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Abstract

There is an increasing need for turbulence models with fluid-structure interaction

(FSI) in many industrial and environmental high Reynolds number flows. Since the

complicated structure boundaries move in turbulent flows, it is quite challenging to

numerically apply boundary conditions on these moving fluid-structure interfaces.

To achieve accurate and reliable results from numerical FSI simulations in turbu-

lent flows, a high fidelity fluid-structure turbulence model is developed using an

immersed-body method in this thesis. It does this by coupling a finite element mul-

tiphase fluid model and a combined finite-discrete element solid model via a novel

thin shell mesh surrounding solid surfaces.

The FSI turbulence model presented has four novelties. Firstly, an unsteady Reynolds-

averaged Navier-Stokes (URANS) k−ε turbulence model is coupled with an immersed-

body method to model FSI by using this thin shell mesh. Secondly, to reduce the

computational cost, a log-law wall function is used within this thin shell to resolve

the flow near the boundary layer. Thirdly, in order to improve the accuracy of the

wall function, a novel shell mesh external-surface intersection approach is introduced

to identify sharp solid-fluid interfaces. Fourthly, the model has been extended to

simulate highly compressible gas coupled with fracturing solids.

This model has been validated by various test cases and results are in good agree-

ment with both experimental and numerical data in published literature. This model

is capable to simulate the aerodynamic and hydrodynamic details of fluids and the

stress, vibration, deformation and motion of structures simultaneously. Finally, this

model has been applied to several industrial applications including a floating struc-

ture being moved around by complex hydrodynamic flows involving wave breaking; a

blasting engineering simulation with shock waves, fracture propagation, gas-solid in-
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teraction and flying fragments; fluid dynamics, flow-induced vibrations, flow-induced

fractures of a full-scale vertical axis turbine. Some useful conclusions, e.g. how to

model them, how to make them stable and how to predict when they will break, are

obtained by this FSI model when applying it to the above applications.
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Chapter

ONE

Introduction

The research motivation is given in this introductory chapter. The progress of fluid-

structure interaction (FSI) in computational fluid dynamics (CFD) is reviewed. The

contributions and outline of this thesis are presented.
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Chapter 1: Introduction

1.1 Research motivation

The increase in computational power has enabled complex problems and situations

to be simulated, numerical simulations are widely used in a variety of research areas

including cosmology, physics, biology, chemistry, engineering etc. In the field of com-

putational physics, many applied problems involve multi-physics, for instance, fluid-

structure interaction (FSI), acoustic disturbances inside elastic structures, magneto-

hydrodynamics, and chemical reactions in fluid flow etc. (Alotto et al., 2013). FSI is

a multidisciplinary study involving solid mechanics and fluid dynamics. In numerical

FSI, the structural mechanics and fluid dynamics are numerically solved together to

obtain the stress, deformation, motion and multi-body contact for solids, and the

pressure, velocity and density for fluids.

Recently, the fluid-structure coupling methods have been applied to various fields,

ranging from civil engineering, marine engineering to bioengineering. The applica-

tions of FSI are successful in many fields including urban pollution (Garćıa et al.,

2011), road vehicle aerodynamics (Jindal et al., 2005), blasting (Mohammadi &

Pooladi, 2012), turbulent flow in wind and tidal turbines (Kang et al., 2012) and

cardiac blood flows (Peskin, 1972). In these various engineering applications, FSI

plays a significant role to understand these problems and to improve the new design

methods in these applications. Thus, high fidelity and trustable FSI models are in

high demand in numerous research fields and industrial applications.

However, there are several challenges in FSI modelling (Bungartz & Schäfer, 2006):

• Coupling of different types of partial differential equations (PDEs) in structural

mechanics and fluid dynamics;

• Moving structural boundaries, especially when dealing with fast-moving or large

deformable solids;

• Coupling different mesh systems typically occurs when coupling continuum me-

chanics;

• Turbulence modelling with moving interaction boundaries;

• Complex boundaries and stabilities;

• Speed and efficiency of the coupling system.

To overcome these challenges, a large number of numerical FSI models have been
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developed. These models can be divided into different groups depending on dif-

ferent criteria. Based on coordinate systems, they are divided into three groups:

Lagrangian-Eulerian (ALE) scheme (Van Loon et al., 2007; Farhat et al., 1998),

Lagrangian formulation (Idelsohn et al., 2003; Ryzhakov et al., 2010; Rafiee & Thi-

agarajan, 2009) and Eulerian formulation (Dunne & Rannacher, 2006; Coquerelle

& Cottet, 2008; Yang, 2017; Yang et al., 2018). The Lagrangian-Eulerian (ALE)

scheme is one of the most common models for FSI since Lagrangian solid solvers

and Eulerian fluid solvers have been developed separately for several decades. The

coupling procedures can keep the advantages in both the Lagrangian solid solver and

the Eulerian fluid solver. However, special treatments at the fluid-structure inter-

faces are required to make it stable. In the Lagrangian formulation FSI model, the

descriptions of both the fluid and the structure are in one Lagrangian form. Most of

these Lagrangian formulation FSI approaches are meshless e.g. Smoothed Particle

Hydrodynamics (SPH) (Idelsohn et al., 2003; Rafiee & Thiagarajan, 2009) methods.

It is easy to implement Lagrangian formulation FSI models since the fluid and solid

are in one form. However, there could be some limitations when applying them to

compressible flow FSI situations. In the Eulerian formulation, both the fluid and

the solid are described in Eulerian formulation and the level set functions are used

to represent the fluid-structure interfaces. The Eulerian formulation FSI models are

able to treat large solid deformations. This is the main advantage compared to the

ALE schemes. However, this makes it more computationally expensive than ALE

schemes. Additionally, it could be difficult for Eulerian formulation FSI models to

handle fracture propagations inside the solid.

Based on the temporal algorithm which performs the coupling between the solid

mechanics and fluid dynamics, the FSI models can be sorted into two types: strong

coupling models (Hübner et al., 2004; Ryzhakov et al., 2010; Michler et al., 2004)

and weak coupling models (Viré et al., 2012, 2015; Farhat et al., 1998; Jaiman

et al., 2006). The strong coupling approaches solve the fluid and solid equations

in a coupled matrix implicitly at the same time, while the weak coupling models

apply different approaches to fluids and solids. Strong coupling approaches are more

stable and accurate than weak coupling models because of the same system used

in them. However, this makes them computationally more expensive. The weak

coupling approach enables existing advanced solid mechanics solvers couple with

complex fluid solvers. Different meshes and time steps can be used in the solid and

fluid solvers to boost the coupling system (detailed review of these two kinds of FSI

models can be seen in Section 1.2.1).
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In this work, a weak coupling FSI model has been built developed on an immersed-

body method (Kajishima et al., 2001). The original immersed-body method relaxes

the fluid velocities towards solid velocities inside the solid domain. It only couples

incompressible flow with rigid particles in 2D. The present FSI model has been

rebuilt and extended based on the original immersed-body method. It relaxes the

fluid velocity to the solid velocity inside a thin shell mesh surrounding the solid

surface. Additionally, it has combined a URANS turbulence model, a cohesive zone

fracture model and an equation of state for compressible flow. Therefore, the present

2D & 3D FSI model aims at coupling incompressible, compressible and turbulent

flows with the moving, deforming and fracturing solids. The details of the model

are given in chapters 2 - 6.

Applications of the FSI model for engineering is extremely important in industries.

The FSI model developed in this work is applicable in three fields of engineering:

moving structure coupled with the multiphase flow, fracturing solids coupled with

compressible gas and tidal turbine operating in a turbulent flow. Moving structures

in multiphase flows are popular in coastal and ocean engineering. Modelling of

structures floating in fresh or sea water requires that the air-water interface as well

as the solid-air, solid-water interfaces are modelled, especially for the case of breaking

waves. The solid-air and the solid-water interfaces are the positions where the fluid-

structure interaction occurs. The understanding of wave-structure interactions is

very important in ocean dynamics, for instance, the impacts of ocean waves on

ships, floating wind turbine platforms, and ocean oil platforms. The immersed-

body method which combines with an advanced interface capturing method is a

good choice for these applications. In rock blasting, cutting, mining and tunnelling

industries, a highly compressible gas model is implemented and the immersed-boy

method can simulate shock waves, fracture propagation, gas-solid interaction and

flying fragments. Importantly, in the field of the renewable energy industry and

research, wind and tidal turbines have been widely used in the past decade. In order

to design the turbines and optimize the performance of these energy generators,

the numerical fluid-structure interaction models have been introduced to simulate

the rotating turbine in the water and air. In these simulations, complex moving

structures in turbulent air and water flow convert the wind and tide energy to

electricity. To ensure these turbines operate stably with high power efficiency, the

detailed FSI models are required to simulate the real-scale wind and tidal turbines

to predict the unstable operating conditions and give suggestions to increase the

power generation efficiency.
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1.2 Literature review of FSI in CFD

The literature review of FSI on incompressible flow, compressible flow coupling with

fracture models, turbulent flow, and renewable energy is presented in this section.

The literature in these fields of FSI is extensive. However, this review is limited to

my experiences and perspective, therefore, it may not include all relevant literature.

1.2.1 Incompressible flow FSI

The modelling of FSI for incompressible viscous flows is of great relevance in various

fields of engineering, such as civil engineering, marine engineering and bioengineer-

ing, etc. Its applications include urban pollution (Garćıa et al., 2011), offshore

wind turbines (Rasheed et al., 2014; Hsu & Bazilevs, 2012), nuclear energy (Buchan

et al., 2014; Jewer et al., 2014), coastal engineering (Latham et al., 2009), cardiac

blood flows (Peskin, 1972; Van Loon et al., 2006), and particulate flows (Feng &

Michaelides, 2005; Apte et al., 2009; Uhlmann, 2005; Kempe & Fröhlich, 2012).

Two types of approaches in the area of computational FSI have been developed

to couple both the solid and fluid equations. One is the strong coupling approach

referred to here as the monolithic coupling method (Gibou & Min, 2012; Feng &

Michaelides, 2005; Apte et al., 2009; Hübner et al., 2004; Ryzhakov et al., 2010;

Michler et al., 2004), in which both equations are solved in a coupled fashion by

forming matrix equations implicitly containing the coupling terms. Compared with

other existing approaches, monolithic approaches are more stable and more accu-

rate. However, they often require the same mesh and time step size for both the fluid

and solid models. An alternative is to use weak coupling models (Viré et al., 2012,

2015; Farhat et al., 1998; Jaiman et al., 2006), in which different approaches are

used for fluids and solids. These weak coupling models are also called partitioned or

staggered methods due to the solid and fluid equations being solved separately with

explicitly represented coupling terms. A key advantage of staggered approaches is

that they readily enable different meshes and time steps to be used in the solid and

fluid models. Among weak coupling methods, the volume penalization method is

used in the literature (Viré et al., 2012, 2015; Gibou & Min, 2012; Engels et al.,

2015) to ensure that the action-reaction force is balanced at the interface between

the solids and fluids. This approach has similarities with the approach introduced

here as both approaches relax the solid and fluid velocities towards one another at

the solid-fluid interface.
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Based on different mesh schemes, these FSI models can be divided into Arbitrary

Lagrangian-Eulerian (ALE) schemes and immersed boundary/body methods. The

ALE method couples a Eulerian to a Lagrangian formulation to solve fluid-structure

interaction and multiphase flow problems via a body conforming Cartesian grid.

However, a non body conforming Cartesian grid is used in immersed boundary/body

methods. It is worth to notice that there are some differences between the immersed

boundary and immersed-body methods. The immersed boundary method uses a

spring force term and a delta function (Peskin, 1972) in fluid momentum equation

to ensure the force balance between the fluids and solids. while the immersed-body

method relaxes the fluid velocities towards solid velocities inside the solid domain

to solve the fluid-structure interaction problem (Kajishima et al., 2001). ALE ap-

proaches (Van Loon et al., 2007; Farhat et al., 1998) ensure that the velocities of

solids and fluids are matched at the interface, whilst both the fluid and solid sim-

ulations share the same mesh. Despite the algorithm being robust for the small

movements of solids, it requires a high computational cost and may cause numerical

instabilities when dealing with large deformations or displacements of solids. To

tackle this problem, the immersed body method has been developed that allows us

to use different meshes for the solid and fluid models (Peskin, 1972; Griffith et al.,

2007; Viré et al., 2012, 2015; Glowinski et al., 1994; Van Loon et al., 2007). This

idea can be seen in the original immersed boundary method, which was used to

resolve flow patterns around heart valves by Peskin (1972). In this method, an im-

mersed boundary was employed to link moving solid and fluid boundaries. (Griffith

et al., 2007) enabled the adaptive mesh for the original immersed boundary method.

Moreover, fictitious domain methods were developed and tested in (Glowinski et al.,

1994; Van Loon et al., 2007). The fictitious domain methods are based on the idea

of original immersed boundary method. Sometimes, the fictitious domain methods

are called as domain embedding methods. Because different solvers for the fluid and

solid are allowed in fictitious domain methods, they are flexible and easy to choose

fast solvers. Recently, the separate solver concept has been extended, then a weak

coupling immersed body method has been developed by Viré et al. (2012). This

method is built based on dual meshes: a fluid and a solid mesh. The fluid mesh cov-

ers the entire computational domain including both the fluid and solid areas while

the solid mesh is used only in the solid area. This versatile algorithm enables dis-

tinct finite element models to be used in fluid and solid equations. In this approach,

to ensure that the projection of the force is equal and opposite to the solid and

fluid equations, a novel Galerkin projection algorithm was introduced(Viré et al.,

40



1.2: Literature review of FSI in CFD

2012). Viré et al. (2015) also have further developed a new immersed-body method,

in which a penalty force was added to the momentum equation as a source term to

relax the fluid velocity to the structural velocity. In this method, the force exchange

between solid and fluid models is resolved within a thin shell mesh surrounding the

structures. Despite the fact that these two immersed-body methods were successful

in many applications involving FSI, they only deal with single phase flow coupled

with solids, i.e. where solid bodies were totally immersed inside a single fluid phase.

1.2.2 Compressible flow FSI model within fractured solids

In this section, the compressible flow FSI models within fractured solids for blasting

are reviewed. Blasting and explosives have played an important role in rock blasting,

cutting, mining and tunnelling industries through centuries. In such applications,

the damage and other effects due to blasts are mainly predicted by experiments and

numerical analysis. The earliest developments in the numerical analysis of blasting

process began with very simple empirical formulae. These primitive formulae date

back to the nineteenth century (Chapman, 1899; Jouguet, 1905) and more or less

depend on users’ experience. However, they are very effective for obtaining a realistic

estimate for engineering use.

A large number of models have been developed for modelling blast-induced fracture

processes. They can be divided into two groups: the distinct phase models and

the complete blast models (Mohammadi & Pooladi, 2012). For the distinct phase

models, there are two phases: the fragmentation phase with shock waves (Banadaki

& Mohanty, 2012; Ai & Ahrens, 2006; Larcher, 2009) and the burden movement

phase (Firth & Taylor, 2001; Preece et al., 1996; Yan et al., 2016). Fragmentation

models only simulate the beginning stage of explosions, which is mainly the fracture

propagation and shock wave reflection. After the first stage, the fracture extension

and fragmentation movements are described by the burden movement models. The

distinct phase models are easily built, but they are not able to simulate blasting

processes realistically. In order to resolve this problem, several complete blast models

(Mohammadi & Pooladi, 2012; Ning et al., 2011; Morris et al., 2006) have been

developed to simulate the fragmentation and burden movement phases in one model.

The ultimate goal of the complete models is to simulate the entire blasting process

including detonation, shock waves, compressible flow, fracture propagation and gas-

solid interaction in one model.
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In blast-induced fracture modelling, there are three parts involved: gas modelling,

solid fracture modelling and the gas-solid coupling. In simple gas models, user-

defined or empirical pressure profiles are applied on the cracks and the walls of

blasting holes (Zhu et al., 2007; Nilson, 1986). In sophisticated gas models, pres-

sure distributions in the blast process are determined by solving the fluid governing

equations. Munjiza et al. (2000, 1999) proposed a gas model based on a com-

bined finite-discrete element method (FEMDEM) for accurate simulation of pres-

sure within cracks and fractures. The FEMDEM is a combination of both discrete

and finite element methods which can model problems with the deformability in one

entire solid body, a large number of discrete bodies, or a solid body with existing

fractures (Munjiza, 2004). The gas flow in this model is assumed as an equivalent

one-dimensional duct flow with a constant duct area. Based on this idea, Moham-

madi & Pooladi (2007) further applied the model to non-uniform isentropic gas flows

(Mohammadi & Pooladi, 2012). From a different point of view, Preece et al. (1996)

and Preece & Taylor (1989) proposed gas models based on porous media flows. In

these models, the fractured rock mass is replaced with an equivalent porous medium.

This type of models was further developed by Mohammadi & Pooladi (2007, 2012)

and Su et al. (2015). Mohammadi & Pooladi (2007) first introduced a non-uniform

isentropic gas model, and used a two-mesh method (Mohammadi & Pooladi, 2012)

to couple porous media flows and FEMDEM. Su et al. (2015) extended this method

to multiphase flows.

As far as fracture models are concerned, a variety of numerical methods have been

developed. The earliest are continuum-based fracture models, which are used at the

starting stage of an explosion. Firstly, cracking models, which depend on stress wave

propagation, were introduced into the finite element or finite difference methods to

resolve small fractures inside solids (Field & Ladegaard-Pedersen, 1971; Sanchidrian

et al., 2007; Farnam et al., 2010). Continuum fracture models were then developed

to adapt to various rock blasting problems (Wang et al., 2009; Hao et al., 2002b,a;

Renani et al., n.d.). Despite the widespread use of continuum damage models,

they are not suitable for simulating extensive solid cracks and fragmentation since

there are significant discontinuities in the solid mass. To resolve intense fractures,

discontinuum based methods were introduced into the burden movement models.

These methods treat the fractured solids as discontinuous separate smaller parts,

which impact each other via contacts and collisions (Ning et al., 2011; Li et al.,

2007; Gui et al., 2016; Saharan & Mitri, 2008; Versino et al., 2015). In order to

simulate complete blasting processes, FEMDEM was proposed by Munjiza (1992).
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FEMDEM has been used recently in complete blast models (Munjiza et al., 1999,

2000; Munjiza, 2004; Rougier et al., 2014).

With regard to the gas-solid interaction modelling, two types of numerical methods

have been developed. One is local influence gas flow modelling, whilst the other

group is general gas flow modelling in porous media. In local gas flow models, flow

in cracks and fractures is simulated as a uniform gas flow in pipes and channels

(Munjiza et al., 2000). On the other hand, porous media models treat the gas flow

in cracks and fractures as flow in equivalent porous media (Mohammadi & Pooladi,

2007, 2012). In the coupled gas-solid interaction model developed by Mohammadi

& Pooladi (2012), two separate meshes were introduced for representing the rock

and gas, respectively. These two meshes were coupled to each other to complete the

simulation of the entire blast process. In this model, the porous, media gas flow was

coupled with the FEMDEM (Mohammadi & Bebamzadeh, 2005) to resolve both

the gas flow behaviour and the solid fracturing process. However, there is a gap

between the model and real blasting problems, most notable being the simplified

gas equation of state and the structured coarse gas mesh used in this model.

1.2.3 Turbulence flow FSI model

There is a need for turbulence models with FSI in many industrial and environmental

high Reynolds number flows e.g. the turbulent flow in the wind and tidal turbines

(Milthaler, 2014; Kang et al., 2012), flow in impeller stirred tanks (Tyagi et al., 2007),

road vehicle aerodynamics (Jindal et al., 2005), atmospheric flows (Tseng & Ferziger,

2003; Yang & Balaras, 2006) and stator-rotor interaction (Tyagi & Acharya, 2005).

Immersed-boundary/body methods for FSI are very promising due to their strengths

in dealing with complicated geometries and moving structures. Their application

ranges from civil engineering to medical science, such as complex geometries (Löhner

et al., 2008; Le et al., 2008), particulate flows (Luo et al., 2007; Uhlmann, 2005),

flexible structures (Hesch et al., 2012; Wiens & Stockie, 2015; Xiao et al., 2016),

multi-phase flows (Yang et al., 2016), compressible flows (Yang et al., 2017b; Ghias

et al., 2007; Xiao et al., 2017), cardiac mechanics (Borazjani, 2013) etc.

The interface representation in turbulent FSI models is important because there is

a need to know the exact wall distances from the fluid to the structural surfaces.

Thus this section reviews the interface representation for FSI models. In immersed-

boundary/body methods, the methodologies for representation of the fluid-structure
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interface can be classified into two groups: diffused and sharp interface methods

(Sotiropoulos & Yang, 2014). Diffused interface immersed-boundary/body methods

smear the exchange forces between solids and fluids on the background grid of the

interfaces by applying discrete functions or mask functions for penalization meth-

ods. There are three kinds of diffused interface immersed-boundary/body meth-

ods: classic immersed-boundary/body, direct forcing immersed-boundary/body and

penalization methods. The main weakness of the diffused interface immersed-

boundary/body method is that the immersed boundaries are not sharp and as such

resolving boundary layers in turbulent flows becomes problematic. Sharp interface

method does not suffer from this drawback. Four kinds of sharp interface methods

have been developed, that is, the cut-cell, immersed interface, hybrid Cartesian-

immersed boundary and curvilinear immersed boundary methods.

Among these sharp interface methods coupling with various turbulent models, the

hybrid Cartesian-immersed boundary method is the most popular, including the

ghost cell method (Ghias et al., 2007; Ghosh et al., 2010; Tseng & Ferziger, 2003;

Ikeno & Kajishima, 2007; Yang & Stern, 2009) and the boundary reconstruction

method (Johnson et al., 2014; De Tullio et al., 2007; Kang et al., 2009; Cristallo

& Verzicco, 2006; Tessicini et al., 2002; Roman et al., 2009). For the boundary

reconstruction method, the Reynolds-averaged Navier-Stokes (RANS) model was

used for turbulent flows in FSI, see (Johnson et al., 2014; De Tullio et al., 2007), while

the large eddy simulation (LES) model in (Kang et al., 2009; Cristallo & Verzicco,

2006; Tessicini et al., 2002; Roman et al., 2009). The boundary reconstruction

method can provide high degree and accuracy solutions in the vicinity of the solid-

fluid interface. However, wiggles and spurious extrema could be introduced by high

order polynomial interpolations and this may cause numerical instabilities. This

method is suitable for fixed solids coupled with turbulent flows, but it is difficult

to apply to moving and deforming solids because of instabilities when dealing with

moving interfaces. Among these references using the ghost cell method, the direct

numerical simulation (DNS) is used in (Ghias et al., 2007), RANS in (Ghosh et al.,

2010), and LES in (Tseng & Ferziger, 2003; Ikeno & Kajishima, 2007; Yang & Stern,

2009). The ghost cell method may generate some non-physical force oscillations due

to the fact that nodes change in time from solid to fluid (or fluid to solid) near a

moving interface. This could result in a very small mesh edge length and time step

being used in order to stabilise this method.

There are few approaches that couple turbulent flows with diffused interface immersed-
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boundary/body methods. A wall-layer model (WLM) (Ji et al., 2012) and RANS

model (De Palma et al., 2006; Ghosh et al., 2008; Capizzano, 2011) have been used

to simulate the turbulence for FSI by using direct forcing immersed-boundary/body

methods. Discrete delta functions are used in the direct forcing immersed-boundary

methods to ensure the force balance between solids and fluids. However, it makes

the interface more diffusive due to the fact that these delta functions are normally

smeared across several grid nodes. This makes it difficult to apply turbulent wall

functions at the solid-fluid interface. Regarding the penalization methods, only

RANS has been used to couple with FSI (Cho et al., 2007, 2006). However, there

are some numerical oscillations in the penalization methods when large penaliza-

tion terms are applied. Nevertheless, the numerical oscillations can be stabilized by

smearing the penalization terms into several grid nodes. In spite of the weakness of

the diffused interface method, it is relatively easier than the sharp interface method

when dealing with fast moving and deforming solids in turbulent flows.

1.2.4 FSI application in renewable energy

As reasonable renewable energy choices, the wind & tidal turbines have been widely

used over the past decade. Low carbon emission in wind & tidal turbines makes them

more likely to be acceptable to the public. Nowadays, the onshore wind turbines

have been extensively studied. This type of wind turbines is normally horizontal

axis wind turbines (HAWT) with three blades configuration upwind. In order to

increase the renewable energy’s shares of wind turbines in global energy production,

the vertical axis wind turbines (VAWT) have been introduced in the offshore and

urban environment. Inspired by the VAWT, the vertical axis tidal turbines to collect

the energy of the ocean currents or tides are also being implemented. Comparing

with the research in HAWT, the study of VAWT is relatively less.

For flow models, five main aerodynamic models have been developed for simulating

the VAWTs in the literature. They are blade element momentum (BEM) model,

cascade model, vortex model (Islam et al., 2008), panel model (Smith et al., 1996),

and computatinal fluid dynamics (CFD) model. The BEM model uses Bernoulli’s

equation to compute the mass flow rate and the velocity change through every

streamtube. The force on the blades in this streamtube is computed by the velocity

change multiplying the mass flow rate. The cascade model has been widely used

for turbomachinaries where the blades are periodic equidistant arranged on. Hirsch
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& Mandal (1987) proposed the cascade model to VAWTs for the first time. For

the vortex models, the velocity field is computed in the wake of the blades by

using the vorticity (Strickland et al., 1979; Cardona, 1984). The vortex models

are also called as the potential flow models. The panel model is an extension of

the vortex model. In the panel model, a potential flow regime is defined in the

discretised 3D surface via a number of panels (Borg et al., 2014). In CFD models, the

fluid governing equations are solved on discretised meshes using different numerical

methods, e.g. finite-difference methods (FDM) and finite-element methods (FEM).

There are relatively fewer assumptions and simplifications in CFD models than these

in BEM models, cascade models, vortex models, and panel models. Since there are

some simplifications in BEM models, cascade models, vortex models, and panel

models, these models have high computational efficiency. They are suitable for a

conceptual and preliminary design of VAWTs. When dealing with the details of

VAWT aerodynamics, for instance, dynamic stall (Rezaeiha et al., 2017), tip and

junction losses (Nobari et al., 2016), turbulent incident wind (Danao et al., 2014),

the CFD model is required. Especially for the turbulent flow modelling in wind

turbines, CFD models are demanded to simulate the unsteady flows (Danao et al.,

2014; Mâıtre et al., 2013; McNaughton et al., 2014).

To perform aeroelastic modelling for wind turbine and hydroelastic modelling for

tide turbine, structure models need to be coupled with flow models to simulate

the structural deformations and motions of turbine blades and tower. There are

two groups of these structural models: 1D equivalent beam model (Oñate, 2013;

Bauchau & Craig, 2009; Hodges, 2003) and 3D FEM model (ANSYS, 2013; Version,

2013; Berg & Resor, 2012). In 1D equivalent beam model, the whole structure is

discretized into a number of 1D beam elements. For 3D FEM model, 3D composite

shell elements are used to discretize the wind turbine composite blades. The 3D

FEM model is able to simulate the layer characteristics of composites throughout

the shell thickness. The 1D equivalent beam models can be categorized into two

groups: linear and nonlinear. The Timoshenko beam model (Oñate, 2013) and the

Euler-Bernoulli beam model (Bauchau & Craig, 2009) are widely used linear beam

models since they are easy to implement. Linear beam models are designed for

small deflections, thus, nonlinear beam models (Hodges, 2003) are required when

large deformation is generated. The accuracy for beam models are acceptable, while

3D FEM models (ANSYS, 2013; Version, 2013; Berg & Resor, 2012) are used to

obtain more accurate results although that the meshing for 3D FEM models is

time-consuming and tedious.
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For the fluid-structure interaction models, Guerri et al. (2008) built a model based

on finite volume Arbitrary Lagrangian-Eulerian (ALE) method and moving mesh

to model a 2D wind turbine airfoil. This model is able to simulate the flow-induced

vibrations for a 2D wind turbine, while this model cannot give detailed structural

analysis. However, it only applied a 2D incompressible low Reynolds number flow

model. Moreover, the commercial CFD software CFX (ANSYS, 2013) was coupled

with ANSYS Mechanical software to simulate a morphed wind turbine blade via an

ALE method by Krawczyk et al. (2013). This coupled model is a pressure coupled

system with the focus on 2D applications. This model has the ability to model elastic

blade aerodynamics, but it is limited in 2D simulations. A 3D coupled model was

proposed by Lee et al. (2012) to evaluate the response of wind turbine blades under

aerodynamic pressure. This model combined a BEM model and a finite element

analysis (FEA) structural model via the pressure coupling. This model provides

detailed structural analysis inside the blades and has a relatively high computational

speed. However, the fluid dynamic details, e.g. the accurate pressure and velocity

profiles are not available in this model. A 3D wind turbine blade vibration caused

by wind was modelled by combining ALE and ANSYS by Zhang et al. (2014). This

model is suitable for small deformation in the blades since the deformable fluid mesh

is used. It is not able to simulate structural collapse and large deformation of the

blades. In contrast to these 3D models (Lee et al., 2012; Zhang et al., 2014), which

only simulate the 3D wind turbine blades, a full-scale wind turbine FSI model was

developed by Bazilevs et al. (2011a,b) based on the finite element method (FEM)

and ALE with the Deforming-Spatial-Domain/Stabilized Space-Time (DSD/SST)

formulation (Tezduyar et al., 1992b,a). This model was applied to a full-scale 3D

horizontal axis wind turbine (the NREL 5MW offshore baseline wind turbine rotor).

The moving/sliding meshes are used in this model (Bazilevs et al., 2011a,b) to enable

the wind turbine to rotate compared to the static tower. However, this model may

have some limitations when applying to large deformation situations. Additionally,

this model is incapable to model flow-induced fractures in the turbines.

1.3 Original contributions

A novel immersed-body method is developed here to model fluid-structure interac-

tion for incompressible viscous flows. It does this by coupling a finite element mul-

tiphase fluid model and a combined finite-discrete element solid model. A coupling
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term containing the fluid stresses is introduced within a thin shell mesh surround-

ing the solid surface. In order to reduce the computational costs, the thin shell

mesh acts as a numerical delta function in order to help apply the solid-fluid bound-

ary conditions. In combination with an advanced interface capturing method, the

immersed-body method has the capability to solve problems with fluid-solid inter-

faces in the presence of multiphase fluid-fluid interfaces. Importantly, the solid-fluid

coupling terms are treated implicitly to enable larger time steps for fluids to be used.

The second significant contribution of this thesis is the implementation of the equa-

tion of state for high compressible gas in this immersed-body method combining

with a cohesive zone fracture model. The equation of state implemented here is

the John-Wilkins-Lee equation of state. This enables blast-induced fractures to be

simulated by this novel gas-solid interaction model. This model is fully coupled

and simulates the whole blasting process including gas pressure impulse, shock wave

propagation, gas expansion, fragmentation and flying fragments. A Q-scheme is

used to stabilise the model when solving extremely high-pressure situations.

The most important contribution of this thesis is the novel combination of the

immersed-body method with an unsteady Reynolds-averaged Navier-Stokes (URANS)

turbulence model. Particular attention is paid to the application of suitable turbu-

lent flow boundary conditions with the immersed-body method. The thin shell mesh

surrounding the solid surface is used as a delta function to apply the interface bound-

ary conditions for both the turbulence model and the momentum equation. In order

to reduce the computational cost, a log-law wall function is used within this thin

shell to resolve the flow near the solid surface. To improve the accuracy of the wall

function, a novel shell mesh external-surface intersection approach is introduced to

identify sharp solid-fluid interfaces. More importantly, an unstructured anisotropic

mesh adaptivity is used to refine the mesh according to the interface and the veloc-

ity, which improves the accuracy of this immersed-body URANS turbulence model

with use of a limited number of fluid cells.

The developed FSI models are validated by a variety of test cases. For the immersed-

body method coupled with incompressible flow, three numerical test cases: a free

falling circular cylinder in a fluid at rest, an elastic membrane and a collapsing

column of water moving an initially stationary solid square, are used to validate

the model. To validate the compressible flow FSI model coupling with a cohesive

zone fracture model, two benchmark tests, blasting cylinder and projectile fire, are

presented. The results of these tests are in good agreement with experimental data.
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For the FSI model coupled with URANS turbulence model, three test cases flow

over a circular cylinder at Re = 3900 and turbulent flow past a static NACA0015

aerofoil with an attack angle of α = 60◦ at Re = 5200, a free rising circular cylinder

in a fluid at rest with Re = 5000 and Re = 3800, are used to validate the model.

Detailed validation of 3D FSI model is presented in this thesis, i.e. free falling sphere

test cases, free rising sphere test cases, flow cross a full scale vertical tidal turbine,

and flow bending a flexible plate benchmark test case.

Finally, a variety of applications are simulated by this FSI model. The FSI model

is applied to a water-air interface with a floating solid square being moved around

by complex hydrodynamic flows including wave breaking in Chapter 2. In addition,

a blasting engineering simulation with shock waves, fracture propagation, gas-solid

interaction and flying fragments is simulated in Chapter 3. More importantly, flow-

induced vibration and flow-induced fractures of a vertical axis tidal turbine are

presented to demonstrate the model ability in analysing the elasticities and fractures

for tidal turbines in Chapter 5.

1.4 Thesis outline

Chapter 1 is a brief introduction including a literature review of FSI in CFD, motiva-

tion, original contributions and outline of the thesis. Some contents of this Chapter

is reorganised from:

Yang, P., Xiang, J., Fang, F., Pavlidis, D., Latham, J.P. and Pain, C.C., 2016.

Modelling of fluid-structure interaction with multiphase viscous flows using an

immersed-body method. Journal of Computational Physics, 321, pp.571-592.

Yang, P., Xiang, J., Chen, M., Fang, F., Pavlidis, D., Latham, J.P. and Pain, C.C.,

2017. The immersed-body gas-solid interaction model for blast analysis in fractured

solid media. International Journal of Rock Mechanics and Mining Sciences, 91,

pp.119-132.

Yang, P., Xiang, J., Fang, F., Pavlidis, D. and Pain, C.C., 2018. Modelling of fluid-

structure interaction for moderate Reynolds number flows using an immersed-body

method. Computers & Fluids, Under Review.

Yang, P., Xiang, J., Fang, F. and Pain, C.C., 2018. A fidelity fluid-structure in-
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Chapter 1: Introduction

A novel immersed-body method is developed in Chapter 2 to model fluid-structure

interaction for incompressible flow, compressible flow and turbulent flow.

This Chapter is derived from:

Yang, P., Xiang, J., Fang, F., Pavlidis, D., Latham, J.P. and Pain, C.C., 2016.

Modelling of fluid-structure interaction with multiphase viscous flows using an

immersed-body method. Journal of Computational Physics, 321, pp.571-592.

Yang, P., Xiang, J., Chen, M., Fang, F., Pavlidis, D., Latham, J.P. and Pain, C.C.,

2017. The immersed-body gas-solid interaction model for blast analysis in fractured

solid media. International Journal of Rock Mechanics and Mining Sciences, 91,

pp.119-132.

Yang, P., Xiang, J., Fang, F., Pavlidis, D. and Pain, C.C., 2018. Modelling of fluid-

structure interaction for moderate Reynolds number flows using an immersed-body

method. Computers & Fluids, Under Review.

Yang, P., Xiang, J., Fang, F. and Pain, C.C., 2018. A fidelity fluid-structure

interaction model for vertical axis tidal turbines in turbulence flows. Applied Energy,

Under Review.

In Chapter 3, the FSI model for incompressible flow is validated by four numerical

test cases: a free falling circular cylinder in a fluid at rest, a free falling sphere, an

elastic membrane and a collapsing column of water moving an initially stationary

solid square. The application in this Chapter is a floating object being moved around

by complex hydrodynamic flows including wave breaking. This Chapter is based on:

Yang, P., Xiang, J., Fang, F., Pavlidis, D., Latham, J.P. and Pain, C.C., 2016.

Modelling of fluid-structure interaction with multiphase viscous flows using an

immersed-body method. Journal of Computational Physics, 321, pp.571-592.

In Chapter 4, the FSI model is extended to highly compressible flow coupling with a

cohesive zone fracture model. The compressible flow FSI model is applied to blasting

engineering problems with shock waves, fracture propagation, gas-solid interaction

and flying fragments. This Chapter is expanded from:

Yang, P., Xiang, J., Chen, M., Fang, F., Pavlidis, D., Latham, J.P. and Pain, C.C.,

2017. The immersed-body gas-solid interaction model for blast analysis in fractured

solid media. International Journal of Rock Mechanics and Mining Sciences, 91,

pp.119-132.

In Chapter 5, the FSI model for turbulent flow is validated by five benchmark test

cases: flow over a circular cylinder at Re = 3900, turbulent flow past a static
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NACA0015 aerofoil with an attack angle of α = 60◦ at Re = 5200, a free rising

circular cylinder in a fluid at rest with Re = 5000 and Re = 3800, a free rising

sphere in turbulent flow at Re = 6000 and 10000, and flow bending a 3D plate.

This Chapter is derived from:

Yang, P., Xiang, J., Fang, F., Pavlidis, D. and Pain, C.C., 2018. Modelling of fluid-

structure interaction for moderate Reynolds number flows using an immersed-body

method. Computers & Fluids, Under Review.

In Chapter 6, the FSI model is applied to the field of renewable energy.

This Chapter is expanded from:

Yang, P., Xiang, J., Fang, F. and Pain, C.C., 2018. A fidelity fluid-structure

interaction model for vertical axis tidal turbines in turbulence flows. Applied Energy,

Under Review.

Finally, Chapter 7 discusses the strengths and weaknesses of the URANS immersed-

body model and draw conclusions and findings of this thesis. Certain future research

works for turbulent FSI modelling and its application are proposed.
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Chapter

TWO

A fluid-structure interaction

model for incompressible,

compressible and turbulent flows

An immersed-body method is developed here to model fluid-structure interaction

for incompressible, compressible and turbulent flows. This model couples a com-

bined finite-discrete element solid model (a solid solver ‘Solidity ’) and a finite ele-

ment fluid model with the standard k − ε turbulence model (a fluid solver ‘Fluidity-

Multiphase’). A coupling term containing the fluid stresses is introduced within a

thin shell mesh surrounding the solid surface. The thin shell mesh surrounding the

solid surface is first used as a delta function to apply the interface boundary condi-

tions for both the turbulence model and the momentum equation. A large number of

fluid mesh elements are required to resolve the fluid details near the solid surface. In

order to reduce the computational cost, a log-law wall function representation is used

within this thin shell to help resolve the flow near the solid surface. To improve the

accuracy of the wall function, a novel shell mesh external-surface intersection ap-

proach is introduced to identify sharp solid-fluid interfaces. More importantly, an un-

structured anisotropic mesh adaptivity is used to refine the mesh according to the in-

terface and the velocity, which improves the accuracy of this immersed-body URANS

turbulence model with the use of a limited number of fluid cells. Additionally, since
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the solid solver ‘Solidity ’ is explicit and fluid solver ‘Fluidity-Multiphase’is implicit,

the solid-fluid coupling terms are treated implicitly in the solid solver to enable larger

time steps for fluids to be used.

2.1 Introduction

This chapter describes a new solid-fluid coupling model for incompressible, com-

pressible and turbulent flows. The proposed algorithm proceeds as follows. Firstly,

in the fluids, a viscous term is added to the momentum equation, which is similar

to the penalty force (Viré et al., 2012; Engels et al., 2015). Secondly, in the solid

model, this viscous term is used to construct the drag force. Then the model devel-

oped here couples the immersed-body approach with the k − ε URANS turbulence

model. The interface boundary conditions for both the turbulence model and the

fluid momentum equation are solved on the thin shell mesh. A log-law wall function

is also implemented within this thin shell to help resolve the fluid friction velocity

and stress within the first off-wall fluid cell. This reduces the computational cost

since it does not require a very fine mesh near the solid wall. A novel shell mesh

external-surface intersection approach is introduced to identify sharp solid-fluid in-

terfaces. This improves the accuracy of the wall function and also overcomes the

weakness of the diffused interface method. In order to further increase the computa-

tional efficiency of the present model, the anisotropic mesh adaptivity (Pain et al.,

2001b) is used to refine the mesh according to the interface and the velocity fields.

The remainder of this chapter is organised as follows. Section 2.2 presents the

governing fluid and solid equations. The standard k − ε model is presented at

Section 2.3.1. The wall functions and the algorithms to compute the wall distance

for the immersed-body method are given at Sections 2.3.2 and 2.3.3. Section 2.4

gives out the spatial discretization. The theory behind the semi-implicit coupling

approach; and the projection between fluid, solid and shell meshes are detailed in

Section 2.6. The coupling process for turbulent flow is described in detail in Section

2.7. I discuss the strength and weaknesses of this approach and draw conclusions in

Section 2.8.

54



2.2: Governing equations

2.2 Governing equations

2.2.1 Equations for solid dynamics

For solid modelling, the combined finite-discrete element method (FEMDEM) is

used here. It combines deformable fracturing arbitrary shaped solid body interac-

tions modelled by finite-element method (FEM) with discrete solid motion modelled

by discrete element method (DEM). For its FEM part, it uses a finite strain formu-

lation for solving the solid dynamics equations. This model has the capability of

computing the vibration modes, stresses, and fracture networks of any shape and

stiffness (Xiang et al., 2012; Latham et al., 2013b). The governing equations for

the dynamics of deformable structures on the solid mesh are given by Xiang et al.

(2009):

M s
Dus
Dt

+ F int = F ext + F c + F v + F p, (2.1)

where, the nodal mass matrix M s is given by:

M s =

∫
V

ρsN sN
T
s dV, (2.2)

where, the ρs is the solid density, and the N s is the basis functions of the solid finite

elements. The internal nodal forces F int are given by:

F int =

∫
v(n)

∂N s

∂x
T dv, (2.3)

where, T is the Cauchy stress. The external nodal forces F ext are given by:

F ext =

∫
v(e)

N sbdv +

∫
v(e)

N stsdv, (2.4)

where b is body force, defined by b = [bx by bz], ts is surface traction force. F c

is the contact force when multiple solids impact on each other. F v and F p are

the exchange forces between the solid and fluid due to the viscous terms and fluid

pressure respectively. In this work, a solid FEMDEM solver ‘Solidity ’ (Xiang et al.,

2012; Latham et al., 2013b) is coupled with a fluid solver ‘Fluidity-Multiphase’. The

approach to forming the exchange forces are going to be described in Section 2.6 in
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detail. When using equation 2.1 to model the rigid body, the material stiffness is

increased to its real value.

2.2.2 The constitutive model for deformable solids

The constitutive model used here to model large deformable solids is the Neo-

Hookean material model (Xiang et al., 2009). This model is an extension of Hooke’s

law to large nonlinear deformations. The Cauchy stress T can be computed by the

following equation:

T =
µ

J
(B − I) +

λ

J
(InJ)I, (2.5)

where I is the identity matrix. The Cauchy-Green tensor B = FF T , and the

Jacobian determinant J = det(F ). Here, F is the deformation gradient tensor, µ

and λ are Lamé constants,

µ =
E

2(1 + ν)
, (2.6)

and

λ =
νE

(1 + ν)(1− 2ν)
, (2.7)

where ν is the Possion ratio and E is the Young’s modulus.

2.2.3 Equations for fluid dynamics of incompressible flows

The fluid dynamics model ‘Fluidity-Multiphase’ is a finite-element open-source nu-

merical tool that solves the Navier-Stokes equations on fully unstructured mesh for

multiphase flows. It has the ability to dynamically change its resolution (adapt the

mesh) in response to the physical demands (Pain et al., 2001b, 2005; Piggott et al.,

2009). Since it is difficult to embed the solid equations into the fluids equations, I

achieve the coupling with the introduction of the supplementary equation:

σ̂
(
ûf − uff

)
= σ̂

(
uss − usf

)
, (2.8)
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in which σ̂ =
ρf
∆t

, where ρf is the fluid density, and the bulk velocity ûf is defined:

ûf = αfu
f
f + αsu

f
s = ûff + ûfs , (2.9)

where αf is the fluid volume fraction and αs is the solid volume fraction. The

subscripts f and s represent the value of the fluid and solid respectively, whilst the

superscripts f and s refer the value on the fluid and solid mesh respectively. For

example, uff is the fluid velocity on the fluid mesh, and ufs is the solid velocity on

the fluid mesh.

In this work, the Navier-Stokes equations are solved on an extended domain V =

Vf ∪ Vs, where the computing domain include fluids in Vf and structures in Vs (see

Fig. 2.1). Hence the continuity equation in the extended domain V can then be

expressed as:

∇ · ûf = 0. (2.10)

Notice that if uss is mapped from the solid mesh to the fluid mesh we get ûfs . Thus

from equation 2.8 when αf = 1, αs = 0 then ûf = uff and when αf = 0, αs = 1

then ûf = ufs .

V = Vf ∪ Vs

Vf

Vs

Volume fraction of the shell

Solid mesh

Figure 2.1 Computational domain V (left), fluid mesh adapted to the volume

fraction of the shell (centre) and the solid mesh (right). The method to gen-

erate the shell mesh can be found in Section 2.6.2.

In order to represent the effect of the solids on the fluids, a coupling term sc is

introduced into the momentum equation. This coupling term is only added into
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a thin shell mesh surrounding the solid surface (see section 2.6.2) by using a shell

concentration αsh. The momentum equation is written:

ρf
Duf
Dt

+∇(p− τ) = F b + sc, (2.11)

where p is fluid pressure, τ is fluid shear stress, F b represents body forces (e.g. the

gravity force), and sc is the coupling term. The coupling term contains exchange

forces between the solid and fluid due to the viscous terms. The algorithm to form

the coupling term will be presented in Section 2.6.

2.2.4 Equations for fluid dynamics of compressible flows

In the fluid model ‘Fluidity-Multiphase’, the continuity equation for the compressible

flow can be expressed as:
∂ρf
∂t

+ O · (ρfuf ) = 0, (2.12)

where, ρf and uf denote the fluid density and velocity; t is the time.

For the momentum equation, it can be written as,

∂

∂t
(ρfuf ) +∇ · (ρfuf ⊗ uf + p− τ) = ρfF b + sc. (2.13)

The energy equation is given as,

∂

∂t
(ρfE) +∇ · (ρfEuf − τuf + q) = ρfF buf , (2.14)

where q represents the rate of volumetric heat addition per unit mass, E = e+ | u |2

/2 is the total specific energy, e is the internal energy per unit mass, more details

about e can be see in Section 4.3.

2.3 The k − ε turbulence model

2.3.1 Standard k − ε turbulence model

The k−ε model described here is an unsteady RANS (URANS). The k−ε model is

first proposed by Launder & Spalding (1974). It consists of two transport equations
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for turbulent kinetic energy (kf ) and turbulent dissipation rate (εf ), respectively.

For turbulent kinetic energy (kf ) (Versteeg & Malalasekera, 2007):

∂kf
∂t

+ ūi
∂kf
∂xi

= Π− εf +
∂

xj

[(
ν +

νT
σk

)
∂kf
xi

]
+ sk. (2.15)

For turbulent dissipation rate (εf ) determining the rate of dissipation of the turbu-

lent kinetic energy:

∂εf
∂t

+ ūi
∂εf
∂xi

= Cε1
εf
k

Π− Cε2
ε2
f

k
+
∂

xj

[(
ν +

νT
σε

)
∂εf
xi

]
+ sε, (2.16)

where ui stands velocity component in corresponding direction, ν is kinematic vis-

cosity, νT is the kinematic eddy viscosity, νT = Cµk
2
f/εf , and Π is given as follow:

Π =

(
τij −

1

3
τii

)
· ∇ūf =

[
νT

(
∇ūf + (∇ūf )T −

2

3
kf I

)]
· ∇ūf , (2.17)

where I is the identity matrix. The adjustable constants Cµ, σk , σε , Cε1 and Cε2

are empirically obtained by data fitting of unbounded turbulent flows (Launder &

Spalding, 1974) and their values are: Cµ = 0.09, σk = 1.00, σε = 1.30, Cε1 = 1.44,

Cε2 = 1.92. sk and sε are the coupling terms of the immersed-body URANS model.

They are used to implement the turbulent boundary conditions for the solid surface.

More details on sk and sε can be found in Section 2.3.2.4.

2.3.2 Wall functions

In order to reduce the computational cost, a log-law wall function is used within the

thin shell to help resolve the flow near the solid surface (Bull, 2013).

2.3.2.1 The definition of wall distance y+

Taking into account a fully developed pipe flow, the no-slip wall condition uf = 0

is applied at y = 0. The corresponding fluctuation u′iu
′
j = 0 (u′ is the fluctuation

velocity) and the Reynolds stresses at y = 0 are thus zeros. The total viscous stress

at y = 0 is:

τw = ρfν

(
∂uf
∂y

)
y=0

. (2.18)
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Figure 2.2 Law of the wall. The blue line is the real relationship between u+ and

y+. The red lines are the approximations of this relationship by using log law

and u+
=y

+.

The friction velocity uτ is defined as:

uτ =

√
τw
ρf
. (2.19)

The normalized wall distance and velocity are defined as:

y+ =
uτy

ν
, (2.20)

u+
f =

uf
uτ
, (2.21)

where y is the distance to the wall.
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The relationship between u+
f and y+ is:


u+
f = y+ , when y+ < 5 ,

u+
f → 1

Cκ
ln y+ +B , when 5 < y+ < 30 ,

u+
f = 1

Cκ
ln y+ +B , when y+ > 30 ,

(2.22)

where Cκ is the von Kármán constant and B is the smallest value of u+
f , commonly

taken as 0.41 and 5.2 respectively (Wilcox et al. , 1998). From Eq. 2.22 (Pope,

2000), the near wall region can be divided into three parts: viscous sublayer, buffer

layer and log law region (see Fig. 2.2).

2.3.2.2 Wall functions

The wall functions proposed in the literature (Launder & Spalding, 1974) are used

within the log-law region. The distance in wall units y+ is usually set to a value

larger than 30 to ensure that the log-law wall functions are valid. However, in order

to calculate y+, the wall shear stress τw should be solved first. Since the wall shear

stress is not known for most real flows, a scalable method is needed to avoid this

situation.

When y+ > 30, combining Eq. 2.20, 2.21 and 2.22 yields:

uf = uτ

[
1

Cκ
ln(uτy/ν) +B

]
. (2.23)

From Eqs. 2.19 and 2.18, it can be seen that the friction velocity uτ depends on

the shear stress τw, whilst τw depends on the velocity gradient, thus the equation is

indeterminate. To resolve this, Pope (2000) introduced the nominal friction velocity

u∗τ :

u∗τ = C1/4
µ k

1/2
f , (2.24)

where kf is the fluid turbulent kinetic energy of the near-wall nodes. Substituting

Eq. 2.24 into Eq. 2.23, then the nominal mean velocity u∗f is

u∗f = u∗τ

[
1

Cκ
ln(u∗τy/ν) +B

]
. (2.25)
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Thus the wall shear stress can be given as:

τwf = (u∗τ )
2 uf
u∗f
. (2.26)

2.3.2.3 Weakly enforced wall boundary conditions for the immersed-

body method

The shear stress (see Eq. 2.26) is weakly enforced in the momentum equation using

Green’s Theorem for a computational domain Ω with solid walls Γ:∫
Ω

N 5 ·τfdΩ = −
∫
Ω

5N · τfdΩ +

∫
Γs

Nn · τsdΓs,

=

∫
Ω

N 5 ·τfdΩ +

∫
Γs

Nn · τsdΓs

︸ ︷︷ ︸
viscous sublayer

−
∫
Γ

Nn · τfdΓ

︸ ︷︷ ︸
log-law region

(2.27)

where τ is the instantaneous stress tensor and n is the unit normal to the wall. By

using τw = n · τ , then:∫
Γs

Nn · τsdΓs

︸ ︷︷ ︸
viscous sublayer

−
∫
Γ

Nn · τfdΓ

︸ ︷︷ ︸
log-law region

=

∫
Γs

NτwsdΓs

︸ ︷︷ ︸
viscous sublayer

−
∫
Γ

NτwfdΓ

︸ ︷︷ ︸
log-law region

. (2.28)

For the viscous sublayer term, by using Eqs. 2.19, 2.20, 2.21 and 2.22, then:

τws = ρν
us
ys
, (2.29)

where ys is the wall distance of the fluid element that us is based on. Substituting

Eqs. 2.26 and 2.29 into Eq. 2.28, and defining q = (u∗τ )2

u∗f
, Eq. 2.28 can be becomes:

∫
Γs

Nn · τsdΓs

︸ ︷︷ ︸
viscous sublayer

−
∫
Γ

Nn · τfdΓ

︸ ︷︷ ︸
log-law region

=

∫
Γs

Nρν
us
ys
dΓs −

∫
Γ

NqufdΓ. (2.30)

Considering the thin shell mesh on the solid surface in the immersed-body method

(Yang et al., 2016), by converting the surface integral on the solid surface to the
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volume integral on the thin shell mesh, Eq. 2.30 can be written as:∫
Γs

Nn · τsdΓs

︸ ︷︷ ︸
viscous sublayer

−
∫
Γ

Nn · τfdΓ

︸ ︷︷ ︸
log-law region

=

∫
Vshell

N
ρνus
ys∆r

dVshell −
∫

Vshell

N
quf
∆r

dVshell, (2.31)

where ∆r is the shell mesh thickness. More details about the shell mesh can be

found in (Yang et al., 2016). Thus, the coupling term sc is:

sc =

∫
Vshell

N
ρνus
ys∆r

dVshell −
∫

Vshell

N
quf
∆r

dVshell. (2.32)

2.3.2.4 Wall function for the k − ε model

After the simplification of kf and εf equations in the log-law region, they can be

expressed as :

kf =
u2
τ

C
1/2
µ

, (2.33)

εf =
u3
τ

Cκy
. (2.34)

These are commonly used as Dirichlet boundary conditions for the k − ε model at

high Reynolds numbers (Ferziger & Peric, 2012).

The coupling term sk is given as:

sk = βαsh (ks − kf ) . (2.35)

The coupling term sε is:

sε = βαsh (εs − εf ) , (2.36)

where αsh denotes the shell mesh volume fraction; ks and εs are the k and ε on solid

surface, which is given by Eqs. 2.33 and 2.34; kf and εf represent the values of k

and ε on the fluid mesh at the shell mesh part; β is given as: β = γmax
( ρf

∆t
, ν
L

)
,

where ρf is the fluid density, L represents the edge length of the fluid cell near the

shell mesh, and γ is given as: γ = le/∆, where le is the minimum fluid mesh edge

length and ∆ is the shell mesh thickness.
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Figure 2.3 Definitions of fluid, solid and intersection cells. Fluid-cell: ©, Solid-

Cell: •, Fluid Intersection-Cell: �, Solid Intersection-Cell: ♦.The grey part is

the solid.

2.3.3 The wall distance in the immersed-body method

To calculate the wall distance y accurately, one has to identify the exact position

of the fluid-solid interface. In this section, three approaches used for locating the

interface fluid cells are provided.

2.3.3.1 Intersection cells

The first one is the intersection cells by using the Galerkin projection of the solid

volume fraction αs on the fluid mesh. When on the interface, 0 < αs < 1. The cells

with 0 < αs < 0.5 are assumed as the intersection cells (see Fig. 2.3 ). And the

solid surface information (including the coordinates and direction ns) is projected

on these intersection cells to compute the wall distance y.

2.3.3.2 Neighbour cell reconstruction

The second is the neighbour cell reconstruction approach. Based on the intersection

cells, searching all the neighbour cells these sharing at least one node or one face
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Figure 2.4 Definitions of fluid, solid and intersection cells.©: Fluid-cell, •: Solid-

Cell, �: Fluid Intersection-Cell, ♦: Solid Intersection-Cell. The grey part is

the solid.

with them. These neighbour cells are used to reconstruct the intersection cell (see

Fig. 2.4):

φi,j =
∑
n

βnφn. (2.37)

The reconstruction intersection cells will be used to calculate the wall distance y.

2.3.3.3 Shell mesh external-surface intersection

The third one is the shell mesh external-surface intersection approach. This ap-

proach considers both the interaction cells and their shell mesh neighbour cells (see

Fig. 2.5). The method to generate the shell mesh can be found in Section 2.6.2.

The shell volume fraction αsh on the shell external-surface is also taken into ac-

count. Fluid cells with the αsh < 1 on the shell external-surface are also considered

to calculate the wall distance y.

The intersection cells method can introduce negative wall distances that make the

65



Chapter 2: A fluid-structure interaction model for incompressible, compressible
and turbulent flows

Figure 2.5 Definitions of fluid, solid and intersection cells.©: Fluid-cell, •: Solid-

Cell, �: Fluid Intersection-Cell, ♦ Solid Intersection-Cell. The grey part is

the solid and the green part is the shell.

wall function invalid. The neighbour cell reconstruction method requires the system

to store all the neighbour cell information during the calculation. This increases the

computational cost. Since the shell mesh external-surface intersection method does

not have these two disadvantages, it is used in this immersed-body URANS model.

2.3.3.4 The calculation of the wall distance

By using the shell mesh external-surface intersection approach, the locations of the

intersection cells are known. The coordinate (xi, yi, zi) of the intersection cell is

projected to the shell mesh, then from the shell mesh to the solid surface. As the

normal vector (nxj, nyj, nzj) and the coordinate (xsj, ysj, zsj) of the solid surface

are already known in the solid. The wall distance yi can be computed by using the

following equation:

yi =
nxSixi + nySiyi + nzSizi − (nxSixsSi + nySiysSi + nzSizsSi)√

(nxSi)
2 + (nySi)

2 + (nzSi)
2

, (2.38)
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where, Si is the index of the solid surface coordinate (xsj, ysj, zsj), which has the

shortest point to point distance to the intersection cell coordinate (xi, yi, zi).

2.4 Spatial discretization

The finite element method is used in both the fluid and solid models. The Crank-

Nicolson scheme is used in the fluid dynamics model while a backward Euler scheme

in the solid dynamics model. Details of these methods are described in the literature

(Gresho & Sani, 1998; Zienkiewicz & Taylor, 2000; Piggott et al., 2008).

The continuity equation 2.10 for incompressible solid can be written as:

αn+1
s − αns

∆t
+∇ · αn+1

s un+1
s = 0, (2.39)

and for each fluid phase, k with k ∈ {1, 2, ...,P}, equation 2.39 is re-written:

ρn+1
k αn+1

k − ρnkαnk
ρn+1
k ∆t

+
1

ρn+1
k

∇ ·
[
θρn+1

k αn+1
k un+1

k + (1− θ)ρnkαnkunk
]

= 0, (2.40)

where the superscripts refer to the time level. Summing all these equations the

global continuity equation is and using the fact that αn+1
s +

∑
k α

n+1
k = 1 in the time

derivative and using αn+1
s un+1

s = ûn+1
f −

∑
k α

n+1
k un+1

k then yields:

Rcty =
1− αns

∆t
+

1

∆t

∑
k

−αnkρnk
ρn+1
k

+ { 1

ρn+1
k

∇ ·
[
θρn+1

k αn+1
k un+1

k + (1− θ)ρnkαnkunk
]

+

(
∇ · ûn+1

f −
∑
k

∇ · αn+1
k un+1

k

)
} = 0. (2.41)

The first term on the left and the last terms on the right are the new terms introduced

into the solid-fluid coupling equations. Alternatively, one may assume that the solid

phase continuity equation 2.39 has been enforced by the solid mechanics model. This

can be obtained by a compromise defined variable: θsolid−cty, in which θsolid−cty = 1

is the method outlined by equation 2.41 and θsolid−cty = 0 enforces this new method

where:
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Rcty =
1− θsolid−ctyαns − (1− θsolid−cty)αn+1

s

∆t
+

1

∆t

∑
k

−αnkρnk
ρn+1
k

+ { 1

ρn+1
k

∇ ·
(
θρn+1

k αn+1
k un+1

k + (1− θ)ρnkαnkunk
)

+ θsolid−cty

(
∇ · ûn+1

f −
∑
k

∇ · αn+1
k un+1

k

)
} = 0, (2.42)

in which an+1
k = αn+1

k . However, for compressible flow, by using the limit as the fluid

volume fraction, we get a pure solid. Hence the system of equations for density/-

pressure of the fluid can become ill-posed. For instance, if one considers the system

of equations for an ideal gas, in which the negative pressures that could be formed

in the solid will result in negative densities. This is easily avoided by setting:

an+1
k =

αn+1
k

1− αn+1
s

. (2.43)

For single phase flow this becomes:

an+1
k = 1. (2.44)

Then the system of equation becomes well posed and there is no longer this issue.

In matrix form equation 2.42 becomes:

r∗cty = B̃
T
ûn+1
f + BTun+1 + rescty, (2.45)

where, the velocity field is expressed as

u ≈
N∑
i=1

uiNi(x), (2.46)

in which, the Ni are the basis functions of the fluid finite elements. Thus in this

multi-phase flow case the coupling matrix M c between u and ûf :

Mc

(
un+1

ûn+1
f

)
=

(
M ρ 0

−N̂ I

)(
un+1

ûn+1
f

)
, (2.47)
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where,

M ρij =

∫
ρfNi(x)Nj(x)dV is the mass matrix, (2.48)

defining,

M−1
c =

(
M−1

ρ 0

N̂M−1
ρ I

)
, (2.49)

and un+1 is the vector containing the solution variables for each phase un+1
k , that

is:

un+1 =
(
un+1

1 ,un+1
2 , . . . ,un+1

P
)T
. (2.50)

Thus the pressure equation becomes:

(
BT B̂

T
)
M−1

c

(
C

0

)
∆p =

(
BT + B̃

T
N̂
)
M−1

ρ C∆p = −r∗cty, (2.51)

where,

Cij =

∫
Ni(x)ONpj(x)dV is the pressure gradient matrix, (2.52)

in which, Npj are the pressure basis functions. Here we replace B̃
T
N̂ with B̂

T

which is an approximation and thus the pressure matrix equation becomes:(
BT + B̂

T
)
M−1

ρ C∆p = −r∗cty, (2.53)

in which B̂
T
un+1 is a discretization of

∑
k

(
∇ · α̂n+1

k un+1
k

)
and α̂n+1

k =
max(ε,αn+1

k )∑
kmax(ε,α

n+1
k )

and thus
∑P

k=1 α̂
n+1
k = 1. Here ε = 1× 10−7. In addition,

N̂ =
(
α̂n+1

1
α̂n+1

2
... α̂n+1

P

)
, (2.54)

in which α̂n+1

k
,∀k ∈ {1, 2, ...,P} are diagonal matrices with entries equal to the

control volume values of α̂n+1
k and P is the number of phases. For a single phase

system N̂ = I.
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2.5 Mesh adaptivity

In order to resolve the fluid details in specific areas and without the increase of the

computational cost globally, an unstructured anisotropic mesh adaptivity (Mostaghimi

et al., 2015) is used here. The mesh is adapted to the solid-fluid interface, fluid-fluid

interface and velocity fields.

2.5.1 Mesh adaptivity geometric operations

The mesh adaptivity in ‘Fluidity-Multiphase’ is based on optimisation, which aims

to obtain a new mesh with high quality and low solution error. To define the

mesh quality for each individual mesh element ∆e, a function Qm(∆e) is introduced.

Qm(∆e) is the function of the mesh edge length and the shape (anisotropy) for each

element (Mostaghimi et al., 2015):

Qm(∆e) =
∑

i∈edges

(
vTi Mvi − 1

)
, (2.55)

where, i are the mesh element indices, vi are vectors representing the edges con-

necting the vertices of the finite element mesh, and M is the matrix defining the

approximate anisotropic interpolation error metric along each element edge (Chen

et al., 2007; Loseille & Alauzet, 2011b). The M is given by the following equation:

M ij = (det(H))−
1

2γ+χ
H ij

η
, (2.56)

where H is the Hessian matrix (details can be found in section 2.5.2), γ is the

polynomial degree of an element for the chosen norm, χ is the dimension of the

mesh, and η represents the expected normalizing tolerance factor in the chosen

field.

To generate a mesh with high quality, the Qm(∆e) is required to reach its minimum

value, which represents the mesh thus approximately has a minimum interpolation

error. Additionally, some other constraints, such as total mesh node number, mesh

node number increase ratio, maximum mesh element edge length, minimum mesh

edge length, etc., are implemented in this mesh adaptivity as strong or weak condi-

tions on the function Qm(∆e) (Farrell, 2011; Pain et al., 2001a).
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(a) (b) (c) (d)

Figure 2.6 Mesh adaptivity geometric operations. (a) node insertion or edge

split, (b) node deletion or edge collapse, (c) edge swap, (d) node movement

(Piggott et al., 2009).

In order to obtain the minimum interpolation error, four dynamic mesh operations

during the mesh adaptivity are implemented. They are node insertion/edge splitting,

node deletion/edge collapse, edge swap and node movement (see Fig. 2.6).

2.5.2 Hessian matrix

The Hessian matrix is used in the mesh adaptivity to bound the interpolation error

between a smooth field and its piecewise linear interpolation over a fixed mesh. The

smooth field and its piecewise linear interpolation over a fixed mesh are represented

by q(x1, x2, x3) and q̃ =
∑

a q̃aNa, respectively. The Hessian matrix is defined as

(Loseille & Alauzet, 2011a):

H ij =
∂2q

∂xi∂xj
. (2.57)

The iterative Galerkin projection of the linear interpolation is used to approximate

the Hessian matrix:∑
a

∫
NaNbdV

∂q̃b
∂xi

=
∑
a

∫
Na

∂

∂xi
(Ncq̃c)DV, (2.58)
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∑
a

∫
NaNbdV [H̃b]xixj =

∑
a

∫
Na

∂

∂xi

(
Nc
∂q̃c
∂xi

)
DV. (2.59)

The same as Loseille & Alauzet (2011b) have implemented in their work, the mass

matrix has been row lumped in equation 2.59.

2.5.3 Consistent and Galerkin projections

The adaptivity geometric operations are used to improve the mesh quality till the

quality criterion is as desired. Once the quality criterion based on Qm(∆e) is ob-

tained, a new mesh is generated. All the variables on the existing mesh will be

projected to this new mesh (Farrell, 2011) via consistent projection or Galerkin pro-

jections. In the consistent projection, the nodal values are to be the same as the old

finite element representation, for instance, at node (x1, x2, x3):

q̃new =
∑
b

q̃oldb N old
b (x1, x2, x3). (2.60)

The consistent projection is non-conservative method but bounded. However the

Galerkin projection is conservative. It can be expressed as:∫
Nnew
a Nnew

b q̃newb =

∫
Nnew
a N old

b q̃oldb , (2.61)

where supermeshing method is used to ensure the projection error is acceptable

(Farrell et al., 2009). More details about anisotropic mesh adaptivity can be found

in Mostaghimi et al. (2015); Pain et al. (2001b); Piggott et al. (2009); Bull (2013).

2.6 Coupling methodology between the fluid and

solid dynamics

2.6.1 Form of the coupling term sc

In order to form the coupling term sc, the momentum equation 2.11 should be

written in a discretized form as:

αf

[
ρf

(
un+1
f − unf

∆t

)
+ ρfuf · ∇uf +∇(p− τ)− sc − ρfgk

]
= 0, (2.62)
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in which, ρfgk is the body force Bf , and τ is the shear stress. The solid-fluid

coupling term can be expressed as αfsc. This coupling term has the form expressed

as a discretized equation for the shell surrounding the solid surface as:∫
Vs

N s
i (αfsc)

s dV =

∫
Γs

N s
i τdΓ, (2.63)

with say (αfsc)
s =

∑
j N

s
j (αfsc)

s
j and τ just contains the viscous components of

force on the surface of the solid. The force (αfsc)
s is then mapped onto the fluid

mesh forming (αfsc)
f=αs (αfsc)

s.

Applying the divergence theorem to the product of a scalar function, f , and a non-

zero constant vector c, the following theorem can be proven:

∫
V

c · ∇f dV =

∫
Γ

(cf) · dΓ−
∫
V

f(∇ · c) dV. (2.64)

By using Equation 2.64, the stress conditions can be discretized as:∫
V

Ni∇ · τdV = −
∫
V

Ni∇ · τdV +

∫
Γsolid

Nin · τ soliddΓ

=

∫
V

Ni∇ · τdV +

∫
Γsolid

Nin ·
(
τ
solid
− τ
)
dΓ. (2.65)

Consider for example the part of the τ term:∫
Γ

Ninxµ

(
∂u

∂x
|solid −

∂u

∂x

)
dΓ, (2.66)

in which, ∂u
∂x
|solid is the gradient of the fluid velocity in x direction on solid surfaces,

and ∂u
∂x

is the gradient of the fluid velocity in x direction in the fluid area near solid

surfaces. We can approximate the fluid derivatives next to the solid boundary using:∫
V

Nwalli

∂u

∂x
|soliddV = −

∫
V

∂Nwalli

∂x
udV +

∫
Γsolid

NwalliudΓ. (2.67)
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Using the solid velocity us on the boundary:∫
V

Nwalli

∂u

∂x
|soliddV = −

∫
V

∂Nwalli

∂x
udV +

∫
Γsolid

NwalliusdΓ. (2.68)

Then using equation 2.67 in equation 2.68 to obtain:∫
V

Nwalli

∂u

∂x
|soliddV =

∫
V

Nwalli

∂u

∂x
|soliddV −

∫
Γsolid

Nwallinx (u− us) dΓ. (2.69)

Using very simplest constant basis functions Nwalli with ∆xwall being the fluid ele-

ment length scale around the wall and normal to it, then:

∂u

∂x
|solid =

∂u

∂x
− nx (u− us)

∆xwall
. (2.70)

We can evaluate the terms in equation 2.66 over a thin shell Vshell using equation

2.70 to obtain: ∫
Γ

Ninxµ
∂u

∂x
|soliddΓ ≈

∫
Vshell

Ninx
1

∆r
µ
∂u

∂x
|soliddV (2.71)

≈
∫

Vshell

Ninx
1

∆r
µ
∂u

∂x
dV +

∫
Vshell

Ninxnx
1

∆r∆xwall
µ (usolid − u) dV. (2.72)

Thus∫
Γ

Ninxµ

(
∂u

∂x
|solid −

∂u

∂x

)
dΓ ≈

∫
Vshell

Ninxnx
1

∆r∆xwall
µ (usolid − u) dV, (2.73)

in which ∆r is the width of the thin shell surrounding the solid (see Fig. 2.7).

For the viscous term, by using the slip velocity usl = us − u , and gathering the

contributions to each velocity component u and v, when the viscosity is isotropic
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1 2

1′ 2′

3

∆r

Figure 2.7 Left: the solid mesh with its surrounding shell mesh; right: a 2D solid

element with its shell mesh. ∆r is the shell thickness. The method to gener-

ate the shell mesh can be found in Section 2.6.2.

µ = µxx = µxy..., it can be expanded for the (usl, vsl, wsl ) as:

∫
Vshell

Ni
µ

∆r∆xwall
{
[
nx

(
2− 2

3

)
nx + nyny + nznz

]
usl +

(
−nx

2

3
ny + nynx

)
vsl

+

(
−nx

2

3
nz + nznx

)
wsl}dV ;∫

Vshell

Ni
µ

∆r∆xwall
{
(
nxny − ny

2

3
nx

)
usl +

[
nxnx + ny

(
2− 2

3

)
ny + nznz

]
vsl

+

(
−ny

2

3
nz + nzny

)
wsl}dV ;∫

Vshell

Ni
µ

∆r∆xwall
{
(
nxnz − nz

2

3
nx

)
usl +

(
nynz − nz

2

3
ny

)
vsl

+

[
nxnx + nyny + nz

(
2− 2

3

)
nz

]
wsl}dV. (2.74)

Or in more condensed form - also serving as a definition of coupling viscous coeffi-

75



Chapter 2: A fluid-structure interaction model for incompressible, compressible
and turbulent flows

cients: axx, axy, axz, ... - for (u, v, w):

f sx =

∫
Vshell

Ni (axxusl + axyvsl + axzwsl) dV ;

f sy =

∫
Vshell

Ni (ayxusl + ayyvsl + ayzwsl) dV ;

f sz =

∫
Vshell

Ni (azxusl + azyvsl + azzwsl) dV. (2.75)

Defining,

f fx = axxus + axyvs + axzws;

f fy = ayxus + ayyvs + ayzws;

f fz = azxus + azyvs + azzws. (2.76)

then the solid-fluid coupling term sc =
(
f fx , f

f
y , f

f
z

)T
.

2.6.2 Projections between fluid, solid and shell meshes

The fluid velocity, pressure and viscosity coefficient are computed on the fluid mesh,

whilst the solid velocity, the coupling term sc, and the coupling viscous coefficients

axx, axy, axz, ... are computed on the solid mesh in Section 2.2. In order to complete

the coupling algorithm, the fields (fluid velocity, pressure and viscosity coefficient)

need to be projected from the fluid mesh onto the shell mesh, and then from there to

the solid surface mesh. Meanwhile, the fields (the solid velocity, the coupling term

sc, and the coupling viscous coefficients axx, axy, axz, ... need to be projected from

the solid surface mesh onto the shell mesh, and then from there onto the fluid mesh.

The projection technique between these three meshes is shown in this section.

A supermeshing method (Farrell & Maddison, 2011) is employed, in order to project

a field from the shell to fluid mesh. The interactions between the shell and fluid

mesh have to be identified when the supermesh method is used (Viré et al., 2015).

A Galerkin projection is used to complete the mesh-to-mesh projection. Given a

donor mesh D and a target mesh T on a domain Ω, a Galerkin projection on a field
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q from D to T ensures that: ∫
Ω

qDdV =

∫
Ω

qTdV, (2.77)

by minimizing the L2 norm of the interaction error (Farrell & Maddison, 2011).

Take the solid velocity us as an example, by solving the following linear equation:

∫
V

nf∑
j=1

(us)
f
j N

f
j N

f
k dV =

∫
Vsh

nsh∑
i=1

(us)
sh
i N sh

i N
f
k dV. (2.78)

The projection method used in this thesis is the same as those used in the immersed-

body method (Viré et al., 2012, 2015).

After the fluid viscosity being passed to the shell mesh, it needs to be applied on

the solid surface. Then the coupling term sc and the viscosity force F v can be

computed by using equation 2.76 and 2.81 on the solid surface. Similarly, once

the solid quantities at the solid surface are mapped to the shell, they need to be

projected to the fluid mesh. The following will describe these processes in detail.

A shell mesh is constructed directly from the surface of the solid mesh. We can

see it from Fig. 2.7, where the triangular element 1-2-3 is a 2D solid element, and

1-2 is its surface. By extruding the surface 1-2 in its normal direction with a shell

thickness ∆r, the shell mesh is formed. Thus for each surface element at the solid

surface in two dimensions, two triangular elements are added to form the shell area

mesh, for example, element 1 − 2 − 2′ and element 1 − 1′ − 2′. In order to ensure

that the projection between the inner and outer shell nodes is conservative, the shell

thickness is set to be smaller than the solid mesh size. However, for the projection

from a shell to a solid surface in two dimensions, the condition is∫
Ssh

qshdSsh =

∫
Ls

qsurfdLs, (2.79)

where Ls presents the surface of the solid. The superscripts notations ‘sh’ and ‘surf’

denote the shell mesh and the solid surface mesh respectively. More details of the

projection method can be seen in the literature (Viré et al., 2012, 2015).
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2.6.3 The theory behind the semi-implicit coupling approach

The coupling is achieved by the coupling term sc. In order to evaluate the coupling

term force contribution sc on the fluid, each of f fx , f
f
y , f

f
z is mapped to the fluid mesh.

In addition, each of the coupling viscous coefficients axx, axy, axz, ... is mapped to the

fluid mesh in order to form the implicit treatment of the fluid velocity.

The discretized force on the solid surface is evaluated from:

F s
v + F s

p =

∫
Γsolid

Nin ·
(
τ
solid

+ Ip
)
dΓ, (2.80)

in which τ
solid

contains just the viscous contributions to the stress term.

As shown in equation 2.72 the individual gradients (that make up the viscous stress

tensor τ
solid

) can be calculated from:

∫
Γsolid

Ninxµ
∂u

∂x
|soliddΓ ≈

∫
Vshell

Ninx
1

∆r
µ
∂u

∂x
dV+

∫
Vshell

Ninxnx
1

∆r∆xwall
µ (usolid − u) dV

≈
∫

Γsolid

Ninxµ
∂u

∂x
dΓ +

∫
Γsolid

Ninxnx
1

∆xwall
µ (usolid − u) dΓ. (2.81)

This integral is used as a discretized surface force in the solid equations.

The steps to implement the two-way solid-fluid coupling for multiphase viscous flows

are shown in Fig. 2.8.

As we can see from the coupling steps, the shell mesh play a crucial role in trans-

porting solid consideration, velocity; and fluid velocity, pressure, viscous coefficients

between the fluid mesh and the solid mesh. It is a thin intermediate mesh surround-

ing the solid surface. Since it only includes a layer of mesh, when transporting these

coupling fields between the solid mesh and the fluid mesh, the computational costs

can be reduced extremely. Moreover, this layer thin shell mesh is very promising for

resolving the boundary-layer for flows with high Reynolds numbers between these

three meshes (Viré et al., 2015).
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Fluidity-Multiphase Solidity

Time step in the fluid solver: n

Discretize momentum
equation 2.11 on com-
putational domain V

solve fluid velocity uf ,
pressure p, and viscosity µ

Time step in the solid solver: i

Discretize equation 2.1
on solid domain Vs

Construct shell mesh

Compute F p and F v

via equation 2.81

Solve for us via equation 2.1

Compute the time-
averaged solid velocity ūs

Compute sc , and
axx, axy, axz, ...
via ūs and uf

Implicitly solve uf

via equation 2.11

A○

Project uf , p, µ from
fluid to shell mesh

Project uf , p, µ from shell
to solid surface mesh

B○

Project sc , and
axx, axy, axz, ... from

solid surface to shell mesh

Project shell volume fraction
αsh, sc, and axx, axy, axz, ...

from shell to fluid mesh

A○

B○

i = i+ 1

n = n+ 1

Figure 2.8 The flow chart of the immersed-body method.

79



Chapter 2: A fluid-structure interaction model for incompressible, compressible
and turbulent flows

2.7 The coupling algorithm for turbulent flows

2.7.1 The exchange forces on the solid surface

The exchange forces on the solid surface contain the pressure force and shear stress:

F s
v + F s

p =

∫
Γsolid

Nin ·
(
τ
solid

+ Ip
)
dΓ. (2.82)

Combined with the wall function (see section 2.3.2.3), it can be rewritten as

F s
v + F s

p =

∫
Vshell

N
ρνus
ys∆r

dVshell −
∫

Vshell

N
quf
∆r

dVshell +

∫
Γsolid

IpdΓ. (2.83)

2.7.2 The coupling steps

The coupling steps for the immersed-body URANS model are shown in the flow

chart in Fig. 2.9.

Step 1: Solve the fluid governing Eqs. 2.10 and 2.11 for fluid velocity uf and pressure

p;

Step 2: Solve the k − ε model at the nonlinear iteration stage, for k and ε. Then

update eddy viscosity vT ;

Step 3: By using the shell mesh external-surface intersection approach (see Sec-

tion 2.3.3.3), locate the intersection cells. Then get the intersection cell coordinate

(xi, yi, zi);

Step 4: Project fluid velocity uf , pressure p, kf , εf , and the intersection cell

coordinate (xi, yi, zi) to the shell mesh, and then from here to the solid surface;

Step 5: Compute the wall distance via Eqs. 2.38;

Step 6: Calculate the fluid force on solid by using Eq. 2.83;

Step 7: Solve the solid velocity us, stress and displacement by using Eq. 2.1;

Step 8: Form the coupling term sc, sk and sε via Eq. 2.32, 2.35 and 2.36 ;

Step 9: Project the coupling term sc, sk and sε from solid surface to the shell mesh,

and then from here to the fluid mesh. Then go to Step 1.
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Fluidity-Multiphase Solidity

Time step in the fluid solver: n

Solve Eqs. 2.10 and
2.11 for fluid veloc-

ity uf and pressure p

Solve Eqs. 2.15 and 2.16
for fluid turbulent kinetic

energy kf and dissipation εf

Use the shell mesh (see
Section 2.3.3.3) to lo-

cate the intersection cell
coordinate (xi, yi, zi)

Time step in the solid solver: i

Construct the shell mesh

Compute the wall dis-
tance yi via Eq. 2.38

Compute F s
p and

F s
v via Eq. 2.83

Solve for us via Eq. 2.1

Form the coupling
term sc via Eq. 2.32

Form the coupling term sk
and sε via Eq. 2.35 and 2.36

Solve p, uf , kf and
εf via Eqs. 2.10,

2.11, 2.15 and 2.16

A○

Project uf , p, kf , εf
and (xi, yi, zi) from
fluid to shell mesh

Project uf , p, kf , εf
and (xi, yi, zi) from shell

to solid surface mesh

B○

Project sc , sk and sε from
solid surface to shell mesh

Project shell volume
fraction αsh, sc, sk and sε

from shell to fluid mesh

A○

B○

i = i+ 1

n = n+ 1

Figure 2.9 The flow chart of the immersed-body URANS model. The left part is

the loop in fluid solver (Fluidity-Multiphase), and the right part is the loop in

solid solver (Solidity).
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2.8 Concluding remarks

This chapter presents a novel immersed-body model, which combined a dynamic

solid model (FEMDEM) and a multiphase viscous fluid model (Fluidity-Multiphase).

This model is capable of resolving FSI for incompressible, compressible and turbu-

lent flows. In this model, a coupling term containing the fluid stresses is introduced

within a thin shell mesh surrounding the solid surface. In this shin shell, the bound-

ary conditions of the solid surface for the turbulence model and the momentum

equation are implemented. As well as a log-law wall function is used in this thin

shell to reduce the computational cost when resolving the boundary layers near the

solid surface. A novel shell mesh external-surface intersection approach is introduced

to produce the sharp interfaces between the solids and fluids, which ensures the ac-

curacy of the wall function. An advanced anisotropic mesh adaptivity is applied in

unstructured meshes to improve the performance of the presented immersed-body

URANS turbulence model by using relatively less number of cells compared to those

methods that are using fixed meshes. The following chapters are going to present

the benchmark, validation and application cases for the developed FSI model from

incompressible, compressible to turbulent flows.
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Chapter

THREE

Incompressible flow FSI model

In the previous chapter, the FSI model for incompressible flows has been developed.

In order to validate this model for incompressible flows, several test cases are set

up and described in this chapter. Two benchmark test cases, a free falling circular

cylinder in a fluid at rest and a free falling sphere, are set up at first. Then a

collapsing column of water moving an initially stationary solid square and an elastic

membrane test cases are presented. The mesh sensitivity analysis is given out in

test cases: a free falling circular cylinder in a fluid at rest and an elastic membrane.

Finally, the fifth simulation example is of a water-air interface with a floating solid

square being moved around by complex hydrodynamic flows including wave breaking.

The results show that the immersed-body method is an effective approach for two-way

solid-fluid coupling in multiphase viscous flows.
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3.1 Introduction

This chapter focuses on solid-fluid coupling validation and application for incom-

pressible flows. By using an advanced interface capturing method here (Pavlidis

et al., 2016), the overall method has the capability to tackle problems with fluid-

solid interfaces and multiphase flow interfaces.

The remainder of this chapter is organised as follows. Section 3.2 presents the test

case: a free falling circular cylinder in a fluid at rest. A free falling sphere test case

is given in section 3.3. A collapsing column of water moving an initially stationary

solid square is presented in Section 3.4. Section 3.5 shows the mesh sensitivity

analysis test case: an elastic membrane. A floating solid square simulation is also

presented in Section 3.6. The list of the test cases in this chapter is shown in Table

3.1. The mesh sensitivity analysis is given out in section 3.2 and 3.5. I discuss the

strength and weaknesses of this approach and draw conclusions in Section 3.7.

In all the test cases, the finite element pair, P1DG − P2 (Cotter et al., 2009), is

used. This means the velocity is approximated by discontinuous linear finite element

functions, whilst the pressure is approximated by continuous quadratic finite element

functions. This makes the velocity has the first order spatial-discretization accuracy,

whilst the pressure has the second order spatial-discretization accuracy.

Table 3.1 Incompressible flow test cases

Section Case name Case purpose
Section 3.2 A free falling circular cylinder in a fluid at

rest
Validation & Mesh
sensitivity analysis

Section 3.3 A free falling sphere Validation
Section 3.4 A collapsing column of water moving an

initially stationary solid square
Validation

Section 3.5 An elastic membrane Mesh sensitivity
analysis

Section 3.6 The water-air interface with a floating solid
square

Application
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3.2: A free falling circular cylinder in a fluid at rest

3.2 A free falling circular cylinder in a fluid at

rest

The benchmark test case, a free falling circular cylinder with density ρs in a fluid

with density ρf and viscosity µ at rest is revisited since there are many available

references in the literature (Gibou & Min, 2012; Glowinski et al., 1999; Robinson-

Mosher et al., 2011; Cate et al., 2004; Wang et al., 2008; Glowinski et al., 2001;

Jayaweera & Mason, 1965).

3.2.1 The test case set up and the semi-empirical solution

In this validation test case, an infinite section of the solid cylinder perpendicular

to the motion direction, this problem is easy to be treated in two-dimension. The

fluid domain is 2.5× 18.5, and the radius of the circular cylinder r =0.125 (see Fig.

3.1). The centre of the circular cylinder is located at (1.25, 18). The falling circular

cylinder reaches the terminal velocity when gravitational force is balanced by the

buoyancy and drag force. The buoyancy force is calculated by the pressure integral

over the surface of the solid. The drag force is formed by equation 2.81.

For the drag force, the drag coefficient CD is employed to evaluate it. There are

many experiments measuring the CD of flow passing long cylinders in the literature

(Pruppacher et al., 1970). Clift et al. (2005) approximated these experimental data

using the following equations:

CD = 9.689Re−0.78
(
1 + 0.147Re0.82

)
, 0.1 ≤ Re ≤ 5;

CD = 9.689Re−0.78
(
1 + 0.227Re0.55

)
, 5 ≤ Re ≤ 40;

CD = 9.689Re−0.78
(
1 + 0.0838Re0.82

)
, 40 ≤ Re ≤ 400. (3.1)

Gabitto & Tsouris (2008) introduced an expression of the relationship between ter-

minal velocities and CD for non-spherical particles as:

Ut =

√
2msg (ρs − ρf )
ρfρsAsCD

, (3.2)

where Ut is the terminal velocity, CD is the solid particle drag coefficient based

on the projection area, ms is the particle mass, ρs is the solid particle density, ρf
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Chapter 3: Incompressible flow FSI model

Figure 3.1 The computational domain of the free falling circular cylinder case.

is the density of the surrounding fluid, As is the projected area of the particle in

the direction of motion, and g is the gravitational acceleration constant. In this

benchmark test case, ms = ρsπr
2 and As = 2r, where the circular cylinder axis

remains horizontal during falling and has unit length (L = 1). The Reynolds number

for the circular cylinder is expressed as

Re =
2rUt
ν

, (3.3)

where ν is the kinematic viscosity of the fluid.The terminal velocity Ut, Reynolds

number Re and drag coefficient CD can be computed by combining equations 3.1 ,

3.2, and 3.3. This semi-empirical solution is used to validate current results obtained

by the present immersed-body method.
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3.2: A free falling circular cylinder in a fluid at rest

3.2.2 The results for different fluid-solid density ratios and

Reynolds numbers

In Table 3.2, ∆r is the shell mesh thickness and le is the minimum fluid mesh size.

For all the cases, the maximum fluid mesh size Le is set as 0.06. The relative error

between the terminal velocities calculated by the immersed-body method, U is
t , and

semi-empirical value U sf
t is defined as

EUt
r =

U is
t − U

sf
t

U sf
t

. (3.4)

For all the cases, the Courant number is fixed at CFL = u∆t/∆l = 0.5. As

we can see, at the beginning of the simulation, the fluid velocity u is very small.

When the CFL number is fixed at 0.5, the ∆t can be very large. This will result

in large initial values. In order to avoid this situation, the largest time step is

limited to ∆t = 10−2. For ρs/ρf = 2.0 (Y020 series in Table 3.2), the relative

errors are +0.0456 (Re=21.21), -0.0044 (Re=99.52), and -0.0232 (Re=195.23). As

the Reynolds number increases, the relative error becomes bigger. This situation is

more obvious in the larger fluid-solid density ratio cases (Y040 and Y060 series in

Table 3.2). This difference could be caused by the lack of turbulence models, which

results in the overestimation of the drag force on the solid surface. In return, the

larger drag force causes the lower terminal velocities. However, despite the absence

of turbulence models, the relative errors in all the cases are between -0.0368 and

+0.0456.

Table 3.2 Free falling circular cylinder test cases for different ρs/ρf .

Case ρs/ρf ν Re ∆r le U sf
t U is

t EUt
r

Y020-020 2.0 0.017173 21.21 0.0005 0.005 1.3935 1.4570 +0.0456
Y020-100 2.0 0.004401 99.52 0.0005 0.005 1.7599 1.7522 -0.0044
Y020-200 2.0 0.002278 195.23 0.0005 0.005 1.8216 1.7793 -0.0232
Y040-020 4.0 0.029673 20.69 0.0005 0.005 2.3991 2.4552 +0.0234
Y040-100 4.0 0.007621 98.34 0.0005 0.005 3.0457 2.9982 -0.0156
Y040-200 4.0 0.003946 192.41 0.0005 0.005 3.1534 3.0373 -0.0368
Y060-020 6.0 0.038404 20.76 0.0005 0.005 3.0998 3.1883 +0.0286
Y060-100 6.0 0.009852 98.53 0.0005 0.005 3.9325 3.8831 -0.0126
Y060-200 6.0 0.005096 194.60 0.0005 0.005 4.0727 3.9666 -0.0261
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Figure 3.2 Relative errors between the terminal velocities calculated by the

immersed-body method, U is
t , and semi-empirical value U sf

t for different mesh

sizes of the free falling circular cylinder cases.

3.2.3 Mesh size sensitivity analysis

In order to evaluate the effect of fluid mesh size on numerical solutions, two series

of tests (Yc20 and Yf20) have been performed. In the series Yf20, the fluid mesh

size is smaller than that in Y020 series, whilst the fluid mesh size in the series Yc20

is larger than that in Y020 series. Comparing results from these three series in

Table 3.3, although the mesh sizes are different, the terminal velocities are almost

the same (see Fig. 3.2a). The conservation of the terminal velocities for the series

Yc20, Y020 and Yf20 indicate that this immersed-body method is not affected by

the fluid mesh size.

Table 3.3 Free falling circular cylinder test cases for mesh sensitivity analysis.

Case ρs/ρf ν Re ∆r le U sf
t U is

t EUt
r

Yc20-020 2.0 0.017173 21.51 0.0005 0.01 1.3982 1.4778 +0.0569
Yc20-100 2.0 0.004401 95.99 0.0005 0.01 1.7555 1.6900 -0.0373
Yc20-200 2.0 0.002278 182.17 0.0005 0.01 1.8169 1.6602 -0.0862
Yf20-020 2.0 0.017173 20.61 0.0005 0.0025 1.3840 1.4161 +0.0232
Yf20-100 2.0 0.004401 100.28 0.0005 0.0025 1.7608 1.7655 +0.0027
Yf20-200 2.0 0.002278 204.07 0.0005 0.0025 1.8244 1.8599 +0.0194
Yr20-020 2.0 0.017173 21.03 0.001 0.005 1.3906 1.4443 +0.0387
Yr20-100 2.0 0.004401 98.83 0.001 0.005 1.7590 1.7399 -0.0109
Yr20-200 2.0 0.002278 192.83 0.001 0.005 1.8208 1.7573 -0.0348

The shell mesh in this immersed-body method is a thin intermediate mesh between
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3.2: A free falling circular cylinder in a fluid at rest

the fluid and solid meshes to transport the coupling fields, such as the fluid pressure,

velocity and viscosity; and the solid velocity. This shell mesh is crucial for the

coupling procedure. To evaluate the effect of the shell mesh size, test series Yr20 is

introduced. As we can see from Table 3.3, the shell mesh thickness in the test series

Yr20 is twice of that in test series Y020. However, the terminal velocities in these

two test series are very close (see Fig. 3.2b). Moreover, the relative errors in these

two series are within -0.034 and +0.0456.

3.2.4 Vortex shedding behind a circular cylinder

Figs. 3.3 and 3.4a show the mesh, velocity and non-hydrostatic pressure of Y020-200

and Y040-200 cases respectively. The vortices behind the moving circular cylinder

are obvious. This indicates that this immersed-body method is able to capture

the viscous behaviour of the fundamental FSIs effectively. For the non-hydrostatic

pressure, it is indicated that the positive pressure appears at the front of the moving

circular cylinder, whilst it is negative at the sides of the circular cylinder. This

matches the fluid mechanism very well.

Table 3.4 Free falling circular cylinder test cases for vortex comparison.

Case ρs/ρf ν Re ∆r le U sf
t U is

t EUt
r

Yf20-200 2.0 0.002278 204.07 0.0005 0.0025 1.8244 1.8599 +0.0194
Af20-100 2.0 0.002278 216.16 0.0005 0.0025 1.8610 2.0124 +0.0777

In this thesis, the coupling term sc includes fluid stresses. This is more complicated

than that in (Viré et al., 2015). In that literature, the authors have implemented an

coupling term, which is ρ
∆t
αsh(uf − us). In order to compare our immersed-body

method with the one in that literature, two more test cases are implemented. They

are Yf20-200 and Af20-200. Yf20-200 is using our immersed-body approach, whilst

the Af20-200 is using the immersed-body method in that literature. To make the

present model be equated to the approach in that literature, the coupling term sc

in section 2.6.1 has been changed as follows. First, the axy and ayx are set to 0.0.

Then, the axx and ayyare given the same value, which is ρ
∆t

. This modified model

has been used in the test case Af20-200.

In Table 3.4, the parameters for the two test cases Yf20-200 and Af20-200 are listed.

For these two test cases, the CFL number is fixed at 0.5. All initial conditions for
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Figure 3.3 Falling circular cylinder: ρs/ρf = 2.0, Re=195.23, mesh (left), veloc-

ity (middle-left), velocity in y direction (middle-right), non-hydrostatic pres-

sure (right). This test case is dimensionless. The velocity bar here represents

ds/dt, where ds is the spatial motion length in a finite time period dt.

these two test cases are the same. From Table 3.4, we can see that the present model

has achieved somewhat more accurate terminal velocity than that obtained by the

immersed-body method in (Viré et al., 2015).

Most importantly, the comparison of the vortex shedding in the two cases indicates

that the fluid-stress coupling term can resolve more of the viscous behaviour than

the coupling term in (Viré et al., 2015). For the free falling circular cylinder in

a fluid at rest test case, vortex shedding should be apparent when the Reynolds

number is about 200 (Feng et al., 1994; Yu et al., 2002). Fig. 3.4b shows the vortex

shedding for these two cases. It is clear that there is vortex shedding behind the

circular cylinder in Yf20-200, whilst less in Af20-200. This implies that the use of

fluid-stress coupling term sc can improve the capture of viscous behaviour for FSIs.
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Figure 3.4 (a) Falling circular cylinder: ρs/ρf = 4.0, Re=192.41, mesh (left),

velocity (middle-left), velocity in y direction (middle-right), non-hydrostatic

pressure (right). (b) The velocity in the y direction of the falling circular

cylinder cases: ρs/ρf = 2.0, Af20-200 (left), Yf20-200 (right). This test case is

dimensionless. The velocity bar here represents ds/dt, where ds is the spatial

motion length in a finite time period dt.
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3.3 A free falling sphere

3.3.1 A free falling sphere at Re = 7, 20 and 100

This benchmark test case is a free falling sphere in a fluid at rest. In this case, the

sphere reaches its terminal velocity when the gravity, buoyancy and drag forces are

balanced with each other. The evolution of the sphere velocity can be calculated

through a semi-analytical motion equation of the sphere (Clift et al., 2005):

(ρf − ρs)gVs =
1

2
ρfACDu

2
s + 6ρfR

2
√
πν

t∫
0

1√
t− s

dus(s)

dt
ds+ (ms +ma)

dus
dt
, (3.5)

where ρs is solid density, g is the gravity coefficient, Vs is the solid volume, A is the

sphere cross-sectional area, CD is the drag coefficient, R is the radius of the sphere,

ν is the kenimatic viscosity of the fluid, s is the time between 0 and t, us(s) is the

solid velocity at t = s, ms = ρsVs is the mass of the sphere, ma = CmρfVf is the

virtual mass, which is contributed by respected fluid to the accelerating sphere. Cm

is the virtual mass coefficient and it is set to 0.5. The left term in Eq. 3.5 is the

difference between buoyancy and the gravity forces. The first right-hand term in

Eq. 3.5 represents the drag force on the sphere. The drag coefficient CD is given by

the following experimental data fitting equation (Brown & Lawler, 2003):

CD =
24

Re
(1 + 0.15Re0.681) +

0.407

1.0 + 8710/Re
. (3.6)

The drag force balances the gravity and buoyancy forces when the sphere reaches

its terminal velocity. The second right-hand term is called as the Basset force (Mei,

1994). In this work, the semi-analytical solution of the sphere velocity evolution is

computed by solving Eq. 3.5 via 4th Runge-Kutta method. The presented method

is validated by this semi-analytical solution at low Reynolds numbers.

The computational domain with dimensions 10D × 10D × 75D is shown in Fig.

3.5a. The centre of the sphere is initially set at 5D to the top, left, right, front

and back of the domain. The top surface of this computational domain is given the

open boundary condition, other surfaces: bottom, right, left, front and back of the

domain are all given free-slip boundary conditions. Adaptive fluid meshes are used

in this test case with the maximum and minimum mesh edge length Lmax = 5D and
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3.3: A free falling sphere

(a) (b)

Figure 3.5 (a) The computational domain of the falling sphere test case, (b) The

computational mesh of the falling sphere test case.

Lmin = 0.025D, respectively (see Fig. 3.5b). The Reynolds number (Re) for this

case is defined as:

Re =
UtD

ν
, (3.7)

where Ut is the terminal velocity of the sphere.

Table 3.5 Free falling sphere test cases for different m∗.

Case m∗ ν Re U sf
t U is

t EUt
r

YS040-007 2.0 1.912× 10−2 7 -0.6396 -0.6710 0.0491
YS040-020 2.0 9.63× 10−3 20 -0.9216 -0.9825 0.0661
YS040-100 2.0 3.01× 10−3 100 -1.4508 -1.5200 0.0477
YS020-007 4.0 3.346× 10−2 7 -1.1324 -1.1600 0.0243
YS020-020 4.0 1.686× 10−2 20 -1.6313 -1.6800 0.0299
YS020-100 4.0 5.25× 10−3 100 -2.5602 -2.6200 0.0234

The comparison of the sphere velocity history between the semi-analytical solutions

and the simulation results obtained by the present method are shown in Fig. 3.6.
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Figure 3.6 The comparison of the sphere velocity history between the semi-

analytical solutions and the simulation results obtained by the present

method. The solid back continuous lines are the semi-analytical solutions and

the blue plus symbols are numerical results using the present model. (a) Ve-

locity histories at m∗ = 2.0, (b) Velocity histories at m∗ = 4.0.

The velocity histories of three low Reynolds numbers: Re=7, 20 and 100 are given

in this Figure. The relative error between the semi-analytical solutions and the

simulation results

EUt
r =

U is
t − U

sf
t

U sf
t

, (3.8)

where U if
t is the semi-analytical terminal velocity and U is

t is the simulated terminal

velocity. The density ratio between the sphere and the fluid is defined as:

m∗ =
ρs
ρf
. (3.9)

The velocity history comparison details for m∗ = 4.0 and m∗ = 2.0 are listed in Table

3.5. The absolute values of all relative errors are less than 0.067. This indicates the

present model has accurate computing at low Reynolds number regime.

3.3.2 A free falling sphere at Re = 450, 620, 1200 and 1800

In order to validate the performance of this model at moderate Reynolds numbers,

the falling sphere test cases with Re = 450, 620, 1200 and 1800 are carried out in
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Figure 3.7 The terminal velocity against the Reynolds number for the falling

sphere test cases. The solid black line is the empirical solution and the blue

star line is the results obtained from the presented model.

this section.

In (Brown & Lawler, 2003), an experimental data fitting equation of the terminal

velocities for setting spheres are given as:

U t =

[(
18
d2∗

)((0.936d∗+1)/(d∗+1))0.898

+
(

0.317
d∗

)0.449
]−1.114

[
ρf

gν(ρs−ρf )

] 1
3

, (3.10)

where d∗ = D
[
g(ρs−ρf )

ρfν2

] 1
3
. Combining Eq. 3.10 and 3.7, an empirical relation

between Reynolds numbers and sphere terminal velocities can be obtained (see Fig.

3.7). The terminal velocities for different Reynolds numbers achieved by the present

model are also drawn on Fig. 3.7. They show good agreement with the empirical

curve.

Additionally, the near weak structures obtained by the present model are compared

with the experimental PIV measurements in (Horowitz & Williamson, 2010) (see

Fig. 3.8 and 3.9 ) at Re = 450, 620, 1200 and 1800. As the Reynolds number

increases, the vortex shedding pattern changes. In order to describe the vortex

shedding pattern, the three-dimensional vortex criterion proposed by Hunt et al.

(1988) is used in this work. This criterion is called as the Q-criterion and defined

as:

Q =
1

2

[
|Ω|2 − |S|2

]
> 0, (3.11)

where Ω and S are vorticity and the rate-of-strain tensor, respectively. Ω and S
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(a) (b) (c) (d)

Figure 3.8 Wakes of freely falling spheres in the experiment (Horowitz &

Williamson, 2010). (a) Re = 450. (b) Re = 620. (c) Re = 1200. (d)

Re = 1800.

are derived from the velocity gradient decomposition equation as follow:

∇u = Ω + S, (3.12)

Where, 
Ω = 1

2

[
∇u− (∇u)T

]
;

S = 1
2

[
∇u + (∇u)T

]
.

(3.13)

Fig. 3.9 shows the Q-criterion obtained by the present model. In Figs. 3.8a and

3.9a, the periodic ‘R’ mode is observed in both the PIV measurements and the

simulations using the present model at Re = 450. The ‘R’ mode is defined as one

vortex ring forming at every wavelength of wake formation (Horowitz & Williamson,

2010). When Re increases to 600, non-periodic mode appears in Fig. 3.8b and 3.9b.

These non-periodic shedding also observed at Re = 1200 (see Fig. 3.8c and 3.9c).
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Figure 3.9 Wakes of freely falling spheres obtained by the present model. The

weaks shown here are Q-criterion. (a) Re = 450. (b) Re = 620. (c) Re =

1200. (d) Re = 1800.

However, the periodic weak appears again when the Re=1800 (see Fig. 3.8d and

3.9d). The representatives of these different weak patterns in these simulations

indicate the present model is capable of accurately capturing the physics of the

interaction between moving solids and flows.

Since the sphere terminal velocities match with the empirical fitting curve and the

near weak patterns are comparable with the PIV measurements, the model de-

veloped here is suitable to simulate solid-fluid interaction at moderate Reynolds

numbers.

3.4 A collapsing column of water moving an ini-

tially stationary solid square

For multiphase flows, the numerical results of a collapsing column of water moving

an initially stationary solid square were compared with the laboratory experiment

data in the literature (Kawasaki & Mizutani, 2007). This experiment demonstrated

a collision between collapsing water and an initially stationary rigid solid square in

an acrylic tank. The dimensions of the water tank are 1.15 m in length, 0.40 m in

height and 0.20 m in width. There are two areas in the water tank, a reservoir and

inundation area used to set a thin vertical gate. The initial water in the reservoir

was set to 0.20 m in depth and 0.15 m in length. An initially stationary 0.04 m solid
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square was set at a distance of 0.70 cm from the front of the gate. In addition, there

are three pressure gauges locating at 0.01 m, 0.02 m, and 0.03 m from the bottom,

respectively (more details can see from literature (Kawasaki & Mizutani, 2007)).

The initial values of materials are shown on Table 3.6.

Table 3.6 Initial values of materials from literature (Kawasaki & Mizutani,

2007).

Materials Value
Water density 1060.0 kg/m3

Air density 1.20 kg/m3

Solid density 1113.0 kg/m3

Viscosity coefficient of water 1.0× 10−3 Pa · s
Viscosity coefficient of air 1.8× 10−5 Pa · s
Gravitational acceleration 9.80665 m/s2

Initial Atmospheric pressure 101325 Pa

The experiment is repeated by the simulation using the immersed-body method in

two dimensions. The computational domain is 1.15 m×0.4 m, and the water column

is 0.15 m wide and 0.2 m high. For the left, right and bottom of the domain, free-slip

boundary conditions are applied. The top of the domain is set as an open boundary.

The largest fluid mesh size Le is 0.06 m and the smallest fluid mesh size le is 0.002 m.

The time step ∆t is set as 2.5× 10−4 s.

Fig. 3.11 shows the time variations of the mesh, the water-air interface, and the

position history of the initially stationary solid square. The water column collapses

along the tank bottom under the effect of gravity. The initially stationary solid

square starts to move rightwards when the collapsing water collides with it. A

counterclockwise vortex is found in the air. This is similar to the results that

Kawasaki & Mizutani (2007) obtained. This indicates that the water strongly drives

the air to move due to the viscosity difference between water and air.

At t = 0.390 s, the front of the collapsing water reaches the solid square. This is the

same as Kawasaki’s results (Kawasaki & Mizutani, 2007). In Kawasaki’s computing

results, the solid square reaches the right wall at t = 0.610 s. However, in the

present results computed by the immersed-body approach, it is at t = 0.627 s when

the initially stationary solid square reaches the right wall. This indicates that the

present immersed-body method is more accurate than the ‘DOLPHIN-2D’ model

that Kawasaki & Mizutani (2007) developed, since the present results is more close
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3.4: A collapsing column of water moving an initially stationary solid square
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(c) P3 (0.03 m from the bottom)

Figure 3.10 Wave pressure acting on the initially stationary solid square. The

black solid line represents the computational results of the immersed-body

method in this thesis. The blue dash line and asterisk line are simulation re-

sults and experimental data from literature (Kawasaki & Mizutani, 2007).

P1, P2 and P3, refer to 0.01 m, 0.02 m and 0.03 m from the bottom on the left

wave impacted surface of the initially stationary solid square.
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(a) 0.000 s (b) 0.200 s

(c) 0.300 s (d) 0.390 s

(e) 0.500 s (f) 0.627 s

(g) 0.700 s (h) 0.800 s

Figure 3.11 The snapshots of the collapsing column of water moving an initially

stationary solid square. The blue grids are the adapted meshes; the green

parts refer to the air; the red parts represents the water; the blue vectors are

the velocity vectors of the fluids; the white square is the solid square. Figure

(a), (b), (c), (d), (e), (f), (g) and (h) refer to the snapshots at 0.000 s, 0.200 s,

0.300 s, 0.390 s, 0.500 s, 0.627 s, 0.700 s and 0.800 s respectively.
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3.5: An elastic membrane

to the experimental data than simulation results calculated by the ‘DOLPHIN-2D’

model (see Fig. 3.10). It is worth noting that when the front of the collapsing water

collides with the initially stationary solid square, high stress appears inside the left

bottom side of the body. Additionally, when the solid square crashes into the right

wall, a very high-stress peak is found in the front of the body. These two pressure

peaks are the same as that obtained via the ‘DOLPHIN-2D’ model (Kawasaki &

Mizutani, 2007). It can be seen that the mesh in Fig. 3.11 is adapted to the gradient

of the velocities. Additionally, the mesh is intensive at the water-air interface. The

adapted mesh can capture the water-air interface and the fluid vortices accurately

(see Fig. 3.11 g and h).

In Fig. 3.10, the value of the impulse pressure acting on the solid square is compared

with the experimental data that Kawasaki & Mizutani (2007) measured at P1, P2,

and P3, which refer to 0.01 m, 0.02 m, and 0.03 m from the bottom on the left wave

impacted surface of the initially stationary solid square. Pressure peaks appear when

the front of the water collides with the solid square. Solid and asterisk lines in this

figure represent the computed and experimental results respectively. The computed

pressure magnitude matches the experimental data with high accuracy despite the

small time gap between them.

In this test case, the present results computed by the immersed-body method are in

good agreement with the experimental one. The immersed-body approach, there-

fore, would be useful in analyzing and resolving dynamic solids coupled with multi-

phase viscous flows.

3.5 An elastic membrane

In this test case, an elastic membrane is modelled to simulate a flexible interface

problem. This case has already been used by Tu & Peskin (1992), LeVeque & Li

(1997); Tan et al. (2008) and Lee & LeVeque (2003) to evaluate their immersed

boundary and immersed interface methods. The initial shape of the membrane is

an ellipse (see the red solid line in Fig. 3.12 with the label ‘Initial’). The semi-

major and -minor axes of the membrane are a = 0.75 and b = 0.5 respectively.

The fluid computational domain is [−1.5, 1.5]× [−1.5, 1.5], in which the membrane

is situated at the centre. The membrane is modelled by the solid model with the

properties listed in Table 3.7. The resting shape of the membrane is a circle with
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radius r0 = 0.5 (see the black dash line Fig. 3.12 with the label ‘Resting’).

Table 3.7 The properties of the membrane.

Membrane conditions values
Density (kg/m3) 10.0

Young’s modulus E (Pa) 1.38× 103

Penalty number 1.38× 105

Fracture energy release rate Gf 200.0
Poisson ratio 0.205

Tensile strength (Pa) 4.0× 106

Shear Strength (Pa) 1.4× 107

Initial

Resting

Equilibrium

-1.5 0.0 1.5
-1.5

0.0

1.5

Figure 3.12 Initial, resting and equilibrium shapes of the elastic membrane.

Because the initial membrane shape is stretched from the resting circle to the ellipse,

there is certain restoring force inside the ellipse. This force drives the ellipse converge

to a circle with the re =
√
ab ≈ 0.61237 (see the blue dash-dot line in Fig. 3.12

with the label ‘Equilibrium’). The radius of the equilibrium circle is bigger than

the radius of the resting circle but the equilibrium circle has the same area as the

initial ellipse since the fluid is incompressible. Hence when the membrane reaches

the equilibrium state, it is still stretched by the incompressible fluid inside it. This

nonzero interface force is finally balanced by a fluid pressure differential. When the
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3.5: An elastic membrane

Table 3.8 Elastic membrane test cases with different shell mesh thicknesses.

Case µ ρf ∆r le Le
Elastic-membrane-y1 0.1 1.0 0.0005 0.0040 0.1
Elastic-membrane-y2 0.1 1.0 0.0010 0.0040 0.1
Elastic-membrane-y3 0.1 1.0 0.0020 0.0040 0.1

(a) t = 0.19 s (b) t = 0.80 s (c) t = 1.47 s

Figure 3.13 Elastic membrane test cases: the fluid mesh at different times: (a)

t = 0.19 s, (b) t = 0.80 s, and (c) t = 1.47 s.

membrane reaches the equilibrium state, the fluid velocity field is zero everywhere.

Meanwhile, there is a pressure differential between the inside and outside of the

interface.

A zero pressure boundary condition is applied to all the sides (open boundaries).

The initial conditions are zero pressure and velocity everywhere. The adaptive mesh

is used in this test case. The mesh is refined around the fluid-solid interface (see

Fig. 3.13). This helps to capture the interface more accurately.

The velocity field results are provided in Figs. 3.14. It is shown that the velocity

becomes small as the simulated time accrues, and reaches zero at the end of the

simulation. Fig. 3.15 shows the pressure profiles. In the beginning, the pressure is

not constant inside the membrane. Whilst, when the membrane shape changes to a

circle, the pressures inside and outside the membrane are constants with a known

pressure difference.

In order to evaluate the influence of shell mesh thickness on this pressure drop. Three

membrane tests with different shell mesh thicknesses are simulated in this work (see

Table 3.8). In Fig. 3.16, the fluid pressure profiles along y = 0.0 are plotted at

different time levels: (a) t = 0.19 s, (b) t = 0.80 s, and (c) t = 1.47 s. The blue-star,
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(a) t = 0.19 s (b) t = 0.80 s (c) t = 1.47 s

Figure 3.14 Elastic membrane test cases: the fluid velocity fields at different

times: (a) t = 0.19 s, (b) t = 0.80 s, and (c) t = 1.47 s.
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Figure 3.15 Elastic membrane test cases: the fluid pressure profiles at different

times: (a) t = 0.19 s, (b) t = 0.80 s, and (c) t = 1.47 s.
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Figure 3.16 Elastic membrane test cases: the fluid pressure profiles (y = 0.0)

with three different shell mesh thicknesses at different times: (a) t = 0.19 s,

(b) t = 0.80 s, and (c) t = 1.47 s.
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3.6: The water-air interface with a floating solid square

green and black-circle lines represent the pressure profiles with the shell thickness

0.0005 m, 0.0010 m and 0.0020 m, respectively. Despite the difference in the shell

mesh thickness, the pressure profiles are almost the same at the different time levels

and there are negligible differences between them. As the membrane approaches the

equilibrium shape, the differences diminish (see Fig. 3.16). This implies that the

shell mesh thickness does not affect the pressure drop in the membrane test.

3.6 The water-air interface with a floating solid

square

Modelling of structures floating on fresh or sea water requires that the air-water

interface as well as the solid-air, solid-water interface are modelled, especially for the

case of breaking waves. The understanding of these wave effects is very important

in ocean dynamics, for instance, the impacts of ocean waves on ships, floating wind

turbine platforms, and ocean oil platforms. The following case is a simplified model

of these situations. It consists of a 0.04 m solid square initially sitting stably at the

top of a water column, which is 0.20 m in length and 0.195 m in depth. The centre

of the floating solid square is initially located at (0.12, 0.22). The viscosity of water

and air are set as µ = 1× 10−3 Ns/m2 and µ = 1.8× 10−5 Ns/m2 respectively. The

computational domain is 0.6 m in length and 0.4 m in height. For the left, right

and bottom of the domain, free-slip boundary conditions are applied. The top of

the domain is set as an open boundary. The maximum fluid mesh size Le is set as

0.06 m and the minimum fluid mesh size le is set as 0.002 m. The time step is fixed

as 0.0005 s. The density of water, air and the solid square are set as 1060.0 kg/m3,

1.20 kg/m3, and 500.0 kg/m3 respectively.

Fig. 3.17 and 3.18 show some snapshots of the floating solid square simulation results

including the time variations of the mesh, the water-air interface, the velocity vector

profile, and the position history of the floating solid square. At t = 0.0 s, the solid

square is on the top of the water column. As the water collapses, the solid square

drops into the water. At t = 0.150 s, near the half of the solid square sinks into

the water, since the density of the solid square is almost half of water density. At

t = 0.255 s, the front of the water reaches the right side of the computational domain.

It reaches the top of the fluid domain at t = 0.400 s. The waterfront drops downward

to the bottom at t = 0.705 s. Then the dropping waterfront creates a wave with
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(a) 0.000 s (b) 0.150 s

(c) 0.255 s (d) 0.400 s

Figure 3.17 The snapshots of the water-air interface with a floating solid square.

The blue grids are the adapted meshes; the green parts refer to the air; the

red parts represents the water; the blue vectors are the velocity vectors of the

fluids; the white square is the solid square. Figure (a), (b), (c) and (d) refer

to the snapshots at 0.000 s and 0.150 s, respectively.
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3.6: The water-air interface with a floating solid square

(e) 0.705 s (f) 0.910 s

(g) 1.200 s (h) 1.400 s

Figure 3.18 The snapshots of the water-air interface with a floating solid square.

The blue grids are the adapted meshes; the green parts refer to the air; the

red parts represents the water; the blue vectors are the velocity vectors of the

fluids; the white square is the solid square. Figure (e), (f), (g) and (h) refer to

the snapshots at 0.705 s and 0.910 s, respectively.
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the characteristic form of a breaking sea wave. The front of the water wave impacts

on the solid square at t = 0.910 s, meanwhile, complex vortex patterns are found in

the bottom of the water tank. After the wave impacts on the solid square, it starts

to move leftwards (see Fig. 3.18 g). It is then dragged upwards by the wave (see

Fig. 3.18 h). It is worth noting that the vortices in Fig. 3.18 f and Fig. 3.18 g and

h are very complex due to complicated interactions between the water-air interface

and the solid-fluid interface when the wave impacts on the solid square. Indeed,

the applied interface capturing method in this work, which is an alternative to the

widely used volume of fluid (VOF) method, was shown to produce the full range of

spilling, surging and breaking waves in previous simulation work with ‘Fluidity’ in

the context of coastal engineering (Mindel et al., 2007).

This simplified case demonstrates that the present immersed-body method for mul-

tiphase viscous flows is robust and has a wide application to ocean dynamics which

involve wave-induced dynamic water-air interface FSI problems. This case is a pre-

liminary step to the investigation of a wide range of wave-structure dynamics prob-

lems, for instance, ship structural damage and coastal damage caused by tsunamis,

as well as floating wind turbine installations and oil platform protection problems.

3.7 Concluding remarks

This chapter presents the validation for the developed FSI model for incompressible

flows in chapter 2. The model has been validated using a free falling circular cylinder

and a free falling sphere in a fluid at rest with Reynolds number up to 1800. The

benchmark case, a collapsing column of water moving an initially stationary solid

square, has been used to validate this immersed-body method. The simulation

results are in good agreement with the experimental data. Importantly, the mesh

sensitivity analysis in this work indicates that the simulation results are converged

when then fluid and shell mesh sizes are decreased. The immersed-body method

is proved promising to simulate multiphase viscous flows coupled with dynamic

solids, especially for phenomena with multiple-interfaces e.g solid-water, solid-air,

water-air, which is useful for ocean dynamics. This immersed-body method can

be applied to multiphase viscous flows, for example, the water-air flows and FSI

of ships, floating wind-turbine platforms, and oil platforms. The next chapter will

focus on the validation and application cases of the developed FSI model for the

compressible flow with a fracture model.
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FOUR

Compressible flow FSI model with

a fracture model

This chapter presents and validates the FSI model for compressible flows coupled

with a cohesive zone fracture model. In order to resolve the fractures and cracks

inside solids, the immersed-body method is combined with a cohesive zone fracture

model. This model is fully coupled and simulates the whole blasting process in-

cluding gas pressure impulse, shock wave propagation, gas expansion, fragmentation

and burden movement phases. In the fluid model, the John-Wilkins-Lee equation

of state is introduced to resolve the relationship between pressure and density of the

highly compressible gas in blasts and explosions. A Q-scheme is used to stabilise

the model when solving extremely high-pressure situations. Two benchmark tests,

blasting cylinder and projectile fire, are used to validate this coupled model. The

results of these tests are in good agreement with experimental data. To demonstrate

the potential of the proposed method, a blasting engineering simulation with shock

waves, fracture propagation, gas-solid interaction and flying fragments is simulated.
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4.1 Introduction

This chapter presents the FSI model coupled with a cohesive zone fracture model.

This coupled model is also validated and applied to the rock blasting. In the present

model, the John-Wilkins-Lee (JWL) equation of state is used to close the gas system

of equations. A Q-scheme is used to stabilise the gas model when solving extremely

high-pressure situations. A fracture model using a Mohr-Coulomb failure criterion

with a tension cut-off (Guo et al., 2015) is employed to define the cracking and

fragmentation within the solid. The fracture model employs a discontinuous mesh

to complete the fracture model. The solid mesh used by the fracture model is

discontinuous. By contrast, on the fluid side, a continuous representation of the

pressure field is used. In order to link these two different kinds of meshes, a new

mesh conversion algorithm was implemented to convert discontinuous meshes to

continuous meshes.

The remainder of this chapter is organised as follows. Section 4.2 details the gov-

erning equation for discontinuum fractured solids, together with the fracture model.

Section 4.3 presents the equation for the JWL equation of state. The theory behind

the gas-solid interaction model is detailed in Section 4.4. The model is validated

using a blasting cylinder test, and a projectile fire test in Section 4.5. A practical

complicated blasting engineering simulation with shock waves, fracture propagation,

gas-solid interaction and flying fragments is also presented in Section 4.5. The list

of the test cases in this chapter is shown in Table 4.1. I discuss the strengths and

weaknesses of this approach and draw conclusions in Section 4.6.

Table 4.1 Compressible flow test cases

Section Case name Case purpose
Section 4.5.1 Blasting cylinder Validation
Section 4.5.2 Projectile Validation
Section 4.5.3 Masonry block fragmentation due to an internal

explosion
Application
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4.2 Solid fracture model

The fracture model used here is based on the FEMDEM method, which was first

proposed by Munjiza (2004). This model treats each solid body as a single discrete

element and discrete solid motions are modelled by the discrete element method

(DEM), whilst deformable fracturing arbitrary-shaped solid body interaction (stress,

velocity and deformation) is modelled by finite-element method (FEM). The stresses

are computed by the FEM before fracture initiation. Once the stress state meets a

failure criterion, discrete fractures are generated and the DEM is used to explicitly

model the discontinuous interaction between discrete surfaces. By combining the

FEM and DEM parts, the fracture model is able to accurately capture the transition

from continuum to discontinuum behaviour.

4.2.1 Joint element

A modified 3-noded triangular element mesh is introduced to complete the 2D frac-

ture model. Initially, the whole solid domain is discretised by 3-noded triangular

elements, and 4-noded joint elements are inserted between these triangular elements.

Six adjacent discontinuous elements sharing one center point (see Fig. 4.1 left) is

taken as an example to describe the joint element method. According to the joint

element method mentioned in the literature (Guo et al., 2015), for these six adjacent

discontinuous elements (element 1–6), there should be six unbroken joint elements

(element 7–12) among them (see Fig. 4.1 right).

4.2.2 Combined tensile and shear failure criterion

The constitutive model is a combined single and smeared crack model equivalent

to a cohesive zone model (Guo et al., 2015; Munjiza et al., 1999). Both the tensile

stress σ and shear stress τ in joint elements are calculated according to the basic

law shown in Fig. 4.2. In Fig. 4.2, Gf is the fracture energy, which is a material

property; δc is the critical displacement when the joint element breaks; and δp is the

maximum elastic displacement corresponding to the peak stress f . The peak stress

f is the material strength. It becomes tensile strength ft and shear strength fs when

it represents tensile stress σ and shear stress τ , respectively. Tensile strength ft is

assumed to be constant. However, shear strength fs is given by the Mohr-Coulomb
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Add joint

elements

Figure 4.1 Six solid discontinuous elements with joint elements. Elements 1–6

are six adjacent discontinuous elements, and elements 7–12 are the six joint

elements added among them.

criterion with a tension cut-off:

fs =

{
−σntanφ+ c, when σn < ft;

−fttanφ+ c, when σn > ft,
(4.1)

where σn is the normal stress, φ is the angle of internal friction and c is the cohesion.

Based on Equation (4.1), the shear strength fs can be calculated by σn or ft. When

σ > ft, the tensile failure occurs whilst when τ > fs, the shear failure occurs.

The physical meanings of δp and δc in a single mode I tensile fracture are described

in Fig. 4.3. For three different displacement ranges, the normal stress σ can be

calculated by Equation (4.2).

σ =


zft, when δnp < δn 6 δnc;

ft

[
2 δn
δnp
−
(
δn
δnp

)2
]
, when 0 6 δn 6 δnp;

2 δn
δnp
ft, when δn < 0,

(4.2)

where δnp is the maximum elastic displacement in the normal direction, δnc is the

critical displacement at failure in the normal direction, z is an empirical parameter,
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Stress

f

Fracture energy Gf

δp δc Displacement

Figure 4.2 The stress for different displacements.

which comes from the curve fitting of experimental data (more details can be found

in the literature (Guo et al., 2015; Munjiza et al., 1999; Xian et al., 1991)). The

failure criterion used in the 2D fracture model is a Mohr-Coulomb failure criterion

with a tension cut-off. It is important to note that the fracture model is based on

a fixed mesh, which results in fractures only propagating along triangular element

boundaries since fracturing follows the routes of joint elements (Guo et al., 2015).

Hence the solid mesh size could affect the fracture pattern when the solid mesh size

is not small enough.

4.3 The equation of state

The equation of state (EOS) is a thermodynamic equation to close the fluid govern-

ing equations. It links the fluid temperature, pressure, density and internal energy

together by introducing the thermodynamic relationship of fluids. There are a num-

ber of EOS for explosive gases (Braithwaite et al., 1996). However, the JWL-EOS is

the most widely used one in blasting applications (Itoh et al., 2002; Sazid & Singh,

2013). The JWL equation is:

p = A·
(

1− ω

R1 · V

)
·exp(−R1 ·V )+B ·

(
1− ω

R2 · V

)
·exp (−R2 · V )+

ω · e0

V
, (4.3)

where parameters A , B , R1 , R2, ω and e0 are material constants, which are

obtained by fitting the JWL-EOS to experimental results; p is the pressure; the

volume ratio V is defined by V = ρe/ρf , where ρe is the density of the explosive
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σ = 0

σ = 0

Discrete fracture δnc Plastic zone

σ

σ

δnp

σ = ft

σ = ft

Elastic zone

Elastic zone

Figure 4.3 Different zones in a single mode I fracture tip. δnp and δnc represent

δp and δc, respectively. The left open white area refers to a physically discrete

fracture; the middle light-blue area is the plastic zone; the top and bottom

white area represent the continuous solid without any cracks; the short verti-

cal pink bars between the pink and blue lines represent the magnitudes of the

normal stress σ.

(solid part) and ρf is the density of the detonation products; ρ0 is the initial density

(solid part). By using the JWL-EOS, I assume the temperature is constant, same

assumption can be see from the literature (Mohammadi & Pooladi, 2007; Munjiza

et al., 2000). Under this assumption, the internal energy e in the energy Equation

(2.14) should also be constant. Thus, in order to implement the JWL-EOS, I use

the perturbation pressure method to obtain the sound speed of the explosive gas

c =
√

δp
δρf

, which is the approximation of c =
√

∂p
∂ρf

.
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4.4 Coupled gas-solid interaction

4.4.1 The coupling term sc and the exchange force F v and

F p including the Q-scheme

After the gas viscosity µt, pressure p and velocity uff are solved by Equation (2.13,

2.12, 2.14 and 4.3) on the gas mesh. They are projected on the solid surface through

a shell mesh (more details about the projection method can be found in the literature

(Viré et al., 2015)), and the exchange force F s
v and F s

p on the solid surface are:

F s
v + F s

p =

∫
Γsolid

Nin · (τ + Ip) dΓ, (4.4)

in which Γsolid represents the solid surface. The extension form of
∫

Γsolid
Nin · τdΓ

in u and v directions are: ∫
Vshell

Ni (axxusl + axyvsl) dV,

∫
Vshell

Ni (ayxusl + ayyvsl) dV, (4.5)

where, Vshell stands for the volume of the shell mesh, the slip velocity usl = us−uf .

The components of velocity in 2D are u and v. The coefficient a has four components

(axx, axy, ayx, ayy) in 2D. They are:

axx =
µt

∆r∆xwall

[
nx

(
2− 2

3

)
nx + nyny

]
,

axy =
µt

∆r∆xwall

(
−nx

2

3
ny + nynx

)
,

ayx =
µt

∆r∆xwall

(
nxny − nx

2

3
ny

)
,

ayy =
µt

∆r∆xwall

[
nxnx + ny

(
2− 2

3

)
ny

]
, (4.6)

µt = µp + µa, in which µp is the dynamic viscosity, µa is the Q-scheme artificial

viscosity (Castro et al., 2001). The µa used here is,

µa = −cqh2ρf min{0,∇ · uf} − c clhρf min{0,∇ · uf}, (4.7)
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in which cq, cl are scalar and cq = 1, cl = 0.05 are used here, where h is a length

scale measured across each element. Also the speed of sound c is obtained from:

c =

√
∂p

∂ρf
. (4.8)

The exchange force F v and F p is used in Equation (2.1) to compute the solid velocity

us = (us, vs).

The coupling term sc can be formed as:

sfc,x = axxus + axyvs;

sfc,y = ayxus + ayyvs, (4.9)

then the solid-fluid coupling term sc =
(
sfc,x, s

f
c,y

)T
in Equation (2.13).

4.4.2 Update of solid boundary after fracturing

After fractures are generated in the fracture model (see Section 4.2), the new fracture

boundaries are discontinua. These discontinuous boundaries cannot be recognised

by the fluid model because of the projection method (Viré et al., 2015) cannot

project these boundaries from the solid mesh to the fluid mesh through the shell

mesh. The projection method (Viré et al., 2015) is designed to project continuous

boundaries. In order to enable the fluid to realise the positions of new fractures,

these discontinuous boundaries need to be transformed into continuous ones. This

algorithm is presented as follows.

According to the joint element method mentioned in Section 4.2.1, there are six

unbroken joint elements (element 7–12) among them (see Fig. 4.1, right). When

joint elements 7–12 added to the discontinuous elements 1–6, they are given the value

0, which means the joint elements are intact. Once the stress state of the nodes on

joint elements meets the fracture criterion, these joint elements are regarded as

broken, and the values of these joint elements are changed from 0 to 1. Algorithm

1 is used to determine which group of nodes in nodes (a1 − a6), which are shared

by the six adjacent joint elements, should be consider as one node. For instance, by

using Algorithm 1, if only joint element 9 is broken, then discontinuous node a1−a6
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Algorithm 1 Transforming fracture boundaries from discontinua to continua.

for each discontinuous node i (for example, node a1 in Fig. 4.1) do
(1) Detect all the discontinuous nodes that have the same coordinates as it

has;
(2) Give these nodes indices DN1 − DNn (in Fig. 4.1, these nodes are a2 −

a6);
(3) Detect all the joint elements that are using nodes DN1 − DNn and dis-

crete
node i;

(4) Give these joint elements indices JE1 − JEm (in Fig. 4.1, these joint
elements are 7− 12);

(5) From node i, go through the joint element JE1 − JEm;
(6) In anticlockwise direction (from joint element 7 to 12);
if the value of the joint element is 0 then

continue, and remember the discontinuous node indices in DN1 − DNn

that
are used by this joint element as node AC1 − ACk,

else
stop;

end if
(7) In clockwise direction (from joint element 12 to 7);
if the value of the joint element is 0 then

continue, and remember the discontinuous node index in DN1−DNn that
are used by this joint element as node C1 − Cl,

else
stop;

end if
(8) Give node i, AC1 − ACk and C1 − Cl the same new index, because they

are the same point in the continuous domain.
end for
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(a) (b) (c)

Figure 4.4 Six solid continuous elements with cracks in different broken patterns:

(a) only joint element 9 is broken, (b) both joint element 9 and 12 are broken,

(c) all the joint elements 7− 12 are broken.

should be the same point in the continuous domain (see Fig. 4.4, a). When both

joint element 9 and 12 are broken, then discontinuous node a1 − a3 is one point,

whilst discontinuous node a4 − a6 is another point in the continuous domain (see

Fig. 4.4, b). Or in an extreme situation, all the joint elements 7 − 12 are broken,

then each point of discontinuous node a1 − a6 should be an individual point in the

continuous domain (see Fig. 4.4, c).

After all the discontinuous fracture solid boundaries are transformed into continuous

ones, the thin shell mesh surrounding the solid surface can be generated on the new

solid continuous boundaries. Then new fluid conditions are passed to the solid

surface via the shell mesh through the projection method in the literature (Viré

et al., 2015).

4.4.3 The theory behind the coupling approach

In this work, the ‘Solidity’ (Latham et al., 2013a,b), a two-dimensional (2D) FEM-

DEM solver is coupled with a finite element fluid code ‘Fluidity-Multiphase’. The

steps to implement the gas-solid interaction with the fracture model are shown in

Algorithm 2.
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Algorithm 2 Gas-solid interaction.

for Time step in the fluid solver: n do
(1) Solve fluid velocity uf , pressure p, and viscosity µt via equations (2.13,

2.12, 2.14
and 4.3);

(2) Project uf , p, µt from fluid to shell mesh (Viré et al., 2015);
(3) Project uf , p, µt from shell to solid surface mesh;
for Time step in the solid solver: i do

(4) Detect fractures;
(5) Transforming fracture boundaries from discontinua to continua via

Algorithm 1;
(6) Construct shell mesh;
(7) Compute F v and F p via Equation (4.4);
(8) Solve for us via Equation (2.1);
(9) i = i+ 1;

end for
(10) Compute sc , and (axx, axy, ayx, ayy) via us and uf ;
(11) Project sc , and (axx, axy, ayx, ayy) from solid surface to shell mesh;
(12) Project sc, and (axx, axy, ayx, ayy) from shell to fluid mesh;
(13) Implicitly solve uf via Equation (2.13);
(14) n = n+ 1.

end for

4.5 Results

In this section, two benchmark test cases and a complex blasting application are pre-

sented to validate and evaluate the performance of this method. The two benchmark

test cases are the blasting cylinder test and the projectile fire test. The complicated

blasting application test is the masonry block fragmentation due to an internal ex-

plosion.

4.5.1 Blasting cylinder

The blasting cylinder test case simulates an explosion occurring inside a solid cylin-

drical chamber (see Fig. 4.5). This test case has been used many times to verify gas-

solid interaction formulations (Munjiza, 1992; Mohammadi & Bebamzadeh, 2005,

2007; Mohammadi & Pooladi, 2007). This cylindrical metal chamber is 1220 mm

in length, and its diameter is 25.4 mm. The chamber is filled with 0.148 kg ANFO
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(ammonium nitrate/fuel oil) with density 240 kg/m3. The JWL-EOS parameters

for ANFO used here are as follow: A = 266.799 GPa, B = 3.435 GPa, R1 = 7.037,

R2 = 1.159, ω = 0.39 and E0 = 6.4365 GPa. More information about ANFO can be

found in the literature (Sanchidrian et al., 2015).

25.4 mm 114 mm

1220 mm

Pressure measuring
point A

Figure 4.5 The geometry of the cylindrical chamber. Point A is where the gas

pressure is measured.

In this simulation, open boundary conditions are applied on all boundaries of the

fluid computational domain. The fluid element edge length is 0.0033 m and the fluid

time step size ∆tf is set to 10−7 s. The solid element edge length is 0.005 m and

the solid time step size ∆ts is set to 0.4 × 10−7 s. The simulation is based on the

assumption that the change in gas pressure is due to the gas loss from the right end

of the chamber. As a result, the internal pressure decreases sharply after the gas

starts to escape from the chamber. The internal pressure history measured at the

left end of the chamber (the point A in Fig. 4.5) can be found in Fig. 4.6, a. The

pressure in the simulation is in good agreement with the experimental data presented

in the literature (Munjiza, 1992) (see Fig. 4.6, a). The drop in density is shown in

Fig. 4.6, b. It is seen that the gas pressure and density time-series follow a similar

pattern that begins with the maximum value after the ignition point, following with

the continuous decrease due to the loss of the gas at the right end of the chamber.

It is worth to mention that all the simulations start after the ignition point when

the detonation gas fills the whole chamber because the model proposed here does

not take the ignition stage into consideration.
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(a) The pressure history of the blasting (b) The density history of the
cylinder test in comparison with the blasting cylinder test.
experimental results (Munjiza, 1992).

The comparison does not take the
ignition stage into consideration.

Figure 4.6 The pressure and density history at point A of the blasting cylinder

test.

4.5.2 Projectile

The second benchmark test is a projectile fire test case. This test is designed to

validate the presented solid-gas interaction model under a sudden change in gas

volume. There are experimental data for this test case in (Johanson & Persson,

1970), and other two models developed by Mohammadi & Pooladi (2007, 2012)

have already used the same test case to assess their models. In the experiment,

a 180 mm × 127 mm projectile of 18 kg mass (see Fig. 4.7) is fired when various

masses of explosive materials are detonated. The maximum velocity of the projectile

is measured in order to calculate the maximum kinetic energy, which is used to

compare with the simulation results.

The firing system is shown in Fig. 4.7. This projectile system is composed of two

compartments. One is the right part, which holds the 18 kg projectile. Another

is the left explosive chamber, which is used for the explosion. The total volume

(the left and right chambers) and the volume of the explosive chamber are 1913 cm3

and 295 cm3, respectively. In this simulation, open boundary conditions are applied

on all the boundaries of the fluid computational domain. The fluid element edge

length is 0.005 m and the fluid time step size ∆tf is set to 4.0 × 10−7 s. The solid

element edge length is 0.003 m and the solid time step size ∆ts is set to 0.5× 10−7 s.

The explosive material used here is nitroglycerin with the specified parameters of

JWL-EOS as follow: A = 190.7 GPa, B = 7.58 GPa, R1 = 4.4, R2 = 1.4, ω = 0.23
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50 mm

150 mm

127 mm

127 mm 180 mm

explosive
chamber

projectile resting
position

projectile

Figure 4.7 The geometry of the firing system.

and E0 = 7.237 GPa. In this work, three different masses of nitroglycerin, as listed

in Table 4.2, are simulated by the presented gas-solid interaction model.

Table 4.2 The density, maximum gas pressure, maximum projectile velocity and

maximum kinetic energy for three different masses of explosives.

Me(g) ρexp
(kg/m3)

pexp (Pa) Vmax
(m/s)

ECmax
(kNm)

EEmax
(kNm)

eEr

5.0 16.9 2.20× 107 31.9 9.16 8.51 0.0764
10.0 33.9 4.41× 107 43.6 17.11 17.02 0.0053
15.0 50.8 6.62× 107 52.7 25.00 25.53 -0.0208

The production of a mixed gas with a high pressure is due to the detonation of the

explosive material. When the high pressure acts on the left side of the projectile,

it starts to accelerate. After the projectile moves rightwards (see Fig. 4.8), there

is some space between the explosive chamber and the projectile’s left surface. The

gas expands and fills in this space immediately when the space appears. As the gas

expands and propagates, the gas pressure and density are reduced. This process

stops when the projectile reaches its terminal velocity.

The variations of the gas pressure and density; projectile velocity and kinetic energy

in time of the three different explosive masses are shown in Fig. 4.9. For the

gas pressure and density patterns, they are very similar and continuously decrease.

Projectile velocity and kinetic energy time-series follow a similar pattern that begins

with zero then increase non-linearly, reaching a maximum value, which remains
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(a) t = 1.70 ms. (b) t = 3.00 ms.

(c) t = 4.00 ms. (d) t = 5.55 ms.

(e) t = 6.60 ms. (f) t = 7.63 ms.

100 200 300 400 500 600 700

Velocity (m/s)

0 800

100 200 300 400 500 600 700

Velocity (m/s)

0 800

(g) t = 7.81 ms. (h) t = 8.10 ms.

Figure 4.8 The snapshots of projectile position and gas velocity when the mass

of the explosive material is 0.005 kg. Figure (a), (b), (c), (d), (e), (f), (g)

and (h) refer to the snapshots at 1.70 ms, 3.00 ms, 4.00 ms, 5.55 ms, 6.60 ms

,7.63 ms , 7.81 ms and 8.10 ms, respectively.
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constant shortly after the projectile leaves the projectile system.
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Figure 4.9 Thermodynamic quantity histories for different values of Me in the

projectile system.

Fig. 4.8 shows the history of the projectile position and gas velocity profile when

the mass of the explosive material is 0.005 kg. At t = 1.70 ms, the projectile has

moved slightly rightwards, meanwhile, a small space occurred behind the left surface

of the projectile. Following the expansion of the high-pressure gas into space, high

gas velocity areas are found at the top and bottom sides in the space behind the

projectile (see Fig. 4.8, a). When the projectile continues to move further to the

right, the high gas velocity areas become much larger and concentrate on the centre

of the chamber and the space behind the projectile (see Fig. 4.8, b and c). Extremely

high gas velocity appears when the projectile departs from its compartment (see Fig.

4.8, d and e).

The contours of the stress inside the solid and the gas pressure when the mass of the

explosive material is 0.005 kg are shown in Fig. 4.10 and Fig. 4.11. In the beginning,

because of the high gas pressure on the surface of the chamber and the projectile left

surface, high solid stresses are found near these surfaces (see Fig. 4.10, a–f). From
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Fig. 4.10 a–f, we can clearly see the stress wave reflection inside the solid chamber

and the projectile. As expected, large stresses inside the solid chamber appear at

the two inner left vertices (see Fig. 4.10, a, b, d and e). As the projectile moves

further rightwards, the vibration of the stress inside the solid appears. It is clear

when comparing Fig. 4.11, k and l. At t = 4.00 ms (see Fig. 4.11, k), the high

stress area focuses on the upside and downside of the left chamber, whilst the high

stress area transfers to the right-side of the chamber at t = 5.55 ms (see Fig. 4.11,

l). Importantly, when the projectile leaves its compartments, the stress inside the

projectile immediately reduces to a low value (see Fig. 4.11, m).

The density, maximum gas pressure, maximum projectile velocity and maximum

kinetic energy for three different masses of explosives are listed in Table 4.2. In this

table, ECmax is the maximum kinetic energy calculated by the solid-gas interaction

model, whilst EEmax is the maximum kinetic energy presented in the literature

(Johanson & Persson, 1970). The relative error eEr between ECmax and EEmax is

defined as:

eEr =
ECmax − EEmax

EEmax
. (4.10)

Simulation results of the maximum kinetic energy are in good agreement with the

experimental as can be seen in Table 4.2.
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(a) t = 0.01 ms. (b) t = 0.02 ms.

(c) t = 0.03 ms. (d) t = 0.04 ms.

(e) t = 0.05 ms. (f) t = 0.06 ms.
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(g) t = 0.07 ms. (h) t = 0.08 ms.

Figure 4.10 The snapshots of projectile stress and gas pressure when the mass

of the explosive material is 0.005 kg. Figure (a), (b), (c), (d), (e), (f), (g)

and (h) refer to the snapshots at 0.01 ms, 0.02 ms, 0.03 ms, 0.04 ms, 0.05 ms,

0.06 ms, 0.07 ms and 0.08 ms, respectively.
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Figure 4.11 The snapshots of projectile stress and gas pressure when the mass of

the explosive material is 0.005 kg. Figure (i), (j), (k), (l), (m), (n), (o) and (p)

refer to the snapshots at 1.70 ms, 3.00 ms, 4.00 ms, 5.55 ms, 6.60 ms 7.63 ms,

7.81 ms and 8.10 ms, respectively.
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4.5.3 Masonry block fragmentation due to an internal ex-

plosion

The final test case is that of bore-hole blasting in a square rock-block, which was

previously studied by Mohammadi & Bebamzadeh (2005); Mohammadi & Pooladi

(2012) and Sazid & Singh (2013). Mohammadi & Bebamzadeh (2005) firstly pro-

posed a simplified square gas mesh coupled with a single solid mesh method. More

recently, they extended this method to an unstructured solid mesh coupled with

three different gas meshes. However, all the gas meshes are structured. In the pre-

sented approach, both the fluid and solid meshes are unstructured and use triangular

elements (see Fig. 4.12). The fluid mesh is initially refined at the gas-solid interface

(see Fig. 4.12, c), which enables an accurate simulation of the bore-hole test with

different hole shapes to be performed. In this bore-hole blasting test case, a circular

hole with the diameter 0.1 m is located at the centre of a 1 m×1 m square rock-block

(see Fig. 4.12). The meshes for the block and the gas are also shown in Fig. 4.12.

In this simulation, open boundary conditions are applied on all the boundaries of

the fluid computational domain. The largest fluid element edge length L is 0.02 m

and the smallest fluid element edge length l is 0.005 m. The fluid time step size

∆tf is set to 0.5 × 10−7 s. The solid element edge length is 0.01 m and the solid

time step size ∆ts is set to 0.5 × 10−7 s. The properties of the rock are as follow:

density ρs = 2340.0 kg/m3, Young’s modulus E = 2.66 × 1010 Pa, penalty number

Pe = 2.0 × 1010, fracture energy release rate Gf = 200.0, Poisson ratio ν = 0.205,

tensile strength ft = 4.0 × 106 Pa and shear strength fs = 1.4 × 107 Pa. In the

centre hole, the explosive material, nitroglycerin is initially loaded. However, apart

from the bore-hole area, the background space beyond the block is assumed to be

a low pressure and density gas, which is given the pressure and density of the air

but is modelled by the JWL-EOS of nitroglycerin. The initial pressure levels in the

bore-hole and background are 1.8×108 Pa and 1.0×105 Pa, respectively. The initial

gas densities in the bore-hole and the background are 70 kg/m3 and 1.205 kg/m3,

respectively. The gas dynamic viscosity is 0.1 Pa · s.

In this blasting test case, the generation of the first set of cracks is due to the high

bore-hole pressure. Initially, the crack tips are behind the front of the stress wave in

the square rock when the stress wavefront moves from the centre to the boundaries

of the square block (see Fig. 4.14). Subsequently, the stress wave is reflected by the

boundaries, existing cracks are further propagated and the fragments are pushed to

the edges of the computational domain (see Fig. 4.14, d). Before big cracks are
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(a) The geometry of the square rock block. (b) The mesh of the square rock block.

(c) The fluid mesh. (d) The square rock block

immersed in the fluid mesh.

Figure 4.12 The geometry and mesh for the square rock block, and the gas

mesh.

created, the highly pressurized gas remains in the centre bore-hole, which results in

a low rate of reduction of thermodynamic quantities including pressure, density and

mass.

The profile of the solid velocity inside the block is shown in Fig. 4.14. From

t = 0.14 ms (Fig. 4.14, a) to t = 0.30 ms (Fig. 4.14, b), the stress wave inside the

square rock moves from the inner core to the boundaries. Then it is reflected back

by the boundaries at t = 0.30 ms (Fig. 4.14, b), and high solid velocity areas are

found near boundaries. Following, the high solid velocity areas are always found

near the bore-hole (see Fig. 4.14, e and f).

The time history of the bore-hole gas pressure near the internal surface of the block

is shown in Fig. 4.13, a. The exponential reduction in pressure is as would be

expected for an internal blast. It can be seen that similar results have been obtained
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Figure 4.13 (a) The black line and the blue star line represent the numerical

results of the immersed-body method and Mohammadi two-mesh coupled

model (Mohammadi & Pooladi, 2012), respectively. (b) The black, blue,

red lines stand for three different initial pressures: p0 = 1.0 × 109 Pa,

p0 = 1.8× 108 Pa and p0 = 1.0× 108 Pa, respectively.

by Mohammadi using a two-mesh coupled model (Mohammadi & Pooladi, 2012).

In order to evaluate the influence of the initial pressure on the blasting process,

three simulations are performed using different initial pressure levels in the bore-

hole: p0 = 1.0× 109 Pa, p0 = 1.8× 108 Pa and p0 = 1.0× 108 Pa. For the very high

pressure test case, p0 = 1.0× 109 Pa, the crack pattern and solid velocity are given

in Fig. 4.15, which are very close to the results that Munjiza et al. (2000) obtained.

From comparison of the fracture patterns for p0 = 1.8 × 108 Pa (Fig. 4.14, d) and

p0 = 1.0 × 109 Pa (Fig. 4.15, d) at t = 1.86 s, we can see that the big cracks first

appear at boundaries for the high pressure test case, since the stress wave dominates

at p0 = 1.0×109 Pa test case. We also show the tensile and shear failure in Fig. 4.14

and 4.15. It is seen that lots of cracks are generated by the stress wave during the

fragmentation phase, where the shear failure occurs. The fragment size distribution

for these three test cases is shown in Fig. 4.13, b. It is seen that the higher the

initial pressure, the more small fragments are produced.

Based on this solid-gas interaction model, we can extend this work to fragmentation

analysis, for instance, evaluate size distributions (Xiang et al., 2010). Furthermore,

we can apply this model to simulate the growth of pre-existing fractures (Lei et al.,

2014) and stresses on the boundaries.
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Figure 4.14 The snapshots of the crack and solid velocity inside the square rock

block for test case p0 = 1.8 × 108 Pa. Figure (a), (b), (e) and (f) refer to the

snapshots at 0.14 ms, 0.30 ms, 0.64 ms and 5.70 ms. Figure (c) and (d) show

different fracture type at 0.30 ms and 0.64 ms, where blue and red crack stand

for the tensile and shear failure, respectively.
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Figure 4.15 The snapshots of the crack and solid velocity inside the square rock

block for test case p0 = 1.0 × 109 Pa. Figure (a), (b), (e) and (f) refer to the

snapshots at 0.14 ms, 0.30 ms, 0.64 ms and 1.86 ms. Figure (c) and (d) show

different fracture type at 0.30 ms and 0.64 ms, where blue and red crack stand

for the tensile and shear failure, respectively.
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4.6 Concluding remarks

The FSI model coupled with a cohesive zone fracture model is presented and val-

idated in this Chapter. This coupling model combines an immersed-body method

and a cohesive zone fracture model. The whole complex blasting process including

both fragmentation and burden movement phases is simulated in this complete cou-

pling model. A new mesh conversion algorithm to convert discontinuous meshes to

continuous meshes has been implemented and demonstrated in section 4.4.2. The

detonation gas in the model is resolved by the JWL-EOS as a highly compressible

fluid, which is close to the realistic behaviour of the detonation gas in common

mining explosions. Importantly, it is easy to extend the equation of state in this

model to more practical equation of states. Additionally, this model in combination

with the Q-scheme is stable when dealing with extremely high pressure and veloc-

ity situations. Two benchmark cases, the blasting cylinder and projectile fire, are

used to validate this gas-solid interaction model. The numerical simulation results

of these two test cases are in good agreement with the available experimental data.

A practical complicated blasting engineering simulation with shock waves, fracture

propagation, gas-solid interaction and flying fragments is simulated to demonstrate

the ability of the gas-solid interaction model. At the following chapter, the bench-

mark and validation test cases of the developed FSI model for turbulent flows are

going to be presented.
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Chapter

FIVE

Turbulence flow FSI model

Before apply the developed URANS FSI model for turbulent flows to industrial ap-

plications, detailed validation is required. Thus, this chapter validates the FSI model

developed in chapter 2 for turbulent flows in both 2D and 3D. The validation includes

five series of test cases. Both the 2D and 3D test cases have obtained comparable

results with those numerical and experimental data in the literature. Some of the test

cases have obtained the same results as the numerical data in the literature, others

have achieved better results than the numerical data in the literature compared to the

experimental data. The results show that the immersed-body method is an effective,

accurate and reliable approach for two-way solid-fluid coupling in turbulent flows.
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5.1 Introduction

This chapter validates the solid-fluid coupling model for turbulent flows using both

2D and 3D cases. It is organised as follows. Section 5.2 presents the first test case:

the flow over a circular cylinder at Re = 3900. The second test case of turbulent

flow over a static NACA0015 aerofoil with an attack angle of α = 60◦ at Re = 5200

is given in section 5.3. Section 5.4 shows the third test case of a free rising circular

cylinder in a fluid at rest with Re = 5000 and Re = 3800. The fourth test case of

a free rising sphere in a fluid at rest with Re = 6000 and 10000 is also presented

in section 5.5. Section 5.6 presents the final test case: flow bending a 3D elastic

plate. The list of the test cases in this chapter is shown in Table 5.1. I discuss

the strength and weaknesses of this approach and draw conclusions in Section 5.8.

To make all the simulations stable, the Courant-Friedrichs-Lewy (CFL) number is

controlled under 1.0 in all the following test cases.

Table 5.1 Turbulence flow test cases

Section Case name Case purpose
Section 5.2 Flow over a circular cylinder at Re = 3900 Validation
Section 5.3 Turbulent flow over a static NACA0015 aerofoil

with an attack angle of α = 60◦ at Re = 5200
Qualitative
comparison

Section 5.4 A free rising circular cylinder in a fluid at rest
with Re = 5000 and Re = 3800

Validation

Section 5.5 A free rising sphere in a fluid at rest with Re =
6000 and 10000

Validation

Section 5.6 Flow bending a 3D elastic plate Validation
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Figure 5.1 The computational domain and settings of the flow over a cylinder at

Re = 3900.

5.2 Flow over a circular cylinder at Re = 3900

The following test case is the flow over a circular cylinder at Re = 3900. A schematic

of the computational domain is shown in Fig. 5.1. This is a benchmark test case for

validating turbulence models and an abundance of reference data exists, see Refs.

(Meyer et al., 2010b,a; Ong & Wallace, 1996; Breuer, 1998; Kravchenko & Moin,

2000; Franke & Frank, 2002; Parnaudeau et al., 2008; Gnanaskandan & Mahesh,

2016). The Reynolds number for this test case is defined as:

Re =
ρ∞U∞D

µ∞
, (5.1)

where, ρ∞ is the reference density, U∞ is the free stream velocity, D is the diameter

of the cylinder and µ∞ is the reference dynamic viscosity. Here, ρ∞ = 1.0, D = 0.1,

U∞ = 1.0 and µ∞ = 2.5641× 10−5.

The fixed fluid mesh used in this case is shown in Fig. 5.2. The minimum and

maximum mesh edge lengths are 0.002 and 0.1, respectively. Fig. 5.3a shows the

instantaneous vorticity field of the turbulent wake behind the cylinder. Similar

qualitative results are found in (Singh & Mittal, 2005; Breuer, 1998; Kravchenko &

Moin, 2000).

For quantitative comparison, all parameters are obtained after the steady vortex
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Figure 5.2 The computational mesh of the flow over a cylinder at Re = 3900.
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Figure 5.3 (a) The instantaneous vorticity field of the turbulent wake behind the

cylinder at Re = 3900. (b) Pressure coefficient Cp around the circular cylin-

der surface from the stagnation point where θ = 0 at Re = 3900; �: Nor-

berg (1987) (experiment); – –: Kravchenko & Moin (2000) (LES); –: Present

immersed-body URANS model.
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5.2: Flow over a circular cylinder at Re = 3900

shedding was established. The surface pressure coefficient is defined as:

Cp = 2
p− p∞
ρ∞U2

∞
, (5.2)

where p∞ is the pressure value in the far field. the results of pressure coefficient

are compared with the experimental data by Norberg extracted from Kravchenko &

Moin (2000) and the numerical results found in (Meyer et al., 2010b,a). Fig. 5.3b

shows that the pressure coefficient Cp obtained by the presented immersed-body

URANS model is in good agreement with the experimental data of Kravchenko &

Moin (2000) and numerical results of Kravchenko & Moin (2000).

Table 5.2 summaries the mean flow parameters from Refs. (Kravchenko & Moin,

2000; Parnaudeau et al., 2008; Dröge, 2007; Meyer et al., 2010b,a; Ong & Wallace,

1996) and the present FSI model, i.e. the mean drag coefficient CD = 2 FD
ρ∞U2

∞D

(FD is the drag force), Strouhal number St = fD
U∞

(f is the frequency of the vortex

shedding), bulk suction coefficient, mean separation angle and mean recirculation

length. It shows that all quantities calculated from the present model are in the range

of experimental data and the previous results of direct numerical simulations (DNS)

in (Ma et al., 2000; Dröge, 2007) and large eddy simulations (LES) in (Beaudan &

Moin, 1994; Mittal, 1996; Fröhlich et al., 1998; Franke & Frank, 2002; Kravchenko

& Moin, 2000; Park et al., 2004; Mahesh et al., 2004; Meyer et al., 2010b).

The flow over a circular cylinder has been investigated both numerically and experi-

mentally, e.g. the particle-image velocimetry (PIV) data of Parnaudeau et al. (2008)

and Dröge (2007), the hot-wire measurements (HWA) of Parnaudeau et al. (2008)

and Ong & Wallace (1996), and the LES results from Kravchenko & Moin (2000).

The present numerical results are compared with the results in (Parnaudeau et al.,

2008; Dröge, 2007; Parnaudeau et al., 2008; Kravchenko & Moin, 2000). Fig. 5.4a

shows the mean streamwise velocity ū/U∞ along the centreline and is found to be a

good agreement with the PIV experimental data (Parnaudeau et al., 2008) and the

numerical simulation data in (Meyer et al., 2010b,a; Kravchenko & Moin, 2000). It

seems that there were some uncontrolled factors that caused a dip at x/D = 3 in

Lourenco and Shih’s experiment (Lourenco & Shih, 1993), since none of our results

and the simulation results in (Meyer et al., 2010b,a; Kravchenko & Moin, 2000)

capture the dip at x/D = 3. The mean velocity profiles at different locations of

x/D and the Reynolds normal stresses u′u′/U2
∞ are shown in Fig. 5.4b-d. These

results are also in good agreement with simulation data in (Meyer et al., 2010b,a;

Kravchenko & Moin, 2000) and the experimental data in (Parnaudeau et al., 2008).
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Figure 5.4 Comparison of velocity fields with experimental data and numeri-

cal results in literature for the flow over a circular cylinder at Re = 3900

test case. (a) Mean streamwise velocity along the centreline of the circular

cylinder; (b) Mean streamwise velocity along four different vertical lines at

x/D = 0.58, x/D = 1.06, x/D = 1.54 and x/D = 2.02, respectively; (c)

Mean transverse velocity along three different vertical lines at x/D = 1.06,

x/D = 1.54 and x/D = 2.02, respectively; (d) Streamwise velocity fluc-

tuations along four different vertical lines at x/D = 0.58, x/D = 1.06,

x/D = 1.54 and x/D = 2.02, respectively; in the wake of the flow over circu-

lar cylinder at Re = 3900. �: Lourenco & Shih (1993) (experiment); ◦: Ong

& Wallace (1996) (experiment); ♦: Parnaudeau et al. (2008) (experiment,

PIV); 4: Parnaudeau et al. (2008) (experiment, HWA); – –: Kravchenko &

Moin (2000) (LES); –: Present immersed-body URANS model.
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Table 5.2 Global flow quantity comparisons for the flow over a cylinder at

Re = 3900 test case. This table includes mean pressure drag coefficient CD.

mean base pressure coefficient (bulk suction coefficient) Cpb, mean separation

angle θsep, mean recirculation bubble length Lr/D, Strouhal number St, and

minimum mean streamwise velocity Umin. The first group is the experimen-

tal data. The second and third groups are the LES and DNS model data in

the previous literature, respectively. The last group is simulation results of

present immersed-body URANS model.

Research CD Cpb θsep Lr/D St Umin
Son & Hanratty (1969) (experi-
ment)

– – 85◦/86◦ – – –

Norberg (1987) (experiment) 0.98 -0.9 – – 0.210 –
Cardell (1993) (experiment) – – – 1.33 0.215 –
Lourenco & Shih (1993) (experi-
ment)

0.99 – 86◦ 1.19 0.215 -0.24

Ong & Wallace (1996) (experi-
ment)

– – – – 0.210 –

Parnaudeau et al. (2008) (exper-
iment)

– – – 1.51 0.208 –

Beaudan & Moin (1994) (LES) 1.01 -0.94 84.8◦ 1.36 0.203 -0.31
Mittal (1996) (LES) 1.0 -0.93 86.9◦ 1.4 0.207 -0.35
Fröhlich et al. (1998) (LES) 1.08 -1.03 88.1◦ 1.09 0.216 -0.24
Kravchenko & Moin (2000)
(LES)

1.04 -0.94 88◦ 1.35 0.210 -0.37

Franke & Frank (2002) (LES) 0.98 -0.85 88.2◦ 1.64 0.209 –
Mahesh et al. (2004) (LES) 1.00 – 87.6◦ 1.35 0.218 -0.31
Park et al. (2004) (LES) 1.02 -0.89 – 1.37 0.209 -0.33
Meyer et al. (2010b) (LES) 1.05 -0.92 88◦ 1.38 0.210 –
Ma et al. (2000) (DNS) 0.96 -0.96 89.1◦ 1.12 0.203 –
Dröge (2007) (DNS) 1.01 -0.88 87.7◦ 1.26 0.210 -0.32
Present immersed-body URANS
model

1.04 -0.92 87.7◦ 1.1 0.208 -0.283
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5.3 Turbulent flow over a static NACA0015 aero-

foil with an attack angle of α = 60◦ at Re = 5200

The following test case is the turbulent flow over a static NACA0015 aerofoil with

an attack angle of α = 60◦ at Re = 5200. This test case has been studied both

experimentally (Freymuth, 1985; Freymuth et al., 1985; Sengupta et al., 2007) and

numerically (Sengupta et al., 2007; Milthaler, 2014). It was first set up by Freymuth

(1985) who studied accelerated flows over static NACA0015 aerofoils at various

Reynolds numbers experimentally.

The configuration of this computational case is the same as in the literature (Frey-

muth, 1985). The inlet velocity is given as:

uinlet = at, (5.3)

where t is the time, and a = 2.4 is the acceleration. The Reynolds number in the

literature (Freymuth, 1985) is defined as:

Re =
ρ∞a

1
2 c

3
2

µ∞
, (5.4)

where the reference fluid density ρ∞ = 1.0, the chord length of the NACA0015

aerofoil c = 0.152, and the reference dynamic viscosity µ = 1.5387× 10−5 (see Fig.

5.5).

Using the anisotropic mesh adaptivity, the mesh is refined in the turbulent wake

according to the velocity field. The mesh is also refined at the immersed-body

surface to resolve the flows generated by the presence of the solid object. In Fig.

5.6, it is clear that the use of mesh adaptivity enables resolving the solid object

and evolving velocity field. The minimum mesh edge length is 5.0 × 10−4 and the

maximum mesh edge length is 0.4. In Fig. 5.6, it is found that the use of mesh

adaptivity can resolve the details of vorticities near the aerofoil wake.

The stream-wise visualization profiles at every 1/64 s are given at Freymuth’s ex-

periment (Freymuth, 1985) in the time range t = [24/64, 64/64] s. Sengupta et al.

(2007) carried out a numerical simulation of this experiment using a structured, fixed

mesh. In their simulations, only 8 snapshots were shown and compared with the ex-

perimental data in (Freymuth, 1985). Later, Milthaler (2014) performed the same

simulation by DNS. The simulation results of the presented model are compared
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α = 60◦ at Re = 5200

Figure 5.5 The computational domain and settings of the flow over a static

NACA0015 aerofoil with an attack angle of α = 60◦ at Re = 5200.

with both the numerical (Sengupta et al., 2007; Milthaler, 2014) and experimental

(Freymuth, 1985) data.

The pressure contours are shown in Fig. 5.7. The results obtained from the present

model are in good agreement with the pressure contours in Fig. 14 in (Sengupta

et al., 2007) and Fig. 4.5 in (Milthaler, 2014). The present model captures the

developing of the pressure contours along both the rear and leading edges of aerofoil

very well. From Fig. 5.7, it can be clearly seen that the low-pressure contours along

the upper surface of the aerofoil. From Fig. 5.7a-c, it can be found that a low-

pressure centre is generated at the back of the leading edge on the aerofoil. Then

this low-pressure centre grows larger and larger when it moves to the downstream.

When this low pressure centre moves downstream, two small low pressure centres

appear at the leading edge and another one at the rear edge at t = 40
64

s (see Fig.

5.7d). These small low-pressure centres then move to the downstream and more

small ones are created one after another at the back of the leading edge (see Fig.

5.7e-f). However, the small pressure centre at the back of the rear edge continues to

increase its size and move downstream, while no more small pressure centres appear

at the back of the rear edge (see Fig. 5.7e-f).

The velocity profiles and streamlines obtained from the present model are given in

Figs. 5.8 and 5.9. For the velocity profiles, the larger velocity areas are found near
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Figure 5.6 The fluid mesh at different times of the flow over a NACA0015 aero-

foil at Re = 5200 and attack angle α = 60◦: (a) t = 25
64

s, (b) t = 27
64

s, (c)

t = 35
64

s, (d) t = 40
64

s, (e) t = 45
64

s, (f) t = 52
64

s, (g) t = 55
64

s and (h) t = 58
64

s.
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Figure 5.7 The pressure contours of flow over a NACA0015 aerofoil at Re = 5200

and attack angle α = 60◦ obtained from the present model in different times:

(a) t = 25
64

s, (b) t = 27
64

s, (c) t = 35
64

s, (d) t = 40
64

s, (e) t = 45
64

s, (f) t = 52
64

s,

(g) t = 55
64

s and (h) t = 58
64

s. Similar results have been found in Figure 14 in

the literature (Sengupta et al., 2007) and Fig. 4.5 in the literature (Milthaler,

2014).
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the rear and leading edges of the aerofoil. The streamlines generated by the present

method are in good agreement with the streamlines from Ref. (Sengupta et al.,

2007) and Fig. 4.6 in (Milthaler, 2014). In Figs. 5.8a and b, one big and one small

bubbles are generated one after another near the leading edge of the aerofoil. The

big bubble is the main vortex, and the small bubble is the secondary vortex, which

always attaches to the leading edge. The main big bubble keeps growing bigger and

bigger (see Figs. 5.8a-d). As the secondary vortex increases the size, the main larger

vortex detaches from the leading edge but still attaches to the upper surface of the

aerofoil (see Fig. 5.8c and d). Meanwhile, a minor bubble appears at the rear of

the aerofoil at t = 40
64

s (see Fig. 5.8d). When the minor bubble is generated, it

is already detached from the rear edge and locates at the downstream of the rear

edge. Subsequently, the rear-edge minor bubble continues to grow, while the top

big bubble starts to reduce in size (see Figs. 5.8d, 5.9e-g). During this period (from

t = 45
64

s to t = 55
64

s), it can be clearly seen that two big vortices above each other

positioning downstream of aerofoil upper surface. Soon after the bottom bubble

growing bigger than the top one, the bottom one is detached from the rear edge (see

Fig. 5.9h). At all time frames, the streamlines obtained from the present model

match these from Ref. (Sengupta et al., 2007) (shown in Figs. 5.8 and 5.9). From

Figs. 5.8 and 5.9, it can be found that all the bubbles captured by Sengupta et al.

(2007) are also obtained by the present model. At every time snapshot, the positions

of all the bubbles are in good agreement between the present model streamlines and

these from Ref. (Sengupta et al., 2007). Additionally, by comparing the streamlines

obtained from the present model and these from Ref. (Sengupta et al., 2007), it is

clear that there are more details in the present model results (see Fig. 5.9). Similar

streamline results have also been found in Fig. 4.6 in (Milthaler, 2014). Moreover,

the turbulent kinetic energy profiles are also shown in Fig. 5.10.

The comparison of present vorticity contours with experimental visualization pic-

tures from Freymuth (1985) at different times is shown in Figs. 5.11 and 5.12.

Sengupta et al. (2007) and Milthaler (2014) also compared their numerical vorticity

results with the experimental visualization pictures from the literature (Freymuth,

1985) in Fig. 12 in (Sengupta et al., 2007) and Figure 4.7 in (Milthaler, 2014).

As it can be seen from Figs. 5.11 and 5.12, the vorticity contours obtained from

the present immersed-body URANS model are in good agreement with these ex-

perimental visualization pictures from the literature (Freymuth, 1985). The eddies

near the leading and rear edges are both very close to the experimental visualization

pictures. And the details of the small shedding eddies are captured in Figs. 5.12f-h.
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Figure 5.8 Comparison of present streamlines (right) of flow over a NACA0015

aerofoil at Re = 5200 and attack angle α = 60◦ with the numerical stream-

lines in (Sengupta et al., 2007) at different times: (a) t = 25
64

s, (b) t = 27
64

s,

(c) t = 35
64

s and (d) t = 40
64

s. . Similar results have been found in Fig. 4.6 in

(Milthaler, 2014).
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Figure 5.9 Comparison of present streamlines (right) of flow over a NACA0015

aerofoil at Re = 5200 and attack angle α = 60◦ with the numerical stream-

lines in (Sengupta et al., 2007) at different times: (e) t = 45
64

s, (f) t = 52
64

s,

(g) t = 55
64

s and (h) t = 58
64

s. Similar results have been found in Fig. 4.6 in

(Milthaler, 2014).
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Figure 5.10 The turbulent kinetic energy profiles of flow over a NACA0015 aero-

foil at Re = 5200 and attack angle α = 60◦ obtained from the present model

in different times: (a) t = 25
64

s, (b) t = 27
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s, (c) t = 35
64

s, (d) t = 40
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s, (e)

t = 45
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s and (h) t = 58
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s.
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Figure 5.11 Comparison of present vorticity contours (right) of flow over a

NACA0015 aerofoil at Re = 5200 and attack angle α = 60◦ with visualiza-

tion pictures (left) from the literature (Freymuth, 1985) at different times:

(a) t = 25
64

s, (b) t = 27
64

s, (c) t = 35
64

s and (d) t = 40
64

s. Similar results have

been found in Fig. 12 in the literature (Sengupta et al., 2007) and Fig. 4.7 in

(Milthaler, 2014).
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5.3: Turbulent flow over a static NACA0015 aerofoil with an attack angle of
α = 60◦ at Re = 5200
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Figure 5.12 Comparison of present vorticity contours (right) of flow over a

NACA0015 aerofoil at Re = 5200 and attack angle α = 60◦ with visualiza-

tion pictures (left) from the literature (Freymuth, 1985) at different times: (e)

t = 45
64

s, (f) t = 52
64

s, (g) t = 55
64

s and (h) t = 58
64

s. Similar results have been

found in Fig. 12 in Sengupta et al. (Sengupta et al., 2007) and Fig. 4.7 in

(Milthaler, 2014).
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The eddies presented here are closer to the experimental visualization pictures than

those in Fig. 12 in (Sengupta et al., 2007) and Fig. 4.7 in (Milthaler, 2014).

The comparison of pressure contours, streamlines and the vorticity contours with

both the experimental visualization pictures from the literature (Freymuth, 1985)

and numerical results in (Sengupta et al., 2007; Milthaler, 2014) indicates that the

immersed-body URANS model is able to simulate complex turbulent flows for large

flow separations.

5.4 A free rising circular cylinder in a fluid at rest

with Re = 5000 and Re = 3800

In practical engineering applications, turbulent flows around geometrically complex

bodies are commonly used in many fields. In most cases, the solids are in motion

driven by the fluid pressure and drag loads on the structures. This section focuses

on the turbulent flows coupling with moving solids.

For free falling or rising cylinder in a fluid under the influence of gravity, there

are many experimental data in (Horowitz & Williamson, 2006, 2010; Jayaweera &

Mason, 1965; Stringham et al., 1969). In this section, a free rising cylinder case is

carried out. It has the same setting as the experiment in (Horowitz & Williamson,

2006). The computational domain and settings of the free rising cylinder case are

shown in Fig. 5.13. The dimensions of the computational domain is 0.4 m× 1.5 m.

No slip-condition is prescribed on the left, right and the bottom boundaries while

the top is defined as having an open boundary condition. The kinematic viscosity ν

of this fluid is 0.95× 10−6 m2/s. The diameter D of the cylinder is 0.0191 m. In the

beginning, the centre of the buoyant cylinder is located at the point (0.2, 0.0191) m.

The density ratio of the cylinder to the fluid is defined as m∗, which is given as a

constant of 0.78 and 0.45 for test R1 and R2, respectively. The Reynolds numbers

of test R1 and R2 are about 5000 and 3800, respectively. The same setting exper-

iment of this case was presented in (Horowitz & Williamson, 2006). In the present

simulations, the anisotropic mesh adaptivity is used (see Fig. 5.14). The minimum

and maximum mesh edge lengths are 7.5× 10−4 m and 0.12 m respectively.

In order to know the response of a free rising cylinder to the vortex shedding dy-

namics, Horowitz & Williamson (2006) measured the vorticity pattern near the
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5.4: A free rising circular cylinder in a fluid at rest with Re = 5000 and Re = 3800

Figure 5.13 The computational domain and settings of the rising cylinder.

(a) (b)

Figure 5.14 (a) The fluid mesh of a free rising cylinder at m∗ = 0.78, (b) The

fluid mesh of a free rising cylinder at m∗ = 0.45.
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Figure 5.15 Comparison of present vorticity contours (b) of free rising cylin-

der at Re = 5000 with experimental measurements (a) from the literature

(Horowitz & Williamson, 2006) when m∗ = 0.78.

wake of rising cylinder at their experiment. The vorticity obtained from the present

immersed-body URANS model is compared with the measured vorticity in Figs.

5.15 and 5.16. The rising cylinder with m∗ = 0.78 moves upward straightly with

negligible transverse motion. However, the rising cylinder with m∗ = 0.45 moves

upward with significant vibrations. In both experimental measurements and the

numerical contours of the vorticity, the same 2S mode of vortex formation was ob-

served for m∗ = 0.78 (see Fig. 5.15). In the meantime, the same 2P mode of vortex

were observed for m∗ = 0.45 (see Fig. 5.16).

The trajectories of the rising cylinder for test R1 and R2 are shown in Fig. 5.17.

They are in good agreement with the experimental trajectories. Fig. 5.17a shows

that the rising cylinder has negligible transverse motion in the simulation for test

R1 (same situation observed in the experiment (Horowitz & Williamson, 2006)).

But for test R2, there is non-negligible transverse motion. Our simulations have

repeated these vibrating motions (see Fig. 5.17b). The eddy viscosity of the free

rising cylinder is shown in Fig. 5.18.

The comparison of present vorticity contours and trajectories of free rising cylinder

at Re = 5000 & Re = 3800 with experimental measurements from the literature

(Horowitz & Williamson, 2006) in Figs. 5.15, 5.16 and 5.17 shows a good agreement.

Since the free rising cylinder is a two-way coupling case, this demonstrates that the
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Figure 5.16 Comparison of present vorticity contours (b) of free rising cylin-

der at Re = 3800 with experimental measurements (a) from the literature

(Horowitz & Williamson, 2006) when m∗ = 0.45.
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Figure 5.17 The blue lines with circles are experimental data from Ref.

(Horowitz & Williamson, 2006), and the black solid lines are trajectories of

the rising cylinders in the simulations obtained from the present immersed-

body URANS model. (a) The trajectories of a rising cylinder at m∗ = 0.78,

(b) The trajectories of a rising cylinder at m∗ = 0.45.
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Figure 5.18 (a) The contours of eddy viscosity for a free rising cylinder at m∗ =

0.78, (b) The contours of eddy viscosity for a free rising cylinder at m∗ =

0.45.

presented immersed-body URANS model is able to correctly simulate two-way solid-

fluid coupling at high Reynolds number situations.

5.5 A free rising sphere in a fluid at rest with

Re = 6000 and 10000

In this section, simulations of a free rising sphere in a fluid at rest with Re = 6000

and 10000 have been undertaken for validation of the URANS FSI model.

The computational domain with dimensions 10D × 10D × 150D is shown in Fig.

5.19a. The centre of the sphere is initially set at 5D distance to the bottom, left,

right, front and back of the domain. The top surface of this computational domain

is given the open boundary condition, other surfaces: bottom, right, left, front

and back of the domain are all given free-slip boundary conditions. Adaptive fluid

meshes are used in this test case with the maximum and minimum mesh edge length

Lmax = 5D and Lmin = 0.025D, respectively (see Fig. 5.19b).

Using equation 3.10, the empirical solutions of the terminal velocity for free setting

spheres can be obtained. The terminal velocity comparison between the empirical
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5.5: A free rising sphere in a fluid at rest with Re = 6000 and 10000

(a) (b)

Figure 5.19 (a) The computational domain of the rising sphere test case, (b)

The computational mesh of the rising sphere test case.

solutions and the simulation results obtained from the presented model form∗ = 0.55

and m∗ = 0.8 are listed in Table 5.3. It can be found that the absolute values of all

relative errors are less than 0.03. This indicates the present model is accurate for

two-way FSI simulations at high Reynolds number regime.

Table 5.3 Free rising sphere test cases for different m∗.

Case m∗ ν Re U sf
t U is

t EUt
r

Rising-sphere-r41 0.55 5.43× 10−5 6000 1.63686 1.6282 0.0053
Rising-sphere-r42 0.55 3.29× 10−5 10000 1.66824 1.6448 0.0143
Rising-sphere-r43 0.8 3.62× 10−5 6000 1.11216 1.0855 0.0245

The Q-criterion of the free rising sphere cases is shown in Fig. 5.20. It is worth to

note that the vortex shedding patterns of Rising-sphere-r42 and Rising-sphere-r43

are different, while Rising-sphere-r41 and Rising-sphere-r42 have a similar pattern.

Horowitz & Williamson (2010) have carried out a large number of experiment tests

of the free rising sphere and drew three vortex shedding patterns i.e. ‘R’ , ‘2R’

and ‘4R’. The parameters determining the vortex shedding patterns are Re and m∗.

Different free rising sphere near weak patterns on the {m∗, Re} plane are given in Fig.

5.21. This shedding vortex map is drawn based on a large number of experiments

test case. To define different patterns, the ‘R’ , ‘2R’ and ‘4R’ modes are introduced
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Figure 5.20 The Q-criterion of the free rising sphere cases: (a) Rising-sphere-r41:

m∗ = 0.55 and Re = 6000, (b) Rising-sphere-r42: m∗ = 0.55 and Re = 10000,

and (c) Rising-sphere-r43 m∗ = 0.8 and Re = 6000.

Figure 5.21 Different free rising sphere near weak patterns on the {m∗, Re}
plane from Ref. (Horowitz & Williamson, 2010).
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5.6: Flow bending a 3D elastic plate

(Horowitz & Williamson, 2010). The ‘R’ and ‘2R’ modes are the vortex rings with

single-sided and double-sided periodic sequences, respectively. The ‘4R’ mode is

the shedding vortex that including four vortex rings at every cycle of oscillation.

From the definitions, it can be found that Rising-sphere-r41 and Rising-sphere-r42

generate the ‘4R’ mode of vortex rings, while Rising-sphere-r42 creates the ‘2R’

mode vortex rings. By checking the vortex map in Fig. 5.21, in the test case:

Rising-sphere-r41 and Rising-sphere-r42, m∗ = 0.55, Re = 6000 and 10000, thus the

‘4R’ mode vortex rings could be found. For the Rising-sphere-r43 test case, m∗ = 0.8

and Re = 6000, the ‘2R’ mode vortex rings could be found based on the vortex map.

By comparing the vortex pattern modes obtained from the present model and the

vortex map, the present model successfully regenerate the ‘2R’ and ‘4R’ modes for

different m∗ and Re.

5.6 Flow bending a 3D elastic plate

In this section, flow bending a flexible plate test case is used to validate the model

when dealing with elasticity in FSI. The results obtained by the present model are

compared with the experimental data in (Luhar & Nepf, 2011) and the numerical

data in (Tian et al., 2014).

The schematic of the flexible plate is shown in Fig. 5.22a. This flexible plate of length

L, width b, and thickness h is vertically placed in a cross flow. The relationships

between L, b and h are L/b = 5 and h/b = 0.2. The computational domain and

boundary conditions of this case are defined in Fig. 5.23b. The dimensions of this

domain are 21b× 16b× 17b. As shown in Fig. 5.23b, the left and right sides are set

as the velocity inlet and pressure outlet boundary conditions. The inlet velocity is

Ui and the outlet pressure is P0. The front, back, top and bottom sides are all given

free-slip boundary conditions. The centre of the plate is set at 5b to the left side, 8b

to the front side and 8.5b to the bottom side. The dimensionless parameters used in

this case are: Re = Uib/ν = 1600, E∗ = E/ρfU
2
0 = 19054.9, m∗ = ρs/ρf = 0.678,

and f ∗b = (ρf − ρs)gh/(ρfU2
0 ) = 0.2465. Adaptive meshes with the minimum and

maximum mesh edge lengths l = 0.075b and L = 2.5b are used in this case (see Fig.

5.23a).

Fig. 5.24 shows the motion of the flexible plate. From Fig. 5.24a-d, it can be

found that the tip of plate first moves to the right-hand side from t = 0 to t = 155.
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Figure 5.22 (a) Schematic of a flexible plate. (b) The comparison of baselines

computed by the present model with the numerical data in (Tian et al., 2014)

and experimental data in (Luhar & Nepf, 2011).

Then the plate experiences a period of vibrating from t = 170 to t = 700 (see Fig.

5.24e-m). During this vibrating period, the tip of the plate moves back to the left-

hand side at t = 170 and quickly moves to the right-hand side again at t = 265

and t = 330. After this, the second pullback happens at t = 470 and t = 575 that

pulling the plate tip moving back to the left-hand side again. Finally, after t = 750,

the plate moves slowly and stabilizes at t = 840 (see Fig. 5.24p).

After the plate is stabilizes at t = 840 (see Fig. 5.24p), the baseline of the plate is

compared with the numerical data in (Tian et al., 2014) and experimental data in

(Luhar & Nepf, 2011). From Fig. 5.22b, it can be found that the baseline computed

by the present model is in good agreement with the experimental data in (Luhar

& Nepf, 2011) and the numerical data in (Tian et al., 2014). This proves that the

present model is good at capturing the elastic structure response in FSI.

Figs. 5.25-5.26 plot the pressure contours surrounding the plate at different time

snapshots. From Fig. 5.25a-c, there is no clear pressure contour shell and the plate

tip gently moves to the right-hand side from t = 0 to t = 80. Even when t = 155,

the pressure difference between the right and left sides of the plate is relatively small

and the plate continues moving to the right-hand side (see Fig. 5.25d). However,
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(a) (b)

Figure 5.23 (a) The mesh the flow bending a flexible plate case. (b) The com-

putational domain and boundary settings of the flow bending a flexible plate

case.

from t = 170 to t = 700, there are huge pressure differences between the left and

right side surrounding the plate (see Figs. 5.25e-i and 5.26j-m), which drive the

plate vibrate frequently. Taking for an example, from t = 470 to t = 575, the

pressure on the right-hand side is much larger than that on the left-hand side, thus

the tip of the plate is moving the left-hand side at these time snapshots (see Fig.

5.25h-i). At t = 590, since the pressure on the left-hand side is bigger than that

on the right-hand side, the plate tip is driven to move right-hand side. After this

strong vibrating period, the pressure differences decreased to very small value from

t = 750 to t = 840 and the plate moves slowly and finally stabilizes at t = 840 (see

Fig. 5.26p).

Additionally, the streamlines of the flow bending a 3D elastic plate test case at

different time snapshots are shown in Figs. 5.27 and 5.28. As the plate moves to

the right-hand side gently from t = 0 to t = 155 (see Fig. 5.27), the streamlines at

this time period are smooth and relatively few with large curvatures. From t = 170

to t = 700, the plate is in the mode of vibration. The streamlines are mixed by the

frequent moving plate. At the same time, many streamlines with large curvatures

appear and lots of streamlines cross with each other (see Figs. 5.27g-h and 5.28i-

l). After this vibration phase, the flexible plate stabilises. The streamlines become

ordered and the curvatures become smaller than these during the vibration phase

(see Fig. 5.28n-p).
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(a) t = 0 (b) t = 40 (c) t = 80 (d) t = 155

(e) t = 170 (f) t = 265 (g) t = 330 (h) t = 470

(i) t = 575 (j) t = 590 (k) t = 625 (l) t = 675

(m) t = 700 (n) t = 750 (o) t = 800 (p) t = 840

Figure 5.24 The bending plate positions at different times: (a) t = 0, (b) t = 40,

(c) t = 80, (d) t = 155, (e) t = 170, (f) t = 265, (g) t = 330 , (h) t = 470, (i)

t = 575, (j) t = 590, (k) t = 625 , (l) t = 675, (m) t = 700, (n) t = 750, (o)

t = 800 and (p) t = 840.
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Figure 5.25 The pressure contour of the flow bending a 3D elastic plate case at

different times: (a) t = 0, (b) t = 40, (c) t = 80, (d) t = 155, (e) t = 170, (f)

t = 265, (g) t = 330 , (h) t = 470 and (i) t = 575.

163



Chapter 5: Turbulence flow FSI model

-400

-200

0

200

400

Pressure

-500

500

-400

-200

0

200

400

Pressure

-500

500

-400

-200

0

200

400

Pressure

-500

500

(j) t = 590 (k) t = 625 (l) t = 675
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Figure 5.26 The pressure contour of the flow bending a 3D elastic plate case at

different times: (j) t = 590, (k) t = 625 , (l) t = 675, (m) t = 700, (n) t = 750,

(o) t = 800 and (p) t = 840.
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Figure 5.27 The streamline of the flow bending a 3D elastic plate case at differ-

ent times: (a) t = 0, (b) t = 40, (c) t = 80, (d) t = 155, (e) t = 170, (f)

t = 265, (g) t = 330 and (h) t = 470.
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Figure 5.28 The streamline of the flow bending a 3D elastic plate case at differ-

ent times: (i) t = 575, (j) t = 590, (k) t = 625, (l) t = 675, (m) t = 700, (n)

t = 750, (o) t = 800 and (p) t = 840.
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5.7 Computational time

A brief software profile of the computational time in this coupled code has been done

(see Table 5.4). From Table 5.4, we can see that the two longest computational time

expenditures are caused by the nonlinear iterations in the fluid solver and the projec-

tion process between the fluid, shell and solid meshes. The computational time cost

on projection would be very expensive when the structure surface is relatively large

and fine meshes concentrate on fluid-structure interfaces. For the projection process,

the search algorithm R-TREE (Guttman, 1984) is used. The R-TREE algorithm

is a dynamic indexing algorithm using certain related bounding boxes/rectangles.

More advanced search algorithm, such as NBS contact detection algorithm (Munjiza

& Andrews, 1998), may be implemented in the projection process to improve the

efficiency of the coupled code.

Table 5.4 The time cost in different functions in percentage.

case name speed test 1 speed test 2 speed test 3
fluid mesh size 0.05 0.05 0.025
solid mesh size 0.01 0.02 0.01

normal loop 0.0308 0.0829 0.0174
k − ε 9.9598 30.0661 23.0384

nonlinear loop 6.2902 17.6752 17.7783
interpolate fields out r 34.8882 22.1566 20.7009
interpolate fields out v 15.9157 8.8122 11.7213
interpolate fields in v 7.0613 3.2523 5.4534
interpolate fields in r 7.7176 3.9821 5.9789

calculate solid volume fraction 5.2977 2.6778 4.6359
calculate shell volume fraction 5.8158 2.9319 4.5574

y3dfemdem 1.9054 0.7722 0.6935
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5.8 Concluding remarks

In this chapter, detailed validation of the FSI model for turbulent flows is presented.

The immersed-body URANS turbulence model is validated by several test cases,

and the results show good agreements with both experimental data and previous

numerical data in the literature. The first two test cases are flow over a circular

cylinder at Re = 3900 and turbulent flow over a static NACA0015 aerofoil with an

attack angle of α = 60◦ at Re = 5200. The comparison between the experimental

and numerical results shows that the model has the accuracy and reliability to resolve

the turbulent flow coupled with fixed solids. The third and fourth test cases are a

free rising circular cylinder in a fluid at rest with Re = 5000 and Re = 3800 and a

free rising sphere in a fluid at rest with Re = 6000 and 10000. These two benchmark

test cases indicate that the immersed-body URANS model has the ability to simulate

moving bodies coupled with the turbulent flow. The structural elastic response in

a cross flow is also validated by the flow bending a 3D elastic plate test case. The

simulation results obtained from the present FSI model are in good agreement with

the experimental data and previous numerical results in the literature. Finally,

this chapter presents the software profile, which could be used for further code

optimisation. The developed FSI model has been validated from incompressible,

compressible to turbulent flows at chapter 3 to chapter 6. The next chapter will

show a complex application case for a tidal turbine.
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Chapter

SIX

Application: FSI model for tidal

turbine

The present FSI model is applied to vertical axis tidal turbines (VATTs) in this

chapter. Numerical simulations for vertical axis tidal turbines are carried out based

on the developed 2D and 3D fidelity fluid-structure turbulence model. This model is

capable of simulating the fluid dynamics of the flow, as well as the stress, vibration,

deformation, fracture, and motion of structures at the same time. Most importantly,

this model is able to capture the structure response and fluid dynamics of rotating

vertical axis tidal turbines in turbulent flows, since a URANS k − ε model is imple-

mented in this model. In order to improve the computational efficiency, an extremely

anisotropic mesh adaptivity is used here. To validate the present model, the test of

flow past a rigid rotating vertical tidal turbine is considered. The simulation results

of these complex practical test cases are all in good agreement with experimental and

numerical data in the literature. Finally, the elasticity of a vertical axis turbine test

case is presented to demonstrate the model’s capabilities when analysing the elastici-

ties for realistic vertical axis tidal turbines. More importantly, flow-induced fractures

in a vertical axis turbine are presented to predict the worst scenarios.
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6.1 Introduction

Recently, an advanced FSI turbulent model is developed by Yang et al. (2016,

2017a) based an immersed-body method. This model couples a combined finite-

discrete element solid model (FEMDEM) with a finite element CFD model (Fluidity-

Multiphase). The interaction between the moving solids and turbulent flow is mod-

elled in a very thin shell mesh surrounding the solid surface. This thin shell is acted

as a delta function to implement the boundary conditions for both the turbulence

model and the fluid momentum equation.

The 2D & 3D URANS FSI model has been developed in this work. In this chapter,

this model is applied to simulate 2D & 3D vertical axis turbines. To validate the

model, the power coefficients are compared to those measured in (Mâıtre et al.,

2013). Additionally, the model has been applied to analyze the elastic response of

vertical axis turbines in turbulent flows. More importantly, this model can be used

to predict some worst scenarios, for instance, flow-induced fractures in a vertical

axis turbine. An extremely anisotropic mesh adaptivity is used here to reduce the

total number of nodes in the computational mesh. This enables the model to run

relatively fast.

The remainder of this chapter is organised as follows. Flow past 2D and 3D rotating

vertical axis turbine test cases are presented in section 6.2 and section 6.3, respec-

tively. In section 6.4, the elastic response of a vertical axis turbine with the tower

in turbulent flow is given out. Flow-induced fractures in a vertical axis turbine test

case is presented to predict the worst scenarios in section 6.5 The list of the test

cases in this chapter is shown in Table 6.1. The strengths and weaknesses of this

model are discussed in Section 6.6. The conclusions are presented in Section 6.6.

Table 6.1 Tidal turbine test cases

Section Case name Case purpose
Section 6.2 Flow past a 2D rotating vertical axis turbine Validation
Section 6.3 Flow past a 3D rotating vertical axis turbine Validation
Section 6.4 Flow past a 3D flexible vertical axis turbine Application
Section 6.5 Flow-induced fractures in a 3D vertical axis tur-

bine
Application
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6.2: Flow past a 2D rotating vertical axis turbine

6.2 Flow past a 2D rotating vertical axis turbine

In this section, a 2D vertical axis turbine rotating in turbulent flow is simulated. The

power coefficients calculated in the simulations are compared with the numerical

and experimental data in (Mâıtre et al., 2013). Mâıtre et al. (2013) developed a

sliding mesh method based on a flow solver, ANSYS-Fluent V13, to complete the

simulations of the flow past a 2D rotating vertical axis marine turbine. The sliding

mesh allows the fine mesh to be used near the blade surfaces. The test cases in

(Mâıtre et al., 2013) are fluid only simulations. It is worth noting that Mâıtre et al.

(2013) used ANSYS-Fluent as a pure CFD solver (without solid-fluid coupling) to

simulate the flow past a VATT.

The present URANS k − ε FSI model is a solid-fluid coupling model. An adaptive

mesh can ensure the mesh quality near the blade surfaces. Meantime, the solid stress,

motion, deformation and fracture can be computed inside the turbine structure.

6.2.1 The setup of the vertical axis turbine

A horizontal slice of the vertical axis turbine (Mâıtre et al., 2013) is used to set up a

2D numerical simulation. The height of the vertical axis turbine is H=0.175m and

the radius of the vertical axis turbine is R=0.5H (see Fig. 6.1). The physical rotating

axis of the vertical axis turbine is a cylinder with diameter Dc = 0.022 m (see Fig.

6.1). The blade profiles used on this vertical axis turbine are based on NACA0018

(Mâıtre et al., 2013) aerofoil with the chord length c = 0.032 m. The fluid with inlet

velocity Ui = 2.3 m/s and kenimatic viscosity ν = 1× 10−6 m2/s passes the rotating

vertical axis turbine from the left to right hand side. The rotating angular velocity

of the vertical axis turbine is Ω = 52.5714 rad/s. Then the Reynolds number of this

case can be given as:

Re =
ΩRc

ν
= 147200. (6.1)

The tip-speed ratio is defined as:

λ =
ΩRc

Ui
= 2.0. (6.2)

The on-coming fluid velocity vector on the turbine blade is combined by two com-

ponents: Ui and ΩR (see Fig. 6.2b). Thus the on-coming fluid velocity vector W
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Figure 6.1 The computational domain and settings of flow past a 2D rotating

vertical axis turbine.

can be obtained via:
~W = ~Ui − ~ΩR. (6.3)

Then the on-coming velocity modulus, W , and the incidence angle, αi can be ex-

pressed as:

W = Ui
√

1 + 2λcosθb + λ2, (6.4)

αi = tan−1

(
sinθb

cosθb + λ

)
. (6.5)

The incidence angle αi of the flow past a 2D rotating vertical axis turbine at different

blade position θb at λ = 2.0 are drawn on Fig. 6.2a. There are two components of

forces on the vertical axis turbine blade (see Fig. 6.2b). They are fx and fy that

represent forces on x and y direction, respectively. fx and fy are calculated by the

following equations:

fx =

∫
blade surfce

fs • nxdS, (6.6)

fy =

∫
blade surfce

fs • nydS, (6.7)

where fs is the force applied to the blade surface in unit normal vector, nx and ny
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Figure 6.2 (a) The incidence angle αi of the flow past a 2D rotating vertical axis

turbine at different blade position θb at λ = 2.0. (b) Velocities triangles and

forces in a vertical axis turbine.

are the unit normal vector in x and y direction, dS is the unit surface. Then the

drag and lift forces on the blade can be computed using fx and fy via (Mâıtre et al.,

2013; McNaughton et al., 2014):

fD = fxcosγ + fysinγ, (6.8)

fL = fxsinγ − fycosγ, (6.9)

γ = θb − αi. (6.10)

The power coefficient of the vertical axis turbine is calculated by:

Cpow =
TΩ

ρfHRU3
i

, (6.11)

where ρf = 1000 kg/m3, T is the torque.

6.2.2 The fluid dynamics of the flow past a 2D rotating ver-

tical axis turbine

The computational domain with the boundary conditions of the flow past a 2D

rotating vertical turbine test case is shown in Fig. 6.1. The dimensions of this
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Chapter 6: Application: FSI model for tidal turbine

domain are 5.7143H × 4H and the centre of the cylinder axis locating at 2H to the

left and bottom boundaries. A velocity inlet condition is given at the left wall and

a pressure outlet with Po = 0.0 Pa is given at the right wall. A free slip condition is

given at the bottom and the top boundaries.

The vorticity field and contour of the flow past a rotating vertical axis turbine are

shown in Figs. 6.3 and 6.4, respectively. In order to link the fluid separation to the

incidence angle (also called as the attack angle) αi, Table 6.2 lists the relationship

between the attack angle αi and the blade positions θb using equation 6.5 and Fig.

6.2a. From Table 6.2, it can be found that the attack angle moves from αi = 0◦

to αi = 19.11◦ when the blade position moves from θb = 0◦ to θb = 60◦ (see Fig.

6.3a, c and d). In this period, no flow separation and smaller vortices are detaching

from the rears of the blades (see Fig. 6.3a, c and d). Here, this stage is named

as ‘no separation stage’. In the ‘no separation stage’ the flow passes through the

blade surface smoothly without reverse flow and small vortices detaching from the

rear of the blade. As the blade moves from θb = 90◦ to θb = 150◦, the attack angle

moves from αi = 26.57◦ to αi = 23.79◦ (see Table 6.2, Fig. 6.3a, b and d). This

period is called as the ‘pressure surface separation stage’ since there are large flow

separations on the pressure surface of the blade in this stage. It is worth to mention

that the attack angle αi changes to its maximum value αi = 30◦ when blade position

at θb = 90◦ (see Table 6.2, Fig. 6.3a). At the attack angle αi = 30◦, the largest

separation vortex appears (see Fig. 6.3a) on the blade pressure surface. At the

attack angle αi = 26.57◦ and αi = 23.79◦, there are clear flow separations on the

blade pressure surface (see Fig. 6.3b and d). Then there is a short period near the

attack angle αi = 0◦ when the blade position at θb = 180◦ (see Table 6.2, Fig. 6.3c).

In this period, the attached eddies in the ‘pressure surface separation stage’ reattach

the blade surface (see Fig. 6.3c). This period is then named as the ‘transition stage’

due to the linkage between two large operation stages: ‘pressure surface separation

stage’ and ‘suction surface separation stage’. The ‘suction surface separation stage’

ranges from the attack angle αi = −23.79◦ to the αi = −26.57◦ (see Table 6.2, Fig.

6.3a, b and d). In this stage, the separations are found at the suction surface of

the blade (see Fig. 6.3a, b and d). It can be found that the largest suction surface

separation happens at attack angle αi = −30◦ and the blade position at θb = 270◦

(see Fig. 6.3d). In the meantime, flow separations on the suction surface of the blade

are also found at attack angle αi = −23.79◦ and αi = −26.57◦ (see Fig. 6.3a and b).

After the ‘suction surface separation stage’, there is a final stage in which the flow

separations become less and less till to the ‘no separation stage’. this final stage is
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6.2: Flow past a 2D rotating vertical axis turbine

named as the ‘reattaching stage’. In summary, the blade experience five stages in

a circular movement, i.e. ‘no separation stage’, ‘pressure surface separation stage’,

‘transition stage’, ‘suction surface separation stage’ and ‘reattaching stage’. Similar

vortex shedding patterns are also obtained by Mâıtre et al. (2013).

Table 6.2 The relationship between the blade position θb and the attack angle αi.

Blade position θb Attack angle αi
0◦ 0◦

30◦ 9.90◦

60◦ 19.11◦

90◦ 26.57◦

120◦ 30◦

150◦ 23.79◦

180◦ 0◦

210◦ −23.79◦

240◦ −30◦

270◦ −26.57◦

300◦ −19.11◦

330◦ −9.90◦

There are breaking and merging eddies during the turbine rotation (see Fig. 6.4).

From Fig. 6.4a, it can be found that the blade at position θb = 0◦ breaks the eddies

detaching from the blade at position θb = 120◦. The broken eddies move to the

downstream and meet with the eddies detaching from the blade at position θb = 0◦.

Among these broken eddies and new eddies, some of them merge into bigger eddies

and others interact with each other and generate smaller ones. However, the eddy

motions near the blade at the position θb = 240◦ are different from these at θb = 0◦

and θb = 120◦. The eddies detaching from the blade at the position θb = 240◦

interact with the blade itself. Since the eddies detaching from the blade at the

position θb = 240◦ are relatively big, the blade mainly changes the shape of the

eddies from a circle to an ellipse. Similar breaking and merging patterns are also

found in Fig. 6.4b-d. It is worth noting that larger eddies are generated by merging

small eddies at the central far downstream because most of the eddies move to this

area.

An unstructured anisotropic adaptive fluid mesh is used in this study case (see Fig.

6.5). The minimum and maximum mesh edge lengths are 5 × 10−4 m and 0.3 m,

respectively. The fluid mesh is always automatically refined near the blade surfaces
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(a) (b)

(c) (d)

Figure 6.3 The vorticity of flow past a rotating vertical axis turbine obtained by

the presented model at λ = 2 at different blade positions. (a) The positions of

the three blades are θb = 0◦, θb = 120◦ and θb = 240◦. (b) The positions of the

three blades are θb = 90◦, θb = 210◦ and θb = 330◦. (c) The positions of the

three blades are θb = 180◦, θb = 300◦ and θb = 60◦. (d) The positions of the

three blades are θb = 270◦, θb = 30◦ and θb = 150◦.
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Figure 6.4 The vorticity contours of flow past a rotating vertical axis turbine

obtained by the presented model at λ = 2 at different blade positions. (a)

The positions of the three blades are θb = 0◦, θb = 120◦ and θb = 240◦. (b)

The positions of the three blades are θb = 90◦, θb = 210◦ and θb = 330◦. (c)

The positions of the three blades are θb = 180◦, θb = 300◦ and θb = 60◦. (d)

The positions of the three blades are θb = 270◦, θb = 30◦ and θb = 150◦.
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(a) (b)

(c) (d)

Figure 6.5 The meshes of flow past a rotating vertical axis turbine obtained by

the presented model at λ = 2 at different blade positions. (a) The positions of

the three blades are θb = 0◦, θb = 120◦ and θb = 240◦. (b) The positions of the

three blades are θb = 90◦, θb = 210◦ and θb = 330◦. (c) The positions of the

three blades are θb = 180◦, θb = 300◦ and θb = 60◦. (d) The positions of the

three blades are θb = 270◦, θb = 30◦ and θb = 150◦.

in order to ensure the fluid mesh capture the exact positions of the blade surfaces.

Additionally, the adaptive mesh is also refined in the area with the large velocity

gradient to accurately resolve the vortex shedding at the weak. This adaptive mesh

allows a small number of the total mesh nodes to be used in this test case without

the reduction of the ability to capture the eddies and the sharp solid-fluid interfaces.

This results in the reduction of the computational expense both in memory and CPU

time.

The pressure contours of flow past a rotating vertical axis turbine case at different

blade positions are shown in Fig. 6.6. The high-pressure areas are moving when

the blade position changes. From the blade position θb = 0◦ to θb = 30◦, the high-

pressure areas are at the leading edge of the blade (see Fig. 6.6a and d). When the

blade position moves from θb = 60◦ to θb = 120◦, the high-pressure areas transfer

to the suction surface of the blade (see Fig. 6.6a-c). However, the high-pressure

areas quickly change to the pressure surface of the blade at the position θb = 150◦ to

θb = 240◦ (see Fig. 6.6a-d). At the end, the high-pressure change back to the suction

surface of the blade at θb = 270◦ and θb = 330◦ (see Fig. 6.6b and d). There is

one strange thing happening at the blade position θb = 300◦ that the high-pressure
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(a) (b)

(c) (d)

Figure 6.6 The pressure contours of flow past a rotating vertical axis turbine ob-

tained by the presented model at λ = 2 at different blade positions. (a) The

positions of the three blades are θb = 0◦, θb = 120◦ and θb = 240◦. (b) The

positions of the three blades are θb = 90◦, θb = 210◦ and θb = 330◦. (c) The

positions of the three blades are θb = 180◦, θb = 300◦ and θb = 60◦. (d) The

positions of the three blades are θb = 270◦, θb = 30◦ and θb = 150◦.

area is on the leading edge of the blade (see Fig. 6.6c). According to blade position

at θb = 270◦ and θb = 330◦ (see Fig. 6.6b and d), the high-pressure on the suction

surface should be expected. To further explain why the high-pressure area moves to

the leading edge of the blade, let us look at the vortex pattern in Fig. 6.3c. In Fig.

6.3c, it is found that the flow separation starts from the leading edge of the blade.

This results in the high-pressure area moving from the suction surface to the leading

edge of the blade. Similar pressure contours can be found in (Milthaler, 2014).

The turbulent kinetic energy profiles of flow past a rotating vertical axis turbine

case at different blade positions are given in Fig. 6.7. The turbulent kinetic energy

diffuses when it transfers to the downstream of the turbine. The highest turbulent

kinetic energy is found near the surface of the blade. As the vortex shedding from

the blade surface, the turbulent kinetic energy reduces. Since the eddies move to the

far downstream of the turbine, the turbulent kinetic energy reduces a lot. Although

the eddies at the far downstream are very large (see Fig. 6.4), they have the lowest

turbulent kinetic energy. This means the flow mixing in this area could be very low.

Finally, the total power coefficient of the turbine obtained from the present model
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6.2: Flow past a 2D rotating vertical axis turbine

(a) (b)

(c) (d)

Figure 6.7 The turbulent kinetic energy of flow past a rotating vertical axis tur-

bine obtained by the presented model at λ = 2 at different blade positions.

(a) The positions of the three blades are θb = 0◦, θb = 120◦ and θb = 240◦. (b)

The positions of the three blades are θb = 90◦, θb = 210◦ and θb = 330◦. (c)

The positions of the three blades are θb = 180◦, θb = 300◦ and θb = 60◦. (d)

The positions of the three blades are θb = 270◦, θb = 30◦ and θb = 150◦.

is compared with the experimental data in (Mâıtre et al., 2013) and numerical

simulation results in (McNaughton et al., 2014) in Fig. 6.8. From Fig. 6.8, it

can be found that the power coefficient computed via the present model is in good

agreement with the experimental data (McNaughton et al., 2014). The present

URANS FSI model overestimates the total power coefficient. McNaughton et al.

(2014) also found the same error in the k − ω SST model and k − ω SST LRE

models. This overestimate could be caused by zero diffusion of the energy loss in

the 2D numerical simulations. In a real 3D numerical model, there is the blade

tip loss, the arm (the beam linking the blades and the central rotating cylinder)

friction loss and the shaft bearing system loss. However, the results obtained by the

present model are closer to the experimental data in (Mâıtre et al., 2013) than these

numerical data in (McNaughton et al., 2014). This indicates the present URANS

FSI model using adaptive mesh are good at solving fluid dynamics for moving solids

in turbulent flows for industry application.
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Figure 6.8 The comparison of total power coefficient Cpow of flow past a rotating

vertical axis turbine at λ = 2. The black solid line is the simulation result

obtained from the present model. The green dash line is the experimental

data in (Mâıtre et al., 2013). The blue circle line is the simulation result of

k − ω SST model in (McNaughton et al., 2014). The purple star line is the

simulation result of k − ω SST LRE model in (McNaughton et al., 2014).

6.3 Flow past a 3D rotating vertical axis turbine

The 3D rotating vertical axis turbine structure and solid mesh are shown in Fig.

6.9. The 3D computational domain with dimensions 5.7143H × 4H × 2H is given

in Fig. 6.10. The left and right sides are set as velocity inlet and pressure outlet

boundary conditions. The front, back, top and bottom sides are all given free-slip

boundary conditions. The centre of the cylinder axis is set at 2H to the left side,

2H to the front side and 1H to the bottom side.

An unstructured anisotropic adaptive fluid mesh with the minimum and maximum

edge lengths of 0.002 m and 0.2 m is used in this simulation. Here, 3D unstructured

tetrahedral elements are used for fluid flow. The anisotropic mesh edge length ratio

is set as 10.0. This means that the maximum edge length in one tetrahedron can be

10.0 times of the minimum edge length in this tetrahedron. This anisotropic mesh

setting can extremely reduce the total mesh node number required in this test case.

Combining with the dynamic mesh adaptivity as required, the total node number

used here is decreased again. This enables me to run the complex 3D simulation in

an acceptable timescale. In Fig. 6.11, the fluid velocity and adaptive meshes are
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6.3: Flow past a 3D rotating vertical axis turbine

(a) (b)

Figure 6.9 (a) The geometry of the vertical axis turbine. (b) The solid mesh of

the vertical axis turbine.

Figure 6.10 The computational domain and settings of flow past a 3D rotating

vertical axis turbine.
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Figure 6.11 The velocity and adaptive mesh of flow past a 3D rotating vertical

axis turbine obtained by the presented model at λ = 2 at different blade po-

sitions. (a) The positions of the three blades are θb = 0◦, θb = 120◦ and

θb = 240◦. (b) The positions of the three blades are θb = 90◦, θb = 210◦ and

θb = 330◦. (c) The positions of the three blades are θb = 180◦, θb = 300◦ and

θb = 60◦. (d) The positions of the three blades are θb = 270◦, θb = 30◦ and

θb = 150◦.

given out at four different blade positions: (a) θb = 0◦, θb = 120◦ and θb = 240◦;

(b) θb = 90◦, θb = 210◦ and θb = 330◦; (c) θb = 180◦, θb = 300◦ and θb = 60◦;

(d) θb = 270◦, θb = 30◦ and θb = 150◦. From Fig. 6.11, it can be found that the

meshes are always refined at the turbine structural surface and the area with large

velocity gradients. In Fig. 6.11, it can be found that the 3D adaptive meshes mainly

concentrate around the rotating blades because there are lots of mixing flows in the

central area. The adaptive mesh captures this mixing process caused by the rotating

arms and the blades. Unlike the 2D simulation (see Fig. 6.5), there are more mesh

nodes in the centre of the turbine because by the rotating arms in the 3D simulation

requires a high-resolution mesh to capture their structures. Additionally, the 3D

arms further mix the flow in the centre of the turbine. Importantly, the meshes

at the downstream of the upbound and down-bound of the turbine are also refined

because there are a large number of shedding vortices.
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Figure 6.12 The Q-criterion of flow past a 3D rotating vertical axis turbine ob-

tained by the presented model at λ = 2 at different blade positions. (a) The

positions of the three blades are θb = 0◦, θb = 120◦ and θb = 240◦. (b) The

positions of the three blades are θb = 90◦, θb = 210◦ and θb = 330◦. (c) The

positions of the three blades are θb = 180◦, θb = 300◦ and θb = 60◦. (d) The

positions of the three blades are θb = 270◦, θb = 30◦ and θb = 150◦.

The Q-criterion patterns at different blade positions of the 3D rotating vertical axis

turbine are shown in Fig. 6.12. From Fig. 6.12, it can be found that the vortex rings

are shedding from the rear of the three blades and the tower to the downstream.

The vortex rings detached from each blade are mixed with each other. During

rotating, the larger vortex rings are broken by the following blade and generating

many smaller vortex rings. These small vortex rings merge and impact with each

other. It is worth noting that the rotating arms and blades break the vortices in

the centre into lots of small ones. This makes it difficult to identify some structured

vortex shedding patterns in the centre of the turbine. However, it is relatively

easy to find the shedding patterns at the upbound and down-bound of the turbine

downstream. It can be found that the periodic vortices are detaching from the

turbine.

In Fig. 6.13, the total power coefficient for this 3D rotating turbine in this simulation

is compared with the experimental data in (Mâıtre et al., 2013) and numerical sim-
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Figure 6.13 The comparison of total power coefficient Cpow of flow past a 3D ro-

tating vertical axis turbine at λ = 2. The black solid line is the simulation re-

sult obtained from the present model. The green dash line is the experimental

data in (Mâıtre et al., 2013). The blue circle line is the simulation result of

k − ω SST model in (McNaughton et al., 2014). The purple star line is the

simulation result of k − ω SST LRE model in (McNaughton et al., 2014).

ulation results in (McNaughton et al., 2014). Good agreement is obtained between

the experimental data (McNaughton et al., 2014) and the numerical data from the

present model. Like the 2D results (see Fig. 6.8), the overestimates are also found

at θ = 150 and θ = 270. However, unlike the 2D results (see Fig. 6.8), it can be

found that there are some underestimates of the total power coefficient at θ = 40

and θ = 225. The mixing of underestimates and overestimates in the 3D results

obtained from the present URANS FSI model proves that the 3D model is closer

to the reality. In Fig. 6.13, the numerical data in (McNaughton et al., 2014) are

obtained from 2D k − ω SST model and k − ω SST LRE models. To sum up, the

3D results are better than the 2D results obtained from the present model, since the

3D model simulates the 3D rotating arms and takes the blade tip loss into account.

6.4 Flow past a 3D flexible vertical axis turbine

This section focuses on the elastic response of a 3D vertical axis turbine with tower

facing a constant inlet velocity flow. The structure of the 3D vertical axis turbine
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(a) (b)

Figure 6.14 (a) The geometry of the vertical axis turbine with tower. (b) The

solid mesh of the vertical axis turbine with tower.

and the solid mesh are shown in Fig. 6.14. This flexible vertical axis turbine has

three components: the three turbine blades, the three arms, and the tower. The

tower is vertically installed on the ground with a fixed bottom. The three turbine

blades are linked with the tower by the three arms. The geometry of the arms

and the turbine blades are the same as those in Section 6.3. The tower is a hollow

cylinder with the outer radius ro = 0.011 m and the inner radius ri = 0.0081 m,

respectively. The height of the tower is H.

The 3D computational domain of the tower bottom fixed vertical axis turbine with

dimensions 5.7143H × 4H × 2H is given in Fig. 6.15. The left and right sides are

set as the velocity inlet and pressure outlet boundary conditions, respectively. The

front, back, top and bottom sides are all given free-slip boundary conditions. The

centre of the cylinder tower top is set at 2H to the left side, 2H to the front side and

1H to the bottom side. The bottom of the turbine tower is fixed (see Fig. 6.15).

The inlet velocity is given as a constant value of 2.3 m/s.

The solid mesh size in this simulation is 0.006 m. The material properties of the tur-

bine are listed in Table 6.3. The adaptive fluid meshes with the minimum and max-

imum edge lengths of 0.002 m and 0.2 m are used in this simulation. The anisotropic

mesh edge length ratio is set as 10.0. From Fig. 6.16, it can be found that the fluid

meshes are always refined at the turbine structural surface (on the blades, the arms
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Figure 6.15 The 3D computational domain of a tower bottom fixed vertical axis

turbine.

and the tower) and the area with large velocity gradients. Importantly, in Fig. 6.16,

the varies in velocity along the tower and blades height at the z direction can be

found. There are 3D effects that cause the secondary flows at the top and bottom

tips of the blades.

Table 6.3 The material properties of the turbine.

Turbine conditions values
Density (kg/m3) 2100

Young’s modulus E (Pa) 3.86× 1010

Penalty number 3.86× 1010

Fracture energy release rate Gf 100.0
Poisson ratio 0.26

Tensile strength (Pa) 1.062× 109

Shear Strength (Pa) 2.124× 109

The vortex-induced vibration of the vertical axis turbine happens in this simulation.

The results of the largest displacement of the turbine in this simulation are given in

Fig. 6.17a. In this figure, the maximum displacements of the vertical axis turbine

compared to the initial position are presented. The yellow geometry represents the
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Figure 6.16 The velocity and adaptive mesh of the vibrating vertical axis turbine

at different times: (a) t=0.2 s, (b) t=0.25 s, (c) t=0.3 s and (d) t=0.35 s.

initial position and the white one with the blue meshes shows the position of the

largest displacement at time t = 0.003 s. From the Fig. 6.17a, it can be found

that the bottom of the tower does not have displacement because it is fixed. From

the tower bottom to the top tips of the three blade, the displacements increase.

The largest displacements are found on the tips of the blades. Thus three points

on the tip of each blade are marked on Fig. 6.17b. The displacements of these

three points are drawn in Fig. 6.18. From Fig. 6.18, it can be found that the

largest displacements of every blade are generated when the inlet flow impact on the

turbine at t = 0.003 s. Then the vibration magnitudes attenuate immediately from

t = 0.003 s to t = 0.025 s. In the first vibration cycle, the maximum magnitude is

0.025H, while it is halved in the second vibration cycle. Then at the third vibration

cycle, the vibration magnitude drops to one-fourth of that at the first vibration

cycle. In the fourth variation cycle, the vibration magnitude is almost one-eighth

of that at the first vibration cycle. After the fourth vibration cycle, the vibration

magnitude is controlled and decreased to a stable level.

The Q-criterion patterns at different times of the 3D vibrating turbine are shown in

Fig. 6.19. From Fig. 6.19, it can be found that the vortex rings are shedding from

rears of the three blades and the tower to the downstream. The vortex rings detached

from blade No. 3 are mixed with the vortex rings detached from the tower and the
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Figure 6.17 (a)The displacement of the vertical axis turbine compared to the ini-

tial position. The yellow one without mesh is the initial position. The white

one with blue mesh is the position at the largest displacement. (b) The dis-

placement measurement points on each blade. The three red points on each

blade are the points where the displacement is plotted out in Fig. 6.18.
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Figure 6.18 The displacements of three points marked in Fig. 6.17b.
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Figure 6.19 The Q-criterion of the vibrating vertical axis turbine at different

times: (a) t=0.2 s, (b) t=0.25 s, (c) t=0.3 s and (d) t=0.35 s.
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Figure 6.20 The streamline of the vibrating vertical axis turbine at different

times: (a) t=0.2 s, (b) t=0.25 s, (c) t=0.3 s and (d) t=0.35 s.
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blade No. 2. These vortex rings merge and impact with each other. Some smaller

shedding rings are created by the impact, while some bigger ones are generated by

merging several small vortex rings. In the downstream of blade No. 1 (see Fig.

6.19b-d), there are clear vortex ring patterns. The pattern is 2-3 uniform vortex

rings shedding on after another. However, this is not the case for the downstream

of blade No. 1 in Fig. 6.19a. In Fig. 6.19a, the first vortex ring at the downstream

of the blade No. 1 is not clear and breaks into 3 three rings. It could be caused by

the secondary flows at the top and bottom tips of the blade No. 1. Along the blade

height z direction, the vortex rings are not uniform cylinders, some of them are with

thick centres and some are with thick tips. This kind of vortex shapes is caused by

the 3D effects because there is flow in the z direction in 3D simulations compared to

the 2D ones. Similar patterns can also be found at the downstream of the blade No.

2 in Fig. 6.19 In Fig. 6.19a-b, the vortex rings at the downstream of the blade No.

2 are mixed, while the vortex rings become obvious in Fig. 6.19c-d. These vortex

shedding patterns indicate that the present FSI model is able to model 3D complex

cases.

The streamlines of the flow past a 3D flexible vertical axis turbine case are given in

Fig. 6.20. In these streamlines, these go around the turbine up-bound and down-

bound are smooth and they are not cut and mixed by the turbine. However, these

go directly through the turbine are mixed and bent a lot. For these streamlines go

directly through the turbine, they have shown the vortex patterns in the downstream

of the turbine. These streamlines demonstrate that the present FSI model is good

at capturing the flow details at the downstream of complicated vibrating structures.

6.5 Flow-induced fractures in a 3D vertical axis

turbine

Since the horizontal axis wind turbine have been widely used, there are various

flow-induced structural failures in wind turbines (Chou & Tu, 2011; Chen & Xu,

2016). Chou & Tu (2011) reported a collapsed large wind turbine tower in Typhoon

Jangmi on September 28, 2008. This wind turbine was located on the shore of

Taichung Harbor. The total height of the turbine tower is 62.0 m, the tower was

fractured at 17.3 m height to the ground when the typhoon struck the wind turbine.

After the turbine tower failure, the blades impacted the ground and two of the three
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6.5: Flow-induced fractures in a 3D vertical axis turbine

Figure 6.21 Different fracture patterns of wind turbines damaged by the su-

per typhoon Usagi in 2013. (a) Tower collapse at the bottom. (b) Fractured

blades. (c) Intact wind turbine. (d) Two fractured blades in one turbine. (e)

The details at the collapsed tower location. This figure is from Ref. (Chen &

Xu, 2016).

blades were fractured at the bottom of the blade where is very close to the rotating

shaft. Chen & Xu (2016) have showed various fracture patterns in wind turbines in

the super typhoon Usagi in 2013 (see Fig. 6.21). Many of the turbines are reported

having collapsed tower and some of them have the fractured blades (see Fig. 6.21a, b

and d). The locations on the collapsed towers are mainly at the bottom of the towers

(see Fig. 6.21a). Some blades are broken near the shaft, while others are cracked

in the middle of the blades (see Fig. 6.21b and d). Comparing to the wind turbine,

the tidal turbine blades are suffering much more thrust and torsional loadings than

the wind turbines because the tidal turbines are facing high-density seawater flows

(Grogan et al., 2013). Hence tidal turbines are more likely to be damaged than

the wind turbine. Critical damage and economic loss have been caused by tidal

turbine blade fractures and failures (Liu & Veitch, 2012). Therefore it is necessary

to investigate flow-induced fractures in a 3D vertical axis turbine.

The settings of the test case flow-induced fractures in a 3D vertical axis turbine are
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Figure 6.22 The fluid velocity and adaptive mesh of the fracturing vertical

axis turbine at different times: (a) t=0.0 s, (b) t=0.1 s, (c) t=0.2 s and (d)

t=0.277 s.

the same as Fig. 6.4 except for the boundary condition for the inlet velocity Ui.

Unlike the constant inlet velocity in the test of flow past a 3D flexible vertical axis

turbine case in Section 6.4, the inlet velocity Ui is given as an accelerating velocity

as the following equation:

Ui = af t, (6.12)

where af is the acceleration with the constant value of 100.0 m/s2.

Fig. 6.22 shows the turbine structure, fluid velocity and adaptive meshes of the frac-

turing vertical axis turbine. The adaptive fluid meshes with minimum and maximum

edge length 0.002 m and 0.2 m are used in this simulation. The anisotropic mesh edge

length ratio is set as 10.0. At t = 0.0 s (Ui = 0.0 m/s) and t = 0.1 s (Ui = 10.0 m/s),

the meshes are relatively coarse compared to those at t = 0.2 s (Ui = 20.0 m/s)

and t = 0.277 s (Ui = 27.7 m/s), since the mesh is gradually refined to make the

simulation run fast at the beginning. This gradually refining mesh setting further

speeds up the simulations. Because there are no fractures in the start stage of the

simulation, this part can be completed with high speed by using relatively coarse

mesh. When the blade starts to fracture, the mesh is refined rapidly to capture the

details of the fracture process. In total, the simulation could be complete 4-6 times
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Figure 6.23 The solid velocity of the fracturing vertical axis turbine at different

times: (a) t=0.0 s, (b) t=0.1 s, (c) t=0.2 s and (d) t=0.277 s.

faster than those are not applied this generally refining mesh setting.

The solid velocities inside the turbine are shown in Fig. 6.23. Comparing with

the fluid velocity in Fig. 6.22, the solid velocities increase as the fluid velocities

accelerate. Since the fluid velocity accelerates constantly, the top of turbine moves

to the right-hand side and the turbine is bent accordingly. At t = 0.1 s (Ui =

10.0 m/s) and t = 0.2 s (Ui = 20.0 m/s), the maximum solid velocity of the turbine

is about 1.0 m/s and 2.75 m/s which is much lower than the fluid inlet fluid velocity

Ui = 10.0 m/s and Ui = 20.0 m/s (see Fig. 6.23a). However, at t = 0.277 s (Ui =

27.7 m/s), the maximum solid velocity found in the turbine is more than 30 m/s

which is higher than the inlet fluid velocity Ui = 27.7 m/s. This is because fractures

are initiated in the turbine that makes the turbine more unstable. It is worth noting

that the maximum solid velocity is normally found at the tips of the blades.

Figs. 6.24 gives out the solid stress component σ1 of the turbine. As the turbine

is bent, the maximum magnitude of solid stress at each time appears at the joints

between the blades and the tower. It is worth noting that at t = 0.2 s (Ui = 20.0 m/s)

and t = 0.277 s (Ui = 27.7 m/s), relatively larger stress is found at the bottom of the

tower as well. The stress hot spots are where the fractures appear (see Figs. 6.24d.
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Figure 6.24 The solid stress component σ1 of the fracturing vertical axis turbine

at different times: (a) t=0.0 s, (b) t=0.1 s, (c) t=0.2 s and (d) t=0.277 s.

Although there are no fractures at the bottom of the tower, the hot spots are found

at the right side of the tower bottom (see Figs. 6.24c and 6.24d). In some other

circumstances, e.g. unsteady turbulent flows, these locations with stress hot spots

are highly likely to fracture or collapse.

From Fig. 6.25, it can be found that fractures initiate and propagate at the joint

between the blade No. 2 and the tower at t = 0.277 s (Ui = 27.7 m/s) and then the

blade No. 2 flies away from the tower (see Fig. 6.25d). Importantly, this fracture

in blade No. 2 is caused by tensile failure.

The displacements of three points marked on Fig. 6.17b are given in Fig. 6.26.

From Fig. 6.26, it can be found that the displacements increase gradually before

t = 0.15 s (Ui = 15.0 m/s). After that, the turbine becomes unstable and the dis-

placements grow faster. This kind of the vibration mode is called as the unstable

vibration. At t = 0.277 s (Ui = 27.7 m/s), the displacement of blade No. 2 sharply

increases. This indicates the joint between blade No. 2 and the tower has already

fractured and the blade No. 2 separates from the tower at this time.

As the stress hot spots are found near the arm bottom (see Fig. 6.24, three points

near the stress hot spot areas are marked in Fig. 6.27. Fig. 6.28 draws the stress
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Figure 6.25 The solid cracks of the fracturing vertical axis turbine at different

times. (a) t=0.0 s, (b) t=0.1 s, (c) t=0.2 s and (d) t=0.277 s. The blue parts

are fractured and the yellow parts are intact. Here, the fracture bar value=-

1 means preexisting boundaries or fractures, the fracture bar value=2 means

shear failure, while the fracture bar value=2 means tensile failure.
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Figure 6.26 The displacements of three points marked in Fig. 6.17b.
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Figure 6.27 The stress measurement points on each blade.The three red points

on each blade are the points where the stress is plotted out in Fig. 6.28.
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Figure 6.28 The stress component σ1 of three points marked in Fig. 6.27. The

black solid line is the stress component σ1 on the joint between the tower and

the arm which links the tower and the Blade No. 1. The green dash line is

the stress component σ1 on the joint between the tower and the arm which

links the tower and the Blade No. 2. The blue dash line is the stress compo-

nent σ1 on the joint between the tower and the arm which links the tower and

the Blade No. 3.
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component σ1 of the stress hot spots near the three points marked in Fig. 6.27. The

black solid line is the stress component σ1 on the joint between the tower and the

arm which links the tower and the Blade No. 1. The green dash line is the stress

component σ1 on the joint between the tower and the arm which links the tower

and the Blade No. 2. The blue dash line is the stress component σ1 on the joint

between the tower and the arm which links the tower and the Blade No. 3. From

this figure, it can be found that the stress component σ1 near these three points

are increasing slowly before t = 0.15 s (Ui = 15.0 m/s). After this time, the stresses

increase sharply. Then at t = 0.277 s (Ui = 27.7 m/s), the stress in blade No. 2

sharply increases to a very high value and then sharply drops to near zero. This

means the blade No. 2 is fractured and blew away, then the bottom of the arm

becomes a free tip where there is tiny stress.

6.6 Concluding remarks

In this chapter, the 3D fidelity fluid-structure interaction turbulence model devel-

oped in chapter 2 is applied to vertical axis tidal turbines. The fluid dynamics of

turbulent flows, and the stress, vibration, deformation, fracture and motion in struc-

tures are computed in this model at the same time. The URANS k − ε FSI model

developed in this work is used here to capture the structural response of a rotating

vertical axis turbine in turbulent flows. Large aspect ratio anisotropic mesh adap-

tivity is used here to make the simulations run fast in 3D. Two benchmark cases

flow past a 2D and 3D rotating vertical axis tidal turbines are carried out to validate

the URANS FSI model for complex industrial applications. The simulation results

from all the benchmark test cases are in good agreement with experimental and

numerical data in the literature. This indicates the developed URANS FSI model

is capable for industrial applications. The flow past a 3D flexible vertical axis tur-

bine is simulated to model the flow-induced vibration in complex structures. This

demonstrates that the model is capable of analysing the elasticities for complex 3D

problems. Most importantly, the flow-induced fractures in a 3D vertical axis turbine

with the tower are presented to predict the worst scenarios: the blades are fractured

by typhoon or tsunami. Thus this 3D fidelity fluid-structure interaction turbulence

model is a fully two-way solid-fluid coupling model, which is suitable to simulate

complex moving, deforming, vibrating and fracturing structures in turbulent flows

for industrial applications.
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Chapter

SEVEN

Discussion and Conclusion &

Future Work

7.1 Discussion and Conclusion

In this thesis, I have developed a high fidelity fluid-structure model for incompress-

ible, compressible and turbulent flows based on an immersed-body method. I have

coupled a finite element multiphase fluid model with a combined finite-discrete el-

ement solid model. Three separate meshes are used in this model: fluid, solid and

a novel thin shell mesh surrounding solid surfaces. The thin shell mesh acts as a

numerical delta function in order to help apply the solid-fluid boundary conditions.

First of all, an unsteady Reynolds-averaged Navier-Stokes (URANS) k−ε turbulence

model is coupled with an immersed-body method to model fluid-structure interac-

tion (FSI) via a thin shell mesh. The interface boundary conditions for both the

turbulence model and the fluid momentum equation are applied to the thin shell

mesh. Secondly, in order to reduce the computational cost, a log-law wall func-

tion is used within the thin shell to resolve the flow near the solid surface. At the

same time, the solid-fluid coupling terms are treated implicitly to enable larger time

steps to be used. Thirdly, in order to improve the accuracy of the wall function,

a novel shell mesh external-surface intersection approach is introduced to identify
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sharp solid-fluid interfaces. Fourthly, unstructured anisotropic mesh adaptivity is

used to refine the mesh according to the interface and the velocity solutions. Last

but not least, the model has been extended to model highly compressible gas cou-

pled with fracturing solids. The John-Wilkins-Lee equation of state is introduced to

resolve the relationship between pressure and density of the highly compressible gas

in blasts and explosions. A Q-scheme is used to stabilise the model when solving

extremely high-pressure situations. A cohesive zone fracture model is used in the

solid model to simulate fracture propagation.

The present FSI model for incompressible flow has been validated using a free falling

circular cylinder and a free falling sphere in a fluid at rest with Reynolds number

up to about 1800. The benchmark case, a collapsing column of water moving an

initially stationary solid square, has been used to help validate this immersed-body

method. The simulation results are in good agreement with the experimental data.

Importantly, the mesh sensitivity analysis in this work indicates that the simula-

tion results are converged when then fluid and shell mesh sizes are decreased. As

described in Chapter 3, this immersed-body method can be applied to multiphase

viscous flows, for example, the water-air flows and FSI of ships, floating wind-turbine

platforms, and oil platforms. The immersed-body method is a promising approach

for modelling multiphase viscous flows coupled with dynamic solids, especially for

phenomena with multiple-interfaces e.g solid-water, solid-air, water-air, which is

useful for ocean dynamics.

Moreover, I have extended the FSI model in this work to a gas-solid interaction

model for simulating blast-induced fractures. This coupling model combines an

immersed-body method and a cohesive zone fracture model. The whole complex

blasting process including both fragmentation and burden movement phases is sim-

ulated in this complete coupling model. A new mesh conversion algorithm to convert

discontinuous meshes to continuous meshes has been implemented and demonstrated

in section 4.4.2. The detonation gas in the model is resolved by the JWL-EOS as a

highly compressible fluid, which is close to the realistic behaviour of the detonation

gas in common mining explosions. Importantly, it is easy to extend the equation of

state in this model to more practical equation of states. Additionally, this model in

combination with the Q-scheme is stable when dealing with extremely high pressure

and velocity situations. Two benchmark cases, the blasting cylinder and projectile

fire, are used to validate this gas-solid interaction model. The numerical simulation

results of these two test cases are in good agreement with the available experi-

200



7.1: Discussion and Conclusion

mental data. A practical complicated blasting engineering simulation with shock

waves, fracture propagation, gas-solid interaction and flying fragments is used to

demonstrate the ability of the gas-solid interaction model.

Importantly, detailed validation of the FSI model for turbulent flows is presented.

The immersed-body URANS turbulence model is validated by several test cases,

and the results show good agreements with both experimental data and previous

numerical results in the literature. The first two test cases are the flow over a

circular cylinder at Re = 3900 and turbulent flow past a static NACA0015 aerofoil

with an attack angle of α = 60◦ at Re = 5200. The comparison between the

experimental and numerical results shows that the model has the accuracy and

reliability to resolve turbulent flows coupled with fixed solids. The third and fourth

test cases are a free rising circular cylinder in a fluid at rest with Re = 5000 and

Re = 3800 and a free rising sphere in a fluid at rest with Re = 6000 and 10000.

These two benchmark test cases indicate that the immersed-body URANS model has

the ability to simulate moving bodies coupled with turbulent flows. The structural

elastic response in the flow is also validated by the flow bending a 3D plate test case.

All the simulation results obtained from the present FSI model are in good agreement

with the experimental data and previous numerical results in the literature.

Finally, I have applied the developed FSI model to tidal turbines for the analysis of

fluid dynamics and structure elastic and fracturing response. The hydrodynamics

in fluids, and the stress, vibration, deformation, fracture and motion in structures

are computed in this model at the same time. The developed URANS k − ε FSI

model is used here to capture the structural response of a full-scale rotating vertical

axis turbine in turbulent flows. Large aspect ratio anisotropic mesh adaptivity is

used here to make the simulations run fast in 3D. The test cases - flow across a

2D & 3D operating vertical axis tidal turbine are presented. The simulation results

from all these test cases are in good agreement with experimental and numerical

data in the literature. The vortex-induced vibration of a full-scale 3D vertical axis

turbine with the tower is presented in this work. This demonstrates the model

ability in analysing the elasticities for complex 3D problems. Most importantly, the

flow-induced fractures in a 3D vertical axis turbine with the tower are simulated to

predict the worst scenarios: the vertical axis turbine being fractured by typhoon or

tsunami.
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7.2 Future Work

The new developed FSI model has been validated by many test cases. Its applica-

tions have included moving structures in multiphase flows, fracturing solid coupled

with the compressible flow in blasting, and the operating tidal turbine in turbulent

flows. However, there are some further developments and possible applications.

7.2.1 Further validation

The highest Reynolds number simulated by the FSI model in this work is Re =

147200, which is not high enough. The range of scales by Reynolds number can

be as large as 106 − 108 in many industrial applications, for example, a flow over

airfoil at high Reynolds number (Johnson et al., 2014). More advanced turbulent

models, for instance, LES and VLES (Bull, 2013) can be implemented to simulate

the turbulent flows. When dealing with different turbulent models, it must ensure

that the wall distance from the fluid mesh nodes to the moving structure surfaces is

calculated accurately and efficiently. These distances should be updated frequently

especially for loosely coupling methods. With the increasing of Reynolds number,

the computational cost would increase. In the future, further validation with much

high Reynolds number will be undertaken.

7.2.2 Numerical model improvement

In this FSI model, while the fluid solver “Fluidity-Multiphase” is parallelised with

Message Passing Interface (MPI) and the solid solver “FEMDEM” is parallelised

with Open Multi-Processing (OpenMP). However, the coupling process is not par-

allelised. In order to parallelise the whole coupling system, a new parallel structure

needs to be developed by considering the characters of the coupling process. First

of all, the solid solver “Fluidity-Multiphase” should be parallelised with MPI as it

is only parallelised with OpenMP. Secondly, a good dynamic domain decomposition

strategy with dynamic loading balance should be taken into consideration because

“FEMDEM” combines Lagrangian DEM and Eulerian FEM methods and in some

applications, the CPU load can be highly unbalanced. To obtain good scalabil-

ity, hybrid MPI/OpenMP should be considered to be implemented. In the future,

parallelisation of the coupling code would be important.
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7.2.3 Moving mesh

Moving mesh method (Bazilevs et al., 2015) would a good choice for the present

FSI model when dealing with fast-moving solids in turbulent flows. In the present

model, the adaptive mesh is used to capture sharp fluid-structure interfaces for

moving solids in fluids. However, the adaptive mesh could limit the fluid time step

when the solids are moving with high velocities in fluids. This results in costing more

CPU time. To make the FSI model run fast, the moving mesh method (Bazilevs

et al., 2015) would be taken into consideration. By using a very fine moving mesh

surrounding structure surfaces, large CFL numbers can be used. In the present FSI

model, the one layer thin shell mesh can be extended to certain layers and play the

role of the moving mesh. When the multi-layer shell mesh is defined as the moving

fluid mesh, the fluid governing equations should be solved on the multi-layer shell

mesh and the results obtained on the multi-layer shell mesh should be projected on

the fluid mesh at every fluid time step.

7.2.4 Possible applications

One of the potential applications of the developed FSI model is landslides into a

lake (Yin et al., 2015). In this kind of applications, the water wave height and prop-

agation, rockslides and fracturing can be simulated by using this FSI model. This

model can be used to predict the landslide disaster and give out some suggestions

about prevention. In order to simulate the real-world landslides into a lake, the field

investigation data should be used here to build the initial geometry. If necessary, in

some stages of the simulation, the data assimilation technique may be used to make

the FSI model more accurate and reliable.

Another possible extension of the FSI model is in cardiac mechanics (Borazjani,

2013). Since the 3D elastic body coupled with the turbulent model has been mod-

elled by using the FSI model, it would be possible to model blood flows through

elastic heart valves via this model. However, the blood is a non-Newton fluid that

can not be directly modelled by the present fluid model in this thesis. Some modifi-

cations should be made in the fluid model to make it adapt to non-Newton fluid, for

instance, some empirical phase change equations can be used to model the rheology

of the blood.
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in rock blasting. International Journal of Rock Mechanics and Mining Sciences,

44(1), 130–147.

Sanchidrian, Jose A, Castedo, Ricardo, Lopez, Lina M, Segarra, Pablo, & Santos,

Anastasio P. 2015. Determination of the JWL Constants for ANFO and Emul-

sion Explosives from Cylinder Test Data. Central European Journal of Energetic

Materials, 12(2), 177–194.

Sazid, M, & Singh, TN. 2013. Two-dimensional dynamic finite element simulation

of rock blasting. Arabian Journal of Geosciences, 6(10), 3703–3708.

Sengupta, TK, Lim, TT, Sajjan, Sharanappa V, Ganesh, S, & Soria, Julio. 2007. Ac-

celerated flow past a symmetric aerofoil: experiments and computations. Journal

of Fluid Mechanics, 591, 255–288.

Singh, SP, & Mittal, S. 2005. Flow past a cylinder: shear layer instability and drag

crisis. International Journal for Numerical Methods in Fluids, 47(1), 75–98.

Smith, M, Wilkin, P, & Williams, M. 1996. The advantages of an unsteady panel

method in modelling the aerodynamic forces on rigid flapping wings. Journal of

Experimental Biology, 199(5), 1073–1083.

Son, Jaime S, & Hanratty, Thomas J. 1969. Velocity gradients at the wall for flow

around a cylinder at Reynolds numbers from 5 × 103 to 105. Journal of Fluid

Mechanics, 35(02), 353–368.

221



Bibliography

Sotiropoulos, Fotis, & Yang, Xiaolei. 2014. Immersed boundary methods for simu-

lating fluid–structure interaction. Progress in Aerospace Sciences, 65, 1–21.

Strickland, James H, Webster, BT, & Nguyen, T. 1979. A vortex model of the

Darrieus turbine: an analytical and experimental study. Journal of Fluids Engi-

neering, 101(4), 500–505.

Stringham, GE, Simons, Daryl B, & Guy, Harold P. 1969. The behavior of large

particles falling in quiescent liquids. US Government Printing Office.

Su, Kai, Latham, J-P, Pavlidis, Dimitrios, Xiang, Jiansheng, Fang, Fangxin,

Mostaghimi, Peyman, Percival, James R, Pain, Christopher C, & Jackson,

Matthew D. 2015. Multiphase flow simulation through porous media with ex-

plicitly resolved fractures. Geofluids, 15(4), 592–607.

Tan, Zhijun, Le, Duc-Vinh, Li, Zhilin, Lim, KM, & Khoo, Boo Cheong. 2008. An

immersed interface method for solving incompressible viscous flows with piecewise

constant viscosity across a moving elastic membrane. Journal of Computational

Physics, 227(23), 9955–9983.

Tessicini, F, Iaccarino, G, Fatica, M, Wang, M, & Verzicco, R. 2002. Wall modeling

for large-eddy simulation using an immersed boundary method. Annual Research

Briefs, Stanford University Center for Turbulence Research, Stanford, CA, 181–

187.

Tezduyar, Tayfun E, Behr, Mittal, Mittal, S, & Liou, J. 1992a. A new strategy

for finite element computations involving moving boundaries and interfacesthe

deforming-spatial-domain/space-time procedure: II. Computation of free-surface

flows, two-liquid flows, and flows with drifting cylinders. Computer methods in

applied mechanics and engineering, 94(3), 353–371.

Tezduyar, TE, Behr, M, & Liou, J. 1992b. A new strategy for finite element com-

putations involving moving boundaries and interfaces–the DSD/ST procedure: I.

The concept and the preliminary numerical tests. Computer Methods in Applied

Mechanics and Engineering, 94(3), 339–351.

Tian, Fang-Bao, Dai, Hu, Luo, Haoxiang, Doyle, James F, & Rousseau, Bernard.

2014. Fluid–structure interaction involving large deformations: 3D simulations

and applications to biological systems. Journal of computational physics, 258,

451–469.

222



Bibliography

Tseng, Yu-Heng, & Ferziger, Joel H. 2003. A ghost-cell immersed boundary method

for flow in complex geometry. Journal of Computational Physics, 192(2), 593–623.

Tu, Cheng, & Peskin, Charles S. 1992. Stability and instability in the computation

of flows with moving immersed boundaries: a comparison of three methods. SIAM

Journal on Scientific and Statistical Computing, 13(6), 1361–1376.

Tyagi, Mayank, & Acharya, Sumanta. 2005. Large eddy simulation of turbulent flows

in complex and moving rigid geometries using the immersed boundary method.

International Journal for Numerical Methods in Fluids, 48(7), 691–722.

Tyagi, Mayank, Roy, Somnath, Harvey Iii, Albert D, & Acharya, Sumanta. 2007.

Simulation of laminar and turbulent impeller stirred tanks using immersed bound-

ary method and large eddy simulation technique in multi-block curvilinear geome-

tries. Chemical Engineering Science, 62(5), 1351–1363.

Uhlmann, Markus. 2005. An immersed boundary method with direct forcing for

the simulation of particulate flows. Journal of Computational Physics, 209(2),

448–476.

Van Loon, R, Anderson, PD, Van de Vosse, FN, & Sherwin, SJ. 2007. Comparison

of various fluid–structure interaction methods for deformable bodies. Computers

& Structures, 85(11), 833–843.

Van Loon, Raoul, Anderson, Patrick D, & van de Vosse, Frans N. 2006. A fluid–

structure interaction method with solid-rigid contact for heart valve dynamics.

Journal of Computational Physics, 217(2), 806–823.

Versino, Daniele, Mourad, Hashem M, Williams, Todd O, & Addessio, Francis L.

2015. A global–local discontinuous Galerkin finite element for finite-deformation

analysis of multilayered shells. Computer Methods in Applied Mechanics and

Engineering, 283, 1401–1424.

Version, ABAQUS. 2013. 6.12 Documentation Collection. ABAQUS/CAE User’s

Manual.

Versteeg, Henk Kaarle, & Malalasekera, Weeratunge. 2007. An introduction to com-

putational fluid dynamics: the finite volume method. Pearson Education.
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