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ABSTRACT 

Aggregated α-synuclein has emerged as the core constituent of the typical neuronal 

inclusions found in Parkinson’s disease and Lewy body dementia. Therefore, huge efforts 

have been made to unveil the mechanisms underlying α-syn toxicity. Accumulating evidence 

suggests extracellular α-synuclein oligomers (α-synOs) as potential culprits involved in the 

neurodegenerative process. To elucidate the pathways mediating α-synO non-cell-

autonomous actions, several mechanisms including uncontrolled neuroinflammatory 

responses and protein-protein interactions have been put forward.  

Through an acute model based on the intracerebroventricular (ICV) injection of α-synuclein 

monomers, oligomers or fibrils in C57BL/6N mice we demonstrate that only α-synOs impair 

memory establishment in association with glial activation. Furthermore, our findings 

identify neuroinflammation as a driving force of α-synO detrimental action on memory, and 

the involvement of the Toll-like receptor 2. Based on recent data depicting the cellular prion 

protein (PrPC) as an α-synO interactor, we have further investigated its role in fostering α-

synO harmful activities. We found that PrPC does not mediate α-synO toxicity in vitro or α-

synO-induced memory deficiency in vivo. In fact, PrPC knock-out mice ICV injected with 

α-synOs display both memory impairment and gliosis. Consistently, our in vitro biochemical 

studies do not reveal any direct PrPC-α-synO binding. 

To evaluate the influence of neuroinflammation on PD pathogenesis, we have developed a 

“double-hit” approach. Using an acute mouse model based on the peripheral administration 

of lipopolysaccharide (LPS) and subsequent ICV injection of α-synOs at an inactive dose, 

we demonstrate that the LPS induces a long-lasting neuroinflammatory response enhancing 

α-synO actions. Moreover, we show that the LPS peripheral administration worsens 

cognitive deficits even in an A53T PD mouse model. Altogether, by identifying 

neuroinflammation as an α-synO-mediator and as a factor influencing the 
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initiation/progressions of PD, we highlight it as a valuable research topic to identify potential 

targets for developing new therapeutic strategies. 
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1.1 A brief overview on the long history of Parkinson’s disease 

The first partial clinical descriptions of Parkinson's disease (PD) can be found in ancient 

Indian and Chinese populations, which have described both PD motor symptoms and 

therapeutic recommendations since 5000 B.C (Zhang et al., 2006a; Goetz, 2011; Goedert et 

al., 2017). 

Nevertheless, the complete clinical report of PD cardinal motor symptoms was provided in 

1817 by the London physician James Parkinson. In his monograph “Essay on the Shacking 

Palsy” he punctually described a series of six patients characterised by movement disorders 

which came to bear his name: “involuntary tremulous motion, with lessened muscular 

power, in parts not in action and even when supported; with a propensity to bend the trunk 

forward, and to pass from a walking to a running pace: the senses and intellect being 

uninjured” (Goedert et al., 2017; Fahn, 2018) 

A thorough description of PD was provided 50 years later by Jean-Martin Charcot (1872). 

He identified bradykinesia as a cardinal feature of the pathology and distinguished two 

prototypes of the disease: the tremulous and the rigid/akinetic type. Moreover, Charcot 

rejected the first designation of the disease (paralysis agitations or shacking palsy), and 

suggested the term already being used (PD). In fact, he observed that PD patients were not 

weak and did not necessarily display tremor (Charcot, 1875). The most important Charcot’s 

contribution to the study of PD is the definition of the different types of the disorder. For 

instance, he identified an atypical form of PD without tremor and with a stiff and extended 

posture (Figure 1). 

 

 
Figure 1. Charcot’s drawing of typical 

and atypical PD. Typical PD showing a 

flexed posture (left) and atypical (right) 

PD with absence of tremor and extended 

posture (modified from Goetz, 2011). 
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At the beginning of the XX century, Brissaud identified the Substantia nigra (SN) as the 

crucial brain region affected in PD. Soon after, Friedrich Lewy reported the typical 

intracellular inclusions in several brain regions (1912), that were named ‘Lewy bodies (LB) 

by Tretiakoff in 1919 (Goedert et al., 2017) 

Forty years later the studies by Carlsson and co-workers indicated the deficiency of the 

neurotransmitter dopamine as responsible of the motor symptoms in PD (Carlsson et al., 

1958; Carlsson et al., 2001). This possibility was subsequently confirmed by the evidence 

of dopamine being reduced in PD patients (Ehringer and Hornykiewicz, 1960), and by 

observations that SN, a brain region enriched in dopaminergic neurons (Dahlstrom and Fuxe, 

1964), was particularly damaged in PD patients.  

From the description of Parkinson and Charcot, motor symptoms clearly emerge as cardinal 

PD features. Although the relevance of motor symptoms in PD is widely accepted, nowadays 

non-motor symptoms acquire a significant relevance in terms of factors that largely impact 

life quality. Among non-motor symptoms, cognitive deficits have gained more and more 

attention as they have become a well-accepted parameter for differentiating between 

dementia associated to PD (PDD) and Dementia with Lewy Bodies (DLB) (McKeith et al., 

2004; Galasko, 2017). PD, PDD and DLB all share common neuropathological features 

including LBs, which at present has a history longer than one century. 

 

1.2 Neuropathological features 

Loss of dopaminergic neurons in Substantia Nigra pars compacta (SNpc) and intraneuronal 

proteinaceous inclusions are defining hallmarks of the progressive neurodegenerative 

disorder PD. 

The depletion of dopaminergic neurons in SNpc (Figure 2) accounts for changes in the 

nigrostriatal pathway which result in the typical PD motor symptoms (Lang and Lozano, 

1998; Sveinbjornsdottir, 2016). Dopaminergic neurons in SNpc are particularly affected in 



Introduction: Chapter 1 
 

4 
 

PD, however other specific neurons (glutamatergic, GABA-ergic, cholinergic, 

noradrenergic and adrenergic) in selective brain regions can be progressively damaged. For 

instance, extranigral abnormalities have been observed within the entorhinal cortex, in the 

CA2 region of the hippocampus, in the amygdala, in the hypothalamus, in the nucleus 

basalis of Meynert and locus caeruleus (Lang and Lozano, 1998; Braak and Braak, 2000). 

 
 

 

 

 

 

 

 

Figure 2. Depletion of dopaminergic neurons in SN from a PD patient compared to healthy 

control. Macroscopic (inset) and coronal section of the midbrain upon immuno-staining for the 

limiting enzyme Tyrosine hydroxylase (Th) involved in dopamine synthesis. PD patients (right) are 

characterised by a significant loss of Th+ neurons compared to healthy controls (left). Modified from 

Poewe et al., 2017. 

The intracellular inclusions typically observed in post-mortem PD brains can be classified 

into Lewy bodies (LBs) or Lewy neurites (LNs) based on their localisation in the somata or 

neuronal processes respectively. Two distinct LBs can be identified. The brainstem-type 

(classical) LBs are easily seen upon haematoxylin and eosin staining. They appear as single 

or multiple spherical inclusions with a diameter between 5 to 25 µm and a central dense 

eosinophilic core surrounded by a peripheral pale halo (Figure 3A). Cortical-type LBs 

(Figure 3B) are eosinophilic like brainstem type LBs, but they have an irregular shape and 

they lack a dense central core and halo (Lang and Lozano, 1998; Wakabayashi et al., 2013). 
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Aside of classical and cortical LBs, a third intracellular inclusion type can be observable in 

the pigmented neurons of SNpc, the “pale bodies” (Figure 3C). Pale bodies are less 

eosinophilic with a glassy area and without halo. Pale bodies frequently occur with LBs in 

the same neurons (Figure 3C) and it has been proposed that pale bodies are linked to LBs 

formation (Wakabayashi et al., 2013). LBs have been detected for a long time by anti-

ubiquitin antibodies. In fact, both brainstem type and cortical LBs can be strongly 

immunostained with ubiquitin (Kuzuhara et al., 1988), 

Figure 3. Haematoxylin and eosin staining of LBs. (A) Classical LBs in the SN. (B) Cortical LBs 

indicated by arrowheads in the temporal cortex. (C) Pale body (asterisk) and classical LBs 

(arrowheads) within SN neurons. Scale bar 10μm. Modified from Wakabayashi et al., 2013. 

More than 90 elements have been identified in both LBs and LNs (Wakabayashi et al., 2013), 

among which alpha-synuclein (a-syn) emerges as a central component and building block 

(Figure 4) (Spillantini et al., 1997; Spillantini et al., 1998: Baba et al., 1998). 

 

 

 

 

 

 

 

Figure 4. α-syn is the main constituent of LBs and LNs. α-syn immunostaining of a post-mortem 

PD brain reveals the presence of α-syn in both LBs and LNs (Modified from Poewe et al., 2017). 
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1.2.1 The nigrostriatal pathway 

The idea of lesions in the SN as anatomical substrate of PD is due to Edouard Brissaud in 

1894, who knew well the previous study of Charcot as well as the work of Blocq and 

Marinesco (Spillantini and Goedert, 2018). The microscopic and macroscopic SNpc 

alterations reported by Trétiakoff, the reduction in dopamine levels in the striatum and in the 

SNpc (Przedbosrki, 2017), along with the efficacy of L-DOPA in alleviating motor deficits 

in PD patients, points towards an involvement of the nigrostriatal pathway in PD (Fahn, 

2015). This hypothesis had been built over the 20th century, when researchers established 

the link between dysfunctions in the basal ganglia-thalamo-cortical circuit and the motor 

defects typical of PD. In these studies, discrete lesions of the basal ganglia and chemical 

destruction of the nucleus subthalamicus (STN) led to abrogation of parkinsonisms and 

allowed the dissection of the functional neuroanatomy of the basal ganglia (Meyers, 1942: 

Bergman et al., 1990). Basal ganglia refers to those grey matter structures at the base of the 

cerebral hemisphere, encompassing a network of connected subcortical nuclei such as the 

striatum (nucleus caudatus and putamen), the SNpc and the Substantia Nigra pars reticulata 

(SNpr), the STN, and the Globus Pallidus pars externa (GPe) and pars interna (GPi).  The 

motor circuit of the basal ganglia is involved in the regulation of movements through the 

synergy of the nigrostriatal, and the “direct” and “indirect” motor loop pathways (Figure 5 

A). The motor cortex projects excitatory input to the striatum reflecting cortical somatotopic 

organisation (Takada, 1998). The striatum in turn, is modulated through dopamine release 

by the SNpc. The nigrostriatal pathway acts on two types of dopamine receptors, that define 

the overall final output from the basal ganglia to the motor nuclei. While the excitatory D1 

receptors are involved in the “direct” pathway which facilitates voluntary movements, the 

inhibitory effect of D2 receptors in the “indirect” pathway prevents unwanted movements. 

In the “direct” pathway, the excitatory effect of dopamine on D1 (Figure 5A) triggers the 

release of GABA that inhibits the GABAergic neurons of the GPi/SNpr (Figure 5A), 
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decreasing the final inhibition on the motor nuclei. This way the direct pathway generates a 

net excitatory effect that promotes movement initiation. On the other hand, in the “indirect” 

pathway dopamine dampens striatal GABAergic activity through D2 receptors. Because the 

“direct” pathway only involves a single synapse is commonly referred to as monosynaptic, 

whereas the “indirect” one includes polysynaptic projections that cross the GPe and the STN 

before reaching the output nuclei (GPi/SNpr) (Figure 5 A). The GPe, via GABAergic 

stimuli, acts as a negative regulator of the “direct” pathway by modulating the glutamatergic 

activity of the STN (red arrows), that ultimately reaches the output nuclei. Activated 

GPi/SNpr leads then to a net inhibition of movement (Galvan et al., 2015). 

In PD patients, the dopaminergic nigrostriatal pathway progressively degenerates (Figure 

5B), resulting in the decrease of dopamine levels. As a consequence, the activation of the 

“direct” and the inhibition of the “indirect” pathways are drastically reduced, leading to an 

overall strong inhibition of the motor activity (Przedbosrki, 2017). 

 

Figure 5. Schematic representation of the “direct” and “indirect” pathways of the basal ganglia 

motor circuits on healthy control (A) and PD patients (B). Green arrows represent excitatory 

pathways whereas red arrows are inhibitory. Modified from Maii et al., 2017. 
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1.3 Clinical features 

PD is a debilitating disease with a progressive worsening of symptoms that primary affect 

voluntary movements. Although motor symptoms are cardinal features of PD, a variety of 

non-motor symptoms have been described. Non-motor symptoms contribute to decrease the 

life quality and they can appear before the onset of motor-symptoms or during the 

progression of the disease (Sveinbjornsdottir, 2016). The dopaminergic neuronal loss in 

SNpc has been estimated to be 60 to 80% at the onset of motor symptoms (Fearnley et al., 

1991; Chung et al., 2001). At first, those symptoms appear asymmetrically, affecting the 

other side of the body within a few years. Postural changes, tremor, muscular rigidity, 

bradykinesia, and gait instability are defined as cardinal PD motor features. Postural 

deformities including flexion of the thoracic or lumbar spine, and forward flexion of the 

head and neck cause the body posture to become stooped (Sveinbjornsdottir, 2016). Resting 

tremor is one of the most obvious features of the disease, being one of the first and more 

distressing symptoms reported by patients. In most cases, a resting pill-rolling type tremor 

of the hands is present, whereas legs are involved only occasionally. Furthermore, about 

60% of patients experience tremor during voluntary movements (Heusinkveld et al., 2018). 

Bradykinesia describes slowness in carrying out rather than initiating movements, and it 

accounts for expressionless face (hypomimia) and smaller handwriting (micrographia). 

Conversely, gait disturbances include shuffling, blocking, freezing of movements, and 

festination, where steps become progressively smaller and rapid leading to loss of balance 

and falls (Virmani et al., 2015). Less common in PD is dystonia, a non-voluntary contraction 

of antagonist muscles leading to spasms with different degree of pain. Contractions can be 

associated with abnormal movements and posture. Dystonia is more often a consequence of 

PD treatment, although it rarely occurs in early onset PD patients (Tolosa and Compta, 

2006).   
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1.3.1 Non-motor symptoms of Parkinson’s disease 

As mentioned above, a variety of non-motor symptoms may appear in PD patients before 

the onset of motor symptoms and before the diagnosis. Particularly, it has been reported that 

non-motor symptoms may affect patients up to 10 years before the diagnosis of PD. These 

data allow the determination of a target temporal window, defined as pre-motor or prodromal 

phase, for preventive and disease-modifying treatments aimed at slowing or blocking the 

pathology progression (Schrag et al., 2015; Kalia and Lang, 2015). 

Like motor symptoms, non-motor ones get worse over the course of the pathology and they 

are described by patients as more troublesome than classical PD motor features 

(Sveinbjornsdottir, 2016). 

A large amount of various non-motor clinical features has been reported in PD patients 

including sensory dysfunctions, neuropsychiatric features, sleep disorders and autonomic 

dysfunctions (Kalia and Lang, 2015; Schapira et al., 2017). Sensory symptoms are virtually 

experienced by all PD patients as a part of their prodromal phase (Schapira et al., 2017). 

Among these, olfactory deficit has a higher prevalence being observed in 90% of subjects 

and it is generally considered as useful early pre-motor PD marker (Poewe, 2008; Schapira 

et al., 2017). Visual disturbances, and particularly visual hallucination, initially considered 

as an adverse effects of drug treatment in advanced PD, are now depicted as typical 

prodromal PD features and are reported in untreated patients. Of note, visual hallucination 

can be included among neuropsychiatric features of PD and is considered as a predictor of 

cognitive decline in the later stage (Jankovic, 2008; Schapira et al., 2017). 

Neuropsychiatric manifestations (e.g. anxiety, depression. sleep disorders...) occur both in 

the pre-motor and in the late phase of PD (Poewe, 2008). Anxiety is experienced by 60% of 

patients and comprises generalised anxiety, panic attacks and social phobias. Although 

anxiety is generally accompanied by depression, the latter may also occur alone. PD-related 
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depression is milder than depression occurring in non-PD affected subjects and it frequently 

involves apathy and anhedonia (Schapira et al., 2017).  

An increasing interest in non-motor PD features has been recently growing for sleep 

disorders. Sleep and wakefulness disturbances affect most PD patients and their prevalence 

increase with the disease duration and progression. Of note, rapid eye movement sleep 

behaviour disorder (RBD) is a parasomnia characterised by aberrant and abnormal 

behaviours (talking, sitting up to bed, gesturing...) which take place during rapid eye 

movement sleep. The interest in RBD comes from the evidence that it can appear even 12-

14 years earlier than motor manifestations. In addition, RBD is predictive of cognitive 

deficits.  In fact, patients with RBD show an increased risk of dementia (Kalia and Lang; 

2015; Schapira et al., 2017).                                                                                                                                   

Beside the various non-motor disturbances here reported, compelling data indicate that PD 

patients also experience dysfunctions affecting the autonomic system, which precede the 

onset of motor symptoms but become more frequent as the disease progresses (Poewe, 200S; 

Shapira et al., 2017). Autonomic dysfunctions include bladder disturbances, gastrointestinal 

dysfunctions (excessive salivation, dysphagia, impaired gastric emptying, constipation and 

bacterial overgrowth). 

Of note, non-motor PD-related symptoms are now recognised as component of PD that is 

not solely a CNS disorder but, more likely, a multisystem pathology (Lee and Koh, 2015)                                                                                                                            

 

1.3.1.1 Cognitive impairment in Parkinson’s disease 

Cognitive decline is one of the most common PD-related non-motor symptoms and it 

contributes in a significant manner to morbidity and mortality (Aarsland et al., 2017; 

Hanagasi et al., 2017). In addition, cognitive impairment has acquired an increasing clinical 

interest because of its heterogenous manifestation, and the risk of evolving in dementia in a 

large number of PD patients (Biundo et al., 2016). Cognitive deficiencies in PD affects a 
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variety of domains and it generally worsens with disease progression leading to a clinical 

status known as PDD. Dementia stands for a sufficient level of cognitive impairment that 

results in a significant reduction in the ability to perform normal daily activities. As dementia 

in PD accounts for high public health cost and is a frequent cause of patient 

institutionalisation, it is an urgent issue to cope with (Emre, 2003; Biundo et al., 2016; 

Hanagasi et al., 2017; Aarsland et al., 2017). 

As mentioned above, the clinical manifestation of cognitive deficits in PD are numerous and 

involves several domains. Executive functions such as the ability to plan activities, the 

organisation and the regulation of specific behaviour aimed at a specific goal are generally 

impaired (Emre et al., 2003). In addition, PD patients are defective in their working memory, 

in memory recall and in verbal fluency. Furthermore, patients experience attention problems 

with vigilance reduction and fluctuating levels of alertness (Biundo et al., 2016). Another 

affected domain includes the visuospatial and the perceptive ability. In fact, PD patients 

report difficulties in the perception of the extra personal space and in the recognition of 

objects from their shape (Biundo et al., 2016; Aarsland et al., 2017). 

Based on the heterogeneity of cognitive deficits it is possible to distinguish two independent 

and partially overlapping syndromes: I) an early stage syndrome characterised by fronto-

striatal dysfunction which is accompanied by working memory deficits, as well as attention 

and planning problems; II) a late stage syndrome involving a more posterior cortical 

degeneration with loss of cholinergic neurons that may evolve in PDD (Biundo et al., 2016; 

Hanagasi et al., 2017). 

  

1.3.2 Dementia with Lewy bodies 

Beside PDD, a second dementia subtype among α-synucleinopathies is the DLB. Initially 

described as rare, DLB is now depicted as the second most common type of degenerative 

dementia in elderly after Alzheimer’s disease (AD) (McKeith et al., 2004; McKeith et al., 
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2017). The core feature of DLB is the occurrence of dementia that, as previously described, 

stands for a progressive deterioration of cognitive functions with a magnitude sufficient to 

interfere with normal social and occupational functions, as well as with usual daily activities 

(McKeith et al., 2017). 

The recognition and the final diagnosis of DLB can be only done through post-mortem 

assessment of the LB and LN distribution in demented subjects, and the retrospective 

analysis of their clinical history (Outeiro et al., 2019).  

In addition to dementia, a wide spectrum of symptoms occurs in DLB. Fluctuating levels of 

cognitive impairments with spontaneous alterations in cognition and attention are usual. 

They may vary over minutes, hours or days and include waxing and waning episodes of 

inconsistent behaviour, speech and altered consciousness (McKeith et al., 2004: McKeith et 

al., 2017). Psychiatric manifestations are common and, although they occur in early stage, 

are persistent during the progression of the pathology (McKeith et al., 2017, Outeiro et al., 

2019). DLB patients experience delusions, apathy anxiety and recurrent visual hallucination 

which are complex and described in 80% of subjects. Visual hallucinations are well-formed, 

featuring animate figures (people, children and animals) and generally accompanied by 

sense of presence and visual illusions (McKeith et al., 2004; Outeiro et al., 2019). Of note, 

although DLB and AD share common clinical manifestations that may overlap and make the 

correct clinical diagnosis difficult, the occurrence of visual hallucination is more common 

in the former and should be taken into account for a DLB rather than an AD diagnosis 

(Outeiro et al., 2019). A further core feature of DLB is the RBD which is characterised by 

recurrent dream behaviour that includes movements mimicking dream content and is 

associated with loss of the normal REM sleep atonia (McKeith et al., 2004). Additionally, 

DLB patients may present parkinsonism, autonomic failures (e.g. orthostatic hypotension, 

urinary incontinence ...) and hypersomnia (McKeith et al., 2017; Outeiro et al., 2019). 
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1.3.3 Dementia in Parkinson's disease and Dementia with Lewy bodies 

As mentioned above, dementia and LB pathology are features shared by two pathologies, 

PDD and DLB, which are commonly defined with the “umbrella” term Lewy body dementia 

(LBD) (Sanford, 2018). 

Since PDD and DLB share common symptoms, and in later stages they are indistinguishable, 

an arbitrary “1-year rule” based on the relationship between cognitive decline and motor 

symptoms has been introduced. While onset of cognitive decline within 12 months of motor 

symptoms defines DLB, more than 12 months of motor symptoms before cognitive decline 

identify PDD. In other words, in DLB the cognitive decline precedes or accompanies the 

first motor symptoms. Conversely, in PDD motor symptoms precede the cognitive decline 

by at least one year (McKeith et al., 2004; Galasko, 2017). 

As previously described, cognitive impairment in both PDD and DLB consists in deficits 

involving the attention, the visuospatial functions and the executive functions. Patients fail 

in the evaluation of distance, they show impairment in judgment and become unable to 

organise and plan activities. On the other hand, in PDD and DLB cognitive deficits are 

similar across multiple domains. Damages in working memory, long-term memory, 

visuospatial memory and procedural learning are reported in both PDD and DLB (Emre, 

2003; Jellinger 2018). Moreover, memory impairment generally worsens with progression 

in both pathologies (Galasko, 2017; Jellinger, 2018). 

PDD and DLB patients experience complex hallucinations that involve the visual system, 

and that they can remember in detail. Fluctuation in attention or alertness is also a common 

feature, but it is more frequently reported in DLB than PDD patients (Galasko, 2017; 

Jellinger et al., 2018). 

Loss of smell and constipation can be found in both DLB and PDD, and they may precede 

the onset of cognitive and motor symptoms. 
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For a comprehensive view of overlapping and discriminating clinical features between DLB 

and PDD refer to Table 1, where motor and cognitive aspects of the pathologies are 

described. 

The overlap between DLB and PDD includes more than LB pathology and symptoms. Both 

DLB and PDD have indeed synaptic dysfunction in the hippocampus and the typical brain 

lesions associated to AD (amyloid-b deposits and neurofibrillary tangles) (Jellinger, 2018). 

Although the AD pathology is commonly observable in DLB and PDD, the load of amyloid-

b deposits is significantly higher in DLB than PDD patients (Hepp et al., 2016). Moreover, 

the load of a-syn lesions in the CA2 region of the hippocampus and in the entorhinal cortex 

is higher in DLB than PDD (Jellinger, 2014). These significant differences may account for 

the different severity and progression of dementia, and they point out the possible synergistic 

activity of LBs and AD pathology in cognitive impairment (Jellinger, 2018).  

Overlap Dissimilarities 
 
Rigidity, akinesia 
Cognitive impairments 
Frontal executive dysfunction 
Visual-constructive impairment 
Mild language impairment 
Visual hallucinations  
Delusions (less frequent) 
Depression, anxiety 
RBD 
Neuroleptic sensitivity 

 
Some cognitive dysfunctions: deficiencies of 
attention greater, episodic verbal memory tasks 
lower in DLB 
Tremor significantly less frequent in DLB 
Hallucinations more frequent in DLB 
Onset of dementia later in PDD 
Orthostatic hypotension more frequent in DLB 
Frontal/temporal-associated cognitive subsets more 
severe in DLB, cognitive decline is faster in 
DLB than in PDD 
Delusions, attentional fluctuation and visual 
hallucinations more frequent in DLB 
Visual hallucinations: spontaneous in DLB; after L-
dopa therapy in PDD, but also in drug-naïve 
patients 

 
Table 1. Clinical overlap and dissimilarities between DLB and PPD patients. Modified from 

Jellinger, 2018 
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1.4 The Braak staging of Parkinson’s disease 

In 2003 Braak and colleagues proposed a unifying staging scheme to determine the 

progression and severity of PD. The theory implies that the Lewy pathology spreads with a 

specific pattern in anatomically connected brain regions and it is supported by the evidence 

of cell-to-cell transfer of misfolded a-syn (Jang et al.,2010; Halliday et al., 2011). 

The Braak’s staging of PD counts six stages (Figure 6). In stage I and II, LBs and LNs affect 

the olfactory region, the dorsal motor nucleus of the vagus and the locus ceruleus. These 

stages are characterised by non-motor symptoms that involve autonomic and olfactory 

functions. Stages III and IV have Lewy inclusions in the SNpc, in the trans-entorhinal cortex 

and in the CA2 region of the hippocampus. Patients at this stage display classical motor 

symptoms. Stages V and VI with depositions in cortical association areas such as temporal, 

insular and anterior cingulate cortices and a progression in the entire neocortex. Clinically, 

these stages account for the emotional and cognitive disfunctions (Braak et al., 2003). 

Although the Braak’s staging has been initially accepted with enthusiasm, several lines of 

evidence suggest that this staging scheme cannot be always applied. In fact, there are three 

different PD phenotypes which differ in timing, age of symptoms onset, and severity of 

cognitive impairment. These observations indicate that the distribution of LBs and LNs are 

not sufficient to explain such a diverse scenario like PD clinical features (Halliday et al., 

2011). 
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Figure 6. Schematic representation of the Braak staging of PD. Spreading of the Lewy pathology 

within different brain structures, based on the study of Braak. The progression of disease through the 

different brain regions increases over time (from left to right) with a progressive increase in the Lewy 

pathology. Abbreviation: AM, amygdala; BF, magnocellular nuclei of the basal forebrain; BNST, 

bed nucleus of the stria terminalis; Cl, claustrum; cp, cerebral peduncle; DMV, dorsal motor nucleus 

of the vagus; DRN, dorsal raphe nucleus; FCtx, frontal cortex; GP, globus pallidus; GPe, GP 

externa; GPi, GP interna; HN, hypoglossal nucleus; IC, internal capsule; ICP, inferior cerebellar 

peduncle; IL, intralaminar nuclei of the thalamus; ion, inferior olivary nucleus; IZ, intermediate 

reticular zone; LC, locus coeruleus and subcoeruleus; LCtx, limbic cortex; LH, lateral 

hypothalamus; mcp, middle cerebellar peduncle; MRN, median raphe nucleus; OB, olfactory bulb; 

opt, optic tract; OT, olfactory tubercle; PAG, periaqueductal grey; PBN, parabrachial nucleus; 

PGRN/GRN, paragigantocellular and gigantocellular reticular nucleus; PPN, pedunculopontine 

nucleus; PRN, pontine reticular nucleus; pt, pyramidal tract; RM, raphe magnus; RRF/A8, 

retrorubral fields/A8 dopaminergic cell group; SC, superior colliculus; Se, septum; SNc, substantia 

nigra pars compacta; SNr, substantia nigra pars reticulata; SO, solitary tract nuclei; STN, 

subthalamic nucleus; Str, striatum; SVN, spinal vestibular nucleus; T, thalamus; VTA, ventral 

tegmental area; ZI, zona incerta. From Surmeier et al., 2017 

 

1.4.1 The controversial role of Lewy Bodies  

Despite LBs are considered being the histopathological hallmarks of PD, PDD, and DLB, 

their role in neuronal cell death has long been a matter of intense debate. Evidence 

supporting the cytotoxicity of LBs stems from observations including: I) neuronal loss peaks 

in those regions characterised by stronger accumulation of LBs; II) in patients with a mild 

pathology the number of neurons with LBs is higher than those found in patients with severe 

pathology, implying that inclusion-containing cells are dying neurons; III) LB density at the 

cortex might be one of the major correlates of cognitive impairment in PD and DLB; IV) 

LBs seem to affect neuro-vesicle transport (Wakabayashy et al., 2013).  

In stark contrast, other findings suggest that LBs might arise as a secondary effect of the 

pathology with marginal, if at all, involvement in neuronal loss. In fact, it has been shown 

that neurons in the SNpc undergo apoptotic-like cell death regardless of whether or not they 

contain LBs (Tompkins et al 1997; Milber et al, 2012). Furthermore, LBs have been found 
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in healthy individuals and the LB load poorly correlates with the severity of symptoms such 

as cognitive impairment and dementia (Parkkinen et al., 2005; Parkkinen et al., 2008; 

Frigerio et al., 2011). Alternatively, LBs could represent a protective mechanism to 

segregate and enhance the degradation and clearance of damaged and cytotoxic proteins 

(Olanow et al., 2004; Chartier and Duyckaeerts, 2018).   

The controversial role of LBs has been partially overcome after the identification of 

insoluble and fibrillar a-syn as the main constituent of LBs (Spillantini et al., 1998). 

Specifically, studies on the different species of a-syn aggregates found the small soluble 

aggregates being more harmful than the larger ones (Winner et al., 2011). A detailed 

description of a-syn biology is provided in chapter II. 

 

1.5 Epidemiology of Parkinson’s disease 

PD is generally a late onset pathology that affects 1% of worldwide population above 60 

years of age. However, early onset PD cases may occur before 40 years old and it represents 

less than 5% of whole cases (Tysnes and Storstein, 2017). In light of the aetiology, PD can 

be distinguished in a familial/genetic or an idiopathic/sporadic form. The former is 

associated with genome alterations which frequently trigger to autosomal dominant or 

recessive inheritance of PD. The latter has a not well-defined cause and it may result from 

the interplay between several factors. Familial PD only represents 5-10% of all PD cases 

(Tysnes and Storstein, 2017).   

Although PD affects both genders, it is slightly more frequent in males than females with a 

male-to-female ratio of approximately 3 to 2 (Kalia and Lang, 2015; Bhat et al., 2018). 

The prevalence of PD is higher in Europe, North America and South America compared 

with Asian and African countries. The most widely accepted rate of prevalence in general 

population approximates to 100-200 cases for 100000 people. The global incidence ranges 

from 10 to 18 new cases for 100000 person-years (Kalia and Lang, 2015; Tysnes and 
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Storstein, 2017). Interestingly, PD incidence may be higher than the reported data. This 

concern comes from the possibility that incidence studies may be biased by the under-

diagnosing of PD, particularly in early onset PD cases or during early disease stages. 

Age is considered the main risk factor for developing PD. In fact, both prevalence and 

incidence increase with the aging of the general populations, where they peak after 80 years 

old (Figure 7) (Driver et al., 2009; Pringsheim et al., 2014). The drastic increase in 

prevalence after 80 years age cannot be linked with a comparable growth in incidence rate, 

but it can be ascribed to health care improvement (Poewe et al., 2017). 

Figure 7. Prevalence (A) and incidence (B) of PD in male and female. The graphs show the 

increase in incidence and prevalence of PD for 100000 persons in both men (green line) and women 

(blue line). Modified from Poewe et al., 2017. 

The worldwide increase in life expectancy and the aging of general population account for 

a significant increase in the frequency of neurodegenerative disorders. The number of PD 

patients is estimated to double in the next 10 years (Dorsey et al., 2007), bearing important 

implications on the management of the public health care.  

In PD patients the mortality does not increase within the first decade after disease onset, but 

it increases significantly thereafter with the pathology progression compared with global 

healthy control population (Poewe et al., 2017). 
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1.5.1 Epidemiology of Lewy body dementia 

The lack of well-defined criteria to clinically diagnose LBD makes the assessment of 

prevalence and incidence of the disease tough. Nevertheless, it is estimated that the 

prevalence of LBD in people aged 65 years is 1% (0.7 % affected by DLB and 0.3 % by 

PDD) and, it is widely accepted that LBD represents the second most common 

neurogenerative dementia subtype after AD (McKeith et al., 2004; Sanford, 2018). In a study 

performed from 1991 to 2005 on 542 cases of incident parkinsonism, the reported incidence 

for DLB is 3.5 and for PDD 2.5 out of 100000 person-years (Savica et al., 2013). Moreover, 

cognitive impairment in PD generally occurs in advanced age and it appears in 80% of 

patients during the course of the pathology (Hanagasi et al., 2017; Sanford, 2018). The risk 

to develop DLB seems to be higher in males than females, whereas not remarkable 

differences emerge among genders in PDD. 70% of DLB and 49% of PDD are indeed males. 

Disease onset is a further difference between DLB and PDD, with the former happening 

earlier (77 years of age) than the latter (82 years of age) (Sanford, 2018). 

 

1.6 Risk factors for Parkinson’s disease  

Since its first description by James Parkinson, PD has long been considered an 

environmental dependent pathology. However, it is now well accepted that PD is a 

multifactorial disorder that originates from the complex interplay between modifiable and 

non-modifiable risk factors. In particular, the former includes lifestyle and environment, the 

latter counts of age and genetic predispositions. 

 

1.6.1 Modifiable risk factors 

The study of environmental factors triggering to an increased risk to develop PD is difficult 

and elaborated. This complexity comes from the fact that environmental factors are generally 

ubiquitous, and this wide distribution makes difficult the identification of control cases not 
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exposed to the studied stressors. In addition, more than a single factor may be present at the 

same time and they may act synergistically to increase the risk of developing the pathology. 

Although the study of environmental risk factors for PD is not trivial, researchers have 

identified several key elements underlying and contributing to the pathogenesis of both 

sporadic/idiopathic and genetic PD (Cuenca et al., 2019).  

For instance, an increased risk of PD is associated with the exposure to pesticides such as 

paraquat and rotenone which lead to mitochondrial damage and oxidative stress (Tanner et 

al., 2011: Kalia and Lang, 2015). In particular, Paraquat has a similar chemical structure of 

the pro-parkinsonian molecule deriving from the metabolism of 1-methyl,-4-phenyl-1,2,3,6-

tetrahydropyridine (MPTP). MPTP has been the first chemical compound linked to an 

increased risk of PD and its discovery triggers the investigation of the role of environmental 

chemicals in PD pathogenesis (Kalia and Lang, 2015; Ascherio and Schwarzschild, 2016). 

Modifiable factors positively correlated to the increased risk of PD include rural life, 

consumption of dairy products, well-water drinking, use of amphetamine and 

methamphetamine, prior head injury and systemic pathologies (Kalia and Lang, 2015; 

Ascherio and Schwarzschild, 2016; McKenzie et al., 2017; Cuenca et al., 2019). 

Intriguingly, brain injury and some systemic pathologies, including diabetes, trigger a long-

lasting neuroinflammatory response that has been correlated with an increased risk of 

developing PD (Ascherio and Schwarzschild, 2016; McKenzie et al., 2017). Despite being 

a common feature of numerous neurodegenerative disorders, neuroinflammation is not just 

a mere consequence of the disorder, but it may instead be a pivotal factor in PD pathogenesis 

and the linker between genetic predisposition and environmental factors (Gao et al., 2011; 

Kalia and Lang, 2015). In this regard, it has been demonstrated that induction of 

neuroinflammation, through the intraperitoneal injection of lipopolysaccharide (LPS), in a 

transgenic PD mouse model leads to an increased loss of SNpc dopaminergic neurons (Gao 

et al., 2011). On the same line, it has been reported that striatal administration of LPS in 
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wild-type (WT) mice leads to neuroinflammation and progressive dopaminergic 

neurodegeneration in SNpc (Choi et al., 2009). On the other hand, several lines of evidence 

indicate that neuroinflammation may represent a suitable therapeutic target to prevent or 

delay PD. As a matter of fact, it has been reported that the consumption of non-steroidal 

anti-inflammatory drugs (NSAIDs) is a protective factor against PD. Among NSAIDs, 

Ibuprofen has shown the highest protective effect. Moreover, the discordance in the 

protective effect of Ibuprofen compared with other NSAIDs, such as Aspirin, suggests that 

Ibuprofen acts via a specific mechanism that may not be shared among other NSAIDs 

(Hirsch et al., 2012; Ascherio and Schwarzschild, 2016).  

The role of neuroinflammation in PD will be further detailed in chapter III. 

 

1.6.2 Non-modifiable risk factors 

Age is considered the greatest risk factor for PD. In fact, several data from epidemiological 

studies clearly indicate an exponential rise of PD incidence and prevalence with advancing 

age (Kalia and Lang, 2015; Ascherio and Schwarzschild, 2016; Poewe et al., 2017). The 

biological mechanisms underlying the relationship between aging and PD are still largely 

unknown (Calabrese et al., 2018). It has been reported that aging may represent a pre-PD 

state. In this light, aging creates a vulnerable state that approaches the biological threshold 

required for PD pathogenesis (Collier et al., 2017). In such a scenario, inflammation has 

been identified as a key player. Indeed, aging is characterised by a progressive inflammatory 

state, also known as “inflammaging”, in which an equilibrium between pro- and anti-

inflammatory signals allows the mitigation of tissue degenerative processes. In PD the 

normal occurring inflammaging process is deregulated and lacks the homeostasis between 

pro- and anti-inflammatory signals with a progressive increase in levels of the pro-

inflammatory ones. The long-lasting increase in pro-inflammatory mediators may result in 
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a deleterious microenvironment which in turn could trigger neurodegenerative processes 

typical of PD (Calabrese et al.,2-18).   

Genetic contribution is a further component among non-modifiable risk factors. The 

relevance of genetics in PD comes from the evidence that patients with a familial history of 

PD have an increased risk to develop the pathology (Kalia and Lang, 2015). The 

investigation of genetics in PD started in 1997 when Polymeropoulos and colleagues found 

the first mutation in the gene coding for a-syn (SNCA) linked to PD (Polymeropoulos et al., 

1997). As of 1997, mutations in several genes have been identified as causative for 

monogenic form of PD and, although genetic forms of PD account for only 5-10% of all 

cases, their investigation has shed new light into pathological mechanisms and molecular 

pathways which underlie the disease development and progression (Poewe et al., 2017). 

Genetic forms of PD are responsible for four different kinds of inheritance. Indeed, there are 

genes that when mutated lead to autosomal dominant, autosomal recessive, X-linked or 

unclear inheritance forms of PD (Cuenca et al., 2019). Since alterations causing X-linked 

and unclear inheritance forms of PD are not well understood, except for the fact that they 

cause a late onset PD, I will only focus on some of those involved in autosomal dominant 

and recessive PD. 

 

1.6.2.1 Genes involved in autosomal dominant forms of PD 

Affected genes causing autosomal dominant PD include SNCA, LRRK2 and VPS35 

(Hernandez et al., 2016). 

- SNCA is the first gene been linked to autosomal dominant inheritance PD. The gene 

is located on chromosome 4 and codes for a small protein of 140 aminoacidic 

residues (~14 kDa) a-syn (Spillantini et al., 1995; Lashuel et al., 2013). In familial 

forms of PD, six missense mutations which cause a single aminoacidic substitution 

have been reported: A53T, A30P, E46K, H50Q, G51D and A53E (Polymeropoulos 
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et al., 1997; Krüger et al., 1998; Zarranz et al., 2004; Proukakis et al  2013;  Kiely 

et al. 2013; Lesage et al., 2013; Pasanen et al., 2014). Missense mutations in SNCA 

lead to an early onset PD, and among them A53T is the most frequent (Hernandez et 

al., 2016). As mentioned above, the missense mutation A53T has been the first PD-

linked alteration identified in SNCA (Polymeropoulos et al., 1997). In the same year, 

Spillantini and co-workers (Spillantini et al., 1997) reported that a-syn was the major 

constituent of LBs in sporadic PD and in DLB. These distinct findings claimed the 

relevance of a-syn in PD pathogenesis for the first time, and they strongly suggested 

that common pathological molecular mechanisms may underlie the development of 

both sporadic and familial PD. In addition to missense mutations, reassembly of 

SNCA has also been found in PD. In particular, multiplication of the entire gene has 

been reported (Singleton et al., 2003; Chartier-Harlin et al., 2004; Ibáñez et al., 

2004). A gene dose-dependent effect of SNCA multiplication on PD phenotype has 

been argued. This hypothesis stems from the evidence that SNCA multiplication, 

duplication or triplication, leads to a form of PD with onset, progression and severity 

depending on the SNCA copy number (Figure 8) (Farrer, 2006; Hernandez et al., 

2016).  

 
 

 

 

 

 

 

Figure 8. SNCA copy number is linked to PD severity. Fluorescent in-situ hybridisation 

of SNCA. The images show nuclei containing a different number of SNCA copies (two, 
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three and four copies) in a normal diploid control (left panel), and in patients with SNCA 

duplication (middle panel) or triplication (right panel). Nuclear DNA is labelled in blue; 

SNCA is double labelled in red and green (Overlap between the probes appears as yellow). 

The increase number of SNCA copy is linked to a worsening in PD severity as shown in the 

table (Modified from Farrer. 2006). 

Intriguingly, alterations in SNCA are also associated with an increase risk to develop 

both PDD and DLB (Sironi et al., 2010; Schulz-Schaeffer, 2010; Galasko et al., 

2017: Jellinger et al., 2018). Although DLB is a relatively common disorder its 

distribution displays a little aggregation in families, thus making difficult to identify 

specific DLB risk factors (Outeiro et al., 2019). However, since PD, PDD and DLB 

share common neuropathological and genetic features, the investigation of the a-syn 

pathological role in these pathologies, also known as a-synucleinopathies, has 

gained strong interest over the last few years. 

- LRRK2 is located on chromosome 12 and encodes for a big multidomain protein 

(Leucine reach repeat kinase 2) of 2527 aminoacidic residues (Li et al., 2014). 

Variants in LRRK2 are recognised as the most common and frequent root cause of 

familial PD (Billingsley et al., 2018). More than 100 missense mutations have been 

reported in LRRK2 and they may be found in 10% of patients with an autosomal 

dominant inheritance and in 3.6% of patients with sporadic PD (Hernandez et al., 

2016; Lesage et al., 2006; Lesage et al., 2009). Among the many LRRK2 variants 

known, G2019S is the most common pathogenic variant, and it has been found in 

approximately 4% of patients with a family history of PD (Billingsley et al., 2018).  

LRRK2 has been implicated in autophagy, cytoskeletal dynamics, kinase cascade, 

mitochondrial functions and inflammatory reactions (MacLeod et al., 2006; 

Gloeckner et al., 2009; Parisiadou et al., 2009; Mortiboys et al., 2010; Orenstein et 

al., 2013; Li et al., 2014; Civiero et al., 2018). Since LRRK2 is involved in a large 

amount of cellular processes, a clear and univocal pathological mechanism for this 
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protein in PD is still missing and under investigation. Nevertheless, PD patients 

carrying LRRK2 variants show a LBs pathology like PD patients carrying SNCA 

variants. Therefore, it seems that common cellular pathways underlying a-syn 

aggregation are shared among different genetic PD variants (Spatola and Wider, 

2014). 

Clinically, patients with a LRRK2-linked PD show a late onset and slow progressive 

symptoms (Hernandez et al., 2016). Although PD is generally more frequent in 

males, it has been reported that female patients with the variant G2019S develop PD 

approximately 10 years earlier than men (Li et al., 2014). 

Autosomal dominant PD has also been linked to variants in VPS35 (vesicular protein sorting 

35) and EIF4G1(eukaryotic translation initiation factor 4-gamma 1). The former is involved 

in the endosomal-lysosomal trafficking complex and its variants are only linked to a slight 

number of PD cases. Indeed, approximately 0.1% of PD patients carry VPS35 variants 

(Spatola and Wider, 2014). The latter is involved in mRNA translation processes and 

accounts for 0.02-0.2% of all PD cases (Spatola and Wider, 2014).  

 

1.6.2.2 Genes involved in autosomal recessive forms of PD 

Genes involved in autosomal recessive forms of PD are PARK2, PINK1 and DJ-1. Among 

these, PARK2 variants are the most commonly observed in PD population (Spatola and 

Wider, 2014). 

- PARK2 (Parkin) is a 465 aminoacidic residues ubiquitin ligase protein involved in 

the control of mitochondrial functions. While in healthy condition PARK2 has a 

cytosolic localisation, in presence of mitochondrial damage the protein translocates 

to the mitochondrial surface and ubiquitinates membrane proteins leading to the 

mitophagy process (Hernandez et al., 2016). PARK2 has been the first gene linked 

to autosomal recessive forms of PD (Kitada et al., 1998). To date, more than 100 
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variants are known. Both point mutations and exons re-arrangement, deletion and 

duplication involving all 12 exons of the gene have been reported (Foroud et al., 

2003; Hedrich et al., 2004; Lesage et al., 2007). Parkin mutations are linked to early 

onset PD, and they account for 50% of familial early onset autosomal recessive cases. 

However, variants in PARK2 are also described in 77% of sporadic PD with an onset 

before 20 years (Lucking et al., 2000; Spatola and Wider, 2014). Of note, in PARK2-

linked PD the presence of LB pathology is not reported (Mori et al., 2003). While an 

explanation for this is still a matter of debate, it has been speculated that the absence 

of LB pathology is due to the very early onset of disease. In fact, post-mortem tissues 

of PARK2 linked PD cases with an older age of disease onset present the 

characteristic LB pathology of PD (Hernandez et al., 2016). 

- PINK1 has been the second gene identified in autosomal recessive PD cases (Valente 

et al., 2001; Valente et al., 2004). PINK1 encodes for a 581 aminoacidic residues 

Ser/Thr kinase (phosphatase tensin homologous-induced kinase 1) with a 

mitochondrial localisation and, like Parkin, with a role into the mitophagy pathway 

(Valente et al., 2004; Pickrell and Youle, 2015). Since the discovery of PINK1, a 

growing number of variants in the gene have been linked to early onset PD, and these 

account for the second most common cause of autosomal recessive PD (Gandhi and 

Plun-Favreau 2017) 

- DJ-1 is the third gene identified in autosomal recessive PD, where both missense 

mutations and exon deletion have been found (Bonifati et al., 2003). DJ-1 related PD 

has comparable phenotypic features to PINK1 and PARK2-related PD. In fact, PD 

linked to DJ-1 variants is characterised by an early disease onset (Hernandez et al., 

2016). Despite the three genes related to autosomal recessive inheritance PD are 

associated with an early onset of the pathology, their frequency varies within the PD 

populations. In particular, DJ-1 variants are rare and they account for less than 1% 
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of early onset PD cases (Pankratz et al., 2006). DJ-1 encodes for a 189 aminoacidic 

residues protein with a mitochondrial matrix and inter-membrane space localisation, 

in addition to its cytosolic expression (Zhang et al., 2005). Variants in DJ-1, like 

PARK2 and PINK1, are associated with a loss of the protein physiological activities 

(Hernandez et al., 2016). DJ-1 has been implicated in several protective cellular 

processes that, when altered, may be involved in PD pathogenesis. Indeed, DJ-1 may 

serve as a redox sensory molecular chaperone, but also as a transcriptional regulator 

of anti-apoptotic genes (Menzies et al., 2005: Xu et al., 2005).  

Recessive inherited forms of PD are also related to variants in ATPT3A2, PLA2G6 and 

FBXO7. These variants are rarer than the variants described above and are linked to atypical 

PD symptoms such as dystonia (Spatola and Wider, 2014).  

 

1.7 Diagnosis of Parkinson’s disease 

PD is not regarded as a single disease and the term may have a different meaning for 

clinicians and researchers. In fact, some use the term only for idiopathic parkinsonism 

associated with LBs inclusions in different brain regions, whereas others use the term as a 

strictly clinical diagnosis and may accept different pathological conditions underlying the 

syndrome (Tolosa et al., 2006). Although clinical criteria for the diagnosis of PD have been 

elaborated, the diagnosis of PD remains difficult especially at the early phases of the disease 

when symptoms of PD overlap with other forms of parkinsonism (Jankovic, 2008). The use 

of clinical criteria developed by the UK Parkinson’s Disease Society Brain Bank as well as 

those developed by the MDS International Parkinson and Movement Disorder Society, 

(Table 2) has significantly improved the accuracy of PD diagnosis. However, population-

based studies have revealed that 15% of patients with a diagnosis of PD do not fulfil the 

criteria for the disease and, 20% of patients are not formally diagnosed as PD patients 

(Tolosa et al., 2006; Poewe et al., 2017). In addition to the prominent motor symptoms, PD 
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patients may manifest a wide range of non-motor features (sleep disorder, reduced olfactory 

ability, constipation, anxiety, depression and cognitive decline) that should be considered in 

the diagnostic process (Cuenca et al., 2019). Even though clinical diagnosis of PD, which is 

based on the manifestation of typical motor features, is improved in its accuracy and 

sensitivity, the gold standard for PD confirmation remains the neuropathological 

examination of post-mortem brain samples. In particular, well accepted and widely used 

criteria consist in the presence of a moderate or severe loss of dopaminergic neurons in SNpc 

with LBs in the surviving neurons, and the absence of evidence for other diseases that may 

result in parkinsonism (Kalia and Lang, 2015).  

MDS diagnostic criteria for PD 
 
Step 1: diagnosis of parkinsonism (core feature)  

Presence of bradykinesia as a slowness of movement and a decrement in amplitude or speed (or progressive 
hesitations or halts) as movements are continued. In combination with at least one of: rigidity and/or rest 
tremor.  
 
Step 2: determining PD as the cause of parkinsonism with two levels of diagnostic certainty  

Diagnosis of clinically established PD requires all three of the below parameters:  

Absence of absolute exclusion criteria. These criteria include clinical or imaging evidence for alternative 
diagnoses of parkinsonism, such as atypical parkinsonism, drug-induced parkinsonism or essential tremor.  
 
Two or more supportive criteria. These include L-DOPA responsiveness, the presence of classic rest tremor, 
the presence of L-DOPA-induced dyskinesias, the presence of either olfactory loss or cardiac sympathetic 
denervation on metaiodobenzylguanidine (MIBG) scintigraphy.  
 
No red flags. This refers to features that are unusual but not absolutely exclusionary for PD, for example, 
the rapid progression of gait impairment that requires wheelchair use or the development of severe 
autonomic failure within 5 years after onset.  
 
Diagnosis of clinically probable PD requires:  
 
Absence of absolute exclusion criteria (mentioned above)  
Presence of red flags (mentioned above) that are counterbalanced by supportive criteria  
 

Table 2. MDS guidelines for the diagnosis of PD. Modified from Poewe et al., 2017. 

As mentioned above the diagnosis of PD is difficult. To further improve the diagnostic 

accuracy clinicians often use further diagnostic tests, and researchers are working at the 

identification of biological markers that may be useful for an early diagnosis (Poewe et al., 
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2017). Among the additional tests that clinicians may adopt there are genetic tests and 

neuroimaging. 

Five to ten percent of PD cases have a genetic root cause. Since genetic related PD only 

account for a small percentage of PD cases, the genetic testing is not part of the routine 

diagnostic process. On the other hand, patients with a family history of PD or with an early 

onset of the pathology, which is generally present in autosomal recessive related PD (Poewe 

et al., 2017), are genetically investigated. 

Neuroimaging became relevant in PD after 1980, when for the first-time striatal dopamine 

depletion in PD patients was demonstrated through F-labelled L-DOPA and PET. Structural 

MRI is helpful to identify symptomatic parkinsonism, and it allows to evaluate macroscopic 

brain changes such as a deterioration of the SN. Furthermore, various MRI techniques (e.g. 

Neuromelanin-sensitive MRI) provide a valuable diagnostic support to reveal specific 

changes (Poewe et al., 2017; Cuenca et al., 2019). 

 

1.8 Diagnosis of Dementia with Lewy bodies and Dementia associated to Parkinson’s 

disease 

The clinical diagnosis of a probable DLB is based on the assessment of at least two of the 

core features of the disease, whereas the diagnosis of possible DLB is made when only one 

of the core features is presented (Table 3) (McKeith et al., 2004; Outeiro et al., 2019). 

DLB core features include fluctuating levels of cognitive impairments, visual hallucinations, 

sleep behaviour disorders (e.g. RBD, excessive daytime drowsiness). In addition, 

extrapyramidal motor feature may occur.  

DLB and PDD largely overlap in their clinical manifestations. A possible differentiation 

between the two pathologies may result from the assessment of extrapyramidal motor 

features. Indeed, DLB patients are characterised by an absence or a moderate grade of 

extrapyramidal motor features, at least until late stages. On the other hand, PDD patients 
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show prominent motor features, while cognitive impairments generally occur later (Outeiro 

et al., 2019). 

Revised criteria for the clinical diagnosis of probable and possible DLB 

Essential for a diagnosis of DLB is dementia, a progressive cognitive decline of sufficient magnitude to 
interfere with normal social or occupational functions, or with daily activities. Prominent or persistent 
memory impairment may not necessarily occur in early stages but is usually evident with progression. 
Deficits on attention, executive function and visuo-perceptual ability may be prominent and occur early. 

Core clinical features (Two core features are essential for the diagnosis of probable DLB, one for the 
diagnosis of possible DLB) 

Fluctuating cognition with pronounced variations in attention and alertness. 
Recurrent visual hallucinations. 
RBD which may precede cognitive decline. 
One or more cardinal feature of parkinsonism – these are bradykinesia (defined as slowness of movement 
and decrement in amplitude or speed), rest tremor, or rigidity. 

Supportive clinical features 

Severe sensitivity to antipsychotic agents, postural instability, repeated falls, syncope or other transient 
episodes of unresponsiveness, severe autonomic dysfunction (e.g. constipation, orthostatic hypotension, 
urinary incontinence) hypersomnia, hyposmia, hallucinations in other modalities, apathy, anxiety and 
depression. 

Table 3. MDS guidelines for the diagnosis of PD. Modified from Outeiro et al., 2019. 

Of note, post-mortem validation of the clinical diagnosis of DLB is limited, and it is 

compromised by the lack of defined neuropathological criteria. Autopsy of patients with 

non-DLB clinical manifestations have clearly shown LB depositions in different brain 

regions (McKeith et al., 2004). A recent UK study revealed that while only 4.6% of subjects 

are clinically diagnosed as DLB, LB pathology is presented in 20% of post-mortem brains. 

This indicates that an underestimation of DLB during life occurs, and that the clinical criteria 

are not yet sufficiently sensitive and specific. In fact, DLB may present features reminiscent 

of AD, and therefore misdiagnosed as AD (Outeiro et al., 2019). Generally, while AD 

patients are characterised by dysfunctions of episodic memory, DLB subjects have attention, 

executive and visuospatial deficiencies (Park et al., 2011). DLB and AD have somewhat 

specific patterns of deficits; people with AD often have better visuo-spatial and visuo-

constructional skills early in their disease, but poorer short-term memory. Hallucinations and 
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delusions are prominent, persistent and early features of DLB, while in AD they appear later 

in the course of the disease and are transient (Stavitsky et al., 2006; Tiraboschi et al., 2006). 



Introduction: Chapter II 
 

 

32 
 

 

 

 

Introduction 

Chapter II 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction: Chapter II 
 

 

33 
 

2.1 The synuclein family: a brief overview 

Synuclein has been first identified in 1988 by Maroteaux and colleagues in the electric organ 

of the electric ray Torpedo californica. The protein was named after its cellular localisation 

in the pre-synaptic terminals (SYNapse) and on the nuclear envelope (NUCLEus) 

(Maroteaux et al., 1988; Lavedan, 1998). To date, synuclein refers to a family made of three 

distinct proteins that share common features: a-, b- and g-synuclein (a-, b- and g-syn) 

(Wales et al., 2013). In humans, a-syn was discovered during the investigation of the b-

amyloid plaque composition from AD patients. In fact, researchers identified a small peptide 

known as NAC (non-amyloidogenic component of amyloid plaques) within b-amyloid 

plaques. The precursor of NAC (NACP), was found to be homologous to the rat a-syn (Ueda 

et al., 1993), whereas the b-syn was first isolated as a bovine brain-specific phosphoprotein 

of 14 kDa (phosphoneuroprotein) (Lavedan, 1998). Therefore, NACP and the human 

ortholog of phosphoneuroprotein were recognised as two distinct synucleins and termed a- 

and b-syn, respectively (Jakes et al. 1994).  

Synucleins are soluble, heat-resistant and highly conserved proteins in vertebrates. In 

particular, all three synucleins share an amphipathic N-terminal domain, whereas they 

essentially differ in their acidic C-terminus (Figure 9) (George, 2002). 

 

 

 

 

 

Figure 9. Schematic representation of the α-, β-, and γ- synuclein isoforms. Synuclein isoforms 

consists of three domains. The conserved N-terminal amphipathic region is depicted in orange. In 

blue is the central hydrophobic NAC domain. In gold, the acidic C-terminal tail, whose length differs 

within the three forms (Wales et al., 2013). 
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With 140 aminoacidic residues in its primary structure, a-syn is the longest among 

synucleins. 134 residues make up b-syn, whereas g-syn is the shortest one with 127 residues. 

b-syn is closely comparable with a-syn, made exception for the lack of 11 residues in the 

NAC domain of  b-syn compared to a-syn (Wales et al., 2013). Of note, a-, b- and g-syn 

have different expression patterns. While a-syn and b-syn are predominantly expressed in 

the brain, g-syn is found in the peripheral nervous system and notably in malignant breast 

tumours (Jakes et al., 1994; Iwai et al., 1995; Buchman et al., 1998; Ji et al., 1997). 

 

2.2 Alpha-synuclein: a key protein in PD and a-synucleinopathies 

In the last twenty years huge efforts have been made to characterise the pathological roles 

of α-syn in PD, and more generally in a class of pathologies known as α-synucleinopathies.  

α-synucleinopathies refer to distinct clinical entities (e.g. PD, LBD, MSA) which share 

common neuropathological lesions (LBs and LNs) mostly consisting of fibrillar and 

insoluble α-syn (Spillantini et al., 1997; Spillantini et al., 1998; Baba et al., 1998; Wales et 

al., 2013; Alafuzoff and Hartikainen, 2018). 

The interest in studying α-syn in α-synucleinopathies stems from accumulating evidence of 

the potential harmful role of the protein including: I) missense points mutations in the gene 

encoding for α-syn in families with hereditary PD and DLB; II) α-syn as the main constituent 

of LBs and LNs; III) the fact that duplication and triplication of the entire SNCA locus lead 

to familial PD; IV) genome-wide association studies revealing that genetic variants in the 

SNCA locus represent a risk factor for sporadic PD; V) animal models overexpressing WT 

or mutant α-syn showing histopathological and some clinical features of PD (Deleersnijder 

et al., 2013; Bengoa-Vergniory et al., 2017). 
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2.3 Insight into α-syn structure and physiological functions 

As mentioned above, α-syn is the product of SNCA, a gene located at position 21 on the 

long arm of chromosome 4 (Figure 10) (Spillantini et al., 1995). α-syn expression and 

localisation change over time, with its levels increasing through the early weeks of 

development, while it diffuses from the soma to the pre-synaptic terminals (Burré et al., 

2015).  

Figure 10.  Schematic of the localisation and structure of SNCA. Modified from Venda et al., 

2010. 

Because α-syn lacks a well-organised secondary structure, it belongs to the intrinsically 

disordered protein family, and it is generally defined as a disordered or naturally unfolded 

protein (Deleersnijder et al., 2013; Theillet et al., 2016; Zhang et al., 2018). 

Three different domains can be distinguished within the primary structure of α-syn (Figure 

11A): I) the N-terminal domain (residues 1-60), II) the central hydrophobic region (residues 

61-95), and III) the C-terminal domain rich in prolines and the acidic residues aspartate and 

glutamate (residues 96-140) (Villar-Piqué et al., 2016). The N-terminal domain is 

characterised by a series of 11-residues imperfect repeats with a conserved hexameric motif 

(KTKEGV). While α-syn N-terminus remains unstructured in solution, it adopts an 

amphipathic α-helical secondary structure in presence of lipids (Figure 11B), which is a 

typical conformational feature of membrane recognition and binding (Eliezer et al. 2001; 

Deleersnijder et al., 2013; Wales et al., 2013; Zhang et al., 2018). 
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 Figure 11. Domain structure of α-syn. (A) Schematic representation of α-syn regions. The N-

terminus (residues 1-60) is amphipathic and responsible for the interaction of α-syn with membranes. 

It includes repeats of the KTKEGV motif (green rectangles). The central region (residues 61-95), 

termed NAC, is a hydrophobic region and it is involved in the aggregation process. The C-terminus 

(96–140) is characterised by the presence of acidic residues bearing a negative charge. (B) Schematic 

cartoon representation of micelle-bound α-syn. The N-terminal region (orange), the NAC region 

(blue) and the unstructured C-terminus (gold). Modified from Gallegos et al., 2015. 

Remarkably, all point mutations associated to familial PD (A53T, A30P, E46K, G51D and 

H50Q) clusters in the N-terminal domain (Bendor et al., 2013), suggesting that this region 

has an important function in regulating the α-syn propensity to aggregate, a process with 

strong implications in α-synucleinopathies pathogenesis (further details in section 2.4). 

The central hydrophobic portion of α-syn, also known as the NAC domain, is the second 

major component of Aβ-amyloid plaques in AD (Irizarry et al., 1996). It contains two 

KTKEGV motifs and accounts for the aggregation ability of the protein (Wales et al., 2013; 

Deleersnijder et al., 2013). Indeed, this portion may undergo a conformational change that 

generates a β-sheet structure in spite of its native random coil (Belluci et al., 2012). 

The acidic C-terminal region domain contains 5 proline, 10 glutamate, and 5 aspartate 

aminoacidic residues (Deleersnijder et al., 2013; Wales et al., 2013). Thus, because of its 
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low hydrophobicity and its overall net negative charge, the C-terminal domain is responsible 

for the naturally unfolded and disordered structure of α-syn (Figure 11B) (Deleersnijder et 

al., 2013). Of note, some residues within the α-syn C-terminus can be phosphorylated. 

Among these, Serine in position 129 is found phosphorylated in almost 90% of α-syn inside 

LBs, although the role of this post-translational modification is poorly understood and still 

under investigation (Gallegos et al., 2015; Anderson et al., 2006; Samuel et al., 2016). 

In conclusion, the secondary structure of α-syn lacks a unique and defined conformation, 

with the exception of some α-helical structures in its N-terminal portion. Such properties 

provide α-syn with some conformational flexibility, so that the protein can adopt a wide 

range of structures depending on the environment and binding partners (Jain et al., 2013). 

As protein structure and function are intimately linked, the versatile and dynamic structure 

of α-syn results in the multifunctional properties of the protein (Lashuel et al., 2013). Besides 

its unfolded nature, several challenges make the understanding of α-syn functions difficult: 

I) α-syn overexpression leads to neurotoxicity, and II) the complete depletion of α-syn does 

not lead to significant alterations but only causes an altered synaptic transmission, which 

may be compensated by the activity of other proteins (Burré et al., 2015; Villar-Piqué et al., 

2016). As a result, despite numerous hypothetical functions have been put forward and 

attributed to α-syn, none is fully consensual. Thus, α-syn functions in physiological and 

pathological conditions still remain controversial.  

Among the various functions proposed for α-syn, one of the most widely accepted is its role 

in pre-synaptic terminals and particularly in the regulation of synaptic transmission. Such 

functions are suggested by numerous experimental observations. Depletion of α-syn is not 

lethal and does not lead to a neurodegenerative phenotype, pointing out the possible 

redundant functions of α-,b- and g-syn (Lashuel et al., 2013; Wales et al., 2013; Calo et al., 

2016; Spillantini and Goedert, 2018). On the other hand, deletion of all the three synucleins 
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leads to a more severe, although yet viable, phenotype characterised by a deficient SNARE-

complex assembly and an increased striatal dopamine release (Wales et al., 2013; Calo et 

al., 2016). Beside the genetic manipulation of synucleins expression, supporting evidence 

for a synaptic function of α-syn includes the predominant localisation of the protein into pre-

synaptic terminals (Figure 12A, B), and the co-localisation with the vesicle reserve pool of 

synapses (Lee et al., 2008). Through its C-terminal domain, α-syn directly interacts with 

VAMP2 and, through a chaperone-like activity, promotes the SNARE complex assembly 

which is a component of the membrane fusion machinery (Figure 12C) (Burré et al., 2010).   

SNARE proteins include a large number of integral membrane proteins involved in the 

docking and fusion between pre-synaptic vesicles and the cell membrane. Two groups of 

SNARE proteins can be identified based on their localisation: v-SNARE proteins which are 

located into the pre-synaptic vesicle membranes, and the t-SNARE proteins placed into the 

pre-synaptic cell membrane.  

As α-syn promotes the SNARE complex assembly, its loss of function may trigger changes 

in neurotransmitter release, synaptic dysfunction and neurodegenerative processes (Burré et 

al., 2010). Consistently, over-expression of human WT α-syn has been linked to a reduction 

in vesicle release both in hippocampal neurons and in transgenic (Tg) mice. In this murine 

model, α-syn over-expression decreased the vesicle recycling pool size and the number of 

vesicles adjacent to the synaptic active zone. In fact, Tg mice over-expressing human α-syn, 

displayed a slight increase in the post-synaptic density and a reduction in proteins associated 

with synaptic vesicles, which may lead to an alteration of synaptic transmission and 

plasticity, essential physiological processes involved in the formation of new memories 

(Nemani et al., 2010). In addition, α-syn has been shown to regulate vesicles exocytosis via 

binding to exocytosis controlling proteins such as phospholipase D2 and the family of small 

GTPase Rab (Lashuel et al., 2013). These data suggest a possible detrimental role of α-syn, 
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which in pathological conditions may affect synaptic vesicles recycling (Figure 12C), hence 

synaptic activity/transmission and cognitive functions. 

 

Figure 12. Synaptic localisation and function of α-syn. (A, B) Immunostaining for MAP2 (red) 

and α-syn (green) reveal the pre-synaptic localisation of α-syn. (C) Schematic representation 

showing the roles of α-syn at the pre-synaptic terminal in the regulation of vesicle trafficking and 

vesicle refilling, as well as the interactions between t-SNARE and v-SNARE proteins and 

neurotransmitter release. Accumulation of α-syn prevents neurotransmitter release, vesicle recycling 

and trafficking between synaptic buttons and influences the stability of SNARE complex assembly 

(Lahuel et al., 2013).  
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As mentioned above, the first synuclein was found in both synaptic terminals and in the 

nuclear envelope. Nevertheless, the nuclear localisation of α-syn is not largely accepted and 

it remains controversial with some groups identifying α-syn in the nucleus and some other 

failing at the same purpose (Li et al., 2002; Yu et al., 2007; Zhang et al., 2008; Huang et al., 

2011; Burrè et al., 2018). Although the mechanisms driving the nuclear localisation of α-

syn are poorly understood, it seems that the N-terminal domain plays a key role, and PD 

related missense point mutations in α-syn as well as an increase in oxidative stress appear to 

increase the protein nuclear translocation (Wales et al., 2013). Transcription regulation is a 

putative function proposed for α-syn in the nucleus, where two different mechanisms may 

co-exist. Specifically, α-syn may bind directly the DNA and/or it may influence gene 

expression by interacting with transcription regulation factors. In this regard, it has been 

reported that α-syn co-localizes with histone-3 and inhibits its acetylation, leading to an 

aberrant transcriptional control, which may ultimately result in cell death (Kontopoulos et 

al., 2006). The transcriptional deregulation caused by α-syn triggers an alteration in the 

expression of several proteins involved in different signal pathways such as cyclic adenosine 

monophosphate (cAMP), and response element binding protein (CREB) (Wales et al., 

2013). Of note, cAMP and CREB are involved in long term potentiation (LTP), an 

experimental paradigm measuring synaptic plasticity, and memory formation (Silva et al., 

1998). Therefore, alterations in these pathways induced by α-syn may contribute 

synergistically with many other mechanisms to memory damage. 
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2.3.1 Memory, synaptic plasticity and LTP 

Learning and memory are the result of the interaction of millions of neurons in the brain and 

their coordinated activity (Stuchlik, 2014). 

While memory refers to a capability of virtually any animal to encode, store and retrieve 

information aimed at guiding behavioural output, learning is viewed as the acquisition and 

the encoding of information to form new memories (Stuchlik, 2014).  

Depending on their duration, memories can be classified into short- and long-term. While 

short-term memory is the ability to hold and recall information for a short period of time, 

usually for few seconds, long-term memory stores information for long-lasting periods, 

essentially for the entire lifetime span. Short-term memory relies on existing networks and 

post-translational modifications, whereas long-term memory is accompanied by structural 

and functional changes of neural networks that require de novo gene expression (Bisaz et 

al., 2014) 

Long-term memory allows us to store information for long periods of time. Information may 

be retrieved consciously (explicit memory) or unconsciously (implicit memory). Explicit 

memory refers to memories that can be consciously recalled such as the knowledge of facts, 

people and events, whereas the implicit memory represents those memories associated with 

skills and the ability to perform actions (Camina and Güell, 2017). 

From an anatomical/functional standpoint many areas of the brain contribute to the processes 

of learning and memory, but it has been shown that the hippocampus is the cerebral area that 

plays a key role in hosting the mechanisms related to memory (Scoville and Milner, 1957).  

A crucial point in the field of learning and memory is the concept of neuronal plasticity, 

which describes structural and functional changes in the brain linked to experience and 

development. Neuronal plasticity involves events at the synaptic level such as elimination, 

reinforcement and formation of new synapses.  
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It is believed that long-term memory is based on the process of synaptic transmission 

strengthening. Experimental supports to this hypothesis derive from the finding that 

repetitive activation of excitatory synapses in the hippocampus leads to an increase in 

synaptic strength that could last for hours and days (Andersen and Lomo, 1966; Bliss and 

Gardner-Medwin, 1973). This long-lasting synaptic change, known as LTP, has been 

extensively investigated and it is widely considered as an experimental paradigm for 

studying synaptic plasticity and molecular mechanisms at the base of learning and memory 

(Miller and Mayford, 1999; Citri and Malenka, 2008; Stuchlik, 2014). Following an intense 

stimulation of pre-synaptic neurons, for instance repetitive pre-synaptic tetanic stimulation, 

the amplitude of the response in post-synaptic neurons increases. In this process two 

different subtypes of glutamatergic receptors may be activated by the glutamate release: a-

amino-3-hydroxy-5-methyl-1-4-isoxazolepropionic receptors (AMPARs) and N-methyl-D-

aspartate receptors (NMDARs). AMPARs are channels permeable to monovalent ions, 

sodium (Na+) and potassium (K+), and provide an inward positive current leading to the 

depolarization of neurons. NMDARs, like AMPARs, are permeable to ions Na+, K+, but also 

calcium (Ca2+) (Baltaci et al., 2019). However, as the pore of NMDARs is blocked by the 

magnesium ion (Mg2+), their activation requires both the binding with glutamate and 

neuronal depolarization. In fact, during LTP induction, glutamate binds to AMPARs leading 

to a membrane depolarization that may be sufficient to dissociate Mg2+. This process allows 

the inward flux of Na+, K+ and Ca2+ through NMDARs causing a drastic increase in the 

intracellular concentration of these ions, especially in the post-synaptic terminals (Baltaci et 

al., 2019). Ca2+ is an important second messenger. Indeed, Ca2+ controls the activity of 

several enzymes via direct binding or indirectly through regulation of phosphorylation 

mechanisms. For instance, when four Ca2+ ions bind to calmodulin (CaM) the protein 

becomes active. Activated CaM may in turn activate other enzymes such as adenylate 
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cyclase and Ca2+/CaM-protein kinase II (CaMKII). The investigation of LTP uncovered two 

different phases taking place during the process (Baltaci et al., 2019). The early LTP 

(protein-synthesis-independent) phase starts immediately after LTP induction with a single 

train of high frequency stimulation, and it produces a brief duration synaptic facilitation by 

making pre-existing post-synaptic glutamatergic receptors more sensitive to the 

neurotransmitter (Baltaci et al., 2019). The late LTP (protein-synthesis-dependent) phase, 

for which a strong stimulation is mandatory, starts hours after the LTP induction. Along with 

this phase, new protein synthesis occurs, which requires gene transcription. The transcription 

cascade begins with the transcriptional factor CREB-1, that induces the transcription of 

genes responsible for the growth of new synaptic connections (Bailey and Kandel., 1993; 

Baltaci et al., 2019). 

 

2.4 The aggregation of a-syn and the oligomer hypothesis  
 
Protein misfolding and aggregation are shared features of neuropathological disorders such 

as AD, Prion diseases and a-synucleinopathies. Many research efforts have focused on the 

understanding of the mechanisms underlying the aggregation process and aimed at 

identifying the aggregates that are responsible for the diseases. 

The aggregation process of α-syn leads to the formation of β-rich fibrillary species from its 

native unfolded conformation. In pathological conditions a-syn undergoes to nucleation 

process fostering the formation of soluble oligomers, protofibrils and mature insoluble fibrils 

(Figure 13), which grow by monomers addition and finally make up LBs and LNs (Buell et 

al., 2014; Ono, 2017).   
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Figure 13. Schematic representation of α-syn aggregation process. Monomeric α-syn may 

aggregate and form different moieties. Two distinct pathways have been proposed: the off-pathway 

leads to the production of non-toxic aggregates, the on-pathway generates species which can be 

neurotoxic (Roberts and Brown, 2015).  

As previously described three distinct domains are found in a-syn. Since deletion or 

disruption of the hydrophobic 12-aminoacid-residue sequence in the central domain 

abrogates a-syn aggregation (Giasson et al., 2001), the NAC region had been initially 

identified as crucial for a-syn aggregation. However, deep investigations into a-syn in the 

recent years additionally claim a relevant role for the N-terminal domain. Of note, all of the 

point missense mutations related to PD are located within the N-terminus, and they have 

been shown to influence a-syn aggregation. A53T and E46K variants are widely assumed 

to increase the aggregation rate of a-syn compared to the WT protein, with A53T being 

more effective than E46K (Conway et al., 2000; Greenbaum et al., 2005). Intriguingly, either 

more rapid or slower aggregation kinetics have been reported for the A30P variant (Narhi et 

al., 1999; Lemkau et al., 2012). H50Q and G51D variants are the most recently identified 

point mutations linked to PD, and it has been demonstrated that they lead to a divergent 

effect on the aggregation process. Particularly, H50Q increases the rate of a-syn 

aggregation, whereas the G51D variant has the opposite effect (Rutherford et al., 2014). 
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During the aggregation process three different steps may be discerned: the initial formation 

steps, the growth of the fibrils (elongation), and their amplification (Flagmeier et al., 2016). 

The single point mutations in a-syn do not affect solely the overall aggregation rate, but they 

affect in a specific way the distinct steps underlying a-syn aggregation (Flagmeier et al., 

2016).  

Like the NAC and the N-terminal domain, the C-terminus has also been shown to modulate 

the aggregation of α-syn. Accordingly, antibodies against this region are able to inhibit the 

fibrillation of a-syn (Sahin et al., 2017). Taken together, these findings depict a complex 

context and highlight the need of further investigation aimed at a more punctual and 

comprehensive understanding of the interplay between the a-syn sub-regions and their 

impact on its aggregation. 

As mentioned above, a-syn oligomers (a-synOs) represent an intermediate aggregate in the 

process eventually leading to a-syn fibrils. The term “oligomer” is used to describe 

aggregates without a fibrillar conformation. a-synOs differ in their molecular composition 

(number of monomers) as well as in their conformation (b-sheets content and hydrophobic 

region exposure) (Bengoa-Vergniory et al., 2017). Although the mechanisms involved in a-

syn toxicity have not been completely elucidated, several data depict a-synOs as the main 

harmful moiety underlying a-syn deleterious effects. Indeed, a-syn detrimental activities 

seem to be independent of large a-syn aggregates and more closely associated to the 

oligomeric species. Exploiting a PD rat model based on the injection of lentiviruses 

expressing a-syn variants promoting either the oligomer or the fibril formation, Winner and 

colleagues first demonstrated that loss of dopaminergic neurons in the SN was induced by 

a-synOs, whereas the expression of the a-syn variant leading to fibrils formation was not 

effective (Winner et al., 2011). More recently, Cai and co-workers confirmed the role of 

oligomers in mediating dopaminergic neuronal loss in SN in a new mice model of PD (Cai 
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et al., 2018).  In this work, the SN was injected with adeno-associated viruses carrying a 

vector encoding the yellow fluorescent protein (YFP) fragmented into its N- or C-terminus 

separately fused with human WT a-syn to form a non-fluorescent-fusion protein. Through 

this approach, the authors were then able to show the formation of a-synOs through the 

observation of the fluorescence deriving from the reconstituted fluorescent protein upon a-

syn oligomerization. Furthermore, they found a time-dependent reduction in striatal 

dopamine levels as well as death of nigral dopaminergic neurons and neuroinflammation 

(Cai et al., 2018). On the same line, two different groups have found that a-synOs impair 

LTP in hippocampal brain slices, whereas monomers and fibrils were ineffective (Martin et 

al., 2012; Diógenes et al., 2012). Together, these findings support the “oligomeric 

hypothesis” allowing researchers to introduce a new definition of a-synucleinopathies as 

pathologies related to oligomers, and to classify them under the name of “oligomeropathies” 

(Forloni et al., 2016; Ono, 2017).  

As mentioned above, during the aggregation process several types of a-synOs may be 

formed, and their toxicity reflects such a heterogeneity. In this regard, it has been shown that 

different effects on cell survival result upon treatment of neuronal cultures with distinct a-

synO species (Danzer et al. 2007). Furthermore, the finding of tetrameric a-syn endowed 

with an a-helical stable conformation in living human cells supports the possible existence 

of oligomers with a physiological function (Bartels et al., 2011). This hypothesis posits that 

a-syn tetramers could exert a protective function counteracting the on-pathway of 

aggregation (the process in which oligomers precede fibrils formation and that is opposed to 

the off-pathway, where oligomers are stabilized and do not further aggregate). Accordingly, 

a-syn point mutations may result in the loss of the putative protective property of oligomers 

(Bartels et al., 2011; Roberts and Brown, 2015). 
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2.5 Intracellular mechanisms involved in a-synO toxicity 

As a-synOs were proposed as pivotal culprits in neurodegeneration, researchers have 

focused on several cellular targets to explain the potential mechanisms underlying a-synO 

toxicity. Many intracellular targets (mitochondria, proteasome, endoplasmic reticulum, cell 

membrane, lysosome and synapse) as well as related processes, seem to be potentially 

involved in the deleterious activity of a-synOs (Figure 14). However, a complete 

understanding of a-synO-mediated neurotoxicity is not available yet, and it remains the 

subject of intensive investigation (Zhang et al., 2018).  

 
Figure 14. Intracellular targets of α-synOs. Schematic representation of the different cellular 

targets of α-synOs (modified from Wong and Krainc, 2017). 

At the mitochondrial level, a-synOs lead to morphological alterations that in turn result in 

fragmentation and disruption of the cellular organelle (Plotegher et al., 2014). More recently, 

treatment of SHSY-5Y cells with a-synOs has been reported to up-regulate the expression 

of the mitochondrial cytochrome c subunit 2, which leads to the reduction of adenosine three 

phosphate (ATP) and to an increase in reactive oxygen species (ROS) (Danyu et al 2019). 

In a PD mouse model and in post-mortem PD samples, a-synOs are shown to accumulate 

into the endoplasmic reticulum (ER), leading to a chronic ER stress and to a significant 

damage in protein synthesis and in protein quality (Bengoa-Vergniory et al., 2017). 
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The ubiquitin-proteasome system is one of the main cellular mechanisms involved in the 

removal of misfolded and damaged protein. Dysfunction of this protein degradation pathway 

has been linked to PD pathogenesis. In fact, a-synOs have been reported to interact with the 

proteasome subunits and to block the proteasome activity (Lindersson et al., 2004; 

Emmanouilidou et al., 2011). Of note, a-synO-mediated inhibition of the proteasome 

activity is reverted upon exposure to antibodies that neutralise the interaction or compounds 

disrupting α-synOs (Xilouri et a., 2013).  

Maintenance of cell membrane architecture and permeability properties is crucial for cell 

survival and functions. Extracellular oligomers of a-syn may insert into membranes 

generating pore-like structures that could act as non-selective channels, thus resulting in 

abnormal ionic intake which unbalances intracellular homeostasis (Danzer et al., 2007; 

Tsigelny et al., 2012). In addition, a-synOs might also interact with the membrane altering 

the lipid packing. In this regard, Chaudary et al. have recently reported that by interacting 

with damaged cellular membranes, a-synOs may promote the propagation of the membrane 

defects (Chaudary et al., 2016), therefore opening new investigation routes to elucidate a-

synO action mechanisms. 

Autophagic and lysosomal loss of function has been linked to PD. Accordingly, a-synO 

accumulation might result in the autophagic and lysosomal degradation pathway 

disturbance, which in turn could cause a-syn accumulation and further production of 

oligomers (Ingelsson, 2016; Ono, 2017; Zhang et al., 2018). The interest in studying the 

mechanisms of a-synO activity in the context of the lysosomal degradation pathway comes 

from the evidence that oligomers, and not fibrils, are cleared by lysosomes. Furthermore, 

blockage of the lysosomal pathway leads to a-synOs accumulation and toxicity (Lee et al., 

2004). Hitherto, the most commonly accepted hypothesis indicates a possible vicious circle 

between a-synOs and the autophagic/lysosomal pathway. Toxic α-synOs may damage 
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lysosomes leading to an inhibited clearance of α-syn, which in turn causes further production 

of toxic oligomers (Bourdenx et al., 2014). 

Damage and reduction of synapses have been described in PD and PD-related disorders. 

Notably, altered expression of synaptic proteins involved in synaptic transmission occurs 

before neuronal loss. Therefore, synaptic deficit can be considered as starting event for 

neurodegeneration in α-synucleinopathies (Overk and Masliah, 2014; Bridi and Hirh, 2018). 

The relevance of synaptic damage in the pathogenesis of α-synucleinopathies is supported 

by a large amount of data, including the presence of α-synOs in axonal terminals which 

precedes the formation of LBs (Marui et al., 2002), and the relationship between synaptic 

changes and α-synOs in pre-synaptic terminals, that ultimately lead to memory deficit in 

DLB (Kramer and Schulz-Schaeffer, 2007; Overk and Masliah, 2014; Bridi and Hirth, 

2018). Altogether, these considerations allow the definition of α-synucleinopathies as 

synaptopathies, and ask for the elucidation of the mechanisms mediating α-synO detrimental 

effects at the synaptic level. In this regard, several mechanisms have been proposed which 

may co-exist and act in a synergistic manner. Through the binding of proteins involved in 

microtubule assembly and dynamics (tubulin, kinesin and MAP2), α-synOs promote an 

aberrant neurite network morphology and affect anterograde transport (Prots et al., 2013). 

Synaptic vesicles derived from the Golgi apparatus get translocated to the axonal terminals 

by anterograde-mediated microtubules transport. Hence, alterations in the microtubule 

assembly and dynamics could explain the synaptic changes reported by Scoot and colleagues 

in a mouse model over-expressing human α-syn (Scott et al., 2010). Indeed, they found that 

high levels of α-synOs in the synaptic terminals were closely associated with reduction in 

synaptic vesicles density and synaptic proteins (Scott et al., 2010). 

In addition to microtubule alterations, α-synOs inhibit the synaptic docking and decrease 

neurotransmitter release. α-synOs interact with the vesicular protein sinaptobrevin-2, and as 
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a consequence they make the protein unavailable for the interaction with the t-SNARE 

complex, leading to inhibition of neurotransmitter release (Choi et al., 2013). 

Current knowledge suggests that multiple mechanisms at multiple cellular levels may be at 

play in the generation of α-synO-induced damages, supporting the hypothesis that α-

synucleinopathies are multifactorial disorders even from a cellular viewpoint (Overk and 

Masliah, 2014; Bridi and Hirth, 2018). 

 

2.6 Evidence for α-synOs in extracellular fluids and its implications 

The cytosolic localization of α-syn and of its proteinaceous species suggests that cell-

autonomous mechanisms could be involved in mediating α-synO detrimental activities. 

However, compelling evidence confirms the hypothesis that oligomers act also in a non-cell-

autonomous manner. In fact, full-length α-syn could be detected in human extracellular 

fluids such as cerebrospinal fluid (CSF), interstitial brain fluids and blood (Borghi et al., 

2000; El-Agnaf et al., 2003; Emmanouilidou et al., 2011). Intriguingly, the release of α-syn 

occurs in PD patients as well as in healthy controls, therefore suggesting that α-syn secretion 

is a normal physiological process. Of note, the CSF α-syn pool is predominantly derived 

from brain neurons rather than peripheral blood (Mollenhauer et al., 2012). The deep 

investigation of α-syn in extracellular fluids has also revealed that in CSF α-syn was 

detectable in its oligomeric state (Park et al., 2011; Hansson et al., 2014), further supporting 

the potential role of extracellular α-synOs in the pathogenesis of PD and PD-related 

disorders.  

The detection of both monomeric and oligomeric α-syn in extracellular fluids of PD, DLB 

and healthy control patients is consistent with the evidence that neuronal cells release 

monomeric and oligomeric α-syn into the cell medium (El-Agnaf et al., 2003, Lee et al., 

2005; Kim et al., 2013), and with the finding that stress conditions increase the release 
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amount of α-synOs (Jang et al., 2010). Several mechanisms have been put forward while 

attempting to describe the processes underlying α-syn release by neurons. Such mechanisms 

include the release of α-syn by dying neurons, unconventional exocytose type independent 

of the classical ER/Golgi pathway such as exosomes release, and autophagosome-mediated 

exocytosis (Danzer et al., 2012; Gallegos et al., 2015). 

Based on α-syn behaviour and extracellular localization, two possibilities have been 

envisaged: I) α-synucleionopathies, as well as other protein misfolding related 

neurodegenerative disorders, may be a prion-like disease (Marques and Outeiro, 2012), and 

II) the potential of α-syn monomers and α-synOs as biological markers for the diagnosis at 

early stage and for the assessment of benefits deriving from new therapeutic approaches (Lee 

et al., 2014). 

Although the second point was received with excitement by the scientific community, at the 

state of the art, no reliable detection approaches have been developed to distinguish healthy 

control from individual PD or PD-related patients. That is because plasma and CSF levels 

of α-syn are comparable between healthy control and PD patients. Furthermore, levels of α-

synOs are generally higher in PD patients but at the same time they may also overlap with 

healthy individuals, and therefore not useful as diagnostic tools to discriminate individual 

healthy controls to patients (Lee et al., 2014). In contrast, Majbour and colleagues reported 

a novel antibody with a high sensitivity and specificity for α-synOs which allows the 

discrimination of PD from healthy individuals (Majbour et al., 2016). On the other hand, the 

detection of α-synOs in CSF may be useful to distinguish patients with PDD or DLB by AD 

patients (Hansson et al., 2014). Controversies often motivate research and provide new 

stimuli to push our knowledge forward. Validation of reliable biomarkers for early diagnosis 

and for monitoring the disease progression is a hot and urgent topic in the field of 

neurodegenerative disorders, thus requiring further investigation and innovation. 
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The findings reported here show that α-syn and α-synOs are normally secreted by neurons. 

Moreover, stress conditions increase the release of α-synOs, thus highlighting the potential 

role of extracellular oligomers in the pathogenesis of α-synucleinopathies and their potential 

significance as biological markers. 

 

2.6.1 The non-cell-autonomous action of α-synOs 

To explore the mechanisms involved in mediating α-synO detrimental activities, 

investigators mainly focused on the cell-autonomous processes at first. Nevertheless, the 

finding that α-synOs were detectable in extracellular fluids and the direct observation of 

released α-synOs by neurons suggested non-cell-autonomous mechanisms being at play in 

concert with the cell-autonomous ones. 

Among cell types involved in non-cell-autonomous mechanisms, astrocytes and microglial 

cells have received increasing attention over the years. Such an interest raised from a number 

of observations, which include: the identification of reactive astrocytes and microglial cells 

in the brain of patients affected by different α-synucleinopathies (MacKenzie, 2000; McGeer 

and McGeer, 2008; Fellner et al., 2011; Fellner and Stefanova 2013; Dickson, 2018); the 

detection of α-syn inclusions within glial cell bodies (Fellner et al., 2011) and; the activation 

of both astroglial and microglial cells upon exposure to α-syn released by neurons (Alvarez-

Erviti et al., 2011; Fellner et al., 2013; Kim et al., 2013). Therefore, α-synOs may become 

neurotoxic per se or, as shown in figure 15, through an indirect route that involves activation 

of astroglial and microglial cells (Marques and Outeiro, 2012; Lim et al., 2018).  

Astrocytes and microglia are the main components of the innate immunity in the central 

nervous system (CNS). In response to various stimuli (e.g. lesions, infections, chronic 

stress…) they become activated and able to release several pro-inflammatory factors which 

may trigger neuronal dysfunction (Fellner et al., 2011; Morris et al., 2013; Blank and Prinz, 
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2013). Of note, activated glial cells contribute both to the onset and to the progression of the 

pathology. Through the production of pro-inflammatory signals and ROS, activated glial 

cells might lead to a detrimental microenvironment which in turn promotes the detrimental 

activities of oligomers (Lim et al., 2018).  

 

Figure 15. Schematic representation of the non-cell-autonomous action of α-synOs.  Oligomers 

of α-syn can act through non direct mechanisms. They may be transferred between neurons or 

secreted by them. Extracellular α-synOs activate both microglial and astroglial cells, which in turn 

could lead to neuronal damage (modified from Marques and Outeiro, 2012).  

Consistently, Kim and colleagues reported that the α-synO-conditioned medium derived 

from microglial cells leads to neuronal death in vitro (Kim et al., 2016). More recently, di 

Domenico and co-workers demonstrated the pivotal role of astrocytes in mediating 

dopaminergic neuronal death. They indeed reported that induced pluripotent stem cells 

(iPSCs) -derived dopaminergic neurons show a reduction in the length of their neurites and 

an increase in cell death when co-cultured with iPSCs-derived astrocytes form PD patients 
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(di Domenico et al., 2019). The relevance of glial cells in α-synucleinopathies is further 

supported by in vivo experiments showing that LPS-induced neuroinflammation in PD 

mouse models triggers dopaminergic neuronal loss in SN in association with increased 

neuroinflammation and oxidative stress (Gao et al., 2008; Gao et al., 2011). In addition, 

blocking microglial cell activation by drugs, such as minocycline, leads to a decrease in 

neuronal death (Lim et al., 2016). 

Collectively these findings support the idea that glia, in addition to neurons, may contribute 

with non-cell-autonomous mechanisms to the aetiology of α-synucleinopathies. 

The implications of neuroinflammation for α-synucleinopathies as well as the role of 

astroglial and microglial cells in the regulation of neuronal functions will be further 

discussed in chapter III. 

 

2.7 Alpha-synuclein oligomers and cognitive impairment 

As previously described, progressive cognitive decline is a clinical feature of DLB and PDD 

and is an important element in consensus guidelines for the clinical diagnosis of both 

diseases (McKeith et al., 2004). Changes in synaptic organisation have been described in 

DLB and PDD patients and have been linked with cognitive impairment (Kramer et al., 

2007; Schulz-Schaeffer, 2010). 

Mounting evidence suggests a pivotal role for α-syn in the cognitive impairment. As 

mentioned above, over-expression of both WT and mutant forms of human α-syn is 

sufficient to induce memory deficits (Zhou et al., 2008; Lim et al., 2011; Larson et al., 2012). 

Notably, Lim and co-workers demonstrated that suppression of α-syn rescued memory 

dysfunctions (Lim et al., 2011). 

The critical role of α-synOs in mediating memory damage has been demonstrated by 

different groups. Indeed, while LTP is significantly impaired in the hippocampus upon 
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exposure to α-synOs, monomers and fibrils are ineffective (Martin et al., 2012; Diogenes et 

al., 2012). Two different mechanisms have been proposed to explain such a detrimental 

effect: I) an increase in the calcineurin (CaN) activity, a phosphatase with a negative 

modulatory function on synaptic plasticity; II) an increase in basal synaptic transmission 

through an alteration in both AMPA and NMDA receptors permeability (Martin et al., 2012; 

Diogenes et al., 2012). In this regard, it was reported that the application of α-synOs in 

hippocampal cell cultures enhanced both pre- and post-synaptic AMPA receptor 

transmission (Hulls et al., 2011), which might in turn lead to a calcium dyshomeostasis and 

cell death or synaptic loss as described in patients with DLB (Campbell et al., 2000; Danzer 

et al., 2007;  Hulls et al., 2011). 

These data, obtained through electrophysiological approaches on brain slices, have been 

further reinforced by behavioural in vivo experiments. In fact, α-synOs 

intracerebroventricularly (ICV) injected in mice caused cognitive dysfunction as 

demonstrated using the fear conditioning memory task, whereas monomers and fibrils were 

again inactive (Martin et al., 2012). 

More recently, Ferreira et al. showed that the detrimental activity of α-synOs on LTP 

requires the association with the cellular prion protein (PrPC) (Ferreira et al., 2017). In 

particular, they found that PrPC residues 93-109 are crucial to mediate LTP inhibition upon 

exposure to α-synOs, while α-synOs seem to require PrPC to activate the Fyn kinase, which 

in turn leads to NMDAR2B phosphorylation giving rise to LTP inhibition. Moreover, 

Ferreira and colleagues, through immunoprecipitation approaches, demonstrated that α-syn 

and PrPC can interact both in cell cultures treated with α-synOs and in a PD Tg mouse model 

overexpressing the human α-syn (Ferreira et al., 2017).  

Electrophysiological properties of neurons and of neuronal circuitries are tightly associated 

with intrinsic neuronal properties such as the expression of ion channels, neurotransmitter 
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release and receptor modulation. Deregulation of such a complex machinery may result in 

the alteration of neuronal plasticity and eventually in cognitive dysfunctions. While 

collectively these data support a key role for α-synOs in mediating cognitive impairment, a 

clear and univocal mechanism is still missing, and further investigation is required to acquire 

new insights on possible processes which may occur. On this subject, emerging data 

highlight the role of neuroinflammation as a potential culprit leading to neuronal dysfunction 

and impairment of cognitive functions. Pro- and anti-inflammatory cytokines, as well as 

LPS, have been reported to impair memory performance in different animal models (Donzis 

and Tronson, 2014; Richwine et a., 2009; Balducci et al., 2018). The role of 

neuroinflammation in mediating memory damage is strongly supported by existing evidence 

in animal models of AD. In an acute mouse model of AD, amyloid-β oligomers (AβOs) have 

been reported to impair memory performance through activation of glial cells and increase 

of pro-inflammatory cytokines expression (Balducci et al., 2017). Additionally, the block of 

neuroinflammation resulted in the rescue of memory functions both in an acute and in a Tg 

mouse model of AD (Balducci et al., 2017; Balducci et al., 2018). Intriguingly, α-synOs 

may exert detrimental activities through indirect non-cell-autonomous mechanisms which 

include glial cell activation. As mentioned above, activated glial cells produce several 

signals which can subsequently induce neuronal damage and impair cognitive functions. 

Thus, neuroinflammation might represent a process underlying cognitive decline in the 

context of α-synucleinopathies, and an exciting research direction to explain α-synO 

pathological mechanisms. 
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3.1 Evidence for the role of inflammation in a-synucleinopathies 

Initially considered as a mere secondary event and a consequence of the neurodegenerative 

process, neuroinflammation has acquired increasing interest in the context of α-

synucleinopathies. This is partly due to the considerably big amount of data obtained from 

post-mortem analyses, in vivo brain imaging, assessment of pro-inflammatory mediators in 

human fluids, genetic/epidemiological studies and experimental animal models (Hirsch and 

Hunot, 2009; Dzamko et al., 2015; Surendranathan et al., 2015; Lim et al., 2016).  

A broad spectrum of stimuli is capable of eliciting an immediate and short-lived activation 

of the innate immune system within the CNS. Astrocytes and microglia act as brain’s 

sentinels, and through the release of inflammatory mediators like cytokines and chemokines, 

they foster the migration of innate and adaptive immune cells such as 

monocytes/macrophages, neutrophils and lymphocytes (Walsh et al., 2014). Although this 

response is normally self-limiting once the insult is resolved, persistence of inflammatory 

factors might result in pathological consequences and neurodegeneration (Glass et al., 2010). 

The initiation of the inflammatory response generally occurs after the recognition by pattern 

recognition receptors (PRRs) of both exogenous (pathogen associated molecular patterns, 

PAMPs) and endogenous stimuli (damage associated molecular patterns, DAMPs). The 

binding of PRRs and DAMPs, such as misfolded and aggregated proteins including α-syn, 

leads to a signal transduction, which in turn triggers the activation of glial cells and the 

neuroinflammatory response (Heneka et al., 2014). Of note, gliosis is a common feature of 

α-synucleinopathies (Fellner et al., 2011). Microglial cell reaction is commonly observed in 

post-mortem PD brains (McGeer et al., 1988; Chao et al., 2014) and its persistence is linked 

to damaged dopaminergic neurons (Chao et al., 2014). Moreover, in DLB cases increased 

microglial activation positively correlates with the load of LBs (Togo et al., 2001). While 

the activation of the microglial pool in PD/DLB brains is widely accepted, contradictory 

results by different groups were reported for astrocytes which were found either in an active 
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or an inactive state (Tong et al., 2015). In addition to astrocytosis and microgliosis, higher 

levels of pro-inflammatory mediators have been found in both the striatum and the SN of 

post-mortem PD and DLB brains (Togo et al., 2001; Hirsch and Hunot, 2009). 

Despite detecting the presence of an immune response within the brain, the 

neuropathological assessment of inflammation in post-mortem samples does not provide 

evidence enough to directly link neuroinflammation with the pathogenesis of α-

synucleinopathies. Nevertheless, in vivo studies have clearly demonstrated that a 

neuroinflammatory process takes place during the progression of the disorders. PET scans 

with a ligand for microglia revealed the presence of activated microglial cells in PD, PDD 

and DLB patients (Hirsch and Hunot, 2009; Surendranathan eta al., 2015). Intriguingly, 

cortical microglial activation in PDD and DLB patients is characterised by a wider spreading 

compared to PD, and microglial activation negatively correlates with cognitive functions 

(Surendranathan eta al., 2015). Thus, a potential role for microglia in the pathogenesis of 

cognitive dysfunctions in both PDD and DLB has been speculated by researchers. 

Analysis of pro-inflammatory mediators in central and peripheral human biological fluids 

provides further proof supporting a role of inflammation in the pathogenesis of α-

synucleinopathies. Elevated levels of pro-inflammatory cytokines such as IL-1β, IL-6 and 

TNF-α were identified in PD patients compared to age-matched healthy controls (Mogi et 

al., 1994; Blum-Degen et al., 1995; Mueller et al., 1998; Clough et al., 2013). Notably, 

levels of IL-6 are inversely correlated with the severity of the pathology in PD patients 

(Mueller et al., 1998), and they are higher in PD cases with cognitive decline than in PD 

patients with no evidence of cognitive damage. Moreover, patients with cognitive 

dysfunction show an inverse correlation between IL-6 levels and the severity of the cognitive 

function impairment (Yu et al., 2014). Since pro-inflammatory mediators appear increased 

and are detectable in biological fluids, they have been extensively investigated as potential 

biomarkers and diagnostic/prognostic tools. However, controversial results were published 



Introduction: Chapter III 
 

60 
 

(Brodacki et al., 2008; Yu et al., 2014; Gupta et al., 2016; Hall et al., 2018). These disparities 

may depend on several aspects such as the severity of the pathology, difference in the life-

time spent with the pathology, as well as the presence of co-morbidities (Eidson et al., 2017).  

In spite of inconsistent results in the alteration of some pro-inflammatory cytokines in 

biological fluids, the role of the inflammatory response in α-synucleinopathies has also been 

suggested by genetic and epidemiological studies. As summarised in table 4, genes involved 

in PD also play a role on glial cells (Joe et al., 2018).  

 

 

 

 

 

 

 

 

 

 
 
 

Table 4. PD related genes and their function in astrocytes and microglial cells (Joe et al., 2018).  

Besides, several polymorphisms in inflammatory associated genes increase the susceptibility 

to develop PD (Hirsch and Hunot, 2009).  

As described in chapter I, epidemiological studies have pointed out an inverse correlation 

between the use of NSAIDs, particularly Ibuprofen, and the risk of developing PD (Ascherio 

and Schwarzschild, 2016). On the other hand, systemic pathologies characterised by the 

induction of a neuroinflammation were found to positively correlate with an increasing risk 

of PD (McKenzie et al., 2017). 
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Compelling evidence of neuroinflammation in PD also comes from studies in different 

animal models. Chronic overexpression of the cytokine IL-1β in the SN of adult rat results 

in nigral dopaminergic degeneration and motor deficits, as well as glial activation (Ferrari 

et al., 2006). The MPTP model of PD was shown to cause microgliosis and to increase the 

levels of inflammatory mediators in murine SN (Czlonkowska et al., 1996: Mandel et al., 

2000). The Gram-negative bacterial endotoxin component LPS is a potent activator of 

inflammatory cells, and it has enabled researchers to gather information on the role of 

various inflammatory mediators in PD pathogenesis. As a matter of fact, the systemic 

administration of LPS has been reported to trigger a long-lasting increase in the pro-

inflammatory cytokine TNF-a in the brain, an increase in microglial cell activation in 

hippocampus and SN, as well as a progressive dopaminergic neuronal loss in SN (Qin et al., 

2007). Interestingly, administration of LPS in mice overexpressing α-syn results in the 

enhancement of the dopaminergic neurodegeneration (Gao et al., 2011). In addition, Tanaka 

and colleagues (Tanaka et al., 2013) demonstrated that the sub-chronic intranigral 

administration of LPS in WT but not in IL-1b null mice leads to microglial activation, 

increased pro-inflammatory cytokines production, death of dopaminergic neurons and motor 

behaviour impairment (Tanaka et al., 2013). Of note, the same authors observed that 

microglial activation and motor deficits occur earlier than neuronal loss, thus describing 

neuroinflammation as an early phenomenon which triggers neuronal dysfunction and 

ultimately neuronal death (Tanaka et al., 2013).  

More findings confirming the involvement of neuroinflammation in PD have been provided 

exploiting Tg mouse models. In mice overexpressing WT human a-syn, microglial 

activation and high levels of the pro-inflammatory cytokine TNF-a in both striatum and SN 

were reported, as well as microgliosis and astrogliosis in the hippocampus (Gelders et al., 

2018; Kim et al., 2018). Microglial cells seem to have a key role in dopaminergic 

neurodegeneration. In fact, onset of microglial activation appears before the dopaminergic  
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loss, and inhibition of microglial cell activation through minocycline administration results 

in a significant decrease of neuronal death (Wu et al., 2002; Hirch and Hunot, 2009). 

However, despite promising outcomes of minocycline in pre-clinical studies, a clinical trial 

with minocycline has proven unsuccessful (NINDS NET-PD Investigators, 2008). 

Therefore, further investigations of neuroinflammation in PD and PD-related disorders are 

mandatory to acquire full knowledge of the inflammatory mechanisms underlying these 

disorders. 

 

3.2 Astrocytes and microglial cells are key players in the healthy brain 

Together with oligodendrocytes, which isolate axons and allow the fast and efficient 

propagation of the action potential, astrocytes and microglial cells are the main cellular 

components of the CNS and have essential functions in maintaining brain homeostasis and 

properties (Bacci et al., 1999; Hertz and Chen, 2016). 

Despite their different embryogenic origin, both astrocytes and microglial cells are immune 

competent cells in the brain, and they are crucial players in the fine regulation of neuronal 

activity and synaptic plasticity (Blank and Prinz, 2013; Hertz and Chen, 2016). Synapses are 

specialised structures involved in the processing and transmission of the information 

between neurons and, furthermore, they are involved in learning and memory. Thus, a strict 

survey and tuning of synaptic functions is a milestone for superior functions. 

In healthy brains, astrocytes as well as microglial cells are juxtaposed and directly contact 

synapses at both pre- and post-synaptic levels (Figure 16).  
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Figure 16. Schematic representation of the tight interconnection between neurons, astrocytes 

and microglial cells at synaptic level. Astrocytes and microglial cells finely survey synaptic activity 

and tune it as well as synaptic plasticity. Of note both microglial and astrocyte activities at synaptic 

level are dependent on neuronal activity and is regulated by direct and indirect interconnections 

among all three cell types (Blank and Prinz, 2013). 

A single astrocyte may contact up to two million synapses in human and, such a spatial 

organisation allows the constant monitoring of synaptic activity, which in turn is essential 

for tuning synaptic functions and plasticity (Blank and Prinz, 2013; Hertz and Chen, 2016). 

Astrocytes are essential for providing a metabolic support to neurons. Namely, astrocytes 

uptake glucose from the blood and convert it into lactate through glycolysis. After release 

into the extracellular space, lactate is then utilised in the oxidative metabolism by neurons 

(Bacci et al., 1999; Joe et al., 2018). Astrocytes have also an important function in the 

removal of glutamate from the synaptic cleft. In presence of a sustained neuronal activity, a 
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high release of the excitatory neurotransmitter glutamate takes place. Glutamate is removed 

from the synaptic cleft by astrocytes through a transporter linked with a Na+ inward current. 

The resulting increase in the intracellular Na+ concentration leads to the activation of the 

Na+/K+ ATPase which in turn stimulates glycolysis and the production of lactate. Thus, this 

fine mechanism clearly demonstrates that astrocytes provide lactate to neurons in a synaptic 

activity-dependent manner (Bacci et al., 1999). In addition, astrocytes are involved in ion 

homeostasis, in regulating brain water volume and in modulating oxidative stress through 

the production of glutathione. Moreover, astrocytes provide glutamine to neurons which is 

converted by neurons in glutamate and produces diverse neurotrophic factors essential for 

neuronal health (Joe et al., 2018). 

Aside of astrocytes, also microglial cells have vital functions in healthy brain. In its resting 

state, microglial cells interplay a large number of connections with both neurons and 

astrocytes, and they play a role in synaptic remodelling as well as in providing neurotrophic 

factors to neurons. When in a resting state, microglial cells have a ramified morphology with 

a high number of branching processes and a small body. The extremely dynamic and mobile 

thin processes of microglial cells constantly survey the microenvironment and the synaptic 

activity. Indeed, microglial cells have receptors for several neuronal transmitters and through 

different signals, including inflammatory mediators, may regulate the neuronal activity 

(Morris et al., 2013). Of note, microglial cells in healthy conditions produce physiological 

levels of pro- and anti-inflammatory cytokines such as IL-1β, IL-10 and TNF-α, which are 

involved in synaptic plasticity, learning and memory (Blank and Prinz, 2013; Donzis and 

Tronson, 2014). Therefore, alteration of number, morphology and activation state of 

microglial cells, which generally occur during chronic and not regulated inflammation, may 

lead to synaptic and neuronal damage that ultimately may result in neurodegeneration (Blank 

and Printz. 2013; Morris et al., 2013). 
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Microglial activity at synaptic level is regulated by several mediators. Among these, 

neuronal fractalkine and CD200 have an inhibitory effect on microglial activation. The fine 

regulation of microglial cells is essential for the neuronal and synaptic functions and it 

involves neurons, astrocytes and microglial cells themselves. Thus, impairment of this fine 

and complex mechanism may trigger impaired synaptic plasticity, LTP and in turn memory 

damage (Blank and Prinz, 2013; Morris et al., 2013; Yang et al., 2007). 

As described in Chapter II, synaptic plasticity is an essential process for learning and 

memory. During learning and memory formation many events including creation of new 

synapses, elimination of “unwanted”, not well-working or damaged synapses and synaptic 

remodelling take place. Of note, microglial cells and astrocytes maintain phagocytic 

properties during adulthood, thus allowing remodelling, refinement and clearance of 

synapses (Jung and Chung, 2018).  

 

3.3 General characteristic of microglial cells 

Neuroinflammation triggered by microglial cells is a key player in PD and DLB 

pathogenesis. In fact, microgliosis positively correlates with dopaminergic 

neurodegeneration in SN (Ouchi e t al., 2005).  

Microglia derive from primitive yolk sac myeloid progenitors which seed in the developing 

brain parenchyma where they persist. Of note, microglial cells are exclusively present in the 

CNS and are not found in other organs or tissues (Subramaniam and Federoff, 2017). 

Microglial cells represent 10-15% of cells in the brain, and while they are evenly distributed, 

their density and morphology vary across brain regions (Tremblay et al., 2011; 

Subramaniam and Federoff, 2017). In the healthy brain, microglial morphology and 

distribution are dependent on the local cytoarchitecture. While in high dense cell regions 

microglia occur with a low rate, microglial cells are abundant in low dense cell fields. Thus, 

indicating a negative correlation between local cell density and microglial distribution into 
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the brain (Tremblay et al., 2011). As mentioned above, local cytoarchitecture also influences 

the morphological aspect of microglia. In white matter, microglia show an elongated soma 

with processes oriented along fibres. In contrast, in grey matter microglial cells have an 

elaborated shape with many radially oriented processes (Tremblay et al., 2011). Microglial 

cells, similarly to peripheral macrophages, survey the microenvironment against pathogens 

and damage signals. This function is closely related to the ability of microglial cells, at least 

in their resting state, to perpetually change their morphology by extending and retracting 

their own highly motile processes (Tremblay et al., 2011; Morris et al., 2013; Subramaniam 

and Federoff, 2017). Despite the high motility of their processes, microglia have an 

individual territory and direct contacts between microglial processes are avoided (Tremblay 

et al., 2011). In response to both exogenous and endogenous stimuli, resting microglial cells 

are activated and undergo a changing process. This includes alterations in both cellular 

morphology - from a ramified to an ameboid shape with an enlargement of the soma - and 

in gene/protein expression profile which in turn underlies the brain immune response.  Since 

fine tuning of the immune response in both its initiation and resolution is crucial for the 

clearance of harmful elements as well as for brain homeostasis, an uncontrolled balance of 

microglial activation may result in brain damage and neurodegenerative disorders including 

PD (Cherry et al., 2014; Tang and Le, 2016).  

 

3.3.1 The dual role of microglial activation 

Resting microglia can either be activated in a classical activation way leading to an M1 

proinflammatory microglial phenotype, or via an alternative way, that results in an M2 anti-

inflammatory microglial phenotype (Figure 17). In addition to the classical and alternative 

activation, microglial cells may also undergo an acquired deactivation process which is 

essential for the resolution of the immune response and results in the switching of the M1 

microglia to the M2 microglial phenotype (Tang and Le, 2016). 
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M1 microglia are characterised by pro-inflammatory and pro-killing functions that serve as 

a rapid prime line defence. Several kinds of signals may lead resting microglia to acquire an 

M1 phenotype including IL-1β, TNFα, interferon gamma (IFNγ) as well as α-synOs (Kim 

et al., 2013; Subramaniam and Federoff, 2017). In this activated state, the production of pro-

inflammatory mediators is significantly increased and several markers enabling the 

identification of M1 microglial cells are overexpressed (CD16/32, inducible nitric oxide 

synthase iNOS, IL-1β, TNFα, IL-6…). In contrast to M1 microglia, M2 microglial cells are 

associated with the resolution of the neuroinflammation. In fact, in this activation state 

microglial cells express anti-inflammatory mediators and enzymes such as IL-4, IL-10, IL-

13, transforming growth factor β (TGFβ), arginase 1, YM1, receptors associated with the 

phagocytosis. All these signals, apart from being useful M2 microglial markers, are involved 

in dampening neuroinflammation, in resolving injury as well as in repairing tissues (Cherry 

et al., 2014; Subramaniam and Federoff, 2017). Of note, anti-inflammatory cytokines have 

a double function. Namely, they counteract the production of pro-inflammatory mediators 

and, on the other hand, they promote the acquisition of an M2 phenotype (Cherry et al., 

2014; Tang and Le 2016). The fine and complex regulation of M1/M2 microglial phenotypes 

is crucial for brain homeostasis and health. A clear example of such a fine process is provided 

by the cross-talk between iNOS and arginase 1, that are expressed by M1 and M2 microglia, 

respectively. Both iNOS and arginase 1 are involved in the metabolism of arginine, which 

represents the unique substrate for both enzymes. The metabolism of arginine by iNOS leads 

to the production of citrulline and nitric oxide (NO). Of note, NO is toxic on neurons, and it 

was reported to be involved in dopaminergic neurodegeneration through different 

mechanisms (Zhang et al., 2006b; Choi et al., 2009). Unlike iNOS, arginase 1 converts 

arginine in hydroxyproline, proline and polyamine that contribute to tissue repair (Tang and 

Le, 2016). As arginine is the substrate of both iNOS and arginase 1, the latter counteracts 

NO production and may prevent neuronal damage.  
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Figure 17. Schematic representation of the classical and alternative pattern of microglia. In 

response to diverse stimuli, microglia may acquire an M1 or an M2 phenotype which are associated 

with a different protein expression as well as a divergent effect on neurons (modified from 

Subramaniam and Federoff, 2017). 

Based on the observation of microglial activation in PD and on the observation of possible 

different microglial phenotypes, researchers are attempting to further understand the 
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differential role of M1 and M2 microglia in PD. In this regard, it has been recently reported 

in an LPS-induced PD mouse model that the progressive nigrostriatal dopaminergic 

neurodegeneration is linked to an M1 microglial phenotype. In contrast, the cessation of the 

dopaminergic neurodegeneration strictly occurs in association with the switch of microglial 

cells to an anti-inflammatory M2 phenotype (Beier et al., 2017). In addition to the different 

properties of activated microglia, an emerging concept in the field of microglial cells and 

neurodegenerative disorders is the “priming” of microglial cells. Microglia, indeed, may 

retain features acquired during previous immune challenges, thus becoming “primed” and 

respond to a subsequent stimulus in an exaggerated manner. In turn, such a strong reaction 

may ultimately result in an uncontrolled inflammatory response that may become chronic. 

Once the inflammatory response becomes chronic, it self-sustains through a vicious circle 

and leads to a harmful microenvironment being dangerous for neurons (Tremblay et al., 

2011; Lecours et al., 2018). 

 
 
3.4 Brain and peripheral inflammation: a strong connection 

Neuroinflammation has a key role in the pathogenesis of neurodegenerative disorders 

including α-synucleinopathies. Of note, peripheral inflammation contributes and increases 

brain inflammation, thus suggesting a tight and complex cross-talk between the two immune 

systems (Kempuraj et al., 2017). The direct link between systemic and brain inflammation 

raises from a lot of evidence comprising data from both human samples and experimental 

animal models. As previously described, elevated levels of several pro-inflammatory 

mediators have been detected in both blood and CSF of PD patients. In addition, the 

induction of a peripheral inflammation through a single intraperitoneal injection of LPS 

triggers a self-propelling chronic neuroinflammation which is accompanied by 

dopaminergic neurodegeneration. Remarkably, the LPS-induced neuroinflammation seems 

to be weakly linked to the LPS per se, but instead appears more closely related to the 
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expression of the pro-inflammatory mediator TNF-α, which remains elevated in the brain 

for a long time after LPS treatment (Qin et al., 2007).  

Speaking about the different peripheral immune cells, monocytes have acquired an 

increasing interest in PD pathogenesis. Monocytes are a subset of myeloid cells which 

represent the main component of the peripheral innate immune system (Wijeyekoon et al., 

2018; Mahad et al., 2006). In response to specific signals these cells are recruited from the 

periphery into the brain where they contribute to the neuroinflammatory response (Harms et 

al., 2018). One of the best known and well-established pathways involved in the brain 

monocyte recruitment is the CCL2/CCR2 pathway. Through CCR2, peripheral monocytes 

recognise the circulating chemokine CCL2, which in turn promotes the migration of 

monocytes across the blood-brain-barrier (Wijeyekoon et al., 2018; Harms et al., 2018). 

Once inside the brain, monocytes may differentiate into active macrophages, which 

contribute to neuroinflammation and therefore could be detrimental for brain integrity. 

Intriguingly, CCR2 expression is elevated in peripheral blood monocytes of PD patients 

compared to healthy controls (Funk et al., 2013), and monocytes from the blood of PD 

patients show a higher production of CCL2 than those of age matched healthy controls 

(Reale et al., 2009). As a consequence, such an alteration in the expression of both CCL2 

and CCR2 may contribute to the self-propelling of the inflammation in both periphery and 

brain. A significant evidence of the role of monocytes in PD has been recently provided by 

Harms and colleagues. Exploiting a PD mouse model overexpressing human α-syn, they 

demonstrate a high recruitment of peripheral monocytes in the SNpc. Moreover, genetic 

deletion of CCR2 hampered the α-syn-induced monocyte recruitment, neuroinflammation 

and dopaminergic neurodegeneration (Harms et al., 2018). These lines of evidence shed new 

light into peripheral inflammation in PD pathogenesis. However, a contribution of both 

peripheral and brain inflammation seems to be more plausible that the role of solely 
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peripheral monocytes in PD pathogenesis. In fact, data indicate that a-synOs, as previously 

described, directly interact with and activate microglia. 

 

3.5 The Toll-like receptors 

As mentioned above, the initiation of the inflammatory response generally occurs after the 

recognition of DAMPs or PAMPs by PRRs such as TLRs. TLRs are first line players 

involved in the innate immune response and are able to detect both exogenous and 

endogenous signals including misfolded and aggregated α-syn. TLRs are highly conserved 

throughout species ranging from nematodes to higher eukaryotes, and they are the best 

characterised group of innate immune receptors. To date, 10 and 13 functional TLRs have 

been discovered in humans and mice, respectively (Arroyo et al., 2011). They are type I 

transmembrane proteins with a leucine-rich ectodomain recognising PAMPs/DAMPs, a 

transmembrane domain, and an intracellular Toll-interleukin 1 receptor (TIR) involved in 

downstream signalling (Arroyo et al., 2011).  The outcome of signalling is determined by 

the cell type expressing the receptors and through the selective use of specific sorting adaptor 

proteins. In addition, the response specificity is achieved through the subcellular 

compartmentalisation of the receptors themselves. For example, TLRs involved in the 

recognition of nucleic acids (TLR3, 7, 8 and 9) are normally found on the membrane of 

intracellular endo-lysosomes, while TLRs recognising extracellular PAMPs/DAMPs 

(TLR2, 4, 5, 6) are expressed on the cell surface facing the extracellular environment 

(Arroyo et al., 2011). A large body of evidence indicates that TLR2 and TLR4 are the most 

frequently receptors involved in the pro-inflammatory immune response triggering 

neuroinflammation. Accordingly, microglia lacking TLR2 and TLR 4 fail to mount an 

immune response upon exposure to fibrillar Ab1-42 (Jana et al., 2008). Moreover, AbO-

induced memory damage and neuroinflammation have both been reported to be mediated by 

the TLR4 (Balducci et sl., 2017). While TLR2 agonist is often represented by bacterial 
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lipoprotein, the classical PAMPs for TLR4 is the LPS. Upon binding to circulating lipid 

binding protein (LBP), LPS is engaged in a complex with membrane-bound CD14, that in 

turn combines with TLR4 to build up a functional LPS receptor complex. The downstream 

signalling involves an intricate network of adaptor molecules, protein kinases and 

phosphatases leading to the final activation of NF-kB and AP1 transcription factors that 

promote the expression of pro-inflammatory genes (Rosadini et al., 2017).  

Microglia and astrocytes are the main cell types mediating innate immunity in the CNS. 

Studies in mice revealed that mRNAs of TLR 1-9 are expressed in the brain, whose 

expression can be up-regulated by infections and inflammation, thus amplifying the innate 

immune response (Trudler et al.,2010; McKimmie et al., 2005). 

As previously described, microglia are first line responder cells to various kind of insults 

representing the 10% of cells in an adult CNS, and they are considered the brain’s 

macrophages (Aguzzi et al., 2013). These cells, expressing TLRs 1-9 along with CD14, 

respond to stimulation by producing cytokines that finally trigger phagocytosis of 

microorganisms and aggregated extracellular proteins (Arroyo et al., 2011). Microglia 

harbouring various TLRs are present in different brain areas with some preference to regions 

close to the circulation as meninges and circumventricular organs (Arroyo et al., 2011). 

Aside from microglial cells, astrocytes have been found to express TLRs at lower levels in 

physiological conditions. In healthy human brains these receptors are barely present, but 

upon inflammation onset TLRs are expressed on the surface of astrocytes at levels even 

detectable by immunohistochemical approaches (Arroyo et al., 2011).  

Of note, TLRs are also present in neurons, further providing evidence that they have a 

function in maintaining the cerebral architecture and tissue homeostasis. Specifically, 

humans and rodents express TLR 2, 3 and 4 in their neurons, while mRNAs coding for TLRs 

1-8 have been found in rat and mouse primary neuronal cultures (Tang et al., 2007; Okun et 

al., 2009). It has been established that TLRs activation in neurons might work in brain 
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development, and that in murine CNS TLR3 is involved in the regulation of the growth-

collapse rate of neuronal cones (Arroyo et al., 2011). 

 

3.6 Altered expression of TLR2 and 4 in Parkinson’s disease 

Despite the contribution of TLRs in α-synucleinopathies is controversial and debated, 

evidence for TLR engagement in such pathologies raises from the observation of TLR 

altered expression in in vitro studies as well as in PD patients and animal models (Kouli et 

al., 2019). 

Treatment of primary microglial cells with a preparation of α-syn containing a mixture of 

aggregates, from monomeric to fibrils, leads to microglial activation and altered 

transcriptional profile of TLRs including increased expression of TLR2 and a down-

regulation of TLR4 (Beraud et al., 2011). An altered expression profile of TLRs has been 

also previously reported by Letiembre and co-workers (Letiembre et al., 2009). In the 

brainstem of a Tg PD mouse model these authors found an increase in both transcriptional 

and protein levels of the TLR2, whereas the expression of the TLR4 was unaffected 

(Letiembre et al., 2009). More recently in PD patients, increased levels of both TLR2 and 4 

have been detected in blood peripherical immune cells. However, while the expression of 

TLR2 was significantly higher in monocytes compared to healthy matched controls, TLR4 

expression in the same cells revealed solely a trend in its up-regulation (Drouin-Ouellet et 

al., 2015). Despite the different expression profile of TLR2 and 4 in the blood, in the same 

study Drouin-Ouellet and colleagues found a comparable increase in protein levels of both 

TLRs in the caudate/putamen of post-mortem PD brains. Nevertheless, the same authors 

could not confirm their finding in a Tg mouse model over-expressing the WT human α-syn 

(Drouin-Ouellet et al., 2015). On the other hand, a different TLR2 expression profile has 

been reported by Doorn and colleagues. They found that, post-mortem brain samples from 

patients with prodromal and diagnosed PD displayed stage-dependent expression of TLR2 
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in both the SN and in the hippocampus, with a higher TLR2 expression in prodromal PD 

compared to diagnosed and advanced PD (Doorn et al., 2014). Therefore, these data imply 

that expression of TLR2 in early or advanced PD could be region- and time-specific.  

Because of controversial results being reported on the involvement of TLR2 and 4 in PD, in 

the following paragraph I will provide a brief overview on these two receptors in the context 

of the pathology. 

 

3.6.1 Experimental evidence for TLR2 and TLR4 involvement in α-syn detrimental 

effects 

As described in chapter II, extracellular α-syn could exert its detrimental activities on 

neurons through non-cell-autonomous mechanisms which recruit microglial and astroglial 

cells. Activation of these cells by α-syn may occur through the signal transduction mediated 

by either TLR2 or TLR4. In two distinct papers, Kim and co-workers have demonstrated 

that α-synOs released by SHSY-5Y cells over-expressing human WT α-syn promote 

microglial cell activation and the expression of pro-inflammatory mediators in a TLR2-

dependent manner (Kim et al., 2013; Kim et al., 2016). Indeed, genetic ablation of the 

receptor as well as its functional inhibition completely abrogated the microglial cytokine 

production upon α-synOs treatment (Kim et al., 2013; Kim et al., 2016). In contrast, as the 

depletion of TLR4 had no effects on the α-syn-induced gene expression of microglial pro-

inflammatory cytokines, they concluded that α-synOs act through a TLR4-independent 

pathway (Kim et al., 2013). In post-mortem PD brain, TLR2 is up-regulated in both 

microglia and neurons, even though is more expressed in neurons compared to microglia 

(Dzamko et al., 2017). In addition, neuronal stimulation through TLR2 agonists leads to a 

significant increase in the expression of pro-inflammatory mediators by neurons themselves, 

thus depicting neurons as active players in the neuroinflammatory process in concert with 

glial cells (Dzamko et al., 2017). Evidence for the involvement of TLR2 in α-syn detrimental 
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actions also stems from in vivo studies. Indeed, while TLR2+/+ mice overexpressing the WT 

human α-syn in the SN showed loss of dopaminergic neurons and active microglial cells, 

TLR2-/- mice did not (Kim et al., 2013). As described in the above section, TLR2 levels are 

increased in PD patients. These data and the evidence of TLR2-dependent activation of 

microglial cells by α-synOs allow researchers to speculate that TLR2 may play a pivotal role 

in promoting neurodegeneration in α-synucleinopathies. To follow up this hypothesis, it has 

been recently demonstrated in a Tg PD mouse model that TLR2 blockade through a 

functional inhibiting antibody triggers neuroprotective effect. Specifically, immunotherapy 

against TLR2 leads to the inhibition of both microgliosis and astrogliosis as well as the 

normalisation of IL-1β, IL-6 and TNF-α levels (Kim et al., 2018). Such an overall effect on 

the neuroinflammatory parameters was also accompanied by a significant reduction of 

cortical and hippocampal neuronal degeneration (Kim et al., 2018). 

The data here provided seem to suggest a prominent role for TLR2 in α-synucleinopathies, 

albeit TLR4-dependent activation of microglia and astrocytes upon α-syn treatment has also 

been reported. The exposure of both TLR4+/+ microglial cells and astrocytes to different 

moieties of WT α-syn (soluble full-length, oligomers and C-terminally truncated) triggers 

their activation and the release of pro-inflammatory mediators such as TNF-α and IL-6. 

Remarkably, ablation of the receptor results in the suppression of the pro-inflammatory 

response in both cell types (Fellner et al., 2013). Consistently, the involvement of TLR4 in 

mediating the astrocyte α-syn-induced pro-inflammatory response has also been reported by 

Rannikko and collaborators (Rannikko et al., 2015). In their study the authors described an 

α-syn dose-dependent increase in the transcriptional levels of different pro-inflammatory 

mediators such as IL-1β, IL-6, TNF-α and COX-2 in TLR4+/+, but not in TLR40/0 astrocytes 

(Ramikko et al., 2015). Thus, contradictory results leave the involvement of TLR2 and 

TLR4 in a-synucleinopathies still unclear and demand further efforts to clarify their 

contribution in mediating α-syn detrimental activity. 
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Mounting evidence depicts α-synOs as key players in inducing neuronal and synaptic 

dysfunction in α-synucleinopathies, and highlights the potential harmful effects of 

extracellular α-syn moieties. Therefore, the first aim of this PhD thesis was to develop an 

acute mouse model based on the ICV injection of α-syn monomers, oligomers and fibrils to 

specifically investigate the oligomeric hypothesis in the context of cognitive damage. 

Since researchers have started focusing on the mechanisms involved in mediating the 

dangerous action of α-synOs, non-cell-autonomous mode of actions gained an increasing 

interest. Among these, neuroinflammation and protein-protein interaction are being widely 

explored and currently proposed as crucial events in the pathogenesis of PD and PD-related 

disorders. Specifically, with regard to protein-protein interaction, the PrPC was recently 

shown to interact with α-synOs, and to mediate their effects at a functional level. Based on 

these data, further aims of this PhD thesis included: 

• The elucidation of α-synOs ability to induce a neuroinflammatory response in our 

acute mouse model, and the characterisation of the role of α-synO-induced 

neuroinflammation in mediating the detrimental actions of α-synOs on memory. 

• The in vivo investigation of the PrPC-α-synO interaction to assess the role of PrPC as 

an interactor and mediator of oligomeric α-syn at multiple functional levels (neuronal 

cytotoxicity, memory damage and gliosis). 

As mentioned above, neuroinflammation has emerged as a key player in PD and PD-related 

disorders pathogenesis. Although neuroinflammation may represent a mediator for α-synOs, 

compelling evidence supports a role of neuroinflammation as a bridge linking environmental 

and genetic susceptibility co-fostering PD pathogenesis. These findings together with the 

lack of direct evidence demonstrating that inflammation influences α-synO harmful 

activities or the PD behavioural and neuropathological features, set the stage for the next 

aim of this PhD thesis. Specifically, we intended to verify whether an induced inflammatory 

state potentiates α-synOs effects in our acute mouse model, and whether it influences the PD 
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phenotype in the more complex context of the Tg PD mouse model carrying the A53T 

missense mutation.  

In conclusion, the overall aims of this PhD thesis were to investigate the action of 

extracellular α-synOs at cognitive level, and to elucidate their mechanisms of action focusing 

on neuroinflammation as a mediator of α-synOs effects and as a predisposing factor 

influencing α-synO actions and pathology progression (Figure 18). 

 

Figure 18. Overall aims of the PhD thesis 
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5.1 Mice 

In this PhD thesis different mouse strains were exploited as specified in each result section. 

In particular mice used for our experiments included: eight-week-old C57BL/6N (Charles 

River, Italy) and TLR4 knock-out (TLR40/0 ) male mice (kindly provided by Dr Vezzani, 

Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy); six-/eight- months old PrPC 

knock-out (Prnp0/0) and Prnp+/+ male mice (Bueler et al., 1993) maintained on a pure 

C57BL/6  background were obtained by the European Mouse Mutant Archive (strain 

EM01723), and eight-month-old hemiizygous B6.Cg2310039L15RikTg(Prnp-

SNCA*A53T)23Mkle/J (herein referred as A53T mice) and their non-transgenic matched 

littermates (NTG) (The Jackson Laboraory, USA). Mice were housed individually in 

standard cages in a specific pathogen free conditions and in a controlled environmental 

condition (temperature: 21±1°C; relative humidity: 60% and 12 hours of light). All 

experimental procedures were conducted in conformity with institutional guidelines that are 

in compliance with national (D.L. n.26, G.U. 4 March 2014) and international guidelines 

and laws (EEC Council Directive 86/609, OJ L 358, 1, 12 December 1987, Guide for the 

Care and Use of Laboratory Animals, U.S. National Research Council, 1996), and were 

reviewed and approved by the intramural ethical committee. 

 

5.2 ICV cannulation 

Mice were anaesthetised with isoflurane inhalation and fixed on stereotaxic instrument 

(model 900, David Kopf instrument). A stainless steel guide cannula was implanted 

following the coordinates of the mouse cerebral atlas (anteroposteriority: +0.3, and laterality: 

±1.0 from Bregma; dorsoventrality: -3.0 from Dura). To allow the recovery of animals from 

the surgery, animals entered in the experimental protocol 15 days after the surgical 

procedure. 
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5.3 Alpha-syn assembly preparations 

α-synOs were obtained as previously described (La Vitola et al., 2018; La Vitola et al., 

2019). Briefly, endotoxin free recombinant monomeric human α-syn (241 μM) from E. coli 

cells (kindly provided by Prof. Pollegioni, Università degli Studi dell’Insubria, Varese, Italy; 

Caldinelli et al., 2013) was incubated in 50 mM filtered phosphate buffer (PBS) pH 7.4 at 

37°C without shaking for 48 hours. An incubation of 5 days in the sane conditions used for 

obtaining α-synOs was applied to induce the fibrilization of recombinant monomeric human 

α-syn. At the end of the oligomerisation/fibrilization process, α-syn preparations were 

diluted at 1 and 0.5 μM (as specified in each result section) in 50 mM filtered PBS (Vehicle, 

Veh) for the ICV injection. For in vitro studies, α-synOs were diluted at 1, 5 and 10 μM in 

the neuronal maintaining medium. 

Recombinant human α-syn was characterised by Prof. Pollegioni (Università degli Studi 

dell’Insubria, Varese, Italy) through size-exclusion chromatography on a Superdex 200 HR 

10/30 column (GE Healthcare), SDS-PAGE and circular dichroism analyses. Endotoxins 

were fully eliminated by treatment with Triton X-114. α-synOs and fibrils were characterised 

by atomic force microscopy (AFM) analyses. In addition, α-synOs were characterised by 

western blotting.  

 

5.4 Atomic force microscopy   

AFM characterisation of our preparations were performed by Dr. Laura Colombo (Istituto 

di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy). A Nanoscope® Multimode 

V AFM equipped with a 7415 EV scanner (Veeco, NY, USA) was utilised to investigate the 

surface morphology of α-syn samples. Protein solutions containing oligomers or fibrils were 

diluted to 10 µM with 50 mM PBS or 10 mM HCl, respectively. Once diluted, 50 µL of each 

solution were adsorbed onto freshly cleaved mica (three minutes for the solution containing 

α-synOs, and five minutes for the solution containing fibrils). Then samples were washed 
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with 10 ml of double distilled H2O and dried under gentle flow nitrogen. AFM measurements 

were performed using the tapping mode with a triangular antimony doped silicon cantilever 

(type-RTESP, Bruker). The force constant of the cantilever was 20-80 N/m with a resonance 

frequency of 313 - 370 kHz. The scan rate was 0.7 to 1 Hz, and the image size was 512 x 

512 pixels. Images were obtained from three different locations on each specimen to ensure 

the homogeneity of samples. Analyses of AFM images were performed using Scanning 

Probe Image Processor (SPIP-version-5.1.6) data analysis package. Through the same 

approach we have also performed analyses of α-synO preparations with a final concentration 

of 1, 5 and 10 μM. 

 

5.5 Western blotting of α-synOs 

Double gradient gel (7-12% SDS-PAGE) was used for the analysis of synthetic α-synOs. 

3.75 µg of α-syn were run in duplicate, transferred on nitrocellulose membranes, and probed 

using the mouse anti-α-syn antibody (1:1000, 4°C ON; BD Trasduction Laboratories in BSA 

3%). Then the membranes were incubated with the anti-mouse HRP secondary antibody 

(1:5000; 1 hour at room temperature, RT; Abcam). Immunoreactivity was visualised with 

Lumnia Forte Western HRP substrate (Millipore, Billerica, MA, USA) and ChemiDoc XRS 

(Biorad). 

Through the same approach we also characterised α-synOs at the final concentration of 1, 5, 

10 μM. In this case we run 0.5 μg for each sample.  

 

5.6 Alpha-synOs and vehicle ICV injection 

Monomeric, oligomeric or fibrillar α-syn and Veh were ICV injected (1μL/min) through an 

injection unit inserted inside the previously implanted guide cannula and connected to a 

Hamilton syringe with a flexible plastic tubing, sufficiently long to allow mouse free 

movements within their own cages. At the end of injection, the injection unit was removed 
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two minutes after drug delivery to allow its diffusion. Control mice were injected with the 

corresponding volume of Veh.  To assure the absence of adverse effects due to the ICV 

injection, at the end of the ICV administration mice were monitored in their own homecage. 

 

5.7 Drugs and treatments 

- Veh (50mM PBS), α-syn monomers, oligomers or fibrils were ICV injected (as described 

above and detailed in each result section) using a Hamilton syringe connected to an infusion 

pump (1μL/minute).  

-Indomethacin (Indo; Sigma-Aldrich) dissolved in 0.2M Tris-HCl, pH 8.2 was injected at 

10mg/Kg intraperitoneally (IP) 30 minutes before α-synOs or Veh administration. 

-Ibuprofen (IBF; Sigma-Aldrich) was dissolved in 100mM PBS and IP injected at 5, 10 and 

50mg/Kg 30 minutes before α-synOs or Veh administration. 

-4G8 and anti-α-syn antibodies (Signet and BD Trasduction Laboratories respectively) were 

ICV injected at the dose of 0.25μg/2μL 15 minutes before α-synOs injection. 

-Anti-TLR2 antibody (T2.5) (Invivogen) was dissolved in PBS and ICV injected at the dose 

of 5μg/2μL 15 minutes before α-synOs injection.  

All drugs were injected ICV through an injection unit inserted inside the implanted guide 

cannula and connected to the Hamilton syringe through a flexible plastic tubing, sufficiently 

long to allow mouse free movements within their own cages during injection. The injection 

unit was removed two minutes after drug delivery to allow diffusion. Control mice were 

injected with the corresponding volume of the appropriate vehicle.  

-Ultra-pure LPS from E. Coli (strain 011:B4; InvitroGen, USA) was dissolved in sterile 

water and IP injected at 1 or 2.5 mg/Kg. For the in vitro treatment, LPS was used at the final 

concentration of 0.5 μg/mL.  
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5.8 Novel object recognition task (NORT) and open field 

The task started with a habituation trial (open field; five min) during which mice were placed 

in an empty arena (40x40 cm and 30 cm high) and they were free to explore the new 

environment. In the next day (sample phase; ten min) animals were placed in the arena with 

two identical objects and free to explore them. Twenty-four hours later, animals were 

replaced in the arena where a familiar object was replaced with a novel one (test phase; ten 

min). Time spent by mice to explore both the familiar and the novel object were measured 

by a blind operator.  

The following objects were used: a black plastic cylinder (4 x 5 cm), a glass vial with a white 

cup (3 x 6 cm) and a metal cube (3 x 5 cm). 

Memory was expressed as a discrimination index [DI=(seconds on novel-seconds on 

familiar)/total investigation time]. Animals with memory impairment spent the same time in 

investigating the familiar and the novel object giving a lower DI compared to animals 

without memory impairment.  

 

5.9 Y-maze test 

Short-term spatial memory was assessed in the Y-maze task (Xu et al., 2018). The Y-maze 

apparatus is a Y-shaped maze with three 20 cm length grey arms at the angle of 120° from 

each other. Each arm is large 5 cm and has a high of 10 cm.   

Mice were placed in the centre of the Y-maze apparatus and free to move for eight min. A 

successful alternation was defined as a mouse entering consequentially in three different 

arms of the maze (i.e. ABC, BAC, BCA but not ABA, CAC, BCB). The percentage of 

spontaneous alternation [number of successful alternations/(total entries-2)]*100 was 

calculated by a blinding operator. Since mice prefer to visit a new arm of the maze and show 

a tendency to enter the less recently explored arm, animals displaying a memory impairment 



Materials and methods: Chapter V 
 

85 
 

have lower spontaneous alternation behaviour than mice not impaired. Of note, an arm entry 

is considered when all the four mouse limbs are into the arm.  

 

5.10 Morris-water maze (MWM) test 

Learning and spatial memory were investigated through the MWM test. A circular arena 

(100 diameter x 50 cm height) was filled to a depth of 0.29 m with water at 21±1°C. The 

water was made cloudy using a nontoxic white dye. A white platform (11x11 cm) was 

positioned in a specific quadrant (Target Quadrant) 0.5 cm below the water and animals were 

trained to find it through a 4-trial training (60 seconds/trial with a 10 minutes inter-trial 

interval) for five consecutive days. The escape latency to find the platform through days was 

measured and expressed as mean±SEM of the 4 trials. On day six, platform was removed 

(probe phase, 60 seconds) and mouse ability to recall the platform location was assessed 

measuring the time spent in both target and opposite quadrant.  

 

5.11 Beam-walk test 

The beam-walk test (Pischiutta et al., 2018) was performed to evaluate mouse gait 

instability. Briefly, the beam-walk test measures the footslips of mouse walking twice on an 

elevated, wooden beam (8 mm wide and 100 cm long). Before test, mice are trained in three 

habituation trials. Data are expressed as the footslips mean±SEM in the two tests. Mice with 

gait instability done a higher footslips number than not impaired animals. 

 

5.12 Open field 

To assess the spontaneous motor behaviour, we have exploited the open field task. Mice 

were placed in an empty arena (40x40 cm and 30 cm high) for 5 minutes and they were free 

to explore the new environment. The spontaneous motor behaviour of each mouse was 
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recorded and, through the EthoVision program, both the total distance moved (mean±SEM) 

and the mean velocity (mean±SEM) were measured. 

 

5.13 Extracellular field recordings  

Extracellular field recordings were performed by Dr. Milica Cerovic (Istituto di Ricerche 

Farmacologiche Mario Negri, Milano, Italy). Briefly, coronal brain slices (350 µm) were cut 

in ice-cold modified artificial cerebrospinal fluid (aCSF: 87 mM NaCl, 2.5 mM KCl, 1 mM 

NaH2PO4, 75 mM Sucrose, 7 mM MgCl2, 24 mM NaHCO3, 11 mM D-glucose, and 0.5 mM 

CaCl2). Brain coronal slices were transferred into the incubating chamber, submerged in 

aCSF containing 130 mM NaCl, 3.5 mM KCl, 1.2 mM NaH2PO4, 1.3 mM MgCl2, 25 mM 

NaHCO3, 11 mM D-glucose, 2 mM CaCl2 and constantly bubbled with 95% O2 and 5% CO2 

at room temperature (RT). Slices were incubated for at least 1 hour before recording and in 

a submerged recording chamber, perfused with oxygenated aCSF at a constant rate of 2-3 

ml/min at 28-30°C. The pre-incubation with α-synOs (200nM/90-120 minutes) was 

performed at RT.  

Stimuli were delivered via a Constant Voltage Isolated Stimulator (Digitimer Ltd., Welwyn 

Garden City, UK) with a bipolar twisted Ni/Cr stimulating electrode. LTP was induced by a 

4-theta-burst tetanus stimulation protocol (each burst consists of four 100 Hz pulses with a 

200 ms inter-burst interval). Signals were amplified and filtered (low filter 10 Hz, high filter 

3 kHz) by a DAM 80 AC Differential Amplifier (World Precision Instruments, Sarasota, 

FL), and digitised at 10 kHz with a Digidata 1322 (Molecular Devices, Foster City, CA). 

LTP recordings in which the amplitude of the presynaptic fibre volley changed by more than 

20% were discarded. 
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5.14 Immunohistochemistry and immunofluorescence 

Mice were anaesthetised with a mix of ketamine (1.75 mg/Kg) and medetomidine (1 mg/Kg) 

and transcardially perfused with 50 mM PBS pH 7.4 followed by chilled 4% 

paraformaldehyde in 50 mM PBS. Serial coronal hippocampal and SN sections (30 μm) 

were collected in 100 mM PBS for the immunohistochemistry analyses of the astroglial 

marker (GFAP), the microglial marker (IBA1), and the tyrosine hydroxylase (Th). Briefly, 

slices were blocked for 1 hour at RT with an appropriate blocking solution (GFAP: 3% NGS, 

Triton 0.4% in PBS 100 mM; IBA and Th: 10% NGS, Triton 0.3% in PBS 100mM). Then, 

slices were incubated with mouse anti-GFAP antibody (1:3500, Millipore), rabbit anti-IBA1 

antibody (1:1000; Wako) or mouse anti-Th antibody 1:500, Millipore) at 4°C overnight 

(ON). After incubation with the anti-mouse biotinylated secondary antibody (1:200; Vector 

Laboratories; 1 hour RT) or the anti-rabbit biotinylated secondary antibody (1:200; Vector 

Laboratories; 1 hour RT), the immunostaining was developed using the avidin-biotin kit 

(Vector Laboratories) and diaminobenzidine (Sigma, Italy). Image acquisition was done 

using the Olympus VS120-S6-FL-078. Analyses of GFAP-, IBA1- and Th-

immunoreactivity have been performed with a homemade macros and image analyser and 

the Fiji software.  

Immunofluorescence analyses have been performed to evaluate the spreeding of ICV 

injected α-syn (monomers, oligomers and fibrils) and to asses the expression of GFAP, IBA1 

and IL-1β or the expression of the M1 pro-inflammatory marker CD16/32 and its co-

localisation with IBA1 in the hippocampus.  

- Immunofluorescence for α-syn 

Serial coronal hippocampal sections (20 µm) were collected in 100 mM PBS for 

immunofluorescence analysis of the injected human recombinant α-syn. Freely-floating 

brain slices (three/mouse) were blocked (10% NGS, Triton 0.3% in PBS 100mM) for 1 hour 

at RT. Then, sections were incubated with the primary mouse antibodies against human α-
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syn (1:1000, ThermoFisher). Fluorescence was detected using anti-mouse secondary 

antibody conjugated with Alexa 594 (Molecular Probes). 

- Immunofluorescence for IBA1, GFAP and IL-1β  

Serial coronal hippocampal sections (30 µm) were collected in 100 mM PBS for triple-

immunofluorescence analysis of astrocytes, microglial cells and IL-1b. Freely-floating brain 

slices (3/mouse) were incubated at 4°C for 10 min in 70% methanol and 2% H2O2 in Tris-

HCl-buffered saline (TBS, pH 7.4) followed by 30 minutes incubation in 10% foetal bovine 

serum (FBS) in 1% Triton X-100 in TBS. Sections were incubated first with the primary 

antibody against IL-1β (1:200, Santa Cruz Biotechnology; 72 h, 4°C in 10% FBS/1% Triton 

X-100/TBS). Then slices were incubated with the biotinylated secondary anti-goat antibody 

(1:200, Vector Labs) followed by fluorescent signal coupling with a streptavidin Tyramide 

Signal Amplification kit (NEN Life Science Products). Sections were incubated with the 

primary antibodies against GFAP (1:3500; Millipore) and IBA1(1:1000; Wako) and 

fluorescence was detected using anti-mouse or anti-rabbit secondary antibody conjugated 

respectively with Alexa 546 or Alexa 695 (Molecular Probes). 

- Immunofluorescence for CD16/32 and IBA1 

Coronal hippocampal brain slices (three/mouse) were blocked (10% NGS, Triton 0.3% in 

PBS 100mM) for 1 hour at RT. Then, sections were incubated with the primary rat antibodies 

against CD16/32 (1:600, BD Pharmingen) and rabbit anti-IBA1 (1:1000; Wako).  

Fluorescence was detected using anti-rat or anti-rabbit secondary antibody conjugated 

respectively with Alexa 647 or Alexa 546 (Molecular Probes). Immunofluorescence was 

acquired using an IX81 microscope equipped with a motorised stage and a FV500 confocal 

scan unit with three laser lines [argon-krypton (488 nm), helium-neon red (646 nm), and 

helium-neon green (532 nm; Olympus)] and an ultraviolet diode. 
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5.15 Nissl staining  

Three coronal hippocampal brain slices for each sample were hydrated in distilled water (1 

minute). Then, brain slices were dehydrated through an alcoholic scale (Ethanol 70%, 

Ethanol 95%, Ethanol 100% and Xilene; 5 minutes/phase). Brain slices were stained in 0.5% 

Cresyl violet (Santa Cruz Biotechnology) solution in 25% Methanol. The excessive staining 

was removed through 10 consecutive washes in distilled water and then fixed through the 

same inverse alcoholic scale described above (3 minutes/phase). 

 

5.16 Western blotting of synaptic proteins 

Mice (4-5/group) were anesthetised with a mix of ketamine (1.75 mg/Kg) and medetomidine 

(1 mg/Kg) then decapitated. The hippocampus was dissected, frozen on dry ice and stored 

at -80°C. Tissues were homogenised to obtain the total insoluble fraction (TIF) and the 

expression of PSD95 and synaptophysin assessed. Briefly, to obtain the TIF, tissues were 

homogenised in ice-cold lysis buffer (0.32 M sucrose containing 1 mM Hepes, 1 mM 

MgCl2, 1 mM NaHCO3, 0.1 mM, PMSF, at pH 7.4, with a complete set of protease 

inhibitors (Sigma). Total homogenate was centrifuged at 1000 g for 10 min at 4°C and the 

resulting supernatant was centrifuged again at 13000 g for 15 min. The pellet obtained was 

suspended in ipotonic buffer (HEPES 1mM and protease inhibitor cocktails) and 

centrifugated at 100000 g for 1 hour. Then, the pellet was re-suspended in Triton X-100 1% 

with KCl 150 mM and protein inhibitor cocktail. The suspension was centrifuged at 100000 

g (4°C, 1 hour). The pellet obtained (TIF) was then suspended in a buffer containing 

Glycerol 30%, HEPES 1 mM and protein inhibitor cocktail.  

Total protein content was measured in the TIF fraction by the Bio-Rad Protein Assay (Bio-

Rad Laboratories). Gels (8% SDS-PAGE for PSD95 and Synaptophisin) were run under 

reducing conditions; 10 µg proteins from each sample were run in duplicate and 

nitrocellulose membranes obtained from electroblotting were probed using the following 
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antibodies: mouse anti-PSD95 (Neuromab, 1:5000 in non-fat milk/TBS 0.1% Tween-20) 

and rabbit anti-synaptophysin (Synaptic System, 1:5000 in 3% BSA/TBS 0.1% Tween-20) 

at 4°C ON. Then, membranes were incubated with the mouse or rabbit HRP secondary 

antibody (1:5000; RT 1 hour; Abcam). Immunoreactivity was visualised with Lumnia Forte 

Western HRP substrate (Millipore, Billerica, MA, USA) and ChemiDoc XRS (Biorad). 

Optical density of the blots was measured with Quantity-One software (Biorad) and 

normalised using the corresponding signal for β-actin (Santa Cruz Biotechnology). Results 

were expressed as fold change (%) of Veh-treated mice.  

 

5.17 Hippocampal neuron cultures and determination of α-synO toxicity 

Hippocampal neurons were prepared by Dr. Elena Restelli (Istituto di Ricerche 

Farmacologiche Marion Negri, Milano, Italy) as previously described (Restelli et al., 2010). 

Briefly, Two-day-old mouse hippocampi were incubated in neuronal dissociation medium 

(5.8 mm MgCl2, 0.5 mM CaCl2, 3.2 mM HEPES, 0.2 mM NaOH, 30 mM K2SO4, 0.5 μg/ml 

phenol red, pH 7.4; 292 mOsmol) containing 20 U/ml papain (Sigma-Aldrich) at 34°C for 

30 minutes. Trypsin inhibitor (Sigma-Aldrich) was added to a final concentration of 0.5 

mg/ml and the tissue was mechanically dissociated. Cells were plated at 200000-250000 

cells/cm2 on plates coated with poly-d-lysine (25 μg/ml) and maintained in Neurobasal 

medium (Invitrogen) supplemented with B27 (Invitrogen), penicillin/streptomycin, and 

glutamine 2 mM. Cell viability was assessed measuring the cellular reduction of 3-(4,5-

dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) to formazan previously 

described (or through the lactate dehydrogenase (LDH) assay. In the MTT assay cells were 

incubated at 37°C for 3 hours with 0.4 mg/ml MTT, dissolved in 0.04 N HCl in 2-propanol, 

and analyzed spectrophotometrically at 540 nm with an automatic microplate reader (Tecan 

Infinite M200). In the LDH assay, 50 µL of cell medium were collected from each well at 

the end of treatments. 50 µL of Cytotox96 Reagent (12 mL of Assay buffer in one vial of 
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Substrate mix) were added to the cell medium. The assay plate was mixed gently for 1 minute 

and incubated in the dark (30 minutes, RT). Following the incubation, 50 µL of Stop Solution 

were added to the wells to interrupt the reaction and the absorbance was measured at 490 

nm through automatic microplate reader (Tecan Infinite M200).   

LDH positive control is provided in the LDH assay kit (CytoTox96 non r-radioactive 

cytotoxicity assay, Promega). 

All treatments of neuronal hippocampal cultures started 12 days after neuronal plating. 

Details for each treatment were provided in each result section.  

 

5.18 Surface Plasmon Resonance  

 Surface Plasmon Resonance (SPR) analyses were performed to assess the direct PrPC-α-

synO binding by Dr. Marten Beeg and Dr. Marco Gobbi (Istituto di Ricerche 

Farmacologiche Mario Negri IRCCS, Milano, Italy). α-synOs (1 and 10 M) or Aβ-Os (1µM) 

were injected over the surfaces exposing PrPC captured by 3F4 or 94B4, or those coated with 

3F4 or 94B4 alone (without PrPC, used for reference). Assays were performed at 25 °C. The 

α-syn- or Aβ-dependent signals on the surfaces immobilizing PrPC were obtained by double 

referencing, subtracting the response observed on surfaces immobilizing the antibodies 

alone, and the signal observed injecting the Veh alone (which allows correction for binding-

independent responses, e.g., drift effects). The ProteOn XPR36 Protein Interaction Array 

system (Bio-Rad) was used.  More in detail, anti-PrPC monoclonal antibodies 3F4 and 94B4 

were immobilised by amine-coupling chemistry on the surface of a GLC sensor chip 

(BioRad), according to manufacturer recommendations. The final immobilisation levels 

were ~6,000 resonance units (1 RU = 1 pg protein/mm2) for both 3F4 and 94B4.  

“Reference” surfaces were prepared in parallel following the same immobilisation procedure 

but without antibodies. Then, total brain homogenate (0.5 mg protein/mL  in PBS containing 

0.5% Nonidet P-40 and 0.5% Na-deoxycholate) from WT-E1 Tg mice overexpressing WT 
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mouse PrP carrying an epitope tag for the monoclonal antibody 3F4 (Chiesa et al., 1998) 

were flowed on the surface of chips. While the signal was negligible in the “reference” 

surface after the flowing of total brain homogenate, it was ~900 on the surfaces coated with 

3F4 and ~700 RU on the surfaces coated with 94B4. Since the signal decayed very slowly, 

the dissociation of PrPC from both 3F4 and 94B4 is slow. 

 

5.19 Statistical analysis 

Data were analysed using the GraphPad Prism 7.0 software. Unpaired Student’s T-test, One-

, Two- or Three-way analyses of variance (ANOVA) were used for the statistical analyses 

of our experiments in accordance with the amount of the independent variables 

(factors/treatments) which affect the dependent variable (e.g. the DI, the % of spontaneous 

alternation, the % of GFAP- and IBA1-marked area…)  as specified in each result sections. 

In presence of a significant effect of treatment in the One-way ANOVA or a significant 

interaction among variables in the Two- and Three-way ANOVA, an appropriate post-hoc 

tests was applied (details in each result sections). For all analyses, a p value < 0.05 was 

considered statistically significant.  



Results: Chapter VI 
 

93 
 

 

 

 

Results 

Chapter VI 

Alpha-synOs acutely impair memory whereas 

monomers and fibrils were ineffective 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Results: Chapter VI 
 

94 
 

The data presented in this chapter are reported in the manuscript entitled “Alpha-synuclein 

oligomers impair memory through glial cell activation and via Toll-like receptor 2”. Brain 

Behav Immun. 2018 Mar; 69:591-602. doi: 10.1016/j.bbi.2018.02.012.  

 

6.1 Aim of the study and in vivo experimental design 

Based on the evidence previously reported, in this section we aimed to specifically 

investigate the α-syn oligomeric hypothesis in the context of memory impairment. To this 

purpose, we have developed an acute mouse model based on the ICV injection of monomers, 

oligomers or fibrils of α-syn, and we have evaluated their abilities to cause a memory damage 

in the NORT. Of note, unlike Tg PD mouse models, where different α-syn aggregates 

coexist, the use of the acute mouse model specifically allowed us to assess the detrimental 

effects on memory of each extracellular moieties individually, and to characterise this effect 

at behavioural as well as histological level.  

Precisely, two hours before the familiarisation/sample phase of the NORT, C57BL/6 naïve 

mice were ICV injected with Veh or well-characterised solutions enriched in α-syn 

monomers, oligomers or fibrils. The memory performance of each mouse was assessed in 

the test phase 24 hours later (Figure 19A). Thus, an inter-trial time of 24 hours between the 

familiarisation/sample phase and the test phase occurs, such that it allows us to accurately 

test the effect of each moieti on long-term recognition memory. Notably, more than 8 hours 

are required to permit consolidation of long-term memory (Sutton and Schuman, 2006), and 

the 24 hours is the most widely used time point for its evaluation (Balducci et al., 2010; 

Balducci et al., 2017). To further characterise the model, we investigated whether the α-

synO-induced memory damage was specifically mediated by α-syn. To this goal two 

different antibodies, the AβOs specific antibody 4G8 and the Anti-α-syn antibody (ICV, 15 

minutes pre-α-synOs), were tested for their ability to counteract the α-synO-triggered 

memory damage (Figure 19B). Once demonstrated that α-synOs specifically impaired 
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memory performance in the NORT, we further characterised such a detrimental effect. Thus, 

we assessed whether the cognitive impairment was persistent or transient. To address this 

question, mice treated with α-synOs impaired in their memory performance were re-tested 

in the NORT 12 days after the first ICV injection without any other treatment (Figure 19C). 

For a detailed description of drug doses see chapter V about methods. 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 19. Schematic of treatment schedules for NORT experiments. (A) Monomers, oligomers 

fibrils of α-syn (1μM/7.5μL) ICV injected 2 hours before the familiarisation/sample phase. (B) 

Treatment with 4G8 or Anti-α-syn (0.25μg/2μL) 15 minutes pre-α-synOs injection (1μM/7.5μL).  

(C) Mice re-tested in NORT without any further ICV injection of Veh or α-synOs. 

 

6.2 Results 

6.2.1 Alpha-synOs specifically induce memory deficiency in C57BL/6 naïve mice and 

impair hippocampal LTP on brain slices 

Consistent with the oligomeric hypothesis which pinpoints α-synOs as the main culprits 

underlying a-syn deleterious effects, oligomeric species of α-syn have been demonstrated 

to impair LTP and cause memory damage (Martin et al., 2012).  
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To further assess the detrimental effects of α-synOs on memory in comparison with either 

α-syn monomers or fibrils, we have developed an acute model based on a single ICV 

injection of well-characterised solutions enriched in monomeric, oligomeric or fibrillar α-

syn (7.5μL, 1.0 μM) in C57BL/6 naïve mice. Endotoxin-free recombinant α-syn monomers 

(Figure 20A) were provided by Pollegioni’s team (University of Insubria, Varese, Italy) 

which also characterised the protein and demonstrated the partial random coil structure of 

the protein in solution through far-UV circular dichroism analysis (Caldinelli et al., 2013). 

α-synOs and fibrils used for the experiments were characterised by AFM to verify their 

aggregation status and their distribution in terms of diameter and height (Figure 20B-F). In 

addition, the α-synO solution was further characterised through western blot, which 

confirmed an enrichment in SDS-resistant oligomeric species with a molecular weight 

ranging from 35 to 180 KDa (Figure 20G).   

Figure 20. Native size-exclusion chromatography and tapping mode AFM images. (A) Elution 

profile of purified recombinant α-syn by Superdex-200 column chromatography and SDS-PAGE 

analysis of the eluted protein. (B) α-synO assemblies after incubation for 48 hours, or (C) α-syn 

fibres after 5 days incubation in 50 mM PBS. Scale bars correspond to 2.5 µm for Panels B and C, 
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and 0.5 µm for the Panel B inset. The scale colours correspond to height range of -5/+10 nm for 

Panel B, -30/+50 nm for Panel B inset and -2/+4 for Panel C. (D, E) Oligomer distribution in diameter 

and height. (F) Cross-sectional profiles determined by SPIP and same colour code used to represent 

the regions of images chosen for measurements and their line-profile in samples incubated for 5 days. 

(G) Western blot analysis of α-synO-enriched solution showing SDS-resistant oligomers with a 

molecular weight ranging from 35 to 180 KDa. 

Once verified the nature of our preparations, mice were ICV injected with Veh (7.5 µL), 

monomeric, oligomeric or fibrillar α-syn (1µM/7.5µL) 2 hours before the sample phase of 

the NORT, and memory was investigated 24 hours later. The behavioural assessment of 

long-term recognition memory revealed a significant effect of treatment (F3,41=3.153, 

P=0.03; One-way ANOVA). In particular, we found that mice receiving Veh, monomers or 

fibrils discriminated well between the novel and the familiar object. In fact, as shown in 

figure 21A, they spent more time investigating the novel object than the familiar one, as also 

demonstrated by a comparable DI (mean±SEM) between the three experimental groups 

(0.23±0.06; 0.23±0.06 and 0.22±0.04 respectively). In contrast, α-synO-treated mice did not 

discriminate between the two objects. Indeed, they spent an equal time on both the familiar 

and the novel one, and they showed a significantly lower DI than Veh-treated mice 

(0.23±0.06 and 0.002±0.08 respectively; *p<0.05, One-way ANOVA followed by Dunnet’s 

test; Figure 21A, B).  Of note, it could be speculated that the memory deficiency in α-synO-

treated mice may arise from a reduced exploratory behaviour rather than an effect of α-synOs 

on memory. Thus, such an effect of α-synOs could make treated mice unable to recognise 

the familiar object during the test day. To check whether this bias affected our experimental 

conditions, we compared the total exploration time spent investigating the objects during 

both the sample and the test phase for each experimental group (Figure 21C). As the total 

exploration time during the two NORT phases did not significantly differ between groups, 

as demonstrated by the One-way ANOVA which did not find significant differences among 

groups for both the sample and the test phases (Sample phase: F3,41=0.52 P=0.67; Test phase: 



Results: Chapter VI 
 

98 
 

F3,41=1.55, P=0.21), we ruled out that the memory impairment triggered by a-synOs was 

due to a lower object exploration. To be noticed that the lower exploratory behaviour during 

the test phase of mice treated with a-syn fibirils (n=11) compared to Veh-treated mice 

(n=11) was due to the presence of two mice in the fibrils-treated group that explored the 

objects for less than 10 seconds. Aside from these mice, the total exploratory behaviour of 

the fibrils-treated group during the test phase became comparable to the Veh-treated group 

(20±3.4 and 24±2.9 sec respectively). Moreover, althought these two mice spent a less time 

in investigating the objects, they did not show a memory impairment having a DI higher than 

0.20 and during these experiments animals did not displayed an impairment of their motor 

performances in the arena.   

To further characterise the α-synO-mediated memory damage, we ascertained whether 

recognition memory was specifically impaired by α-syn. To this aim, we ICV pre-treated 

mice with either a specific anti α-syn antibody or the specific anti-Ab 4G8 antibody with the 

same dose of 0.25μg. As shown in figure 21D, 4G8 pre-treatment did not abolish the effect 

of α-synOs. We found indeed that mice receiving either α-synOs alone or with 4G8 still 

exhibited a significant impairment of their memory performance (DI=-0.12±0.09 and 

DI=0.01±0.0.04 respectively; **p<0.01, One-way ANOVA followed by Tukey’s test) 

compared to Veh-treated mice (DI=0.25±0.04). Conversely, the anti-α-syn antibody pre-

treatment fully abrogated the α-synO-mediated memory deficiency. In fact, mice receiving 

α-synOs alone had a significantly lower DI than mice pre-treated with the anti-α-syn 

antibody (0.02±0.07 and 0.22±0.07 respectively; *p<0.05, One-way ANOVA followed by 

Tukey’s test). Notably, mice receiving the anti-α-syn antibody+α-synOs showed a memory 

performance comparable to Veh-treated mice (DI=0.22±0.07 and DI=0.27±0.05; Figure 

21E).  

Because of the α-synO-mediated memory impairment, and the previous reported ability of 

oligomers to impact on LTP (Diogenes et al., 2012; Martin et al., 2012; Ferreira et al., 2017), 
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we investigated whether our oligomeric preparation could affect this process as well. Mice 

coronal brain slices pre-incubated for 60-90 minutes with α-synOs (200 nM) were used in 

experiments of extracellular field recordings of field excitatory postsynaptic potential 

(fEPSPs) in the CA1 hippocampal region evoked by stimulation of Schaffer collaterals. 

Through this approach, we found that α-synOs significantly reduced LTP (Figure 21F, G).  

Thus, we demonstrated that oligomeric α-syn ICV injected in mice leads to a detrimental 

effect on memory, whereas monomeric and fibrillar α-syn was ineffective. In addition, the 

memory damage we described is not linked to an altered exploratory behaviour of treated 

mice and it is specifically due to α-syn. Consistent with the memory impairment and 

previously reported data, α-synOs affect also the LTP, which is crucial for learning and 

memory. Thus, our findings corroborate the α-syn oligomeric hypothesis, and our acute 

model provides a valuable tool to specifically dissect α-synO detrimental activities on 

memory. 
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Figure 21. A single ICV injection of α-synOs impairs recognition memory and inhibits LTP in 

brain slices.  (A) Histograms are mean±SEM percentage of time spent investigating the familiar and 
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novel object in each experimental group tested in the NORT after treatment with: Veh (n=12), α-syn 

monomers (n=11), α-synOs (n=11) or α-syn fibrils (n=11). (B) Histograms are the mean±SEM of 

the corresponding DI; One-way ANOVA found a significant effect of treatment: F3,41=3.1, P=0.03. 

(*p<0.05, Dunnet’s test). (C) Mean±SEM of total time (sec) spent in the exploration of the objects 

during the familiarisation phase (Sample), and during the test phase (Test) in the different 

experimental groups. One-way ANOVA found no effect of treatment for both the sample and test 

phase (F3,41=0.52, P=0.67; F3,41=1.55, P=0.21 respectively). (D) 4G8 treatment (0.25μg/2μL) 15 

minutes before the ICV injection of α-synOs did not abolish α-synO-mediated memory impairment. 

Histogram are mean±SEM of the DI (Veh+Veh; Veh+α-synOs and 4G8+α-synOs; n=9/group; 

**p<0.01, Tukey’s test). One-way ANOVA found a significant effect of treatment (F2,24=13.4, 

P=0.0001) due to the significant impairment induced by α-synOs and the inability of 4G8 to abolish 

it. (E) Effect of Anti-α-syn (0.25μg/2μL) 15 minutes before the ICV injection of α-synOs. 

Histograms are the DI mean±SEM of mice receiving Veh+Veh (n=9), Veh+α-synOs (n=8) and Anti-

α-syn+α-synOs (n=8). One-way ANOVA found a significant effect of treatment (F2.22=5.8, 

P=0.0096; *p<0.05, Tukey’s test). (F)  LTP in CA1 hippocampal region of Veh- (n=5) versus α-

synO-treated slices (200nM α-synOs 90 min pre-incubation; n=5; p<0.05, Two-way ANOVA for 

repeated measures). Data are presented as time courses (mean ± SEM) of normalised fEPSP slopes. 

Insets are representative traces of fEPSPs before (full line) and after TBS (dashed line), in control 

(black) and α-synOs treated slices (red). (G) fEPSP slope 50-60 min post theta-burst stimulation 

shown as a % (mean±SEM) of pre-stimulation baseline; (***p<0.001, Student’s t-test). 

 

6.2.2 ICV injected α-syn spreads across the hippocampus 

Our behavioural experiments demonstrated an impaired hippocampal-dependent memory 

establishment in the NORT caused by the ICV injection of α-synOs exclusively, whereas 

monomers and fibrils were ineffective. Therefore, we have investigated the ability of each 

moieties to spread from the injection site to the hippocampal parenchyma. As shown in the 

immunofluorescence analysis in Figure 22, monomeric, oligomeric and fibrillar moieties of 

α-syn were detectable in the hippocampus 4 hours after the ICV injection. Thus, our 

observation suggests that either the detrimental effects of α-synOs on memory, or the 

ineffectiveness of α-syn monomers/fibrils were not biased from the inability of our 

aggregates to spread within the hippocampus.   
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Figure 22. ICV injected α-syn moieties spread across the hippocampal parenchyma. 

Representative images of hippocampal section stained with an antibody against human α-syn 

showing green spots of different size across the hippocampus 4 hours after the ICV injection of α-

syn monomers, oligomers and fibrils. 
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6.2.3 Alpha-synO-mediated recognition memory impairment is transient and not 

associated with hippocampal alterations at both neuronal and synaptic level 

To further characterise the α-synO-mediated memory damage, we assessed whether this 

effect was permanent or transient. To this aim, we re-tested α-synO-injected mice which 

previously displayed an impairment in their recognition memory (Veh: DI=0.21±0.04 and 

α-synOs: DI= 0.02±0.0.07; t16=2.24, *P=0.03) 12 days later, with no further injections.  

As shown in figure 23A, mice previously receiving α-synOs performed well in the NORT, 

having a DI comparable to previously Veh-treated mice (0.23±0.06 and 0.29±0.06 

respectively; t16=0.81, P=0.43; Figure 23A). 

 

 

 

 

 

 

 

Figure 23. A single ICV injection of α-synOs transiently impairs recognition memory 

establishment. Histograms are mean±SEM of the corresponding DI at both 24 hours and 12 days 

after the first ICV injection of Veh or α-synOs (n=9/group). 

 

Notably, the transient nature of the α-synO harmful effects on memory was consistent with 

the absence of significant alterations at both cellular organisation and synaptic protein level 

in the hippocampus of treated mice. In fact, we investigated whether the α-synO-mediated 

memory impairment was triggered by hippocampal changes in cellular organisation or 

synaptic structure.  

Two, 4, 8 or 24 hours after α-synO injection mice were sacrificed. By means of a qualitative 

analysis of Nissl stained brain slices we did not find any difference in the neuronal 
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organisation and density in the hippocampal CA1, CA2, CA3 and dentate gyrus of α-synO-

treated mice at any time point considered compared to Veh-treated animals (Figure 24).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 24. A single ICV injection of α-synOs does not alter neuronal organisation in the 

hippocampus. Representative images of Nissl staining coronal hippocampal sections and 

magnification of different hippocampal subfield 2, 4, 8 and 24 hours after α-synOs (3/group). 

Moreover, we did not find any changes in the expression of representative pre- and post-

synaptic proteins such as synaptophysin and PSD-95 at either 4- or 24-hours post-injection 

(Figure 25A-F). In fact, analysis of the optic density for both synaptophysin and PSD 95 had 

demonstrated the absence of significant differences between Veh- and α-synO-treated mice 

(PSD95 4 hours: t8=0.12, P=0.89; PSD95 24 hours: t8=1.03, P=0.33; synaptophysin 4 hours: 

t8=0.26, P=0.82 and, synaptophysin 24 hours: t8=1.07, P=0.31). 
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Together, our findings demonstrate that α-synOs lead to a transient memory impairment 

which is most likely dependent on a synaptic dysfunction rather than synaptic and neuronal 

loss.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. A single ICV injection of α-synOs does not alter synaptic markers in the 

hippocampus. (A-F) Immunoblot analysis for ipsilateral hippocampal (5 mice/group) PSD95 and 

synaptophysin expression, and relative quantification at both 4 and 24 hours. As demonstrated by 

the statistical analyses α-synOs do not affect the protein levels of either PSD95 or synaptophysin in 

each time point considered.  
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6.3 Discussion 

Compelling evidence highlights α-syn as the main factor in the pathogenesis of PD and PD-

related disorders. In pathological conditions, aggregation of α-syn leads to the production of 

small, soluble aggregates, namely oligomers, protofibrils and fibrils. α-synOs are 

heterogeneous and can vary in composition, structure and toxicity (Roberts and Brown, 

2015). Consistent with the heterogeneous toxic profile of α-synOs, they are not all 

recognised as deleterious because hypothetically some of them might exert physiological 

functions, and furthermore the detrimental effects on neurons may be different upon 

exposure to different oligomeric conformations (Danzer et al., 2007; Roberts and Brown, 

2015). Regardless such a variability, the main accepted hypothesis in the field posits that α-

synOs can be secreted by neurons and could be the main detrimental species involved in the 

pathogenesis of α-synucleinopathies, leading to cognitive dysfunction (Martin et al.,  2012; 

Diogenes et al., 2012; Forloni et al., 2016; Ono, 2017), which is commonly found among 

PD and LBD patients.  

To test the “oligomeric hypothesis”, we took advantage of an acute mouse model based on 

a single ICV injection of different well-characterised α-syn moieties (monomer, oligomers, 

fibrils) in C57BL/6 naïve mice. Treated mice were tested for their memory in the NORT. 

We demonstrate that a single ICV injection of a solution enriched in α-synOs specifically 

caused a significant impairment in long-term memory. In contrast, monomers and fibrils 

were ineffective. The memory impairment we describe is specifically triggered by α-syn. In 

fact, while pre-treatment with an anti-α-syn antibody completely prevented the memory 

damage, pre-treatment with 4G8, which does not recognise α-syn but binds to oligomeric 

assemblies of Aβ (Stravalaci et al., 2012), was inactive.  

The memory deficit was not associated with neuronal loss or disorganisation in hippocampal 

cell layers. Similarly, no changes were detected in the expression of representative synaptic 

proteins. In fact, we did not find alterations of pre- and post-synaptic markers such as 
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synaptophysin or PSD95. In line with the absence of hippocampal structure alterations, we 

demonstrate that 12 days after the ICV injection of α-synOs, mouse memory was restored 

and comparable to the Veh-treated mice. Thus, in our acute mouse model, α-synOs lead to 

a transient rather than a persistent memory impairment. 

To further address the detrimental action of α-synOs on memory, we investigated their effect 

on LTP, an experimental paradigm for studying the synaptic plasticity, which is a vital 

process in the consolidation of new memories. In fact, the absence of changes in synaptic 

structure would not rule out the occurrence of synaptic dysfunction. In agreement with 

previous reported data (Diogenes et al., 2012; Martin et al., 2012; Ferreira et al., 2017), 

electrophysiological recordings confirmed that pre-incubation of brain slices with α-synOs 

severely reduces the amplitude of LTP. In addition, while we clearly depict α-synOs as the 

sole moieties leading to memory impairment in mice, we rule out the effectiveness of α-syn 

monomers and fibrils in the same process. 
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The data presented in this chapter are reported in the manuscript entitled “Alpha-synuclein 

oligomers impair memory through glial cell activation and via Toll-like receptor 2”. Brain 

Behav Immun. 2018 Mar; 69:591-602. doi: 10.1016/j.bbi.2018.02.012.  

 

7.1 Aim of the study and experimental design 

In the following section we sought to address the role of neuroinflammation in mediating 

the harmful activities of α-synOs on memory. In fact, despite initially considered as a mere 

secondary event, neuroinflammation has acquired an increasing interest in the pathogenesis 

of α-synucleinopathies.  

Astrocytes and microglial cells are the main cellular components within the CNS. In spite of 

their different embryogenic origin, both astrocytes and microglial cells are immune-

competent cells in the brain, and they play essential functions in maintaining brain 

homeostasis (Hertz and Chen, 2016). In healthy brains, astrocytes and microglial cells are 

juxtaposed to neurons and directly contact synapses at both pre- and post-synaptic level. 

This way, they are strictly involved in the surveillance of synaptic function and synaptic 

plasticity, which is a key player in governing learning and memory (Blank and Prinz, 2013). 

In response to various stimuli, including α-synOs, they become activated and able to release 

several pro-inflammatory factors which may trigger neuronal dysfunction (Fellner et al., 

2013; Kim et al., 2013; Morris et al., 2013; Blank and Prinz, 2013; Ramikko et al., 2015: 

Kim et al., 2016). 

As a consequence, the uncontrolled activation of glial cells might deprive neurons of 

regulatory surveillance, and lead to impairment of synaptic plasticity and cognitive functions 

(Morris et al., 2013; Richwine et al., 2009). 

As described in chapter III, initiation of an inflammatory response generally occurs after the 

recognition of DAMPs or PAMPs by PRRs such as TLRs. TLRs have been widely 

investigated in the context of PD (Kouli et al., 2019). In particular, as previously described, 
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TLR2 and TLR4 have been identified as potential interactors for α-synOs. However, the 

precise contribution of the two receptors in mediating α-synO detrimental effects still 

remains unknown and a matter of debate (Kouli et al., 2019). 

Based on the evidence reported here, and on the gap of knowledge about the TLRs 

involvement in mediating α-synO detrimental effects, we herein aimed at: I) assessing 

whether α-synOs are capable of activating microglial and astroglial cells in the hippocampus 

in our acute mouse model; II) evaluating the contribution of the α-synO-induced 

neuroinflammation in triggering the memory damage as reported in chapter VI; and III) 

investigating the role of both TLR2 and TLR4 as mediators for α-synO-induced memory 

damage to get new insights on the mechanisms underlying α-synO detrimental effects. 

To assess the presence of α-synO-induced astrogliosis and microgliosis in our acute mouse 

model, C57BL/6 naïve mice were ICV injected with α-synOs (1μM/7.5μL) or Veh and 

sacrificed at different time points (2, 4, 8, 24 hours) post-treatment. Then, activation of both 

astroglial and microglial cells in the hippocampus was investigated through 

immunofluorescence. 

Once confirmed that the ICV injection of α-synOs was able to trigger a neuroinflammatory 

response, we addressed whether the α-synO-induced neuroinflammation was involved in 

mediating the memory damage taking place in α-synO-treated mice. To this purpose, we 

tested whether two different anti-inflammatory drugs (Indo and IBF, IP injected 30 minutes 

before α-synO ICV injection) could counteract the α-synO-induced memory deficiency 

(Figure 26A). In addition, through immunohistochemical approaches we assessed the 

activation state of astroglial and microglial cells in the hippocampus of mice treated with the 

anti-inflammatory drugs and α-synOs. Of note, assessment of the activation of glial cells 

was performed at the time point corresponding to the peak of glial activation (4 hours post 

α-synO ICV injection as described in the results). To get new insight into the role of TLRs 

in mediating α-synO detrimental effects on memory, we investigated the role of TLR4 and 
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TLR2. Specifically, TLR4 knock-out mice (TLR40/0) and WT mice were ICV injected with 

either α-synOs or Veh, and their memory performance tested in the NORT (Figure 26B). 

Consistent with the large body of evidence reporting the involvement of TLR2 in the 

pathogenesis of PD and PD-related disorders (Kim et al., 2013; Kim et al., 2016; Kim et al., 

2018), we also assess the role of TLR2 in mediating α-synO-induced memory deficiency in 

our acute mouse model. To this goal, we ICV pre-treated C57BL/6 naïve mice with the 

functional blocking antibody against TLR2 (T2.5) 15 minutes before α-synO or Veh 

injection (Figure 26C). For a detailed description of drug doses please see chapter V. 

 

 

Figure 26. Schematic representation of treatment schedules for NORT experiments. (A) IP 

treatment with Indo (10mg/Kg) and IBF (5,10 and 50mg/Kg) 30 minutes before the ICV injection of 

α-synOs (1μM/7.5μL). (B) α-synOs treatment (1μM/7.5μL) in C57BL/6 naïve mice and TLR40/0 

mice. (C) ICV treatment with the functional inhibiting anti-TLR2 antibody T2.5 (5μg/2μL) 15 

minutes before the ICV injection of α-synOs (1μM/7.5μL). 
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7.2 Results 

7.2.1 Alpha-synO-mediated memory impairment is associated with hippocampal 

neuroinflammation  

To determine whether α-synOs triggered the activation of glial cells in our acute mouse 

model, C57BL/6 naïve mice were ICV injected with α-synOs (1µN/7.5µL) and their gliosis 

was investigated at 2, 4, 8 and 24 hours post-injection. By immunofluorescence, we found 

that both astrocyte (GFAP) and microglial (IBA1) activation in the hippocampus was mainly 

detectable 4 hours after the α-synOs injection (Figure 27), whereas at 8 and at 24 hours post-

treatment glial cells returned close to a resting state similar to that of Veh-treated mice.  
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Figure 27. A single α-synO injection induces transient glial cell activation in hippocampus. 

Representative immunofluorescence images showing hippocampal slices stained for astrocytes 

(blue), microglia (red) and IL-1β (green). While a significant glial cell activation occurs 4 hours after 

α-synOs injection compared to mice receiving Veh, no difference in the expression of IL-1β is 

detectable. 

We recently reported that a single injection of AbOs in a similar acute mouse model impaired 

memory in close association with gliosis and increased expression of the pro-inflammatory 

cytokine IL-1b which peaks at 8 hours post-injection, and mediated AbO-induced memory 

damage (Balducci et al., 2017). Based on this evidence, we investigated whether a similar 

outcome also occurred in α-synO-treated mice.  In contrast to AbOs, we found that α-synOs 

treatment did not lead to increased IL-1b levels (Figure 27 and 28). Thus, we hypothesised 

that different pathways may at play in mediating the neuroinflammatory response triggered 

by α-synOs or AbOs. Of note, the different time point chosen for our investigation in α-

synO- or AbO-treated mice was based on our previous evidence (Balducci et al., 2017) 

showing that in AbO-treated mice gliosis picked at 8 hours after the ICV injection. Thus, we 

have investigated IL-1b expression at the time points corresponding to the maximal glial 

activation (4 hours after α-synOs and 8 hours after AbOs ICV injection). 
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Figure 28. A single α-synO injection does not increase the expression of the pro-inflammatory 

cytokine IL-1β.  Representative images comparing hippocampal astrogliosis (blue), microgliosis 

(red) and IL-1β (green) expression after ICV injection of Veh, α-synOs (4 hours post-injection; top 

line) and AβOs (8 hours post-injection; bottom line). Of note, the two time points were chosen based 

on the maximal glial activation triggered by α-synOs or AβOs in our acute mouse models. 

 

 

7.2.2 Neuroinflammation is a crucial mechanism involved in α-synO-mediated memory 

damage 

As we demonstrated that α-synOs lead to activation of astrocytes and microglial cells, we 

checked whether neuroinflammation is implicated in the α-synO-induced recognition 

memory impairment in our model. To address such a question, we tested whether two 

NSAIDs (Indo and IBF) could prevent α-synO-induced memory damage. 10mg/Kg Indo, 

which was previously found to be active in abolishing AβO-induced memory impairment 

(Balducci et al., 2017), was IP administered 30 minutes before the ICV injection of α-synOs. 

We found that Indo pre-treatment significantly abolished the memory impairment caused by 

α-synOs (Figure 29). In fact, while mice injected with Veh+α-synOs had a significantly 

lower DI (mean±SEM) than Veh+Veh-treated animals (0.005±0.06 and 0.26±0.05 

respectively; **p<0.01, Two-way ANOVA followed by Tukey’s test), mice treated with 

Indo+α-synOs had a DI comparable to Veh+Veh-treated mice (0.30±0.04), and higher than 

mice receiving Veh+α-synOs (0.005±0.06; **p<0.01, Two-way ANOVA followed by 

Tukey’s test). Thus, these data support the hypothesis that α-synOs trigger a 

neuroinflammatory response which in turn contributes to the induction of memory 

impairment.  
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Figure 29. Indo pre-treatment counteracts α-synO-induced memory impairment. Effect of 

10mg/Kg Indo pre-α-synOs on memory. Two-way ANOVA found a significant effect of α-synOs 

(F1,65=4.4, P=0.04), a significant effect of Indo (F1,65=8.0, P=0.0061) and a significant interaction 

Indo x α-synOs (F1,65=6.9, P=0.01). Mean±SEM of the DI of mice tested in the NORT (Veh+Veh 

n=20; Indo 10mg/Kg+Veh n=15; Veh+α-synOs n=19 and Indo 10mg/Kg+α-synOs n=15; **p<0.01, 

Tukey’s test). 

To confirm that the amelioration of mouse memory performances triggered by Indo pre-

treatment was due to the lack of α-synO-mediated neuroinflammation, we histologically 

evaluated the extent of hippocampal gliosis 4 hours post the ICV injection. As described 

above, this time point was selected based on the evidence that 4 hours post α-synO-treatment 

corresponded to the time point with the peak of glial cell activation in our model. As shown 

in figure 30A, we found that Indo pre-treatment led to a reduction of both IBA1- and GFAP-

immunoreactivity compared to Veh+α-synO-treated mice, which was also confirmed by the 

quantitative analysis of the percentage of IBA1- and GFAP-immunopositive area (Figure 

30B and C).  
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Figure 30. Glial cell activation induced by α-synOs is hampered by Indo pre-treatment. (A) 

Representative staining for IBA1 (top) and GFAP (bottom) in hippocampal CA1 region of Veh+Veh 

(n=4), Veh+α-synOs (n=4) and Indo 10mg/Kg+α-synOs (n=4) 4 hours post ICV injection. 

Histograms are the quantitative analysis of the percentage (mean±SEM) of marked area for IBA1 

(B) and GFAP (C); (*p< 0.05, **p<0.01 and ****p<0.001 compared to Veh+α-synOs; Bonferroni’s 

test). 

To further ascertain that the glial response is involved in the detrimental action of oligomers 

on memory, we pre-treated C57BL/6 mice with a second NSAID, IBF at 5, 10 and 50 mg/Kg 

(IP 30 minutes before α-synOs). As shown in figure 31, we demonstrated that IBF 

counteracted the α-synO-mediated memory deficiency. In fact, mice receiving IBF at the 

dose of 50 mg/Kg and α-synOs (IBF 50+α-synOs) performed well in the NORT, having a 

significantly higher DI (mean±SEM) than those treated with Veh+α-synOs (0.24±0.04 and 
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-0.06±0.07 respectively; *p<0.05, One-way ANOVA followed by Tukey’s test), and 

comparable to that of Veh+Veh treated animals (0.27±0.03). In contrast, IBF at the lower 

doses of 5 and 10 mg/Kg were ineffective. 

 

 

 

 

 

 

Figure 31. IBF pre-treatment counteracts α-synO-induced memory impairment. Effect of 5,10 

and 50mg/Kg IBF pre-α-synOs on mouse memory performances. One-way ANOVA found a 

significant effect of treatment (F5,37=6.095, P=0.0003) due to the significant impairment induced by 

α-synOs and the ability of IBF at the dose of 50mg/Kg to abolish it. Histograms are the DI 

(mean±SEM) of mice tested in the NORT (Veh+Veh n=10; IBF 50mg/Kg+Veh n=6; Veh+α-synOs 

n=10; IBF 5mg/Kg+α-synOs n=5; IBF 10mg/Kg+α-synOs n=6 and IBF 50mg/Kg +α-synOs n=6; 

**p<0.01 and *p<0.05, Tukey’s test). 

To pinpoint whether the IBF effect on memory was linked to the blocking of α-synO-

mediated glial cell activation, we evaluated the IBF ability in preventing α-synO-mediated 

hippocampal gliosis 4 hours post ICV injection. As shown in figure 32A, IBF at the active 

dose of 50 mg/Kg induced a significant reduction of both IBA1- and GFAP-

immunoreactivity compared to Veh+α-synOs-treated mice. Qualitative data were then 

confirmed by quantitative analysis of the percentage of IBA1- and GFAP-marked area 

(Figure 32B and C).  
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Figure 32. Glial cell activation induced by α-synOs is hampered by IBF pre-treatment. (A) 

Representative staining for IBA1 (top) and GFAP (bottom) in hippocampal CA1 region of Veh+Veh 

(n=4), Veh+α-synOs (n=4) and IBF 50mg/Kg+α-synOs 4 hours after the ICV injection (n=4). 

Histograms are the quantitative analysis of the percentage (mean±SEM) of marked area for IBA1 

(B) and GFAP (C); (*p< 0.05 and **p<0.01 compared to Veh+α-synOs; Bonferroni’s test). 

Thus, we herein demonstrate that α-synOs triggered the activation of both astroglial and 

microglial cells. Moreover, our data show that neuroinflammation is a mechanism involved 

in mediating the detrimental effects of oligomers on memory. In fact, two different NSAIDs 

restore mice memory performances suppressing the α-synO-induced neuroinflammatory 

response. 
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7.2.3 Alpha-synOs lead to gliosis in the hippocampus whereas monomers and fibrils 

are ineffective 

Our findings indicate that the detrimental effect of oligomeric α-syn on memory 

establishment is tightly associated to microglial and astroglial cell activation. Hence, we 

addressed whether monomeric or fibrillar α-syn, which did not affect cognitive performance 

(described in section 6.2.1), were also ineffective in triggering hippocampal gliosis. 

To this aim, we ICV injected C57BL/6 naïve mice with α-syn solutions enriched in 

monomers, oligomers or fibrils, and both hippocampal IBA1- and GFAP-immunoreactivity 

were investigated 4 hours post-injection. Consistent with the results reported above, the ICV 

injection of α-synOs led to a significant increase in both GFAP- and IBA1-marked area 

compared to Veh-treated animals (Figure 32A-C). In contrast, we found that monomeric and 

fibrillar α-syn were ineffective (Figure 33A). In fact, our quantitative analysis of both GFAP- 

and IBA1-marked area confirmed the absence of glial cell activation in mice receiving either 

monomers or fibrils compared to Veh-treated animals (Figure 33B and C).  

Therefore, we herein demonstrate that the neuroinflammatory response is specifically caused 

by α-synOs. Intriguingly, monomers and fibrils, which do not affect memory establishment 

are also ineffective in triggering either astrogliosis or microgliosis, strongly supporting the 

hypothesis that neuroinflammation is a crucial mechanism involved in mediating the harmful 

effects of oligomers.  
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Figure 33. Hippocampal gliosis is specifically induced by α-synOs whereas monomers and 

fibrils are ineffective. (A) Representative images showing hippocampal slices immunostained for 

IBA1 (top) or GFAP (bottom) of mice receiving Veh, monomeric, oligomeric or fibrillar α-syn 4 

hours post-treatment (4/group). (B, C) Histograms are the quantitative analysis of the marked area 

percentage (mean±SEM) of Veh-, monomer-, α-synO- and fibril-treated mice for either the 

microglial marker IBA1 (B) or the astroglial marker GFAP (C). One-way ANOVA found a 

significant effect of treatment for both IBA1 (F3,12 = 25.89, P < 0.0001) and GFAP (F3,12 = 6.37, P < 

0.01); (***p < 0.0001, *p < 0.05 compared to Veh; Bonferroni’s test). 

 

7.2.4 Alpha-synO-mediated memory impairment is TLR2-dependent 

To get more insight into the immune mechanism underlying the α-synO-mediated memory 

impairment we focused on TLR4 and TLR2.  

Based on the evidence collected through our AD acute mouse model, which indicated that 

both AbO-mediated memory impairment and neuroinflammation are TLR4 dependent 

(Balducci et al., 2017), we investigated whether TLR4 could also be responsible for the 

harmful actions of α-synOs. To this end, α-synOs were ICV injected in TLR40/0 and 
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subsequently their memory performance was tested in the NORT. As shown in figure 34, 

we found that α-synOs retained their detrimental action on memory in TLR40/0 mice as well 

as in WT mice. In fact, TLR40/0 mice receiving α-synOs displayed a significantly lower DI 

(mean±SEM) than TLR4+/+ mice injected with Veh (0.01±0.04 and 0.28±0.05 respectively; 

**p<0.01, Two-way ANOVA followed by Tukey’s test).  

 

 

 

 

 

 

 

Figure 34. Alpha-synO-triggered memory damage is TLR4-independent. Histograms are the DI 

(mean±SEM) of either C57BL/6 naïve mice or TLR40/0 mice ICV injected with Veh or α-synOs 

(C57+Veh n=11, C57+α-synOs n=7, TLR40/0+Veh n=7 and TLR40/0+α-synOs n=7). Two-way 

ANOVA found a significant effect of α-synOs (F1,28=23.3) but a not significant effect of genotype 

(F1.28=0.02, P=0.89), and a not significant interaction genotype x α-synOs (F1.28=0.07, P=0.79; 

*p<0.05 and**p<0.01, Tukey’s test). 

 

Accordingly, as described in chapter III, Kim and colleagues reported that α-synO non-cell-

autonomous mechanisms, such as activation of glial cells, might occur via TLR2 and are 

independent of TLR4 (Kim et al., 2013; Kim et al., 2016). To address whether α-synOs exert 

their deleterious action on memory in a TLR2-dependent manner, we pre-treated C57BL/6 

naïve mice with the functional blocking antibody T2.5 at the dose of 2.5μg/2μL ICV 15 

minutes before the injection of Veh or oligomers. In stark contrast with the data we obtained 

in TLR40/0 mice, the T2.5 pre-treatment completely abolished the α-synO-mediated memory 

deficiency (Figure 35). In fact, T2.5+α-synO-treated mice performed well in the NORT, 

showing a DI (mean±SEM) significantly higher than those receiving Veh+α-synOs 
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(0.38±0.05 and 0.01±0.05 respectively: ****p<0.0001, Two-way ANOVA followed by 

Tukey’s test). 

 

 

 

 

 

 

 

Figure 35. Alpha-synO-triggered memory damage is TLR2-dependent. Histograms are the DI 

(mean±SEM) of mice ICV injected with Veh+Veh, T2.5+Veh, Veh+α-synOs and T2.5+α-synOs 

(n=7/group). Two-way ANOVA found a significant interaction T2.5 x α-synOs (F1,24=29.24, 

P=0.0001; **p<0.0001 and ****p<0.00001, Tukey’s test). 

Collectively, our data are consistent with the evidence provided by Kim and colleagues, and 

indicate that α-synOs impair memory establishment through pathways other than those 

involved in mediating AβO deleterious effects. In particular, our findings indicate that α-

synOs act in a TLR2-dependent manner and independently of TLR4.  

 

7.3 Discussion 

Originally introduced in the context of AD, the oligomeric hypothesis has been recently 

applied to PD and PD-related disorders. Consistently, oligomeric aggregates of Aβ as well 

as α-syn are identified as the main harmful species underlying the pathogenesis of AD and 

PD, respectively (Scott et al., 2010; Winner et al., 2011; Mucke and Selkoe, 2012; Balducci 

and Forloni, 2014; Forloni et al., 2016; Ono, 2017). In fact, while both AβOs and α-synOs 

have been reported to affect synaptic plasticity and to impair memory, their monomers and 

fibrils are ineffective (Balducci et al., 2010; Diogenes et al., 2012; Martin et al., 2012; La 

Vitola et al., 2018).  
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As previously described, in pathological and stress conditions neurons increase the amount 

of α-synOs being secreted in their milieu. Thus, extracellular α-synOs may contribute to the 

pathogenesis of PD and PD-related disorders by exerting their detrimental action in a non-

cell autonomous fashion which involves neurons, astrocytes and microglial cells. In this 

regard, many groups started focusing their efforts on the non-cell autonomous actions of α-

synOs. Their data demonstrate that oligomeric α-syn triggers the activation of glial cells, 

which in turn produce and release several pro-inflammatory mediators leading to 

neuroinflammatory damage of neurons (Fellner et al., 2013; Kim et al., 2013; Ramikko et 

al., 2015; Kim et al., 2016). The role of neuroinflammation in mediating memory damage 

is strongly supported by evidence from animal models of AD. In an acute mouse model of 

AD, AβOs impair memory performance through glial activation and increase of pro-

inflammatory cytokines expression (Balducci et al., 2017). Intriguingly, the block of 

neuroinflammation resulted in the rescue of memory functions both in an acute and in the 

APP/PS1 Tg mouse model of AD (Balducci et al., 2017; Balducci et al., 2018). Since α-

synOs have been detected in the extracellular fluids, researchers have speculated that α-

synOs like AβOs may exert their own detrimental activities through indirect non-cell-

autonomous mechanisms which include glial cell activation. Thus, neuroinflammation might 

represent a process underlying cognitive decline in the context of α-synucleinopathies. 

Despite initially considered as a consequence of the neurodegenerative process which takes 

place in PD and its related disorders, neuroinflammation is now emerging as a mechanism 

fostering α-synO deleterious activities. 

Astrocytes as well as microglial cells have vital roles at the neuronal level, and they are 

crucial players in the fine tuning of neuronal activity and synaptic plasticity (Bacci et al., 

1999; Blank and Printz, 2013; Hertz and Chen, 2016). Therefore, perturbation of their 

function/state might lead to neuronal damage, dysfunction and ultimately death (Morris et 

al., 2013; Blank and Prinz, 2013).  
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To decipher the role of the neuroinflammatory response in mediating the memory damage 

triggered by α-synOs, we investigated whether the memory deficit mediated by α-synOs in 

our acute mouse model was associated with glial cell activation. Our results indicated that, 

a single ICV injection of α-synOs triggered a transient activation of glial cells in the 

hippocampus. In fact, we found that 4 hours after treatment glial cells displayed an increase 

in cell density and body enlargement compared to mice receiving Veh. In contrast to AbOs, 

the expression of IL-1β after α-synOs did not change. This difference is intriguing and highly 

significant. In fact, although protein-misfolding neurodegenerative disorders share common 

neuropathological features, they may differ in the action mechanism of oligomers derived 

from their own related causative protein. 

To ascertain whether α-synO-mediated neuroinflammation was involved in the memory 

damage caused by α-synOs in the acute mouse model we developed, we pre-treated mice 

with either Indo or IBF, two NSAIDs able to cross the BBB and to inhibit both 

cyclooxygenase I (COX1) and cyclooxygenase II (COX2). We found that Indo and IBF both 

ameliorated the memory performances of α-synO-treated mice. Moreover, the behavioural 

effect of Indo and IBF pre-treatment correlated with a drastic protection against α-synO-

mediated hippocampal gliosis. Thus, our findings highlight the implication of glial cell 

activation in the α-synO-mediated memory impairment, and they are consistent with 

previous data reported by Drouin-Ouellet and co-workers. In fact, they demonstrate that the 

treatment of a Tg PD mouse model with a COX-2 inhibiting anti-inflammatory drug 

abrogates neuroinflammation and restores motor behaviour performances (Drouin-Ouellet 

et al., 2015). 

The initiation of the inflammatory response generally starts after the recognition of DAMPs 

or PAMPs by PRRs such as TLRs. TLRs are first line players involved in the innate immune 

response and are able to detect both exogenous and endogenous signals including misfolded 

and aggregated α-syn. TLRs have been widely investigated in the context of PD, and despite 
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their contribution in α-synucleinopathies is controversial and debated, evidence for TLR2 or 

TLR4 engagement in such pathologies raises from several observations (Letiembre et al., 

2009; Béraud et al., 2011; Fellner et al., 2013; Kim et al., 2013; Drouin-Ouellet et al., 2015; 

Rannikko et al., 2015 Kim et al., 2016; Kouli et al., 2019). 

To shed light on this aspect and to reveal potential mechanisms of action of α-synOs, we 

investigated whether TLR4 mediates memory loss. Our findings demonstrate that memory 

impairment caused by α-synOs is TLR4-independent. Indeed, α-synOs ICV injected either 

in C57BL/6 naïve mice or in TLR40/0 mice equally impaired their memory. On the other 

hand, we showed that the functional block of TLR2 completely preserved memory loss in 

mice ICV treated with oligomers.  

To assess the role of TLR4 in mediating α-synO detrimental effect on memory we used 

TLR40/0 mice, whereas to investigate the involvement of TLR2 a pharmacological approach 

with a specific inhibitor was carried out. The reason why we opted for such a tool is that a 

reliable model of TLR20/0 is available solely on the 129 mouse background,  which are not 

suitable for cognitive behavioural studies.  

One may speculate that the effect of our TLR2 functional blocker (T2.5) could result from a 

direct interaction of T2.5 with α-synOs, which might prevent oligomers from exerting their 

detrimental actions. Although this possibility has not been addressed in this thesis, some 

evidence exists that can rule out this hypothesis: 1) T2.5 has been described as a high specific 

blocker for TLR2, and 2) several studies exploiting the TLR2 blocker did not report any 

direct binding with α-synOs, but only indirect effects such as block of α-synO neuron-to-

neuron transmission or inhibition of the inflammatory response after α-synOs exposure (Kim 

et al., 2013; Kim et al., 2016; Kim et al., 2017).   

Thus, our data clearly indicate that α-synOs exert their harmful effects in a TLR2-dependent 

manner and they support TLR2 as a potential candidate for therapeutic approaches. 
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Consistently, Kim and colleagues recently report that the immunotherapy against the TLR2 

in a Tg PD mouse model leads to neuroprotective effects (Kim et al., 2018). 

Collectively the results here described pinpoint the modulation/inhibition of inflammatory 

mediators (COX1, COX2 and TLR2) as valuable strategies to counteract α-synO-mediated 

deleterious effects. However, as COX1, COX2 and TLR2 are also expressed by neurons, we 

cannot rule out a direct action of α-synOs on neurons resulting in subsequent glial activation. 

Of note, recently, Dzamko and co-workers showed that TLR2 is up-regulated in both 

microglia and neurons within the brain of PD patients and that the neuronal stimulation 

through TLR2 agonists leads to a significant increase in the expression of pro-inflammatory 

mediators by neurons themselves (Dzamko et al., 2017). Thus, neurons appear to play an 

active role in the neuroinflammatory process in concert with glial cells. A synergistic action 

of α-synOs both on neurons and glial cells is more likely plausible than an effect of 

extracellular oligomers exclusively on neurons.  

In conclusion, our findings strongly support the involvement of the neuroinflammatory 

response in mediating detrimental effects of α-synOs and further depict neuroinflammation 

as a crucial player in the pathogenesis of α-synucleinopathies, and not merely as a secondary 

event triggered by the underlying neurodegeneration. Moreover, the acute mouse model we 

developed appears as a valid tool to specifically investigate the detrimental activities of α-

synOs and to investigate their action mechanisms. 
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Alpha-synO harmful actions are not dependent on 

the cellular Prion protein 

 

 

 

 

 

 

 

 

 

 

 

 



Results: Chapter VIII 
 
 

128 
 

The data presented in this chapter are reported in the manuscript entitled “Cellular prion 

protein neither binds to alpha-synuclein oligomers nor mediates their detrimental effects”. 

Brain. 2019 Feb 1;142(2):249-254. doi: 10.1093/brain/awy318. 

8.1 Aim of the study and experimental approaches 

To uncover the mechanisms underlying the detrimental effects of α-synOs, several 

biological fields have been widely explored. The most common scenarios taken into account 

to explain how oligomers induce cellular dysfunction and eventually death include: I) 

alterations in membrane permeability (Danzer et al., 2007; Tsigelny et al., 2012;); II) 

neuroinflammation (Fellner et al., 2013; Kim et al., 2013; Kim et al., 2016; La Vitola et al., 

2018); III) protein-protein interaction (Betzer et al., 2015).  

With regard to protein-protein interaction, a recently emerged oligomer-protein interactor is 

PrPC, which was initially described as mediator of AβOs detrimental effects and more 

recently proposed as interactor of α-synOs (Lauren et al., 2009; Ferreira et al., 2017).  

Based on these findings, we aimed to further investigate the α-synO-PrPC interaction using 

direct approaches. In vitro, we compared the toxicity of α-synOs in either PrP+/+ or PrP0/0 

primary hippocampal neurons. In vivo, attempting to elucidate the role of the PrPC in 

mediating the α-synO-induced memory deficit, we exploited the acute mouse model 

described in chapters VI and VII. Specifically, both PrP+/+ and PrP0/0 mice were ICV injected 

with Veh or α-synOs (1μM/7.5μL) 2 hours before the familiarisation/sample phase of the 

NORT. Thus, memory performance of each mouse was assed 24 hours later (Figure 36).  
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Figure 36. Schematic representation of treatment schedule for the NORT experiments. α-synOs 

(1μM/7.5μL) in both Prnp+/+ and Prnp0/0 were ICV injected 2 hours before the familiarisation/sample 

phase. 

We previously reported that the neuroinflammatory response triggered by the ICV injection 

of α-synOs is crucial in mediating their detrimental activities on memory (chapter VII and 

La Vitola et al., 2018). Therefore, we further investigated the role of the PrPC in mediating 

the hippocampal astroglial and microglial cell activation in either PrP+/+ or PrP0/0 mice 4 

hours after the ICV injected with Veh or α-synOs (1μM/7.5μL). Of note, assessment of the 

activation of glial cells has been performed at this time point since it corresponds to the 

maximal glial activation in our acute model (chapter VII and La Vitola et al., 2018). In 

addition, at the molecular level, we verified the existence of a direct binding between α-

synOs and PrPC by SPR, using the same approach previously exploited in our laboratory in 

the biochemical studies on the AβO-PrPC interaction (Balducci et al., 2010). 
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8.2 Results 

8.2.1 Alpha-synO-mediated detrimental effects are PrPC-independent    

To specifically address the PrPC involvement in mounting α-synO harmful effects, we took 

advantage of both in vitro and in vivo approaches. In particular, to assess whether the PrPC 

is required for triggering α-synO-induced toxicity in vitro, we measured both Prnp+/+ and 

Prnp0/0 primary hippocampal neuron survival upon 48 hours exposure to α-synOs at 1, 5 and 

10 μM. In order to ascertain the presence of α-synOs, we had previously characterised  

our preparation at all doses being used in our experiments through AFM and Western 

Blotting. As shown in figure 37, the results obtained through our AFM analyses proved the 

presence of oligomeric assemblies with similar diameter ranging from 15 to 40 nm and 

notably demonstrate the absence of larger aggregates in each condition investigated (Figure 

37A-C left and middle panel). In line with the AFM data, a comparable distribution of 

oligomeric assemblies at 1, 5 and 10 μM was also demonstrated by our western blotting 

analyses (Figure 37A-C right panel), which showed the presence of SDS-resistant α-synOs 

with a molecular  weight ranging from 35 to 100 KDa in each preparation. 
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Figure 37. Atomic Force Microscopy and Western Blotting: characterisation of α-synO 

preparation (1, 5 and 10 μM).  Representative tapping mode of AFM images (left panels) as 

determined by amplitude data of oligomeric samples at 1 (A), 5 (B) and 10 µM (C). The colour scale 

bars correspond to an amplitude range of − 15 to + 15 mV for the main figures and – 12 to + 20 mV 

for insets. Histograms (middle panels) show the diameter frequency distribution of the different 

assemblies obtained for 1 (A), 5 (B) and 10 µM (C). The diameter frequency is similar for the 3 

preparations with a distribution between 15 and 40 nm. Western blot analysis (right panels) of α-

synOs at 1 (A), 5 (B) and 10 µM (C) showing different SDS-resistant assemblies ranging from 35 to 

100 KDa.  



Results: Chapter VIII 
 
 

132 
 

In vitro, we found that the PrPC was not a prerequisite for α-synO detrimental effects. In fact, 

independently of the genotypes considered (Prnp0/0 and Prnp+/+), the 48 hours exposure of 

hippocampal neurons to α-synOs (1, 5, and 10 μM) led to a significant reduction of the 

neuronal viability measured through the MTT assay (Figure 38), and as proved by the two-

way ANOVA showing a significant effect of α-synOs (F3, 46=24.7; P<0.0001) but a non-

significant interaction α-synOs x genotype (F3, 46=0.70; P=0.56). Thus, our evidence 

indicates that α-synO cytotoxicity is not dependent on the PrPC.   

 

 

 

 

 

 

 

 

Figure 38. Alpha-synO-mediated cytotoxicity is PrPC-independent. (A) Scatter plots with bars 

are the percentage of cell survival in MTT assay 48 hours after treatment with Veh or α-synOs at 1, 

5 and 10μM (*p<0.05 and ****p<0.0001 against Veh; Two-way ANOVA followed by Tukey’s test). 

To further investigate whether α-synO detrimental effects are PrPC-mediated, we tested the 

memory performance in both Prnp0/0 and Prnp+/+ mice ICV injected with either Veh or α-

synOs (1μM/7.5μL). Thus, this direct and simple approach, which exploited the acute mouse 

model previously described, allowed us to specifically assess the effects of α-synOs on long-

term memory (chapters VI and VII; La Vitola et al., 2018). As shown in figure 39, both 

Prnp+/+ and Prnp0/0 mice displayed a significant memory impairment after ICV treatment 

with α-synOs compared to mice receiving Veh. In fact, the DI (mean±SEM) of both Prnp+/+ 
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and Prnp0/0 receiving α-synOs (-0.04±0.06 and 0.02±0.05 respectively) was significantly 

lower than those of both Prnp+/+ and Prnp0/0 receiving the Veh (0.24±0.07 and 0.31±0.05 

respectively; **p<0.01, Two-way ANOVA followed by Tukey’s test). Our findings suggest 

that, at the functional level, α-synOs act independently of PrPC. In fact, the Two-way 

ANOVA showed a significant effect of α-synOs (F1,28=24.89; P<0.0001), but a non-

significant interaction α-synOs x genotype (F1,28=0.003; P=0.96).  

 

 

 

 

 

 

 

 

 

 

Figure 39. Alpha-synO-mediated detrimental action on memory is PrPC-independent. Scatter 

plots with bars are the DI (mean±SEM) of Prnp+/+ and Prnp0/0 mice treated with Veh or α-synOs 

(**P<0.01, Two-way ANOVA followed by Tukey’s test; n=8/group).  
 

Based on our previous findings (chapter VII and La Vitola et al, 2018), showing that in our 

acute mouse model α-synO-mediated memory damage was tightly associated to a transient 

hippocampal gliosis, we addressed whether a similar outcome could also take place in 

Prnp0/0 mice. Through histological analysis of astrocytes (GFAP) and microglia (IBA1), we 

assessed the extent of glial activation 4 hours after treatment. As shown in figure 40A and 

B, we found that α-synOs led to an increased expression of GFAP and IBA1 in both Prnp+/+ 

and Prnp0/0 mice when compared to those receiving Veh. Accordingly, as shown in figure 

40C and D, our qualitative analyses were also confirmed by quantifications. Specifically, 

comparing the percentage of hippocampal GFAP- or IBA1-immunopositive area in the 
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different experimental groups investigated, we discovered that the α-synO-induced gliosis 

was PrPC-independent. In fact, the Two-way ANOVA indicated a significant effect of α-

synOs (GFAP: F1,16=24.45; P=0.0001. IBA1: F1,16=57.31, P<0.0001) but a non-significant 

interaction α-synOs x genotype (GFAP: F1,16=0.041, P=0.84. IBA1: F1,16=0.50, P=0.49).  

 

Figure 40. Alpha-synO-induced hippocampal gliosis is PrPC-independent. (A) Representative 

images of GFAP-immunostaining in the hippocampus of mice treated with either Veh or α-synOs.  

(B) Representative images of IBA1-immunostaining in the hippocampus of mice treated with either 

Veh or α-synOs. (C) Scatter plots with bars of the relative GFAP-marked area quantification in 

Prnp+/+ and Prnp0/0 mice treated with Veh or α-synOs (*p<0.05. Two-way ANOVA followed by 

Tukey’s test; n=5/group). (D) Scatter plots with bars of the relative IBA1-marked area quantification 

in Prnp+/+ and Prnp0/0 mice treated with Veh or α-synOs (**p<0.01 and ***p<0.001. Two-way 

ANOVA followed by Tukey’s test; n=5/group).  

Together, our findings indicate that from a functional standpoint the PrPC is not mandatory 

for mediating the detrimental effects of α-synOs at multiple levels, such as neuronal cell 

toxicity, memory impairment and neuroinflammation. 
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8.2.2 Alpha-synOs and PrPC do not directly interact  

To assess the PrPC-α-synO direct binding, we exploited the SPR approach. PrPC from mouse 

brain homogenates was captured on SPR sensor chips coated with 3F4 or 94B4 anti-PrPC 

antibodies. Of note, we selected 3F4 and 94B4 based on the evidence that the PrPC residues 

93-109 have been identified as crucial for the α-synO interaction (Ferreira et al., 2017), and 

on the evidence that our two antibodies recognise epitopes lying within regions 106-111 and 

186-193 respectively. In a previous paper, we had verified that the captured protein is 

actually PrPC, as no capture was detected when flowing brain homogenate obtained from 

Prnp0/0 mice (Balducci et al., 2010). Moreover, PrPC captured by either 94B4 or 3F4 retained 

its ability to bind 6D11, an anti-PrPC antibody directed against the same region (93-109) 

which was described to be involved in α-synO-induced toxic effects (Balducci et al., 2010; 

Ferreira et al., 2017). Under all these conditions, when α-synOs (1 and 10 µM) were flowed 

over captured PrPC we could not find any α-synO-PrPC binding (Figure 41A and B). In 

contrast, 1 µM AβOs, injected in parallel as positive control, produced the expected binding 

signal (Figure 41A and B).  

Figure 41. Alpha-synOs do not directly bind to PrPC.  SPR analysis were performed flowing α-

synOs (1 or 10 μM) and Aβ1-42Os (1 μM), as positive control, for 3 min over sensor surfaces exposing 

PrPC, captured by 3F4 (A) or 94B4 (B) antibodies. Sensorgrams show the time course of the specific 

PrPC-dependent SPR binding signal. 
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Therefore, our results clearly demonstrate the absence of a PrPC-α-synO direct binding in 

different experimental conditions and provide molecular evidence of our functional data on 

the PrPC-independent action of α-synOs. 

 

8.3 Discussion 

Initially considered as mere intermediates forming during the aggregation process of α-syn, 

the small soluble oligomeric assemblies of α-syn are now widely accepted as crucial players 

and main pathological drivers in the pathogenesis of PD and PD-related disorders (Winner 

et al., 2011; Scott et al., 2010; Diogenes et al., 2012; Martin et al., 2012; Ono, 2017; Bengoa-

Vergniory et al., 2017). Attempting to elucidate the pathways underlying the α-synO harmful 

properties, researchers have focused their efforts on both cell-autonomous and non-cell 

autonomous mechanisms. However, despite a large body of evidence, a clear and univocal 

mechanism has not been defined yet. Recently, Ferreira and colleagues (Ferreira et al., 2017) 

have proposed the PrPC as a novel interactor of α-synOs, which is apparently implicated in 

mediating their detrimental activities. Particularly, in their study Ferreira and co-workers 

found that PrPC interacts with α-synOs, and the PrPC-α-synO interaction induces the 

phosphorylation of Fyn kinase and the consequent phosphorylation of NMDAR2B, 

triggering a signalling cascade that leads to synaptic dysfunction (Ferreira et al., 2017).  

To elucidate the role of the PrPC as mediator for the deleterious activities of α-synOs, in the 

present study we further investigated this emerging hypothesis through direct in vitro and in 

vivo approaches. In order to provide evidence of the oligomeric state in our experimental 

conditions, we firstly characterised our three α-synO preparations (1, 5 and 10 μM) through 

both AFM and Western Blotting. Of note, in our three samples we found a similar 

distribution of small assemblies without evidence of larger aggregates. Since our protocol 

for obtaining α-synOs at the three different concentrations is solely based on the incubation 
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of α-syn monomers at 241 μM for 48 hours at 37°C with subsequent dilution at 1, 5 and 10 

μM, the similarities in our preparations were expected. Once verified the quality of our 

oligomers, we performed analyses of the PrPC-α-synO interaction at multiple levels. 

Notably, our SPR analysis did not confirm the existence of a direct PrPC-α-synO binding in 

different conditions. Moreover, α-synOs impaired mouse memory and induced gliosis 

regardless of presence of PrPC, thus indicating the not mandatory role of the PrPC as mediator 

of the α-synO detrimental effects.  

Of note, while our findings clearly depict PrPC as not mandatory for mediating α-synO 

detrimental effects at functional level, we should take into account some aspects of the SPR 

approach herein exploited to assess the PrPC-α-synOs binding. Although, SPR is widely used 

to detect protein-protein interaction, and provides an efficient tool to investigate direct 

interactions (Balducci et al., 2012; Shirasaka et al., 2019), bias may occur to a certain extent. 

In fact, the technique is based on the immobilisation of a protein (PrPC in our study) on the 

surface of a sensor chip via binding to a specific antibody. Such an antibody-protein 

interaction could result in a conformational change of the immobilised protein, that may 

make the binding site required for the interaction with the analyte (α-synOs in our study) 

unaivailable or masked by steric hindrance. To rule out, at least partially, such a possibility, 

we ascertained that PrPC retains its ability to bind AβOs as well as the antibody 6D11, which 

shares the same binding site of α-synOs on PrPC (Ferreira et al., 2017). Moreover, as we 

obtained consistent results using two different antibodies for on-chip immobilisation of PrPC, 

it is highly improbable that the same conformational changes take places in both cases. 

Nonetheless, although our data seem to exclude a PrPC-α-synOs direct interaction, we cannot 

completely rule out that our SPR analyses are partially biased by the events described above.  

On the other hand, it is also relevant to note that the PrPC-α-synOs interaction described in 

the work of Ferreira and colleagues, was revealed  by  an indirect immunoprecipitation 
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approach. In fact, in the context of a cell lysate several proteins may mediate the PrPC-α-

synOs complex, and therefore the physical protein-protein direct binding cannot be 

confirmed and demonstrated . 

To be noticed that, while our SPR analyses may be biased, our functional studies completely 

ruled out the role of PrPC in mediating α-synO-induced neuronal toxicity, cognitive damage 

and neuroinflammation. Thus, assuming that a PrPC-α-synOs binding exists, it does not 

appear to be involved from a neuropathological and behavioural perspective  

As demonstrated in chapter VI and recently published, the ICV injection of α-synOs triggers 

a neuroinflammatory response which drives the α-synO-induced impairment of new memory 

establishment in C57BL6 naïve mice (La Vitola et al., 2018). Intriguingly, herein our 

findings depict the occurrence of a neuroinflammatory response caused by α-synOs also in 

Prnp0/0 mice. Thus, our data may further support the role of neuroinflammation as potential 

non-cell autonomous mechanism mediating the harmful activities of α-synOs (La Vitola et 

al., 2018; La Vitola et al., 2019).  

Our data are in contrast with those of Ferreira (Ferreira et al., 2017), and although we have 

no explanations for this at the state of the art, it could be argued that different α-synO 

preparations were used. Moreover, a further possible explanation is that other α-synOs 

conformers might associate with PrPC, and that both PrPC-dependent and PrPC-independent 

pathways may co-exist in PD as previously reported also for AβOs in the context of AD 

(Purro et al., 2018).  
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The data presented in this chapter are reported in the recently submitted manuscript entitled 

“Peripherally-induced neuroinflammation exacerbates alpha-synuclein oligomer toxicity 

and neuropathology in Parkinson’s disease mouse models”. 

 

9.1 Aim of the study and experimental design 

As far, our results highlight neuroinflammation as a mediator for α-synO detrimental 

activities on memory. However, as previously described in the introduction section, 

compelling evidence from clinicians and experimental studies depicts neuroinflammation as 

a link between genetic susceptibility and environmental factors co-fostering PD and PD-

related pathogenesis (Gao et al., 2011; McKenzie et al., 2017). 

Based on these findings and the lack of direct evidence proving that inflammation influences 

α-synO harmful activities or PD neuropathology, we investigated whether an induced or 

exacerbated inflammatory state potentiates α-synO effects in the acute mouse model 

previously described and PD phenotype in A53T mutated mice, respectively. To this goal 

we have developed two different “double-hit” mouse models. The former is an acute 

“double-hit” model based on the peripheral administration of LPS and the subsequent ICV 

injection of α-synOs. The latter is a Tg “double-hit” mouse model, which is based on the 

peripheral administration of LPS in either NTG or A53T mice. Of note, in this second model 

the two challenges are represented by the pathologic genetic PD-related background and the 

inflammatory stimulus LPS. For this study we have performed several experiments aimed at 

identifying the best experimental conditions. Firstly, we have identified a dose of α-synOs 

which did not affect memory in the NORT. Thus, C57BL/6 naïve mice were ICV injected 

with 0.5 µM α-synOs (7.5µL) 2 hours before the familiarisation/sample phase and their 

memory performances assessed 24 hour later (Figure 42A). To identify a dose of LPS 

inducing the activation of both microglial and astroglial cells in the hippocampus without 

affecting memory performances, 1 or 2.5 mg/Kg were IP injected in C57BL/6 naïve mice. 
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One month later, their neuroinflammatory state was investigated through immunohistology, 

and memory performance were tested in the NORT (Figure 42B). 

To address whether the peripherally LPS-induced neuroinflammation influences the effect 

of the ineffective dose of α-synOs, we have developed an acute “double-hit” mouse model. 

C57BL/6 naïve mice were IP treated with either Veh or 2.5 mg/Kg LPS. One month later, 

mice were ICV injected with either Veh or 0.5 µM α-synOs and their memory performances 

tested 24 hours later in the NORT or in the Y-maze. In the NORT the ICV injection of Veh 

or 0.5 µM α-synOs was performed 2 hours before the familiarisation/sample phase, and 

memory was investigated 24 hours later the ICV treatment. Immunohistological assessment 

of the neuroinflammatory response in the hippocampus was carried out 24 hours after the 

ICV injection (Figure 42C). 

To elucidate whether the peripherally LPS-induced neuroinflammation influences cognitive 

and motor performances in a Tg PD mouse model, A53T mice were treated with a single IP 

injection of Veh or 2.5 mg/Kg LPS. Twenty-five days later, A53T and NTG mice were tested 

in cognitive tools (NORT, Y-maze and MWM) and in motor tools (open field and Beam 

walk test). At the end of behavioural experiments, a group of mice was sacrificed and both 

hippocampal neuroinflammation and dopaminergic neurodegeneration in the SNpc were 

evaluated through immunohistology (Figure 42D). 
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Figure 42. Schematic representation of the in vivo experiments. (A) Veh or 0.5 μM α-synOs ICV 

injected in C57BL/6 naïve mice 2 hours pre-sample phase of the NORT. (B) Veh, 1 or 2.5 mg/Kg 

LPS IP injection in C57BL/6 naïve mice one month before cognitive and histological 

characterisation. (C) 2.5 mg/Kg LPS or Veh IP injected in C57BL/6 naïve mice one month before 

the ICV injection of Veh or 0.5 μM α-synOs. 24 hours after the ICV treatment mice were tested in 

the test phase of NORT or in the Y-maze. (D) 2.5 mg/Kg LPS or Veh IP injected in either NTG or 

A53T mice. Starting 25 days after treatment mice were behaviourally characterised for their 

cognitive and motor performances in several behavioural tasks. 
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9.2 Results 

9.2.1 LPS-preconditioning enhances α-synO-induced toxicity in primary hippocampal 

neuronal cultures 

To assess whether inflammation would influence α-synO cytotoxicity, we initially exposed 

primary hippocampal neurons to α-synOs (1, 5 and 10 μM) to identify a dose of oligomers 

ineffective in inducing neuronal death. We found that, upon 48 hours exposure, α-synOs 

induced cellular damage at the two highest doses (Figure 43), leading to a significant 

increase in the amount of LDH released in the cell medium (% of Veh mean±SEM; 

132.2±6.4 and 137.3±1.6, respectively; *p<0.05 and **p<0.01, One-way ANOVA followed 

by Dunnet’s test). In contrast, since the LDH released by neurons upon exposure to 1 μM α-

synOs was comparable to Veh-treated cells (100.0±9.40 and 113.7±10.3, respectively), we 

demonstrate that 1 μM α-synOs did not affect cell survival.  

 
Figure 43. α-synO-mediated neuronal damage in primary hippocampal cell cultures. (A) 

Scatter plots and bars (mean±SEM) of the LDH percentage of primary hippocampal cultures exposed 

for 48 hours to Veh (n=7 wells), or 1 μM (n=6 wells), 5 μM (n=7 wells) and 10 μM (n=7 wells) α-

synOs (One-way ANOVA found a significant effect of treatment; F2,23=4.70, P=0.011; *p<0.05 and 

**p<0.01, Dunnet’s test). 

Once characterised 1 µM as ineffective dose, we evaluated whether the neuronal culture pre-

conditioning with the inflammatory stimulus LPS could influence neuronal susceptibility to 

α-synOs. Thus, primary hippocampal cultures were exposed to an inactive dose of LPS (0.5 
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μg/mL) for 24 hours. After LPS wash-out, we treated neurons for 24 and 48 hours with α-

synOs (1 μM), then we assessed the cell toxicity through LDH assay. At both time points, 

we found that the 24-hour LPS pre-conditioning enhanced primary hippocampal cell 

susceptibility to α-synOs. In fact, as shown in figure 44A and B, while LPS 0.5 µg/mL or 1 

µM α-synOs did not affect neuronal survival per se at both time points tested (LDH 24 hours: 

97.51±1.50 n=8 wells and 98.52±.1.13 n=8 wells, respectively; 48 hours: 109.30±6.50 n= 8 

wells and 139.59±.11.82 n= 9 wells, respectively), which was comparable to Veh-treated 

cells (LDH 24 hours: 100.00±2.31, n=9 wells; 48 hours: 100.00±3.29, n=9 wells), cell death 

was significantly higher in neurons treated with both 0.5 µg/mL LPS and 1 µM α-synOs 

(LDH 24 hours: 125.56±7.13, n=7 wells; 48 hours: 185.13±15.16, n=7 wells; **p<0.01, 

***p<0.001 and ****p<0.0001, Two-way ANOVA followed by Tukey’s test).  Therefore, 

we herein demonstrate that LPS pre-conditioning of hippocampal neurons potentiates α-

synOs detrimental effects in vitro. 

 
Figure 44. LPS pre-conditioning enhances α-synO-mediated neuronal damage in primary 

hippocampal cell cultures. (A) Scatter plots with bars (mean±SEM) of the LDH percentage of 

primary hippocampal cultures pre-conditioned with 0.5 μg/mL LPS and then exposed to 1 μM α-

synOs for 24 hours (Two-way ANOVA demonstrated a significant interaction LPS x α-synOs: 

F1,28=17.67, P=0.0002; ***p<0.001 and ****p<0.0001, Tukey’s test). (B) Scatter plots with bars 

(mean±SEM)  of the LDH percentage of primary hippocampal cultures pre-conditioned with 0.5 

μg/mL LPS (n=8 wells), and then exposed to 1 μM α-synOs for 48 hours (Two-way ANOVA showed 
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a significant interaction LPS x α-synOs: F1,28=6.374, P=0.017; **p<0.01 and ****p<0.0001, Tukey’s 

test). 

 

9.2.2 Establishment of the two challenges for the “double-hit” experimental model 

Based on our in vitro data, by exploiting the acute α-synO-induced mouse model described 

above, we ascertained whether a pre-established neuroinflammatory condition could 

potentiate α-synO detrimental effects in vivo. To such a purpose, we developed a “double-

hit” acute mouse model exploiting two challenges. As initial approach, we identified the 

inactive α-synO concentration in C57BL/6 naïve mice in terms of memory impairment. As 

reported in chapters VI and VII and in our recent publications (La Vitola et al., 2018; La 

Vitola et al., 2019), 1 µM ICV injection of α-synOs is able to induce memory impairment. 

Thus, we investigated the efficacy of the lower 0.5 µM concentration in mice subsequently 

tested in the NORT. Mice receiving either Veh (n=7) or 0.5 µM α-synOs (n=8) discriminated 

well between the familial and the novel object exhibiting comparable DIs (0.28±0.02 and 

0.31±0.03, respectively; Student’s t-test t13=0.70, P=0.49; Figure 45A).  

Thereafter, we set up the LPS-induced neuroinflammatory treatment with the purpose of 

defining an LPS dose leading to a persistent neuroinflammatory response without inducing 

mouse suffering and cognitive deficiency. We injected IP C57BL/6 naïve mice with either 

1 or 2.5 mg/Kg LPS (n=7 and n=8, respectively). Both LPS doses altered body growth 

(Figure 45B). Indeed, we observed a significant reduction in body weight three days after 

treatment compared to mice receiving Veh (n=7) (23.06±0.54 g, 23.24±0.76 g and 

26.30±0.30 g, respectively; ****p<0.0001, Two-way ANOVA followed by Tukey’s test). 

Such an effect was transient, as the body weight recovered to Veh-treated mice one-month 

post-injection (28.34±0.54 g, 29.45±0.39 g and 29.93±0.39 g, respectively). Thus, we 

selected the one-month post-injection as the time point for both LPS doses in order to 

establish the best treatment condition propaedeutic to evaluate the α-synO effects.   
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To choose the final LPS dose, we compared the memory performance and the extent of 

neuroinflammation at 1 and 2.5 mg/Kg. As shown in figure 45C, both LPS doses 

(n=4/group) induced hippocampal astrogliosis (marked by GFAP) compared to Veh-treated 

mice (n=4/group). The subsequent quantitative analysis (Figure 45D) of the percentage of 

GFAP-marked area (mean±SEM of Veh-treated mice) confirmed our qualitative result (1 

mg/kg = 1119.39±1.99; 2.5 mg/kg = 144.59±2.4; Veh = 100±1.17; ***p<0.001 

and****p<0.0001, One-way ANOVA followed by Tukey’s test). Notably, we found that the 

GFAP expression was significantly increased in 2.5 mg/Kg LPS-treated mice compared to 

the lower dose (****p<0.0001, One-way ANOVA followed by Tukey’s test).  

In contrast to the astroglial activation, microglial cells were significantly activated in the 

hippocampus solely at the higher LPS dose (Figure 45C). Moreover, as shown in figure 45E, 

the quantitative analyses of the IBA1-marked area, confirmed a significant increase in the 

percentage of IBA1 expression (mean±SEM of Veh-treated mice) in mice receiving LPS 2.5 

compared to both LPS 1 mg/Kg and Veh-treated animals (250.2±7.52, 133.19±23.99 and 

100±7.01, respectively, n=4/group; **p<0.01 and ***p<0.001, One-way ANOVA followed 

by Tukey’s test). Thus, our immunohistochemical analyses demonstrated that 2.5 mg/Kg 

LPS efficiently leads to a significant hippocampal glial response one month after treatment. 

We, thus, assessed the memory performance of LPS-treated mice in the NORT at the same 

time point (Figure 45F). As suggested by comparable DIs (mean±SEM), we demonstrated 

that neither 1 nor 2.5 mg/Kg LPS (0.26±0.11 and 0.27±0.10 respectively, n=8/group) 

affected memory compared to Veh-treated mice (DI=0.27±0.08, n=8).  
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Figure 45. Identification of an α-synO dose ineffective in mediating memory damage in the 

NORT, and characterisation of the peripheral LPS-induced neuroinflammatory mouse model 

(A) Scatter plots and bars are the DI (mean±SEM) of C57BL/6 naïve mice ICV injected with Veh or 

0.5 μM α-synOs. (B) Body weight growth (mean±SEM) of mice receiving a single IP administration 

of Veh, 1 or 2.5 mg/Kg LPS at different time points (Two-way ANOVA found a significant 

interaction time x treatment (F6,57=4.89, P=0.0004; Day 3: ****p<0.0001, Tukey’s test). (C) 
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Representative images of hippocampal astrocytosis (GFAP) and microgliosis (IBA1) one month after 

the IP administration of Veh, 1 or 2.5 mg/Kg LPS. (D) Scatter plots with bars (mean±SEM) are the 

quantitative analysis in the hippocampus of the percentage GFAP-marked area in Veh, 1 and 2.5 

mg/Kg LPS treated mice (One-way ANOVA found a significant effect of treatment: F2.9=112.1, 

P<0.0001; ***p<0.001 and ****p<0.0001, Tukey’s test). (E) Scatter plots and bars (mean±SEM) 

are the quantitative analysis of the percentage IBA1-marked area in mice receiving Veh, 1 and 2.5 

mg/Kg LPS (One-way ANOVA found a significant effect of treatment: F2.9=27.35, P=0.0001; 

**p<0.01 and ***p<0.001, Tukey’s test), (F) Scatter plots and bars are the DI (mean±SEM) of mice 

receiving Veh, 1 or 2.5 mg/Kg LPS one month after treatment. One-way ANOVA did not find any 

significant effect of treatment (F2,21=0.0003; P=0.99). 

Collectively, our findings depict 0.5 µM α-synOs and LPS 2.5 mg/Kg as valuable 

experimental conditions for our further investigation. Based on this, we have developed the 

“double-hit” acute model in order to test whether the presence of a peripherally pre-

established neuroinflammatory state could influence α-synO effects at both cognitive and 

neuroinflammatory level. 

 

9.2.3 Peripherally LPS-induced neuroinflammation enhances α-synO-mediated 

memory damage 

One month after the LPS injection, C57BL/6 naïve mice were ICV injected with α-synOs 

(0.5µM/7.5µL) and their memory performance was assessed in the NORT (Figure 46). As 

demonstrated above, we confirmed that LPS 2.5 mg/Kg did not impair memory. In fact, LPS 

mice had a DI (mean±SEM) comparable to those receiving Veh (0.29±0.3 and 0.30±0.02, 

respectively; n=7/group). Moreover, since mice treated with Veh+α-synOs (n=7) had a DI 

comparable to that of Veh-treated animals (0.32±0.06 and 0.30±0.02, respectively), we 

confirmed again that no effects on memory performance were detectable upon 0.5 µM α-

synOs application. In contrast, we found that mice receiving both LPS and α-synOs (n=7) 

showed a significant impairment in their recognition memory having a DI significantly lower 

than Veh-injected mice (DI=-0.03±0.06; ***<0.001, Two-way ANOVA followed by 

Tukey’s test). Furthermore, we found that double-hit-treated mice displayed a DI 
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significantly lower than both Veh+α-synOs and LPS+Veh (0.32±0.06 and 0.29±0.3, 

respectively; ***p<0.001, Two-way ANOVA followed by Tukey’s test).  

Figure 46. 0.5 μM α-synO detrimental effects on recognition memory is enhanced by the 

peripheral 2.5 mg/Kg LPS pre-treatment. Scatter plots with bars (mean±SEM) of the DI of mice 

ICV injected with either Veh or 0.5 μM α-synOs one month after a single IP administration of either 

Veh or 2.5 mg/Kg LPS (Two-way ANOVA found a significant interaction LPS 2.5 x α-synOs: 

F1,24=13.51; P=0.0012; **p<0.01 and ****p<0.001, Tukey’s test). 

To further assess the role of the pre-established LPS-induced neuroinflammation in 

promoting α-synO detrimental effects on memory, we also evaluated the short-term spatial 

working memory through the Y-maze test. One month after the 2.5 mg/Kg LPS treatment, 

mice were ICV injected with α-synOs (0.5µM/7.5µL) and their spatial working memory was 

tested 24 hours later. As shown in figure 47A, mice receiving LPS+α-synOs (n=6) had a 

significant impairment in their spatial working memory having a lower spontaneous 

alternation behaviour (% mean±SEM) compared to Veh+Veh- (n=6), LPS+Veh- (n=8) and 

Veh+α-synOs-treated mice (n=6), (52.65±5.45, 86.45±3.79, 85.66±3.60 and 82.85±3.88, 

respectively; ***p<0.0001 and ***p<0.001, Two-way ANOVA followed by Tukey’s test). 

Of note, the impaired spontaneous alternation behaviour was not due to an impairment of 

mouse motor performances. In fact, as shown in figure 47B, all treated mice had a 

comparable number of total arm entries.  
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Thus, our findings demonstrated that the peripherally LPS-induced neuroinflammation is 

able to promote the harmful activities of per se ineffective α-synOs on two different memory 

domains such as the long-term recognition memory and the short-term spatial working 

memory. 

Figure 47. Peripheral 2.5 mg/Kg LPS pre-treatment enhances 0.5 μM α-synO detrimental 

effects on spatial working memory. (A) Scatter plots and bars (mean±SEM) are the percentage of 

the spontaneous alternation behaviour in the Y-maze of mice ICV injected with either Veh or 0.5 μM 

α-synOs one month after a single IP administration of either Veh  or 2.5 mg/Kg LPS  (Two-way 

ANOVA found a significant interaction LPS x α-synOs: F1,22=12.18; P=0.0024; ***p<0.001 and 

****p< 0.0001, Tukey’s test). (B) Scatter plots and bars (mean±SEM) are the total arms entries of 

mice tested in the Y-maze. Two-way ANOVA did not find a significant interaction LPS x α-synOs 

(F1,22=0.036; P=0.95) and a significant effect of both LPS-treatment (F1,22=0.43; P=0.52) and of α-

synO-treatment (F1,22=1.282; P=0.27).  

 

9.2.4 Microglial cells and astrocytes differentially respond in the “double-hit” acute 

mouse model 

Since we have previously demonstrated that a single ICV injection of α-synOs (1μM/7.5μL) 

leads to hippocampal gliosis in tight association with memory damage (La Vitola et al., 

2018; chapter VII), we have investigated whether the peripherally pre-established LPS-

induced glial cell activation would influence the action of α-synOs on both microglial and 

astroglial cells in our new “double-hit” acute model. At the end of the NORT, we sacrificed 
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mice and performed immunohistochemical analyses. As shown in figure 48A, mice pre-

treated with LPS and ICV injected with α-synOs showed IBA1+ cells 

characterised by an enlargement of their soma and with an amoeboid shape, typical features 

of activated microglia. Of note, we confirmed our qualitative analysis by the quantification 

of the percentage of IBA1-marked area (Figure 48B). Specifically, mice receiving LPS+α-

synOs (n=7) had an IBA1-marked area (% of Veh mean±SEM) significantly higher than 

animals treated with Veh+Veh (n=7), LPS 2.5 mg/Kg+Veh (n=7) and Veh+α-synOs (n=6) 

(338±34.39, 100±18.25, 227.25±23.36 and 103.14±19.71, respectively; *p<0.05, **p<0.01 

and ****p<0.0001, Two-way ANOVA followed by Tukey’s test).  
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Figure 48. Peripherally LPS pre-activated microglial cells are primed to α-synOs and 

potentiate their activation state. (A) Representative images showing the activation of microglial 

cells (IBA1) in the CA1 region of mice ICV injected with either Veh or 0.5 μM α-synOs one month 

after a single IP administration of either Veh or 2.5 mg/Kg LPS. (B) Scatter plots and bars 

(mean±SEM) are the quantitative analysis in the hippocampus of the percentage IBA1-marked area 

of the different experimental group considered (Two-way ANOVA revealed a significant interaction 

LPS x α-synOs: F1,23=4.615, P=0.04; *p<0.05, **p<0.01 and ****p<0.0001, Tukey’s test). 

To further characterise the microglial cell phenotype in our “double-hit” model, we 

measured the expression of CD16/32, representative of an M1 pro-inflammatory microglial 

phenotype (Subramaniam and Federoff, 2017). We found that CD16/32 was poorly 

expressed in Veh+Veh, Veh+α-synOs and LPS+Veh-treated mice. In contrast, it was 

dramatically increased in mice receiving LPS+α-synOs (Figure 49A). Accordingly, the 

quantitative analysis of the CD16/32-marked area (% mean±SEM) normalised on the 

hippocampal area, confirmed our qualitative results (Figure 49B). Specifically, we found 

that LPS+α-synOs (n=5) had a significant higher CD16/32-marked area than Veh+Veh, 

LPS+Veh and Veh+α-synOs (n=4/group) (3.19±0.79, 0.11±0.04, 0.28±0.14 and 0.36±0.14, 

respectively; **p<0.01, Two-way ANOVA followed by Tukey’s test).  

 

Figure 49. Peripherally LPS pre-activated microglial cells are primed to α-synOs and 

potentiate their activation state acquiring an M1 pro-inflammatory phenotype. (A) 

Representative immunofluorescence images of the M1 pro-inflammatory phenotype marker 
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CD16/32 in the CA1 hippocampal region of mice ICV injected with either Veh or 0.5 μM α-synOs 

one month after a single IP administration of either Veh or 2.5 mg/Kg LPS. (B) Scatter plots and 

bars (mean±SEM) are the quantitative analysis of the hippocampal normalised percentage CD16/32-

marked area of the different experimental group considered (Two-way ANOVA revealed a 

significant interaction LPS x α-synOs: F1,23=4.615, P=0.04; **p<0.01, Tukey’s test). 

To confirm that CD16/32+ were indeed microglial cells, we co-localised CD16/32 with the 

microglial marker IBA1. As shown in figure 50, in mice receiving LPS+α-synOs, CD16/32 

completely co-localised with IBA1. Thus, confirming that CD16/32+ were microglial cells. 

 

Figure 50. CD16/332+ cells in “double-hit” mice are microglial cells. Representative 

immunofluorescence images showing the complete colocalization of the M1 marker CD16/32 and 

the pan-microglial marker IBA1 in the hippocampal CA1 region of LPS2.5+α-synO treated mice 

In contrast to the synergistic effect of LPS and α-synOs on microglial cell activation, 

astrocytes differently responded to the “double-hit” stimulation. In fact, we found a 

significant reduction in the expression of the astroglial marker GFAP. In particular, while α-

synOs alone did not alter the expression of GFAP, and LPS induced a significant increase 

when compared to mice receiving Veh, “double-hit” mice surprisingly showed a reduction 

in the GFAP-immunoreactivity (Figure 51A and B). The GFAP quantification (% of Veh 

mean±SEM; Figure 51C) found that the percentage of GFAP-marked area was increased in 

LPS-treated mice compared to mice receiving Veh (134.3±5.81 and 100±4.35 respectively; 
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n=7/group; *p<0.05, Two-way ANOVA followed by Tukey’s test), but was significantly 

reduced in LPS+α-synO-treated mice (65.69±4.51, n=7) compared to all the other 

experimental groups considered (Veh+Veh: 100±4.35; Veh+α-synOs: 96.16±13.46, n=6 and 

LPS 2.5mg/Kg+Veh: 134.3±5.81; *p<0.05 and ****p<0.0001, Two-way ANOVA followed 

by Tukey’s test). 

In order to establish whether the GFAP reduction was attributable to cell loss, we counted 

the number of GFAP+ cells (% of Veh mean±SEM; Figure 51D), which was unchanged. 

Thus, this result suggested that the dampening of the GFAP-immunoreactivity might be the 

result of a reduced GFAP expression and astrocyte branches rather than cell loss.  

 

 

 

 

 

 

 

 

 

Figure 51. Alpha-synO challenge triggers the atrophy of peripherally LPS pre-activated 

astrocytes. (A and B) Representative images showing astroglial cells (GFAP) in the CA1 region of 

mice ICV injected with either Veh or 0.5 μM α-synOs one month after a single IP administration of 

either Veh or 2.5 mg/Kg LPS. (C) Scatter plots with bars (mean±SEM) are the quantitative analysis 

of the percentage GFAP-marked area in the hippocampus of the different experimental groups 

considered (Two-way ANOVA found a significant interaction LPS x α-synOs: F1,23=19.64, 

P=0.0002; *p<0.05, ****p<0.0001, Tukey’s test). (D) Scatter plots and bars (mean±SEM) are the 

quantitative analysis of the percentage hippocampal GFAP+ cell density of the different experimental 
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groups investigated. Two-way ANOVA did not find any significant interaction LPS x α-synOs 

(F1,23=0.065; P=0.80). 

9.2.5 Peripheral administration of LPS negatively influences cognitive performances in 

the A53T PD-related transgenic mouse model 

Since through our acute “double-hit” mouse model we demonstrated that the peripherally 

LPS-induced neuroinflammation increases the susceptibility to α-synO detrimental actions 

on both memory and glial activation, we further investigated whether the harmful effects of 

the induced neuroinflammation are detectable also in the more complex scenario provided 

by a Tg mouse model of PD. To this purpose, eight months old A53T mice and their age-

matched NTG were IP injected with either Veh or 2.5 mg/Kg LPS and, starting from day 25 

after treatment, we behaviourally characterised them to assess both memory and motor 

performances. Thereafter, mice were sacrificed and their hippocampal gliosis, as wells as 

dopaminergic neurodegeneration in the SNpc, were addressed.  

We found that LPS aggravated memory performance of A53T mice tested in the NORT. In 

fact, as shown in figure 52A, while NTG mice treated with either Veh or LPS discriminated 

well between the novel and the familial object, showing a comparable DI (mean±SEM) 

(0.26±0.02 and 0.30±0.01, respectively; n=7/group), A53T+Veh mice did not (0.11±0.01, 

n=7; **<0.01, Two-way ANOVA followed by Tukey’s test). Intriguingly, we found that the 

memory deficiency of A53T mice was further exacerbated by the LPS administration (DI=-

0.004±0.05, n=7; *p<0.05 and ****p<0.0001, Two-way ANOVA followed by Tukey’s test). 

To further prove the exacerbating effect of the LPS-induced neuroinflammation at cognitive 

level in A53T mice, we tested mice also in spatial memory tasks. 

Spatial memory was tested in both the Y-maze measuring the spontaneous alternation 

behaviour (% mean±SEM), and in the MWM for learning and memory assessment.  

Despite the recognition memory impairment, spontaneous alternation behaviour (Figure 

52B) was not damaged in Veh-treated A53T mice (66.37±4.48), which was comparable to 
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that of NTG (+ Veh: 74.44±2.98; + LPS: 74.44±2.98). In contrast, a significant impairment 

was detectable in LPS-treated A53T mice (42.73±5.10; **p<0.01 and ***p<0.001, Two-

way ANOVA followed by Tukey’s test). To rule out possible motor deficits underlying the 

spontaneous alternation behaviour impairment, we analyzed the total mouse arm entries in 

the Y-maze. Two-way ANOVA neither found a significant interaction genotype x LPS 2.5 

(F1,24=0.002; P=0.96) nor a significant effect of either genotype (F1,24=1.46; P=0.24) or LPS 

2.5 (F1,24=1.684; P=0.21).  

When mice were tested in the MWM (Figure 52C), NTG receiving Veh progressively learnt  

platform position and reduced their latency to reach it (mean±SEM) (d1: 34.4±2.8 ; d5: 

11.8±1.4; *p<0.05, Three-way ANOVA followed by Tukey’s test) as well as NTG+LPS (d1: 

41.8±5.5; d5: 13.6±2.1; ***p<0.001, Three-way ANOVA followed by Tukey’s test) and 

A53T receiving Veh (52.4±3.5 sec and 14.6±1.5; ***p<0.001, Three-way ANOVA followed 

by Tukey’s test). In contrast, LPS-treated A53T animals did not and they showed a similar 

latency throughout the learning phase (d1: 55.0±3.1; d5: 44.8±4.7). Furthermore, we 

specifically analyzed the differences between A53T mouse groups through a Student’s t-test 

for days 3 to 5 and, we found a significant longer latency for LPS-treated A53T mice at all 

three training days compared to A53T mice receiving Veh (d3: t12 = 2.53, *p = 0.03; d4: t12 

= 3.2, **p = 0.008; d5: t12 = 6.1, ****p<0.0001). Besides hampering A53T learning, LPS 

impaired also their ability to recall platform location in the probe test phase (Figure 52D and 

E). Specifically, A53T+LPS spent a lower time (% mean±SEM) in the target quadrant 

compared to A53T mice receiving Veh and NTG animals treated with either Veh or LPS 

(19.50±5.15, 47.74±3.85, 47.78±4.39 and 43.98±4.02 respectively; **p<0.01 and 

***p<0.001, Three-way ANOVA followed by Tukey’s test). Consistently, in the opposite 

quadrant, A53T mice receiving LPS spent a longer time (33.00±5.41) compared to Veh-

treated A53T mice (12.50±1.41) and NTG animals receiving either Veh or LPS (9.60±2.76 

and 13.20±2.31 respectively; **p<0.01 and ***p<0.001, Three-way ANOVA followed by 
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Tukey’s test). Of note, lack of spatial learning and memory deficits in A53T mice at the age 

tested is in accordance with recent data showing that in heterozygous A53T mice, these 

effects become detectable at 12 months of age (Singh et al., 2019). 

Collectively our findings demonstrate that the peripheral administration of LPS in A53T 

mice dampens their memory performances in diverse domains.  

 

Figure 52. Peripheral LPS worsens cognitive functions in A53T mice. (A) Scatter plots and bars 

(mean±SEM) are the DI of both NTG and A53T mice receiving a single IP administration of either 
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Veh or 2.5 mg/Kg LPS (Two-way ANOVA that found a significant interaction genotype x LPS: 

F1,24=8.315, P=0.008;.*p<0.05, **p<0.01 and ****p<0.0001, Tukey’s test). (B) Scatter plots and 

bars (mean±SEM) are the percentage of the spontaneous alternation behaviour of mice tested in the 

Y-maze (Two-way ANOVA found a significant interaction genotype x LPS: F1,24=5.587, P=0.027; 

**p<0.01 and ***p<0.001, Tukey’s test). (C) Latency in finding the hidden platform (mean±SEM) 

during the five training days of the different experimental groups tested in the MWM (Three-way 

ANOVA found a significant interaction time x genotype x LPS: F14,120=29.19, P=0.0001). Focusing 

on differences between A53T mouse groups through a Student’s t-test for days 3 to 5 we found 

significant longer latencies for A53T mice treated with LPS at all 3 training days (d3: t12 = 2.53, *p 

= 0.03; d4: t12 = 3.2, **p = 0.008; d5: t12 = 6.1, ****p<0.0001). (D and E) Scatter plots and bars 

(mean±SEM) are the percentage of total time spent in the target and opposite zone during the probe 

phase by the different experimental groups investigated Target quadrant: two-way ANOVA 

demonstrated a significant interaction genotype x LPS (F1,24=4.375, P=0.047; **p<0.01 and 

***p<0.001, Tukey’s test).  Opposite quadrant: two-way ANOVA demonstrated a significant 

interaction genotype x LPS (F1,24=6.459, P=0.018; **p<0.01 and ***p<0.001, Tukey’s test). 

 

9.2.6 Peripheral LPS induces a different response of microglial and astroglial cells in 

the A53T PD-related transgenic mouse model 

Since in the “double-hit” acute model we have demonstrated a different effect on glial cell 

activation, we further addressed whether these outcomes occurred also in A53T mice. 

Through IBA1 immunostaining we evaluated microgliosis in the hippocampus (Figure 53A). 

We found an increased IBA1-immunoreactivity in NTG mice receiving LPS as well as in 

either Veh- or LPS-treated A53T mice compared to Veh-treated NTG. Quantitatively, the 

analysis of the hippocampal normalised IBA1-marked area (% mean±SEM) confirmed our 

qualitative observations (Figure 53B). Specifically, LPS-treated NTG (n=5) and A53T mice 

receiving Veh (n=5) had a significantly higher IBA1-marked area than Veh-treated NTG 

(n=6) (2.66±0.13, 2.51±0.12 and 1.96±0.09, respectively; *p<0.05 and **p<0.01, Two-way 

ANOVA followed by Tukey’s test). Notably, in accordance with the acute “double-hit” 

model, LPS treatment further elicited microglial activation. In fact, A53T mice receiving 2.5 

mg/Kg LPS (n=5) had a higher IBA1 expression with respect to all the other experimental 

groups (3.74±0.16; ****p<0.0001, Two-way ANOVA followed by Tukey’s test).  
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As aforementioned, microglia and astroglia differentially responded to the LPS and α-synO 

challenges in the “double-hit” acute model. Thus, we investigated in A53T mice how 

astrocytes responded to the peripheral LPS stimulation (Figure 53C). While both NTG mice 

receiving LPS and A53T animals receiving Veh (n=5/group) had an increased GFAP 

expression compared to Veh-treated NTG mice (n=6), A53T+LPS mice (n=5) did not. 

Quantitative analysis (Figure 53D) confirmed that NTG mice treated with LPS and A53T 

mice receiving Veh had a significantly higher GFAP-marked area (% mean±SEM) than the 

NTG Veh-treated group (11.09±0.40, 11.51±0.26 and 9.49±0.36, respectively; *p<0.05 and 

**p<0.01, Two-way ANOVA followed by Tukey’s test). In contrast, astroglial cell 

activation in A53T mice receiving LPS was comparable to NTG mice treated with Veh. To 

be noticed that, in line with results we obtained in the “double-hit” acute model, although 

the GFAP-marked area in A53T mice receiving LPS was not significantly lower than 

NTG+Veh-treated mice, it was significantly lower than both LPS-treated NTG and Veh-

treated A53T mice (9.24±0.50; *p<0.05 and **p<0.01, Two-way ANOVA followed by 

Tukey’s test).  
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Figure 53. Microglial and astroglial cells differentially respond to the peripheral 2.5 mg/Kg 

LPS challenge in A53T mice. (A) Representative images showing the activation of microglial cells 

(IBA1) in the hippocampal CA1 region of both NTG and A53T mice treated with a single IP 

administration of either Veh or 2.5 mg/Kg LPS. (B) Scatter plots and bars (mean±SEM) are the 

quantitative analysis of the hippocampal normalised percentage IBA1-marked area of the different 

experimental group considered (Two-way ANOVA found a significant interaction genotype x LPS 

2.5: F1,17=4.59, P=0.047; *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001, Tukey’s test). (C) 

Representative images showing astroglial cells (GFAP) in the CA1 region of both NTG and A53T 

mice treated with a single IP administration of either Veh or 2.5 mg/Kg LPS. (D) Scatter plots and 

bars (mean±SEM) are the quantitative analysis of the hippocampal normalised percentage GFAP-

marked area of the different experimental groups investigated (Two-way ANOVA confirmed a 

significant interaction genotype x LPS: F1,17=25.15, P=0.0001; *p<0.05 and **p<0.01, Tukey’s test). 
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9.2.7 Peripheral LPS does not affect motor behaviour and dopaminergic 

neurodegeneration in A53T mice 

It has been previously reported that the peripheral administration of LPS triggers a 

progressive dopaminergic neurodegeneration in an α-syn Tg mouse model (Gao et al., 2011). 

Thus, we have investigated whether the IP administration of 2.5 mg/Kg LPS in either NTG 

or A53T mice influences their motor behaviour and dopaminergic loss in the SNpc of A53T 

mice.  

As initial approach we measured at functional level the spontaneous motor behaviour of both 

NTG and A53T mice treated with either Veh or LPS in the open field. As shown in figure 

54A and B, A53T mice receiving Veh or LPS (n=7/group) were hyperactive. In fact, the 

two-way ANOVA found a significant effect of genotype for both the parameters considered 

(Velocity: F1,24=32.69; P<0.00001. Distance: F1,24=36.70; P<0.0001). In addition, we 

showed that the peripheral LPS challenge did not exacerbate A53T spontaneous motor 

hyperactivity. Consistently, the two-way ANOVA did not find either a significant interaction 

genotype x LPS (Velocity: F1,24=7.916; P=0.096.  Distance: F1,24=8.047; P=0.009) or a 

significant effect of LPS (Velocity: F1,24=3.183; P=0.087. Distance: F1,24=3.202; P=0.086). 

Of note, hyperactivity in A53T mice has been already reported by other investigators 

(Graham and Sidhu, 2010; Paumier et al., 2013; Singh et al., 2019), and herein we 

demonstrate that the peripheral administration of LPS did not worsen it one month after 

treatment. To further investigate the motor behaviour in our “double-hit” Tg mouse model, 

we evaluated the mouse gait instability through the Beam-walk test (Figure 54C). As for the 

spontaneous motor behaviour, the LPS treatment did not influence the number of A53T foot-

slips. Indeed, the two-way ANOVA did not find a significant interaction genotype x LPS 2.5 

(F1,24=1.689; P=0.21) or a significant effect of LPS 2.5 (F1,24=2.712; P=0.11). However, we 

demonstrated that the genetic PD-related background led to a significant increase in the 
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mean number of A53T mouse foot-slips compared to those of their NTG littermates. In fact, 

the two-way ANOVA found a significant effect of genotype (F1,24=54.77; P<0.0001). 

Of note, despite the lack of a significant difference in motor performances comparing 

A53T+Veh- and A53T+LPS-treated mice, a trend in their worsening due to the peripheral 

LPS challenge was detectable. 

Since motor impairment in PD is attributable to the selective loss of dopaminergic neurons 

in the SNpc, we assessed the extent of dopaminergic neurodegeneration in the SNpc 

investigating the expression of the limiting Th enzyme involved in dopamine synthesis. 

Particularly, we evaluated whether the trends in the aggravation of motor performances in 

A53T+LPS-treated animals were due to an LPS-induced loss of dopaminergic neurons. Our 

analyses revealed both qualitatively and quantitatively (Figure 54D and E) the lack of a 

significant neuronal loss between A53T+Veh- and A53T+LPS-treated mice.  

In conclusion our findings demonstrate that the peripheral LPS treatment does not exacerbate 

motor behaviour performances of A53T mice. Moreover, our evidence is supported by the 

lack of LPS-induced dopaminergic neurodegeneration in our “double-hit” Tg model. Of 

note, our results are consistent with previous data reporting peripheral LPS-induced 

dopaminergic neurodegeneration in A53T mice not earlier than three months after treatment 

(Gao et al., 2011). 
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Figure 54. Peripheral administration of 2.5 mg/Kg LPS does not influence motor behaviour of 

A53T mice and does not trigger dopaminergic neurodegeneration within the SNpc. (A) Scatter 

plots and bars (mean±SEM) are the total moved distance in the open field of both NTG and A53T 

mice treated with either Veh or 2.5 mg/Kg LPS (****P<0.0001, Two-way ANOVA). (B) Scatter 

plots with bars (mean±SEM) are the velocity in the open field of both NTG and A53T mice treated 

with either Veh or 2.5 mg/Kg LPS (****P<0.0001, Two-way ANOVA). (C) Scatter plots with bars 

(mean±SEM) are the number of foot-slips in the beam walk test of both NTG and A53T mice treated 

with either Veh or 2.5 mg/Kg LPS (*****P<0.01, Two-way ANOVA). (D) Representative images 

showing the dopaminergic neurons (Th+) in the SNpc of A53T mice treated with a single IP 

administration of either Veh or 2.5 mg/Kg LPS. (E) Scatter plots with bars (mean±SEM) are the 

quantitative analysis of SNpc Th+ neurons in A53T-treated mice (t8=o.51, P=0.51; Student’s T-

test).  
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9.3 Discussion 

Alpha-synucleinopathies are multi-factorial disorders raising from the interaction between 

modifiable, and non-modifiable risk factors including genetic susceptibility (Kalia and Lang, 

2015; Outeiro et al., 2019). Aimed at elucidating the link between these factors, 

neuroinflammation has acquired a new light. Accordingly, epidemiological studies reveal 

that inappropriate management of systemic diseases, turning into an inflammatory response 

within the CNS, correlates with an increased risk to develop PD (McKenzie et al., 2017). 

Consistently, experimental data highlight how chronic neuroinflammation, which triggers a 

deleterious microenvironment, represents a vital link between α-syn pathology and 

progressive neurodegeneration (Qin et al., 2007; Gao et al., 2011; Wang et al., 2019).  

In addition, glial cells interact with α-synOs, mediating their detrimental effects on both 

memory and neuroinflammation (Kim et al., 2013; Fellner et al., 2013; Kim et al., 2016; La 

Vitola et al., 2018; La Vitola et al., 2019). Thus, such a condition would promote a 

neuroinflammatory vicious circle likely favouring and/or aggravating both 

neuropathological and clinical PD features. 

In this chapter we corroborated the theory that inflammation is a driving force for the 

development of PD or LBD. 

In vitro, we proved that non-toxic concentration of α-synOs induced hippocampal neuronal 

cell death when neurons were pre-exposed to LPS, thus indicating that the presence of an 

inflammatory milieu increases neuronal susceptibility to α-synOs. To further investigate the 

influence of LPS pre-conditioning on α-synO effects we have developed an in vivo “double-

hit” acute mouse model.  

We first identified 0.5 μM as an inactive α-synO concentration which did not affect memory 

when ICV injected in C57BL/6 naïve mice. In addition, we demonstrated that a single IP 

administration of 2.5 mg/Kg LPS in C57BL/6 naïve mice led to an immune response within 

the CNS characterised by persistent activation of glial cells up to one month with no effects 
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on memory. In contrast, through the “double-hit” mouse model we found that the 

combination of the two per se inactive challenges led to an impairment of both long- and 

short-term memory. Collectively, our in vivo findings are consistent with in vitro data and 

further demonstrate that a peripherally pre-established LPS-induced neuroinflammation 

influences α-synO harmful effects. Moreover, our findings highlight a synergistic action 

occurring between neuroinflammation and α-synOs.  

Since astroglial and microglial cells are crucial players in tuning synaptic functions and in 

mediating the α-synO detrimental activities (Bacci et al., 1999; Blank and Printz, 2013; Jang 

et al., 2011; Hertz and Chen, 2016; La Vitola et al., 2018), we have investigated the extent 

of hippocampal glial activation in our “double-hit” acute model immediately after the 

NORT. We found a different response of microglia and astrocytes to the LPS+α-synOs 

challenge. While α-synOs potentiate the activation of LPS-primed microglia, which acquired 

an M1 pro-inflammatory phenotype, astroglial cells appeared atrophic. Such a different 

response was unexpected and will require further investigation to unveil the mechanisms 

involved. However, in line with our findings, while microgliosis is widely accepted and 

reported in PD, contradictory results were obtained for astrocytes which were described as 

active, inactive or in an atrophic state (McGeer et al., 1988; Chao et al., 2014; 

Surendranathan eta al., 2015; Tong et al., 2015). Thus, although the clear role of astrocytes 

in PD remains unclear, loss of astrocytic support to neurons might contribute to its 

development and/or pathogenesis (Sorrentino et al., 2019). Moreover, it is possible to 

speculate that the acquisition of an M1 pro-inflammatory phenotype of microglial cells 

together with the astrocytic dysfunction/alteration, likely act in concert to promote neuronal 

damage, which in turn may underlie the memory impairment in our “double-hit” acute 

model. 

To get more insight on the impact of the peripherally LPS-induced neuroinflammation in a 

more complex neuropathological context, we developed a “double-hit” model exploiting a 
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Tg mouse model which carries the A53T PD-related mutation. In agreement with the results 

obtained in the acute “double-hit” model, we found that A53T mice treated with 2.5 mg/Kg 

LPS displayed a further impairment in their recognition and spatial memory in association 

with an increased microgliosis. Of note, in these mice we identified again a reduction in the 

expression of the astroglial marker GFAP when compared with A53T+Veh mice. In contrast 

to this deleterious effect at cognitive level, the LPS-treatment did not further impair motor 

performances in A53T mice. Notably, such an effect was associated with the lack of a 

significant increased dopaminergic neurodegeneration in the SNpc of A53T mice receiving 

2.5 mg/Kg LPS compared to Veh-treated Tg mice.  

Taken together our findings demonstrate for the first time that peripherally induced 

neuroinflammation modulates α-synO action potentiating their detrimental effects. In 

addition, in a genetic pathologic PD context, the peripheral LPS administration aggravates 

cognitive deficiencies in A53T mice. In a translational prospect, these results are compelling 

because, in line with the aforementioned clinical data, clearly indicate how inflammatory 

events, even from the peripheral compartment, and especially if perpetuating throughout 

time, represent a concrete risk for the development or exacerbation of PD pathogenesis.  
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10.1 Summary and final remarcks 

PD and LBD are progressive and devastating neurodegenerative disorders which share 

common clinical and neuropathological features (Bengoa-Vergniory et al., 2017; Poewe et 

al., 2017; Jellinger, 2018; Outeiro et al., 2019). Collectively such pathologies represent the 

second most common neurodegenerative disorders in elderly after AD, and since they 

frequently lead to institutionalisation, they account for high public health costs (Emre, 2003; 

Biundo et al., 2016; Hanagasi et al., 2017; Aarsland et al., 2017). To date, PD/LBD are 

orphans of valuable therapies, and the existing treatments do not affect disease 

onset/progression being solely symptomatic. Thus, the understanding of the mechanisms 

underlying their pathogenesis as well as the identification of therapeutic targets aimed at 

developing new disease modifying therapeutic strategies is a crucial and urgent topic. 

As mentioned above, PD and LBD are closely related disorders. Indeed, they share common 

non-motor clinical features such as cognitive deficits which can evolve in dementia, and 

common neuropathological hallmarks which include proteinaceous neuronal inclusions 

known as LBs and LNs (McKeith et al., 2004; Wakabayashi et al., 2013; Aldridge et al., 

2018; Sanford, 2018). 

Although the first description of PD was provided in 1817 by James Parkinson, the 

understanding of the underlying mechanisms remained foggy until the identification of 

different mutations in the gene encoding for α-syn in familial forms of PD and LBD 

(Polymeropoulos et al., 1997; Krüger et al., 1998; Singleton et al., 2003; Chartier-Harlin et 

al., 2004; Ibáñez et al., 2004; Zarranz et al., 2004; Proukakis et al.  2013; Kiely et al. 2013; 

Lesage et al., 2013; Pasanen et al., 2014), and the first observation that α-syn is the main 

constituent of both LBs and LNs in post-mortem brain from both PD and DLB patients 

(Spillantini et al., 1997; Spillantini et al., 1998; Baba et al., 1998). Thus, these findings 

pinpoint α-syn as a crucial protein involved in the pathogenesis of PD and PD-related 

disorders.  
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α-syn is a partially unfolded protein mainly located in the pre-synaptic terminals within the 

CNS. Its physiological function is still poorly understood. However, it is widely accepted 

that α-syn is a key protein involved in the neurotransmitter release as well as in the vesicle 

pool distribution and organisation (Lashuel et al., 2013; Burré et al., 2015; Calo et al., 2016).  

Although α-syn is a cytoplasmatic protein and LBs and LNs are located within the cells, 

numerous findings suggest that α-syn can be secreted by human neuronal cells and can be 

detected in human fluids (i.e. plasma and cerebrospinal fluid) (Borghi et al. 2000; El-Agnaf 

et al., 2003; Ohrfelt et al., 2009). These observations raised the interest for the extracellular 

role of α-syn in the pathogenesis of the so called α-synucleinopathies. 

As described above, α-syn is a naturally unfolded protein lacking a well-organised secondary 

structure, and like other proteins involved in protein-misfolding related neurodegenerative 

disorders (Aβ, PrPC), it is able to self-aggregate. In fact, α-syn undergoes a nucleation 

process that generates oligomeric species (Maries et al., 2013; Roberts and Brown, 2015). 

Oligomers are able to grow through further monomer addition and form protofilaments and 

eventually mature fibrils. Several kinds of oligomers that vary in composition, conformation 

and toxicity (Danzer et al., 2007; Roberts and Brown, 2015) are generated during this process, 

and compelling evidence highlights their pathogenetic role in α-synucleinopathies (Winner 

et al., 2011; Cremades et al., 2012). In addition, it has been reported that stress conditions 

increase the amount of α-synOs being released (Jang et al., 2010), further supporting the 

hypothesis that extracellular moieties of α-syn, and particularly extracellular α-synOs, may 

lead to neuronal damage and contribute to disease pathogenesis. In this regard, it has been 

demonstrated that α-synOs can impair the LTP, an experimental paradigm aimed at assessing 

synaptic plasticity, whereas monomers or fibrils of the protein are ineffective (Diogenes et 

al., 2012. Martin et al., 2012 Ferreira et al., 2017). On the same line, through behavioural in 

vivo experiments, it has been demonstrated that the ICV injection of α-synOs in mice triggers 

cognitive dysfunction in the fear conditioning paradigm (Martin et al., 2012). All together, 
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these data support the “oligomeric hypothesis”, originally introduced in the context of AD, 

and allow researchers to introduce a new definition of a-synucleinopathies as pathologies 

related to oligomers, and to classify them under the name of “oligomeropathies” (Forloni et 

al., 2016; Ono, 2017; Ono, 2018).  

Based on these findings, the first aim of this PhD thesis was to investigate the α-syn 

“oligomeric hypothesis” in the context of memory impairment. Of note, our interest in 

cognitive decline stems from the fact that it is a common PD-related non-motor symptom, 

and that it contributes to a significant extent to morbidity, worsening life quality of patients 

(Aarsland et al., 2017; Hanagasi et al., 2017). Moreover, cognitive impairment may develop 

in dementia, that in PD as well in LBD accounts for high public health cost thus being an 

urgent issue to cope with (Emre, 2003; Biundo et al., 2016; Aarsland et al., 2017; Hanagasi 

et al., 2017). 

To serve such a purpose we have developed an acute mouse model based on a single ICV 

injection of different and well-characterised α-syn moieties (monomers, α-synOs and fibrils) 

in C57BL/6 naïve, and we have assessed their memory performance in the NORT. To be 

noticed that, although this model represents a simplification of what really happens in the 

complex context of PD and PD-related disorders, it allows us to punctually dissect the 

harmful effects of the different α-syn assemblies without any bias due to their co-existence, 

which for instance occurs in PD Tg mouse models. Through our acute approach we 

demonstrate that while monomeric and fibrillar α-syn were ineffective in mediating the 

memory impairment, a single ICV injection of α-synOs was able to cause a memory 

deficiency in the NORT. Moreover, since pre-treatment with an anti-α-syn antibody 

completely abrogated the memory deficit in α-synO-treated mice, we can conclude that the 

memory damage was specifically due to α-syn. Accordingly, our in vivo results are supported 

by ex vivo observations that the exposure of coronal brain slices to α-synOs significantly 

impaired the hippocampal LTP as also previously reported by others (Diogenes et al., 2012; 
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Martin et al., 2012; Ferreira et al., 2017). To further investigate the α-synO-mediated 

memory impairment, we assessed whether it was persistent and whether it could be ascribed 

to macroscopic morphological alterations in the hippocampus or in the expression of 

representative hippocampal synaptic proteins. Our results demonstrate that α-synO-

mediated memory impairment was transient. In fact, mice re-tested in the NORT 12 days 

after the first α-synO ICV injection performed well in the NORT. Of note, this result is 

consistent with the absence of significant macroscopic alterations in the different 

hippocampal subfields as well as with the absence of changes in the expression of both 

hippocampal synaptophysin and PSD95 at different time points.  

Collectively, through our acute mouse model we demonstrate that α-synOs specifically lead 

to a transient cognitive impairment. Moreover, since the different assemblies of α-syn do not 

co-exist in our model, it appears as a valuable tool to specifically dissect the mechanisms 

underlying α-synO-detrimental activities (La Vitola et al., 2018). 

As previously described, in pathological and stress conditions neurons increase the amount 

of α-synOs being secreted in their milieu. Thus, extracellular α-synOs may contribute to the 

pathogenesis of PD and PD-related disorders by exerting their detrimental action in a non-

cell autonomous fashion which involves neighbouring neurons, astrocytes and microglial 

cells (Marques and Outeiro, 2012). In this regard, many groups started focusing their efforts 

on the non-cell autonomous actions of α-synOs, which include neuroinflammation and 

protein-protein interaction. 

As extensively described in the introduction (chapter III), several lines of evidence point out 

the potential role of glial cells in the pathogenesis of PD and PD-related disorders.  

Astrocytes as well as microglial cells are immune competent cells within the CNS, and they 

play vital roles for neurons, being crucial effectors in the fine tuning of neuronal activity and 

synaptic plasticity (Bacci et al., 1999; Blank and Printz, 2013; Hertz and Chen, 2016). 
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Therefore, perturbation of their function/state might lead to neuronal damage, dysfunction 

and ultimately death (Morris et al., 2013; Blank and Prinz, 2013; Sorrentino et al., 2019).  

Because of a growing body of evidence, the second aim of this PhD thesis was to decipher 

the role of the neuroinflammatory response in mediating the memory damage triggered by 

α-synOs. As TLRs are first line receptors involved in eliciting the innate immune response, 

and α-synOs have been described as one of their endogenous ligands (Kouli et al., 2019), 

we have investigated whether the memory deficit mediated by α-synOs in our acute mouse 

model was associated with glial cell activation and was mediated by TLRs. In this regard, 

based on their controversial role, we have focused our attention mainly on TLR2 and TLR4. 

Indeed, both TLR2 and TLR4 were reported to mediate astroglial and microglial cell 

activation upon exposure to different α-syn aggregates (Fellner et al., 2013; Kim et al., 2013; 

Ramikko et al., 2015; Kim et al., 2016; Kouli et al., 2019), and their expression is altered in 

PD/LBD patients as well as in PD Tg animal models (Letiembre et al., 2009; Doorn et al., 

2014; Drouin-Ouellet et al., 2015; Dzamko et al., 2017; Kim et al., 2018; Zhao et al., 2018). 

Taking advantage of our acute mouse model, we demonstrate that the single ICV injection 

of α-synOs (1μM/7.5μL) triggered a rapid and transient activation of both microglial and 

astroglial cells in the hippocampus. However, in contrast to the ICV injection of AβOs 

(1μM/7.5μL), α-synOs do not lead to an increased expression of the pro-inflammatory 

mediator IL-1β. Such a difference is particularly relevant in the context of protein-

misfolding related neurodegenerative disorders. As a matter of fact, while oligomeric 

assemblies of α-syn and Aβ are recognised as key moieties in the pathogenesis of α-

synucleinopathies and AD, respectively, and share common harmful properties, they 

probably differ in the underlying signalling pathways. 

Once demonstrated that α-synOs trigger the activation of glial cells in our acute mouse 

model, we addressed whether such a neuroinflammatory state was merely a secondary event 

or represented a key point and a mechanism eliciting the α-synO-mediated memory damage. 
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As previously reported for AβOs in a comparable acute mouse model (Balducci et al., 2017), 

we demonstrate that neuroinflammation is a crucial player also in mediating the detrimental 

effect of oligomeric α-syn on cognitive performance. In fact, through the pre-treatment with 

two different NSAIDs (Indo and IBF), we show that modulation of inflammatory mediators 

such as COX1 and 2 completely abrogates α-synO-induced memory deficiency and 

hippocampal gliosis. Furthermore, in contrast to AβOs (Balducci et al., 2017), α-synO-

induced memory impairment is not mediated by TLR4 but is TLR2-dependent (La Vitola et 

al., 2018). Remarkably, our findings on the involvement of TLR2 are consistent with recent 

data provided by Kim and co-workers (Kim et al., 2018), and depict TLR2 and 

neuroinflammation as valuable targets to counteract α-synO detrimental effects.  

 As mentioned above, α-synOs and AβOs share common toxic properties. Indeed, both α-

synOs and AβOs are capable to trigger a memory damage closely related to the induction of 

hippocampal gliosis (Balducci et al., 2017; La Vitola et al., 2018). In addition, 

neuroinflammation appears as a key mechanism underlying the detrimental effects of both 

α-synOs and AβOs on memory (Balducci et al., 2017: La Vitola et al., 2018).  

Focusing on common interactors between these different oligomers, it has been recently 

reported that the PrPC, initially described with contradictory results as an interactor for 

AβOs, also represents an interactor and a mediator for α-synOs (Lauren et al., 2009; 

Balducci et al., 2010; Forloni and Balducci, 2011; Ferreira et al., 2017). 

In the context of α-synucleinopathies, it has been found that PrPC residues 93-109 are crucial 

to mediate LTP inhibition upon exposure to α-synOs, and α-synOs seem to require PrPC to 

activate the Fyn kinase, which in turn leads to NMDAR2B phosphorylation giving rise to 

LTP inhibition. Moreover, Ferreira and colleagues, demonstrated through 

immunoprecipitation approaches that α-synOs and PrPC can interact in lysates from both cell 

cultures treated with α-synOs and in a PD Tg mouse model overexpressing the WT human 

α-syn (Ferreira et al., 2017). Based on these data we have further investigated the α-synO-
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PrPC interaction at multiple levels. By means of Prnp+/+ and Prnp0/0 neuronal hippocampal 

cultures, we demonstrate that α-synOs lead to neuronal death in a PrPC-independent manner. 

Moreover, through the ICV injection of α-synOs (1μM/7.5μL) in both Prnp+/+ and Prnp0/0 

mice, we functionally show that the PrPC was not required to trigger α-synO-detrimental 

effects on memory. Besides, in the same model we report that α-synOs caused hippocampal 

gliosis (La Vitola et al., 2019), thus suggesting that neuroinflammation may represent a non-

cell autonomous mechanism eliciting α-synO effects independently of the genetic 

background considered. In addition to functional data, we also demonstrate at the molecular 

level that α-synOs do not interact directly with PrPC (La Vitola et al., 2019), further 

indicating that α-synOs exert their harmful actions independently of the presence of PrPC. 

Our results are in contrast with the findings of Ferreira and colleagues (Ferreira et al., 2017) 

but, as previously reported for AβOs, both PrPC-dependent and -independent mechanisms 

may co-exist. Nevertheless, our findings are also in line with a recent study in A53T mice 

reporting the absence of Fyn activation and phosphorylation of the NMDARs subunit 

GluN2B, two downstream outcomes of PrPC activation (Singh et al., 2019). 

Hitherto, our data depict α-synOs as the main culprits eliciting cognitive dysfunctions in 

mice, and neuroinflammation as a key player in mediating their actions. Thus, although 

neuroinflammation has been initially considered as a mere secondary event and a 

consequence of the underlying neurodegenerative process in α-synucleinopathies, we 

pinpoint neuroinflammation as a non-cell-autonomous mechanism (La Vitola et al., 2018). 

Our evidence is consistent with previous data, and strongly supports the modulation of 

neuroinflammatory mediators as valuable strategies to develop new therapies aimed at 

counteracting α-synOs effects (Kim et al., 2013: Drouin-Ouellet et al., 2015; Kim et al., 

2018).  

While we depict neuroinflammation as an action mechanism of α-synOs, emerging findings 

propose neuroinflammation as a potential bridge between non-modifiable (genetic 
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susceptibility) and modifiable (environment, systemic pathologies) factors co-fostering PD 

and PD-related disorders (Qin et al., 2007; Gao et al., 2011; Ascherio and Schwarzschild, 

2016; McKenzie et al., 2017; Biosa et al., 2018).  However, a direct proof demonstrating 

that inflammation influences α-synO harmful activities or the PD behavioural and 

neuropathological features is still missing. Hence, the last aim of this PhD thesis was to 

verify whether a peripherally induced neuroinflammatory state could enhance α-synO 

effects in our acute mouse model, and whether it influenced the PD phenotype in the more 

complex context of the A53T Tg PD mouse model. 

Taking advantage from a “double-hit” acute mouse model based on the IP injection of the 

widely used proinflammatory stimulus LPS (2.5mg/Kg) followed one month later by the 

ICV injection of an ineffective dose of  α-synOs (0.5μM/7.5μL), we demonstrate that the 

combination of the two per se inactive challenges led to an impairment of both long- and 

short-term memory. Thus, our findings highlight a synergistic action occurring between 

peripherally LPS-induced neuroinflammation and α-synOs.  

As astroglial and microglial cells are immune competent cells within the CNS, and they are 

crucial in tuning synaptic functions and in mediating the α-synO detrimental activities (Bacci 

et al., 1999; Blank and Printz, 2013; Jang et al., 2011; Hertz and Chen, 2016; La Vitola et 

al., 2018), we have investigated the hippocampal glial activation in our newly established 

“double-hit” acute model immediately after the NORT. Intriguingly, microglial and 

astroglial cells differentially responded to the double challenge. In fact, while α-synOs 

potentiated the activation of peripherally LPS-primed microglia, astroglial cells were not 

activated. Such a different response was unexpected. However, consistent with our findings, 

while microgliosis is widely accepted and reported in PD and LBD, controversial results 

were presented for astrocytes which are shown as active, inactive or in an atrophic state 

(McGeer et al., 1988; Chao et al., 2014; Surendranathan eta al., 2015; Tong et al., 2015). 

Thus, although the role of astrocytes in PD/LBD still remains unclear, loss of astrocytic 
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support to neurons might contribute synergistically with the acquisition of an M1 pro-

inflammatory phenotype of microglial cells towards the memory impairment appearing in 

our “double-hit” acute model. 

To further elucidate and validate the relevance of the peripherally LPS-induced 

neuroinflammation in PD, we have developed a “double-hit” model exploiting a Tg mouse 

model which carries the A53T PD-related mutation, and which represents a more complex 

neuropathological context. In line with the acute “double-hit” model, we found that 2.5 

mg/Kg LPS worsened both recognition and spatial memory performance of A53T mice in 

association with an increased hippocampal microgliosis. Of note, in these mice we show 

again a reduction in the expression of the astroglial marker GFAP when compared with 

A53T+Veh mice. In contrast to this deleterious effect at cognitive level, the LPS-treatment 

did not further aggravate the motor performances and the dopaminergic neurodegeneration 

in A53T mice. Altogether, we demonstrate for the first time that peripherally induced 

neuroinflammation modulates α-synO action by potentiating their detrimental effects. In 

addition, in a genetic PD context, the peripheral LPS administration aggravates cognitive 

deficiencies in association with a potentiation of microglial cell activation. Intriguingly, 

while microglial cells are potentiated in their activation state in both our “double-hit” 

models, astroglial cells are not. Therefore, such a comparable microglial and astroglial 

outcome in both our models may allow the speculation that in complex contexts, where both 

peripheral and central events take place, microglial activation and loss of astroglial support 

to neurons together contribute to the cognitive failure. 

In conclusion, the data here reported pinpoint α-synOs as the sole moieties capable of 

inducing a memory damage in strict association with glial cell activation and independent of 

the PrPC in mice (La Vitola et al., 2018; La Vitola et al., 2019). Moreover, although we 

cannot rule out that extracellular α-synOs act on neurons, we demonstrate that 

neuroinflammation is not a secondary event but actively participates to the detrimental 
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effects of oligomers. Of note, since neurons express several inflammatory mediators 

including TLRs it is possible to speculate that α-synOs exert their effect at multiple levels 

involving neurons, astroglial and microglial cells at the same time (Dzamko et al., 2017). 

On the other hand, our results also propose inflammation as a bridge between genetic 

susceptibility and environmental factors co-fostering PD/LBD pathogenesis. We indeed 

reported that in vitro the LPS neuronal pre-conditioning enhances α-synO-mediated cell 

toxicity, and that in vivo the peripherally LPS-induced neuroinflammation potentiates α-

synO detrimental effects on different memory domains as well as the cognitive deficiencies 

in A53T mice. These findings are compelling from a translational standpoint as they clearly 

demonstrate how inflammatory events from the peripheral compartment represent a risk 

factor for the development and/or the exacerbation of PD pathogenesis. Because α-

synucleinopathies are now recognised as multifactorial disorders, our discoveries describe 

the concomitant action of α-syn aggregates and neuroinflammation, and depict them as 

valuable targets for developing disease modifying strategies. 

 

10.1.1 Conclusions 

Protein misfolding-related neurodegenerative disorders such as PD and LBD are 

multifactorial pathologies where several factors act in concert leading to neurodegeneration. 

Aside from the enormous amount of factors involved in PD/LBD pathogenesis, several 

cellular pathways may be affected and synergistically contribute to the disorder onset and 

progression (Marques and Outeiro, 2012; Forloni et al., 2016; Bengoa-Vergniory et al., 

2017; Wong and Krainc. 2017; Kouli et al., 2019).  

The results described here pinpoint for the first time the tight interplay between α-synOs and 

neuroinflammation in mediating cognitive deficits in both an acute and a transgenic PD/LBD 

mouse model.   
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α-synOs have emerged as the main detrimental aggregate in PD/LBD (Winner et al., 2010; 

Martin et al., 2012 Diogenes et al., 2012). Our data further corroborate previous evidence 

providing new insights into the crucial role of glial cells. Moreover, we described the novel 

connection between α-synO-triggered cognitive deficit and non-cell autonomous 

mechanisms involving glial activation and TLR2 in an acute mouse model, where the 

detrimental effects at cognitive level are specifically mediated by oligomeric assemblies, 

and not by the coexistence of larger aggregates.  

As mentioned above, PD and LBD are multifactorial pathologies arising from alterations in 

several pathways (e.g. altered neurotransmitter release, reduced neuroplasticity, damage of 

mitochondria, changes in membrane permeability, increase neuroinflammation, neuronal 

death, etc.). Such a complexity generates controversy in pre-clinical and clinical studies. In 

fact, while a number of compounds have been shown to ameliorate or block PD/LBD 

pathology (e.g. minocycline, ibuprofen ...) in several animal models, they failed in clinical 

trials. Therefore, it becomes clear that a therapy based on a molecule affecting solely a single 

target cannot be beneficial in the complex scenario of these pathologies when applied to 

humans.  

As a consequence, it is conceivable to assume that a multitarget approach could be more 

effective than a single target therapy. Based on the results reported here, a therapeutic 

approach that may affect at the same time α-syn aggregation as well as neuroinflammation 

may offer a useful tool to halt PD/LBD progression. In this regard, it has been recently 

demonstrated that the antimicrobial drug Doxycycline inhibits the aggregation of α-syn, 

leading to the production of non-toxic off-set α-synOs (Gonzalez-Lizarraga et al., 2017) . In 

addition, Doxycycline has proven effective in drug-induced PD mouse model (Bortolanza 

et al., 2018), and we have recently demonstrated that the antimicrobial drug administered at 

sub-antibiotic doses efficiently counteracts memory impairment and neuroinflammation in 

a transgenic mouse model of AD, and in an acute mouse model based on the ICV injection 
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of the pro-inflammatory toxin LPS (Balducci et al., 2018). Thus, we are now investigating 

whether the chronic treatment of A53T mice with Doxycycline is effective in counteracting 

cognitive and motor deficits as well as neuropathology in our model. In particular, we will 

focus on the effect of Doxycycline on glial activation, α-syn aggregation and TLR2, which 

we have demonstrated being crucial in α-synO-induced cognitive damage. 

In conclusion, this PhD thesis provides new evidence on the role of α-synOs and 

neuroinflammation in the pathogenesis of PD/LBD, and puts forward the hypothesis 

whereby drugs affecting simultaneously these two factors may be valuable therapeutic 

approaches acting on two discrete elements which are closely connected. 
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