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Abstract. We establish Ambrosetti–Prodi type results for viscosity and
classical solutions of nonlinear Dirichlet problems for fractional Laplace
and comparable operators. In the choice of nonlinearities we consider
semi-linear and super-linear growth cases separately. We develop a new
technique using a functional integration-based approach, which is more
robust in the non-local context than a purely analytic treatment.
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1. Introduction and Statement of Results

In this paper our goal is to present a counterpart for the fractional Laplacian
and operators comparable in a specific sense, of the classical Ambrosetti–
Prodi problem studied for a class of elliptic differential operators with non-
linear terms. In contrast with topological and variational methods used in the
classical context, we propose a new technique based on a path integration ap-
proach, which accommodates a large class of non-local operators going well
beyond the fractional Laplacian, and also applies to viscosity solutions. This
larger class is motivated by a number of applications including operators with
Lévy jump kernels having a lighter than polynomial tail, however, an exten-
sion to this class requires a number of extra steps and concepts, which will be
pursued in a future work. Apart from this, another general advantage of our
approach seems to be that it is more robust than purely analytic techniques,
dealing better with the difficulties resulting from boundary roughness. Our
techniques and framework have been developed recently in [12,13], to which
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we now intend to add the new dimension of including nonlinearities. First
we briefly recall the original problem, then state our results, and in the next
section present the proofs.

Let D ⊂ R
d be a bounded open domain with a C2,α(D) boundary,

α ∈ (0, 1), and consider the Dirichlet problem{
Δu + f(u) = g(x) in D ,
u = 0 on ∂D,

(1.1)

where Δ is the Laplacian, f ∈ C2(R), and g ∈ C0,α(D̄). In the pioneering
paper [2] Ambrosetti and Prodi studied the operator L = Δ + f(·) as a dif-
ferentiable map between C2,α(D̄) and C0,α(D̄), and discovered the following
phenomenon. Let λ1 < λ2 ≤ λ3 ≤ · · · denote the Dirichlet eigenvalues of
the Laplacian for the domain D. The authors have shown that provided f is
strictly convex, with f(0) = 0, and

0 < lim
z→−∞

f(z)
z

< λ1 < lim
z→∞

f(z)
z

< λ2, (1.2)

then

(1) there is a closed connected manifold M1 ⊂ C0,α(D̄) of codimension 1,
with the property that there exist M0,M2 such that C0,α(D̄)\M1 =
M0 � M2,

(2) the Dirichlet problem (1.1) has no solution if g ∈ M0, has a unique
solution if g ∈ M1, and has exactly two solutions if g ∈ M2.

The problem formulates in the wider context of invertibility of differentiable
maps between Banach spaces, in fact, M1 is the set of elements u on which
the Fréchet derivative of L is not locally invertible. Also, as it is seen from
condition (1.2), this split behaviour shows that the existence and multiplicity
of solutions is conditioned by the crossing of the nonlinear term with the
principal eigenvalue of the linear part.

Following this fundamental observation, much work has been done in
the direction of relaxing the conditions or generalizing to further non-linear
partial differential equations or systems. A first contribution has been made
by Berger and Podolak proposing a useful reformulation of the problem.
Write

L1u = Δu + λ1u, f1(u) = f(u) − λ1u, g = ρϕ1 + h,

where ϕ1 is the principal eigenfunction of the Dirichlet Laplacian, h is in the
orthogonal complement of ϕ1, L2-normalized to 1, and ρ ∈ R, so that (1.1)
becomes

L1u + f1u = ρϕ1 + h in D, u = 0 in ∂D. (1.3)

In [6] it is then shown that there exists ρ∗(h) ∈ R, continuously dependent on
h, such that for ρ > ρ∗(h) the equivalent Dirichlet problem has no solution,
for ρ = ρ∗(h) it has a unique solution, and for ρ < ρ∗(h) it has exactly two
solutions. For further early developments we refer to the works of Kazdan
and Warner [24] relaxing the assumptions, Dancer [16] and Amann and Hess
[1] identifying a suitable growth condition on f1, and Ruf and Srikanth [32]
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turning to the super-linear case. More recent papers exploring different per-
spectives include [3,15,19–21,27,35,36], and for useful surveys we refer to de
Figueiredo [18] and Mahwin [26]. For non-local Hamilton–Jacobi equations
see [17], and for systems of non-local equations [28].

Let D ⊂ R
d be a bounded domain with C2 boundary, s ∈ (0, 1), and

consider the fractional Laplacian-like operator

Lu(x) =
∫
Rd

(u(x + y) − u(x) − ∇u(x) · y1{|y|≤1})
k(y/|y|)
|y|d+2s

dy,

where k : Sd−1 → (0,∞) is a symmetric (i.e., k(z) = k(−z)), Borel-measurable
function satisfying the non-degeneracy condition

0 < Λ1 ≤ k(z) ≤ Λ2, for all z ∈ S
d−1.

As it can be seen from Lemma 2.9 below, our proof techniques use fine bound-
ary behaviour of the solutions of the Dirichlet problem. It is known from [30]
that such a behaviour may not hold for a general non-degenerate kernel k
defined on R

d. This is the reason why we restrict ourselves to the kernel
functions of above type.

Motivated by the problem (1.3), in this paper we are interested in the
existence and multiplicity of solutions of{

Lu + f(x, u) + ρΦ1 + h(x) = 0 in D,
u = 0 in Dc,

(1.4)

where Φ1 is the Dirichlet principal eigenfunction of L in D, ρ ∈ R, and
h ∈ Cα(D̄) for some α > 0. We also assume that ‖Φ1‖∞ = 1. Below we will
consider viscosity solutions, however, we will also discuss a sufficient condition
on f so that every viscosity solution becomes a classical solution.

Let V ∈ C(D̄), which will be referred to as a potential. We use the
notation Cb,+(Rd) for the space of non-negative bounded continuous functions
on R

d. Also, we denote by C2s+(D) the space of continuous functions on D
with the property that if ψ ∈ C2s+(D), then for every compact subset K ⊂ D
there exists γ > 0 with f ∈ C2s+γ(K). Define

F(λ,D) =
{
ψ ∈ Cb,+(Rd) ∩ C2s+(D) : ψ > 0 in D, and Lψ − V ψ + λψ ≤ 0

}
.

The principal eigenvalue of −L + V is defined as

λ∗(−L + V ) = sup {λ : F(λ,D) �= ∅} . (1.5)

For easing the notation, we will simply write λ∗ for the above. This widely
used characterization of the principal eigenvalue originates from the seminal
work of Berestycki et al. [4]. Descriptions in a similar spirit for a different
class of non-local Schrödinger operators have been obtained in [5], while in
[11,17,33] non-local Pucci operators have been considered. Recently, we pro-
posed in [13] a probabilistic approach using a Feynman–Kac representation to
establish characterizations of the principal eigenvalue and the corresponding
semigroup solutions.

Our first result concerns the existence of the principal eigenfunction and
of a solution of the Dirichlet problem.

Theorem 1.1. Suppose that V, g ∈ Cα(D̄) for some α > 0. The following hold:
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(a) There exists a unique Ψ1 ∈ C2s+(D) ∩ Cb,+(Rd), ‖Ψ1‖∞ = 1, satisfying

− LΨ1 + V Ψ1 = λ∗Ψ1 in D, Ψ1 > 0 in D, Ψ1 = 0 in Dc. (1.6)

(b) Suppose λ∗ > 0. Then there exists a unique u ∈ C2s+(D) ∩ C(Rd) satis-
fying

− Lu + V u = g in D, u = 0 in Dc. (1.7)

We will also need the following refined weak maximum principle for
viscosity solutions.

Theorem 1.2. Suppose that V ∈ Cα(D̄) and λ∗ > 0. Let u ∈ Cb(Rd) be
a viscosity subsolution of −Lu + V u ≤ 0 and v ∈ Cb(Rd) be a viscosity
supersolution of −Lv +V v ≥ 0 in D. Furthermore, assume that u ≤ v in Dc.
Then u ≤ v in R

d.

Remark 1.1. On completion of this paper we have learnt that [17] obtained
results similar to Theorems 1.1 and 1.2, using a different technique than ours.
In our understanding, these and related methods in the literature, applied
also for other purposes, depend on the comparability of the used non-local
operators with the Riesz kernel and the fractional Laplacian. We emphasize
that in this paper we develop a path integration-based approach which, like
in the framework first set in [11–13], is applicable for a large class of non-local
operators (Markov generators of Lévy processes) without a similar restriction,
also covering qualitatively different jump kernels. Since this will need further
probabilistic machinery, it will be presented elsewhere, and we limit ourselves
to the fractional Laplacian here. A recent paper [9] deals with a class of non-
local operators and extends some of results of this paper using a probabilistic
framework.

Next we impose the following Ambrosetti–Prodi type condition on f .

Assumption [AP]. Let f : D̄ × R → R be such that
(1) f is Hölder continuous in x, locally with respect to u, and locally Lip-

schitz continuous in u, uniformly in x ∈ D̄,
(2) there exist V1, V2 ∈ Cα(D̄), for some α > 0, such that

λ∗(−L − V1) > 0 and λ∗(−L − V2) < 0, (1.8)
f(x, q) ≥ V1(x)q − C for all q ≤ 0, x ∈ D̄, (1.9)
f(x, q) ≥ V2(x)q − C for all q ≥ 0, x ∈ D̄, (1.10)

(3) f has at most linear growth, i.e., there exists a constant C > 0 such
that

|f(x, q)| ≤ C(1 + |q|),
for all (x, q) ∈ D̄ × R, or

(3’) L = −(−Δ)s (i.e. k is constant), d > 1 + 2s and there exists a positive
continuous function a0 such that

lim
q→∞

f(x, q)
qp

= a0(x), for somep ∈
(

1,
d + 2s

d − 2s

)
,

where the above limit holds uniformly in x ∈ D̄.
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When referring to Assumption [AP] below, we will understand that
conditions (1), (2) and one of (3) or (3′) hold. In what follows, we assume
with no loss of generality that f(x, 0) = 0, otherwise h can be replaced by
h − f(·, 0).

Now we are ready to state our main result on the fractional Ambrosetti–
Prodi problem.

Theorem 1.3. Let Assumption [AP] hold. Then there exists ρ∗ = ρ∗(h) ∈ R

such that for ρ < ρ∗ the Dirichlet problem (1.4) has at least two solutions, at
least one solution for ρ = ρ∗, and no solution for ρ > ρ∗.

To prove our main Theorem 1.3, like in classic proofs such as in [18,19],
in our context too the viscosity characterization of the principal eigenfunction
plays a key role. In Theorem 1.1 therefore first we obtain such a characteri-
zation. The refined maximum principle shown in Theorem 1.2 will also be a
key object towards the proof of the fractional Ambrosetti–Prodi phenomenon.
We will rely on our recent work [13], in which we proposed a method based
on Feynman–Kac representations to establish Aleksandrov–Bakelman–Pucci
(ABP) estimates for semigroup solutions of non-local Dirichlet problems for a
large class of operators, including but going well beyond the fractional Lapla-
cian. We will also show that every classical solution in our context here is
also a semigroup solution and thus a generalized ABP estimate can be estab-
lished for these solutions, which will be essential for obtaining the a priori
estimates.

2. Proofs

2.1. Preliminaries

We begin by recalling some notations and results from [12,13], which will
be used below. Let (Ω,F ,P) be a complete probability space, and (Xt)t≥0

be an isotropic Lévy process on this space with infinitesimal generator L.
Given a function V ∈ C(D̄), called potential, the corresponding Feynman–
Kac semigroup is given by

TD,V
t f(x) = E

x
[
e− ∫ t

0 V (Xs) dsf(Xt)1{t<τD}
]
, t > 0, x ∈ D, f ∈ L2(D),

where

τD = inf{t > 0 : Xt �∈ D}
is the first exit time of the process (Xt)t≥0 from the domain D. When
L = −(−Δ)s, 0 < s < 1, it is shown in [12, Lem 3.1] that TD,V

t , t > 0,
is a Hilbert–Schmidt operator on L2(D) with continuous integral kernel in
(0,∞) × D × D. Moreover, every operator Tt has the same purely discrete
spectrum, independent of t, whose lowest eigenvalue is the principal eigen-
value λ∗ having multiplicity one, and the corresponding principal eigenfunc-
tion Ψ ∈ L2(D) is strictly positive. We also have from [12, Lem. 3.1] that
Ψ ∈ C0(D), where C0(D) denotes the class of continuous functions on R

d van-
ishing in Dc. Since Ψ is an eigenfunction in semigroup sense, we have for all
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t > 0 that

e−λ∗tΨ(x) = TtΨ(x) = E
x

[
e− ∫ t

0 V (Xs) dsΨ(Xt)1{t<τD}
]
, x ∈ D. (2.1)

Let (Dn)n∈N be a collection of strictly decreasing domains with the
property that ∩n≥1Dn = D, and each Dn having its boundary satisfying the
exterior cone condition. Denote by λ∗

n the principal eigenvalue in sense of
(1.5). The following result will be useful below (see also, [13, Lem. 4.2]).

Proposition 2.1. The following hold:
(1) For every n ∈ N we have λ∗ > λ∗

n and limn→∞ λ∗
n = λ∗.

(2) Let Ṽ ≥ V and suppose that for an open set U ⊂ D we have Ṽ > V in
U. Then λ∗

Ṽ
> λ∗

V , where λ∗
V and λ∗

Ṽ
denote the principal eigenvalues

corresponding to the potentials V and Ṽ , respectively.

Proof. Existence of a unique principal eigenfunction follows from [33, Th. 1.1]
(see also [17]). Note that [33] considers the case s > 1

2 due to the presence of
the drift term and the same proof would go through in our setting. Using [34,
Th. 1.3] we can show that the eigenfunction belongs to C2s+(D). Then the
strict monotonicity of the eigenvalue with respect to domains follows from
[33, Theorem 5.1]. Using the arguments of [11, Th. 1.6] it can be shown that
limn→∞ λ∗

n = λ∗. Part (2) again follows from [33, Th. 5.1]. �

Since the theory developed in [12] is probabilistic while here we are
concentrating on viscosity solutions, we point out the relationship between
these notions of solution (compare also with [13, Rem. 3.2], [10, Sec. 3.1]).
We say that u ∈ Cb(Rd) is a semigroup sub-solution of

−Lu + V u ≤ g in D,

if we have for all x ∈ D and all t ≥ 0 that

u(x) ≤ E
x

[
e− ∫ t∧τD

0 V (Xs)dsu(Xt∧τD)
]

+ E
x

[∫ t∧τD

0

e− ∫ s
0 V (Xp)dpg(Xs) ds

]
,

Semigroup super-solutions are defined in an analogous way.

Lemma 2.1. Suppose that V, g ∈ C(D̄), and let u satisfy

− Lu + V u ≤ g in D. (2.2)

We have the following:
(1) If u ∈ Cb(Rd) is a semigroup sub-solution (resp., super-solution) of

(2.2), then it is also a viscosity sub-solution (resp., super-solution).
(2) If u ∈ C2s+(D) ∩ Cb(Rd) is a classical sub-solution (super-solution) of

(2.2), then it is also a semigroup sub-solution (resp., super-solution).

Proof. Consider part (1). Choose a point x ∈ D, and let ϕ ∈ C2(D) be a test
function that (strictly) touches u at x from above, i.e., for a ball Br(x) ⊂ D
we have ϕ(x) = u(x), and ϕ(y) > u(y) for y ∈ Br(x)\{x}. Define

ϕr(y) =
{

ϕ(y) y ∈ Br(x),
u(y) y ∈ Bc

r(x).
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To show that u is viscosity solution, we need to show that −Lϕr(x) +
V (x)u(x) ≤ g(x). Consider a sequence of functions (ϕr,n)n∈N ⊂ C2(Br(x)) ∩
C(Rd) with the property that ϕ2,n = ϕr outside Br+ 1

n
(x)\Br(x), ϕr,n ≥ u,

and ϕr,n → ϕr almost surely, as n → ∞. Since u is a semigroup subsolution,
we have that for all t ≥ 0

u(x) ≤ E
x

[
e− ∫ t∧τD

0 V (Xs)dsu(Xt∧τD)
]

+ E
x

[∫ t∧τD

0

e− ∫ s
0 V (Xp)dpg(Xs) ds

]
.

It is direct to show that the process (Yt)t≥0, Yt = e− ∫ t∧τD
0 V (Xs)dsu(Xt∧τD)+∫ t∧τD

0
e− ∫ s

0 V (Xp)dpg(Xs) ds, is a submartingale with respect to the natural
filtration of (Xt∧τD)t≥0, see also [13], hence by optional sampling we obtain
for all t ≥ 0 that

u(x) ≤ E
x

[
e− ∫ t∧τr

0 V (Xs)dsu(Xt∧τr
)
]

+ E
x

[∫ t∧τr

0

e− ∫ s
0 V (Xp)dpg(Xs) ds

]
,

(2.3)
where τr denotes the first exit time from the ball Br(x). On the other hand,
by applying Itô’s formula on ϕr,n we obtain

E
x

[
e− ∫ t∧τr

0 V (Xs)dsϕr,n(Xt∧τD)
]

− ϕr,n(x)

= E
x

[∫ t∧τr

0

e− ∫ s
0 V (Xp)dp(Lϕr,n − V ϕr,n)(Xs) ds

]
,

for all t ≥ 0. Combining this with (2.3) gives

E
x

[∫ t∧τr

0

e− ∫ s
0 V (Xp)dp(Lϕr,n − V ϕr,n)(Xs) ds

]

+ E
x

[∫ t∧τr

0

e− ∫ s
0 V (Xp)dpg(Xs) ds

]
≥ 0.

On dividing both sides by t and letting t → 0, it follows that

Lϕr,n(x) − V (x)ϕr,n(x) + g(x) ≥ 0.

Thus by letting n → ∞, we obtain

−Lϕr(x) + V (x)ϕr(x) ≤ g(x),

which proves the first part of the claim.
Next consider part (2). By the property of u we note that Lu is continu-

ous in D. Consider a sequence of open sets Kn � Kn+1 � D and ∪nKn = D.
For fixed n, let (ψm)m∈N ⊂ C2(D) ∩ Cb(Rd) be a sequence of functions satis-
fying

sup
x∈K̄n

|Lu(x) − Lψm(x)| + sup
x∈Rd

|u(x) − ψm(x)| → 0, as m → ∞.

Applying Itô’s formula to ψm, we get that

E
x

[
e− ∫ t∧τn

0 V (Xs)dsψm(Xt∧τn
)
]

− ψm(x)

= E
x

[∫ t∧τn

0

e− ∫ s
0 V (Xp)dp(Lϕm − V ϕm)(Xs) ds

]
,
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where τn denotes the first exit time from the set Kn. First letting m → ∞
and then n → ∞ above, and using the fact that τn ↑ τD almost surely, we
obtain for every t ≥ 0,

E
x

[
e− ∫ t∧τD

0 V (Xs)dsu(Xt∧τn
)
]

− u(x) ≥ −E
x

[∫ t∧τD

0

e− ∫ s
0 V (Xp)dpg(Xs) ds

]
.

This shows that u is a semigroup subsolution. �

2.2. Proof of Theorem 1.1

Now we are ready to prove our first theorem.

Proof. First consider (a). As discussed in Proposition 2.1, there exists an
eigenpair (λ∗,Ψ) ∈ R × C0(D) with Ψ > 0 in D, satisfying

− LΨ = (λ∗ − V )Ψ in D, and Ψ = 0 in Dc, (2.4)

in viscosity sense. By [11, Th. 2.6] we have Ψ ∈ Cα(Rd) for some α > 0,
independent of Ψ. Since V is Hölder continuous, it follows that (λ∗ − V )Ψ is
Hölder continuous in D̄. A combination of (2.4) and [34, Th. 1.3] gives that
Ψ ∈ C2s+(D), implying existence for (1.6). Using Lemma 2.1 we also note
that (λ∗,Ψ) satisfies (2.1). Simplicity of λ∗ again follows from [33, Th. 1.2].

Next we consider (b). The main idea in proving (1.7) is to use Schauder’s
fixed point theorem. Consider a map T : C0(D) → C0(D) defined such that
for every ψ ∈ C0(D), T ψ = ϕ is the unique viscosity solution of

− Lϕ = g − V ψ in D, and ϕ = 0 in Dc. (2.5)

Using [11, Th. 2.6] we know that

‖T ψ‖Cs(Rd) ≤ c1(‖g‖∞ + ‖V ψ‖∞),

for a constant c1 = c1(D, d, s). This implies that T is a compact linear oper-
ator. It is also easy to see that T is continuous.

In a next step we show that the set

B =
{
ϕ ∈ C0(D) : ϕ = μT ϕ for some μ ∈ [0, 1]

}
is bounded in C0(D). For every ϕ ∈ B we have

− Lϕ = μg − μV ϕ in D, and ϕ = 0 in Dc, (2.6)

for some μ ∈ [0, 1]. As argued above, we note that ϕ ∈ C2s+(D) ∩ C0(D).
Thus by Lemma 2.1 we see that ϕ is a semigroup solution of (2.6). To show
boundedness of B it suffices to show that for a constant c2, independent of
μ, we have

sup
x∈D̄

|ϕ(x)| ≤ c2 sup
x∈D̄

|g(x)|. (2.7)

Once (2.7) is established, the existence of a fixed point of T follows by
Schauder’s fixed point theorem. Since every solution of (1.7) is a semigroup
solution and λ∗ > 0, the uniqueness of the solution follows from [13, Th. 4.5].
To obtain (2.7) recall from [13, Cor. 4.3] (which basically uses Proposition 2.1
above) that

λ∗
μV = − lim

t→∞
1
t

logEx
[
e− ∫ t

0 μV (Xs) ds1{τD>t}
]
, x ∈ D . (2.8)
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Let λ∗
0 > 0 be the principal eigenvalue corresponding to the potential V = 0.

Then from the concavity of the map μ �→ λ∗
μV , which results from (2.8) by

applying Young’s inequality, it follows that

λ∗
μV ≥ λ∗

V ∧ λ∗
0 = 2δ > 0.

Hence by using (2.8) and the continuity of μ �→ λ∗
μV , we find constants

c3 > 0, μ0 > 1, such that for every μ ∈ [0, μ0] we have

E
x

[
e− ∫ t

0 μV (Xs) ds1{τD>t}
]

≤ c3e
−δt, t ≥ 0, x ∈ D. (2.9)

Since ϕ is a semigroup solution, we have that

ϕ(x) = E
x

[
e− ∫ t

0 μV (Xs) dsϕ(Xt)1{τD>t}
]

+
∫ t

0

TD,μV
s g(x)ds.

Letting t → ∞, using (2.9) and Hölder inequality, it is easily seen that the
first term at the right hand side of the above vanishes. Again by (2.9), we
have for x ∈ D ∣∣∣TD,μV

t g(x)
∣∣∣ ≤ c3 sup

x∈D̄

|g| e−δt, t ≥ 0.

Thus finally we obtain

sup
x∈D̄

|ϕ(x)| ≤ c3
δ

sup
x∈D̄

|g(x)|,

yielding (2.7). �

2.3. Proof of Theorem 1.2

First we show that the C2-class of test functions can be replaced by functions
of class C2s+ in the definition of the viscosity solution.

Lemma 2.2. Let u ∈ Cb(Rd) be a viscosity subsolution of (−Δ)su+V u ≤ g in
D. Consider x ∈ D. Suppose that there exists an open set N � D, containing
x, and a function ϕ ∈ C2s+(N̄) satisfying ϕ(x) = u(x) and ϕ > u in N\{x}.
Define

ϕN(y) =
{

ϕ(y) for y ∈ N,
u(y) for y ∈ R

d\N.

Then we have −LϕN(x) + V (x)u(x) ≤ g(x).

Proof. Consider a sequence of functions in (ϕm)m∈N, C2 in a neighbourhood
of x, and such that ‖ϕm − ϕ‖C2s+α(N̄) → 0, for some α > 0, as m → ∞. This
is possible since ϕ ∈ C2s+(N̄). Let

δm = min
N̄

(ϕm − u).

Then ϕ̂m = ϕm − δm touches u from above in N̄ . Since supN̄ |ϕ̂m − u| → 0,
it follows that there exists a sequence (xm)m∈N ∈ N such that xm → x,
δm → 0, as m → ∞, and ϕ̂m(xm) = u(xm). Set

ϕN,m(y) =
{

ϕ̂m(y) for y ∈ N,
u(y) for y ∈ R

d\N.
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By the definition of the viscosity subsolution we find

− C(d, s)
2

∫
Br(x)

ϕN,m(xm + y) + ϕN,m(xm − y) − 2ϕN,m(xm)
|y|d+2s

dy

− C(d, s)
2

∫
Bc

r(x)

ϕN,m(xm + y) + ϕN,m(xm − y) − 2ϕN,m(xm)
|y|d+2s

dy

+ V (xm)u(xm) ≤ g(xm),

where C(d, s) is the normalizing constant for fractional Laplacian and r > 0
is chosen to satisfy B2r(x) � N . It is easily seen that we can let m → ∞
above and use the continuity of V, g, u to obtain

−LϕN (x) + V (x)u(x) ≤ g(x),

which shows the claim. �
Next we prove our second theorem stated in the previous section.

Proof of Theorem 1.2. Let w = u − v. By [14, Th. 5.9] it then follows that

− Lw + V w ≤ 0 in D, (2.10)

in viscosity sense. Note that w ≤ 0 in Dc, while we need to show that w ≤ 0
in R

d. Suppose, to the contrary, that w+ > 0 in D. Using Proposition 2.1,
we find a domain D1 � D with a C1-boundary and λ∗

1 > 0, where λ∗
1 is the

principal eigenvalue for D1 and potential V . In fact, we may take V as a Cα-
extension from D to D1. Let Ψ1 ∈ C2s+(D1) ∩ C0(D1) be the corresponding
positive principal eigenfunction. Thus we have

− LΨ1 + V Ψ1 = λ∗
1Ψ1 in D1 and Ψ1 = 0 in Dc

1. (2.11)

Define

c0 = inf
{
c ∈ (0,∞) : cΨ1 − w > 0 in D

}
.

Since minD Ψ1 > 0, it follows that c0 is finite, and w+ > 0 implies that
c0 > 0. Then Φ = c0Ψ1 − w necessarily vanishes at some point, say x0 ∈ D.
This follows from the fact that w+ = 0 on ∂D. Thus c0Ψ1 lies above u on all
of Rd and touches w at x0. Hence by (2.10) and Lemma 2.2 it follows that

−L(c0Ψ1)(x0) + V (x0)(c0Ψ1(x0)) ≤ 0.

This leads to a contradiction as the left hand side of the above expression
equals λ∗

1(c0Ψ1(x0)) > 0 by (2.11). �
2.4. Proof of Theorem 1.3

Now we turn to proving our main result on the fractional Ambrosetti–Prodi
phenomenon. The strategy of proof will be divided in the following steps.
(1) First we find ρ1 such that for every ρ ≤ ρ1 there exists a minimal

solution of (1.4). This will be done in Lemmas 2.3 and 2.4 below.
(2) Next we find ρ2 > ρ1 such that no solution of (1.4) above ρ2 exists. This

is the content of Lemmas 2.7 and 2.8.
(3) Finally, we follow the arguments in [18] to find the bifurcation point ρ∗.

We begin by showing the existence of a sub/super-solution, which will
be used for constructing a minimal solution.
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Lemma 2.3. Let Assumption [AP] hold. The following hold:
(1) For every ρ ∈ R there exists u ∈ C2s+(D) ∩ C0(D) satisfying u ≤ 0 in D

and

−Lu ≤ f(x, u) + ρΦ1 + h(x) in D.

(2) There exists ρ̄1 < 0 such that for every ρ ≤ ρ̄1 there exists ū ∈ C2s+(D)∩
C0(D) satisfying ū ≥ 0 in D and

−Lū ≥ f(x, ū) + ρΦ1 + h(x) in D.

(3) We can construct u to satisfy u ≤ û, for every super-solution û of

−Lû ≥ f(x, û) + ρΦ1 + h(x) in D,

with û ∈ C2s+(D) ∩ C0(D).

Proof. Consider ρ ∈ R. Let C2 = 2 supD̄|h| + 2|ρ| + C, where C is the same
constant as in (1.9) and (1.10). Since λ∗(−L−V1) > 0 by (1.8), it follows from
Theorem 1.1(2) that there exists a unique u ∈ C2s+(D) ∩ C0(D) satisfying

− Lu − V1u = −C2 + h(x) + ρΦ1 in D. (2.12)

Recalling that Φ1 ∈ Cα(Rd) ∩ C0(D) by [11, Th. 2.6], the right hand side of
the (2.12) is Hölder continuous in D. By our choice of C2 we see that

−Lu − V1u ≤ 0,

and hence, by Theorem 1.2 we have u ≤ 0 in R
d. Therefore, by making use

of (1.9) we get that

−Lu ≤ f(x, u) + h(x) + ρΦ1 in D, and u = 0 in Dc.

This proves part (1).
Now we proceed to establish (2). Due to Assumption [AP] there exists

a constant C1 satisfying f(x, q) ≤ C1(1 + qp), for all (x, q) ∈ D̄ × [0,∞). We
consider the unique function ū ∈ C2s+(D) ∩ C0(D) satisfying

− Lū − h+ − C1 = 0 in D. (2.13)

Using [11, Th. 2.6, Eqn (2.3)] we find c1 = c1(d, s,D) > 0, such that

sup
x∈D

|ū(x)|
ds(x)

≤ c1, (2.14)

where d(·) is the distance function from the boundary of D. Since −Lū ≥ 0, it
also follows from Hopf’s lemma [11, Th. 2.4] that ū > 0 in D. Since −LΦ1 =
λ∗
0Φ1 ≥ 0 in D, another application of Hopf’s lemma gives a constant c2 > 0

satisfying
Φ1(x)
ds(x)

≥ c2, x ∈ D.

Combining the above with (2.14) and choosing −ρ̄1 > 0 large, we find for
every ρ ≤ ρ̄1 that

−ρΦ1 ≥ C1c
p
1d

sp ≥ C1ū
p, for x ∈ D.

Hence by (2.13) we have for ρ ≤ ρ0

−Lū ≥ f(x, ū) + ρΦ + h in D.
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This proves (2).
Now we come to (3). Note that

−Lû ≥ f(x, û) − |ρ| − ‖h‖∞ in D.

Since the minimum of two viscosity super-solutions is again a viscosity super-
solution, we note that w = û ∧ 0 is a viscosity super-solution of

− Lw ≥ f(x,w) − |ρ| − ‖h‖∞ ≥ V1w − C − |ρ| − ‖h‖∞ in D, (2.15)

by (1.9). On the other hand, by our choice of C2 in (2.12) we have

− Lu − V1u ≤ −C − |ρ| − ‖h‖∞ in D. (2.16)

Combining (2.15), (2.16) and [14, Th. 5.9], we obtain

−L(w − u) − V1(w − u) ≥ 0 in D,

in viscosity sense, and w−u = 0 in Dc. Hence by Theorem 1.2 we have w ≥ u
in R

d, implying û ≥ w ≥ u in R
d. This yields part (3). �

Using Lemma 2.3 we can now prove the existence of a minimal solution.

Lemma 2.4. For ρ ≤ ρ̄1, where ρ̄1 is the same value as in Lemma 2.3, there
exists u ∈ C2s+(D) ∩ C0(D) satisfying

(−Δ)su = f(x, u) + ρΦ1 + h(x) in D. (2.17)

Moreover, the above u can be chosen to be minimal in the sense that if ũ ∈
C2s+(D) ∩ C0(D) is another solution of (2.17), then ũ ≥ u in R

d.

Proof. The proof is based on the standard monotone iteration method. De-
note m = minD̄ u and M = maxD̄ ū. Let θ > 0 be a Lipschitz constant for
f(x, ·) on the interval [m,M ], i.e.,

|f(x, q1) − f(x, q2)| ≤ θ|q1 − q2| for q1, q2 ∈ [m,M ], x ∈ D̄.

Denote F (x, u) = f(x, u) + ρΦ(x) + h(x). Consider the solutions of the fol-
lowing family of problems:

−Lu(n+1) + θu(n+1) = F (x, u(n)) + θu(n) in D,

u(n+1) = 0 in Dc. (2.18)

By Theorem 1.1(2) Eq. (2.18) has a unique solution, provided u(n) is Hölder
continuous in D̄. We set u(0) = u. Since u(0) ∈ Cα(Rd) by [11, Th. 2.6], it
follows from [34] that u(1) ∈ C2s+(D) ∩ Cα(Rd). Thus by successive iteration
it follows that u(n) ∈ C2s+(D) ∩ Cα(Rd), for all n ≥ 0. Hence all solutions
of (2.18) are classical solutions. Again, it is routine to check from (2.18) and
Theorem 1.2 that u(0) ≤ u(n) ≤ u(n+1) ≤ ū in D. This implies sup

Rd |u(n)| ≤
M − m, for all n. Thus applying [11, Th. 2.6] we obtain

sup
n∈N

‖u(n)‖Cα(Rd) ≤ κ1,
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for some constants α, κ1. Hence there exists u ∈ Cα(Rd) ∩ C0(D) such that
u(n) → u in C0(D) as n → ∞. Using the stability of viscosity solutions, it
then follows that u is a viscosity solution to

−Lu = F (x, u) in D,

u = 0 in Dc.

We can now apply the regularity estimates from [34] to show that u ∈
C2s+(D).

To establish minimality we consider a solution ũ of (2.17) in C2s+(D) ∩
C0(D). From Lemma 2.3(3) we have u ≤ ũ in R

d. Thus ū can be replaced by
ũ, and the above argument shows that u ≤ ũ. �

Now we derive a priori bounds on the solutions of (1.4). Our first result
bounds the negative part of solutions u of (1.4). We recall that under the
standing assumptions on f , any viscosity solution of (1.4) is an element of
C2s+(D) ∩ C0(D), and thus also a classical solution.

Lemma 2.5. Let Assumption [AP](2) hold. There exists a constant κ = κ(d, s,
D, V1), such that for every solution u of (1.4) with ρ ≥ −ρ̂, ρ̂ > 0, we have

sup
D

|u−| ≤ κ(C + ρ̂ + ‖h‖∞),

where C is the same constant as in (1.9).

Proof. First observe that if u is a solution to (1.4) for some ρ ≥ −ρ̂, then

Lu + f(x, u) ≤ ρ̂ + ‖h‖∞ in D.

Defining w = u ∧ 0 we see that w is a viscosity super-solution of the above
equation, i.e.,

Lw + f(x,w) ≤ ρ̂ + ‖h‖∞ in D, and w = 0 in Dc.

From (1.9) it then follows that

Lw + V1w ≤ C + ρ̂ + ‖h‖∞ in D, and w = 0 in Dc,

in viscosity sense. Let v ∈ C2s+(D) ∩ C0(D) be the unique solution of

Lv + V1v = C + ρ̂ + ‖h‖∞ in D, and v = 0 in Dc.

Existence follows from Theorem 1.1(2). Applying Theorem 1.2, we get −w ≤
−v in R

d. Since v is also a semigroup solution by Lemma 2.1, we obtain from
[13, Th. 4.12 and Rem. 3.9] that with a constant κ = κ(s, d,D, V1)

sup
x∈D̄

|v| ≤ κ(C + ρ̂ + ‖h‖∞)

holds. Thus u− = −w ≤ κ(C + ρ̂ + ‖h‖∞), for x ∈ D, and the result follows.
�

Our next result provides a lower bound on the growth of the solution
for large ρ.

Lemma 2.6. Let Assumption [AP](1)–(2) hold. For every ρ̂ > 0 there exists
C3 > 0 such that for every solution u of (1.4) with ρ ≥ −ρ̂ we have

ρ+ ≤ C3(1 + ‖u+‖∞) ≤ C3(1 + ‖u‖∞).
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Proof. Let ϕ = u − ρ
λ∗
0
Φ1. Then we have ϕ ∈ C2s+(D) ∩ C0(D). Also,

−Lϕ(x) = f(x, u) + ρΦ1 + h − ρΦ1

= f(x, u) − h ≥ f(x, u+) + f(x,−u−) − ‖h‖∞ ≥ −C4(1 + u+(x)),

with a constant C4 = C4(‖h‖∞, ‖V2‖∞, C, ρ̂), where in the last estimate we
used Lemma 2.5 and (1.10). Thus

Lϕ ≤ C4(1 + u+) in D.

By an application of [13, Th. 4.12 and Rem 3.9] it then follows that with a
constant C5,

sup
D

(−ϕ)+ ≤ C5C4(1 + ‖u+‖∞)

holds. Pick x ∈ D such that Φ1(x) = 1; this is possible since ‖Φ1‖∞ = 1 by
assumption. It gives

ρ

λ∗
0

− u(x) ≤ (−ϕ(x))+ ≤ C5C4(1 + ‖u+‖∞),

which, in turn, implies

ρ ≤ λ∗
0

(
C4C5 + (1 + C4C5)‖u+‖∞

)
,

proving the claim. �

One may notice that we have not used the second condition in (1.8) so
far. The next result makes use of this condition to establish an upper bound
on the growth of u.

Lemma 2.7. Let Assumption [AP](3) hold. For every ρ̂ > 0 there exists C0

such that for every solution u of (1.4), for ρ ≥ −ρ̂ we have

‖u‖∞ ≤ C0. (2.19)

In particular, there exists ρ2 > 0 such that (1.4) does not have any solution
for ρ ≥ ρ2.

Proof. Suppose, to the contrary, that there exists a sequence (ρn, un)n∈N

satisfying (1.4) with ρn ≥ −ρ̂ and ‖un‖∞ → ∞. From Lemma 2.5 it follows
that ‖u+

n ‖∞ = ‖un‖∞. Define vn = un

‖un‖∞
. Then

− Lvn = Hn(x) =
1

‖un‖∞
(f(x, un) + ρnΦ1 + h) in D. (2.20)

Since ‖Hn‖∞ is uniformly bounded by Lemmas 2.5 and 2.6, it follows by [11,
Th. 2.6] that

sup
n≥1

‖vn‖Cα(Rd) < ∞.

for some α > 0. Hence we can extract a subsequence of (vn)n∈N, denoted
by the original sequence, such that it converges to a continuous function
v ∈ C0(D) in C(Rd). Denote

Gn(x) =
1

‖un‖∞
(f(x,−u−

n (x)) + h(x) − C + V2(x)u−
n (x) − ρ−

n Φ1(x)).
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Then using (1.10) and (2.20), we get

−Lvn − V2vn ≥ Gn in D.

Using Lemma 2.1 we have that vn is a semigroup super-solution, i.e., for
every t > 0

vn(x) ≥ E
x

[∫ t∧τD

0

e
∫ s
0 V2(Xp)dpGn(Xs) ds

]
+E

x
[
e
∫ t
0 V2(Xs) dsvn(Xt)1{t<τD}

]
.

(2.21)
Letting n → ∞ in (2.21) and using the uniform convergence of Gn and vn,
we obtain

v(x) ≥ E
x

[
e
∫ t
0 V2(Xs) dsv(Xt)1{t<τD}

]
for all x ∈ D, t ≥ 0. (2.22)

Since ‖v‖∞ = 1 and v ≥ 0 in R
d, it is easily seen from (2.22) that v > 0 in

D. Again, by Lemma 2.1, we see that

−Lv − V2v ≥ 0 in D,

in viscosity sense. Hence it follows that λ∗((−Δ)s − V2) ≥ 0, contradicting
(1.8). This proves the first part of the result. The second part follows by
Lemma 2.6 and (2.19). �

The following result will be useful for tackling the super-linear case. We
note that the general idea of the a priori bound below has its origins in the
work of Gidas and Spruck [22], see also the more recent [7] for a non-local
version.

Lemma 2.8. Let Assumption [AP](3′) hold. Then for every ρ̂ > 0 there exists
C0 such that for every solution u of (1.4), with ρ ≥ −ρ̂ we have

‖u‖∞ ≤ C0 max
{

1, |ρ| 1
p

}
. (2.23)

In particular, there exists ρ2 > 0 such that (1.4) does not have any solution
for ρ ≥ ρ2.

Proof. First we establish (2.23) for all ρ ≥ 1. Suppose, to the contrary, that
there exists (un, ρn)n∈N, ρn ≥ 1, satisfying (1.4) with the property that

‖un‖∞ ≥ nρ
1
p
n , n ≥ 1. (2.24)

This then implies that ‖un‖∞ → ∞ as n → ∞, and

‖un‖−p
∞ ρn → 0 as n → ∞. (2.25)

Let xn ∈ D be such that u(xn) = u+(xn) = ‖un‖∞. Such a choice is possible
due to Lemma 2.5. Write

γn = ‖un‖− p−1
2s∞ and θn = dist(xn, ∂D).

Using compactness, we may also assume that xn → x0 ∈ D̄ as n → ∞. We
split the proof into two cases.
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Case 1 Assume lim supn→∞
θn

γn
= ∞. Defining wn(x) = 1

‖un‖∞
un(γnx + xn),

we have in 1
γn

(D − xn) that

(−Δ)swn =
1

‖un‖p∞

(
f(γnx + xn, un(x)) + ρnΦ(γnx + xn) + h(γnx + xn)

)
.

(2.26)
We choose a subsequence, denoted is the same way, such that limn→∞ θn

γn
=

∞. Then for any given k ∈ N there is a large enough n0 satisfying Bk(0) ⊂
1

γn
(D−xn) for all n ≥ n0. Therefore, the right hand side of (2.26) is uniformly

bounded in Bk(0). Since ‖wn‖ = wn(0) = 1, it follows that for some α > 0,
‖wn‖Cα(Bk/2(0)) is bounded uniformly in n (see [14]). Thus we can extract a
subsequence (wn)n∈N such that wn → w ∈ Cb,+(Rd) locally uniformly. Hence,
by the stability of viscosity solutions

(−Δ)sw = a0(x0)wp in R
d, w(0) = 1.

By the strong maximum principle we also have w > 0. However, no such
solution can exist due to the Liouville theorem [29, Th. 1.2], and hence we
have a contradiction in this case.
Case 2 Suppose that lim supn→∞

θn

γn
< ∞. First we show that for a positive

constant κ

lim inf
n→∞

θn

γn
≥ κ. (2.27)

Note that using Lemma 2.5 and Assumption [AP](3′) we can find a constant
κ1 satisfying

κ1(1 + ‖un‖p−1
∞ ) sgn(un)un ≥ f(x, un) for x ∈ D, n ≥ 1.

Indeed, using Assumption [AP](3′) it follows that for un(x) ≥ �, for some
� > 0, we have

f(x, un(x)) ≤ 2‖a0‖∞up
n(x) ≤ 2‖a0‖∞‖un‖p−1

∞ un(x).

Then the estimate follows from the local Lipschitz property of f and
Lemma 2.5. Hence, using (1.4) we obtain

−(−Δ)sun + κ1(1 + ‖un‖p−1
∞ )sgn(un)un ≥ −ρn − ‖h‖∞ in D.

Denote by Cn = ρn + ‖h‖∞. Applying Lemma 2.1 we get that for t ≥ 0,

‖un‖∞ = un(xn) ≤ eκ1(1+‖un‖p−1
∞ )t‖un‖∞ P

xn(τD > t) + eκ1(1+‖un‖p−1
∞ )ttCn.

It follows from the proof of [8, Th. 1.1] that there exist constants κ2 and
η ∈ (0, 1), not depending on xn, such that for t = κ2θ

2s
n we have

P
xn(τD > t) ≤ η.

Inserting this choice of t in the above expression we obtain

1 ≤ eκ1(1+‖un‖p−1
∞ )t

[
η + κ2θ

2s
n

Cn

‖un‖∞

]
= eκ1(1+‖un‖p−1

∞ )t

[
η + κ2

θ2s
n

γ2s
n

Cn

‖un‖p∞

]
.

Thus by the assertion and (2.25) it follows that for all large n we have

κ1κ2θ
2s
n (1 + ‖un‖p−1

∞ ) ≥ log
2
η
.
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This gives (2.27), since θn → 0.
Hence we may assume that, up to a subsequence,

lim
n→∞

θn

γn
= b ∈ (0,∞)

holds. Then using again an argument similar to above, we obtain a positive
bounded solution

(−Δ)sw = a0(x0)wp in R
d
+,

see, for instance, the arguments in [25, Lem. 5.3]. This again contradicts [29,
Th. 1.1].

Thus (2.24) can not hold and this proves our result when ρ ≥ 1. For the
remaining case ρ ∈ [−ρ̂, 1], note that we can rewrite

ρΦ1 + h = Φ1 + h̃ where h̃ = h − Φ1 + ρΦ1.

Note that ‖h̃‖∞ is uniformly bounded for ρ ∈ [−ρ̂, 1]. Then (2.24) follows from
the previous argument. The other claim follows by (2.23) and Lemma 2.6.
�

With the above results in hand, we can now proceed to prove Theo-
rem 1.3. Define

A =
{
ρ ∈ R : (1.4) has a viscosity solution

}
.

By Lemma 2.4 we have that A �= ∅, and Lemmas 2.7 and 2.8 imply that A
is bounded from above. Define

ρ∗ = supA.

Note that if ρ′ < ρ∗, then ρ′ ∈ A. Indeed, there is ρ̃ ∈ (ρ′, ρ∗) ∩ A and the
corresponding solution u(ρ̃) of (1.4) with ρ = ρ̃ is a super-solution at level ρ′,
i.e.,

−Lu(ρ̃) ≥ f(x, u(ρ̃)) + ρ′Φ1 + h(x) in D, and u = 0 in Dc.

Using Lemma 2.3(3) and from the proof of Lemma 2.4 we have a minimal
solution of (1.4) with ρ = ρ′. Next we show that there are at least two
solutions for ρ < ρ∗.

Recall that d : D̄ → [0,∞) is the distance function from the boundary
of D. We can assume that d is a positive C1-function in D. For a sufficiently
small ε > 0, to be chosen later, consider the Banach space

X =

{
ψ ∈ C0(D) :

∥∥∥∥ ψ

ds

∥∥∥∥
Cε(D)

< ∞
}

.

In fact, it is sufficient to consider any ε strictly smaller than the parameter
α < s ∧ (1 − s) in [31, Th. 1.2]. Since ds is s-Hölder continuous in D̄, it is
routine to check that X ⊂ Cε(D̄).

For ρ ∈ R and m ≥ 0 we define a map Kρ : X → X as follows. For
v ∈ X, Kρv = u is the unique viscosity solution (see Theorem 1.1(b)) to the
Dirichlet problem

−Lu + mu = f(x, v) + ρΦ1 + h(x) + mv in D, and u = 0 in Dc.



   26 Page 18 of 22 A. Biswas, J. Lőrinczi IEOT

It follows from [31, Th. 1.2] that u ∈ X.

Lemma 2.9. Let ρ < ρ∗. Then there exist m ≥ 0 and an open O ⊂ X, con-
taining the minimal solution, satisfying deg(I − Kρ,O, 0) = 1.

Proof. We borrow some of the arguments of [18] with a suitable modification.
Pick ρ̄ ∈ (ρ, ρ∗) and let ū be a solution of (1.4) with ρ = ρ̄. It then follows
that

−Lū > f(x, ū) + ρΦ1 + h(x) in D and u = 0 in Dc.

and by Lemma 2.3(i) we have a classical subsolution

−Lu < f(x, u) + ρΦ1 + h(x) in D and u = 0 in Dc.

Then Lemma 2.3(3) supplies u ≤ ū in R
d, hence the minimal solution u of

(1.4) satisfies u ≤ u ≤ ū in R
d. Note that for every ψ ∈ X, the ratio ψ

ds is
continuous up to the boundary. Define

O =
{

ψ ∈ X : u < ψ < ū in D,
u

ds
<

ψ

ds
<

ū

ds
on ∂D, ‖ψ‖X < r

}
,

where the value of r will be chosen conveniently below. It is evident that O
is bounded, open and convex. Also, if we choose r large enough, then the
minimal solution u belongs to O. Indeed, note that

−L(u − u) +
(

f(x, u) − f(x, u)
u − u

)+

(u − u) ≥ 0 in D.

By strong maximum principle it follows that u < u in D. Hence by [23,
Lem. 1.2] we have

min
∂D

( u

ds
− u

ds

)
> 0.

The results in [23] are proved for (−Δ)s (i.e. k constant), but the similar
argument works with the barrier function constructed in [30, Lem. 3.4] giving
us Hopf’s lemma in our setting. Similarly, we can compare also u and ū.

Define m to be a Lipschitz constant of f(x, ·) in the interval [minu,max ū].
Also, define

f̃(x, q) = f (x, (u(x) ∨ q) ∧ ū(x)) + m(u(x) ∨ q) ∧ ū(x).

Note that f is bounded and Lipschitz continuous in q, and also non-decreasing
in q. We define another map K̃ρ : X → X as follows: for v ∈ X, K̃ρv = u is
the unique viscosity solution of

− Lu + mu = f̃(x, v) + ρΦ + h in D, and u = 0 in Dc. (2.28)

It is easy to check that Kρ is a compact mapping. Using again [30, Th. 1.2],
we find r satisfying

sup
{

‖K̃ρv‖X : v ∈ X
}

< r.
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We fix this choice of r. Using the regularity estimate of [34], we see that the
solution u in (2.28) is in C2s+(D). Therefore,

− L(u − u) + m(u − u)

> f̃(x, v) − mu − f(x, u) ≥ f̃(x, u) − mu − f(x, u) = 0.

Hence by [23, Th. 2.1, Lem 1.2] we have u < u in D and

min
∂D

( u

ds
− u

ds

)
> 0.

The other estimates can be obtained similarly. Finally, this implies that
K̃ρv ∈ O, for all v ∈ X. Moreover, 0 /∈ (I − K̃ρ)(∂D). Then by the ho-
motopy invariance property of degree we find that deg(I − K̃ρ,O, 0) = 1.
Since K̃ρ coincides with Kρ in O, we obtain deg(I − Kρ,O, 0) = 1. �

Similarly as before, define Sρ : X → X such that for v ∈ X, u = Sρv is
given by the unique solution of

−Lu = f(x, v) + ρΦ1 + h(x) in D, and u = 0 in Dc.

Then the standard homotopy invariance of degree gives that deg(I−Sρ,O, 0) =
1. This observation will be helpful in concluding the proof below.

Proof of Theorem 1.3. Using Lemma 2.9 we can now complete the proof by
using [18,19]. Recall the map Sρ defined above, and fix ρ < ρ∗. Denote by
OR a ball of radius R in X. From Lemmas 2.7 and 2.8 we find that

deg(I − Sρ̃,OR, 0) = 0 for all R > 0, ρ̃ ≥ ρ2.

Using again Lemmas 2.7, 2.8 and [31, Th. 1.2], we obtain that for every ρ̂
there exists a constant R such that

‖u‖X < R

for each solution u of (1.4) with ρ̃ ≥ −ρ̂. Fixing ρ̂ > |ρ| and the corresponding
choice of R, by homotopy invariance deg(I − Sρ,OR, 0) = 0. We can choose
R large enough so that O ⊂ OR. Since deg(I − Sρ,O, 0) = 1, as seen above,
using the excision property we conclude that there exists a solution of (1.4)
in OR\O. Hence for every ρ < ρ∗ there exist at least two solutions of (1.4).
The existence of a solution at ρ = ρ∗ follows from the a priori estimates in
Lemmas 2.7 and 2.8, the estimate in [11, Th. 2.6], and the stability property
of the viscosity solutions. This completes the proof of Theorem 1.3. �
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[7] Barrios, B., del Pezzo, L., Garćıa-Melián, J., Quaas, A.: A priori bounds and
existence of solutions for some nonlocal elliptic problems. Rev. Mat. Iberoam.
34, 195–220 (2018)

[8] Biswas, A.: Location of maximizers of eigenfunctions of fractional Schrödinger’s
equation. Math. Phys. Anal. Geom. 20, 25 (2017)

[9] Biswas, A.: Existence and non-existence results for a class of semilinear non-
local operators with exterior condition. Pure Appl. Funct. Anal. (2020) (to
appear). arXiv: 1805.01293

[10] Biswas, A.: Liouville type results for systems of equations involving fractional
Laplacian in exterior domains. Nonlinearity 32, 2246–2268 (2019)

[11] Biswas, A.: Principal eigenvalues of a class of nonlinear integro-differential
operators. J. Differ. Equ. 268, 5257–5282 (2020)
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