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Q U A N T U M  P H Y S I C S

Coherent oscillations of a levitated birefringent 
microsphere in vacuum driven by nonconservative 
rotation-translation coupling
Yoshihiko Arita1,2*†, Stephen H. Simpson3*†, Pavel Zemánek3, Kishan Dholakia1,4,5,6*

We demonstrate an effect whereby stochastic, thermal fluctuations combine with nonconservative optical forces 
to break detailed balance and produce increasingly coherent, apparently deterministic motion for a vacuum- 
trapped particle. The particle is birefringent and held in a linearly polarized Gaussian optical trap. It undergoes 
oscillations that grow rapidly in amplitude as the air pressure is reduced, seemingly in contradiction to the 
equipartition of energy. This behavior is reproduced in direct simulations and captured in a simplified analytical 
model, showing that the underlying mechanism involves nonsymmetric coupling between rotational and trans-
lational degrees of freedom. When parametrically driven, these self-sustained oscillators exhibit an ultranarrow 
linewidth of 2.2 Hz and an ultrahigh mechanical quality factor in excess of 2 × 108 at room temperature. Last, 
nonequilibrium motion is seen to be a generic feature of optical vacuum traps, arising for any system with 
symmetry lower than that of a perfect isotropic microsphere in a Gaussian trap.

INTRODUCTION
The generation of coherent, directed motion in the mesoscopic 
regime is an issue of fundamental interest in the physical and bio-
logical sciences (1, 2). On these length scales, energy fluctuations 
are comparable in size to the energy flows driving the system. At 
equilibrium, the principle of detailed balance holds: Any elementary 
process is equilibrated by its reverse process. Nevertheless, nature 
has devised a variety of schemes for overcoming this hurdle and 
extracting useful work from macromolecular machines, for example, 
(3). Among the numerous artificial analogs, colloidal heat engines 
are, perhaps, the simplest (1). Directed motion is extracted either by 
imposing temperature gradients or isothermally, through a ratcheting 
mechanism (1, 4). In the latter case, time-varying potentials can 
give the required effect (5). Less commonly, a time-invariant, non-
conservative force field is sufficient to push the system beyond equi-
librium, breaking time inversion symmetry. Optical force fields, 
which are intrinsically nonconservative (6), fulfil this role. In opti-
cal tweezers operating at low Reynolds number, the effect is subtle, 
a delicate biasing of Brownian motion (7–10). As described here, 
the impact on underdamped systems is much more profound and 
can give rise to highly coherent oscillations that, when parametrically 
modulated, have quality factors in excess of 2 × 108.

This paper reports an intriguing experimental observation: 
When an optically birefringent microsphere is held in a simple, 
linearly polarized Gaussian optical trap in vacuum, spontaneous 
oscillations emerge that grow rapidly in amplitude and become 
increasingly coherent as the air pressure, and, hence, the ambient 

viscosity, is reduced. This behavior diverges notably from the con-
ventional understanding of optical tweezers, in which the equipar-
tition of energy determines the position variance, 〈x2〉, of optically 
trapped (isotropic) spheres (11, 12). In this case, the average poten-
tial energy of the particle in a trap with stiffness K, i.e.,   1 _ 2  K〈 x   2  〉 , is the 
same as the thermal energy,   1 _ 2   k  B  T . Equating these quantities shows 
that the position variance is completely independent of viscosity

  〈 x   2  〉 =    k  B  T ─ K    (1)

This is an expression of the equipartition theorem and can be 
generalized to include multiple translational and rotational dimen-
sions. Providing that the forces and torques can be derived from a 
scalar potential, the covariance of the coordinates will always be 
independent of viscosity since this quantity does not influence the 
potential (13). Any deviation from this behavior, including the 
effect described here, indicates a departure from equilibrium and 
equipartition.

Here, we describe the experiment in detail and show how these 
coherent oscillations also appear in direct numerical simulations. 
These simulations reveal the causative mechanism. The birefringence 
of the vaterite particle introduces nonsymmetric coupling between 
rotational and translational degrees of freedom. As a consequence, 
the optical forces surrounding the trapping point are linearly non-
conservative: A repeated sequence of small translations and rota-
tions, which return the particle to its initial configuration, result in 
a transfer of energy between the optical field and the particle. When 
excited by thermal forces, some trajectories grow in energy, accu-
mulate momentum, and become increasingly coherent. It is these 
trajectories that we observe. In essence, the observed translational 
oscillations are driven by rotational oscillations and vice versa so that 
the combined oscillation becomes increasingly self-sustaining despite 
arising from stochastic thermal forces. This is a nonequilibrium steady 
state in which energy is continuously passed from the optical field 
to the particle and subsequently dissipated into the surrounding gas. 
Hence, the motion of the particle breaks time inversion symmetry. 
These features are captured by a simple analytical model.
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Last, we show that by applying a parametric drive, we can reach 
extremely high values of the mechanical quality factor, Q ⪆ 2 × 108, 
with ultranarrow linewidths of f ≈ 2.2 Hz. We note that the con-
cept of mechanical quality is typically associated with a harmonic 
oscillator in equilibrium with a thermal bath, which differs from the 
unconventional oscillator that we study here. Our oscillators are far 
from equilibrium and rely on the generation of highly coherent, 
stable, periodic motion. We may draw a parallel with the case for a 
levitated nanorotor torque sensor (14, 15). An external force (or 
torque) results in measurable disturbances to the pure underlying 
signal. This form of measurement does differ from that associated 
with equilibrium devices but, importantly, does lead to exquisite 
sensitivity to environmental perturbations, as seen here for the spe-
cific case of varying gas pressure. The Q factors and linewidths that 
we report here have the most extreme values observed to date for 
these parameters, confirming the advantages of levitated micropar-
ticles for optomechanical studies. For comparison, a linewidth of 
80 Hz was very recently reported for nanoparticles in a Paul trap 
with an associated quality factor of 1.5 × 106 (16). While Q values as 
high as ≈1012 have been predicted for levitated nanoparticles in 
high vacuum (17), their measurement over appropriately long time 
periods is mitigated by thermal nonlinearities (18). Although the 
mechanisms responsible for the phenomena that we report (i.e., lo-
cally nonconservative optical forces) differ fundamentally from 
these cases, we note that their limits are yet to be explored and do 
not preclude high-precision measurements. By refining experimen-
tal parameters and investigating the physical limits on Q for these 
unconventional systems, further applications are sure to emerge.

RESULTS
Experiment
Figure 1A shows the trapping geometry and coordinate axes used 
throughout this article. Vaterite microspheres have a spherulitic 
structure in which the optic axis of this highly birefringent material 
traces out nested hyperbolae arranged around a unique symmetry 
axis (section S1). A single vaterite microsphere with a radius of 2.2 m 
is held in a Gaussian trap, linearly polarized in the x direction and 
propagating in the positive z direction with a wavelength of 1070 nm 
and beam power of 10 mW (measured at the back aperture of the 
microscope objective). Its motion is tracked with a fast complementary 
metal-oxide semiconductor (CMOS) camera (see Materials and 
Methods).

Figure 1B shows time-lapse images of the particle trapped at a 
residual gas pressure of 1.2 mbar [see movie S1, which is rendered 
at 15 frames per second (fps) from 5000 fps]. First, the particle 
aligns its symmetry axis (  ̂  u   in Fig. 1A) with the electric polarization 
(i.e., the x direction). The center of mass (CoM; yellow crosses) 
preferentially oscillates along the polarization direction with an 
amplitude that can be as large as ±1 m compared to that of ±0.1 m 
in the orthogonal y direction (Fig. 1C).

Figure 2 describes the strong dependence of the oscillatory x 
motion on the gas pressure. Column (A) shows the CoM positions 
of the vaterite particle in the x-y plane (red dots) measured at every 
0.2 ms for the duration of 1 s (5000 data points in total) at different 
gas pressures. The oscillation amplitude in the x direction increases 
as the residual gas pressure is reduced by a few millibars, from 4 to 
1.2 mbar. The motion is compared with that of an isotropic silica 
microsphere with a radius of 2.5 m under the same trapping 

conditions (Fig. 2A, blue dots), confirming that the oscillatory 
motion is unique to the birefringent particle. Distributions of the x 
coordinate are given for vaterite and silica particles in Fig. 2B. In 
accordance with the equipartition of energy (Eq. 1), the distribu-
tions for silica are Gaussian and approximately independent of 
pressure, while those for vaterite broaden with decreasing pressure, 
finally changing form altogether. The power spectrum of the x 
coordinate clearly indicates the trap or oscillation frequency at around 
fx ( = x/2) ∼ 530 Hz, which remains the same at lower pressures 
(see red curves in Fig. 2C). Notably, the trapped vaterite particle 
exhibits much larger Q factors than those of the silica particle (blue 
curves), and kinetic energy is increasingly concentrated at a single 
resonant frequency.

Autocorrelation 〈x(t)x(t + )〉 (Fig. 2D) measures the rate at 
which the translational x(t) motion loses coherence because of thermal 
fluctuations. Vaterite exhibits an order of magnitude longer decay time 
than that of the silica (Fig. 2D, 4). These features correspond to greatly 
increased Q values for vaterite that, as discussed below, can be further 
enhanced through parametric driving. We note that as the gas pressure 
is decreased, inertial forces tend to exceed gradient forces, and the 
particle may leave the trap typically at a residual gas pressure of 
<1 mbar, depending on the optical power and the mass of the particle.

Last, Fig. 3A shows the position variance of the trapped particle 
in the x direction (red crosses) compared with that in the y direction 
(blue plus signs), where 〈y2〉 is directly associated with the thermal 
energy through   1 _ 2   k  B  T =  1 _ 2   K  yy   〈  y   2  〉 , where Kyy is the trap stiffness in 
the y direction and 〈y2〉 = 4.49 × 10−3 m2 at the pressure P = 4 mbar, 
assuming that the particle is at room temperature. The ratio 〈x2〉/〈y2〉 
therefore approximates the relative energy in the x motion (Fig. 3A 
on the right axis). Figure 3B shows the reciprocal of the position 
variance against P, where experimental data are fitted with linear 
regression. Here, we clearly show the linear relationship of 1/〈x2〉 
with P, which is predicted by the theory (see Eq. 13).

Simulation
To better understand the experimental observations, we performed 
direct numerical simulations of the thermal motion of a homogeneous 

Fig. 1. Experimental coordinates and oscillatory motion of a vaterite micro-
sphere at the gas pressure of 1.2 mbar. (A) Trapping geometry and coordinate 
axes used throughout. The beam is polarized in the x direction and propagates in 
the positive z direction. The symmetry axis of the vaterite particle,   ̂  u  , is specified in 
terms of the polar and azimuthal angles,  and φ. (B) Time-lapse images of a vaterite 
microparticle oscillating along the E-field (x direction), where yellow crosses 
indicate the CoM of the particle. (C) Time traces of the particle’s CoM position both 
in x and y directions (transverse to the beam axis in the z direction).
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birefringent sphere with default parameters (radius of 2.2 m and 
density  = 2.54 g/cm3 with ordinary and extraordinary refractive 
indices corresponding to those of bulk vaterite no = 1.55, ne = 1.65) 
in a linearly polarized Gaussian beam in vacuum (see section S3 for 
further details). In summary, we numerically integrate the equation 
of motion

   f   opt (q ) +  f   L (t ) − mg  ̂  z  − 𝚵 q ̇   = M q ¨    (2)

f optis the generalized optical force (i.e., forces and torques) acting 
on the particle, and q are the generalized coordinates specifying the 
CoM and orientation [i.e., q = (x, y, z, , ), where  and  are the 
polar and azimuthal angles specifying the symmetry axis of the par-
ticle,   ̂  u  ]. Ξ is the pressure-dependent friction matrix with diagonal 
elements Ξii = 6a and 8a3 for translational and rotational mo-
tion, respectively. fL is the stochastic, Langevin force (and torque), 
uncorrelated, with zero mean and amplitude fixed by the fluctuation- 
dissipation theorem, i.e.,  〈   f i  

L (t ) 〉 = 0 ,  〈  f i  
L (t )  f j  L (t′) 〉 = 2  k  B   T  Ξ  ij   (t − t′) . 

M is a diagonal matrix whose elements are given by the mass (m) of 
the sphere and its moment of inertia (I), and  − mg  ̂  z   is the weight. 
The beam propagates in the positive z direction with its axis coincident 
with the z axis. Although the model is idealized (ignoring the 
inhomogeneity and roughness of the particle, aberrations in the optical 
beam, etc.), the behavior represented in Fig. 2 is convincingly reproduced 
(see fig. S3). In particular, fig. S3 shows simulated distributions 
of the CoM, power spectra, and autocorrelation functions, which 
should be compared with Fig. 2 (A, C, and D, respectively).

In addition, the simulations reveal strong coupling between the 
rotational and translational degrees of freedom of the sphere. As the 
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Fig. 2. Experimentally measured dynamics of a vaterite microsphere compared with a silica microsphere trapped with a linearly polarized beam. (A) CoM 
position distributions in the x-y plane (transverse to the beam axis, z) and (B) their histograms in the x direction (along E-field). (C) Power spectra of x(t) showing the trap 
frequency at ∼530 Hz. (D) Autocorrelation of x(t) normalized by 〈x2〉, where c denotes the correlation time. Rows (1) to (4) represent data at different gas pressures.

0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0

5

10

15

20

0 1 2 3 4 5
0

50

100

150

Fig. 3. Experimentally measured position variance and its reciprocal of a 
vaterite microsphere. (A) Position variance in both x and y directions (left axis) 
and the relative energy in the x motion (right axis) at different gas pressures P. 〈x2〉 
increases with decreasing P toward 1 mbar, whereas 〈y2〉 remains at room tempera-
ture. (B) The same data as (A), replotted as the reciprocal of the variance versus 
pressure to show the scaling behavior as the critical viscosity and pressure are 
approached.
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viscosity is reduced, the growing oscillation of the x coordinate of 
the CoM is increasingly accompanied by an oscillation of the angular 
coordinate, . Figure 4 shows this correlation as a scatterplot (left-
hand side) and as the time-dependent cross-correlation of a simu-
lated Brownian trail. The underlying mechanism is clear. Angular 
oscillations produce oscillating force components,   f x  opt  , through 
rotation-translation coupling, which drive linear oscillations in x. 
Similarly, oscillations in x generate torque components,   t y  opt  , which 
feed into the angular oscillations. As the pressure (viscosity) is 
reduced, the coupled oscillations increasingly reinforce one another 
and the motion becomes more coherent and self-sustaining. This 
effect is very clearly seen in movies S2 and S3, which show the 
simulated stochastic motion in optical traps whose parameters cor-
respond to the three cases represented in Fig. 4 (A and B).

Analysis
These observations can be quantified with reference to a simple 
analytical model. Linearizing the force field relative to the trapping 
configuration (in which external forces and torques vanish) and 
restricting attention to the coupled coordinates,  and x, give

  − Kq − 𝚵 q  ̇  +  f   L  = M q ¨   ⟺ (K + i𝚵 − M     2  ) Q ≡ AQ =  F   L   (3)

The first expression is the linearized equation of motion. The 
external (i.e., optical and gravitational) forces on the particle are given 
by   f   opt  − mg  ̂  z  ≈ − Kq , where  K = −  [∇ ( f   opt  − mg  ̂  z  ) ]   T   is a stiffness 

matrix that includes coupling coefficients e.g.

   K =  [     K  xx     K  x     K  x     K      ]     (4)

and q = (x, ) are the coupled coordinates. Ξ is the friction matrix 
for a sphere of radius a in a fluid with viscosity , with diagonal 
components xx = 6a for translation and  = 8a3 for rotation. 
The second expression in Eq. 3 is the frequency domain equivalent, 
with Q = (X, ), the Fourier transform of q. The eigenfrequencies of 
A, denoted by i, determine qualitative features of the trap includ-
ing its linear stability, power spectral density (PSD), and correlation 
functions. In particular, if K is symmetric, then the force is locally 
conservative with (∇ × f ) = 0 and the trap is at thermal equilibrium. 
However, this need not be the case for optical fields or other 
momentum flows (8). Complete calculations of these quantities are 
provided in the Supplementary Materials, and the main results are 
quoted and discussed below.

The real parts of the eigenfrequencies,  ℜ(   i  ) , describe oscillatory 
behavior. The imaginary parts,  ℑ(   i  ) , relate to relaxation [when 
 ℑ(   i   ) > 0 ] or linear instability    [  ℑ(   i   ) < 0  ]. For isotropic spheres, 
coupling is absent and Kx = Kx = 0. The eigenfrequencies are then

     i   ≈ ±  √ 
_

  K  xx   / m   + i    xx   / 2m  (5)

so that the sphere oscillates with the natural frequency of a harmonic 
trap, while its relaxation is determined by the Stokes’ drag and the 
mass; the trap is linearly stable with  ℑ(   i   ) =    xx   / 2m > 0 . These 
traps are necessarily conservative within the linear regime and 
remain at equilibrium. When motional degrees of freedom are cou-
pled, this constraint is lost. It is helpful to consider two extremes: 
the overdamped or low–Reynolds number regime (negligible inertia) 
and the underdamped limit (negligible viscosity).

In the low–Reynolds number regime, the eigenfrequencies are 
purely imaginary and positive unless KxKx > KxxK (see section S4). 
This is a demanding condition, equivalent to the requirement that 

Fig. 4. Simulations describing the correlation between the x and  coordinates and their coupling forces and torques. (A and B) The correlation between x and  
for three separate cases: a birefringent sphere (n = 0.1) at low air viscosity ( = 1 × 10−6 Pa s) (red), the same birefringent sphere at a higher viscosity ( = 3.25 × 10−6 Pa s) 
(green), and an isotropic sphere (n = 0) at low viscosity ( = 1 × 10−6 Pa s) (blue). (A) Scatter plot of the simulated coordinates. The insets at each corner show a complete 
cycle of successive rotations about the y axis and translations along the x axis (i.e., the electric polarization direction). (B) Cross-correlations, 〈x(t)(t + )〉, evaluated from 
the simulation data. (C and D) Calculations of the coupled forces Fx and torques Ty for x displacements (with  = 0) and  rotations (with x = 0), respectively.
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the coupling forces and torques exceed the restoring terms, and 
unlikely to be satisfied.

In the low-pressure limit, where viscosity is negligible, we have

     i  
2  =   1 ─ 2   (      K     ─ I   +    K  xx   ─ m   )   ±  √ 

_
    LP       (6)

with

     LP   =   1 ─ 4     (      K     ─ I   −    K  xx   ─ m   )     
2
  +    K  x    K  x   ─ mI    (7)

Setting the Kx = Kx = 0 results in the familiar natural frequencies 
for harmonic oscillators, e.g.,    i  

2  =  K  xx   / m,  K     / I . Characteristic 
frequencies with negative imaginary parts emerge whenever LP 
< 0, destabilizing the trap. This requires that Kx and Kx have 
opposite signs in Eq. 7. Physically, this condition ensures that the 
rotational and translational vibrations feed into one another con-
structively so that, for example, the rotational vibration generates 
an oscillating force that is in phase with the translational vibration 
and vice versa. Providing that KxKx < 0, the condition LP < 0 is 
relatively easily satisfied, especially when the natural rotational and 
translational frequencies are close as they are in this case. Calculated 
forces and torques are shown in Fig. 4 (C and D) for the default 
parameters given above, showing that KxKx < 0 as required. We 
note that calculated values of LP are negative for the default system 
parameters and for surrounding regions of parameter space (see 
section S4).

Whenever the trap is linearly stable at low Reynolds number (as 
usual), but unstable in the low-pressure limit (LP < 0 in Eq. 7), one 
of the values of  ℑ(   i  )  must pass through zero as the ambient effec-
tive viscosity is reduced. Requiring  ℑ(   i   ) = 0  yields the following 
expression for the critical effective viscosity, X, at which one of the 
 ℑ(   i   ) = 0  (see section S4)

   s  x    s       X  2   = mI  X  2   − (m K     + I  K  xx   ) + ( K  xx    K     −  K  x    K  x   ) /   X  2    (8)

where the friction coefficients xx = 6a ≡ sx and  = 8a3 ≡ 
s are proportional to the viscosity and X is the corresponding 
real part of the frequency

    X  2   =    K  xx    s     +  K      s  x   ─ m s     + I  s  x      (9)

In the absence of rotational-translational coupling (Kx = Kx = 0), 
Eq. 8 gives X = 0, and when the condition  ℑ(   i   ) = 0  cannot be 
satisfied (because KxKx > 0, for example), a negative value is 
obtained for    X  2   , indicating a nonphysical solution. A survey de-
scribing typical variations in X and X with varying properties of 
the sphere and beam is included in section S4. The properties of the 
experimental system fall within realistic ranges given uncertainties 
in the beam power, for example, and the idealized nature of the 
model.

As  → X, the oscillations become more coherent and grow in 
amplitude. This is expressed in the PSD, which describes the distri-
bution of motional power in frequency space and is given by the 
ensemble average of the squares of the Fourier-transformed coordi-
nates, 〈Q()Q*()〉. As  ℑ(   i  )  approaches zero, the PSD for the 
vaterite sphere, with rotation-translation coupling, consists of a 

single peak with the maximum value, 〈Q()Q*()〉max, and width, 
 (section S4)

   〈Q(ω )  Q   * (ω ) 〉  max   ∝   1 ─ 
 ω X  2   ℑ  ( ω  i  )   2 

    (10)

   ∝ 2ℑ(   i  )  (11)

Thus, the height of the peak in the PSD increases rapidly as X is 
approached and its width, , decreases toward zero. Time correla-
tions take the following form (section S4)

  〈q(t )q(t +  ) 〉 ∝    k  B  T ─ ℑ(   i  )
    e   iℜ(   i  )  e   −ℑ(   i  )   (12)

As  ℑ(   i   ) → 0 , the amplitude   k  B  T / ℑ(   i  )  increases so that, for 
example, the instantaneous position variance, 〈x2〉, grows. Since the 
relationship between pressure and viscosity is approximately linear 
in this regime (19), we can write  ℑ(   i   ) ∝ ( −    X   ) ∝ (P −  P  X  ) , where 
PX is the pressure corresponding to X. Combining with Eqs. 10 and 
12 gives the scaling behavior for the PSD maxima and linewidths as 
well as covariance and relaxation times. For example, 〈x2〉 is

  〈 x   2  〉 ∝   1 ─ P −  P  X      (13)

where PX is the pressure corresponding to the critical viscosity, X. In 
Fig. 3B, we confirm that this relation holds for the experimental data 
and use it to extract a value for PX = 1.2 mbar. Previous measurements 
(see section S2) show that the corresponding viscosity is X = 0.2 Pa s, 
which falls within the range predicted in the parametric survey 
(section S4). Similarly, the relaxation time,     0   = 1 / ℑ(   i   ) ∝ 1 / (P −  P  X  )  
becomes large as  → X, and the oscillations of the birefringent 
sphere become increasingly coherent.

The behavior described above, in Eqs. 10 to 12, is qualitatively 
different from that of isotropic spheres, for which the position 
variance, 〈x2〉, is independent of viscosity (Eq. 1), while the value of 
 ℑ(   i   ) =    xx   / 2m  remains finite for finite viscosity, ensuring that the 
linewidth and relaxation times also remain finite.

In summary, whenever LP < 0, the stochastic motion within the 
linear approximation is characterized by a critical viscosity, X. For 
 > X, the motion is driven by thermal fluctuations, without which 
the particle would remain motionless in the trapping configuration. 
As the viscosity is reduced toward X, spontaneous oscillations 
emerge with a linewidth, , approaching zero and quality factor 
 Q =  /  ≈    X   / ℑ(   i  )  tending to infinity. In reality, this limit is 
never reached since the position variance, 〈x2〉, increases rapidly, 
taking the particle beyond the linear range of the trap. For viscosi-
ties  < X, the linear approximation breaks down completely and 
the oscillations become self-sustaining. In essence, the particle takes 
energy from the optical field and dissipates it into the surrounding 
gas, forming a nonequilibrium steady state. The oscillations may be 
regarded as being driven, but the external force field is time invariant. 
Thermal fluctuations introduce phase errors that the system cannot 
correct since it has no knowledge of what the phase should be at any 
particular time. These errors accumulate and limit how narrow the 
linewidth can become.

Ultrahigh Q oscillators
Although the extremely high Q values predicted by the linear ap-
proximation (Eq. 11) cannot be obtained in practice, parametric 
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modulation of the trap intensity is observed to drastically improve 
the quality factors of the free-running oscillator. This remarkable 
effect is due, in part, to the oscillations being confined to a single 
spatial dimension, analogous to the case of the tethered pendulum 
(20). In addition, the parametric drive introduces a periodic time 
variation against which phase errors can be measured, allowing the 
oscillator to synchronize with the drive (21, 22).

Figure 5A shows the PSD of the oscillating particle at around the 
resonant frequency f0 = 832 Hz (centered at 0 Hz). When the particle 
is trapped with a stationary light field both spatially and temporally, 
the oscillation yields the resonant peak (orange dots), which is fitted 
with a Lorentzian (blue curve) with a linewidth of 0.90 ± 0.13 Hz, 
yielding Q = 924 ± 136 (Fig. 5A). Because of collisions with resid-
ual gas molecules and CoM excursion of the particle into regions of 
different light intensity, the oscillation frequencies exhibit a broad 
distribution.

However, when the particle is trapped by a light field with an 
amplitude periodically modulated at a frequency f = 2f0 (i.e., para-
metrically driven), the mechanical mode becomes more coherent, 
leading to an ultranarrow linewidth. In this regime, there are two 
driving protocols: (i) The external modulation can be locked to the 
phase of the particle motion (either inward or outward, relative to 
the trap center), i.e., “phase locking.” (ii) The particle motion can be 
locked to the external clock, transducing the frequency of the time 
standard to the particle motion, i.e., “frequency locking” (see Materials 
and Methods). Figure 5B shows the PSD when phase locked, exhib-
iting a linewidth of 10.5 ± 3.0 Hz at f0 ≈ 580.5 Hz and the corre-
sponding Q = 5.53 ( ± 1.72) × 107. These mechanical properties are 
further improved when frequency locked. In this case, the particle 
acts as a precision micromechanical transducer, allowing long-time 
measurements required for high-Q experiments. Figure 5C shows 
the PSD with a linewidth of 2.20 ± 0.62 Hz at f0 ≈ 539.6 Hz and 
Q = 2.45 ( ± 0.75) × 108 when frequency locked. These are, to the best 
of our knowledge, the narrowest linewidth and the highest Q factor 
reported to date for a mechanical oscillator at room temperature.

To demonstrate weak-force sensing capabilities of the driven 
oscillators, the phase-locked particle is used as a probe for real-time 
frequency measurements in a dilute gas (see Materials and Methods). 
A fractional change in gas pressure affects the damping rate of the 
particle, which translates gas pressure values onto the oscillation 
frequency. Figure 6 shows the oscillation frequencies (orange dots) 
depending on the residual gas pressure in the pressure range of 4 to 
7 mbar. A linear fit to the data (blue solid line) yields a rate of 
frequency change of 0.21 Hz/mbar with a relative pressure sensitivity 
of 0.75% (2), which can be improved by increasing the length of 
the measurement (currently 100 s). We note that frequency locking 
can also be used, where the phase lag between the drive and the 
oscillator depends on nonconservative forces, such as light or gas 
scattering (15). This demonstrates the great potential of this self- 
sustained oscillator as a weak-force sensor.

DISCUSSION
In conclusion, we have demonstrated an effect in which thermal 
fluctuations combine with a linearly nonconservative optical force 
field to produce oscillations in one spatial direction whose ampli-
tude and coherence grow rapidly as viscous damping is reduced. 
This is a nonequilibrium effect, and the motional energy greatly 
exceeds the thermal energy,   1 _ 2   k  B  T . The effect is loosely analogous to 

that previously reported for isotropic spheres in circularly polarized 
beams (23), except that, in this case, the nonconservative motion is 
induced by particle anisotropy rather than by momentum flows 
within the trapping beam. Since the optical forces experienced by a 
particle depend qualitatively on its shape (24–27), a range of exotic 
behaviors may be anticipated for particles of yet lower symmetry.

The phenomenon that we report belongs to a general class of 
nonconservative instabilities that manifest themselves in diverse 
physical systems ranging from biomechanics to magnetohydrody-
namics (28). Structured optical fields and the complex force fields 
that they generate provide an ideal platform for studying these 
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Fig. 5. PSD with different oscillation modes. Experimentally measured PSD (orange 
dots) fitted with a Lorentzian (blue curves) of the oscillating particle at the oscillation 
frequency in the range from 530 to 840 Hz (centered at 0 Hz): (A) Self-sustained 
oscillations showing a linewidth f0 of 0.90 Hz, yielding Q = 924. (B) Phase-locked 
oscillations showing f0 = 10.5 Hz and Q = 5.53 × 107. (C) Frequency-locked oscillations 
showing f0 = 2.20 Hz and Q = 2.45 × 108.
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effects (29–33) and their thermodynamic consequences (34–37). 
Last, we have shown that the quality of oscillations generated by 
nonconservative coupling can be massively enhanced by parametric 
driving. The quality factors of our oscillating vaterite particles are 
the highest of those measured and exhibit the lowest linewidths 
seen to date. Nevertheless, we expect to be able to improve on these 
values by refining the size, shape, or composition of the particle or 
by using optimally structured light fields. In summary, our results 
expose the potentially rich behavior exhibited by optically trapped, 
nonspherical particles in vacuum optical traps and suggest un-
conventional forms of ultrahigh-quality oscillators for applications 
involving weak-force measurement.

MATERIALS AND METHODS
Sample preparation
The synthesis of vaterite microspheres and the protocol for loading 
the microspheres into the optical trap are described elsewhere (29). 
Vaterite is a positive uniaxial birefringent material in a spherical 
morphology with a mean radius of 2.20 ± 0.02 m (2) and a sur-
face roughness of 27.6 nm (2) (see fig. S1). As for silica, National 
Institute of Standards and Technology traceable size standards with 
a diameter of 5.1 ± 0.5 m (Thermo Scientific, 9005) are used to 
compare the trapping behavior with vaterite microspheres (see 
Fig. 2).

Experimental protocol
To load microspheres into the optical trap, we used an annular 
piezoelectric transducer (APC International Ltd., catalog no.70-
2221) affixed to the vacuum chamber made of stainless steel with a 
volume of 27.7 ℓ. The chamber has two optical glass windows 
(Harvard Apparatus Ltd., CS-8R: 8 mm in diameter and 150 m in 
thickness); upon the surface of one, we placed dried microspheres 
before loading. The piezoelectric transducer is operated at 140 kHz 
to detach microspheres from the glass surface to load the optical 
trap in air/vacuum. A linearly polarized trapping beam (continuous 
wave, 1070 nm) with optical power in the range of 10 to 25 mW is 
focused in the vacuum chamber through a high–numerical aperture 
(NA) microscope objective (Nikon Ltd., E Plan 100×, NA 1.25 in 
oil). A single particle is trapped at a gas pressure of ∼100 mbar, 
which is reduced to 1 mbar so that the particle motion becomes 
ballistic. The optical power can be adjusted in the above power 
range to obtain a desired oscillation frequency from 0.4 to 1.1 kHz.

High-speed camera imaging
To track the motion of the trapped particle, we use a fast CMOS 
camera (Mikrotron, EoSens MC1362) with a frame rate of 5000 fps 
synchronized with nanosecond laser pulses of 532 nm. This allows 
obtaining stroboscopic images of the trapped particles over a period 
of 1 s with a bandwidth of 2.5 kHz, which is greater than the trap 
frequency typically in the range of 0.4 to 1.1 kHz.

Ultrahigh Q experiments
To perform phase- or frequency-locking experiments, the particle 
motion is tracked by an avalanche photodiode (APD; Thorlabs, 
APD410C), which measures the forward-scattered light from the 
trapped particle. The APD signal is processed by a lock-in amplifier 
(Zurich Instruments, HF2LI, 210 MSa/s, DC-50 MHz) to extract 
the oscillation frequency and its phase of the particle oscillation. 

A frequency-doubled waveform with an adjusted phase shift relative 
to the particle oscillation is superimposed to the voltage waveform 
driving an acousto-optic modulator (IntraAction, DTD-274HD6M) 
to modulate the trap intensity (±5%). The PSD is taken over continuous 
17.2 hours for phase locking (Fig. 5B) and 30 hours for frequency 
locking (Fig. 5C).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/6/23/eaaz9858/DC1

REFERENCES AND NOTES
 1. I. A. Martínez, E. Roldán, L. Dinis, R. A. Rica, Colloidal heat engines: A review. Soft Matter 

13, 22–36 (2017).
 2. P. Hänggi, F. Marchesoni, F. Nori, Brownian motors. Ann. Phys. 14, 51–70 (2005).
 3. J. Howard, Molecular motors: Structural adaptations to cellular functions. Nature 389, 

561–567 (1997).
 4. P. Zemánek, G. Volpe, A. Jonáš, O. Brzobohatý, Perspective on light-induced transport 

of particles: From optical forces to phoretic motion. Adv. Opt. Photonics 11, 577–678 
(2019).

 5. L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, A. J. Libchaber, Optical thermal ratchet.  
Phys. Rev. Lett. 74, 1504–1507 (1995).

 6. S. Sukhov, A. Dogariu, Non-conservative optical forces. Rep. Prog. Phys. 80, 112001 
(2017).

 7. Y. Roichman, B. Sun, A. Stolarski, D. G. Grier, Influence of nonconservative optical forces 
on the dynamics of optically trapped colloidal spheres: The fountain of probability.  
Phys. Rev. Lett. 101, 128301 (2008).

 8. S. H. Simpson, S. Hanna, First-order nonconservative motion of optically trapped 
nonspherical particles. Phys. Rev. E 82, 031141 (2010).

 9. A. Irrera, A. Magazzú, P. Artoni, S. H. Simpson, S. Hanna, P. H. Jones, F. Priolo, 
P. G. Gucciardi, O. M. Maragó, Photonic torque microscopy of the nonconservative force 
field for optically trapped silicon nanowires. Nano Lett. 16, 4181–4188 (2016).

 10. W. J. Toe, I. Ortega-Piwonka, C. N. Angstmann, Q. Gao, H. H. Tan, C. Jagadish, B. I. Henry, 
P. J. Reece, Nonconservative dynamics of optically trapped high-aspect-ratio nanowires. 
Phys. Rev. E 93, 022137 (2016).

 11. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, M. J. Padgett, Measuring the accuracy 
of particle position and force in optical tweezers using high-speed video microscopy. 
Opt. Express 16, 14561–14570 (2008).

 12. T. C. Li, S. Kheifets, D. Medellin, M. G. Raizen, Measurement of the instantaneous velocity 
of a Brownian particle. Science 328, 1673–1675 (2010).

 13. S. H. Simpson, S. Hanna, Thermal motion of a holographically trapped SPM-like probe. 
Nanotechnology 20, 395710 (2009).

 14. J. Ahn, Z. Xu, J. Bang, P. Ju, X. Gao, T. Li, Ultrasensitive torque detection with an optically 
levitated nanorotor. Nat. Nanotechnol. 15, 89–93 (2020).

 15. S. Kuhn, B. A. Stickler, A. Kosloff, F. Patolsky, K. Hornberger, M. Arndt, J. Millen, Optically 
driven ultra-stable nanomechanical rotor. Nat. Commun. 8, 1670 (2017).

 16. A. Pontin, N. Bullier, M. Toroš, P. Barker, An ultra-narrow line width levitated nano-oscillator 
for testing dissipative wavefunction collapse. arXiv:1907.06046 (2019).

 17. D. E. Chang, C. Regal, S. B. Papp, D. Wilson, J. Ye, O. Painter, H. J. Kimble, P. Zoller, Cavity 
opto-mechanics using an optically levitated nanosphere. Proc. Natl. Acad. Sci. U.S.A. 107, 
1005–1010 (2010).

 18. J. Gieseler, L. Novotny, R. Quidant, Thermal nonlinearities in a nanomechanical oscillator. 
Nat. Phys. 9, 806–810 (2013).

 19. S. Beresnev, V. Chernyak, G. Fomyagin, Motion of a spherical particle in a rarefied gas. 
Part 2. Drag and thermal polarization. J. Fluid Mech. 219, 405–421 (1990).

 20. D. Chang, K. Ni, O. Painter, H. Kimble, Ultrahigh-Q mechanical oscillators through optical 
trapping. New J. Phys. 14, 045002 (2012).

 21. A. Pikovsky, M. Rosenblum, J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences 
(Cambridge Univ. Press, 2001).

 22. J. Gieseler, M. Spasenović, L. Novotny, R. Quidant, Nonlinear mode coupling 
and synchronization of a vacuum-trapped nanoparticle. Phys. Rev. Lett. 112, 103603 
(2014).

 23. V. Svak, O. Brzobohatỳ, M. Šiler, P. Jákl, J. Kaňka, P. Zemánek, S. Simpson, Transverse spin 
forces and non-equilibrium particle dynamics in a circularly polarized vacuum optical 
trap. Nat. Commun. 9, 5453 (2018).

 24. S. H. Simpson, S. Hanna, T. J. Peterson, G. A. Swartzlander, Optical lift from dielectric 
semicylinders. Opt. Lett. 37, 4038–4040 (2012).

 25. O. Ilic, I. Kaminer, B. Zhen, O. D. Miller, H. Buljan, M. Soljačić, Topologically enabled optical 
nanomotors. Sci. Adv. 3, e1602738 (2017).

 on June 10, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/cgi/content/full/6/23/eaaz9858/DC1
http://advances.sciencemag.org/cgi/content/full/6/23/eaaz9858/DC1
https://arxiv.org/abs/1907.06046
http://advances.sciencemag.org/


Arita et al., Sci. Adv. 2020; 6 : eaaz9858     3 June 2020

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

8 of 8

 26. D. B. Phillips, M. J. Padgett, S. Hanna, Y. L. D. Ho, D. M. Carberry, M. J. Miles, S. H. Simpson, 
Shape-induced force fields in optical trapping. Nat. Photon. 8, 400–405 (2014).

 27. X. Li, J. Chen, Z. Lin, J. Ng, Optical pulling at macroscopic distances. Sci. Adv. 5, eaau7814 
(2019).

 28. O. N. Kirillov, Nonconservative Stability Problems of Modern Physics (De Gruyter, 2013).
 29. Y. Arita, M. Mazilu, K. Dholakia, Laser-induced rotation and cooling of a trapped 

microgyroscope in vacuum. Nat. Commun. 4, 2374 (2013).
 30. T. M. Hoang, Y. Ma, J. Ahn, J. Bang, F. Robicheaux, Z. Q. Yin, T. C. Li, Torsional 

optomechanics of a levitated nonspherical nanoparticle. Phys. Rev. Lett. 117, 123604 (2016).
 31. M. Mazilu, Y. Arita, T. Vettenburg, J. M. Auñón, E. M. Wright, K. Dholakia, Orbital-angular-

momentum transfer to optically levitated microparticles in vacuum. Phys. Rev. A 94, 
053821 (2016).

 32. Y. Arita, M. Chen, E. M. Wright, K. Dholakia, Dynamics of a levitated microparticle 
in vacuum trapped by a perfect vortex beam: Three-dimensional motion around 
a complex optical potential. J. Opt. Soc. Am. B 34, C14–C19 (2017).

 33. Y. Arita, E. M. Wright, K. Dholakia, Optical binding of two cooled micro-gyroscopes 
levitated in vacuum. Optica 5, 910–917 (2018).

 34. L. Rondin, J. Gieseler, F. Ricci, R. Quidant, C. Dellago, L. Novotny, Direct measurement 
of Kramers turnover with a levitated nanoparticle. Nat. Nanotechnol. 12, 1130–1133 
(2017).

 35. J. Millen, T. Deesuwan, P. Barker, J. Anders, Nanoscale temperature measurements using 
non-equilibrium Brownian dynamics of a levitated nanosphere. Nat. Nanotechnol. 9, 
425–429 (2014).

 36. J. Gieseler, R. Quidant, C. Dellago, L. Novotny, Dynamic relaxation of a levitated 
nanoparticle from a non-equilibrium steady state. Nat. Nanotechnol. 9, 358–364 (2014).

 37. R. M. Pettit, W. Ge, P. Kumar, D. R. Luntz-Martin, J. T. Schultz, L. P. Neukirch, 
M. Bhattacharya, A. N. Vamivakas, An optical tweezer phonon laser. Nat. Photon. 13, 
402–405 (2019).

 38. S. J. Parkin, R. Vogel, M. Persson, M. Funk, V. L. Y. Loke, T. A. Nieminen, N. R. Heckenberg, 
H. Rubinsztein-Dunlop, Highly birefringent vaterite microspheres: Production, 
characterization and applications for optical micromanipulation. Opt. Express 17, 
21944–21955 (2009).

 39. N. Grønbech-Jensen, O. Farago, A simple and effective Verlet-type algorithm 
for simulating Langevin dynamics. Mol. Phys. 111, 983–991 (2013).

 40. S. H. Simpson, P. Zemánek, O. M. Maragò, P. H. Jones, S. Hanna, Optical binding 
of nanowires. Nano Lett. 17, 3485–3492 (2017).

 41. A. Doicu, T. Wreidt, Y. A. Eremin, Light Scattering by Systems of Particles (Springer, 2006).
 42. S. H. Simpson, S. Hanna, Optical angular momentum transfer by Laguerre-Gaussian 

beams. J. Opt. Soc. Am. A 26, 625–638 (2009).
 43. L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, 2006).
 44. S. H. Simpson, S. Hanna, Stability analysis and thermal motion of optically trapped 

nanowires. Nanotechnology 23, 205502 (2012).
 45. S. H. Simpson, S. Hanna, Holographic optical trapping of microrods and nanowires.  

J. Opt. Soc. Am. A 27, 1255–1264 (2010).

Acknowledgements: We thank T. Omatsu at Chiba University for useful discussions. Funding: 
We acknowledge the support from the Engineering and Physical Sciences Research Council 
(EP/P030017/1) and the Czech Science Foundation (GA19-17765S). Author contributions: 
Y.A. and K.D. planned the study. Y.A. designed and developed the project and performed the 
experiment and data analysis. S.H.S. provided all theoretical content, and Y.A. provided all 
experimental content. All authors reviewed the manuscript. K.D. supervised the project. 
Competing interests: The authors declare that they have no competing interests. Data and 
materials availability: All data needed to evaluate the conclusions in the paper are present in 
the paper and/or the Supplementary Materials. Additional data related to this paper can be 
accessed at https://doi.org/10.17630/895dc4bf-819a-48d5-b422-b7e63674033a.

Submitted 29 October 2019
Accepted 3 April 2020
Published 3 June 2020
10.1126/sciadv.aaz9858

Citation: Y. Arita, S. H. Simpson, P. Zemánek, K. Dholakia, Coherent oscillations of a levitated 
birefringent microsphere in vacuum driven by nonconservative rotation-translation coupling. 
Sci. Adv. 6, eaaz9858 (2020).

 on June 10, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


nonconservative rotation-translation coupling
Coherent oscillations of a levitated birefringent microsphere in vacuum driven by

Yoshihiko Arita, Stephen H. Simpson, Pavel Zemánek and Kishan Dholakia

DOI: 10.1126/sciadv.aaz9858
 (23), eaaz9858.6Sci Adv 

ARTICLE TOOLS http://advances.sciencemag.org/content/6/23/eaaz9858

MATERIALS
SUPPLEMENTARY http://advances.sciencemag.org/content/suppl/2020/06/01/6.23.eaaz9858.DC1

REFERENCES

http://advances.sciencemag.org/content/6/23/eaaz9858#BIBL
This article cites 40 articles, 4 of which you can access for free

PERMISSIONS http://www.sciencemag.org/help/reprints-and-permissions

Terms of ServiceUse of this article is subject to the 

 is a registered trademark of AAAS.Science AdvancesYork Avenue NW, Washington, DC 20005. The title 
(ISSN 2375-2548) is published by the American Association for the Advancement of Science, 1200 NewScience Advances 

BY).
Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC 
Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of

 on June 10, 2020
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/content/6/23/eaaz9858
http://advances.sciencemag.org/content/suppl/2020/06/01/6.23.eaaz9858.DC1
http://advances.sciencemag.org/content/6/23/eaaz9858#BIBL
http://www.sciencemag.org/help/reprints-and-permissions
http://www.sciencemag.org/about/terms-service
http://advances.sciencemag.org/

