it if you have reflux – that stuff I need to 

know. But stuff like the massive long name of what the drug is really called and stuff like 

that…. It is irrelevant to me. I just want to know, is it going to make me sick? Can I drive? Can 

I work with it…” (Male 4, workshop 1) 
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Participants reported that this this information needed to be provided in a health literate 

format that considered the literacy and language needs of the population who would be 

utilising this intervention.  

 

“Yes English as a second language and dyslexia is really common.” (Female 4, workshop 1) 

 

“[It needs to be] easy to understand, easy to just [look down it]. Whereas here, I would look at 

this and say, well, this doesn’t, I don’t care because I can’t read this, I have no idea what this 

means” (Female 5, workshop 2) 

 

 

5.4.2 Intervention development 

Figure 17 demonstrates the final template that was agreed upon and co-designed by 

participants in the workshops. The intervention was embedded in an electronic clinical 

decision support system that contains several different modules linked to a central server 

(Chapter six and technical Appendix 8, section a8.1). This allows individual patient 

information to be automatically extracted from a number of databases within the hospital. 

Moreover, the clinician can also input their impression and findings based on the clinical 

examination. To ensure that individualised information was provided in a health literate 

format, a number of translations automatically occur upon generation of the personalised 

information leaflet. For example, if “pneumonia” is recorded by the healthcare professional, it 

will be coded to display the diagnosis as “chest infection” and a number of alternative names 

are provided (“pneumonia”, “lower respiratory tract infection”) automatically below on the 

PDF document. This code also triggers the inclusion of a web address that directly links to 

an open access patient information leaflet on pneumonia (patient.info). Therefore, on 

generating the information leaflet through the clinical decision support tool, the clinician is 

able to provide a personalised information leaflet to the patient, which contains details of 

their own infection and treatment.   
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Figure 17. Summary of intervention template development and integration into clinical decision support system. 
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5.4.3 Pilot study  

Eighteen out of thirty (60%) patients invited consented to participate. The 12 who declined to 

take part did not provide reasons for this. In total, 15/18 (83%) of the enrolled participants 

completed the study. One patient moved hospital before they could complete the pre-

intervention questionnaire, one participant was discharged before completion of the post-

intervention questionnaire, and one patient experienced an episode of delirium after 

completion of the pre-intervention questionnaire leading to him being withdrawn from the 

study.  

Table 16 summarises participant characteristics from the study. Of the 17 participants who 

completed our pre-intervention questionnaire, the median (range) age was 60 (22 - 85) 

years, the majority of participants were male (11/17; 65%). Most patients were under the 

care of medical specialties within the hospital (13/17; 76%). In the pre-intervention 

questionnaire, 8/17 (47%) reported the correct infection diagnosis and 6/17 (35%) correctly 

named what antibiotics they were receiving. Participants reported that health care 

professionals had spent less than 10 minutes discussing their infection with them in 9/17 

(53%) cases. Three out of seventeen (18%) did not report healthcare professionals 

discussing their infection with them at all and 7/17 (41%) reported that healthcare 

professionals had spent longer the 10 minutes discussing their infections with them. Only 

5/17 (29%) reported healthcare professionals discussing their antibiotic therapy with them 

during this admission.  
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Table 16. Summary of participant characteristics and questionnaire results from the pilot 

evaluation of the patient-focused intervention. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Legend: All analysis was performed only on participants with both pre- and post-questionnaires (n=15) unless otherwise stated 

$ Wilcoxon Signed Ranks Test 

% Paired t-test 

& n=17 who completed pre-intervention questionnaire  

 
Characteristic Description Result p-value 

Age& 
Median (range) 

years 
60 (22-85)  

Gender& Male (%) 11 (65)  

Reported time spent discussing infection prior 
to intervention& 

   

Not discussed  n=(%) 3 (18)  

< 10 minutes  n=(%) 8 (47)  

10-30 minutes n=(%) 3 (18)  

> 30 minutes n=(%) 3 (18)  

Antibiotic therapy discussed with patient prior 
to intervention& 

   

Yes pre-intervention   n=(%) 5 (29)  

Pre-intervention knowledge and 
understanding scores 

   

 Median (IQR) 3 (2-5)  

 Mean (SD) 3.2 (2.2)  

Post-intervention  knowledge and 
understanding  scores 

   

 Median (IQR) 10 (6-11) p =<0.01$ 

 Mean (IQR) 8.5 (3.3) 

p =<0.01 

(95%CI: 3.7 - 
6.3)% 

Reported usefulness of intervention 

Median score 
(range) 

1 = Not very useful 

6 = Extremely useful 

5 (3-6)  

Would participants use the intervention again Yes – n=(%) 13 (87)  

Reported optimal time to deploy the 
intervention 

   

Initiation of therapy n=(%) 5 (33)  

On discharge n=(%) 2 (13)  

Any time during admission n=(%) 8 (53)  
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Of the 15 patients that completed the study, the pre-intervention questionnaire demonstrated 

poor knowledge and understanding surrounding participant infections and antimicrobial 

therapy. Mean (SD) scores out of 13 were 3.2 (2.2). Following the intervention, participants 

post-intervention questionnaire scores improved significantly to 8.5 (3.3) out of 13 (p < 0.01). 

Feedback on the impact of the questionnaire was positive with participants rating its 

usefulness a median (range) 5 (3-6) out of 6. Thirteen out of fifteen (87%) participants 

reported that they would use the intervention again if in hospital with an infection.  

Table 17 summarises the questions participants recorded in their pre-intervention 

questionnaire regarding their infections and subsequent management. It also summarises 

participant post-intervention written feedback, outstanding questions, and suggestions for 

further development of the tool.  
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Table 17. Summary of qualitative question responses from participants in the post-

intervention survey.  

 

  

 

Questions noted by participants pre-intervention Frequency 

What are the side effects of taking antibiotics? 7 

Where to find further information about the diagnosis? 7 

Further information about the antibiotics that I am taking 5 

Further information about the bacteria causing my infection 3 

How long will it take for me to feel better?  2 

How can I prevent this happening again in the future? 2 

  

Post-intervention - Why was this useful? Frequency 

It gave information I haven't of been told by the doctor 4 

I didn't know the names of the antibiotics I was taking 3 

Gave information about side effects 2 

It provided information about driving 2 

It provided information about drinking alcohol with antibiotics 2 

Covered all of the questions that I wanted to ask the doctor 2 

Gave information on the infection / bug  1 

Clear and understandable information  1 

A good reminder of my conversation with the doctor 1 

  

Post-intervention - How could this be improved further? Frequency 

Nothing 3 

More information on side effects  2 

Would be better with more communication from the healthcare professional 1 

Length of treatment  1 

A place to write the concerns and questions that I have 1 

Provide further information on why I shouldn’t drink on this medication 1 
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Pre-intervention, participants reported requiring more information about their infections and 

antibiotic therapy than they had been given. Potential side effects were commonly reported 

questions that patients had. Post-intervention, participants reported that the intervention was 

useful as it provided information that had not yet been given to them by their treating doctor. 

This included information about their infection, the antibiotics that they were taking, and 

general issues around whether it is safe to drink alcohol or drive whilst taking these 

medications. Feedback provided on improvements to the intervention by participants 

surrounded, giving further information on specific aspects within the document and also 

prompting more detailed discussion with the doctor following use of this intervention.  
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5.5 Discussion 

5.5.1 Summary of participant impressions 

Within our participant group, individuals reported feeling detached, frustrated, and 

disempowered from involvement in decision making about their infection management within 

secondary care. The consequences of the failure of HCP communication and information 

provision was not limited to the discrete episode they described, reaching beyond secondary 

care. It appeared that these episodes have a cumulative impact, influencing the ideas and 

actions towards infections and antimicrobials during future healthcare interactions along a 

number of different pathways. This was reported as fostering feelings of frustration and 

anxiety during an individual’s journey through complex secondary care pathways and was 

potentially driving non-adherence to prescribed antimicrobial regimes and loss to follow up 

after discharge. These findings highlight the need for specialists in secondary care to not 

view infection management episodes as discrete events, but as cumulative experiences 

which have the potential to drive future non-adherence to prescribed antimicrobial regimes 

and thus the promotion of AMR.  

 

5.5.2 Opportunities for educating healthcare providers to improve patient engagement 

Importantly, HCPs must appreciate that engagement in the decision process for infection 

management and antimicrobial prescribing may have an influence on future patient actions 

towards infections and antimicrobial use. These actions can be influenced by personal 

experience along with those of friends and family and what is described in the media.  The 

way in which HCP communicate information to patients was reported as the most important 

aspect in our participants’ experience. This was the largest influence on future actions in 

terms of adherence to prescribed antimicrobial regimes and healthcare seeking behaviours. 

Participant perception of communication in secondary care infection-related pathways is of a 

unilateral process which does not invite patient participation. Greater emphasis needs to be 
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placed on educating HCPs to move away from the decision-maker role [295] into a more 

bilateral structure. Difficulties such as time pressure on the HCP and the patient is perceived 

as a key factor by participants and must be taken into account when designing interventions 

to help facilitate improved communication and patient education during the decision making 

process. The way that these interventions are designed must be mindful of health literacy, 

ensuring that the information provided to patients is understandable. Within our small cohort, 

two of ten participants met screening criteria for health illiteracy. Within the UK, it is 

estimated that up to 43% of the adults cannot understand currently available health 

information [289,294]. Therefore, as well as educating healthcare providers in how to 

improve communication with patients, consideration of the wording and type of health 

information supporting this is vital to allow patient engagement with the decision making 

process. 

 

5.5.3 Opportunities for improving patient engagement with decision making 

Within our cohort, participants felt strongly that the choice of information provided about their 

infection and antimicrobial therapy should be dictated by the patient’s preference. However, 

their focus was not primarily on the end decision of whether or not to treat, but on feeling 

involved and engaged with the process of decision making. This focused on education about 

their condition and treatment, communicated effectively to them. They described a belief that 

if a trusted clinician felt they had an infection that required antimicrobial therapy then this 

was appropriate. Whether this is truly sharing the decision process or not is for 

consideration, as SDM classically acknowledges that there is a choice to be made, with the 

patient and clinician coming together to consider available evidence, the patients values and 

preferences before arriving at a decision [296]. However, Edwards and colleagues, suggest 

that this can still be classed as sharing the decision (or engaging the patient in the process) 

where the focus is placed primarily on involving the patient in the decision making process, 

rather than on who actually makes the final decision on management [297]. Our participants 
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supported this approach to engagement by describing how they become frustrated and 

distrusting of the recommended therapy when supporting information about the infection and 

the proposed management is perceived to be withheld from them.   

Participants currently view information provided about infections and antimicrobials as 

reactive in nature with information only provided after a side effect occurs or the patient fails 

to respond to a certain type of antimicrobial and therapy is escalated. Individuals want 

proactive information to help them understand what they are receiving, what to expect, and 

what the plan is if the treatment doesn’t go to plan. This allows them to feel “prepared”, 

“confident” and invested in the healthcare they are receiving. This is challenging for 

antimicrobial prescribing in secondary care, which is often an acute event, requiring rapid 

decision making, and has a short duration of therapy [53]. Moreover, this highlights a key 

area of misunderstanding surrounding infections and antimicrobial therapy within our 

participant group that has been driven by poor communication and information provision 

during previous experiences of infection management within secondary care. Therefore, 

future tools must aim to promote patient engagement with infection management, 

considering how they define engaging patients in the decision process. Moreover, these 

interventions must ensure that identified deficiencies in how HCP communicate and provide 

information to patients are addressed to facilitate improvements in patient experiences.   

 

5.5.4 Co-designed interventions can enhance patient engagement 

Within this study we have demonstrated that a patient-centred intervention, co-designed with 

patients to promote engagement with infection management in secondary care, improved 

participant knowledge and understanding of their infections in the short term. Participants 

responded positively to the intervention, providing data to triangulate findings from previous 

workshops, and providing feedback on future areas that still require development.  
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Within secondary care there is evidence to demonstrate that both healthcare professionals 

and patients desire individuals to have a greater involvement with their medications during 

their in-patient stay [288]. This can help reduce medication errors and promote greater 

patient reported outcomes following hospital stay for a wide range of medications 

[288,298,299]. From previous work published by our group [292], there is evidence to 

support that healthcare professionals current approaches to engaging patients in their 

infection management may have a similar outcome to other chronic medications. This study 

has highlighted the lack of awareness within our population regarding their infection and 

antibiotic therapy. Recall of infection names and antibiotic therapy were less than 50%. Less 

than 30% of patients remembered their healthcare professionals discussing their antibiotic 

therapy with them. There is currently little available data to allow comparison of these 

findings with other similar studies of in-patients in secondary care. Micallef and colleagues, 

previously reported on the levels of awareness and understanding of antibiotic resistance 

and stewardship in a cohort of 1450 citizens attending hospital out-patient clinics and 

pharmacies in the UK [300]. Within this study, the authors identified broad conceptions about 

the development of drug-resistant infections and appropriate antibiotic use [300]. These 

findings have also been reported in community based public awareness surveys that have 

demonstrated poor awareness and understanding surrounding antibiotics and infection 

management across a number of different countries [301]. We are now planning to 

undertake a further cross-sectional analysis of this problem designed to assess the levels of 

awareness of in-patients both with and without infections.   

Within primary care, there is evidence supporting the role of shared decision making for 

reducing inappropriate antibiotic use [150,151,278,302]. However, in secondary care during 

acute infection management, the need for antibiotic therapy is often a lot clearer, patients 

are more unwell, and decisions must be made rapidly, especially in the case of sepsis 

[168,292,303]. Therefore, when providing information on infections in secondary care 

interventions may need to adopt a different approach compared to primary care, where there 
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often is truly a shared approach to making a final decision on the need for therapy. This 

problem has been addressed by Edwards and colleagues, who argue that engagement of 

the patient in decision making alone may be sufficient to improve understanding and 

involvement in the process overall, providing a level of ownership to the problem, whilst not 

requiring the focus to be on the final decision that is made [297]. This was supported by our 

findings that participants felt more informed and engaged with the management of their 

infections following the intervention, regardless of whether they had a final say in the 

decision that was made. Moreover, feedback on the intervention was overall very positive 

with the majority of participants happy to use the intervention again in the future. However, a 

wide variation was observed with the preferred timing of the intervention reported by 

participants. This triangulates with findings from our development workshops, where there 

was variation in opinion between participants was observed on this topic.  

The main finding from the workshops in this study was the reported focus on providing 

individualised information to patients that is relevant to their own specific situation. I was able 

to achieve this through the integration of this tool with a wider electronic clinical decision 

support tool. This allowed me to utilise available electronic patient data and clinical 

examination findings recorded by the patient’s physician and provided a flexible mechanism 

of generating a personalised information leaflet for deployment at any point during the 

patient’s hospital stay. There is a wider need to ensure that interventions are joined up 

during the development of clinical decision support tools, which are often developed with a 

narrow focus on antimicrobial selection only [66]. Validation of this intervention will now allow 

it to be tested in tandem with prescriber-focused interventions within the integrated decision 

support system. 

A further aspect that participants in this study wanted to address was ensuring that the 

intervention was designed so that it could be used by any healthcare professional, not just 

physicians. The role of healthcare professionals, such as nurses and pharmacists, is critical 

in infection management and appropriate antibiotic use [57,169,170,172,173]. Therefore, 
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any tool that is developed must keep this in mind. Within my pilot study researchers of two 

different backgrounds delivered the intervention. One was a nurse (VA) and the other a 

junior physician (myself). There were no observed variations in the success of the 

intervention depending on which researcher delivered it.   

 

5.5.1.4 Limitations and future work 

This qualitative analysis aimed to map the current experiences of patients in antimicrobial 

decision making but it does have limitations. Group facilitation within our study was carried 

out by two HCPs, which may have influenced socially desirable participant responses to 

certain questions. To address this dynamic between interviewer and interviewee, two 

observers’ comments were also considered during initial coding to highlight where the 

interviewer’s position may have directly influenced individual responses. For example, during 

discussion of participants perceptions of doctors’ attitudes towards prescribing 

antimicrobials, one participant apologised after voicing an opinion about doctors simply 

wanting to  

“..sign the prescription and get rid of the patient” (69 year-old male).  

The noted anxiety about offending the HCP may have influenced other participants voicing 

their true opinion on the matter. Secondly, whilst small, this in-depth study provides key 

themes for future studies to explore the generalizability of and inform the design and 

evaluation of appropriate interventions. Furthermore, the findings were subsequently tested 

for validation within an independent group of citizens to search for further categories and 

themes within our local population.  Finally, on comparison of the health literacy of my 

selected cohort of participants for the workshops, the group appeared to be more health 

literate than estimates for the general population. Therefore, during subsequent intervention 

development and exploration, this aspect must be highlighted and considered as this may 

affect the generalizability of our results across the population.  
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For the pilot study, this only assessed the impact of the intervention on a small number of 

participants. To try to reduce bias of outcomes, patients were recruited from a wide number 

of wards and specialties, so that one clinical team did not heavily influence the outcome of 

this study. Secondly, the pilot only took place in three West London hospitals. Therefore, it 

may be difficult to generalise this study to wider populations. However, to address this the 

development workshops recruited from a large national database, with participants attending 

from many regions in south England. Thirdly, the questionnaire only aimed to assess short 

term improvement in knowledge and understanding. It is not possible to determine from this 

whether there would be any medium to long term impact from the intervention. Furthermore, 

the reported lengths of discussion with healthcare professionals about infections and 

antibiotics may not of been accurate given the subjectivity of participant reporting. However, 

this was felt to be appropriate within this study given that we were assessing the participant 

perceptions of information provision and communication with healthcare professionals. 

Finally, this pilot study was not powered to demonstrate statistical significant between pre- 

and post-intervention questionnaires. I now plan to undertake a larger, controlled study to 

assess the short, medium, and long-term impact of this intervention of participants receiving 

antibiotics in secondary care. 
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5.6 Conclusion and key messages 

Within this study I have observed poor baseline knowledge of antibiotic therapy and 

infection management amongst in-patients being treated for infections. Patients are 

accepting of simple, individualised information leaflets that can be delivered during 

routine clinical interactions. Such an intervention, co-designed by patients and 

embedded within a clinical decision support system was able to significantly improve 

short term knowledge and understanding of antibiotic therapy and infection management 

within patients included in our study. This supports the need for greater emphasis on the 

development of patient-centred interventions to improve engagement with infections and 

their management in secondary care. Further work is required to quantify the short, 

medium, and long-term impacts of such interventions on patient knowledge, 

understanding, and attitudes towards antibiotic therapy.  
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CHAPTER SIX 

6.0 Can artificial intelligence support individualised antimicrobial 

selection in secondary care? 

 

Figure 18. Overview of thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1 Introduction 

With the global increase in uptake of EHR and CPOE systems [63–65], there has been an 

increased focus on electronic clinical decision support.  

Firstly, when looking at promotion of evidence based practice, CDSS have been 

demonstrated to be enhance knowledge by providing person-specific and population level 

data to healthcare professionals to support their decision making [67]. This can improve the 

quality and safety of healthcare provided [67]. It is therefore, no surprise the reporting of 

CDSS for antimicrobial prescribing have increased in the last 20 years [66]. In line with this, 
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there have been a number of reviews of CDSS for antimicrobial prescribing, in addition to my 

systematic review that was published in Clinical Microbiology and Infection in 2017 [66]. 

However, where my review focused on identifying current gaps in the CDSS and the 

literature reporting them, other reviews have looked at evaluating the efficiency of such 

interventions [68,69,304,305]. 

An important consideration of CDSS development is how tools for antimicrobial prescribing 

can utilise the increasing quantity of routinely available electronic health data being 

generated by the expansion in development and use of EHR systems.  As I outlined in 

Chapter two, the majority of CDSS do not utilise available data to support decision making. 

They are predominantly rule-based systems that adhere to guidelines and policy [66]. These 

tend to provide inflexible, population level recommendations to prescribers. However, the 

development of powerful processing capabilities and artificial intelligence provides an 

opportunity to utilise available data in a more precise manner, potentially facilitating better 

decision making around antimicrobial selection, through the delivery of individualised, 

evidence-based recommendations based on individual patient data.  

Within the field of infection management, the role of artificial intelligence has been explored 

in several clinical areas to date [122–129,306–310] . These are summarised in Table 18, 

which outlines the outlines the current intelligent CDSS reported in the literature to support 

antimicrobial prescribing.  
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Table 18. Summary of clinical decision support systems for antimicrobial prescribing containing artificial intelligence reported in the literature. 

 

 Setting  CDSS Platform Infrastructure 
 

Study type Primary outcome  Outcome met 

TREAT  
[122–
126,306] 

SC, CC Antibiotic 
prescribing  

Standalone 
software 

Causal Probabilistic 
Networks 

i. DR  
ii. DE 
iii. DE 
iv. CS 

 
v. CS/cRCT 

 
vi. cRCT 

i. – 
ii. ROC pred. BSI 
iii. Organism predication 
iv. Appropriate empirical 

therapy 
v. Appropriate empirical 

therapy 
vi. 180 day survival       rate 

i. – 
ii. Yes - ROC 0.68 

(0.63-0.73) 
iii. Yes - ROC  >0.5 for 

all organisms 
iv. Yes - Improved by 

20% (p<0.01) 
v. Yes - Improved by 

13% (p<0.01) 
vi. No - ITT – 3% lower 

(p=0.2) 

Mullett  
[127,128] 

SC Antibiotic 
prescribing 

Standalone 
software 

Drug-bug logic matrix i. CS 
ii. CS 

i. – 
ii. Appropriate empirical 

therapy 

i. – 
ii. Yes - 20% 

improvement (p<0.01) 

Papageorg
iou 
[129] 

SC Diagnosis 
and 
treatment of 
UTI 

Integrated into 
EMR 

Fuzzy-cognitive map 
software 

i. DR 
 

i. Agreement with guidelines i. Yes - Predicted 
treatment appropriate 
in 87% 

Evans 
[307] 

CC Antibiotic 
prescribing 

Integrated into 
EMR 

Decision-support 
logic 

i. NCBA i. Antimicrobial usage 
ii. Cost 
iii. ADR 

i. Improved 
approrpirateness 
(p<0.01) 

ii. Reduced total cost by 
$35,283 and length of 
stay (p<0.01) 

iii. Reduced ADR (28 vs. 
4, p<0.01)  

ICONS 
[308–310] 

CC Antibiotic 
prescribing 

Standalone 
software 

Case-based-
reasoning 

i. DR 
ii. DR 
iii. DR 

i. – 
ii. – 
iii. – 

i. – 
ii. – 
iii. – 

 

 

Legend: SC = secondary care; CC = critical care; CDSS = clinical decision support system; EMR = electronic medical record; DR = development report; DE = diagnostic 

evaluation; CS = cohort study; cRCT = cluster randomised control trial; NCBA = non-controlled before-after study; ROC = receiver-operator-characteristics; ITT = intention-

to-treat; ADR = adverse drug reaction 
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6.1.1 Artificial intelligence for infection management 

Artificial intelligence is defined as intelligence that is displayed by a machine [311]. This is 

compared to natural intelligence, which is displayed by humans and animals. There are a 

wide range of different approaches to artificial intelligence in healthcare, with machine 

learning and supervised machine learning being the two most common. Machine learning 

implies that a system is able to learn without being explicitly programmed or labelled 

[311,312]. This is compared to supervised machine learning tools that have the ability to 

infer a solution from data for which we know the potential outcomes (e.g. labelled data with 

defined outcomes) [311,312].  

Within the field of infection, a number of artificial intelligence based CDSS have already 

been reported for a range of clinical applications. These range from empirical antimicrobial 

selection to better use of data for surveillance of healthcare associated infections [66,122–

129,306–310,313,314].  

The most notable example, with high quality data to support it is the TREAT system. TREAT 

used a CDSS incorporating Causal-Probabilistic Networks. Primary outcome measures were 

the appropriateness of empirical prescribing and 180-day survival following treatment, 

respectively [124,126]. Where primary outcome looked at the appropriateness of empirical 

therapy compared to detected organisms sensitivity, TREAT demonstrated a 9% 

improvement in appropriateness of prescribing [141]. However, once findings were adjusted 

for medical ward clustering and site, using multivariate regression, the findings did not reach 

significance (OR: 1.48, 95%CI; 0.95 - 2.29). This may have been partly due to under 

powering of the study, due to financial and time constraints, cited by the authors [141]. 

Furthermore, in the second trial assessing 180-day survival, failures were once again in ITT 

analysis, with significant benefits identified on per-protocol analysis (6% increase in survival, 

p = 0.04), suggesting that clinical uptake of interventions may once again be a contributing 

factor, along with appropriate powering of cluster-RCT’s [126].  
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Causal-Probabilistic Networks, or Bayesian networks, are an attractive option for the 

utilisation of machine learning in medicine. They facilitate the incorporation of qualitative and 

quantitative variables to model uncertain knowledge [315]. However, a major problem of 

these types of knowledge-based systems are that they require the construction of hugely 

complex decision tree’s. In the case of TREAT, this comprises over 6000 nodes [312]. This 

leads to many problems with transferring such tools into clinical practice, given that there is 

wide heterogeneity in clinical practice and data available [315]. Therefore, these types of tool 

are often challenging to develop, implement in practice, and require large amounts of 

information and technical skill to maintain [316]. 

Case-Based-Reasoning (CBR) is an alternative approach to the use of knowledge-based 

systems. CBR aims to solve a new problem by adapting a previously successful solution to 

the current problem encountered [316]. CBR aims to address many of the challenges 

associated with knowledge-based systems, including:  

1. CBR does not require a defined model like Causal-Probabilistic-Networks. Therefore, 

data collection simply relies on the extraction of case histories. 

2. Implementation of CBR requires the identification of significant features within a 

case, as opposed to creating an explicit model. 

3. CBR facilitates large volumes of information to be managed by applying database 

techniques. Furthermore, it provides greater flexibility when working with sparse or 

incomplete data sets.  

4. CBR learns through cases that it acquires, which makes maintenance of such 

systems easier than model-based systems.  

CBR has been used widely in the field of medical decision making including antibiotic 

decision making in intensive care [308–310,312], radiology [317,318], psychiatry [319], 

chronic disease management [320–323], hepatology [324], and cancer [325]. 
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In addition to antimicrobial selection, the use of supervised and unsupervised machine 

learning tools have also been explored for the prediction of events. This has predominantly 

focused on predicting the likelihood of infection using clinically available data. For example, 

TREAT has previously explored the ability of Causal-Probabilistic-Networks to predict the 

likelihood of blood stream infection and causative organism [123,125]. Other examples 

include the use of Decision Tree Classifiers using binary classification applied to blood test 

parameters to predict the diagnosis of Chlamydia pneumoniae [326] and hepatitis B/C virus 

[327]. These approaches have yielded mixed results, demonstrating an overall potential for 

supporting decision making using these avenues whilst also highlighting that no one 

technique currently has the ability to replace clinical decision making.  

 

6.1.2 Framing the focus of clinical decision support in secondary care 

The role of clinical decision support for antimicrobial prescribing in secondary care must be 

to augment the decision making of clinicians, who are often not experts in the field of 

infection, and thus often do not have an appreciation of AMS and AMR [145,196,328,329]. 

As I identified in Chapter three, there is a broad reliance on microbiology and infection 

specialist opinion for antimicrobial prescribing in clinical practice [168]. In terms of artificial 

intelligence, there is still much debate across medicine about how these types of tools 

should be deployed in clinical practice [330]. Given that there is a large reliance on the 

advice of microbiologists and infection specialities within clinical practice I would like to focus 

on whether it is possible to transfer “expert” knowledge to computer systems to provide 

another layer of decision support between this interface. This may create less of a burden 

from more routine calls on the specialist, whilst providing a more streamlined layer of support 

for the end-user. This approach will also facilitate the integration of such systems with 

current rules-based approaches to decision support. An example of this is the Imperial 

Antimicrobial Prescribing Policy, a mobile based application providing access to the Trusts 
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antimicrobial policy, which is currently implemented within the hospitals being evaluated 

within this study [331,332].  

 

6.1.3 Current clinical decision support tool architecture  

Within our research unit, previous work had been undertaken to explore the role of CBR to 

support antimicrobial prescribing in the intensive care unit [312,313]. This means that an 

overall system architecture was already available for me to build upon within my research. 

Figure 19 summarises the hospitals existing electronic health records system with linkage to 

individual hospital databases. In red, I have mapped the developed architecture for the 

clinical decision support system to be investigated within this Chapter.  

 

All programming within this study was performed by Mr Bernard Hernandez, a PhD student 

in the department of Electrical Engineering at Imperial College London, supervised by Dr 

Pantelis Georgiou. Further technical details outlining the system architecture, security 

features, and individual modules that make up the CDSS can be found in technical 

Appendix 8 (section a8.1). 
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Figure 19. Summary of current electronic health record system architecture and clinical decision support system for investigation within this 

Chapter. 
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6.2 Chapter objectives  

The aim of this chapter was to investigate whether artificial intelligence can provide 

enhanced decision support for making personalised decisions during antimicrobial 

management in secondary care.  

Therefore, the modules developed and evaluated would provide intelligent decision support 

to prescribers, mimicking infection specialist support that is strongly relied upon by 

prescribers within this setting [168]. Based on the review of decision making processes in 

Chapter three, I chose to focus on providing personalised support in two individual areas;  

(i) Predicting the likelihood / severity of infection, and  

(ii) Individualised antimicrobial selection [168]. 

The objectives of this Chapter were: 

1. To identify key variables to support the development of intelligent decision support 

tools for antimicrobial selection in secondary care. 

2. Explore the potential impact of supervised machine learning tools for providing 

support in predicting risk of infection using a minimal number of routinely available 

haematological and biochemical variables.  

3. Explore the potential impact of an optimised Case-Based-Reasoning (CBR) algorithm 

on antimicrobial prescribing in the general medical setting.  

This Chapter would aim to individually develop and evaluate supervised machine learning 

tools and a CBR algorithm using routine clinical data. Clinical use of the CDSS interface and 

end-user engagement was beyond the scope of the Chapter.  

There are a number of specific desirable characteristics I aimed to achieve during the 

development and evaluation of the supervised machine learning tools for inferring the 

likelihood of infection. These are based on the ability of the tool to use routinely available 

data to make accurate predictions about the likelihood of infection in the individual patient. 
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This tool aimed to work for the majority of individuals presenting with potential infection 

(based on available clinical data) and would be accessed based on demonstrating good to 

excellent predictive capabilities [314,333]. This would be determined by using the receiver-

operator-characteristic area-under-the-curve (ROC) [334–336]. I would aim to demonstrate 

ROC > 0.80 during evaluation of the tool in clinical practice.  

For the CBR algorithm, the primary aim was to demonstrate the ability of the system to be 

able to function across the complex, heterogenous case mix that makes up secondary care. 

I also aimed to achieve a better understanding of the appropriate methods for creating and 

curating case-bases within this setting [337–339]. This would provide insight into the 

potential benefits and limitations of deployment of such a system within this clinical setting 

[340].  
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6.3 Methods 

6.3.1 Study setting 

The study utilised routinely available data from ICHNT. Working with colleagues in the 

department for Electrical and Electronic Engineering at Imperial College London, I aimed to 

explore a number of core artificial intelligence techniques for replicating “expert thinking” 

within a computer system. This aimed to provide more intelligent, dynamic decision support 

than is often provided by guidelines and policy, hence optimising the practice of EBM.  

My aims for the study were to refine the system for use across secondary care, 

characterising its strengths and weaknesses, and validating the approach for deployment in 

the hospital setting. For accuracy and confidence in the results, I felt that it was initially 

important to use a defined patient cohort where appropriateness of recommendations could 

be accurately corroborated. Therefore, for initial testing and validation of the system, I 

obtained data describing a cohort of 130 patients who had been diagnosed with Escherichia 

coli (E.coli) blood stream infections (BSI). This cohort contained prospectively collected 

microbiology data with in-vitro antimicrobial susceptibility results available. This would 

ensure that the assessment of appropriateness of therapy could be objectively assessed. 

This meant that expert opinion or guideline recommendations will not be relied upon, as 

these are often associated with wider heterogeneity in terms of outcome reporting [32].  

For real-world evaluation following investigation of the systems using the E.coli dataset, all 

clinical cases were identified and data collected by myself. Dr Luke Moore (consultant in 

Infectious Disease & Microbiology) and Ms Orla Geoghegan (Antimicrobial Pharmacist) 

provided support with the assessment of prescribing recommendations and comparison with 

in-vitro susceptibility data and local hospital prescribing policy.  
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6.3.2 Defining variables commonly used during infection management 

For the development and refinement of the artificial intelligence algorithms to be used within 

this Chapter, I utilised data generated during Chapter three. Use of this data allowed me to 

identify key variables that are used during decision making for antimicrobial prescribing by 

physicians. To map out the factors associated with decision making, individual codes from 

the transcripts described were ranked and quantified for all interviewees. This allowed 

comparison and weighting of individual factors that were reported to influence the decision 

making process. These factors were ranked based on the mode from the order that they 

were reported by individual physicians describing their approach to decision making. This 

was used to depict a commonly reported pathway for decision making surrounding infection 

management in secondary care. Furthermore, all sub-categories emerging within these 

themes were assessed and given a weighting variable based on the frequency they were 

mentioned over the course of the interviews. This information was tabulated to allow in-depth 

comparison of common variables. 

Identified variables where then compared to available data that was electronically available 

at the time of algorithm development to inform the design and architecture of decision 

support modules that were developed. This formed the basis of data that were available to 

support the development and evaluation of both types of artificial intelligence tool.  

 

6.3.3 Supervised machine learning tools for the prediction of positive microbiology  

6.3.3.1 Data curation, algorithm training, and cross-validation 

The focus of this study was to evaluate the clinical potential of a supervised machine 

learning tool to infer the likelihood of development of a positive microbiological culture and 

therefore, infection. The detailed method of training and algorithm development is described 

in BMC Medical Decision Making  [314]. Briefly, to train the supervised machine learning 

algorithms clinical microbiology data were extracted from the central microbiology records for 
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all clinical samples received by North West London Pathology laboratory from 2009 to 2015. 

Blood test parameters were extracted for all patients within ICHNT during this time period. 

To select variables for linkage to microbiology records a three-step approach was taken. 

Firstly, variables reported by physicians as being important during infection management 

were identified from the ranking of variables reported in Section 6.4.1. Secondly, two 

infection specialists were asked to review these variables and corroborate the findings. 

Finally, relevant literature was reviewed to provide further evidence in support of these 

selected variables.  

Six variables were eventually selected based on their availability electronically and their use 

in infection management. These variables were C-reactive protein (CRP), white cell count 

(WCC), creatinine (Cr), alanine aminotransferase (ALT), bilirubin (BIL), alkaline phosphatase 

(ALP) [326,327,341–345]. Lactate was also felt to be an important blood marker for 

inclusion, however, at the time of development this was not routinely available for the 

majority of patients within the electronic database [346–348]. Furthermore, physiological 

parameters (heart rate, respiratory rate, temperature, blood pressure, oxygen saturation) 

were not available electronically [166,349–351]. Following selection of the variables, 

individual patient profiles were linked to microbiology data.  

Linkage was performed in the following way. Initially all individual patient blood test profiles 

(n = 1,251,830) were labelled as “no culture”. For individuals who had a positive 

microbiology results (n = >350,000) within 48-hours of a blood test result, these were then 

labelled as “positive culture”. If further blood science results for “positive culture” individuals 

were available before or after the 48-hour window, but in the same admission, these were 

excluded. This yielded two groups of patient profiles that were labelled either “no culture” or 

“positive culture”.  Moving forwards, although strictly speaking the tools infer the likelihood of 

positive versus no microbiological culture, we took this as a proxy indicator for the likelihood 

of infection. Therefore, from here on, these definitions will be used interchangeably.  
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Curation of the dataset was then performed prior to further processing to remove corrupt 

data. Corrupt data can be defined as erroneous, imprecise, or missing data [312,352,353]. It 

has been demonstrated to be important to address these issues within machine learning to 

ensure that predictions by the system remain robust [354].  This stage focused on:  

1. Removal of outliers: This has been demonstrated to significantly increase the 

robustness of machine learning tools  [354]. In this study, outliers are likely to be due 

to human error in data input or erroneous results secondary to technical factors such 

as diagnostic accuracy or contamination. We defined outliers using the interquartile 

range (IQR) rule, which takes any variables outside of 1.5 x IQR to be an outlier 

removing them from the dataset  [354]. 

2. Missing data: Within this study we evaluated the impact of missing blood science 

variables on the accuracy of the tool during cross validation as outlined below. Of the 

six variables, the system provided stable results providing that ≥4 variables were 

present [314]. For training however, patient profiles must contain all 6 variables.  

3. Class imbalance: Invariably, there was likely to be a class imbalance in numbers of 

individuals between those with “no culture” and “positive culture”. To address this, an 

approach called Synthetic Minority Over-Sampling Technique was used [354]. This 

approach combines under sampling of the majority classifier and oversampling the 

minority classifier group and has been demonstrated to enhance the performance of 

data that uses this [354]. 

Following curation of data, several different supervised machine learning tools were 

developed and evaluated through cross-validation to allow exploration of associations 

between variables and group classifications [314]. These were:  

1. Gaussian Bayes Naïve algorithm  

2. Decision Tree Classifier 

3. Random Forest Classifier 
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4. Support Vector Machine with Platt Scaling to allow estimation of probabilities 

on the binary classifier [354]. 

The final training dataset consisted of 160,203 patient profiles for use in cross-validation.  A 

10-fold cross-validation was performed with the sensitivity, specificity, and area-under-the-

receiver-operator-curve (ROC) estimated for models [314]. There was also a hold-out set, of 

cases that had not been seen during training or testing in cross-validation that was used for 

final testing [314]. Following this evaluation, the Support Vector Machine (SVM) and 

Gaussian Bayes Naïve (GNB) classifiers were selected as the optimal algorithms for 

evaluating the clinical utility of this approach [314]. This was because the SVM had the best 

performance overall with ROC of 0.83 and the GNB algorithm had similar performance with 

ROC of 0.82, but is a much more simplistic model for implementation than SVM [314]. 

Comparison of GNB and SVM will be explored further in Section 6.5. 

  

6.3.3.2 Evaluation of supervised machine learning using clinical data 

Following cross-validation, it was important to evaluate the actual predictive power of the 

developed tool using real-world data. For this study, I took a two-stage approach.  

Stage 1: 

Initially, I constructed a dataset using retrospective data. This test set contained blood test 

parameters for individuals presenting who subsequently went on to be diagnosed with:  

a. Confirmed blood stream infection: This data was obtained from randomly 

sampling half of the patients making up the E.coli BSI data set described in Section 

6.3.1. 

b. Individuals with non-infective presentations: Matched for age and gender, 

identified using the electronic health record system at ICHNT over the same time 

period and clinical areas as patients in the E.coli BSI cohort.  
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Stage 2: 

Following this evaluation, the second stage involved a prospective, longitudinal evaluation. 

This was undertaken by myself, identifying individuals at their presentation to hospital via the 

ED. Individuals were grouped into those with high clinical likelihood of infection (n = 20) and 

those with low clinical likelihood of infection (n = 20) upon presentation. These were 

admitted on the week of 29th January 2018 – 3rd Feb 2018.  

For all individuals included within this study data collected included demographic data, 

clinical presentation and parameters, microbiology, treatment, and outcome data.  

For both stages of the investigation, individuals presenting blood test results were input into 

the SVM and GNB algorithms to obtain individual estimated likelihood of microbiological 

culture (and therefore infer the likelihood of infection). Sensitivity and specificity were 

compared by assessing the ROC for the algorithms. In the retrospective dataset (stage 1), 

individuals from the E.coli BSI cohort were labelled as “infected” and those with no evidence 

of infection labelled as “non-infected”. For the prospective cohort (stage 2), both high and 

low likelihood of infection groups were followed throughout the course of their in-patient stay. 

Labels (“infected” or “non-infected”) were applied on discharge or death.  

For statistical analysis, distributions and medians were compared using non-parametric 

approaches (Mann-Whitney U test). Chi-squared with Yates correction or Fishers Exact test 

were used to compare cases and controls, when appropriate. Statistical analysis was 

performed using SPSS software and figures were plotted using R and Igor Pro 7.0.  

 

6.3.4 Case-Based-Reasoning for antimicrobial selection in secondary care 

Following adaption of the CDSS for use across secondary care, I wanted to evaluate the 

prescribing recommendations being made by the CBR module in a robust and objective 

manner. This would also take a two-stage approach. 
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• Stage 1: Using a pre-defined, narrow dataset with objective outcome measures (in-

vitro susceptibility data) to compare the recommendations made by the system 

against. 

• Stage 2: Undertaking a prospective pilot study, using the CBR algorithm on real-

cases encountered by myself over a 4-week period in October-November 2017. 

Cases would be identified and input by myself during clinical commitments, covering 

Hammersmith Hospital wards out-of-hours. Data were input at the time (or close to) 

attending to the patient using the web-based user interface designed for the CDSS. 

Outcomes of therapy were then updated prospectively. No recommendations made 

by the system were acted upon in these cases, with the objective being purely 

observational at this point.  

As described in section 1.3, the measure of appropriateness of antimicrobial 

recommendations tends to be heterogenous, making valid appraisal and comparison 

between studies challenging [32]. Therefore, to ensure that both training and testing 

datasets for use in this study were representative of each other and allowed for robust 

evaluation of decisions made; I opted to use a focused approach for evaluating the 

appropriateness of recommendations being made during stage 1 of the study [353].  

This stage would utilise the E.coli BSI dataset described above in section 6.3.1. Data from 

this dataset of patients diagnosed with E.coli BSI were interrogated. Where required, further 

information was extracted from individual patient electronic health records. Patient 

demographics, clinical parameters, treatment history, and outcomes of therapy were 

extracted.  

For the 130 individuals within the E.coli BSI dataset, I extracted all variables required by the 

CBR when available. A test dataset was randomly created extracting 15% of individual 

cases from the data. The remaining 85% of cases were used to create the CBR case-base 

(or training set). The training set was made up of parameters available at the individual’s 
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presentation with infection, when empirical antimicrobial therapy was prescribed. These 

variables were added to the system to create a case library for algorithm training.  

The CBR cycle, is dependent on the case-base to provide prior knowledge from which it 

assesses and adapts previous knowledge to make recommendations for the current, new 

cases. This was described by Aamodt and Plaza to comprise four key stages [337]:  

i. Retrieval of the most similar cases to the new problem presented to the system. 

ii. Reuse of the case(s) as the system attempts to solve the new problem. 

iii. Revision of the proposed solution if there is no satisfactory resolution of the problem 

using previous cases only. 

iv. Retention of the new solution as part of a new case within the CBR case base. 

Within the CBR algorithm, four types of knowledge must also be considered and defined, as 

described by Richter [339]. These four knowledge domains are vocabulary, similarity 

measures, adaption knowledge, and the cases themselves.  

Vocabulary describes the types of knowledge that define cases. The vocabulary within the 

system has the dual function. It must facilitate the retrieval of cases that contain useful 

solutions to the presented problem. Therefore, it must be discriminative whilst also 

preventing the retrieval of too few cases. Richter advises that the vocabulary included within 

case bases must also be chosen in anticipation of the expansion of such a base in the future 

[339]. This is particularly relevant to my study, where future real-world testing is likely to 

present a significantly more heterogenous range of cases. Although all possible variables 

were initially included in the analysis, it was apparent that for this data set several were 

either redundant or too discriminative within this cohort [312,337,339,355–357]. A sequential 

least squared programme was used to describe the relative weighting applied to each 

variable by the CBR algorithm during decision making process for this case base 

[312,337,339,355–357].  
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Similarity measures describe the knowledge used by the system to ensure the most 

appropriate case-retrieval. Within this case, I chose for us to keep a K-nearest-neighbour 

(KNN) approach for similarity matching. KNN, is widely used in CBR and other machine 

learning [312,337,339,355–357] and has been demonstrated to be highly effective [338,339]. 

It has the advantage over many other approaches as it is a non-parametric, lazy learning 

algorithm. Therefore, this means that a normal distribution is not assumed, facilitating 

working with sparser and non-Gaussian datasets. Furthermore, lazy implies that this type of 

algorithm does not need large amounts of training, as the whole dataset is searched upon 

presentation with a new case. This has the offset, that as the case base grows, retrieval 

time, required processing speed, and required memory may all increase [338,339]. 

Adaption knowledge describes the ability of the system to be able understand the 

differences between similar cases retrieved and the new problem presented in terms of how 

this effects the end solution (i.e. the outcome). For this system, given the nature of outcome 

being reported and difficulties in accessing the appropriateness of therapy in real-world 

situations, I opted to lock the case base and prevent the system from adapting without prior 

review of new cases and solutions by the research team. This is a common approach taken 

in situations where case mistakes can have significant consequences (such as inappropriate 

treatment or death) and may therefore effect the reliability and the end-users confidence in 

the system [312]. 

Finally, cases contain information about solved problems and thus represent the knowledge 

that the CBR algorithm has developed during training and testing. Cases are determined 

mainly by the vocabulary used to describe them and in many cases are carefully selected to 

balance the need for an adequate number of cases with appropriate coverage of potential 

possibilities. This is important in terms of reducing retrieval times, memory requirements, 

and improving the systems performance [312]. Cases are required to have three core 

characteristics: A description of the problem, the proposed solution, and the outcome 

[337,339,355]. For this study, cases were entered based on empirical prescribing 
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recommendations and outcomes were based on a combination of in-vitro susceptibility data, 

whether therapy was amended upon expert review, and mortality whilst receiving therapy.   

 

For stage 1, the test data set was input into the CBR algorithm and recommendations made 

by the system were provided in two separate formats.  

1. Firstly, recommendations were provided for each possible antimicrobial agent based 

on the similarity to the entire case base, termed “grouped recommendations”.  

2. Secondly, individual cases were matched with the treatment from the most similar 

case recommended, termed “case recommendations”.   

For evaluation of the recommendations provided by the CBR algorithm, antimicrobial 

recommendations were compared to clinical practice, local guidelines for therapy, and in-

vitro susceptibility data for isolated organisms. The spectrum of the antimicrobial 

recommended was estimated to allow comparison between clinical practice and CBR. This 

was estimated by using a validated estimate of the spectrum of agent, the modified Madras-

Kelly Score [358,359].  

The Madras-Kelly Score was proposed in 2014 as a numerical method of measuring 

antimicrobial spectrum of antibiotic regimes as part of stewardship intervention evaluation 

[358]. Each antimicrobial (27 included) is given a spectrum score out of 60 (theoretical 

maximum) based on the susceptibility profiles of 19 commonly encountered microbial 

species in clinical practice [358]. This was recently adapted by Gerber and colleagues, with 

the scoring simplified to a theoretical maximum of 14 [359]. If an individual is on 

combinations of therapy, then the overall Antibiotic Spectrum Index (ASI) for the combination 

can be calculated using a scoring table provided by the authors [359]. For example, 

ceftriaxone, a third-generation cephalosporin, has an ASI of 5. Amikacin, a aminoglycoside, 

has an ASI of 6. When used in combination, the ASI for ceftriaxone + amikacin is 8, given 

that there is overlap in the spectrum of organisms covered by these agents [359]. Although 
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this data is not locally driven and estimations are based on historical susceptibility data, it 

has been demonstrated as a valid method for assessment of antimicrobial spectrum in the 

hospital setting, such as evaluating de-escalation of therapy in pneumonia [358–360].  

To ensure that local policy and experience was taken into consideration, an infectious 

disease and microbiology specialist and an antimicrobial pharmacist reviewed the cases and 

recommendations independently of each other. They were asked to compare the findings to 

in-vitro susceptibility results and rank recommendations and actual practice as either 

“optimal”, “appropriate but suboptimal”, and “inappropriate”.   

After evaluating the CBR using the “real-world prescriptions” within the case-base an “ideal” 

case base was created for the 85% training dataset using the best-practice 

recommendations provided by expert review of in-vitro susceptibility results. This was based 

on a prototype case base approach and aimed to prescribe the most appropriate narrow 

spectrum agent possible for each case (determined by independent review of cases by 

myself, the infection and microbiology expert, and antimicrobial pharmacist) 

[309,316,321,353,356]. This case base was then used to test the 15% test set described 

above and recommendations. Its aim was to investigate whether the use of an optimised 

case-base would impact on the recommendations made by the system when compared to 

the original case-base used within this study.  

 

For phase 2, the prospective evaluation on the wards, an alternative approach was taken. 

Given the potential for slow retrieval times, high memory requirements, poor system 

performance with large case-bases and the positive results obtained during phase 1 [312]; a 

“prototype” case base was generated, based on local antimicrobial policy. This was used as 

the case-base to provide recommendations for prospective cases collected by myself. 

Analysis was performed in the same manner as phase 1, described above. The desired end-

point was to provide recommendations on how the system could be adapted moving 
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forwards to improve the accuracy, whilst maintaining oversight of the curation process so 

that recommendations remained in line with local prescribing policies. 

 

6.3.6 Ethics 

Ethical approval for this study was granted by London-Chelsea Regional Ethics Committee 

(REC: 17/LO/0047). All CDSS features were developed in line with the current directives of 

the Data Protection Act 1998, The Privacy and Electronic Communications Directive 2003, 

and the EU Directive 2006/24/EC for data retention [361,362]. Internally, Caldicott approval 

was granted by ICHNT Information Governance (Ref. 23307 / 726505) for data transfer and 

informational relationships. 
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6.4 Results 

6.4.1 Identification of variables for inclusion in the system 

As described in Chapter three, a stepwise process was identified that described individual 

physician approaches to decision making during infection management. For the identification 

of core variables to be utilised within the CBR algorithm, data from steps 1 (physiological 

parameters) to step 4 (determining the severity of infection) were utilised.  

For example, during the assessment of physiological parameters temperature (reported by 

19/20 [95%] participants) was the most important factor. During stage two, reported 

symptoms (18/20, 90%) and triangulation with signs found during clinical examination 

(18/20, 90%) were highly ranked. On review of investigation results a range of blood test 

results and radiological investigations were considered with C-reactive protein (CRP) 

reported as the most important results (20/20, 100%). Important in determining the severity 

of infection included the individual physicians clinical judgement (18/20; 90%) with support 

from more objective measures such as antimicrobial in-vitro susceptibility of current or 

previous microbiology (15/20; 75%) and criteria such as the “septic six” or “SIRS criteria” 

(9/20, 45%).  

Table 19 outlines the core parameters and reported importance of these by individuals 

participating in interviews in Chapter three. These identified variables were broken down into 

potential variables that would be available for automatic extraction from electronic health 

records or manual input by physicians into the CDSS.  
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Table 19. Selection of variables identified within the decision mapping process for use within 

the clinical decision support system for antimicrobial selection. 

  

Category Variable Data type 
Currently 

available in 
CDSS 

Label / Range Included 

Patient 
information 

Age Extract Yes 0-110 Yes  

 Gender Extract Yes Male / Female Yes 

 Ethnicity Extract Yes <String> No 

 Name Extract Yes <String> Yes 

 Admission date Extract Yes DD/MM/YYYY Yes 

 Current date Extract Yes DD/MM/YYYY Yes 

 Allergies 
Drop down OR 
Free text 

Yes 
Antibiotic name 
<String> 

Yes 

Physiological 
parameters 

Oxygen 
saturation 

Number No 0-100 Yes 

 Temperature Number Yes 25-43 Yes 

 Heart Rate Number Yes 0-250 Yes 

 Blood Pressure Number Yes 
Systolic / 0-250 
Diastolic / 0-150 

Yes 
No 

 Respiratory Rate Number Yes 0-50 Yes 

 
Glasgow Coma 
Scale 

Number No 3-15 No 

 Fluid balance  Number No -5000 - + 5000 No 

Localising 
infection 

Clinical 
symptoms 

Free text No <String> No 

 
Signs on 
examination 

Drop down for: 
i) Chest 
auscultation 
ii) Abdominal 
palpation 
iii) Heart 
sounds 
 

Yes 

i) Crackles / 
Crepitations / 
Dull / Clear / 
Wheeze 

ii) SNT / Tender / 
Rigid / Ascites 

iii) Normal / 
Murmur (new) / 
Murmur (old) 

Yes 
 
 
 
 
Yes 
 
 
 
No 

 
Likely infection 
site 

Drop down OR 
Free text 

Yes <String> Yes 

Investigation 
results 

C-Reactive 
Protein 

Extract Yes 0-550 Yes 

 White Cell Count Extract Yes 0-55 Yes 

 Full blood count Extract Yes 0-210 Yes 

 Liver Function Extract Yes 
ALT: 0-10000 
ALP: 0-2000 

Yes 
Yes 

 Renal Function Extract Yes Cr: 0-1000 Yes 

 Lactate Number Yes 0-12 Yes 

 Microbiology Extract Yes 
Organism 
Susceptibility profile 
Site of culture 

Yes 
Yes 
 
Yes 

 Radiology 
Drop down - 
CXR 

Yes 
Clear / 
Consolidation / 
Effusion / Oedema 

Yes 

Determining 
severity 

SIRS criteria* Extract No 0-6 No 

 
In-vitro 
susceptibility 
profiles 

Extract Yes See above Yes 
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Miscellaneous 
parameters 

Indwelling lines Tick box Yes 
Urinary catheter  
CVC line 

Yes 
Yes 

(not identified 
Airway 
management 

Drop down Yes 
Own / Trachy / 
Intubated / NIV 

Yes 

in chapter  HIV status Tick box Yes HIV positive Yes 

two) Diabetes Tick box Yes Diabetic Yes 

 Pregnant Tick box Yes Pregnant Yes 

 Renal support Drop down Yes 
None / Dialysis / 
Transplant / CVVH 

Yes 

 Inotropic support Tick box Yes Yes  No 

 Hospital No. Extract Yes <String> Yes 

 NHS No. Extract Yes <String> Yes 

 Ward name Extract Yes <String> Yes 

Outcome 
Antibiotic 
prescription 

Drop down Yes Antibiotic selection Yes 

 Successful? Drop down Yes 

No / No – escalated 
/ Yes – completed / 
Yes – de-escalated 
/ Unknown 

No 

 Death Tick box Yes Yes No 

 Reason for death Free text No <String> No 

  

Legend: CXR = chest x-ray; SIRS = systemic inflammatory response syndrome; SNT = soft, non-tender; CVC 

= central venous catheter; Trachy = tracheostomy; CVVH = continuous veno-venous haemofiltration; NIV = 

non-invasive ventilation; HIV = human immunodeficiency virus 
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6.4.2 Supervised machine learning for prediction of microbiology culture 

6.4.2.1 Stage 1: Retrospective evaluation with confirmed cases 

Firstly, 76 individuals with positive blood cultures (labelled “infected”) were matched to 75 

individuals in the control group (labelled “non-infected”); both groups had similar age (66 vs. 

63 years, p = 0.92) and gender (36/76 male vs. 36/75 male, p = 0.92) distributions. Of the six 

variables used, four had similar distributions between both groups. These were: 

i. ALP with a median (IQR) of 78 (73 - 124) units / L in the infected versus 86 (67 - 

111) units / L in the non-infected cohort (p = 0.49). 

ii. ALT with a median (IQR) of 21 (19 - 31) units / L in the infected versus 20 (13 - 38) 

units / L in the non-infected cohort (p = 0.90). 

iii. BIL with a median (IQR) of 11 (9 - 20) mg / L in the infected versus 10 (7 - 18) mg / L 

in the control cohort (p = 0.24). 

iv. Cr with a median (IQR) of 98 (70 - 152) mg / L in the infected versus 77 (66 - 125) 

mg / L in the non-infected cohort (p = 0.11).  

The remaining variables (CRP and WCC) were observed to be significantly different 

between the two cohorts. Median (IQR) CRP was 89 (9 - 205) mg / L in the infected and 8 

(2.3 - 13.4) mg / L in the non-infected cohort (p < 0.01). Median (IQR) WCC was 11.9 (7.4 -

15.5) x109 / L in the infected and 8.4 (6.5 - 10) x109 / L in the non-infected cohort (p < 0.01).   

Figure 20 demonstrates the distributions of likelihood estimates for both the control and 

infected groups using both the SVM and GNB algorithms. The estimated likelihood 

distributions were significantly different for both algorithms. For the GNB algorithm, those 

with BSI had a median (IQR) likelihood estimate of 1.000 (0.99 - 1.00). The control group 

had a median (IQR) likelihood estimate of 0.053 (0.02 - 1.00) (p < 0.01). Using the SVM 

algorithm, the infected group had a medium (IQR) estimate of 0.820 (0.82 - 0.83) and the 

control group 0.49 (0.21 - 0.82) (p < 0.01).  



 

195 
 

The ROC AUC for the GNB and SVM algorithms were 0.82 (95%CI: 0.75 - 0.89) and 0.75 

(95%CI: 0.67 - 0.83), respectively (Figure 21).  
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Figure 20. Distribution of likelihood estimates using a Gaussian Naïve Bayes and Support Vector Machine Algorithm for patients who 

presented with confirmed blood stream infection and those presenting with non-infectious syndromes.  
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Figure 21.  Receiver-Operator-Characteristic (ROC) for evaluation of likelihood estimates for patients who presented with confirmed blood 

stream infection and those presenting with non-infectious syndromes. 

 

 

  

ROC curve for Gaussian Naïve Bayes algorithm ROC curve for Support Vector Machine algorithm 
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6.4.2.2 Stage 2: Prospective evaluation  

On comparison of individuals presenting to the ED with suspected infection versus those 

with other likely diagnosis; the suspected infection group were slightly older at 78 (65 - 86) 

years versus 65 (54 - 83) years (p = 0.81). Gender distribution was similar with 7/20 males in 

the suspected infection group and 8/20 males in the control (p = 0.71).  

Within this cohort four variables had similar distributions (median (IQR)) between groups:  

i. ALT was 18 (10 - 28) units / L in the infection and 24 (12 - 36) units / L in the control 

group (p = 0.41). 

ii. BIL was 9 (7 - 27) mg / L in the infection and 11 (7 - 11) mg / L in the control group (p 

= 0.95). 

iii. Cr was 89 (67 - 163) mg / L in the infection and 92 (73 - 124) mg / L in the control 

group (p = 0.88).  

iv. WCC was 12.5 (7 - 16) x109 / L in the infection and 9 (7 - 11) x109 / L in the control 

group (p = 0.13). 

Both CRP and ALP had statistically different distributions on comparison. CRP had a median 

(IQR) of 111 (51 - 245) mg / L in infected and 8 (2 - 17) mg / L in the control group (p < 

0.01). ALP was less significant with a median (IQR) of 101 (81 - 146) units / L in the infected 

and 78 (66 - 115) units / L in the control (p < 0.05).  

Figure 22 demonstrates the distributions of likelihood estimates for the groups with both 

high and low clinical likelihood of infection at presentation using both the SVM and GNB 

algorithms. The median (IQR) estimated likelihood distributions were significantly different 

for both algorithms. For the GNB algorithm, those with high potential for infection had a 

likelihood estimate of 1.000 (0.99 - 1.00). The low clinical likelihood group had a likelihood 

estimate of 0.08 (0.02 - 0.51) (p < 0.01). Using the SVM algorithm, the high likelihood group 

had a medium (IQR) estimate of 0.820 (0.82 - 0.84) and the low likelihood group 0.60 (0.21 - 

0.82) (p = 0.02).  
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Table 20 summarises the individual cases likelihood scores, microbiological investigations 

that were performed (and returned positive within 48 hours of the likelihood estimate). Follow 

up to discharge or death is also described, including whether individuals were treated for 

infection. Of the 20 individuals with high likelihood of infection, 20/20 (100%) were treated for 

infection. One individual (ID 3) was treated as a suspected infective exacerbation of COPD, 

however, no firm diagnosis was ever confirmed. Furthermore, it transpired that another 

individual (ID 20) in the high likelihood of diagnosis, already had a diagnosis of osteomyelitis 

and had been receiving daptomycin from another hospital as an outpatient at presentation.  

Of the high likelihood of infection group, 4/20 (20%) did not have any microbiological cultures 

performed; 13/20 (65%) had blood cultures performed, with 3/13 (23%) growing clinically 

significant organisms. Of those who had an initial suspicion of respiratory tract infection, 2/9 

(20%) individuals had sputum samples received and reported by the laboratory. For 

suspected urinary tract infections, 3/5 (60%) individuals had cultures sent, and 3/3 (100%) 

individuals with suspected skin or soft tissue infection had microbiology sent.   

Of the 20 individuals with low likelihood of infection, 5/20 (25%) went on to either have a 

positive microbiological culture (3/20, 15%) or be treated for likely infection (3/20, 15%) 

within 48 hours of the likelihood estimate. For the remaining 15/20 (75%) individuals, no 

microbiology was sent and no suspicion or confirmation of infection occurred during their 

hospital stay.  

Analysis of the ROC (Figure 23) accounting for the 25/40 individuals who had evidence of 

infection or positive microbiology versus the 15/40 who did not, demonstrated a ROC of 0.92 

(95%CI: 0.82 - 1.00) for the GNB algorithm and 0.77 (95%CI: 0.57 - 0.96) for the SVM 

algorithm for predicting likelihood of positive microbiological culture / infection.  
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Figure 22. Distribution of likelihood estimates for individuals with high or low likelihood of infection at presentation analysed with both a 

Gaussian Naïve Bayesian and Support Vector Machine algorithm. 
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Table 20. Summary of prospectively collected cases presenting with both infectious and non-infectious symptoms. 

ID 
No 

Clinical 
Suspicion of 

infection 
Clinical diagnosis on 

admission 

Likelihood 
estimate 

GNB 

Likelihood 
estimate 

SVM Cultures performed Treatment / Diagnosis 

1 High LRTI 1 0.817302 No Growth BC Amoxicillin & Clarithromycin - CAP 

2 High Cellulitis 1 0.817608 
Serratia marcescens wound; 
>100 WCC in urine; 
No Growth BC 

Ceftriaxone & amikacin - Rx severe 
sepsis secondary to cellulitis 

3 High IE COPD 0.260694 0.855327 No Culture taken Doxycycline - IE COPD 

4 High LRTI 0.999999 0.838859 No Culture taken 
Augmentin & Clarithromycin – LRTI 
Gentamicin - UTI 

5 High LRTI 0.200088 0.675191 No Growth BC and sputum  Augmentin & Clarithromycin – CAP 

6 High Urosepsis 1 0.817302 No Growth BC 
Augmentin & Clarithromycin – Sepsis 
& Bilateral pneumonia 

7 High IE COPD 1 0.817302 No Growth BC Doxycycline - IE COPD 

8 High Urosepsis 1 0.823156 
Urine mixed growth;  
No Growth BC 

Ceftriaxone & Gentamicin – UTI and 
spinal infection 

9 High LRTI, Sepsis 1 0.817826 No Growth BC Doxycycline – LRTI 

10 High 
Sepsis of unknown 

origin 
0.999999 0.844148 No Growth BC & urine 

Ceftriaxone & Metronidazole - Sepsis 
unknown origin 

11 High 
Hepatic abscess & 

BSI 
1 0.81735 

Bacteroides fragilis BC; & 
Streptococcus intermedius 
BC 

Tazocin & Metronidazole, on 
microbiology advice - BSI 

12 High CAP 1 0.832881 No Cultures taken Augmentin & Clarithromycin – CAP 

13 High Urosepsis 1 0.854771 
Salmonella Paratyphi A BC;  
Escherichia coli urine 

Ceftriaxone & Ciprofloxacin – dual 
infection 

14 High CAP 1 0.817343 
No growth BC, urine, 
sputum 

Ceftriaxone - CAP 
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15 High Septic arthritis 1 0.817302 
Staphylococcus aureus 
wound swab & joint aspirate 

Flucloxacillin & Clindamycin – septic 
arthritis 

16 High Mitral valve IE 1 0.836123 Streptococcus sanguis BCx3 Benzylpenicillin – IE 

 
17 High HAP 1 0.833085 No Growth BC 

Co-trimoxazole & Ciprofloxacin - 
escalated to meropenem - HAP 

18 High UTI 1 0.823148 
Klebsiella pneumoniae CPE 
on screen,  
No Cultures taken 

Cefalexin - UTI 

19 High UTI 0.94961 0.839593 Escherichia coli in urine Cefalexin - UTI 

20 High Osteomyelitis 0.112713 0.452135 No Growth wound swab  
Partially treated for MRSA OM 
already (Daptomycin) – continued 

21 Low 
Seizures secondary 
to CNS malignancy 

0.555186 0.967045 No Culture No infection suspected 

22 Low Fall 0.164861 0.917714 No Culture No infection suspected 

23 Low Dementia 0.040419 0.107216 No Culture No infection suspected 

24 Low Seizure 1 0.819238 No Culture Patient self d/c before follow up 

25 Low Diastolic HF 0.024056 0.246871 No Culture No infection suspected 

26 Low Fast AF 0.042574 0.169934 No Culture No infection suspected 

27 Low PPM inserted, TAVI 1 0.819662 
Mixed bacterial growth 
urine 

No treatment prescribed 

28 Low Syncope post dialysis 1 0.819238 No Culture 
Vancomycin & Tazocin - dialysis 
related infection 

29 Low Hyperparathyroidism 0.011101 0.207284 No Culture No infection suspected 

30 Low Pulmonary Oedema 0.385616 0.832111 Escherichia coli in sputum Augmentin - LRTI 

31 Low Syncope 0.088428 0.65672 No Culture No infection suspected 

32 Low Chest pain 0.009048 0.208489 No Culture No infection suspected 

33 Low IHD 0.068315 0.643915 
Staphylococcus aureus - 
abdominal wound swab 

No treatment required 

34 Low CP & LBBB 0.026876 0.17127 No Culture No infection suspected 

35 Low PCI with TEE 0.118254 0.561412 No Culture No infection suspected 

36 Low Lobectomy (Ca) 0.004962 0.204085 No Culture No infection suspected 
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37 Low Acromegaly 0.047108 0.268871 No Culture No infection suspected 

38 Low 
RA, on biological 

therapy 
0.00862 0.218441 No Culture No infection suspected 

39 Low SCC, VoC, Viral URTI 0.188129 0.842654 No Culture No infection suspected 

40 Low Hernia repair 1 0.819238 No Culture Augmentin - IAI 

 

Legend: GNB = Gaussian Naïve Bayes; SVM = Support Vector Machine; LRTI = lower respiratory tract infection; IE COPD = infective exacerbation of chronic 

obstructive pulmonary disease; BSI = blood stream infection; CAP = community acquired pneumonia; IE = infective endocarditis; HAP = hospital acquired pneumonia; 

CNS = central nervous system; PPM = permanent pacemaker; TAVI = trans-arterial aortic valve insertion;  PCI = percutaneous coronary intervention; CP & LBBB = 

chest pain with left bundle branch block; Ca = cancer; RA = rheumatoid arthritis; SCC, VOC = sickle cell crisis, vaso-occlusive crisis; URTI = upper respiratory tract 

infection; IAI = intra-abdominal infection. 
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Figure 23: Receiver-Operator-Characteristics of Gaussian Naïve Bayesian and Support 

Vector Machine classifiers for predicting subsequent infection / positive microbiology at the 

presentation with infection. 

 

ROC curve for Gaussian Naïve Bayes classifier 

ROC curve for Support Vector Machine classifier 
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6.4.3 Case-based-reasoning for antimicrobial selection  

6.4.3.1 Stage 1: Evaluation of prescribing recommendations against in-vitro 

susceptibility data 

In total, the E.coli BSI dataset contained 130 individual cases for extraction. The case-base 

was constructed of 110/130 (85%) cases with 20/130 (15%) randomly selected cases 

forming the test set. Three out of the 20 individuals were excluded from the test set due to 

missing data. No individuals were excluded from the case-base. 

The median (range) age of individuals in the training set was 68 (19 - 94) years and 71 (24 - 

88) years in the test set (p = 0.51). The gender distribution was similar between groups, with 

females predominating in both (56% in training and 59% in test sets, p = 0.81).  

Within the training set (case-base), at the time of empirical prescription, the majority of 

patients were given a clinical diagnosis of either BSI / sepsis (44/110, 40%) or urinary tract 

infection / pyelonephritis (44/110, 40%). In total, 25 antimicrobial agents had been 

prescribed either individually or in combination. Amoxicillin/clavulanate (47) and 

piperacillin/tazobactam (41) were the most commonly prescribed antimicrobials in the cohort. 

Amikacin (37), ciprofloxacin (17), gentamicin (13), ertapenem (10), and meropenem (10) 

were the next most frequently prescribed agents.  

Sequential least-squares analysis demonstrated that only numerical values in the CBR were 

being used to optimise the system at present. In particular, lactate, blood pressure, and 

respiratory rate were given the greatest weighting.  

On evaluation of the test-set, empirical antimicrobial therapy in clinical practice was deemed 

to of been appropriate compared to in-vitro susceptibility in 11/17 (65%) of cases. On review 

of prescribing, it was determined that 6/17 (35%) of these prescriptions were optimal or 

according to guideline. Applying the test-set cases to the CBR yielded appropriate 

recommendations for therapy in 16/17 (94%) of cases using both the “group” and “individual 

case” recommendations, respectively. Median (IQR) ASI for therapy prescribed in practice 
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was 8 (6 - 10) compared to 6 (6 - 8) for both CBR recommendations, respectively. None of 

these comparisons reach statistical significance.  

Re-training of the CBR using “best practice recommendations” for prescribing did not alter 

the observed results when applying the test cases to the algorithm.  

 

6.4.3.2 Stage 2: Prospective evaluation of Case-Based-Reasoning across secondary 

care 

Over a 4-week period in October-November 2017, 68 patients were reviewed and entered 

into the CDSS that housed the CBR algorithm during routine clinical out-of-hours practice by 

myself working as a junior doctor. Retrieval of cases by the system was possible in 47/68 

(69%) individuals. A change in the electronic structuring of the hospital wards was found to 

be responsible for low fidelity of retrieval.  

Of the 47 subjects included in the analysis, the median (range) age was 66 (28-93) and the 

majority of individuals were male (32/47, 68%). Individuals were reviewed on the general 

medical (39/47, 83%), haematology (6/47, 13%), and general surgery (2/47, 4%) wards at 

Hammersmith Hospital campus of ICHNT. Empirical therapy was prescribed in 31/47 (66%) 

cases with the remaining 16/47 (34%) cases requiring targeted therapy. For the targeted 

therapy cases, 11 organisms were identified as causing infection. Staphylococcus aureus 

(4), Escherichia coli (3), and Enterococcus spp. (3), were the most commonly identified 

organisms. Overall, 24 antimicrobials were prescribed either as single of combination 

therapy.  Augmentin (9), vancomycin (9), ceftriaxone (9), and meropenem (8) were the most 

commonly prescribed agents.  

For analysis, individuals with Clostridium difficile infection (n = 3) were excluded from the 

analysis. Cases were then compared according to whether the recommendations made 

were based on either empirical or targeted treatment of infection. Table 21 summarises the 

CBR results for both empirical and targeted therapy groups. 
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Table 21.  Summary of Case-Based-Reasoning recommendations made for patients receiving empirical and targeted antimicrobial therapy. 

 

Legend: No. = number; CBR = case-based-reasoning; ID = infectious disease specialist; CP = clinical practice; CGR = CBR-

grouped recommendation; CCR = CBR-individual case recommendation; 95%CI = 95% confidence interval. 

* ASI for individuals where recommendation was appropriate both in practice and with CBR recommendation. 

   Empirically treated 
n = 31 

Targeted therapy        
n = 13 

      

No. appropriate       

 Clinical practice n = (%) 30 (97)  12 (92) 
 Optimal (Guideline / ID) n = (%) 16 (52)  9 (69) 
 CBR Group n = (%) 24 (77)  7 (54) 
 CBR Case n = (%) 24 (77)  7 (54) 

      

ASI*      

 Clinical practice (CP) Mean (SD) 7.1 (2.9)  7.3 (3.7) 

 CBR Group Rec (CGR) Mean (SD) 4.7 (1.8)  5.7 (0.5) 

 CBR Case Rec (CCR) Mean (SD) 5.3 (2.4)  6.4 (1.5) 

      

ASI 
Comparison 

     

 CP vs. CGR p = (95%CI) p < 0.01 (0.67 - 3.08) p = 0.25 (-1.20 - 3.27) 
 CP vs. CCR p = (95%CI) p = 0.06 (-0.08 - 2.75) p = 0.64 (-2.30 - 3.39) 
 CGR vs. CCR p = (95%CI) p = 0.10 (-0.12 - 1.29) p = 0.31 (-0.86 - 2.29) 

      

Appropriateness of CBR by system infected    

 Intra-abdominal n/total (%) 2/2 (100)   

 Blood / Line / Sepsis n/total (%) 3/3 (100)   

 Skin soft tissue  n/total (%) 2/3 (66)   

 Chest n/total (%) 12/14 (86)  

 Neutropaenic Sepsis n/total (%) 1/5 (20)   

 Urine n/total (%) 4/4 (100)   
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Within the empirically treated group, clinically prescribed therapy was appropriate in 30/31 

(97%) cases. This was deemed to be optimal according to guideline, expert opinion, or 

subsequent in-vitro susceptibility in 16/30 (53%) cases. Both CBR grouped and individual 

case recommendations were appropriate in 24/31 (77%) of cases, respectively. 

The CBR recommendations were inappropriate in the majority of situations where individuals 

had neutropenic sepsis (4/5, 80%), one case where an individual had a skin and soft tissue 

infection associated with an implantable device, and two cases of pneumonia (both mild). 

Given the complexity of therapy required in neutropaenic sepsis; I chose to exclude these 

individuals from the analysis of CBR recommendations. This demonstrated that the CBR 

made appropriate recommendations for empirical therapy in 23/26 (88%) of cases in non-

neutropaenic individuals.  

For individuals where appropriate therapy was recommended (n = 24), the mean (SD) ASI 

was significantly smaller for the CBR grouped recommendation compared to clinical practice 

(4.7 (1.8) vs. 7.1 (2.9), p < 0.01; 95%CI: 0.67 – 3.08). In comparison, the CBR individual 

case recommendations also had a narrower mean (SD) ASI of 5.3 (2.4). However, this was 

not statistically different to clinical practice (p = 0.06, 95%CI: -0.08 – 2.75). 

On examination of those individuals receiving targeted antimicrobial therapy, the CBR 

recommendations were appropriate in 7/13 (54%) of cases. This was compared to 12/13 

(92%) receiving appropriate therapy in clinical practice. Of the individuals where the CBR 

made appropriate recommendations, ASI was reduced from a mean (SD) ASI of 7.3 (3.7) in 

clinical practice to 5.7 (0.5) in the CBR grouped recommendations and 6.4 (1.5) in the CRB 

individual cases recommendations.  
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6.5 Discussion 

6.5.1 Summary of findings 

Within this Chapter I have demonstrated the potential of artificial intelligence as a technology 

to support health care professionals infer the likelihood of infection and make improved 

antimicrobial prescribing decisions based on individual patient parameters that are routinely 

available in clinical practice.  

Using large numbers of routinely available microbiology and blood science data, supervised 

machine learning classifiers were able to infer the likelihood of infection / positive 

microbiology in individuals with both high and low pre-test probability of infection. 

Development of these systems have wide potential for improving decision making around 

infection management, ranging from integration into early warning systems for detection of 

sepsis, the surveillance of HCAI, and guiding decision making about individual patient 

management (e.g. collection of microbiological cultures).  

In addition, a CBR algorithm demonstrated the ability to provide appropriate empirical 

antimicrobial recommendations in non-neutropaenic patients, promoting use of narrower 

spectrum antimicrobials to what was currently being used in practice. The investigation of 

the tool demonstrated several challenges in ensuring fidelity of data retrieval within large, 

complex health systems and also provided insight into alternative methods for training and 

optimising future CBR algorithms. 

Whilst these systems help provide individualised recommendations based on the evidence 

available to them, a number of limitations must also be considered in future work. This 

includes the lack of available data for certain clinical parameters, such as lactate and 

physiological parameters, and the importance of evaluating the human decision maker as 

part of the system.  
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6.5.2 Supervised machine learning for infection inference 

Within this study, two supervised machine learning classifiers were selected for evaluation in 

clinical practice based on their characteristics and performance during cross-validation. 

These were GNB and SVM classifiers [314].  

A GNB classifier is a simple Bayesian network that assumes independence between every 

pair of features within the network [363,364]. This approach assumes that the likelihood 

functions for each feature (in this case infection versus no infection) have a normal 

distribution [363,364]. GNB is attractive for healthcare settings given that they can work with 

missing values in the dataset, training requires relatively small amounts of data, and 

processing and computation is relatively fast [363,364]. 

In contrast, SVM are one of the newest techniques within the field [365–367]. SVM work by 

trying to maximise the “margin” that sits either side of a hyperplane that separates the two 

data classes under analysis [365–367]. By maximising the margin, SVM aims to reduce the 

expected error in estimations made. Once the optimal separating hyperplane is found 

(Figure 24), the data points which lie on its margin, known as the support vector points, are 

selected and all other data is discarded. These are then used for classification purposes 

[365–367]. Whilst the improved accuracy of SVM is desirable, there are also limitations. 

Firstly, it is not always possible to identify a hyperplane between two classifications, this 

often requires use of a transformed feature space, where a Kernal function is added to the 

algorithm to map points into the feature space, which facilitates classification [365–367].  
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Figure 24. Diagrammatic representation of the concept of Support Vector Machines. 

  

Legend: Support Vector Machine classifiers aim to find the hyperplane that separates training examples. 

This aims to create a maximal margin of the training data sets.  

Adapted from Nugroho et al. Proceeding of Indonesian Scientific Meeting in Central Japan, 2003. 
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Within our study, the GNB algorithm performed with a higher degree of precision when 

challenged with a real-world situation compared to the SVM, such as was described in 

Section 6.4.2.2. This was an unexpected observation given the superiority of the SVM 

classifier in cross-validation [314]. One explanation is that for 5 of the 40 individual cases, 

there were missing data in the terms of available variables. Given that GBN classifiers are 

better able to function with incomplete data sets, this may partly explain the observations 

made [363,364]. Another explanation for may be under-powering of the study.  

The use of supervised machine learning to help with decision making has a wide number of 

potential applications. In this setting, I have demonstrated the sensitivity of the system for 

predicting positive microbiology / infection diagnosis in those with typical infective 

presentations as well as those with low pre-test probability for infection. This may provide a 

mechanism for augmenting current early warning systems for conditions such as sepsis, 

which are being implemented widely throughout the NHS [368–376].  

Current approaches to early warning scores for conditions such as sepsis have 

demonstrated variable success to date. In the intensive care setting, the Targeted Real-time 

Early Warning Score was developed to predict the likelihood of individuals developing septic 

shock [370]. This scoring system was developed from a database of over 16,000 ICU 

patients from around the world and demonstrated a high sensitivity (85%) with lower 

specificity (67%). This could be deployed automatically within a hospital EHR and used to 

identify those at risk of developing septic shock over one day before the onset of symptoms  

[370]. However, there are a number of limitations with this work. Firstly, the data from which 

the model is developed only focuses on patients in the ICU, meaning that generalisability to 

the rest of the hospital is not clear. Furthermore, the system has not been reported in clinical 

practice meaning that the adoption of the system by HCP’s remains unclear.  

A more widely used early warning score in the UK is the National Early Warning Score 

(NEWS), which was recently revised (NEWS 2) to promote the prompt detection of sepsis in 
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the hospital setting [368,377,378]. This scoring system is designed as an early warning 

score, based on physiological parameters that allow the rapid triage and assessment of the 

patient, inferring the likelihood of clinical deterioration or sepsis. It has demonstrated high 

sensitivity and specificity in the emergency department for inferring likelihood of sepsis, but 

has not been reported across the wider healthcare setting despite its ubiquitous use in the 

NHS [368,377,378]. 

Currently, the system described within this Chapter was unable to evaluate the use of many 

of the variables used in scoring systems like the NEWS 2, given that physiological 

parameters were not electronically available. However, using blood parameters only, the 

GNB demonstrated high sensitivity and specificity (ROC: 0.92, sensitivity 0.85 and specificity 

0.80 with cut-off likelihood estimate of 0.752) when using real-world data. However, the 

current system architecture relies on availability of the blood test parameters, which could 

still lead to a delay in the detection and therefore management of sepsis. This in turn may 

potentially not have an impact on initial antimicrobial decision making in certain patient 

populations, where there is an urgent clinical need to start empirical antimicrobial therapy 

before blood test results are returned [374].  

It must also be noted that this system was not designed with only sepsis in mind. It has been 

developed to infer the likelihood of infection in general. Therefore, its application for helping 

individual physicians determine the likelihood of infection in settings where sepsis is not 

present may be an additional level of decision support that is applicable. This is because 

there may not be as much urgency to commence antimicrobials in advance of blood test 

results in non-septic individuals [379,380], suiting the current systems requirement for blood 

test results. Furthermore, these cases can often being more challenging diagnostically for 

clinicians, requiring a more individualised approach to rationale decision making [168].  For 

example, in individuals presenting with urinary or respiratory symptoms not associated with 

systemic features of sepsis [381–383].  
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Future work to be undertaken must now explore the other potential avenues for applying this 

type of technology to the data that we have available. This may include exploring whether it 

is possible to use the same tools to predict the likely site of infection, causative organism, or 

even sensitivity profile [125]. Furthermore, with the generation of computerised prescribing 

data within our hospital Trust, it may also be possible to apply similar algorithms to 

prescription data to infer the likely optimal length of treatment for the individual patient. 

However, for these areas to be successful, it is likely that further variables will be required. 

Further application of this technology and its ability to be linked into the CBR decision tool 

will be discussed below under future work in section 6.5.4. 

 

6.5.3 Case-Based-Reasoning for antimicrobial selection 

Within this study, the CBR was able to improve the empirical selection of antimicrobials 

compared to in-vitro susceptibility profiles of subsequent organisms in individual patients 

presenting with E.coli BSI. It also promoted the prescribing of narrower spectrum therapy 

according to the ASI.  

When considering the optimal method for generating a case base for training the system; 

using “rea-life” prescribing linked to outcomes of therapy and creating “best practice” case 

bases did not alter the performance of the CBR within stage 1 of its evaluation. This was an 

important consideration before moving on to test the system in a live fashion (stage 2). 

Training the system on real cases and experience can lead to large case bases, which can 

slow the system and potentially introduce error that can be reflected in the recommendations 

made [321,356,357]. The development of prototype systems can circumvent many of the 

problems caused by training on large numbers of real cases [321,356,357]. 

A prototype is a case that is a generalisation from a number of different cases (i.e. from a set 

of very similar cases) [356]. These can be developed by medical experts, from the literature, 

or even at times can be computed [356]. The idea is that the prototype contains common 
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features within its variables that should drive the CBR to place it high in the ranking of cases 

when a similar new case is presented to it [356]. This shortens the retrieval time and allows 

control of the case base being used. It has been successfully applied in theory to CBR for 

antimicrobial decision making in the ICU by Schmidt and colleagues [309]. 

Within the E.coli BSI cohort, I opted to take a hybrid approach to facilitate comparison. I 

achieved this by working with an antimicrobial pharmacist and an infectious diseases and 

microbiology colleague to independently work through the cases and retrospectively provide 

best-practice, empirical prescriptions for cases within the case-base. The hypothesis for this 

choice was that by training the system in a more optimal manner, the recommendation made 

by the CBR would also be more optimal. However, within this small cohort, there was no 

difference between both approaches. This may have been for several reasons, including 

under-powering, the fact that only numerical variables were optimised within the CBR, or 

because only positive cases were presented (i.e. by providing best practice 

recommendations, we assumed that all cases had a positive outcome).  

During the prospective analysis of the tool on the wards, the CBR performed to a similar 

level as was observed in critical care during empirical prescribing for non-neutropaenic 

patients [384]. However, it struggled in making recommendations for neutropaenic patients 

and in cases where targeted therapy was required. I believe that the probable explanation 

for these observations lies in the way the system was currently trained and optimised.  

Firstly, the prototypes developed for this study were based on local empirical antimicrobial 

prescribing policy meaning that targeted therapy was not considered as part of the case 

base. Secondly, during the optimisation process it became clear that the system was 

currently only optimising according to numerical values. Therefore, several potentially 

important string variables, such as site of infection, examination findings, known 

microbiology, and imaging within the case base were being under-weighted or overlooked 

entirely. This would likely be significantly more important within the prospective study (stage 
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2), which comprised a much more heterogeneous population of patients compared to the 

E.coli BSI cohort. Therefore, before further prospective evaluation of the CBR it is important 

to consider these issues. This may involve the need to translate string variables into 

numerical ordinal values or ensure that the CBR is able to take account for strings in a more 

optimal manner. 

 

6.5.4 Limitations and future work 

In addition to the limitations and future work already highlight in sections 6.5.2 & 6.5.3 a 

further consideration arising from this study is the need for future work to assess the 

adoption of these tools by end-users upon implementation in clinical practice. Recently there 

have been growing concerns about the application of artificial intelligence in healthcare 

[330,385]. However, Verghese and colleagues, recently addressed some of these concerns 

in their article “what the computer needs is a physician” [330]. Within this article the authors 

bring the focus of using artificial intelligence back towards the concept of EBM. By this they 

argue that artificial intelligence can provide enhanced evidence to support decision making, 

but this still must be placed in the context of sound clinical judgement and an understanding 

of the patients views [330]. To achieve this it requires a skilled physician, as well as a well-

designed artificial intelligence tool, which has involved the end-user in its development and 

evaluation. 

For the purpose of this Chapter, I decided not to explore end-user feedback of using the 

device. This was because I felt that it was important to ensure that the underlying artificial 

intelligence was initially evaluated under optimal conditions to provide a base-line from which 

I can compare its impact in clinical practice. Now that I have demonstrated the potential 

ability of these systems to provide enhanced decision support they must be evaluated in the 

context of clinical practice. I believe that taking this step-wise approach will facilitate the 

understanding of how to promote adoption of the technology whilst also evaluate its impact 
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on clinical decision making in practice. This follows observations made during my systematic 

review of the literature (Chapter two), where I highlighted the challenges of determining the 

impact of the tool in isolation when it is implemented as a multi-modal intervention in clinical 

practice (e.g. with training, audit & feedback, observation of practice) [66].  Therefore, by 

providing this base-line, I now have a better understanding of the potential impact I will see 

from implementation of these tools moving forwards. 

During the assessment of supervised machine learning tools, a number of specific limitations 

were noted. For the initial evaluation set of BSI patients versus those presenting without 

infection in section 6.3.3.1, it is important to note that those without infection at presentation 

were not followed up throughout the entirety of their hospital stay. Therefore, where false 

positive results were identified this may of, in some cases, potentially been due to under 

reporting of infection in the retrospective clinical records. Furthermore, the focus was only to 

evaluate the predictive ability of the tool. Analysis of prescribing practices was not included 

within this study. Therefore, it is not possible to infer the direct impact on clinical practice that 

this type of tool will have until longitudinal, prospective studies in practice comparing the tool 

to usual practice have been implemented. Work is now underway to explore the integration 

of this tool into ICHNT EHR system to facilitate this evaluation. This will commence in 

targeted clinical areas such as the emergency department, haematology, and surgical 

specialties. Finally, the classifiers used within this study have only been investigated for use 

using discrete data and at discrete times. Evaluation of the dynamic changes of the system 

in response to therapy / over time must also be investigated. This may facilitate the 

application of such tools to other HCAI surveillance which require on more longitudinal 

assessment [386].  

Although many of the limitations of the CBR study have been discussed in Section 6.5.3 a 

further comment is required regarding the powering of this study. This was a pilot evaluation, 

undertaken to explore the feasibility for use of CBR in clinical practice. Therefore, I did not 

power the study to demonstrate statistical significance. Following further development of the 
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system (as described above), this will need to be considered before undertaking any further 

prospective evaluation of the tool. Another key limitation that must be addressed was the 

fidelity of data retrieval on the wards. This occurred due to changes in the ward allocation 

system within the hospital Trust and the fact that certain wards have sub-wards within the 

electronic record system. This meant that often certain bays on wards were not retrieved by 

the system when patient details were searched. To address this, I have sought support from 

the ICHNT information technology team, who are exploring the option of allowing us to link 

the CDSS directly to the hospitals EHR interface. This would mean that there is a direct link 

between the patient being viewed and the CDSS, so that when the tool is called forward the 

hospital EHR automatically provides location data to the system.  

Finally, further work will now be undertaken to investigate the integration of these different 

types of decision making aid. For example, the likelihood estimates generated by the 

supervised machine tools may be able to be linked into the CBR algorithm as a further 

variable to drive decision making of the system. With the development of new techniques, 

such as predictions of sensitivity patterns, this may help to increase the knowledge base of 

the CBR without the requirement for a large increase in the number of variables added.   
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6.6 Conclusion and key messages 

Within this Chapter, I have explored the potential of artificial intelligence to help address two 

core areas of the physician decision making pathways, which was described in Chapter 

three. Supervised machine learning was successfully able to predict individuals who had 

infections or positive microbiology, using a small number of blood parameters present at 

their presentation. CBR was able to make empirical antibiotic recommendations that were 

appropriate for clinical practice and had the potential to reduce selective pressure for 

antimicrobial resistance by reducing the spectrum of antimicrobials prescribed overall. 

Future work must now explore the interaction of the end-user with these tools in clinical 

practice. It must also explore the integration of these separate approaches to understand 

whether this can further augment the individualisation of decision making. 
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CHAPTER SEVEN: 

7.0 Personalised Antimicrobial Dosing: Development of a minimally 

invasive biosensor for the continuous monitoring of beta-lactam 

antibiotics 

Figure 25. Overview of thesis. 

 

 

 

 

 

 

 

 

 

7.1 Introduction 

7.1.1 Pharmacokinetic-pharmacodynamic variation 

When considering the appropriateness of antimicrobial therapy, clinicians will focus on the 

selection of the most appropriate agent for the organism that they are (or believe they are) 

treating [32]. However, this focus often neglects to consider the importance of selecting the 
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most appropriate dose of the antimicrobial agent to maximise bacterial killing, whilst 

minimising the development of drug resistance and toxicity to the patient.  

Whilst much emphasis has been placed upon prudent prescribing, a significantly smaller 

focus has been the optimisation of the dose of such agents for the individual patient. There 

is increasing evidence describing the wide variations in antimicrobial PK between individuals 

across clinical areas, such as critical care, chronic renal disease, obesity, and extremes of 

age [387–391]. These variations occur for the majority of antimicrobials, not only those that 

we currently therapeutically monitor like vancomycin, a glycopeptide antibiotic that causes 

nephrotoxicity [392]. For agents that have smaller risk of toxicity, such as the beta-lactams, 

PK variation is also observed [393,394].  

For example, several studies from critical care units internationally have demonstrated that 

up to 75% of critically ill patients in intensive care may not be receiving appropriate doses of 

beta-lactam antibiotics [393]. In the “defining antibiotic levels in intensive care unit patients” 

(DALI) study, by Roberts and colleagues, the authors demonstrated wide variation in beta-

lactam PK-PD target attainment in a cohort of 384 patients [394]. These were recruited from 

68 intensive care units in 10 countries. Failures to meet standard PK-PD indices 

(%time>MIC) were associated with significantly worse patient outcomes [394].  However, it 

is not just the intensive care setting where optimisation of dosing has evidence of improved 

outcomes.  

Data support individualised dosing for drugs that we already therapeutically drug monitor 

(TDM), such as vancomycin [392,395–401]. For vancomycin, the 24-hour area-under-the-

concentration-time curve (AUC) to MIC ratio of 400 has been associated with optimal clinical 

outcomes in a range of Gram-positive infections. In more severe infections, such as infective 

endocarditis caused by Methicillin-Resistant Staphylococcus aueus (MRSA), a AUC:MIC of 

600 may be required [396,400]. Furthermore, current approaches for TDM of vancomycin 

currently rely on peak or trough blood samples. In none severe infections, a trough target of 
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10-15 mg/L is recommended [392]. However, as the commonest MIC of Staphylococcus 

aureus is 1 mg/L [402], this type of therapy is only likely to achieve an AUC:MIC of 

approximately 250 [392]. Furthermore, with vancomycin’s narrow therapeutic window and 

risk of toxicity, once the AUC of vancomycin rises above 600, physicians are often cautious 

of increasing the dose of this agent, given increased risk of toxicity at this point [392]. This 

means that patients often remain sub-therapeutic for much of their treatment. In one 

retrospective review of non-critical care patients receiving vancomycin therapy, I 

demonstrated that attainment of an AUC:MIC >400 was only achieved in 63% of patients 

[397]. Individuals who were obese were significantly more likely to obtain AUC:MIC <400 

compared to non-obese individuals [397].  

As well as controlling for inter-individual variation in antimicrobial PK, there are a number of 

intra-individual factors that are likely to influence an individual’s pharmacokinetics during the 

course of infection management [387,389,390,394,403]. These variations can be driven by 

augmented renal clearance, third spacing secondary to inflammatory response, and the 

requirement for organ support, which may resolve during the course of infection 

management [387]. For example, in critically ill patients receiving linezolid therapy for MRSA, 

dose by dose variations have been observed in volume, clearance, and thus plasma and 

tissue PK [404]. These variations are driven by a multitude of factors, making the forecasting 

of optimal dosing strategies for the individual patient at an specific time during therapy 

challenging [404]. This challenge is further enhanced when single time point drug monitoring 

is performed.   

Therefore, to achieve optimal treatment outcomes in the individual we need to explore more 

personalised methods for monitoring antimicrobials and adapting dosing based on variations 

both between individual patients and within the individual during the course of infection 

management. 
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7.1.2 Individualised approaches to antimicrobial dosing 

The argument for more personalised approaches to antimicrobial dosing is gaining increased 

consensus with the reporting of wide PK variation [405]. There are numerous mechanisms 

that can be employed to individualise the delivery of antimicrobial therapy. However, this can 

be simplified into several individual stages. These include: 

1. Developing an ability to evaluate antimicrobial concentrations in the 

individual. This would ideally be at the target site, but if not possible, sampling should be 

from a compartment that facilitates accurate estimation of target site concentration.  

2. Predicting the individual’s PK and linking this to an appropriate PD indicator 

to allow determination of a personalised PK-PD index.  

3. Alteration in dosing to optimise the concentration of drug in the individual 

patient, for the individual organism being treated, at that time during therapy. This will 

often use the defined PK-PD target selected above.  

Several mechanisms for improving the accuracy of antimicrobial dosing now exist. These 

include closed-loop control and Bayesian forecasting [405–407]. However, these 

approaches rely on our ability to be able to perform drug monitoring to provide individual 

patient PK data or develop population models to facilitate Bayesian forecasting. Therefore, 

the development of novel techniques to improve drug monitoring are highly desirable. Ideally 

these would be minimally invasive, available at the point-of-care, perform monitoring in real-

time, and be available for a broad range of antimicrobial agents [406].  

Several studies have explored the role of microfluidics in delivering enhanced drug 

monitoring [408–410]. However, this approach is hindered by many of the problems 

associated with routine blood antimicrobial TDM. These problems include: 
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• The requirement to extract blood / interstitial fluid (ISF), which requires complex 

techniques, exposure of healthcare workers to potentially harmful material, and does 

not provide a true in-vivo measure of target concentration. 

• Transport of samples to a laboratory, which lead to delays in returning results of 

samples. 

• Laboratory analysis, which requires trained technicians, expensive analytical 

equipment, and the requirement for validated antimicrobial assays to be available, of 

which there are few commercially.   

One potential method to avoid these problems is through the development of closed-loop 

control systems, developed around minimally invasive, microneedle electrochemical sensor 

technology for drug monitoring [411]. This technology is being applied in other areas of 

medicine, such as diabetes control through individualised insulin delivery [412–416] and 

anaesthesia control intra-operatively [417,418]. Closed-loop control offers a potential avenue 

for enhancing the precision of antimicrobial therapy across a number of settings where 

invasive monitoring techniques may not be appropriate, including the community and non-

critical care hospital settings. In a review of this field, published in the Journal of 

Antimicrobial Chemotherapy, I recently reported the current state-of-the-art for closed-loop 

control in infection to provide personalised antimicrobial dosing [406]. The core components 

of a closed-loop system for antimicrobial dose optimisation are outlined below.  

 

7.1.2.1 Components of closed-loop control for individualised antimicrobial therapy 

Several key concepts (outlined in Figure 26) must be considered for the development of 

closed-loop controllers for antimicrobial therapy. Ideally monitoring of antimicrobials should 

be continuous and in a minimally invasive format that does not rely on blood sampling. 

Microneedle array electrochemical biosensor technology provides an opportunity to achieve 

this. This facilitates the detection of antimicrobial concentrations in the dermal interstitial fluid 
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(ISF) [419,420]. Microneedle technology has already been validated in the field of diabetes, 

demonstrating safety and tolerability in human clinical trials and accuracy in diabetic 

individuals [411,419,420]. This is despite this cohort of patients tending to have poor tissue 

perfusion due to underlying diabetic vasculopathy [411,419,420]. As free antimicrobial 

concentration in the ISF is generally in equilibrium with plasma concentration, this provides 

an opportunity for using this technology to monitor ISF concentrations as well as estimate 

plasma free-antimicrobial concentration in near real-time without requiring plasma sampling 

[421–423]. This may be challenging in certain situations, such as during periods of tissue 

hypoperfusion in critically ill patients in the intensive care unit (ICU) [424]. However, it may 

also offer a novel option for supporting the optimsation of antimicrobial dosing in these 

populations. This is because the majority of infections occur in tissue ISF [424,425]. 

Therefore, this technology may provide a mechanism for monitoring antimicrobial 

concentrations in a compartment that is closer to the site where the infection is being treated 

when compared to plasma [424,425].  
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Figure 26. Outline of the proposal for closed-loop-control of antimicrobial therapy. 
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Real-time data, generated by the microneedle sensor, can be linked with machine driven, 

closed-loop control algorithms. These include Proportional-Integral-Derivative (PID) [426] 

[427] and Iterative Learning Controllers (ILC) [428]. These controllers facilitate the 

optimisation of both continuous and bolus (or oral) therapy, respectively. They can achieve 

individualised target attainment of pre-defined PK-PD indices associated with maximal 

bacterial killing and/or suppression of the emergence of AMR [429,430]. These may be 

current gold standard PK-PD targets [431,432] or novel indices, such as AUC:EC50 ratio 

[433,434]. 

Each of these concepts will individually be explored and critiqued below. 

 

7.1.2.2 Microneedles for continuous sensing of agents in the dermal interstitial fluid 

Microneedle technology was first demonstrated as a suitable mechanism for drug monitoring 

and delivery over 20 years ago [435]. Development of this technology has progressed 

rapidly with data supporting the use of microneedles to monitor glucose and lactate 

concentrations in humans [419,420,436,437]. This replaces previous methods of tissue 

sampling, such as microdialysis [404,421,438–442]. Microneedles are also being used as 

delivery systems for drugs and vaccines [415,443]. They work by penetrating the stratum 

corneum layer of the skin, accessing the dermal interstitial space. This allows access to the 

ISF, whilst avoiding the nerve fibres and blood vessels that are found within the dermis. 

Therefore, microneedles are a minimally invasive method for drug or metabolite monitoring 

[419,420,436,437]. Side effects such as pain, bleeding, skin reactions, and infection risk 

have all previously been explored and shown to be minimal following application of such 

devices to the skin [419]. 

 

A major step forward in microneedle development has been the ability to directly mount 

electrochemical sensors onto the exterior surface of the microneedle (developed by 
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Professor Tony Cass and Dr Sanjiv Sharama, Imperial College London). This type of 

microneedle will be utilised within the Chapter. Until this technique was developed by 

Sharma and colleagues, microneedles have been hollow, acting as microdialysis needles 

[444]. This technique is often challenging as it requires transfer of small volumes of ISF to a 

sensor behind the microneedle structure. This not only presents technical challenges in 

terms of microfluidic transport, but also causes difficulty in maintaining accuracy of the 

sensor. Furthermore, the transfer of ISF means that the approach mitigates against their 

application in real-time control, given delays in fluid transfer and processing [444].  

 

The microneedles described within this Chapter have been reported previously by Sharma 

and colleagues, who claim high reproducibility when using microneedle technology to 

monitor glucose levels in healthy volunteers compared to capillary blood glucose 

measurements [413]. They were robust to sterilisation using gamma-irradiation allowing the 

device to be sterilised and stored over time for use monitoring human glucose 

concentrations [413]. The simplification of monitoring techniques, mounting the sensor 

directly on the external surface of the needle, also means that this technology can be 

reproduced reliably and at low cost through the development of scalable microneedle batch 

injection moulding, producing up to 300 microneedle bases per hour [436].  

 

However, there are also challenges that remain in the development of microneedles within 

this field. In clinical trials for monitoring glucose using glucose oxidase coated microneedles, 

the sensors appear to occasionally generate artefact. This appears to be caused by 

movement that leads the needles to be partially removed from the intradermal space [413]. 

Whilst the observed artefact had a shorter duration than changes in glucose concentration, 

and thus can be controlled for, this still requires consideration. A further challenge with the 

current microneedle sensors in humans has been their accuracy at extreme ranges of 

glucose, especially hypoglycaemic ranges [413].  It is likely therefore that sensor deployment 

for antimicrobial monitoring will encounter similar barriers for consideration.  
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In addition to microneedle based sensing, other methods to facilitate continuous monitoring 

also require consideration. The most developed of these alternatives are attempts to perform 

real-time monitoring of drug concentrations in ambulatory animals using invasive vascular 

catheter insertion [445]. In clinical practice, this method would only be acceptable in very 

specific situations, such as critical care or at the time of surgery. However, this may be 

acceptable given concerns of the microneedle sensors accuracy when tissue hypo-perfusion 

may influence the ability of microneedle devices to accurately predict free drug 

concentrations in blood. However, invasive devices pose their own risks, including 

thrombosis [445]. Therefore, this type of invasive device would not be acceptable in the vast 

majority of individuals who receive antimicrobial therapy outside of critical care. A second 

consideration is the use of none invasive, sweat based monitoring systems. These have 

once again already been developed for glucose monitoring. However, very little data exists 

on whether this would be a viable option for monitoring antimicrobial concentrations [446]. 

 

7.1.2.3 Antimicrobial electrochemical sensing 

Figure 27 outlines the key aspects of an electrochemical biosensor. Biosensors have been 

reviewed extensively for their use in medical applications [447] [448] [449–451]. They are 

particularly desirable given that the technology can often be miniaturised, facilitating the 

development of portable, easy-to-use, point-of-care devices that do not require expensive 

analytical machinery or technical ability to operate [447] [448].  
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Figure 27. Outline of the typical characteristics of a biosensor.  
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Electrochemical biosensors aim to convert a biological response into a quantifiable and 

processable signal  [449–451]. They can be applied to a large variety of samples including, 

body fluids, cells, food stuff, and environmental material [449–451]. Methods of molecular 

recognition are varied but can be classified into two broad categories, depending on the 

nature of the interaction between recognition molecule and substrate. These are: 

1. Bio-catalytic sensors: These rely on detection of the product of an enzyme 

catalysed reaction. These are the oldest and best characterised type of biosensor 

[452]. Enzymatic reactions applied to biosensor technology can be broadly thought of 

as two subclasses. Firstly, oxido-reductase reactions, such as occurs with the use of 

Nicotine-Adenine-Dinucleotide (Phosphate) (NADP) enzymes, like glucose oxidase. 

Upon exposure to glucose this causes a reaction which generates hydrogen 

peroxide, via the re-oxidation of the of the enzyme by oxygen [447]. The second 

class occurs through hydrolysis of substrate by the enzyme, such as I will be 

investigating in this Chapter exploring sensing of penicillin, which is hydrolysed by 

beta-lactamase to penicillinoic acid and a proton [453].  

2. Bio-affinity sensors: These facilitate detection of a target molecule without 

conversion of the analyte upon binding. Examples of this type of sensor would 

involve the use of antibodies or more recently, aptamers, where a substrate binds to 

a receptor and is detected based on the conformational change in that occurs on 

binding of the substrate to the aptamer [449,454].  

Following molecular recognition, transduction will occur being converted into a signal. 

Transduction occurs in a variety of ways. However, typically the reaction caused by 

molecular recognition will generate a measurable change in current (amperometric), a 

measurable potential or charge accumulation (potentiometric), or will alter the conductive 

properties of a material between two electrodes (conductometric) [448–452,454]. 

Alternatively, the binding event may be detected electrochemically through a measure in the 
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resistance and reactance of the system (impedance) or a transistor may be used to measure 

the effect on the current as a result of a potentiometric effect at a gate electrode (field-effect) 

[448–452,454].    

Electrochemical sensors for the detection of antimicrobials in the environment, agriculture, 

and humans have been reported for a wide range of agents used in human medicine (Table 

22) [406]. Electrochemical sensors for the detection and monitoring of antimicrobials are 

largely based on aptamer, antibody linked, or enzyme based methods of substrate detection 

[445,453,455]. However, there is a paucity of data for many antimicrobial agents to 

accurately support the ability of these devices to predict the PK in both tissue and plasma at 

present. A major development in the field of biosensors is the development of aptamer 

based methods of detection.  

Aptamers are widely reported to be a potential game changer in the field of small molecule 

detection [454]. Aptamer sensors are nucleic acid sequences that are highly specific for a 

target molecule. On binding to their target they are able to produce a signal through the 

detection of a redox reaction. This is driven by a conformational change in the structure of 

the aptamer (normally leading to folding), which will move a marker that is attached to the 

aptamer (e.g. methyl blue) closer or further away from the biosensor surface. Aptamers are 

engineered using an in-vitro selection procedure, called Systematic Evolution of Ligands by 

EXponential enrichment (SELEX). They have a high sensitivity for detection of molecules 

down to the range of pico-moles in monitoring of certain environmental contaminants [455].  

One such antibiotic aptamer sensor is the MEDIC device, described by Ferguson and 

colleagues [445]. This device has been reported to be able to monitor a number of different 

agents, including kanamycin, in real-time in ambulatory rodents. This used a liquid phase 

filter on a central venous catheter to prevent blood fouling the DNA aptamer sensor interface 

[445]. Within this study, live rats were injected with increasing doses of kanamycin, an 

aminoglycoside antibiotic, at hour intervals to demonstrate the ability to monitor the PK 



 

233 
 

profile in real-time, for both increasing and decreasing blood concentrations, using an 

aptamer sensor in the blood stream [445]. Aminoglycoside aptamers have also been tested 

against spiked human serum demonstrating accuracy for determining concentrations of 

routine, clinically observed targets between 2 to 6 μM.  
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Table 22. Summary of antimicrobial biosensors reported in the literature.  

SENSOR SETTING TESTED RANGES OF DETECTION AND REPORTED LIMITS OF DETECTION  REF 

Macrolides - Spiked human urine 

- Water samples  

- Optimal analytical 

conditions 

In spiked human urine:           0-2µM (Azithromycin) [456,457] 

Quinolones - Spiked human plasma 

- Spiked human urine 

- Milk 

- Optimal analytical 

conditions 

In spiked human plasma:        0.05-100 µM (CIP)                  

                                                0.1-100 µM (OFL)                

                                                0.1-40 µM (NOR)               

                                                0.06-100 µM (GAT) 

[458–463] 

Chloramphenicol - Milk 

- Spiked human urine 

- Food samples 

- Optimal analytical 

conditions 

In food samples:                     0.08-1392 µM                       

                                                LLD 0.015 µM 

[464–467] 

Metronidazole - Spiked human urine 

- Optimal analytical 

conditions 

Calibration in lab:                   Linear range 0.8 pM – 720 nM  

In spiked urine samples:        Reported recovery at concentrations 87, 96, 110, and123 μM 

[468] 

Tetracyclines - Meat / feedstuff samples 

- Spiked honey 

- Optimal analytical 

conditions 

In feedstuff                              Linear range 0.3-52.0 µM (tetra) LLD 0.10 µM (tetra) [469,470] 

Rifampicin - Optimal analytical 

conditions 

Linear detection ranges:       0.006–10.0 mmol L-1 with a LLD of 4.16 nmol L-1  

                                                And 0.04–10 mmol L-1 with a LLD of 2.34 nmol L-1. 

[471] 

Penicillin’s - Optimal analytical 

conditions 

- Food / milk samples  

In spiked milk samples:           Linear range 3-283 µM and   LLD 0.3 µM (Pen-G) 

                                                Recovery from spiked samples was 102±6% 

In optimal conditions:              Km value 67±13 µM reported using Michaelis Menten kinetics equation (Pen-G)  

[472–488] 
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Aminoglycosides - Optimal analytical 

conditions 

- Ambulatory animals 

blood stream 

- Spiked human serum  

In spiked human serum:         Accurate within therapeutic range of 2-6 µM                 [445,479,480

,489–497] 

Lincomycin  - Optimal analytical 

conditions 

- Foodstuff 

- Spiked human urine 

In optimal conditions:              Linear detection range up to 1mM and LLD of 0.08 µM 

In spiked human urine:           Recovery in samples was 96.44% to 103.26% 

[498] 

Sulfonamides - Optimal analytical 

conditions 

- Milk 

- Spiked human urine 

In optimal conditions:             Range of 0.1–10.0 mmol L-1 with LLD of 60 nmol L-1 (TMP) AND 1.0–10.0                  

                                                mmol L-1 with LLD of 38 nmol L-1 (SMX) 

In spiked urine:                       Recovery 91.3-101%  

[499–501] 

Legend: CIP = ciprofloxacin; OFL = ofloxacin; NOR = norfloxacin; GAT = gatifloxacin; LLD = lower limit of detection; tetra = tetracycline; Pen-G = penicillin-G; TMP = 

trimethoprim; SMX = trimethoprim/sulfamethoxazole. 
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As well as aptamer based methods for sensing, enzyme based methods are also well 

described [406]. Enzymatic penicillin-G sensors are some of the oldest antimicrobial sensors 

reported [453]. These reactions can be detected through electrical, optical, or calorimetric 

methods [486]. The majority of enzyme based techniques for penicillin sensing detect the 

hydrolysis of penicillin to penicillinoic acid and a hydrogen ion. One recent example was 

reported by Ro-Lee and colleagues utilising field-effect devices [476]. The authors described 

a high sensitivity of their enzyme based device, its stability during storage, and re-usability 

over a 30 day period [476].  

 

To date, antimicrobial sensing has been demonstrated on microchips, disc electrodes, and 

nano-tubes. This makes the devices small and highly transportable. Based on current 

evidence provided by microdialysis of critically ill patients tissue ISF concentrations, 

microneedle based sensing is a potential avenue for estimation of antimicrobial 

concentrations and real-time monitoring [421–423]. However, the major gap in the literature 

supporting translation is a paucity of human, in-vivo studies with such biosensors to 

demonstrate their resistance to bio-fouling from proteins such as albumin and 

immunoglobulins [447,502]. Furthermore, there remains limited data on the expected 

concentration of free antibiotic concentrations within the ISF for many antibiotics. This makes 

it challenging to accurately predict the characteristics of tissue PK for these agents and allow 

accurate estimates of the linear range of response that such sensors will be required to work 

in for translation into human studies.  

 

7.1.2.4 Closed-loop control for drug delivery 

Closed-loop controllers have a broad application in the field of diabetes, being the 

cornerstone of novel developments, such as the artificial pancreas system [416,503]. 

Furthermore, closed-loop control has been demonstrated as effective in controlling delivery 

of both intravenous and inhaled anaesthetic agents during surgery [417,418]. Working with 
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colleagues with experience of closed-loop control (led by Dr Pau Herrero and supervised by 

Dr Pantelis Georgiou), I have already been able to demonstrate the potential of this 

technology for personalised antimicrobial dose delivery in pre-clinical and in-silico studies 

[445,504]. Two of the most widely used and most robust controllers for continuous and 

intermittent bolus infusions are the PID and ILC controllers, respectively [429,430]. A 

detailed explanation of these types of controllers can be found in technical Appendix 8 

section a8.2.   

These controllers are algorithms that optimize the delivery of an agent against a pre-

determined set point. The example used for proof-of-concept was vancomycin dosing, using 

data from 25 individuals who had previously been demonstrated to achieve the target PK-PD 

index in 63% of cases using routine TDM approaches [397,504,505]. If linked with Bayesian 

dose optimization software or Cased-Based-Reasoning platforms, which can provide 

individualized initial dose selection, and novel in-vivo mechanisms of predicting antimicrobial 

PD these could offer a powerful approach to reducing the errors that are commonly 

observed in the practice with current dose optimisation strategies.  

In terms of translating these into microneedle sensor driven closed-loop control systems, the 

biggest challenge that remains is accurately describing individual antimicrobials relationship 

between tissue and plasma PK. This is especially important to consider during the initial 

phase of dosing, when the drug is not at steady state. A greater understanding of this 

concept is required to accurately describe the relationship between free concentrations of 

drug in both compartments. It will likely require rich plasma and microdialysis PK sampling to 

support the development of controller algorithms.  
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7.1.2.5 Additional Pharmacokinetic – Pharmacodynamic indices for individualising 

therapy   

Currently individualised PK-PD indices rely on factors such as the Minimum Inhibitory 

Concentration (MIC) to form part of time and concentration dependent measures for 

exposure-response (e.g Area-Under-the-Curve[AUC]:MIC, Time>MIC, or Peak:MIC). MIC as 

a PD target requires isolation of the causative pathogen and determination of the individual 

organism’s susceptibility. This causes a practical problem in cases where the invading 

pathogen is not identified, as is observed during the empirical phase of antimicrobial therapy, 

and in a significant proportion of cases of sepsis that remain culture negative throughout the 

treatment period [506,507]. Therefore, in the absence of microbiology results, population 

level assumptions are made about the most likely organism causing the infection and the 

average MIC of this population. Thus, this does not provide a truly individualised index on 

which to optimise antimicrobial therapy. 

To address this, recent studies have reported the use of the ratio of the AUC to the EC50 in 

paediatric populations [433,434]. The EC50 is the concentration of a drug (mg/L) that is 

estimated to induce a half maximal antibacterial effect (such as reduction in serum CRP or 

galactomannan, a specific plasma marker in aspergillus infection) for an individual patient. 

The AUC:EC50 ratio can provide an in-vivo estimate of drug response by linking drug 

exposure with PD [433,434].  Acting as an in-vivo measure of potency, AUC:EC50 enables an 

estimate of the host immune response to the invading organism. This has the potential to 

circumvent the problems associated with in-vitro MIC estimation and may provide data that 

can drive the development of real-time algorithms for the delivery and control of 

individualized antimicrobial therapy. This approach will be explored in detail in Chapter eight. 

Therefore, it will not be reviewed further within this Chapter.  
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7.1.2.6 Drug delivery  

With the exploration of microneedle based technology as a mechanism of drug delivery, it is 

also important to consider the optimal method by which delivery could occur within closed-

loop control systems. During initial development of this concept, intravenous and oral 

delivery of agents via infusion pump and personalised dosing alerts is likely to be the initial 

focus. However, microneedles are now being investigated to provide dual functions of 

sensing and also drug delivery [443]. In the field of infection, the rate of drug delivery that 

can be achieved may be hindered by certain drug characteristics (such as hydrophilic versus 

hydrophobic agents) and the volume of agent required to be delivered. However, drug 

delivery by microneedle may provide an interesting avenue for certain challenging cohorts, 

such as paediatric patients, as well as for local antimicrobial therapy delivery, such as skin 

and soft tissue infections or penetration of collections.  
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7.2 Chapter Objectives 

Given the current state-of-the-art in the literature and the importance placed upon finding 

better methods for both drug monitoring and defining PK-PD indices, I have chosen to focus 

upon these aspects within Chapters seven and eight. Therefore, within these two Chapters I 

aim to investigate two of the core concepts outlined in sections 7.1.2.2 and 7.1.2.5, 

respectively.  

The objectives of this Chapter are: 

1. Investigate whether it is possible to develop a microneedle biosensor for the 

continuous monitoring of beta-lactam antibiotics. 

2. Characterise the in-vitro response of such a biosensor and explore its fundamental 

characteristics. 

3. Demonstrate proof-of-concept for in-vivo microneedle based continuous monitoring 

of beta-lactam antibiotics. 

Sensor targets to be achieved: 

This Chapter aims to describe the preliminary exploration and development of a microneedle 

biosensor to facilitate proof-of concept for this technology in humans.  Within this work, I 

would be required to undertake multiple iterations of design and testing. Therefore, on 

commencing this project, I felt that it was important to have clear targets to aspire to and 

maintain the focus of development. In setting these targets for my sensor, I built on the 

suggestions of O’Hare and Greishaber who both outline the ideal characteristics for 

biosensors in their respective reviews of this subject matter [447,449].  

The targets for the device that I hoped to achieve by the end of this Chapter were:  

1. The device should have an appropriate dynamic range for sensing beta-lactam 

antibiotics in human tissue ISF. This should include characterising the lower limit of detection 

(LLD), linear operating range, and maximum operating concentration (Vmax). 
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2. The sensor must be stable for use in-vivo. This would ideally facilitate in-vivo 

monitoring for at least 24 hours continuously and be stable for up to 28 days in storage. 

3.  The output from the sensor must therefore be reproducible over time.  

4. Ideally the response would be logarithmic, with a large enough change in potential 

per decade change to facilitate a linear operating range.  

5. The device must be biocompatible and acceptable for use in humans (including 

passing an ethics board for provisional studies). 

6. The device should be small, portable, and be capable of being used by non-

technicians. 
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7.3 Methods 

7.3.1 Study setting and rationale 

This study took place at Imperial College London, Department for Biomedical Engineering, 

where I was supervised by Dr Danny O’Hare (Bioengineering) and Professor Tony Cass 

(Chemistry).  For the initial development of an antimicrobial biosensor I opted to explore a 

mechanism of detection that follows a well described and natural biological reaction; the 

hydrolysis of beta-lactam antibiotic by a beta-lactamase enzyme. 

𝑷𝒆𝒏𝒊𝒄𝒊𝒍𝒍𝒊𝒏 

𝑩𝒆𝒕𝒂 − 𝒍𝒂𝒄𝒕𝒂𝒎𝒂𝒔𝒆
𝒆𝒏𝒛𝒚𝒎𝒆

> 𝑷𝒆𝒏𝒊𝒄𝒊𝒍𝒍𝒊𝒏𝒐𝒊𝒄 𝒂𝒄𝒊𝒅 + 𝑯+(𝒂𝒒) 

This reaction can be detected using a number of different approaches that rely on the 

change in pH that occurs as the rate of hydrolysis of penicillin is altered (i.e. by changes in 

penicillin concentration)[508]. Before proceeding, it is helpful to outline a number of key 

principles that underpin the development of enzymatic biosensors.  

 

7.3.1.1 Enzyme kinetics 

Michaelis and Menten provide a simplistic description of enzyme kinetics at steady state. An 

understanding of the Michaelis-Menten equation derived through this description is important 

for the subsequent evaluation of enzyme based biosensors [509].  

Michaelis and Menten use a simplified model to describe enzyme reactions in terms of an 

enzyme (E) and substrate (S) that can form a complex (ES) in a reversible, rapid equilibrium. 

Furthermore, irreversible breakdown of ES leads to a product (P) as the rate determining 

step.  

[1.1] 𝐸 + 𝑆 ⇌ 𝐸𝑆 → 𝐸 + 𝑃 
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The equilibrium reaction can be described with the rate constants k1 and k-1 for the forward 

and backward reactions, respectively. The irreversible breakdown of ES to P can be 

described using the rate constant kcat [510,511]. When etot describes the total enzyme 

concentration and eES describes the concentration of enzyme-substrate, the concentration of 

uncomplexed enzyme can be determined using (etot - eES). Given the concentration of 

substrate is normally much greater than the enzyme concentration at steady state, we can 

assume that the initial concentration of substrate, s, is equal to the concentration of 

uncomplexed substrate [509]. This allows the expression of [1.1] as a differential equation.  

[1.2] 
𝑑𝑒𝐸𝑆

𝑑𝑡
= 𝑘1 (𝑒𝑡𝑜𝑡 − 𝑒𝐸𝑆) 𝑠 − 𝑘−1𝑒𝐸𝑆  − 𝑘𝑐𝑎𝑡𝑒𝐸𝑆   

During steady-state, 
𝑑𝑒𝐸𝑆

𝑑𝑡
 is likely to be small compared to the reaction flux, which can be 

described using k1etots [509]. This is because [ES] should be constant at steady state, 

therefore, 
𝑑𝑒𝐸𝑆

𝑑𝑡
= 0. Therefore, eES can be described using 

[1.3]  𝑒𝐸𝑆 =
𝑘1𝑒𝑡𝑜𝑡𝑠

𝑘1𝑠+ 𝑘−1 + 𝑘𝑐𝑎𝑡
 

We can describe the rate of the enzyme reaction (V) by the expression  

[1.4]  𝑉 = 𝑘𝑐𝑎𝑡𝑒𝐸𝑆 

This can then be substituted into [1.3] to give 

[1.5] 𝑉 =
𝑘1𝑒𝑡𝑜𝑡𝑠

𝑘1𝑠+ 𝑘−1 + 𝑘𝑐𝑎𝑡
 

This equation can then be re-written as the Michaelis-Menten equation, given the 

assumptions that Michaelis and Menten made, treating ES concentration as at steady-state 

[509]. Here, the reversible equilibrium reaction as described as a single rate constant, KMS.  

[1.6] 𝑉 =  
𝑘𝑐𝑎𝑡𝑒𝑡𝑜𝑡𝑠

𝐾𝑀𝑆+𝑠
=  𝑘𝐸𝑠 
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Therefore, kE can be described as 

[1.7]  𝑘𝐸 =  
𝑘𝑐𝑎𝑡𝑒𝑡𝑜𝑡

𝐾𝑀𝑆+𝑠
 

Within this equation, we find that kcatetot describes the maximum reaction velocity and 

therefore the KMS is the Michaelis constant, described by 

[1.8]  𝐾𝑀𝑆 =  
𝑘−1 + 𝑘𝑐𝑎𝑡

𝑘1
 

These concepts, and particularly equation [1.6], describing the Michaelis - Menten equation 

are vital for developing and evaluating the enzyme based biosensor described within this 

Chapter. Figure 28 is an example of a normalised plot of steady-state velocity against 

substrate concentration for an enzyme that follows Michaelis – Menten kinetics. 

 

At low velocity, when substrate concentration (s) is much less than the half maximal velocity 

of the enzyme reaction (KMS), a linear response is observed. When s = KMS we observe the 

reaction rate at half its maximal velocity. At large concentrations of s, the reaction velocity 

becomes independent of substrate concentration, being described by kcatetot only. This 

demonstrates the core features of enzyme reactions that obey Michaelis – Menten kinetics. 

At low substrate concentration, first order, linear response is observed. At high substrate 

concentration, the reaction becomes zero-order and thus is non-linear [510].  

Figure 28. Example 

normalised plot of steady state 

velocity against normalised 

concentration of substrate. 
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An understanding of Michaelis – Menten is important for considering biosensor applications, 

given that when s >> KMS, a sensor that has been developed will be limited by enzyme 

kinetics. Therefore, development of our biosensor must aim to operate at levels where s < 

KMS.  

It is also important to link this to an understanding of the effects of mass transport on the 

enzyme electrode when characterising such devices [512,513]. For my biosensor, the aim is 

for the enzyme to be immobilised at the sensor interface, with the potentiometric detection of 

a product of the catalytic reaction. In this case, this will be the detection of hydrogen ion 

production. 

 

7.3.1.2 Understanding the effects of mass transport on the biosensor 

Understanding the enzyme kinetics and effects of mass transport on our biosensor may 

mean that it is possible to estimate the concentration of penicillin being hydrolysed to 

penicillinoic acid using the reaction outlined above in section 7.3.1. However, the biosensor 

surface must first be characterised. Figure 29 depicts the theoretical kinetic model for a 

biosensor similar to the one being developed within the Chapter, including the fluxes 

involved in the reaction.  

 Figure 29. Theoretical kinetic model for an enzyme based biosensor. 
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For estimation of the sensor model, a number of assumptions will be made, based on the 

work of Eddowes [512,513]. Firstly, in Figure 29, we assume that the sensor surface lies at 

x = 0. This is coated with an immobilised enzyme layer of thickness l. Outside of this layer is 

a transport boundary layer with a characteristic mass transport rate constant, kD. Beyond this 

boundary layer the concentration of substrate, S, is taken to be defined by [S]i and the 

product of the enzyme reaction, P is zero. The enzyme reaction that occurs within the 

enzyme layer will be assumed to follow the Michaelis - Menten kinetic equation described in 

equation [1.6]. This reaction will deplete the substrate in the enzyme layer and produce 

product. This will generate a diffusion gradient to drive the mass transport process [512]. 

The product is then detected at the biosensor surface potentiometrically. It is not consumed 

by this and means that a steady state occurs within the immobilised enzyme layer where the 

reaction of the enzyme is balanced by mass transport.  

For this example, Eddowes assumes that the concentration of enzyme and substrate within 

the reaction layer are uniform. This will allow approximation based on the thickness of the 

immobilised enzyme layer, the relative rates of mass transport, and the enzyme reaction 

[512,513].  These assumptions avoid having to solve the differential of Fick’s second law. 

Instead, using three processes the relationship between bulk solution concentration of the 

substrate and surface concentration of the product can be described.  

Firstly, the transport flux of the substrate towards the surface, jD, can be described in terms 

of kD:  

[1.9A] 𝑗𝐷 = 𝑘𝐷([𝑆]𝑖 − [𝑆]𝑙)  

Secondly, jR, the enzyme layer reaction flux can be described using the Michaelis-Menten 

reaction: 

 [1.9B]  𝑗𝑅 =  
𝑙𝑘2[𝐸][𝑆]𝑙

𝐾𝑀+[𝑆]𝑙
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Finally, the transport flux of the product away from the sensor surface can be described by:  

[1.9C] 𝑗𝐷 = 𝑘𝐷[𝑃]𝑙  

Within these examples, [S]l and [P]l are the substrate and product concentration within the 

enzyme layer. It should be noted that within the example of penicillin-penicillinase, [P]l can 

refer to either penicillinoic acid or H+, as both are products of the reaction. At steady state, 

as is assumed here, the fluxes will be equal, which means that [1.9A-C] can be assumed as 

three simultaneous equations with three unknown parameters; j, [S]l, and [P]l.  

Within this study, I am interested in being able to determine [P]l in terms of H+, by eliminating 

unknowns [512,513]. For example, j can be eliminated by equating [1.9A] and [1.9B] 

providing an expression for [S]l. 

 [2.0] 𝑘𝐷([𝑆]𝑖 − [𝑆]𝑙) =
l𝑘2[𝐸][𝑆]𝑙

𝐾𝑀+[𝑆]𝑙
 

Therefore, we can use examples provided by Eddowes to consider the utility of this equation 

[512,513].  

1) Assuming a case where [S]l << Km, we can drop the [S]l term in the denominator 

of the equation and simply re-arrange to describe [S]l. 

 [2.1] ]  [𝑆]𝑙 =  
1

1+
𝑙𝑘2[𝐸]

𝑘𝐷𝐾𝑀

       [S]i 

This equation can then be substituted into [1.9A] and equated to flux equation [1.9C] to 

provide a description of the relationship between bulk substrate concentration and the 

surface product concentration.  

[2.2]   [𝑃]𝑙 =  

𝑙𝑘2[𝐸]

𝑘𝐷𝐾𝑀

1+
𝑙𝑘2[𝐸]

𝑘𝐷𝐾𝑀

       [S]i 
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2) When [S]l >> Km, Eddowes [512,513] describers how  Km can be removed from the 

denominator of the equation in [2.0]. This describes the surface reaction flux of the product, 

which in this case is independent of the substrate concentration, given that the reaction is 

now zero order. 

 [2.3] [𝑃]𝑙 =
l𝑘2[𝐸]

k𝐷
 

Equations [2.0], [2.2], and [2.3] should theoretically provide the ability to solve cases at both 

high and low concentrations of substrate.  

 

Another consideration when characterising the biosensor is that the rate of stirring of any 

external solution may lead to variable rates of convection and thus variable boundary layer 

thickness [509]. This means that we may never truly reach a steady-state, with the 

concentration gradient at the electrode surface varying with alterations in the rate of reaction 

or rate of stirring.  

A well defined mechanism of inducing a steady state of delivery of substrate to the electrode 

surface is through the use of a rotating disc electrode (RDE) [509]. By rotating a disc 

electrode at a known rate, this generates experimental conditions of forced convection with 

mass transfer of the substrate to the electrode by both convection and diffusion [509]. This 

occurs by inducing convection dominated transfer away from the electrode and diffusion 

dominated transfer close to the surface. Between these two interfaces sits a boundary layer, 

the thickness of which can be accurately controlled (and calculated) using a RDE approach 

(Figure 30).  
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The RDE diffusion layer thickness (δ) can be estimated using the following equation 

 [2.4] δ = 0.643𝑣1/6𝐷1/3𝜔−1/2  

Where v (cm2 s-1) describes kinematic viscosity, D (cm2 s-1) is the diffusion coefficient for the 

electroactive substance being studied, and 𝟂 (Hz) is the RDE rotation speed.  

When steady state is reached using an RDE (Figure 30), convection of substrate on the 

outside of the boundary layer maintains the concentration of the bulk solution, whilst 

diffusion from the boundary layer balances the flux of substrate reacting at the electrode 

surface. Under these conditions using a RDE, the rate limiting step is the diffusion across the 

stagnant layer around the electrode. Jss, is the steady state flux and can be described by 

 [2.5]  𝐽𝑠𝑠 =
𝐷 𝑠𝑏𝑢𝑙𝑘

𝛿
  

Figure 30. Example of boundary layer concept that we aim to control using the Rotating Disc 

Electrode. 

Legend: Figure adapted from Bartlett PN et al. Modelling Biosensor 
Responses. Bioelectrochemistry. Chichester, UK: John Wiley & 
Sons, Ltd; p. 267–325. 
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With sbulk describing the bulk concentration of substrate.  

 

7.3.1.3 Iridium Oxide for pH measurements in-vivo 

Given that I have chosen to explore the use of an enzymatic biosensor, which utilises a 

hydrolysis reaction, I will be required to detect changes in pH as the rate of hydrolysis 

increases and decreases. Several approaches to measurement of pH are well characterised 

for biosensor development. The hydrogen, glass electrode is probably the most accurate 

[514,515]. However, it has a number of serious limitations when considering in-vivo 

biosensors [514,515]. This includes, high impedance, slow response times, and being 

mechanically fragile [514,515]. This makes scaling down the size of such an electrode 

challenging [514,515]. Metal-metal oxide electrodes have previously been demonstrated to 

show quick response time, stability, and low impedance making them ideal for in-vivo 

biosensor development [514–516]. Several metal-metal oxides have previously been 

described including, antimony electrodes [517], iridium-iridium oxide (IrOx) [518], platinum-

IrOx [519], gold-IrOx [520], and tungsten-tungsten oxide films [521]. These electrodes are 

ideal for pH sensors as the potential (E) of the electrode results from the equilibrium 

between the soluble oxide and saturated solution, changing according to: 

 [2.6] 𝐸 = 𝐸0′ − 2.303
𝑅𝑇

𝑛𝐹
𝑝𝐻  

Here, E0’ is the standard potential, including the ionisation product of water and solubility 

product of the metal oxide, R is a gas constant (8.314 J mol-1 K-1), T is temperature in Kelvin, 

F is Faraday’s constant (96,485 C mol-1), and n is the number of electrons transferred.    

Yamanaka previously demonstrated that anodic deposition of IrOx films can produce 

smooth, compact films that typically produce a super-Nernstian response (potential change 

of greater than -0.061 V per pH change) [514,516]. This occurs due to proton to electron 
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ratios of greater than 1 being achieved by hydrolysis of a hydrated oxide layer overlying a 

compact anhydrous layer within the film [514,515]. The general equation describing this is:  

   2[IrO2(OH)2-x(2 + x)H20](2-x)-(s) + (3 – 2x)H+ (aq) + 2e-  ⇌ [Ir2O3(OH)3 3H2O]3-(s) + 3H20(l) 

Where x varies depending on film hydration. Typically, super-Nernstian responses between -

0.061 and 0.090 V per pH are observed [447,514,518]. Given the versatility and well 

documented response of IrOx films and the large change per decade in potential, I opted to 

explore anodically depositing these on both gold and platinum electrodes.  

 

7.3.1.4 Planned workflow 

Given the above theoretical background, I decided to take a stepwise approach to 

investigating the development of a microneedle biosensor for beta-lactam antibiotics. This 

would be investigated in a stepwise fashion: 

1. Develop a protocol for fabrication of an immobilised beta-lactamase based 

biosensor for monitoring beta-lactam antibiotics using a disc electrode. 

2. Characterise the biosensor using a rotating disc electrode to understand the 

effects of mass transport at different antimicrobial concentrations.  

3. Transfer the final technology onto a microneedle array and evaluate its response 

in interstitial fluid to detect beta-lactam antibiotics. 

 

7.3.2 Reagents and equipment 

The protocols that I developed for this study are described in Appendix 7. Several iterations 

were explored during the development of the protocol for biosensor fabrication. This included 

membrane formulation, geometry, and size. Agents used within this Chapter were purchased 

from Sigma Aldrich (UK) and used as received unless otherwise stated. I rinsed with and 
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prepared all aqueous solution using deionised water. This has a resistivity of >15 MΩcm. 

Phosphate Buffer Solution (PBS, 0.1M phosphate, pH 7.4 at 25 oC) was used unless 

otherwise stated. Iridium oxide plating solution (100 ml) was prepared as described by 

Yamanaka [516] using iridium chloride hydrate (IrCl4·H2O, 0.15 g), aqueous hydrogen 

peroxide (H2O2·30%wt, 1 ml), oxalic acid ((COOH)2·H2O, 0.5 g), and anhydrous potassium 

carbonate (K2CO3, 3.9 g), leaving the solution to stabilise for 72 hours before use [516]. IrOx 

was then stored in the fridge between uses and remade after 90 days storage. 

A class B beta-lactamase from Bacillus cereus 569/H9 was purchased from Merck Millipore 

with a mixture of beta-lactamase I & II. For the final enzyme immobilisation used across all 

sensors, I used 5% aqueous polyethylenimine (PEI). Cellulose acetate also tested initially. 

Furthermore, I also prepared three further solutions:  

(i) 5 ml 0.1 M phosphate buffer (pH 7.4) with 25 mg / ml beta-lactamase;  

(ii) 5 ml of 0.1 M phosphate buffer (pH 7.4) with 50 mg / ml bovine serum albumin 

(BSA); and  

(iii) glutaraldehyde solution (C5H8O2, 2.5%), used to cross-link the beta-lactamase – 

BSA to the surface of the biosensor.  

Several different approaches were initially tested and validated on standard disc electrode 

devices. 

For calibration of the sensors, penicillin-G, amoxicillin, ceftriaxone, and amoxicillin-

clavulanate were obtained from Sigma-Aldrich and stock solutions of each beta-lactam 

prepared in PBS or artificial interstitial fluid (described below) for dilution. These were made 

fresh for each calibration run, given the rapid degradation of beta-lactam antibiotics in 

solution [522].  
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Cyclic voltammetry, iridium oxide deposition, and open circuit potentials (OCP) were 

performed using a CHI 650a potentiostat. pH calibration curves were recorded with a Mettler 

Toledo SevenEasy pH meter.  

 

7.3.2.1 Electrodes used for studies 

5 mm diameter platinum and gold disc electrodes were purchased from Alvatek Ltd.  The 15 

mm gold and platinum RDE and Pine Modulated Speed Rotator (MSR), were from Pine 

Research.   

The base microneedle array for this study was provided by Professor Tony Cass and Dr 

Sanjiv Sharma [436]. The fabrication process has previously been described in detail 

[436,523]. An description of this can be found in technical Appendix 8, section a8.3.  

For preliminary in-vivo testing, Torr Scientific Ltd performed metallisation of the microneedle 

bases with gold and silver sputtering, using a megatron sputter coater. This protocol was 

developed in collaboration with Torr as a means on providing scalability to the project and 

improving quality control of the microneedle fabrication process. 

 

7.3.3 Biosensor preparation 

All electrodes were prepared in the same fashion unless otherwise stated. The final 

protocols for fabrication that I developed can be found in Appendix 7. Final protocols used 

for fabrication were 1.4.2 for disc electrodes and RDE and 1.4.2 and 2.0 for the 

microneedles. 

Disc electrodes were cleaned by polishing with emery paper (P1000, P2500, P4000) and 

alumina polish (1.0 μM, 0.3 μM, 0.05 μM). Electrodes were cleaned for 3 minutes per step, 

being polished in a figure of eight motion and rinsed before moving onto the next step. 

Electrochemical cleaning was then performed using cyclic voltammetry in 1.0 M H2SO4 for 
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50-100 cycles. Disc electrodes where stored in deionised H2O until used. For the 

microneedle arrays, cyclic voltammetry was found to destroy the metallised layer on the 

needles. Therefore, I opted to prepare these by rinsing the surface with ethanol followed by 

rinsing with deionised H2O.  

For the remainder of the protocol, the process was similar for disc electrodes and 

microneedles.  

Iridium oxide was electrochemically deposited on the electrodes at a constant potential of 

0.95 V for 300 seconds for three cycles with an interval of 10 minutes soaking in the IrOx 

between cycles. This process of anodic electrodeposition was demonstrated by Yamanaka 

[516] to produce smooth and compact film when alkaline IrOx was used. On application of a 

constant potential to the solution, the following reaction occurs: 

[Ir(COO)2(OH)4]2- (aq) → IrO2 (s) + 2CO2 (g) + 2H2O (l) + 2e- 

This causes oxidation of the IrOx ligand liberating carbon dioxide (CO2) gas and depositing a 

solid IrOx layer onto the electrode [516]. pH calibration of anodically electrodeposited iridium 

oxide films (AEIROFs) was performed in PBS with OCP recorded for the pH range 4.0-8.0.  

Figure 31 outlines the design of the biosensor. Following AEIROF formation, 

polyethylenimine (PEI) was layered onto the AEIROFs for mechanical stability. Beta-

lactamase was then immobilised onto the electrode surface by depositing beta-lactamase 

and BSA solution with 2.5% glutaraldehyde solution acting as a fixing agent, cross linking 

the BSA and beta-lactamase. This was left for 90 minutes and then rinsed. Finally, another 

layer of beta-lactamase solution alone was deposited onto the outer membrane. After drying 

a final layer of PEI was added. Sensors were stored in deionised H2O for at least 24 hours at 

4 oC before use.  
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Figure 31. Outline of the design of the microneedle enzymatic electrochemical biosensor. 

 

 

 

 

 

 

 

 

 

 

 

As described below, cellulose acetate was initially used in place of PEI following previous 

recipes for enzymatic biosensor [524]. However, several challenges were identified, likely 

due to interference with the AEIROF layer, reducing its response to pH. 

 

7.3.3.1 Microneedle biosensor fabrication process 

Figure 32 summarised the fabrication process for the microneedle biosensors. The final 

protocol for fabrication followed that described in section 7.3.3 and Appendix 7. However, 

several other specific aspects required my consideration during the fabrication process. 

These included; 

Legend: IrOx = iridium oxide 
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i) Different types of wire were explored from use of fine silver wire through to 1-

1.5mm single strand copper annealed wire. No difference was observed in the 

response of the sensor between these and electrical connections were similar 

between all. Therefore, for in-vitro work I opted to use the thicker wire, as this 

added an extra element of stability to the sensor when it was mounted within the 

test solution.  

ii) Araldite was selected over epoxy resin as the sealant to protect the silver-epoxy 

used to make the conductive electrical connection between the metallised surface 

of the sensor and the wire. This was because Araldite dries within four hours, 

compared to the epoxy, which takes up to 72 hours. Furthermore, the epoxy tended 

to lose some of its integrity when left in solution, potentially contaminating the 

calibration solution and exposing the silver epoxy connections. 

iii) For enzyme immobilization a number of different volumes of PEI, and beta-

lactamase solution were tested. The aim was to maintain a response rate that 

stabilised within 300 seconds of calibration in pH solution, whilst also providing a 

robust enzyme layer to ensure sensitivity of the device. The final volumes described 

in the sensor fabrication protocol in Appendix 7 were identified to be the optimal 

amounts to achieve this.  
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Figure 32. Microneedle fabrication summary. 

Microneedles are sputtered with platinum and 

silver and then drilled over the metalised edges 

to facilitate wiring. Ferrous Chloride is added to 

the silver electrode to create a Ag/AgCl 

reference electrode.  

   
 

 

 

Holes drilled 

Wire passed through 

holes and tied off 

Electrical wire was passed 

through both holes over the 

metalised area and tied off 

beneath the microneedles. 

Silver epoxy was used to 

provide an electrical contact 

between the wire and the 

metalised surface. 

Araldite was then used to 

insulate the electrode 

connections to prevent 

interference of the solution with 

the silver epoxy resin. This was 

placed on both sides of the 

microneedle arrays. 

Anodically electrodeposited 

iridium oxide films 

(AEIROF) 
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7.3.4 Beta-lactam antibiotic calibration   

Initial calibration with beta-lactam antibiotics was performed using the disc electrodes to 

facilitate the characterisation of the sensors response to different beta-lactam antibiotics. A 

range of beta-lactams were selected based on their relative resistance to hydrolysis by beta-

lactamase enzyme. The agents selected were:  

i. Penicillin-G: The standard used to describe hydrolysis by the selected beta-

lactamase enzyme. One unit of the enzyme will hydrolyse 1 µmol of penicillin-G 

every minute at 25oC. In this case our enzyme concentration was ~250 units/ml 

[522]. 

ii. Amoxicillin: a beta-lactam with increased stability to hydrolysis by beta-lactamase 

compared to penicillin-G [525,526].  

iii. Ceftriaxone: A third-generation cephalosporin with greater resistance to hydrolysis 

in clinical practice compared to amoxicillin [525,527–529].  

iv. Amoxicillin-clavulanate: Clavulanic acid is a beta-lactamase inhibitor which would 

be expected to inhibit the hydrolysis of beta-lactams by beta-lactamase enzyme. 

This reaction is initially reversible, progressing over time to irreversible inactivation 

[512]. 

A stock solution of beta-lactam was prepared in PBS. OCP were recorded for increasing 

concentrations of beta-lactam from 50 - 5000 μM, based on reports of similar concentrations 

of beta-lactam detected in patients sub-dermal interstitial fluid [421,423]. This was achieved 

by adding the concentrated stock solution to PBS under gentle stirring. OCP’s were recorded 

over 600 seconds, or until stable potential was reached. Calibration plots were fitted using 

the Hill equation [2.7] with Km values and the maximum velocity (Vmax) estimated from 

concentration (M) – potential (E) plots.   

[2.7]  𝑉 =
𝑉𝑚𝑎𝑥 [𝑆]

𝐾𝑚+[𝑆]
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Where V is the velocity of the enzyme reaction (M s-1), Vmax is the maximum velocity of the 

reaction (M s-1), [S] is the substrate concentration (M), and Km is the half maximal 

concentration constant for the reaction.  

The slope of log-concentration [M] – potential [E] plots of the data was also investigated to 

allow comparison of the linear response of the sensors. Intra-sensor and inter-sensor 

reproducibility was assessed by calculating the percentage coefficient of variation (%CV) 

[530,531]. This %CV is a methods of calculating the ratio of standard deviation to the mean 

and is often used to assess the reproducibility of an assay [530,531]. Commercially, %CV of 

<15% are defined as demonstrating accurate precision in readings by the European 

Medicines Agency and the Federal Drug Administration [530,531]. For this pilot work, I 

decided that no target for precision would be set in advance.  

After calibration, the sensor was then stored at 4 oC for 28 days and the calibration repeated 

to assess response over time. 

 

7.3.5 Artificial interstitial fluid preparation and calibration 

I prepared artificial interstitial fluid by mixing;  

i) standard physiological solution (0.9% NaCl), 

ii) 11 g/L total protein made up of bovine serum albumin and human alpha-globulins 

(cohn factor IV-1) in a ratio of 60:40, and  

iii) 5 mM dextrose.  

Proclin 150 (6 mg/L) was added as a preservative.  

Penicillin-G calibration was then performed and OCP recorded using the methodology 

described above.  

 



 

260 
 

7.3.6 Rotating disc electrode experiment 

Rotating disc electrode (RDE) beta-lactam biosensors were fabricated and set up on a 

Pinewood Instrument rotator (Figure 33). This allowed the electrode to be rotated at varying 

speeds in known concentrations of penicillin-G. By altering the rotation speed of the 

electrode, this allowed estimation and control of the boundary layer between the biosensor 

and bulk solution in the experiment, which could be determined using equations [2.4]. 

Furthermore, the flux through the boundary layer could be estimated using equation [2.5]. 

 

Figure 33. Rotating disc electrode set up using a Pinewood Instrument rotator. 

 

 

 

 

 

 

 

 

 

 

 

Legend: RDE = rotating disc electrode; Ag/AgCl = silver – silver chloride reference electrode 
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This allowed me to make predictions about the response of the sensor to increasing and 

decreasing rotational speed at steady state, based on the assumptions made using 

equations in section 7.3.2.1.  

If we take the layer thickness (l), and enzyme concentration ([E]) to remain constant within 

this experiment, we can assume the lk2[E] is a lumped parameter (Klump) that remains stable. 

Therefore, considering equation [2.3], during conditions where S >> Km we can assume that 

the product concentration in the enzyme layer, [P]l is inversely proportional to δ. This can be 

investigated at steady state by increasing the rotational speed of the electrode. We would 

expect to observe [P]l increase (demonstrated by an increase in the observed potential) as δ 

increases (i.e. at slower rotational speeds).  

 

 

 

 

 

 

 

At low concentration, the response of the system is more difficult to predict. When S << Km, 

we can attempt to make assumptions for the system using equation [2.2]. In this case, we 

can consider that 
𝑙𝑘2[𝐸]

𝑘𝑑𝑘𝑚
  at steady state, using the same biosensor, is a fixed parameter. 

Therefore, if  
𝑙𝑘2[𝐸]

𝑘𝑑𝑘𝑚
  << 1 I would expect to observe that the system is limited by the surface 

reaction rate. Conversely, if 
𝑙𝑘2[𝐸]

𝑘𝑑𝑘𝑚
  >> 1 then it will be likely that the transport rate constant 

(δ) is slower than that for the surface reaction. Furthermore, if [P]l = [S]i then this will provide 

Figure 34. Hypothetical plot of [P]l 

against 1/δ 

As the rotational speed increases, we 

would expect δ to become smaller. 

This will correspond to an increase in 

mass transport of the product away 

from the enzyme causing a fall in 

product concentration in the enzyme 

layer. This would drive an increase in 

local pH, corresponding to a lower 

observed potential. 
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optimal sensitivity as the substrate will be arriving to the surface of the electrode as fast as it 

is being converted into product. In this case, it is likely that very little change will be observed 

in the system [512].  

Practically, when evaluating the RDE response I can review the expression of δ in equation 

[2.4]. Within this scenario, the kinematic velocity (v) and diffusion co-efficient (D) will remain 

constant. Therefore, I can substitute δ for −
1

𝜔
1
2 
 as the remainder of the expression will be 

constant. For analysis, I aimed to repeat runs with the same RDE at varying rotational 

speeds at both low and high penicillin-G concentrations. I would then plot the observed 

potential against 𝜔
1

2 as well as log(𝜔
1

2). This would allow me to visually compare the 

expected response to varying rotation speeds with my observed results.  

 

7.3.7 Preliminary in-vivo study 

Following calibration in artificial ISF, a review of the components of the sensor were 

reviewed with a view to ensuring safety and acceptability for in-human use. This resulted in 

the mechanism for cross linking the enzyme within the biosensor being adapted to use PEI – 

polyethylene glycol (PEG) [531], removing the need for glutaraldehyde for cross linking. This 

was due to concerns over its potential toxicity in humans [531]. Torr Scientific Ltd. produced 

fabricated microneedles as described in section 7.3.2. This work was led by two post-

doctoral students in Bioengineering, Dr Sally Gowers & Dr Michelle Rogers and will not be 

described in detail within this thesis. Following demonstration of reproducibility with the new 

design, similar to that demonstrated by my previous work, I developed an initial protocol for 

the pilot testing the microneedle device.  

A narrow spectrum beta-lactam, penicillin-V, was prescribed for two days at a dose of 

500mg four times a day, to be taken orally. This was for 7 doses prior to testing to ensure 

that concentrations were at steady state.  
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A microneedle array was applied to the non-dominant forearm with firm pressure applied for 

60 seconds. The arrays were then secured with micropore tape. Each array was recorded 

sequentially, using a portable potentiostat (PalmSens, Netherlands) over a 6-hour period. A 

control array was developed, with a hydrogel containing no enzyme placed on the surface to 

provide baseline data for comparison. Blood and tissue microdialysis was not available for 

this pilot study. Potentials were recorded from each array sequentially at intervals of 15-30 

minutes over a 6-hour period. The potentiostat sampled once every second when connected 

to the electrode, being connected to the microneedle array at 10am. An 8th dose of penicillin-

V was taken at 12.45, approximately 2 hours 45 minutes after commencing monitoring with 

the microneedle array.  

The same microneedle array was calibrated with penicillin-V solution prior to and after the in-

vivo study to allow estimation of penicillin-V concentration in-vivo. Data were cleaned and 

plotted for preliminary analysis using Igor Pro, version 7. The aim was to demonstrate the 

ability of the microneedle array to track expected changes in tissue PK over time.  

There is a paucity of PK data in the literature to describe penicillin-V in tissue. However, it is 

clear that the plasma half life is short at about 0.5 hours with peak serum levels achieved 

within about 30 - 60 minutes following administration of 500 mg doses [525,532,533]. 

Absorption from the gastrointestinal tract appears to be variable with ~60% bioavailability 

quoted [532,533]. Penicillin-V is between 50 to 80 % plasma protein bound [532,533].  

Penicillin-V is known to be widely distributed throughout tissues [532,533]. Although tissue 

concentrations were not identified within the literature, reports of penicillin-V concentrating in 

breast milk at between and crossing the blood brain barrier are available [532,533].  

Given the unknowns within this initial pilot study, I aimed to estimate the maximum observed 

concentration in the tissue ISF using the microneedles and explore whether the PK response 

observed correlated to expected response. Given that at steady state penicillin is in 
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equilibrium, I hoped to demonstrate peak tissue concentration after approximately 30 to 60 

minutes following dosing and an observed half-life of approximately 30 minutes.   

 

7.3.8 Ethical approval 

Ethics for the study of the microneedle devices described within section 7.3.7 was granted 

by London-Harrow Research Ethics Committee (REC 18/LO/0054).  
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7.4 Results 

7.4.1 Biosensor characterisation 

Figure 35 outlines evidence from the pH calibration of the AEIROF and subsequent 

calibration of completed cellulose acetate and PEI based sensors. pH calibration of the disc 

electrode AEIROF produced a consistent, super-Nernstein slope. Mean (SD) slope (n = 9) 

was -71.3 (6.5) mV / pH (%CV = 9%). However, following application of cellulose acetate 

and the beta-lactamase enzyme layers, the sensor response did not follow its predicted 

pathway. For example, during calibration with penicillin-G the sensor did not respond as 

expected and slope analysis using log-concentration plots demonstrated an inverted slope of 

+4 mV / decade.  

To investigate this further, the sensor response to pH change (pH 8.0 – 4.0) was assessed 

before and after the AEIROF had the cellulose acetate enzyme layer fixed to its surface 

(Figure 35b). This demonstrated similar findings to the initial calibration log-concentration 

plots of a minimal response of the AEIROF following addition of the cellulose acetate, beta-

lactamase layer.  
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Figure 35. Summary of findings from initial AEIROF and cellulose acetate based biosensor 

development. 

  

35a. pH calibration of 9 

disc electrodes following 

AEIROF creation 

35c. pH calibration of a 

AEIROF compared to 

AEIROF + single PEI layer 

and AEIROF with full PEI 

based biosensor. There 

is a fall in the 

performance of the 

AEIROF following 

addition of beta-

lactamase.  

35b. pH calibration of a 

AEIROF compared to 

calibration of the same 

sensor once cellulose 

acetate layer has been 

added. This 

demonstrated a 

significant reduction in 

performance of the 

AEIROF. 
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In contrast, PEI based fabrication demonstrated a much improved response from the 

biosensor (Figure 35c). The slope remained similar between the three pH calibration runs 

with a difference of 19 mV / pH between the AEIROF and the final biosensor (72 mV / pH vs. 

53 mV / pH, respectively). The use of the PEI based method also appeared to improve the 

mechanical stability of the biosensor, which was a problem when cellulose acetate was 

used.  

Finally, as the initial microneedles that I would work with were likely to be platinum coated 

instead of gold, I repeated the calibration of AEIROF on platinum disc electrodes. The 

response between platinum and gold electrodes was similar (p = 0.13, 95%CI: -13.02 – 

1.95). The response remained super-Nernstain for AEIROFs on platinum disc electrodes (n 

= 5) at a mean (SD) slope of -66 (5) mV / pH (r2 = 0.997). The %CV remained low between 

AEIROFs at 7%.  

 

7.4.2 Beta-lactam biosensor calibration and characterisation 

7.4.2.1 Disc electrode calibration 

Figure 36 summarises the findings of calibration with a range of beta-lactam antibiotics 

described in section 7.3.4. On comparison of Km values, Vmax, and slopes for each 

antibiotic, penicillin-G was taken as the reference standard, given its known rate of 

hydrolysis by the enzyme used in this study [534]. No difference was observed in Km values 

of the sensor to penicillin-G (n = 3) and amoxicillin (n = 3) (p = 0.37, 95%CI: -0.005 - 0.002). 

Vmax was also similar for both agents (p = 0.27, 95%CI: -17-43). However, the observed 

slope function for amoxicillin was observed to be lower (p < 0.01, 95%CI: 2.2 - 6.3). For 

ceftriaxone, no response that could be attributed to enzyme activity was observed during 

calibration of disc electrode (n = 6). However, response was seen following addition of 

amoxicillin to the solution, demonstrating that the enzyme was still functioning within these 

cases. Calibration of the biosensor with a beta-lactam – beta-lactamase inhibitor 
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combination (amoxicillin / clavulanic acid) appeared to inhibit the biosensor response when 

compared to amoxicillin alone.  
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Figure 36. Calibration of platinum disc electrode based beta-lactam biosensor against 

different beta lactam antibiotics in phosphate buffer solution 

 

 

  

 

Km (SD)  

[M] 

Vmax (SD) 

[mV] 

Slope (SD) 

[mV / decade] 

Penicillin-G 0.0031 (0.0007) 264 (2.5) 20.3 (0.47) 

Amoxicillin  0.0046 (0.0021) 251 (17.7) 16 (1) 

Ceftriaxone No response N/A N/A 

Amoxicillin-clavulanate 0.0003 (0.0002) 176 (18) 8 (1) 

Legend: Comparison of amoxicillin vs. amoxicillin-clavulanate calibration with a single disc electrode 

biosensor 

Legend: Comparison of mean (SD) Km, Vmax, and Slope values for beta-lactam antibiotic 

calibrations. M = Moles; mV = millivolts; SD = standard deviation  
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7.4.2.2 Rotating disc electrode experiments 

Following biosensor protocol development and calibration in PBS, a rotating disc electrode 

beta-lactam biosensor was fabricated to evaluate the effects of mass transport on the 

system.  

For the RDE biosensors, calibration and slope functions were as follows. The mean (SD) 

pooled Km for n = 4 RDE, calibrated between concentrations of 10 and 5700 µM penicillin-G, 

was 123.31 (48.1) µM. The mean (SD) slope for log–concentration plot was 55 (9) mV / 

decade and mean (SD) Vmax 247 (11) mV. 

On comparison to the disc electrodes reported above, Km was significantly smaller for the 

RDE (p < 0.01, 95%CI: -0.0038 - -0.0021). However, Vmax was similar between electrodes 

(p = 0.05, 95%CI: -0.014-34.01) and the slope function was greater with the RDE (p < 0.01: 

95%CI: 21 - 48).  

Figure 37 demonstrates a typical finding from repeated RDE experiment using the same 

biosensor. When the system was at steady-state with a high concentration of penicillin-G 

(i.e. S >> Km), the system demonstrated mass-transport limitation. As predicted, increasing 

the electrodes rotational speed caused a fall in the observed potential across the electrode, 

corresponding with increased transport of the product away from the enzyme layer. In the 

example RDE experiment below, the potential fell from 254 and 257 mV at rotation speeds 

of 10 Hz, respectively to 241 mV at 360 Hz rotational speed. The approximate Vmax for the 

RDE, estimated as a mean of all four RDE was 247 mV. By plotting the rotational speed 

logarithmically (𝜔
1

2) against the observed potential, this can be represented as a linear 

process with a potential change of -16 and -22 mV / decade during runs 1 and 2, 

respectively. On reduction of rotational speed the potential was observed to recover back to 

baseline (i.e. back to the estimated Vmax).  

When the system was at steady state for low concentrations of penicillin-G (i.e. S << Km) the 

opposite was observed with increasing rotational speed. For initial runs at low concentration, 
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an increase in potential was observed with increasing rotational speeds from 183 mV at 10 

Hz to 203 mV at 360 Hz. This potential change did not recover after the initial run with the 

second run, using the same electrode demonstrating a significantly smaller potential change 

from 203 mV to 208 mV. This was reflected in the log-slope variation between runs 1 and 2 

of +25 and +6 mV / decade, respectively.  
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Figure 37. Summary of RDE experimental data at low and high concentrations of beta-lactam.  

  

 

 

34a. Consent response seen at high concentration with RDE. 

 

 

 

 

 

 

34b. At low concentration the response seems to be more stable. Limited by substrate rate of reaction based on substrate delivery.  

 

Legend: r2 = 0.911 & 0.954; Ag/AgCl = silver-silver chloride reference; mV = millivolts; V = volts 

Legend: r2 = 0.996 & 0.982; Ag/AgCl = silver-silver chloride reference; mV = millivolts; V = volts 
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7.4.3 Microneedle beta-lactam calibration 

7.4.3.1 Beta-lactam calibration in phosphate buffer solution 

Figure 38 demonstrates the pH calibration results for three independent microneedle array’s 

following AEIROF. pH calibration for iridium oxide between 4.0 and 8.0 demonstrated a 

median (SD) sub-Nernstian response of 48 (11) mV / pH for the microneedle arrays (inter-

array %CV = 23%).  

Penicillin-G calibration curves were similar on disc electrodes and the microneedle arrays. 

For the microneedle arrays calibrated, mean Km (SD) was 0.0032 (0.0011) M. Inter-sensor 

%CV was 33%. Log-concentration plots demonstrated a mean (SD) slope of 32 (8) mV / 

decade change with concentration (inter-sensor %CV = 25%). Mean (SD) Vmax for the 

sensors was 262 (59) mV (inter-sensor %CV = 22%). The response of the microneedles 

remained similar after 28 days storage at 4oC with “microneedle 2” demonstrating a Km value 

of Km = 0.0062 M, log-concentration slope of 32 mV / decade (r2 = 0.933), and Vmax 297 mV 

upon re-calibration. 
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Figure 38. Comparison of calibration against penicillin-G in phosphate-buffer solution and artificial interstitial fluid.  

   

Legend: Ag/AgCl = Silver – silver chloride reference electrode; Km = concentration required to reach half maximum rate; Vmax = maximum potential; M = moles; mV = millivolts; SD = standard 
deviation; CV% = coefficient of variation; MN = microneedle; Inter-sensor = average across all three microneedle sensors 
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7.4.3.2 Beta-lactam calibration in artificial interstitial fluid 

Figure 39 demonstrates the calibration of two new microneedle arrays in artificial interstitial 

with penicillin-G. The mean (SD) response of the microneedle arrays to penicillin-G 

calibration in interstitial fluid (n = 4) was Km = 0.0100 (0.0014) M, with a slope of 36 (3) mV / 

decade (r2 = 0.966). Vmax was a mean (SD) of 384 (5) mV. Inter-sensor %CV was 14%, 8%, 

and 1% for Km, slope function, and Vmax, respectively.  

The lower observed %CV were supported by the observation of similar mean Km (p = 0.94; 

95%CI: -0.08 – 0.08), log-concentration slopes (p = 0.59, 95%CI: -16 – 12), and Vmax (p = 

0.12, 95%CI: -103 - 24) values between both microneedle arrays.  
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Figure 39. Calibration of two microneedle arrays in artificial interstitial fluid with penicillin-G. 

 

  

 

 

 

 

Legend: Ag/AgCl = Silver – silver chloride reference electrode; Km = concentration required to reach half maximum rate; Vmax = maximum potential; M = moles; mV = millivolts; SD = standard 
deviation; CV% = coefficient of variation; MN = microneedle; Inter-sensor = average across both microneedle sensors 
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7.4.2 Pilot test of continuous monitoring of beta-lactam antibiotics in humans 

Figure 40 summarises the pilot evaluation of the microneedle array based beta-lactamase 

sensor for monitoring of interstitial penicillin-V concentrations in-vivo.  

For the control array, there were four time points where I had documented observations 

whilst ensuring that the array was appropriately sited. These four recordings were used to 

approximate the baseline potential of the control sensor throughout the experiment (blue 

array in Figure 40). The beta-lactamase containing array (red) maintained an observed 

potential above this throughout the experiment.  

On estimation of observed PK response from the active sensor, the estimated observed free 

penicillin-V concentration in ISF over this time period ranged from 0.6 to 12.4 µM. Peak 

tissue concentration (Cmax) occurred at approximately two hours post oral bolus. And 

estimated half-life (t1/2) of the observed fall in concentration was approximately 1-hour.  

Following wearing of the device for six hours, upon removal red marks were noted in a 

pattern consistent with the microneedle array spikes on the participants forearm. The 

redness associated with these had completely resolved within 12 hours of removing the 

microneedle array.  
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Figure 40. Summary of the pilot evaluation of microneedle based sensing of penicillin-V in-vivo. 

 

Legend: Photos (left) – Top: Microneedle array pre-fabrication and undergoing hydration prior to use; Middle: Microneedle is held in place with firm pressure for 60 seconds; Bottom: microneedle 
secured with a pressure from a single band around the arm.  

Graphic (right): In-vivo data from first test of the microneedle on an individual receiving penicillin-V.  

Photos (bottom right): Time series demonstrating resolution of marks left by the microneedle after it had been worn for 6 hours.  
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7.5 Discussion 

7.5.1 Summary of findings 

Within this study, I have characterised the response of an enzyme based electrochemical 

sensor for the detection of beta-lactam antibiotic in human ISF. I have demonstrated that this 

technology can be translated onto a microneedle array and demonstrated proof-of-concept 

for microneedle based sensing of penicillin in-vivo. The response demonstrated by the 

sensor was consistent between disc and microneedle based electrodes and the working 

linear range observed (i.e. when S < Km) was sufficient for the expected range of beta-

lactam concentrations that will be monitored in-vivo.  

As expected, several challenges were also identified during this study that will require further 

exploration. Although the final microneedles had low inter-sensor %CV, the high %CVs 

observed at times during preparatory work suggest that the protocol for production of such 

sensors can be refined to provide more uniform response between sensors. Given the 

observed inter-sensor variation, the current sensors will require calibration once deployed to 

be able to accurately convert a potential into a known concentration of penicillin. 

Furthermore, addition of beta-lactamase inhibitor inhibited the detection of amoxicillin and 

the use of beta-lactamase resistant beta-lactams (such as ceftriaxone) inhibited detection. 

Finally, there are several practicalities with deployment in-vivo that must be addressed, 

including determination of optimal site for placement, how to maintain optimal pressure on 

the sensor to keep the arrays sited, and development of a portable potentiostat that can 

accurately monitor multiple channels in parallel. These challenges will be explored in more 

detail below.   

Despite this, these results are the first step towards the development of a minimally invasive 

sensor for the continuous monitoring of antimicrobials in humans. If incorporated into a 

closed-loop control system, this may provide a method for real-time dose optimisation of 

antimicrobials based on individual PK or PD variations. Furthermore, this tool may provide 
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the ability for rich PK data collection during drug development and clinical studies to help 

provide robust, individualised drug PK data to enhance our understanding of the importance 

of dose optimisation on the outcome of antimicrobial therapy.   

 

7.5.1.1 pH calibration and polyethylenimine  

As reported above, there was inter-sensor variation observed between different AEIROFs 

within this study (i.e. between disc, RDE, and microneedle). This could be seen during pH 

calibration as variations in the slope from the AEIROF calibration plot ranging from 48 mV / 

pH on the microneedles to 71 mV / pH on the gold disc electrodes. This variation occurred in 

both the apparent E’ (pH = 0) value and in slope of calibration.  

This is a common observation with IrOx based pH sensors [535] and has been described in 

detail by Hitchman [515]. Hitchman describes how apparent E0’ varies depending on the 

molar ratio of Ir(III) : Ir(IV) within individual AEIROFs [515]. This ratio of Ir(III) : Ir(IV) oxides 

can be affected by the chemical irreversibility of the interconversion [515]. Since the molar 

ratio, the charge storage capacity, and the counter ion access will vary with depth and the 

morphology of the polymeric cross-linked oxyhydroxide film, the precise form of the 

calibration working curve will depend on underlying substrate properties. Whilst potential 

scanning can ameliorate this phenomenon for bulk electrodes, the mechanical stability of 

films on sputtered substrates suffers, and a build-up of relatively non-conductive Ir(III) 

impairs the sensors performance [514,515].  Furthermore, anodic electrodeposition of such 

AEIROF makes it challenging to control for the precise level of oxidation that occurs during 

the deposition process, meaning that variation is always likely to be present in some form 

[515].  

Despite these variations in baseline calibration between sensors, it has been demonstrated 

elsewhere [514,536] that reproducibility for any given device is good and that the intra-

device sensitivity is stable for days, enabling biologically useful pH measurement to be 
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undertaken [447,514,518]. This was also observed within my work with low inter-sensor 

%CV for disc electrode based AEIROF. The larger %CV for the microneedles, likely reflects 

the wider variation in electrode characteristics and human error that can occur during the 

anodic electrodeposition process.  To address this problem for future work, collaboration 

with Torr Scientific Ltd has been set up. This group have developed a standardised 

methodology for metallisation of the microneedles, as demonstrated within the pilot study, 

and are also exploring the possibility of sputtering IrOx onto the needles in place of 

electrodeposition. These changes in process may provide a much more uniform and 

reproducible method of standardising the environment and oxidation process, thus reducing 

the inter-sensor variability that I have observed.   

A further challenge during this study was the disruption to the AEIROF following application 

of the cellulose acetate layer early in the sensors development. This was likely secondary to 

the interference with the AEIROF by ions such as chloride [514]. Chloride is known to form 

complexes with the iridium film which causes the AEIROF to decay [514]. This would explain 

the lack of sensor response observed during initial calibration attempts. I addressed this 

problem by substituting the cellulose acetate for PEI, which had previously been 

demonstrated to protect AEIROF from such interactions [514]. I also found that PEI provided 

much greater structural stability, meaning that it could be substituted for the cellulose acetate 

entirely. This approach made the biosensors visibly more durable and also enabled me to 

undertake repeat experiments without a significant decay in the sensors structure and 

response. Re-calibration of the sensor to pH following final fabrication with PEI 

demonstrated a slight drop off in potential (72 mV / pH to 53 mV / pH). However, this was 

within the expected limits and was likely due to the buffer capacity of the PEI and beta-

lactamase enzyme on the system and the increased thickness of the biosensor layer 

[537,538]. Although the disc electrodes were soaked overnight in deionised H2O to wash 

away excess PBS in the hydrogel, I must also consider whether the phosphate, contained 
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within the PBS used to constitute the enzyme-BSA solution played a role in buffering the 

solution [539].  

 

7.5.1.2 Beta-lactam calibration  

The sensor was calibrated against penicillin-G and amoxicillin demonstrating similar 

responses in terms of Km and Vmax values. Km values ranged between 3100 and 9960 µM 

within this study and Vmax ranged from 247 mV to 383 mV.  

The identified Km values suggest that I can be confident detection will be within the linear 

range of the sensor. This was important as it demonstrates that the working linear range for 

these sensors is likely to be suitable for the expected beta-lactam tissue concentrations, 

which have been reported in the literature as < 300 µM for piperacillin and < 52 µM for 

cefazolin [421,423]. Furthermore, as both reported agents have significantly greater plasma 

concentrations than the agents tested within this study, it is likely that these are over 

estimates of the peak tissue concentrations likely to be detected for agents such as 

penicillin-G and amoxicillin in ISF [525].  

The observation of stable Vmax between runs on the same sensor and between sensors 

tested in the same environments is helpful in demonstrating that kcat (the rate constant for 

conversion of ES to P) was similar between runs. This can be assumed given that Vmax = 

kcatetot and the same concentration of enzyme was used as per the protocol outlined in 

Appendix 7. Therefore, the low %CV for Vmax indicate similar kcat values.  

The calibration with penicillin-G in artificial ISF was important for two reasons. Firstly, given 

previous reports of bio-fouling and reduced sensitivity following the absorption of protein, 

such as albumin, onto bio-surfaces such as IrOx based pH sensors it demonstrated that this 

does not appear to be a factor within our system, which is protected by the PEI membrane 

[447,502]. Secondly, this provided important data to inform future biosensor design as it 

allowed estimation of the potential working range and potential error of the biosensor on the 
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microneedle array in near-physiological conditions. By determining the Km value of the senor 

in interstitial fluid (9960 µM), this allows me to ensure that the operating window remained 

within the linear range required for use in ISF (i.e. when [S] < Km) [509]. This was 

subsequently validated in the pilot study, where I was able to demonstrate response of the 

sensor to oral bolus of penicillin-V and estimate free drug ISF concentrations of 0.6 - 12.4 

µM. I now plan to validate these observations in human participants who will undergo 

microdialysis and blood PK analysis whilst wearing the microneedles.    

A future challenge that was highlighted by this study was the resistance of ceftriaxone to 

hydrolysis by the current beta-lactamase compared to penicillin-G [9,540]. Although minimal 

response was seen in two of the six electrodes tested, this was in the range of several mV. 

Therefore, it is unclear whether this was simply noise or actual response of fresher enzyme 

compared to the other four electrodes, which were fabricated towards the end of the beta-

lactamase enzymes shelf life. Furthermore, addition of a beta-lactamase inhibitor also 

inhibited the response of sensor for detecting amoxicillin. In terms of clinical translation this 

poses a problem, given the broad use of beta-lactamase inhibitors in the clinical setting and 

high use of third generation cephalosporins. To address these problems, future work will 

now compare use of extended spectrum beta-lactamase enzyme (acquired from Sekesui 

diagnostics) versus the enzyme used within this study [541]. The Sekesui extended 

spectrum enzyme has similar activity against carbapenems and third generation 

cepaholsporins compared to penicillin-G. Therefore, this may facilitate the detection of a 

broader range of agents [541]. To address the problem of beta-lactamase inhibitors, this is 

likely to require development of specific aptamers that are selected in the presence of beta-

lactamase inhibitor to remove the chance of interference [454].  
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7.5.1.3 Rotating disc electrode characterisation  

The characterisation of the biosensor using RDE is a challenging, but important step in 

understanding the effects of mass transport and enzyme kinetics on the sensors 

performance. Whilst this study has confirmed that the sensor is likely not mass transport 

limited within the expected working range (the key objective of using the RDE within this 

study), it has also raised several interesting questions for further exploration, which may 

build on the only previous explanation of RDE with potentiometric studies, described by 

Eddowes [512]. 

At steady state at high antimicrobial concentrations (i.e. S >> Km) the response of the sensor 

to changing rotational speed was predicted and reproducible, based on the model derived 

from Eddowes [512]. This demonstrated a mass transport limited system. This was observed 

by a fall in potential with increasing rotational speed, which immediately recovered upon 

reduction in the rotational speed. This can be described by the increase in rotation speed, 

increasing the movement of H+ (product of the reaction) away from the sensor interface. This 

leads to an increase in the local pH, leading to a fall in potential across the electrode. The 

recovery in potential that was observed on reducing the electrode indicates that this is no 

inhibition of the enzyme is occurring. 

At steady state at a low concentration (i.e. S << Km) the response is more difficult to predict 

and characterise. Within this study, I observed different responses between runs with the 

same RDE. For initial runs, the potential increased with increasing rotational speed. This 

would then plateau and not recover following reduction in rotational speed. For subsequent 

runs there appeared to be little effect on the sensor response across a range of rotational 

speeds at low concentration. These observations would suggest that for the initial runs, 

response of the sensor was being governed by how quickly substrate was being delivered to 

the enzyme layer, rather than product being removed. Then, eventually an equilibrium was 

reached between delivery of substrate and production of product, observed as a stable 

potential. 



 

285 
 

Eddowes, describes this type of observation in his work using RDE for potentiometric 

readings [512]. He suggests that the steady state between substrate and product is the 

optimal condition for sensors at low concentration, where S << Km [512]. For future work 

using RDE, it would be of interest to attempt to solve the differential equation describing this 

low concentration phenomenon (equation [2.2]), using this to further explore the optimal 

requirements for the components described within 
𝑙𝑘2[𝐸]

𝑘𝐷𝐾𝑀
 . This could then be potentially 

applied to the optimisation of the microneedle array based sensors to facilitate optimisation 

of the sensitivity of the system in physiological conditions.  

Despite these further questions, for the purpose of my study, my results are encouraging in 

suggesting that the system was not mass transport limited at concentrations below Km with a 

near steady state between substrate and product observed across changing δ 

(approximated by changing 𝜔
1

2).  

 

7.5.2 Pilot study 

Following in-vitro testing of the microneedle based sensors, it was important to understand 

whether this technology has the ability to translate into a plausible method for monitoring of 

antimicrobial agents before undertaking wider studies on healthy volunteers and patients. 

For this study, penicillin-V was selected as it could be given orally and was likely to have a 

small impact on the microbiome of the healthy individual taking the agent. Dosing was 

selected based on recommendations for the treatment of infections in adults with penicillin-V 

and seven doses were selected so that the individual would be at steady state by the time 

they wore the sensor [533].  

Encouragingly, although only a pilot experiment on one individual, the results appeared to 

demonstrate the sensors ability to detect changes in ISF penicillin concentrations. The 

estimated concentrations were in line with potential tissue PK values and similar to the 
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observed tissue PK response of other beta-lactams in tissue using microdialysis [421,423]. 

After removal of the sensor, which was worn for 6-hours, the redness caused by its 

placement had completely disappeared within 12-hours. This observation is in line with 

previous reports of safety and tolerability of the microneedle arrays when they have been 

developed for continuous glucose monitoring [411,419,420].  

During the pilot evaluation, several problems were encountered. This included the control 

sensor (AEIROF with no beta-lactamase) becoming dislodged during the experiment leading 

to artefact in the response observed. Furthermore, the second microarray with beta-

lactamase failed calibration so was not used. Finally, the potentiostat used to record 

readings at the time could only record one channel, meaning that I was required to rotate the 

recording between microneedle arrays every 15-30 minutes. Therefore, for the purpose of 

this experiment I chose to average data from the recordings for every five minutes that the 

microneedle array was being monitored.  

Several other challenges with microneedle based sensing in humans were also highlighted 

through this pilot period.  

i. The microneedles needed light pressure to be applied to ensure that they remained 

sited after placement. Movement during the day led to displacement of the control 

array from the forearm for a period of the experiment, which led to artefact in the 

observations. To address this, the role of tensioned straps is to be explored as a 

mechanism of ensuring that a constant pressure is applied across the microneedle to 

hold it in position. Furthermore, the positioning of the microneedles will be reviewed 

to explore whether the forearm is the optimal site for placement.  

ii. At present the sensors require calibration before and after use in-vivo to allow 

accurate estimation of tissue drug concentration. This problem will be addressed in 

the future through exploring methods of reducing the variation in oxidation rates of 

Ir(III) and Ir(IV) during deposition on the gold electrodes. Furthermore, the 
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automation of enzyme and hydrogel application may also improve the accuracy and 

reduce inter-sensor variability, which means that individual sensors require 

calibration at present.  

iii. This study was explored in individuals at steady state. Very little is known about 

tissue PK during initial dosing periods to suggest how the sensors may respond and 

whether their sensitivity will be acceptable for monitoring during the acute phases of 

management.  

 

7.5.3 Limitations and future applications 

Many of the limitations and future applications of such a system have been described within 

sections 7.5.1 and 7.5.2. However, considerations of the future direction of this work must 

also be considered.  

Following proof-of-concept that microneedle based sensors can be used to monitor 

antimicrobial concentrations in ISF the possibility of moving beyond enzyme based methods 

of sensing will become plausible. A wide range of aptamers for antimicrobial detection are 

already commercially available, and translation onto the microneedle structure is highly 

plausible [406]. The transition from enzymes to aptamers has several key advantages in the 

mid-to-long term. These are: 

i. The sensitivity of aptamer based technology is significantly greater than enzyme 

based sensing. In the antimicrobial literature, the lower limit of detection using 

aptamers is described in the picomole range [406], compared to µM using our 

enzyme based method [406]. This means that detection of early tissue distribution 

during the loading phase of initial dosing may be a possibility before the individual 

reaches steady state.  

ii. Plaxco and colleagues recently reported a potential method for a calibration free 

aptamer based, electrochemical sensor, utilising what they describe as a “dual 
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frequency” approach to data analysis [542]. This approach uses square wave 

voltammetry to monitor binding induced changes that occur during electron transfer 

kinetics. This would have the benefit of not requiring calibration, meaning that many 

of the issues associated with inter-sensor variability and need for in-vitro calibration 

would be negated.  

Another consideration is whether the use of microneedle technology for monitoring of ISF 

concentrations will always be appropriate in clinical settings in terms of adapting dosing and 

estimating target tissue concentration. This question is something that will need to be 

addressed within formal clinical studies to determine whether the plasma or ISF 

compartments are more optimal for PK-PD analysis [406]. Although we traditionally have 

measured plasma drug concentrations, the ISF is a compartment where many infections 

actually occur throughout the body [424,425]. Therefore, this may offer a potential 

compartment from which to optimise drug concentrations against. In terms of beta-lactam 

antibiotics, there is only ISF data for a small number of agents, and this tends to be in 

critically ill individuals, often on renal replacement therapy [439,440,442,543–548]. These 

studies suggest that there is wide variability in ISF concentrations depending on the site 

which they are measured compared to plasma. Therefore, further work will be required to 

better characterise the relationship between ISF drug concentrations in different 

compartments against plasma concentrations moving forward.  

As well as the development of microneedle based methods for the monitoring of 

antimicrobial concentrations in ISF, the exploration of applying biosensor technology to the 

monitoring of plasma drug levels could have been explored. In terms of invasive monitoring, 

this application has already been demonstrated by Ferguson and colleagues, who used 

aptamer based technology to monitor aminoglycosides in ambulatory rodents [549]. An 

interesting alternative application of such technology would be the development of a point-of-

care device that allows the monitoring of numerous different compartments, such as capillary 

blood, urine, and cerebrospinal fluid. This is something that I plan to explore moving 
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forwards. However, the application of biosensor technology for monitoring capillary blood 

drug concentrations poses a number of its own challenges, including bio-fouling and 

interference caused by the presence of red blood cells [275,549].  

Finally, how this technology will be applied to the individualisation of antimicrobial dosing 

must also be considered moving forwards. Although not the focus of the Chapter, the role of 

using closed-loop control to optimise the delivery of continuous and intermittent antimicrobial 

infusions (and potentially oral dosing) is being explored [504,505]. However, further 

characterisation of types of biosensor will firstly be required in-vivo before being applied to 

the technology. Further discussion of closed-loop controller systems will be provided in 

Chapter eight. The role of biomarker (e.g. CRP, procalcitonin, creatinine, and lactate) 

monitoring may also play an important role in facilitating truly individualised therapy, for 

which this study provides a potential methodology through which similar types of biosensor 

could be developed and explored. This is supported by the previous demonstration of lactate 

sensing on the same microneedle bases in-vitro [436]. 
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7.6 Conclusion and key messages 

In conclusion, I have demonstrated that the development of minimally invasive biosensor for 

the real-time monitoring of antimicrobials in-vivo is a possibility. This is the first time that a 

biosensor device for monitoring beta-lactam antibiotics has been implemented on a 

microneedle array in-vivo to facilitate the monitoring of drug concentrations. Whilst this study 

has opened up a wide range of further questions in terms of biosensor development; it also 

provides an exciting opportunity to better characterise individual patient PK, offering an 

ability to be able to develop methods for delivering personalised and dynamic dosing through 

the linkage to platforms such as closed-loop control systems.  

On review of the initial targets for my biosensor in section 7.2 I have: 

1. Demonstrated an appropriate dynamic range of the device for use in-vivo.  

2. Demonstrated stability of the device to be stored and re-used after 28 days. I have 

also demonstrated the stability of the device for continuous monitoring in-vivo for up to six 

hours. 

3.  Reproducibility of the sensors was achieved with %CV < 15% in artificial ISF runs. 

However, further work is required to optimise the method of IrOx deposition and enzyme 

layering to improve the reproducibility of the device.  

4. Demonstrated a logarithmic response of the device, with step changes in potential 

per decade that provide a large enough dynamic range for sensing in-vivo.  

5. Developed a protocol using biocompatible and acceptable components for use in 

humans. This was validated by obtaining ethical approval to test the devices in clinical 

studies. 

6. The device is currently portable and small enough to ambulate using our current 

potentiostat. However, the size and interface between the sensor and potentiostat still have 

significant room for refinement. This will be further explored as part of future work. 
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Finally, the development of biosensor technology for drug monitoring is only one area that 

requires consideration for the development of methods for delivering personalised 

antimicrobial dosing. A key area that must also be explored further is the development of 

more individualised PK-PD targets. This will be explored within Chapter eight. 
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CHAPTER EIGHT 

8.0 Personalised antimicrobial dosing: Exploring novel 

pharmacokinetic – pharmacodynamics targets for antimicrobial 

therapy 

 

Figure 41. Overview of thesis. 

 

 

 

 

 

 

 

 

 

 

 

 

8.1 Introduction  

The ability to monitor antimicrobials in a continuous manner and link this to closed-loop 

control systems for the optimisation of antimicrobial therapy may facilitate truly individualised 

antimicrobial dosing [406]. However, a further gap to be addressed is the exploration of 

optimal PK-PD targets of antimicrobial therapy.  

Current PK-PD indices define exposure and response by using the minimum inhibitory 

concentration (MIC) of the organism that therapy is targeting. This is compared to a measure 
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of drug exposure that is either time or concentration dependent [432,550–552]. Table 23 

outlines the common PK-PD targets of a number of antimicrobial agents as described by 

Ambrose and colleagues in their review of antimicrobial PK-PD [553].  

Table 23. Summary of common PK-PD indices with examples. 

 

 

 

 

 

 

 

 

In the UK, only a handful of antimicrobials are routinely therapeutically monitored. These 

agents do not tend to be optimised according to PK-PD targets. Instead, clinicians adjust 

doses against single time point, peak or trough blood concentration data. These samples are 

collected during therapy, often in the preceding 12-24 hours. The use of peak or trough, 

single time point drug levels requires dose adjustment against estimated peak or trough 

target values from the population [554]. More optimal methods for dose optimisation would 

be to use PK-PD targets. 

For example, vancomycin is administered as part of empirical therapy when there is a high 

risk of methicillin resistant Staphylococcus aureus (MRSA) infection. Vancomycin is a 

glycopeptide antibiotic that is used in surgical prophylaxis, for suspected, but undocumented 

infection, and for treatment of established infection [555]. The PK of vancomycin are highly 

variable in adult populations [392,395–397,399,400,422,555–568]. The attainment of PD 

PK-PD Index Definition Examples 

Time dependent Percentage time over MIC (%T>MIC) 

 

Beta-lactams 
(penicillins, 
cephalosporins, 
carbapenems) 

Concentration dependent Peak (Cmax) to MIC Aminoglycosides,  

Concentration-time 
dependent 

24 hour Area Under the Concentration 
Curve (AUC) to MIC (AUC:MIC) 

Glycopeptides (e.g. 
vancomycin), 
clindamycin, 
macrolides, 
oxazolidinones  
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targets, such as the area-under-the-concentration-time curve (AUC) to the minimum 

inhibitory concentration (MIC) ratio, is associated with improved clinical outcomes in patients 

being treated with vancomycin [399]. Vancomycin has a narrow therapeutic index. 

Therefore, TDM and a range of individualised dosage strategies are required to ensure safe 

and effective treatment [569–572].  

Vancomycin displays concentration-dependent antibacterial activity. The AUC:MIC is the PD 

index that best links drug exposure with the antibacterial effect.  Values >400 are associated 

with improved clinical outcomes.  Higher targets may be required in severe deep infections, 

such as MRSA infective endocarditis [392,396,398,555,556,565,568,573]. 

However, the use of AUC:MIC as a PD target requires isolation of the invading pathogen or 

estimation based on known MIC of common pathogens.  Optimisation of antimicrobial dose 

is a recurring problem in cases where the invading pathogen is not available [506,507]. In 

these cases, simple measurements of Cmin, clinical judgement, physiological parameters, 

and biochemical markers such as C-Reactive Protein (CRP) are used by clinicians to assess 

response to therapy [168]. CRP is used extensively for infection diagnosis and management 

in clinical practice [574–576].  However, to date there has been little attempt to use it as a 

biomarker to estimate the PD of an antimicrobial agent. 

Recent studies in paediatric populations have used biomarkers (e.g. CRP and 

galactomannan) to individualise antimicrobial therapy by enabling the estimation of the 

AUC:EC50 [433,434].  The EC50 is the concentration of a drug (mg / L) that is required to 

induce half the maximal antimicrobial effect on a target and is estimated from individual 

patient data.  In cases where EC50 is estimated for CRP, the EC50 provides an in-vivo 

estimate of drug response [433,434] and may integrate many different aspects that govern 

exposure response relationships (e.g. site of infection, immune status, bacterial load, and in 

vitro susceptibility).   
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In Chapters three and five, I demonstrated the frequency with which CRP data is routinely 

requested and relied upon during infection management in secondary care [168,314]. During 

the management of infection, CRP is routinely used to evaluate individual response to 

therapy, including making decisions surrounding escalation, de-escalation, of cessation of 

therapy [168,314]. CRP is a member of the pentraxin family and an acute phase protein 

[577–580]. It is produced by the liver in response to interleukin (IL)-6 and is enhanced by IL-

1β [577]. It is a non-specific marker for infection, being raised in response to inflammation 

and tissue damage. Therefore, raised CRP is observed in a range of infective, allergic, 

inflammatory, necrotic, neoplastic, and traumatic syndromes [580]. In 99% of healthy adults, 

CRP will be below 10 mg / L. In response to stimulus from IL-6 (e.g. in response to infection) 

circulating CRP can increase by up to 10,000-fold. Pepys and colleagues describe the 

classic response of CRP to a single stimulus in healthy adults [580]. Following a stimulus, 

de-novo hepatic synthesis begins with CRP rising above 5 mg / L after 6-hours. CRP tends 

to peak by 48-hours. The plasma half-life of CRP is 19-hours and remains constant under all 

health states [580]. This is desirable as it means that circulating CRP concentration is 

determined entirely by hepatic synthesis [581]. Therefore, this can be inferred to reflect the 

intensity of the pathological process stimulating CRP production.  

Given the characteristics of CRP and the fact that during infection we wish to correlate 

response of this maker (that likely reflects the intensity of the infective process) to 

antimicrobial exposure, the use of a measure such as AUC:EC50 appears to be reasonable 

method to investigate. Furthermore, for agents such as vancomycin where we already 

routinely collect TDM data, this may be an avenue that can rapidly be translated into practice 

given that both CRP and vancomycin TDM data are routinely available.  
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8.2 Chapter objectives 

For this Chapter, I aimed to explore whether it is possible to use routinely available data for 

vancomycin TDM and CRP to estimate individual patient AUC:EC50. This would provide a 

proof-of-concept for the use of AUC:EC50 in wider studies of anti-infectives in adults if 

successful. Given the sporadic nature of vancomycin TDM data, a rigorous population PK 

model would be challenging to achieve. However, individual posterior Bayesian estimates 

generated from the this data would most likely be rigorous enough for the available PK data 

to facilitate the estimation of AUC:EC50 [582].  

The objectives of this chapter are:  

1. Describe the PK of non-critical care patients receiving intravenous vancomycin 

therapy in secondary care using routinely collected therapeutic drug monitoring data. 

2. Explore the development of a linked PK-PD model describing the response of CRP to 

vancomycin exposure for the individual patient. 

3. Explore whether such a PK-PD model can be used to predict the pharmacodynamics 

of antimicrobial therapy.  
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8.3 Methods 

8.3.1 Study setting  

Supervision during this study was provided by Professor William Hope (Liverpool University), 

who provided support with PK-PD modelling. This study utilised data from non-critically ill 

patients receiving vancomycin intravenously for the treatment of infections. These patient 

data were obtained from two audits that occurred in Imperial College Healthcare NHS Trust. 

The focus of the audit was to review the current standard of vancomycin use within the 

hospital compared to the local antimicrobial policy. The methodology used for patient 

identification and data collection was identical in both audits. All patients had undergone 

routine TDM following local hospital guidelines (which remained stable throughout the two 

audit periods that spanned 15 months) for treatment of confirmed or suspected infections 

with vancomycin. 

The hospital guidelines recommend routine target trough plasma vancomycin concentrations 

of 10-15 mg/L, or 15-20 mg/L for more severe or deep-seated infections. Patient 

characteristics, biochemistry, microbiology data, and treatment history were extracted from 

electronic health records. CRP data (routinely collected by the patient’s clinical team as part 

of the infection management and clinical care) and estimated glomerular filtration rate (GRF; 

calculated using Modification of Diet in Renal Disease [MDRD] formula) were retrieved from 

patient electronic records. 

Clinical case histories of all patients treated with vancomycin in the time period were 

reviewed. Patients were only included if treatment was commenced for suspected or 

confirmed Gram-positive pathogen(s), for which vancomycin was an appropriate agent. 

Patients receiving concomitant therapy with other antibacterials overlapping in antimicrobial 

spectrum were excluded. Patients with a positive culture that was not susceptible to 

vancomycin (i.e. Gram-negative bacteria, anaerobes, or fungi) were excluded from the 

analysis.  
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Patients without TDM data, or on renal replacement therapy were also excluded from the 

analysis.  

All statistical analysis was performed using SPSS 22.0 (IBM, NY, USA). Figures were plotted 

using R and Igor Pro 7.0. 

 

8.3.2 Vancomycin bioanalysis 

Vancomycin concentrations were measured using a commercially available MULTIAGENT 

assay implemented on an Architect analyser (Abbott diagnostics, CA, USA). The lower limit 

of quantification was 1.1 µg/L. The linear range of the assay was 1.1 to 100µg/mL.  

 

8.3.3 Pharmacokinetic modelling software 

All PK and PD modelling was performed using Pmetrics and ADAPT 5 [583,584]. Pmetrics is 

an open source programme that runs within R. It was developed by the Laboratory or 

Applied Pharmacokinetics & Bioinformatics, University of Southern California. It utilises a 

Non-Parametric Adaptive Grid (NPAG) algorithm which allows the use of sparse data 

compared to other parametric approaches to antimicrobial PK modelling [583]. As it is non-

parametric, a normal distribution of data is not assumed for model parameter values. 

Therefore, the output from the NPAG is a non-parametric population PK model that consists 

of discrete support points. Each support point has a set of estimates for each parameter 

within the defined PK model plus an associated probability for the set of estimates [582]. 

To perform PK-PD modelling in Pmetrics, two files are required. A data file and a model file. 

The data file contains dosing and output (drug concentration or CRP) data and the model file 

describes the PK-PD model to be used. On fitting of a PK-PD model to the data, the user is 

provided with individual patient, posterior Bayesian estimated values for PK and PD 



 

299 
 

parameters within the model. This facilitates the estimation of individual AUC and provides 

the individual EC50. 

 

8.3.4 Population pharmacokinetic model  

Data were tabulated for analysis in Pmetrics. One, two, and three compartment 

pharmacokinetic models were evaluated. Covariate modelling was also investigated using 

creatinine and GFR, which were the only variables available within this population for all 

individuals (data shown below in 8.4). As the aim of the PK model was to facilitate individual 

prior PK estimates, covariate data was not deemed as important as this is commonly used to 

improve the population fitting of data [582,585,586]. After evaluation, a two-compartment PK 

model with time-delimited zero-order intravenous input and first order elimination was used. 

The structural equations took the form: 

[1] 
𝑑𝑋(1)

𝑑𝑡
= 𝑅(1) + 𝑋(2) ∙ 𝐾𝑝𝑐 − 𝑋(1) ∙ (

𝑆𝐶𝐿

𝑉
) − 𝑋(1) ∙ 𝐾𝑐𝑝 

[2] 
𝑑𝑋(2)

𝑑𝑡
= 𝑋(1) ∙ 𝐾𝑐𝑝 −  𝑋(2) ∙ 𝐾𝑝𝑐  

X(1) and X(2) represent the amount of vancomycin (mg) in the central (c) and peripheral (p) 

compartments. R(1) is the rate of infusion of vancomycin into the central compartment (mg / 

h). V is the volume of the central compartment (L), from which there is clearance of drug 

(SCL; L / h). The two compartments are connected by first order rate constants Kcp and Kpc 

(h-1).  

The fit of the model to the data was assessed in the following ways: (i) log-likelihood values, 

(ii) assessment of coefficients of determination (r2) from a linear regression of the observed-

predicted data, (iii) use of the Akaike Information Criterion (AIC) [587]. Furthermore, a 

predictive check was performed using normalised prediction distribution errors (NPDE) to 

allow evaluation of the PK model [588,589]. The NPDE tests for differences from a perfect fit 

of the model to the data using a simulation based approach. It is believed to be more robust 
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than approaches using residuals and empirical Bayes estimates, which can be misleading 

when evaluating a population PK model [588,589].   

 

8.3.3 Pharmacokinetic-pharmacodynamic modelling 

A two-step approach to fitting PK and PD data was used. The Bayesian posterior estimates 

for each individual were obtained using the two compartment PK model described in 

equations [1] and [2]. Posterior Bayesian estimated values (V, Cl, Kcp, and Kpc) for the 

individual patients were then fixed as covariates within a PK-PD model made up of 

equations [1], [2], and [3] to describe the exposure response dynamics of CRP [3]. The 

model chosen for use in this study was selected based on previous published work 

investigating the exposure response dynamics of CRP during infection in neonates [434,590] 

and the described kinetics of CRP as reported by Pepys and colleagues [580].  

[3] 
𝑑𝑋(3)

𝑑𝑡
=  (𝐾𝐶𝑅𝑃𝑝 ∙ 𝑋(3) ∙ [1 −

𝑋(3)

𝑃𝑂𝑃𝑚𝑎𝑥
]) − (

𝐾𝐶𝑅𝑃𝑖 ∙ 𝑋(3) ∙ [
𝑋(1)

𝑉
]

𝐻

𝐸𝐶50𝐻 ∙  [
𝑋(1)

𝑉
]

𝐻 ) 

KCRPp is the maximum rate of CRP production (mg∙ ℎ / 𝐿); POPmax is the maximum value 

of CRP (mg / L). A normal CRP is defined as <10 mg / L. In the literature, following acute-

phase stimulus CRP can be observed to rise to greater than 500 mg / L [580]. Therefore, this 

was used as an upper limit for the search space used in fitting the model to the data. KCRPi 

is the rate of maximal CRP inhibition (mg∙ ℎ / 𝐿 ), H is the slope function for CRP inhibition, 

and EC50 is the concentration of vancomycin (mg / L) that produces half maximal effect on 

CRP reduction.   

Whilst previous work exploring CRP response in murine models has often included a 

mechanism of immune clearance of CRP this was not included in this model [590]. I chose 

not to opt for this given that there is currently little evidence from natural infection modelling 

of CRP response to suggest that this mechanism occurs in humans [580]. 
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8.3.4 Exposure-response  

The Bayesian posterior estimates for each patient were used to calculate the average AUC 

(i.e. total vancomycin AUC for the treatment course divided by the number of treatment 

days). Posterior estimates for individual patient’s EC50 were also obtained to calculate 

AUC:EC50. This index was then fitted to patient CRP data 96-120 hours after commencing 

vancomycin therapy in individuals where Gram-positive infection was microbiologically 

confirmed. This used an Emax sigmoidal model to identify trends in the data and describe 

the relationship between CRP and AUC:EC50. The findings from evaluating exposure-

response in individuals with microbiology confirmed infections were then compared to 

individuals with no microbiology who were being treated empirically but had a high suspicion 

of Gram-positive infection. AUC:MIC estimates were also compared to CRP response in the 

same manner, with a cut off of 400 used.  

 

8.3.5 Ethics 

Ethical approval was not required for this retrospective study using routinely available clinical 

data. However, this study was approved as part of an ethics application reviewed by 

London-Chelsea Regional Ethics Committee (REC: 17/LO/0047). This study was also 

conducted under local service evaluation protocols. 
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8.4 Results 

8.4.1 Subjects characteristics  

A total of 105 non-critically ill patients receiving vancomycin were identified as potential 

study subjects. Twenty-nine (37%) patients were eligible for consideration of inclusion in the 

PK-PD analysis. Of the 76 patients excluded, 20/76 (26%) were on renal replacement 

therapy, 16/76 (21%) had no TDM data, 8/76 (11%) had other missing data, with the 

remaining 22/76 (29%) dosed for less than 72 hours or treated for Gram-negative infections / 

non-infectious syndromes. Vancomycin therapy was used empirically in 48/105 (46%) of 

patients. All patients had Gram-negative and anaerobic antimicrobial cover administered at 

the clinician’s discretion.  

For the 29 subjects included in the PK-PD analysis (Table 24), median (range) age was 62 

(21-97) years. The majority were female (18/29; 62%) and 15/29 (52%) had microbiology 

confirmed Gram-positive infection. The mean (SD; range) number of doses of vancomycin 

received were 10 (4; 4 - 22), with a mean dose (range) of 1000 mg (500 - 2000 mg) per day. 

Each subject had a mean (SD) of 5 (3) TDM samples taken during therapy. Mean (SD) GFR 

for the cohort was 82 (37) ml/min/1.73m2 and initial mean (SD) CRP on commencement of 

vancomycin therapy was 154 (110) mg / L. Patients had a median (range) of 5 (2 - 13) CRP 

measurements during the time period that they were receiving vancomycin therapy. 

Concentration-time profiles of the raw-data for vancomycin TDM and CRP used for 

modelling are shown in Figure 42. 

 

  



 

303 
 

Table 24. Summary of patient characteristics included in the pharmacokinetic-

pharmacodynamic model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Parameter Value (%) 

Demographics 

 

 

Age (range) 62 (21-97) 

 

Female  18 (62) 

   Infection 

  

 

Blood Stream Infection  7 (24) 

 

Pneumonia 2 (7) 

 

Skin and soft tissue 10 (34) 

 

CNS infection 1 (3) 

 

Intra-abdominal infection 2 (7) 

 

Joint (inc. prosthetic) 1 (3) 

 

Line sepsis  1 (3) 

 

Urinary tract infection 2 (7) 

 

Other 3 (10) 

   Organism 

 

 

Empirical therapy (no growth) 14 (49) 

 

Staphylococcus aureus 7 (24) 

 

Coagulase negative 

Staphylococcus 4 (14) 

  Other Gram-positive 4 (14) 
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Figure 42. Concentration-time profiles for vancomycin drug concentration data and C-

reactive protein data for individuals used with the study. 

 

 

 

 

 

  

39a. Concentration-time profile for vancomycin data used within this study. 

39b. Concentration-time profile for C-Reactive Protein data used within this study. 
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8.4.2 Pharmacokinetic – pharmacodynamic model 

A two-compartment model was found to be optimal. Figure 43 outlines the individual 

posterior predicted versus observed plots for the vancomycin and CRP models, as well as a 

summary of the NPDE for the vancomycin model. The final vancomycin model had an 

individual posterior observation versus predicted plot r2 of 0.83 with a bias of 0.37 and 

imprecision of 0.97 (Figure 43a). The CRP PD model was fitted with an individual posterior 

observation versus predicted plot r2 of 0.82, a bias of -0.07, and imprecision of 1.05 (Figure 

43b). As only individual posterior estimates were required for this study, covariate modelling 

was not explored in detail. However, addition of renal function to the model was not found to 

improve the accuracy of individual posterior Bayesian estimates during initial model 

development.  

Predictive checking using NPDE demonstrated that the overall model global adjusted p-

value was 0.02. This suggests that there was a significant difference between the perfect fit 

of the model and the data. However, for the purpose of this study (estimating posterior AUC 

values using routinely available data) this variation was classified as mildly significant (p >  

0.01) and therefore, the model is therefore likely to be adequate [588,589]. The NPDE also 

demonstrated that Fisher’s variance p = 0.05 and the Shapiro-Wilk test of normality p = 0.24 

suggesting that the data has equal variance and normal distribution compared to the optimal 

fit of the model [588,589]. This can be observed visually in Figure 44 with the historgram 

and Q-Q plots. The means of the data compared to the best fit were significantly different 

with a t-test value of p < 0.01.  

A summary of the final population PK-PD parameter estimates are outlined in Table 25. 

Population estimates of vancomycin PK were similar to previously reported observations in 

the literature [392,591]. There was a substantial variability in the individual Bayesian 

posterior estimates for EC50 values estimated, with mean (SD; range) of 23.40 (13.55; 6.95 - 

48.55).  Mean (SD; range) AUC:EC50 was 31.46 (29.22; 7.30 - 128.41).  
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Figure 43. Pharmacokinetic and pharmacodynamic model individual observed versus predicted plots. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40a. Individual observed vs. predicted plots for the vancomycin pharmacokinetic 

model. 

40b. Individual observed vs. predicted plots for the C-Reactive Protein 

pharmacokinetic-pharmacodynamic model. 
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Figure 44. Normalised prediction distribution error plots for the vancomycin pharmacokinetic model used within this study. 
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Table 25. Population estimates of the pharmacokinetic – pharmacodynamic parameters for 

a model linking CRP to vancomycin concentrations in a population of non-critical care 

patients in secondary care. 

 

 

 

 

 

 

 

 

 

 

 

  

 

Population parameters  Value 

Pharmacokinetic parameters   

Clearance (CL, L/hr) mean (SD) 3.77(2.23) 

Volume (central, L) mean (SD) 25.89 (12.08) 

Kcp (hr-1) mean (SD) 3.32 (3.81) 

Kpc (hr-1) mean (SD) 2.59 (3.17) 

   

Pharmacodynamic parameters   

KCRPp (mg∙h/L) mean (SD) 0.07 (0.07) 

POPmax (mg/L) mean (SD) 494.24 (242.46) 

H mean (SD) 11.14 (8.18) 

KCRPi (mg∙h/L) mean (SD) 0.11 (0.07) 

EC50 (mg/L) mean (SD) 23.40 (13.55) 

   

   

Initial condition of CRP (mg) mean (SD) 154 (110) 

Glomerular filtration rate  (ml/min/1.73m2) mean (SD) 82 (37) 

   Legend: L/hr = litres per hour; hr-1 =  per hour; mg = milligram; h = hours; min = minute; m2 = meters squared; 

SD = standard deviation; CRP = C-Reactive Protein;  KCRPp = maximum rate of CRP production; POPmax = 

maximum value of CRP; H = slope function for CRP inhibition; KCRPi = maximal rate of CRP inhibition; EC50 = 

concentration of vancomycin that produces a half maximal effect.  
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8.4.3 Exposure response  

Individual cases were then assessed with Bayesian posterior estimates of individual 

vancomycin AUC:EC50 fitted to a sigmoid Emax model for Gram-positive confirmed patients 

and the relationships to CRP values at 96 - 120 hours post initiation of vancomycin therapy 

assessed (Figure 45). This was repeated for those individuals treated empirically. In the 

microbiology confirmed cohort, one individual was excluded due to being taken back to 

surgery during the first 120-hours of therapy. Two individuals from the empirically treated 

group were also excluded as one developed active pancreatitis during the therapy and one 

was taken back to theatre for further surgery.   
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Figure 45. Individual AUC:EC50 estimates against CRP at 96 - 120 hours post 

commencement of vancomycin therapy. 
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Assuming a mean MIC of 1 mg / L for Staphylococcus aureus and other associated 

organisms treated within this study (only 4/14 microbiology specimens had individual MIC 

data available), the optimal target vancomycin AUC would be >400 based on previously 

published clinical outcome data [392,396,398,555,556,565,568,573]. Using AUC:EC50 as a 

surrogate, values greater than 19 (given a vancomycin AUC of 400 and median EC50 of 21 

mg / L) would therefore be expected to correlate to this.  

Thus, AUC:EC50 values could potentially be expected to demonstrate a better CRP response 

to therapy above this. In the Gram-positive confirmed cohort, 5/14 (36%) individuals had 

AUC:EC50 >19. There was an association with lower CRP values at 96-120 hours with mean 

(SD) CRP of 42 (24) mg / L in those with AUC:EC50 >19 vs. 81 (38) mg / L for those with 

AUC:EC50 <19 (p = 0.06).  For those individuals treated empirically, 6/12 (50%) had 

AUC:EC50 >19. Once again, an association was observed toward lower CRP at 96 - 120 

hours. The mean (SD) for those with AUC:EC50 >19 was 46 (26) vs. 128 (31) (p < 0.01).  

Pooling of all cases, both microbiologically confirmed and empirical, followed by assessment 

of AUC:EC50 demonstrated a significant association with AUC:EC50 > 19 and prediction of 

CRP at 96 - 120 hours. Individuals with AUC:EC50 >19 had mean (SD) CRP of 44 (24) mg / 

L vs. 100 (41) mg / L in those with AUC:EC50 <19 (p < 0.01). Mean (SD) estimated 

AUC:MIC’s for the cohort were then compared, using MIC breakpoint estimates used in 

clinical practice [402].  

Using an estimated MIC of 1 mg / L, CRP response at 96 - 120 hours was compared 

between individuals with AUC:MIC greater or less than 400. There was no difference 

between groups with AUC:MIC <400 obtaining a mean (SD) CRP of 65.7 (32) mg / L versus 

80.1 (49) mg / L in those with AUC:MIC >400 (p = 0.45). 
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8.5 Discussion  

The use of vancomycin in non-critically ill adults is always challenging. There is considerable 

PK variability. Many patients are culture negative meaning an MIC is not available to guide 

individualised therapy. Therefore, physicians are often forced to use population level TDM 

guidelines and organism breakpoints in an attempt to optimise therapy for the individual 

patient. These approaches are not specific to the individual being treated and fail to consider 

patient-level factors that drive PK variation. They also fail to consider the individual 

organism, its response to antimicrobial therapy, and the impact of the host immune system 

on antimicrobial PD. In an attempt to individually assess physiological response to an 

infection and subsequent antimicrobial therapy, physicians commonly use non-specific 

markers such as CRP. To date, there has been very little linkage of this inflammatory 

marker, and other similar routinely collected bio-markers of infection, to  PK-PD parameters 

[433,434].  

The use of AUC:EC50 offers a novel measure to assess individual patients’ response to 

therapy [433,434]. The EC50 value is a measure of the potency of a drug taking into account 

both the host factors (such as immune response and comorbid status) as well as organisms 

factors (such as resistance to the therapy being delivered and bacterial load). When linked to 

the exposure of the drug in question (the AUC), this allows consideration of variables 

pertaining to both the host and invading pathogen that affect the ultimate exposure-response 

relationship [433,434]. The use of MIC alone only provides information on the potency of the 

drug for its microbiological target.  Thus, the AUC:EC50 may augment this, acting as a more 

inclusive estimate of antimicrobial activity. This may be of benefit when MIC data are not 

available, a common scenario, especially outside of the critical care setting [506,507]. Within 

this study I have demonstrated a potential of AUC:EC50 estimates obtained through analysis 

of routinely available data to be able to predict greater response of CRP during therapy. 

These were in-keeping with current non-individualised AUC:MIC estimates that would 

routinely be considered during empirical therapy in clinical practice (i.e. target AUC:MIC of 
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>400). On comparison to estimated AUC:MIC for individual cases within this study, using 

published MIC breakpoints [402], AUC:MIC >400 did not correlate with lower CRP at 96  -

120 hours. This may support some of the potential benefits of using EC50 to provide more 

individualised assessment of response to therapy. 

However, this study also highlights several challenges that individualised therapy using 

measures such as the AUC:EC50 face in the future in adult populations.  In a previous study 

performed by Ramos-Martin et al, AUC:EC50 values in neonates predicted the likelihood of 

the normalisation of CRP (defined as <10 mg / L) for infants receiving teicoplanin therapy for 

the treatment of coagulase negative staphylococcus line infections [434]. In my study 

population, very few subjects CRP returned to <10 mg / L on cessation of vancomycin 

therapy. This is, in part, likely to be due to local antimicrobial stewardship policies for adults 

in the non-critical care setting that means patients are regularly reviewed and therapy is de-

escalated before patients biochemical markers have returned to normal limits (usually within 

72-120 hours) [53]. It also reflects the co-morbid state of adult patient populations 

represented within this setting. Therefore, I chose a time point of 96 - 120 hours given that 

most individuals will be treated for this period of time with vancomycin and the observed 

response of CRP during therapy.  

Given that both AUC and EC50 can be estimated with minimal vancomycin and CRP data, it 

is possible that future studies could incorporate consideration of AUC:EC50 estimation into 

medication reviews. This may act as a tool to help inform the likelihood of success of 

continued empirical therapy when no organism has been identified, providing an 

individualised estimate of treatment success with the current therapy. A further observation 

from this study was that a number of individuals appeared to have vancomycin 

concentrations below recommended targets during therapy. On review of mean dose 

received by individuals within the study, a mean of 1000 mg / 24 hours may have been lower 

than is often recommended. However, this is a common problem observed with vancomycin 
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therapy in similar populations and highlights some of the challenges with conventional 

approaches to dosing and TDM using trough concentrations [392,554,592]. 

With the development of continuous monitoring of biomarkers and antimicrobials and 

translation into closed-loop control systems; the AUC:EC50 may also provide a source for 

dynamic individualisation of therapy given that changes in the individuals physiological state 

will also be considered alongside organism response [406,504,505]. Further work is required 

to explore newer, more specific clinical biomarkers (such as procalcitonin and CD64) that 

have the ability to improve population PD models for delivering individualised therapy [575]. 

The model described within this study serves as a framework from which PK-PD models for 

these biomarkers can be developed and explored.  

 

8.5.1 Limitations and future work  

Several limitations with the use of this model within our population were identified during the 

study.  

i. Given the nature of how our data were collected, PK estimates were made using 

sparse data, which may have influenced our estimates of vancomycin PK 

parameters. However, by using a non-parametric approach with the NPAG software 

this allowed me to work with sparse, routinely collected data. This is because the 

NPAG does not require a normal distribution of the data, working in a non-parametric 

fashion.  

ii. Although the population estimates for the data had significant differences in NPDE 

analysis, the data was likely adequate for the purpose of this study. For future work, 

using a previous vancomycin PK model, developed using rich PK data may be a 

suitable method for addressing some of these challenges. Future work must focus on 

the utility of this technique for predicting the outcomes of therapy with rich PK and PD 

data for a number of different antimicrobial agents. Ideally this would focus on 
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monotherapy, to remove any potential overlap in efficacy that could have been 

caused by other co-prescribed antimicrobials within this study.  This is something that 

I hope to explore in the future, using data from a study of beta-lactam TDM currently 

being undertaken within ICHNT.  

iii. A large number of individuals identified as receiving vancomycin therapy in were 

excluded from the analysis as they lacked TDM data, were receiving renal 

replacement therapy, or were prescribed vancomycin inappropriately (in Gram-

negative infections). Therefore, the small and highly selected sample of individuals 

included means that generalizability of our findings is difficult. This also means that 

certain aspects may have been underpowered to demonstrate significance 

statistically. Power calculations were not performed as part of this retrospective 

analysis, which aimed to explore the development of the concept of AUC:EC50. For 

future prospective clinical studies of AUC:EC50, appropriate statistical power will be 

an early consideration that I take.  

iv. Although this study demonstrated that higher AUC:EC50 values appeared to correlate 

with expected AUC:MIC ratio’s for optimal therapy, it did not demonstrate direct 

improvements in clinical outcome. I know plan to undertake a prospective study to 

estimate AUC:EC50 within 72-hours of commencement of vancomycin therapy to 

explore whether this can predict response to therapy as expected. This includes 

exploration of whether more intensive CRP monitoring can improve the accuracy of 

EC50 estimates within the PD model.  

v. For estimation of AUC:MIC I had to use estimated organism MIC for the majority of 

clinical isolates within this study. This reflects the common challenge of using PK-PD 

indices within this clinical cohort, as reflected upon in Section 7.1. For future work I 

plan to ensure that individual MIC data are available to enable a more individualised 

comparison of the predictive power of AUC:MIC versus AUC:EC50. 

vi. A final limitation of this study at present is that this technique has not been tested 

within the concept of closed loop control. Therefore, it is unclear whether the 
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granularity of data presented within this study would be adequate to influence 

controller response.  
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8.6 Conclusion and key messages 

Within this Chapter, I have demonstrated the proof-of-concept that CPR can be used to 

predict vancomycin PD through linkage of exposure response using routinely collected 

patient data. Within this small cohort of patients, AUC:EC50 had greater predictive power 

for estimating CRP response to therapy at 96-120 hours compared to AUC:MIC. These 

findings provide evidence to support the development of larger, prospective studies and 

generation of PK-PD models. It also warrants the exploration of use of other PD 

markers, such as procalcitonin for therapy response or renal function for risk of toxicity. 

Finally, these new PK-PD indices must now be explored in the context of continuous 

biomarker and drug monitoring, using the approach described in Chapter seven and 

linked to techniques for closed-loop control. With this, the AUC:EC50 may augment the 

truly individualised, precision delivery of antimicrobial therapy by providing an in-vivo 

index of response to antimicrobial therapy.  
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CHAPTER NINE 

9.0 Personalised antimicrobial management in secondary care: 

Conclusions and recommendations  

Figure 46. Outline of thesis.  

 

 

 

 

 

 

  

 

 

 

 

 

9.1 Conclusion 

Within this thesis I aimed to address the hypothesis: 

Personalised decision support interventions have the utility to enhance 

antimicrobial management across secondary care. 
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The work described within this thesis addresses this hypothesis by adding a number of 

new concepts and approaches to personalisation of decision support for antimicrobial 

management.  

Firstly, through the work undertaken in this thesis, it has become clear that current 

approaches to improving decisions about antimicrobial management are often inflexible, 

of a narrow focus, and not considerate of the end-user. Personalised medicine does not 

simply apply to the use of genotypic information in the case of infection management. It 

must also apply to the customisation of approaches to optimising therapy based on the 

patient, the prescriber, the antimicrobial in question, and the organism that is being 

targeted.  

During the development of electronic tools, developers must demonstrate an 

understanding of, and engage with, the end-user throughout development, 

implementation, and evaluation of any intervention. This will provide clarity on the areas 

of decision making that require supporting, whilst also promoting greater communication 

and engagement with the problem of optimising antimicrobial prescribing.  

Within my thesis, I have been able to explore decision making of physicians managing 

acute infections. This has demonstrated how current rule-based decision support tools 

fail to influence a large part of the decision making process. It has also supported my 

hypothesis highlighting the potential of using technology to provide better and more 

individualised data on a wide range of clinical parameters, may help to improve decision 

making towards antimicrobial management overall.  

As well as describing individual decision making, this thesis has explored the need for 

broader engagement across specialties that are not experts in infection management. 

Novel mechanism and proxy indicators for monitoring the formal level of awareness and 
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engagement by individual specialties have been proposed. This includes the evaluation 

of state-of-the-art scientific conferences and postgraduate training curricula.  

Further support of this hypothesis has been through the demonstration that personalised 

interventions to support decision making should not just be prescriber-focused. 

Evidence-based practice must also ensure that patient preferences and values form part 

of the decision making process. Working with patients, I have demonstrated that the 

development of a simple, personalised, PDF information sheet can improve patient 

knowledge and understanding in the short term. Interventions like this can potentially 

foster greater patient involvement in the process of decision making during infection 

management in secondary care addressing some of the key factors that I have identified 

as driving negative attitudes and behaviours towards antimicrobial prescribing in the 

future.  

Focusing on the development of tools to support decision making in secondary care, I 

have reported the development and evaluation of using artificial intelligence to optimise 

use of routinely available data. These approaches offer methods for providing 

personalised antimicrobial decision support based on individual clinical parameters. 

Within this, supervised machine learning can accurately infer the likelihood of patients 

having an infection using routinely available blood parameters. Furthermore, CBR can 

be used to provide individualised prescribing recommendations for antimicrobials. The 

training and curation of such systems have also been explored when considering 

deployment in complex hospital settings.  

However, antimicrobial selection is only one facet of appropriate antimicrobial delivery. 

This thesis has also demonstrated that the development of electrochemical biosensor 

technology can be deployed in a minimally invasive fashion. This provides a novel 
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avenue to explore the real-time monitoring of antimicrobial agents, starting with beta-

lactams, such as penicillin-V. By linking microneedle based biosensors to closed-loop 

control systems and individualised pharmacokinetic-pharmacodynamic indices it may be 

possible to greatly increase the precision of drug delivery for the individual patient. The 

parallel development of PK-PD indices, such as the use of CRP and AUC:EC50 ratio, 

may augment the current reliance of diagnostics and static, in-vitro measures of 

organism susceptibility to an antimicrobial agent, the MIC.  
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9.2 Identified challenges for the future 

Despite the successes described above, I have also identified a number of gaps that 

remain and future challenges that must be addressed. 

Firstly, a major challenge remains in defining what appropriateness of antimicrobial 

prescribing is when considering different contexts under which this is explored. This has 

caused a number of challenges during this thesis. This included comparing between 

different studies reporting the impact of decision support systems in Chapter two and 

assessing the potential impact of artificial intelligence tools on prescribing in Chapter six.  

Secondly, although numerous artificial intelligence techniques have demonstrated the 

potential to improve decision support for antimicrobial management, a number of core 

challenges remain. These include:  

I. Improving the collection of routinely available data within electronic health 

records to facilitate optimal use of such data. 

II. Ensuring the development of user interfaces and data visualisation tools are 

appropriate to the end-users that they target. 

III. Defining how such decision support tools will augment the use of prescribing 

policy and expert opinion.  

IV. Developing systems that are agnostic to different information technology 

infrastructures and databases between hospitals.  

V. Refining data variables to allow systems to work across numerous care pathways 

and healthcare settings.  

Thirdly, the development of biosensor technology needs to ensure that it is focused on 

developing scalable and accurate tools, which are developed based on current clinical 

need. There is currently little evidence to support recommendations on core areas of 
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focus for the development of such tools in terms of clinical settings, antimicrobial agents, 

and biomarkers that should be given high priority. Moreover, the role of different 

methods for biological detection, such as aptamer based technology, must be rapidly 

assessed for its applicability for use in humans, its scalability, and its cost. Finally, with 

the development of closed-loop control systems, new methods for drug delivery must be 

considered and the role of novel PK-PD indices explored across a wide range of 

contexts, to accurately map and characterise such approaches. The implementation of 

new PK-PD indices can also be considered independently, outside of this context. 

Finally, the development of patient-focused interventions must be better explored across 

a range of healthcare settings. Despite evidence that simple interventions to promote 

patient engagement with decision making around infection management can have a 

positive impact, little work has currently focused upon this, especially in secondary care.  
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9.3 Recommendations 

Given these results and core challenges identified within this thesis, there are several 

recommendations that can be made for consideration in healthcare practice and 

research in relation to my hypothesis. 

1. For the development of interventions to address the problem of antimicrobial 

resistance, it is vital for broader engagement with clinical specialties and individual 

specialists who will be adopting the intervention in question. This will not only 

facilitate a better understanding of how the intervention fits into the end-user 

workflow, but will also help to promote awareness, understanding, and generate local 

leaders and advocates for AMS and AMR within the target population.  

2. Engagement must also include our patients. Without patient engagement in the 

decision making process we will continue to promote negative attitudes and 

behaviours towards infections and antimicrobials. Therefore, organisations must 

focus on improving healthcare professional – patient communication surrounding 

infections and their management. This must focus on delivery of personalised 

information relevant to the individual. 

3. Technology has the potential to facilitate provision of more accurate and 

individualised data to support antimicrobial decision making. However, this must be 

considered in integrated packages. Evaluation of such developments must be 

designed to facilitate the assessment of an individual units impact versus the 

cumulative impact of the multi-modal intervention that it is delivered as.  

4. To support the integration of artificial intelligence in healthcare, we must consider 

how data is collected and stored to facilitate secondary use as part of decision 

support systems. This includes streamlining data warehouses and ensuring 
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standardised approaches to collection and storage of data to help facilitate the 

implementation of technology across healthcare settings and geographical areas.  

5. Artificial intelligence should not be seen as a tool that will take over healthcare 

decisions, it should be seen as a tool to be used by skilled healthcare professionals 

to support the evidence-based management of infections.  

6. Antimicrobial dose optimisation requires urgent consideration across healthcare 

settings. This requires a radical re-think of current therapeutic drug monitoring 

approaches and consideration of investment in the development of new 

technologies. This should include consideration of biosensor technology, closed loop 

control, and exploration of novel PK-PD indices for implementing individualised 

dosing strategies. 
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9.4 Future work 

Whilst I have discussed future work at the end of each Chapter for this thesis, there are 

several core areas that I aim to focus on moving forwards. 

Firstly, with mechanisms of monitoring specialty engagement with AMS-AMR it will be 

important to explore how to utilise this to target individual specialties deemed “high risk”. 

Locally, I hope to address this by targeting the interventions developed within my work at 

areas of “high risk”. This includes engaging with critical care, transplant surgery, such as 

renal transplantation, and haematology within our hospital Trust. Nationally, there is a 

drive towards the integration of AMS into postgraduate training curricula by Health 

Education England, in which my work has been cited [593]. Therefore, my developed 

methodology may serve as a mechanism for tracking impact and success of this 

intervention in the coming years. 

Secondly, as discussed in Section 6.5; with the development of artificial intelligence 

techniques, I must now evaluate the impact of these tools in clinical practice. This will 

require a quasi-experimental or randomised control study to explore the impact of these 

interventions, both in isolation and integrated together, on antimicrobial prescribing. 

Furthermore, with improving availability of data, it will also be possible to expand the 

predictive capabilities of the algorithms used within Chapter six.  

Thirdly, now that I have received ethics to evaluate the microneedle electrochemical 

sensors in healthy volunteers and have successfully piloted the device in-vivo; I plan to 

undertake healthy volunteer studies with concurrent drug sampling from both blood and 

tissue to allow demonstration of proof-of-concept. Closed-loop control will also be 

developed to work in conjunction with the sensor devices. In parallel to this, aptamer 

based technology is under evaluation and I will be applying this to both microneedle 

based technology as well as point-of-care sensor devices for capillary blood sensing. 
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Biosensors for clinical biomarkers, such as CRP, lactate, and procalcitonin will also be 

explored to facilitate rapid diagnosis of bacterial infection and provide rich data to 

support novel PK-PD indices. The development of these indices follows demonstration 

of the concept for use of AUC:EC50 using a CRP linked model in Chapter eight of the 

thesis.  

Fourthly, given the short-term improvements in knowledge and engagement with 

antimicrobial decision making reported by patients in my small pilot study in Chapter five; 

I now aim to implement this in a large, controlled trial that will assess medium to long 

term influence on attitudes and behaviours, post discharge from hospital. This will be 

achieved by consenting patients for follow up post discharge from hospital to 

longitudinally assess the impact of this intervention.  

Finally, whilst the interventions reported within this thesis have been developed and 

evaluated largely in isolation, my long-term goal is to implement and evaluate a 

multifaceted intervention incorporating many of these tools. This would be embedded 

within a clinical decision support tool, such as the one described in Chapter six. This 

would allow me to evaluate the impact of combining numerous individualised 

approaches to enhancing decision making at different stages of the decision making 

process. My hypothesis is that integration of such techniques will demonstrate a 

significantly greater impact than the sum of the individual interventions implemented in 

isolation.   
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Appendix 2. Supplementary table 1 

Supplementary table 1. Summary of Clinical Decision Support Systems for antibiotic prescribing and evidence supporting aspects 

of behavioural intervention development 

 CDSS 
Characteristics  

   CDSS reporting on aspects of 
system development  

   Summary of 
supporting 
studies 

   

 Setting  CDSS Platform Infrastructur
e 
 

Development Feasibility & 
Piloting 

Evaluation Implementation Study 
type 

Primary 
outcome  

Outcome 
met 

Risk of 
Bias 

[84] 
Flottorp  

PC Antibiotic 
prescribing for 
ARI & UTI 

Software 
integrated 
into EMR 

Rule based 
 

- - Small decrease in 
prescribing in ARI 
No effect on UTI 

- cRCT Rate 
prescribing 

UTI – no 
ARI – 3% ↓ 

Low 

[99] Rubin  PC Antibiotic 
prescribing for 
ARI  

PDA device Rule based Algorithms 
translated from 
paper to electronic 
form after 
demonstration of 
success 

Paper based 
algorithms proved 
successful in RCT 

High adherence to 
guidelines 

Training provided to 
providers before 
deployment & 
incentives used. 

CS - 76% 
guideline 
adherence 

Med 

[100] 

Madaras-

Kelly 

PC Antibiotic 
prescribing for 
ARI 

PDA device Rule based - - - Failed to gain patient 
consent for inclusion 

NCBA Average cost 
of treatment 
CDSS 
acceptance 

No 
 
No 

High 

[85–87] ARI 
Smart Form 
/ Quality 
Dashboard 

PC Antibiotic 
prescribing for 
ARI & UTI  
Physician 
feedback 

Integrated 
into EMR 

Rules based  Based intervention 
on evidence based 
guidelines 
Identified need to 
improve accuracy of 
diagnosis of ARI & 
UTI in practice 

Demonstrated high 
sensitivity & 
specificity for 
diagnosing ARI & UTI 

No effect observed Poor engagement with 
intervention by 
prescribers 

CSS 
 
 
 cRCT 
 
cRCT 

Accuracy of 
diagnosis & 
Prescribing  
Rate of 
prescribing 
Rate of 
prescribing 
 

Yes 
 
 
No 
 
No 

Med 
 
 
Low 
 
Low 

[88] 
Rattinger 

PC Antibiotic 
prescribing for 
ARI 

Integrated 
into EMR 

Rules based Attempted to 
integrate CDSS into 
natural workflow of 
care (stakeholders 
and methods not 
identified) 
Translation of 
pharmacy 
processes into CDSS 

- Improvements in 
adherence to 
guidelines 

- CBA Warranted vs. 
unwarranted 
AU 

Yes – AU 
improved  

Low 

[89–91] 
ABX-TRIP  

PC Antibiotic 
prescribing for 
ARI 

Integrated 
into EMR 

Rules based Based on evidence 
based guidelines for 
ARI 

- Potential to reduce 
inappropriate 
prescribing in ARI 

Poor engagement with 
intervention by 
prescribers 
Number of barriers to 
uptake identified 

Qu  
CS 
 
CITS 

No 
Appropriate 
AU 
Inappropriate 
prescribing 

- 
No 
 
Yes 

Med 
High 
 
Low 
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[92] [93] 
Gonzales & 
Michaelidis 

PC Antibiotic 
prescribing for 
ARI 

Integrated 
into EMR 

Rules based - - Reduced rate of 
antimicrobial 
prescribing 

More expensive to 
implement than PDSS, 
which is equally as 
effective 
Implementation was 
supported by 
implementing with 
physician training and 
reinforcement through 
audit & feedback 

cRCT 
 
EA 

Rate of 
prescribing 
Cost of 
intervention 
vs PDSS 

Yes 
 
No   

Low 
 
Med 

[94] CPR 
tool  

PC Antibiotic 
prescribing for 
ARI 

Integrated 
into EMR 

Rules based Based on evidence 
that CPR improve 
quality of practice 

- Reduction in 
individual 
prescribing rates / 
changes in 
prescribing 
behaviour 

- RCT Changes in 
individual 
prescribing 
behaviour 

Yes – NNT 
=11 

High 

[95–97] 
eCRT 

PC Antibiotic 
prescribing for 
ARI  
Electronic 
prompts 

Integrated 
into EMR 

Rules based Stakeholders 
engaged in 
intervention design 
for feedback[594] 
National guidelines 
followed 

- Small reduction in 
rate of prescribing 
for ARI 

Poor engagement with 
intervention by 
prescribers 
Reasons preventing 
engagement identified 
and explored 

cRCT 
 
cRCT 
 
Qu 

Proportion of 
ARI 
consultation 
with antibiotic 
prescribed 
 

No 
 
Yes - 
↓1.85% 
 
 

Med 
 
Med 
 
Low 

[101] 
Fernández 

PC Antibiotic 
prescribing 

Web-based 
guideline 

Rules based National guidelines 
identified 

- Improvement in 
guideline adherence 

- NCITS Adherence to 
guidelines 

Yes – 
21%↑ 

Med 

[98] 
McCullough 

PC Antibiotic 
prescribing for 
ARI  
Electronic 
prompts 

Integrated 
into EMR 

Rules based Designed 
intervention based 
on a hypothesis of 
how CDSS will act 
to change 
behaviours. 
(Stakeholders not 
engaged) 

Reduction in 
antimicrobial usage 

- - CS - CDSS use 
reduced AU 

Med 

             

[102–105] 
Antimicrobi
al 
Consultant  
 
 

SC Antibiotic 
prescribing 
Electronic 
prompts 

Integrated 
into EMR 

Rules based Based on local 
guidelines for 
therapy 

Reduction in 
mortality and 
reduction in 
DDD/100 occupied 
bed days 
Reduction in 
pharmacy spending 
on antimicrobials 

Improved timing of 
prophylactic dosing 
Improved 
appropriate 
selection of therapy 
in ICU 

- NCBA 
 
 
NCBA 
 
CS 
 
CS 

Improvement 
in prophylaxis 
                
Appropriate 
selection of 
therapy 
Detection of 
mismatch 
between abx 
& organism 
sensitivity 
- 

Yes  - 
improved 
timing  
Yes – 
17%↑ 
 
Yes 
 
 
- 

High 
 
 
Med 
 
High 
 
Med 
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[122–
126,306]TR
EAT  

SC Antibiotic 
prescribing  

Standalone 
software 

Causal 
Probabilistic 
Networks 

Defining causal 
probabilistic 
networks focusing 
on organism 
 

Ability to predict BSI 
Ability to predict 
micro-organism  
Appropriate 
empirical therapy 
recommendations 

Appropriate 
empirical therapy 
recommendations 

- DR  
DE 
  
DE 
 
 
CS 
 
 
CS/cRCT 
  
 
cRCT 

- 
ROC pred. BSI 
 
Organism 
predication 
 
Appropriate 
empirical 
therapy 
 
 
 
Appropriate 
empirical 
therapy 
180 day 
survival       
rate 

- 
Yes - ROC 
0.68 (0.63-
0.73) 
Yes - ROC  
>0.5 for all 
organisms 
Yes - 
Improved 
by 20% 
(p<0.01) 
Yes - 
Improved 
by 13% 
(p<0.01) 
No - ITT – 
3% lower 
(p=0.2) 

High 
Med 
 
High 
 
 
High 
 
 
Low 
      
 
Med 

[127,128] 
Mullett  

SC Antibiotic 
prescribing 

Standalone 
software 

Drug-bug logic 
matrix 

Allows expansion of 
susceptibility data 
points 

Improved 
appropriateness of 
antimicrobial 
selection 

- - CS 
CS 

- 
Appropriate 
empirical 
therapy 

- 
Yes - 20% 
improveme
nt (p<0.01) 

Med 
High 

[139] 
Hwang 

SC Gentamicin 
dose 
optimisation 

Standalone 
on PDA 

Pharmacokinet
ic model 

PK principles 
explored to provide 
rationale 
PK model 
constructed 

Improved plasma 
concentration target 
attainment 

- Found CDSS 
inconvenient to 
navigate / use  

CCS Steady state 
peak and 
trough target 
concentration 
attainment 

Yes - Target 
peak 
(p=0.04) 
and trough 
(p<0.01) 
targets met 
more 
frequently 

High 

[106] 
WizOrder  

SC IV to PO switch 
for quinolones 

Integrated 
into EMR 

Rules based Based on evidence 
of safety and 
effectiveness of 
early iv to oral 
switch  

- Improvement in oral 
quinolone ordering 

- NCITS Proportion of 
weekly PO 
orders 

Yes - 5.6% 
(2.8-8.4%) 
↑ in 
weekly 
orders 
(p<0.01) 

Med 

[107] 
Bernstein 

SC Generic 
antibiotic 
prescribing 
Electronic 
prompts 

Integrated 
into EMR 

Rules based - - Improve prescribing 
of prescriptions to 
self-paying patients  

Supported with 30 
minute didactic lecture  

NCBAS Proportion 
correct 
prescriptions 
to self-paying 
patients 

Yes - 22% 
improveme
nt (p=0.03) 

Med 

[108] Webb SC Prophylactic 
antimicrobial 
prescribing and 
delivery  

Integrated 
into EMR 

Rules based Based on evidence 
that appropriate 
timing of 
prophylaxis reduces 
incidence of SSI 
Paper preoperative 
order form 
converted 

Improved timely 
administration of 
prophylactic 
antibiotics 

- - DR Timing of 
administratio
n of therapy 
in relation to 
surgical site 
incision 

Yes - Timely 
administrat
ion 
improved 
from 51 to 
95% 

High 
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[135] 
PharmWatc
h 

SC Electronic alerts 
for patients 
requiring 
change in 
antimicrobial 
theapy 

Web-based 
application 

Rules based Developed based on 
evidence in favour 
of post-prescription 
review & CDSS for 
improving efficacy 
in other fields 

- Economic benefit 
from use of CDSS 

- RCT Antimicrobial 
treatment 
costs ($) 

Yes - 
Stopped 
early – 
saved 
$84,000 in 
3 months 

Med 

[130] 
Buising 

SC Antibiotic 
prescribing in 
CAP 

Web-based 
application 

Rules based - - Improved 
appropriateness of 
prescribing 

Supported with 
academic detailing 
with education and 
advertising campaign 
in ED 

NCITS Appropriate 
prescribing 
for CAP cf. 
local 
guidelines 

Yes - 
Improved 
appropriate
ness 
(OR:1.99, 
1.07-3.69; 
p=0.02) 

Med 

[131–134] 
iAPPROVE  
 
 

SC Prescribing of 
restricted 
antibiotics  

Web-based 
application 

Rules based  Based on evidence 
for impact of 
restrictive policies 
on antimicrobial 
prescribing 

- Consumption of 
cephalosporin’s 
reduced  
AMR to 
cephalosporin’s & 
MRSA fell 

Detailed that formative 
evaluation of system 
use would help 
promote engagement 
Barriers to engagement 
from staff identified  

NCBA 
NCITS 
 
Qu 
 
 
Qu 

- 
Change 3/4th 
Ceph use 
 
- 
 
 
- 

- 
Yes - 38.3 
DDD/1000 
bed days 
fall in use 
Formative 
evaluation 
may be of 
benefit 
Senior staff 
ID more 
barrier to 
uptake 

High 
Med 
 
Low 
 
 
Low 

[136] 
Vincent 

SC Electronic 
pharmacy 
support with 
dosing 

Integrated 
within EMR 

- Based on evidence 
for drug protocol 
management 
services and 
efficacy of CDSS in 
other clinical areas 

Increased time from 
requests to dosing 
support being 
provided 

- - CCS Uptake & 
time from 
request to 
dose 

No - Time 
↑ from 20 
to 37 
minutes 
(p=0.03) 

High 

[109,110] 
Smart 
Anaesthesia 
Messenger 
(SAM)  

SC Prophylactic 
antimicrobial 
prescribing and 
delivery  

Integrated 
within 
Anaesthesia 
information 
management 
system 
(AIMS) 

Rules based Based on evidence 
surrounding 
effective timing of 
prophylactic 
therapy 

Improved 
compliance with 
prophylactic 
antimicrobial 
administration & re-
dosing 

- Roll out with feedback 
and distributing 
monthly reports had an 
additive effect at 
improving compliance 

DR 
 
 
CCS 

Guideline 
compliance 
 
Failure of 
antibiotic re-
dosing 

Yes - 
Stepwise 
improveme
nt to 100% 
Yes - 
Improve 
timely re-
dosing 
from 63%-
84% 
(p<0.01) 

High 
 
 
High 

[137] 
Nelson 

SC Detection of 
SIRS with 
electronic alerts 

Integrated 
within EMR 

Rules based 
surveillance 
system  

Developed 
surrounding the 
need to increase 
speed of detection 
& intervention for 
sepsis 

- Failed to improve 
speed of intervention 
for sepsis 

- NCBA Rate of 
interventions 
for sepsis 

No – slower 
than 
human 
detection 
and 
interventio

High 
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n 

[111] 
Schwann 

SC Prophylactic 
antimicrobial 
prescribing and 
delivery 
Electronic 
prompts 

Integrated 
within 
Anaesthesia 
information 
management 
system 
(AIMS) 

Rules based Based on evidence 
surrounding 
effective timing of 
prophylactic 
therapy 
Developed on 
evidence that 
POCEPs may elicit 
specific behaviour-
responses 
(stakeholders not 
engaged) 

- Improved timeliness 
of antimicrobial 
prophylaxis 
administration  
Rate of SSI reduced 

- NCITS Time to 
antibiotic 
dosing  
Rates of SSI 

Yes - 31% 
↑ in 
appropriate 
timing 
(p<0.01) 
SSI ↓ from 
1.1 to 0.8% 
(p<0.01) 

Med 

[116] 
Carman 

SC Clinical alerts 
for detection of 
MRSA result 

Integrated in 
EMR 

- Based on 
inconsistent 
management of 
MRSA and evidence 
supporting CDSS for 
improving 
adherence to 
guidelines 

- Improved prescribing 
and inappropriate 
culturing for 
community acquired 
MRSA 

- NCBA Appropriate 
management 
of MRSA  

Yes - ↓ 
inappropria
te cultures 
(OR 0.69 – 
p<0.01) 
↑ (OR 2.4, 
p<0.01) 
Prescribing 

High 

[115] 
Haynes 

SC Prescribing 
surgical 
prophylaxis 

Integrated 
into EMR 

Rules based Based on evidence 
surrounding 
effective timing of 
prophylactic 
therapy & for CDSS 
to reduce adverse 
events 

- Improvement in 
timely 
discontinuation of 
prophylactic 
antimicrobials 

- CITS Timely 
discontinuatio
n of antibiotic 
prophylaxis 

Yes - ↑ 
timely 
discontinua
tion from 
39% - 56% 
(p<0.01) 

Med 

[114] 
Westphal 

SC Antibiotic 
prescribing for 
pneumonia 

Integrated 
into EMR 

Rules based Based on evidence 
that making 
guidelines available 
during prescribing 
can improve 
practice 

- Improved adherence 
to guidelines 

- NCITS Appropriaten
ess of 
prescriptions 

Yes – 
improved 
rate or 
non-
conformity 
to 
guidelines 
by 18% 
(p<0.01) 

High 

[113] Po SC Linezolid 
prescribing 

Integrated 
into EMR 

Rules based Based on evidence 
of CPOE reducing 
errors 

- Reduced the use of 
linezolid  

- NCITS DDD/1000 
patient bed 
days of 
linezolid 

Yes - Use ↓ 
from 44 to 
7 
DDD/1000 
bed days 
(p<0.01) 

High 

[112] 
Rodrigues 

SC Prescribing 
surgical 
prophylaxis 

Integrated 
into EMR 

Rules based - High compliance 
with antimicrobial 
prophylaxis 
guidelines  

- - CS Compliance 
with 
guidelines  

Yes - >90% 
compliance 
with 
guidelines 

High 
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[129] 
Papageorgi
ou 

SC Diagnosis and 
treatment of 
UTI 

Integrated 
into EMR 

Fuzzy-
cognitive map 
software 

Probabilistic 
networks and need 
to incorporate 
multiple variables in 
decision process 
explored. 
(Stakeholders not 
engaged with)  

Predict appropriate 
treatment for UTI’s 
in accordance with 
guidelines 

- - DR Agreement 
with 
guidelines 

Yes - 
Predicted 
treatment 
appropriate 
in 87% 

High 

[117] 
Beaulieu 

SC Clinical alerts 
advising on de-
escalation / 
escalation of 
therapy 

Integrated 
into EMR 

Rules based 
system 

Critical needs 
assessment 
performed by ASP 
specialists (MDT).  

Generated alert’s 
daily, which tended 
to prompt de-
escalation of therapy 

- System integrated into 
a closed-loop 
medication safety 
process 

DR - - HIgh 

[138] 
Cooper 

SC CDI surveillance  Integrated 
into EMR 

Predictive 
model 

Developed due to 
high risk nature of 
CDI and 
requirement for 
early diagnosis 

High sensitivity and 
specificity of system. 
Low PPV, high NPV 

- - DE - High sens, 
spec, & 
NPV. Low 
PPV (4%) 

High 

[118] 
Antibiocart
e 

SC Prescribing 
guidelines and 
infection 
management 
support  

Web-based Rules based Simple interface 
type and ease of 
navigation was 
preferred  

- - - DR Acceptance of 
2 interfaces 
evaluated 

Simple “at 
a glance” 
interface 
preferred 

High 

[119] Filice SC Antibiotic 
prescribing 

Integrated 
into EMR 

Electronic 
guidelines 

- Improved 
appropriateness of 
prescribing to 
guidelines 

- - CS Appropriaten
ess of 
prescriptions 
30 day 
mortality 

Yes -11% 
improveme
nt (p=0.01) 
No change 

Med 

[120] Best 
Practice 
Alert tool 

SC Antibiotic 
prescribing 

Integrated 
into EMR 

Rules based Based on local AMS 
guidelines  

Acceptance of best 
BPA’s led to 
improvements in de-
escalation of therapy 

- - DR De-escalation 
according to 
policy  

Yes – 
significant 
improveme
nt when 
engaged 
with 
(p<0.01) 

High 

[121] 
Demonchy 

SC Antibiotic 
prescribing in 
UTI 

Integrated 
into EMR 

Electronic 
guidelines 

CDSS integrated 
into EMR workflow 
 
Developed based on 
previous reported 
CDSS success 

CDSS use appeared 
to improved 
antimicrobial 
prescribing 

- Poor engagement with 
CDSS by physicians 

CBA Adherence to 
guidelines 

No – poor 
use. 
Adherence 
did 
improve 
when CDSS 
used 

Med 

[140] 
Diasinos 

SC Dose & TDM  
optimisation in 
aminoglycoside 
therapy   

Integrated 
into EMR 

Bayesian 
prediction 
software and  
Rules based 
alerts  

Based on guidelines 
for dosing 

- - Poor uptake of 
intervention.  

MM Compliance 
with 
guidelines 

No – poor 
uptake 

Med 
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Appendix 3.  Topic guide for physician interviews 

  
Topic Guide for healthcare professional focus group/ 
Question areas for follow-up semi-structured interviews (where needed to 
explore issues further). 
 

Age ……………………………….  
Gender …………………………  
Primary role ……………………………………………..  
Years worked as healthcare professional ………………………………. Years working in primary role ……………………………….  
Current grade ………………………………………… 
 
1. For a patient with an infection, describe how investigation & management decisions (including prescribing 
antimicrobials) are made  

Prompts:  
what role do physiological parameters have in infection related decision making?  
which is most useful/rank their utility? HR, BP, temp…. etc  
what role do biomarkers have in infection related decision making?  
which is most useful/rank their utility? CRP, PCT, WCC …. etc  
what role do microbiology results have in infection related decision making?  
which microbiology result is most useful? Gram stain, bacteria name, sensitivities..etc  
how do you make decisions when there are no microbiology results?  
What other factors influence choice/dose/frequency of antimicrobial? 

 
2. If you had to rank (i) patient physiology, (ii) biomarker changes and (iii) microbiology results in their importance 
in relation to antimicrobial prescribing, how would you do so?  

Prompts: how do these three factors relate to: sending further tests? If so which?  
starting antimicrobials/narrowing spectrum of antimicrobials/stopping antimicrobials?  
 

3. How is the final decision on infection management made?  
Prompts: on consultant ward round, MDT, infection specialist ward round?  
How are these decisions made out of hours at night? And at the weekend?  

 
4. Do you have a vision of an ideal way for infection management decisions to be made? Or what information 
should be included to make optimal decisions?  

 
5. Are there any barriers to you making what you think are the optimal antimicrobial decisions?  

Prompts: what are they?  
 
6. Are there any aids that help with making the optimal antimicrobial decisions  

Prompts: what are they? The antimicrobial policy? what are it’s good/bad points? 
 
7. How do you access patient data when you are making critical care infection management decisions?  

Prompts: at the end of the bed, in front of a desktop with lab data, in an MDT?  
How do you prioritise these data when lab data and patient data are giving mixed messages?  

 
8. How do you access published medical literature to help make decisions?  

Prompts: intranet, internet, apps, paper based guidelines, books, journal subscription?  
 
9. When do you access published medical information to help make decisions?  

Prompts: at point of care, after a consultation, at the end of the day, only for fixed events?  
How frequently would you do this?  

 
10. Do you feel empowered or dis-empowered to make decisions to start, stop or change antimicrobial 
prescriptions?  

Prompts: why?  
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Appendix 4. Outline of behavioural interventions reported per UK specialty  
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Endocrinology                                   

Geriatrics                                   

Psychiatry                                   

Emergency Medicine                                   

Neurology                                   

Cardiology                                   

Ophthalmology                                   

Paediatric surgery                                   

Paediatrics                       1           

Anaesthetics                                    

Breast Surgery                                   
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Vascular surgery                                   

Obstetrics & 

Gynaecology                                   

Intensive Care                       1           

Neurosurgery               1                   

Transplant Surgery                                    

Dermatology                                  1 

Haematology                                   

Urology                       1         1 

Plastic Surgery                                   

Gastroenterology                        1           

Respiratory                                   

Orthopaedics               1       1           

Rheumatology                                   

General Surgery (ASiT) 1           1   1         1       

Primary Care 2* 2*         1* 1 1     2*           

Nephrology                 1     1           

Genitourinary Medicine                                   

General Surgery             2   1     2   1     1 

Infection / Microbiology 3* 5*     1 1 5*   5   2* 6*   1   2* 8* 

Legend: * Interventions may have been part of a bundle of interventions reported in one abstract 

NB. One behaviour change intervention has been excluded as the full nature of the intervention was not clearly defined  
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Appendix 5: Patient workshop topic guides 

WORKSHOP 1:  

• Conducting a service evaluation to understand and improve the process of shared decision 

making during antimicrobial prescribing by clinicians in secondary care (inc. UCC / OP etc) 

• We are interested in your own opinions and perceptions of this problem and not what you 

think others would want you to say 

• Everything is kept confidential and no one within the Trust will know what has been said by 

you. To ensure that confidentiality is maintained you will be assigned a participant number 

• We ask you however, NOT to reveal any specific personal information 

• Time limit approx. (as above) to complete 

 

Topic Aims My Questions 
 
1. Introduction 
 

 
Consent 
 
Collect baseline demographic 
data 
 
Collect individual opinions for 
triangulation against 
collective group views  

 

• Welcome, brief outline of aims of day 

• Why you have been invited 
Broad range of people who have been prescribed antibiotics in secondary 
care (or around) setting 
Want to improve the information you receive and improve the shared 
decision making process 

• Consent and baseline questionnaires (confidential).  

• At end of session may be invited to participate in product evaluation 
– email address if interested 

• Split into two groups to begin (delegated before session from 
participant charter provided by company) 
 

 
2. Exploration of 

current issues during 

consultations 

 
Reflect on current level of 
information provided to 
patients by clinicians when 
prescribing antimicrobials 
 
Reflect on how this 
information is delivered in 
different settings (on the 
wards, admission vs. 
discharge) 
 
Explore whether this 
information is adequate 
 
 
Explore whether the 
participant feels as if they are 
involved in the decision 
making process in these 
scenarios 
 
Explore barriers to 
“successful” use of 
antimicrobials (i) in hospital 
and (ii) on d/c with 

 

• Can you describe what kinds of information you were provided about 
the antibiotics you were prescribed last time you were in hospital (or 
similar) (i) at the point of prescription (ii) at the point of discharge 
 

• How did you receive this information? 
Prompts for above: 
prescription? antimicrobial box insert? Printed information from the GP 
Did you read it? 
Did it give you the information you were looking for? 
 

• Who gave you most of this information? 
Prompt: Dr / Nurse / Pharmacist? 
 

• Was there anything missing that you would like to have been told / 
had discussed with you? 

 

• What are the common questions about your infection/antibiotics do 
you ask your doctor? 

Prompt: When do you ask these (during or after reflection)? 
 

• Did you feel as though you were a part of the decision making process 
when you were you and your doctor discussed your infection / 
treatment? 

1. Can you explain why you felt this? 
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antimicrobials 
 
 

• What extra information do you seek independently following 
discussion with the doctor? 

Prompt: Is this because: 
1. There is not enough time to have questions addressed 
2. The information provided is not clear 
3. The patient has a personal view on allopathic meds? 
4. Your were embarrassed to ask the question? 

 

• What are the day to day challenges (i) in hospital (ii) following 
discharge with adherence to a course of antibiotics  

Prompt: 
Remembering to take the course / timings / monitoring for s/e’s 
Do you complete the course? 
 

• What do they think is the major barriers to the above? 
Prompt: 
? Lack of information 
? Lack of understanding over importance 
? Other 
 

• When you visit the GP after a visit to hospital do they know all of the 
details about the infection & antibiotics that you received during 
your visit?  
 

• How do they receive this information? 
 

• Would you be able to explain to the GP which meds you are on and 
why?  

 
Prompt:  
Do you tell them the majority of this info? 
If so how do you record it?  
Clinic letter / discharge summary? (do you feel they get the full picture 
from it?) 

 

3. Feedback to group 

 

Allow group to understand all 

issues identified  during each 

groups session  

 

 

• Leads briefly summarise each groups key findings  

• Allow discussion and consensus on any major points of difference 

which arise between groups 

 

3. Generating 

approaches to solving 

these issues 

 
Explore what further 
information patients would 
like to receive 
 
Explore what other support 
with antibiotic use patients 
feel they require 
 
Explore how patients 
currently acquire this 
information which they 
perceive as helpful / whether 
they receive this support 
 
Does this information 
empower them to take an 
active role in their infection / 
antimicrobial therapy 

 

• How do you go about finding information about the infection or 
antibiotics you are given? (a) during your hospital stay (b) once your 
are discharged with them? 
 

• On attaining this information do you feel that it helps you participate 
more actively in discussions about your infection / antibiotic 
treatment with the doctors and other HCP’s? 

Prompt:  
Do you feel as if you are involved in the decision making? 
Do you feel that your views and ideas are considered? 

 

• Is there any difference in the information you require on this (i) when 
in the hospital c.f. (ii) at the point of discharge on antibiotics 

Prompts:  
Do you use your mobile phone to look up things the doctor tells you about 
your infection / antibiotics?  
Is this more helpful in or out of hospital? 
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Explore approaches that 
patients would like to be 
available to attain this 
information 
 
Investigate whether  any 
other support would be 
helpful 
 
Nominal group technique to 
generate a list of solutions 
and ranks for their level of 
importance 
 

• Are there any other measures that would be helpful in helping you 
better understand your infection / support you in taking the course of 
antibiotics? 

Prompt: 
(a) Reminders to take medication 
(b) PMH log / Past infection or abx log for discussion with GP 
(c) Support networks / chat rooms… 
(d) Mind map / profiles of health care professionals  
(e) Recording facilities? 
(f) Medication passport? 

 

• Brain storm ideas of how patients could receive / access this 
information / support - Rank using nominal group tech.  

 

• Consensus through discussion 
Prompt: 

(a) Route of info (app / email / text message / interactive / recording 
/ webcast / paper based) 

(b) What would be provided 
(c) Level of detail 
(d) Original info? Reputable source ? individuals own experiences 

(uncensored) 
(e) Ideal timing to receive this information 

 

• If not discussed above: Would you be happy if your doctor 
communicated with you using a mobile application to support this? 

• Would you want to receive personalised information about your 
infection and the treatment of it via your phone? 

Prompt:  
What would you find acceptable / not acceptable?  
What alternative method would you prefer? 

 

4. Triangulate 

 
Confirm results generated 
through each group  
 
Explore whether there are 
any other comments / 
observations participants 
wish to make 
 

 

• Present both groups nominal group exercises 

• Summarise similarities and differences 

• Does anyone wish to discuss these? 

 

WORKSHOP 2:  

Requirements: 

• Abstract from BMJ Open and figures 

• Mock ups for discussion 

• Current information leaflets 

• Observer to take notes 

• Split into two groups of 3 (4) 

 

Introduction: 
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In September 2015 we held a workshop with 10 members of the public to explore their 

experience of being involved in decision making around management of infections they have 

been treated for in hospital. This showed us that clinicians and healthcare workers often fail to 

provide you with the information that you want to know and in a format that allows you to 

digest it when you are feeling unwell. This appeared to lead to misunderstandings about 

antibiotics and how to use them during future episodes as well.  

The participants have worked with us to develop an idea about how we should deliver this 

information to help promote your engagement in the decision making process and today we 

would like you to help us develop this further over the next 30 minutes. 

 

Time Aim Question plan 
0-5min Introduction Introduction and tell us whether you have ever received 

antibiotics from a hospital or GP (brief statement) 
Outline of paper findings and figures 

• PDF format – flexible (can be printed / emailed / 
opened on mobile device) 

• Allows personalised information so not general 
like  

• NOT MEANT TO BE REPLACEMENT FOR PHARMA 
LEAFLET 

10min Confirm participant agreement 
with these findings 

• Do you agree with the groups views from the previous 
workshop we held? 

• Would you suggest anything that is different we should 
focus on / improve? 

25min Hand out of mock ups for 
consideration 
 
 
 
 
 
 
Work through hand outs 
 
 
 
 
 
 
 
 
 
Explore whether this is helpful as a 
standalone information leaflet  

• Please imagine that you are in hospital and have just 
sat down with the doctor. They have told you that you 
have a chest infection and are going to give you some 
antibiotics. You are given this information sheet by the 
doctor who tells you to have a read and let them know 
if you have any questions. 

 

• Explore:  
Is the wording correct? 
What information is missing? Is there too much information? 
Are the links to other sources of information helpful? 
Is the layout logical and easy to understand? 
How would you change this? 
 
 

• Would this help increase your understanding of your 
treatment? 

• When would you want to receive this? At the time you 
are given the antibiotic or on discharge? 

• Do you feel as if it would help you to question or 
challenge decisions about your management? 

• Should a healthcare worker go through this with you or 
would it be helpful if you were left to consider it by 
yourself?  

If so who should / could go through it with you?  

• Would this add to your understanding of what your 
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infection and management? 

30min Confirm findings Participants confirm the best format for presenting data 
 
Participants confirm how this information sheet should be 
used to promote their engagement in the decision process 
 
Participant agreement on what time this should be delivered 
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Appendix 6: Patient leaflet pilot survey questions 

Patient engagement module – pre-intervention survey 

Thank you for agreeing to take part in the following survey. At Imperial College, researchers have been 

working with patient groups to develop a simple intervention to improve the way that healthcare professionals 

provide information to patients. Please complete the following questions without assistance from any member 

of staff. If you are unsure please leave the space blank or mark the answer with a cross. Thank you once again 

for your time and support.  

1. What is the name if the infection you are being treated for? 

________________________________________________________________________ 

2. What is the name of the organism causing the infection that you are being treated for 

(e.g. E.coli) 

________________________________________________________________________ 

3. I am currently being given the following antibiotic(s) for my infection 

a. Name(s) 

__________________________________________________________________ 

b. Doses (amount) 

__________________________________________________________________ 

c. Length (number of days) 

__________________________________________________________________ 

4. Side effects I have been warned about include 

________________________________________________________________________ 

 

5. I could drink alcohol with this (these) antibiotic(s):  True / False / Unsure 

 

6. I could drive whilst taking this (these) antibiotic(s):  True / False / Unsure 

 

7. What do you understand by the term “antimicrobial resistance” or “drug resistant 
infection” 

________________________________________________________________________

________________________________________________________________________ 

8. How long have the doctors/nurses/pharmacists caring for you spent talking to you about 

your infection and its treatment:  

they haven’t / <10 minutes / 10-30 minutes / >30 minutes 

 

9. Has the doctor provided all the information about your infection that you wanted to 

know? 

Yes / No / Unsure 

10. What outstanding questions do you have? 
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________________________________________________________________________

________________________________________________________________________

______________________________________________________________________  

11. Has the doctor provided you with information about the medication (antibiotics) you are 

receiving? 

Yes / No / Unsure 

 

12. What outstanding questions do I have? 

________________________________________________________________________

________________________________________________________________________

______________________________________________________________________  

13. On discharge from the hospital will you have to continue taking antibiotics? 

Yes / No / Unsure 

 

14. If so, for how long? 

______________________________________________________________________ 

15. When will you have to see a doctor about your infection after being discharged? 

______________________________________________________________________ 

16. Will this be your GP or a doctor at the hospital? 

________________________________________________________________________
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Patient engagement module – post-intervention survey 

Thank you for agreeing to take part in the following survey. At Imperial College, researchers have been 

working with patient groups to develop a simple intervention to improve the way that healthcare 

professionals provide information to patients. Please complete the following questions without assistance 

from any member of staff. If you are unsure please leave the space blank or mark the answer with a cross. 

Thank you once again for your time and support.  

1. What is the name if the infection you are being treated for? 

_____________________________________________________________________

___ 

2. What is the name of the organism causing the infection that you are being treated 

for (e.g. E.coli) 

_____________________________________________________________________

___ 

3. I am currently being given the following antibiotic(s) for my infection 

a. Name(s) 

_______________________________________________________________

___ 

b. Doses (amount) 

_______________________________________________________________

___ 

c. Length (number of days) 

_______________________________________________________________

___ 

4. Side effects I have been warned about include 

_____________________________________________________________________

___ 

 

5. I could drink alcohol with this (these) antibiotic(s):  True / False / Unsure 

 

6. I could drive whilst taking this (these) antibiotic(s):  True / False / Unsure 

 

7. What do you understand by the term “antimicrobial resistance” or “drug resistant 
infection” 

_____________________________________________________________________

_____________________________________________________________________

______ 
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8. How long have the doctors/nurses/pharmacists caring for you spent talking to you 

about your infection and its treatment:  

they haven’t / <10 minutes / 10-30 minutes / >30 minutes 

 

9. Has the doctor provided all the information about your infection that you wanted to 

know? 

Yes / No / Unsure 

10. What outstanding questions do you have? 

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_______  

11. Has the doctor provided you with information about the medication (antibiotics) you 

are receiving? 

Yes / No / Unsure 

 

12. What outstanding questions do I have? 

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_______  

13. On discharge from the hospital will you have to continue taking antibiotics? 

Yes / No / Unsure 

 

14. If so, for how long? 

_____________________________________________________________________

_ 

15. When will you have to see a doctor about your infection after being discharged? 

_____________________________________________________________________

_ 

16. Will this be your GP or a doctor at the hospital? 

_____________________________________________________________________
__ 

17. Did you find the information leaflet useful?  
(Not at all) 1 2 3 4 5 6 (extremely)  

18. Why? 
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_____________________________________________________________________

_____________________________________________________________________

____ 

19. What can be improved? 

_____________________________________________________________________

_____________________________________________________________________

____ 

20. Would you use this leaflet again? 

_____________________________________________________________________

_____________________________________________________________________

_____________________________________________________________________

_______ 

21. When would the best time to be given this be? 

_____________________________________________________________________

_____________________________________________________________________

____ 
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Appendix 7. Biosensor fabrication protocols 
Extract of my finalised protocols for biosensor fabrication that I developed during the biosensor 

development. 

1.0 Disc Electrode Fabrication 

1.1 Electrode Surface Preparation & Cleaning 

1.1.1 Equipment 

• Counter (platinum) & reference (Ag/AgCL) electrode 

• Gold Electrode 

• CH instrument – CHI 650a potentiostat 

• Mettler Toledo SevenEasy pH meter 

• Sonicator 

• Emry paper and Alumina powder 

• 0.5M  H2SO4  

1.1.2 Electrode Polishing 

Polish with Emry paper 

• P1200 – 3 minutes circle of 8 

• Rinse de-ionised water & sonicate for 3 minutes 

• P2500 – 3 minutes circle of 8 

• Rinse de-ionised water & sonicate for 3 minutes 

• P4000 – 3 minutes circle of 8 

• Rinse de-ionised water & sonicate for 3 minutes 

Polish with alumina powder on cloth 

• 1μm alumina powder – 3 minutes circle of 8 

• Rinse de-ionised water & sonicate for 3 minutes 

• 0.3 μm alumina powder – 3 minutes circle of 8 

• Rinse de-ionised water & sonicate for 3 minutes 

• 0.05 μm alumina powder– 3 minutes circle of 8 

• Rinse de-ionised water & sonicate for 3 minutes 

Voltammetric cycling  

• Gold or platinum disc electrode 

• Against platinum counter electrode & Ag/AgCl reference electrode  

• In 0.5-1.0M H2SO4 

GOLD DISC ELECTRODE     PLATINUM DISC ELECTRODE 

 

 
Setting Value 

E0 0 V 

E range 0.4 – 1.6 V 

E step (mV) 10 mV 

N / Cycles 50-100 scans 

Rate 50 mV/sec 

Setting Value 

E0 0 V 

E range -0.25 – 1.3 V 

E step (mV) 10 mV 

N / Cycles 50-100 scans 

Rate 50 mV/sec 
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1.2 Iridium Oxide Recipe 

1.2.1 Reagents 

Based on Yamanaka, K. (1991) 

• Iridium chloride hydrate 0.15g 

• 1ml aqueous hydrogen peroxide (H2O2:30wt%) 

• Oxalic acid 0.5g 

• Anhydrous potassium carbonate 

1.2.2 Equipment required 

• Magnetic stirrer with round bottom flask (with lid) and clamp stand 

• Mettler Toledo SevenEasy pH meter 

• Fume cupboard for hydrogen peroxide addition 

1.2.3 Method 

1. Weigh out Iridium chloride hydrate (IrCl4 H2O) - 0.15g 

2. Dissolve in 100ml H20 using magnetic stirring 

3. Stir for 30 minutes  

4. Add 1ml of aqueous hydrogen peroxide solution (H2O2:30wt%) with light swirling 

5. Stir for 10 minutes 

6. Weigh out oxalic acid ((COOH)2 . 2H2O) - 0.5g 

7. Add to the solution and stir for 10 minutes 

8. Weigh out anhydrous potassium carbonate (K2CO3) ~4g powder  

9. Calibrate Mettler Toledo SevenEasy pH meter 

10. Add small amounts to adjust the solution to pH to 10.5  

11. Leave standing for at least 2 days to stabilise at room temperature. Once turned violate store at   
4oC. Can be used for up to 120 days.  
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1.3 Iridium Oxide Electro-deposition & pH Calibration 

1.3.1 Amperometric Deposition of Iridium Oxide 

• Amperometrically deposition against Pt coil & Ag/AgCl reference electrode   

• Can be performed using CH instrument – CHI 650a potentiostat or Ivium potentiosta 

• Immerse Au or Pt electrode in IrOx solution for 10 minutes  

• 300 seconds at constant potential of 0.95V 

• Leave immersed for further 5-10 minutes 

• 300 seconds at constant potential of 0.95V 

• Leave immersed for further 5-10 minutes 

• 300 seconds at constant potential of 0.95V 

• Stored in DI H2O at room temperature until ready for calibration. 

1.3.2 pH calibration 

• Performed using CH instrument – CHI 650a potentiostat 

• pH measurements performed with Mettler Toledo SevenEasy pH meter 

• Phosphate buffer mixed of 0.02M Na2HPO4 & 0.1M KNO3 

• 2.839g Na2HPO4 

• and 10.10g KNO  

• in ONE LITRE H2O 

 

• Calibration solution prepared at 0.5 pH stepwise increments from 4.0 – 8.0 by adding 0.05M 

H2SO4 dropwise to buffer whilst stirring.  

• Measure Open Circuit Potential (OCP) over 300 seconds or until stabilised  

• OCP detected against Ag/AgCl reference electrode for pH range 4.0-8.0 

• Washed and stored in DI H2O at room temperature until ready for fabrication. 
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1.4 Enzyme immobilisation techniques 

1.4.1  Cellulose acetate technique 

Mix:  

• 24g cyclohexaone 

• 24g acetone 

• 1g cellulose acetate (39.8% acetyl content) 

• Stir at room temperature until cellulose acetate dissolves 

• Layer thin film onto the IrOx coated electrode probe 

• Evaporate the solvent – leaving the film on the electrode 

Prepare 

1. 5ml of: 0.1M phosphate buffer (pH 7.4) with 25mg/ml (approx.) beta-lactamase 

enzyme 

2. 5ml of: 0.1M phosphate buffer (pH 7.4) with 50mg/ml Bovine Serum Albumin 

solution 

3. 2.5% glutaraldehyde solution   

Mix equal amounts of 1 & 2  

Place solution onto the cellulose acetate membrane 

Then add ½ volume of above of 3 

After 1 – 2 hours place beta lactam solution on top of the outer membrane & allow the water to 

evaporate 

Step Description Timing 

Layer cellulose acetate onto 
disc electrode 

10-40µL tested  
Pipetted on – forming dome 
shaped 

Left to evaporate solvent for 
15-20 minutes 

Beta-lactamase – BSA 
solution (1&2) added 

20µL added Left for 2 minutes 

2.5% Glutaraldehyde added 10µL added Leave for 1-2 hours (mean 1.5) 

Add beta-lactamase only (1) 20µL added Leave to evaporate for 20 
minutes 

STORE IN EITHER DI H20 or 
PBS at 40C 

  

 

 

1.4.2 Polyethylenimine technique (current) 

• Polyethylenimine diluted to 5% in H20 and added to disc electrode using pipette 

Prepare 

1. 5ml of: 0.1M phosphate buffer (pH 7.4) with 25mg/ml (approx.) beta-lactamase 

enzyme. 
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2. 5ml of: 0.1M phosphate buffer (pH 7.4)with 50mg/ml Bovine Serum Albumin 

solution 

3. 2.5% glutaraldehyde solution   

Mix equal amounts of 1 & 2  

Place solution onto the PEI membrane 

Then add ½ volume of above of 3 

After 1 – 2 hours place beta lactam solution on top of the outer membrane & allow the water to 

evaporate 

Add a final layer of PEI and allow to dry 

Step Description Timing 

Layer 5% PEI onto 
electrode 

1µL  optimal 
Pipetted on and spread using 
pipette tip 
(1-20µL previously tested) 

Left to dry for 30 minutes 

Beta-lactamase – BSA 
solution (1&2) added 

5µL added 
(1-20µL previously tested) 

Left for 2 minutes 

2.5% Glutaraldehyde added 2.5µL added 
(1-10µL previously tested) 

Leave for 1-2 hours (mean 1.5) 

Add beta-lactamase only (1) 5µL added 
(1-20µL previously tested) 

Leave to evaporate for 20 
minutes 

Layer 5% PEI onto 
electrode 

1µL  optimal 
Pipetted on and spread using 
pipette tip 
(1-20µL previously tested) 

Left to dry for 30 minutes 

STORE IN EITHER DI H20 or 
PBS at 40C 

  

 

1.4.3 Carbomethyl Dextran (CMD) approach  

• Polyethylenimine diluted to 5% in H20 and added to disc electrode using pipette 

Prepare: 

1. 5ml of: 0.1M phosphate buffer (pH 7.4) with 25mg/ml (approx.) beta-lactamase enzyme 

2. 5ml of: Carbomethy Dextran (CMD) dissolved in H20 [10mg/ml] 

Mix equal amounts of 1 & 2  

Place solution onto the PEI membrane 

After 1 – 2 hours place beta lactam solution on top of the outer membrane & allow the water to 

evaporate 

Add a final layer of PEI and allow to dry 
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Step Description Timing 

Layer 5% PEI onto 
electrode 

1µL  optimal 
Pipetted on and spread using 
pipette tip 
 

Left to dry for 30 minutes 

Beta-lactamase – CMD 
solution (1&2) added 

3µL added 
 

Left for 1.5 hours 

Add beta-lactamase only (1) 3µL added 
 

Leave to evaporate for 20 
minutes 

Layer 5% PEI onto 
electrode 

1µL  optimal 
Pipetted on and spread using 
pipette tip 
(1-20µL previously tested) 

Left to dry for 30 minutes 

STORE IN EITHER DI H20 or 
PBS at 40C 

  

 

2.0 Microneedle Fabrication checklist 

No. Step Description Comment 

1 Drill holes x2 per microneedle array Dentist drill   

2 Thread and tie off wire    

3 Silver expoxy wire to metal 4 hours to set   

4 Seal with araldite / epoxy resin Araldite sets within 2 hours Previous issue with 
expoxy (? Due to out 
of date tube) 

5 Cleaning with ethanol solution  Optional 

6 Iridium oxide deposition 1. 10 minutes soaking in 
IrOx 

2. 300 seconds at 0.95V 
3. 5-10 minutes soaking 
4. 300 seconds at 0.95V 
5. 5-10 minutes soaking 
6. 300 seconds at 0.95V 

10 minute rest at each 
point appears to work 
better on these MN’s 

7 pH calibration pH 4.0-8.0 
OCP’s take ~400 seconds to 
reach steady state 

 

8 5% PEI layer 5µL & leave for 10-20 
minutes 

Drop wise 

9 Add 50:50 mix of beta-lactamase & BSA 
solution 

5µL and leave for 2 minutes Drop wise 

10 Add 2.5% glutaraldehyde 3-5µL and leave for 1.5-2 
hours 

Drop wise to get good 
coverage 

11 Add beta-lactamase solution 5µL and leave for 20-30 
minutes 

Drop wise 

12 Add 5% PEI layer 5µL and leave for 20-30 
minutes 

Drop wise 
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Appendix 8. Technical Appendix 

 

a8.1 Clinical Decision Support System 

This additional architecture for the CDSS described in Chapters four & five was in place 

before the commencement of this investigation and was initially developed by an external 

company (L-shift; http://www.lshift.net/). This company created the secure application 

programming interface (API) described to meet the current directives of the Data Protection 

Act 1998, The Privacy and Electronic Communications Directive 2003, and the EU Directive 

2006/24/EC for data retention [361,362].  

All programming within this study was performed by Mr Bernard Hernandez, a PhD student 

in the department of Electrical Engineering at Imperial College London, supervised by Dr 

Pantelis Georgiou. The server side of the CDSS has been developed using Java with object-

relational mapping (Hibernate ORM) of the Java library to the structured-query-language 

(SQL) databases routinely used within the Trust. A Lightweight Directory Access Protocol 

(LDAP) facilitates the authorisation of users who have secure access to the NHS server. The 

user interface for the CDSS is a web-based application with a front-end of HyperText 

Markup Language (HTML), Cascading Sliding Sheets (CSS), and JavaScript interface. The 

interface was designed to run across all internet browsers and is responsive to changes in 

screen size. This means that is adjusts according to whether it accessed from a computer, 

tablet, or mobile phone. 

Data stored within the CDSS resides only on the server side. Data is stored with patient 

name and hospital numbers replaced using an SHA#256 pseudo-anonymisation protocol. 

Within the CDSS server, I was involved in the development of six modules. These are 

summarised in the Figure below. 

http://www.lshift.net/
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Summary of clinical decision support system modules developed within the NHS server. 
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a8.2  Description of closed-loop controllers 

Proportional-Integral-Derivative control 

PID controllers depend on continuous, or quasi-continuous, monitoring (e.g. every 5 

minutes). They are used to control continuous infusions maintaining drug concentrations 

at a set target (e.g. either target concentration or PK-PD index). As their name suggests, 

following data input the PID has three coefficients; the proportional, integral, and 

derivative. It alters these three coefficients to optimize the response against its target. 

The simplicity and robustness of PID algorithms make them extremely suitable for the 

range of operating conditions found in healthcare. For antimicrobial management, this 

may be especially useful in critical-care due to the current drive towards continuous 

infusions of beta-lactam antimicrobials and nephrotoxic agents, such as vancomycin to 

optimize the PK exposure and PD properties.[395,423,590,595–599] Furthermore, 

where current continuous infusion protocols require sporadic plasma TDM, this 

mechanism offers an opportunity for real-time response to changes in individual patient 

PK. For example, this would account for intra-individual variations in PK caused by 

changes in the patients inflammatory response, fluid shifts, augmented renal clearance, 

and in changing drain outputs that may currently be missed with sporadic TDM sampling 

[600–603]. 

 

Iterative Learning Control in closed-loop control 

ILC provides the option for optimization of bolus or oral therapy. This can utilize data 

from continuous monitoring to optimize the amount, timing, and rate at which a bolus (or 

oral dose) is delivered. Like PID, ILC algorithms have wide applications but work on the 

assumption that during repetitive tasks (such as antimicrobial bolus dosing at regular 

intervals) there will be some error in target attainment (e.g. overshoot or undershoot). 

The ILC aims to adjust the input, in this case the bolus dose, to reduce the transient 
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error encountered during routine drug delivery and therefore optimize the accuracy of 

the system. This type of controller may be more applicable to non-critical care or the 

community setting (such as out-patient parenteral therapy or oral dosing). It may also be 

utilized in specialist populations, such as paediatrics, obesity, cystic fibrosis, and 

pregnancy, where rich data collection will allow for tailored therapy. This could be 

augmented by linking of real time data generation with previous experience housed 

within machine learning algorithms, as has been demonstrated by the use of Case-

Based-Reasoning in diabetes management [604].  

 

a8.3 Microneedle fabrication process 

The microneedles were fabricated in a three-stage process. The solid work designs were 

transferred to a FANUC ROBOCUT α-OiC (Series 180is-WB) machine for wire erosion. 

It was set to make three milling passes over the copper-tungsten (Cu-W) (Erodex, UK) 

block to create master electrodes for spark erosion. The Cu-W master was then used for 

spark erosion (JOEMARS EDM AZ50DR) of an aluminium block (Erodex, UK) in to 

obtain the metal inlay. This metal inlay was used for the injection moulding of 

polycarbonate pellets. The polycarbonate pellets were dried at 110 °C for 24 for hours 

under vacuum prior to use before injection moulding process at Tm = 270 °C (PC melt 

temperature), Tw = 80 °C (tool temperature) at injection speed of 20 cm3 s−1 and shot 

volume of 4.4 cm3 and a cooling time (tc) of 5 seconds. Each polycarbonate microneedle 

structure (25 × 25 × 2 mm) comprised of four 4x4 microneedle arrays. They 

functionalised the needles by taking bare microneedle arrays and sputtering them with 

chromium (15 nm) / platinum (50 nm) to obtain the working electrodes. One of the 

microneedle arrays was sputtered with Ag (150 nm), which I modified to form an Ag / 

AgCl reference electrode by treating with a saturated solution of FeCl3 [436]. 
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