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A B S T R A C T

As cancer drug prices rise, it remains unclear whether the cost of new interventions is related to their beneficial

impact for patients at a societal-level. Using data for 2003–2015 from the IQVIA MIDAS® dataset, the re-

lationship between cancer drug costs and drug clinical benefits was studied in four countries with different

approaches to drug pricing. Summary measures of drug clinical effects on overall survival, quality of life, and

safety were obtained from a review of health technology assessments. Mean total drug costs for a full course of

treatment were estimated using standard posology for each medicine and in each country. Regression analysis

was used to test whether, at a societal-level, the cost of recently licensed drugs is related to their beneficial

impact for patients. Across all eligible medicines, average treatment costs were lowest in France and Australia

and highest in the UK and US. Compared with Australia, France, and the UK, cancer medicines were on average

between 1.2 and 1.9 times more expensive in the US, where the average total per patient cost for treatment was

$68,255.17. Costs for new cancer medicines are high and, at best, only weakly associated with drug clinical

benefits. The strength of this relationship nevertheless varied across countries. Some new cancer drug-

s—particularly in the US—may be neither affordable nor clinically beneficial over existing treatments. While all

countries can benefit from strategies that more robustly align price with therapeutic benefit in cancer drugs, the

US stands out in its opportunity to improve both affordability and value in cancer drug treatment.

1. Introduction

Prices have risen faster for cancer drugs than those associated with

most other diseases (Bach, 2009; Savage et al., 2017; Vogler et al.,

2016). These trends have led to concerns that escalating costs may

cause health insurers and payers to restrict access to high-cost treat-

ments (Goldman et al., 2007), and make it difficult for patients to af-

ford, or remain adherent with, life-extending medicines, ultimately

impacting patient care (Bestvina et al., 2014; Experts in Chronic

Myeloid Leukemia, 2013; Weaver et al., 2010).

Notwithstanding important questions about the affordability of new

drugs (World Health Organization, 2018), some have suggested that

high prices for new cancer drugs may be justified if they offer equally

large clinical benefits (Mailankody and Prasad, 2015). The concept of

healthcare value as health outcomes achieved per dollar spent under-

pins many of the conceptual frameworks have been proposed to assess

the value of new cancer drugs in relation to existing treatments

(Chandra et al., 2016; Frakt, 2016; Maervoet et al., 2016; Neumann and

Cohen, 2015; Porter, 2010; Schnipper et al., 2016, 2015). Their goals

and methods nevertheless often differ (Leopold et al., 2018; Neumann

and Cohen, 2015), raising questions on how to reliably compare the

clinical impact and cost of new drugs in medical oncology and whether

the cost of interventions is related to their beneficial impact for patients

at a societal-level (Schnipper et al., 2015).

In the United States and other developed countries, different com-

binations of governmental interventions and market-based strategies

are used to reign in on the cost-benefit relationship in prescription drug

markets. These may manifest as generic competition, price discounts

and freezes, profit controls, reference pricing, and health technology

assessment (HTA) in price setting (Carone et al., 2012; US Department

of Commerce, 2004).

For instance, France has traditionally negotiated drug prices directly

with manufacturers on the basis of HTA, including comparative clinical

efficacy data, after they have been licensed for use. Drugs that are

deemed to provide little to no added clinical benefit over existing

treatments are only publicly listed if they come at a lower price or
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induce cost savings (Haute Autorité de Santé, 2014; Rodwin, 2019).

While the United Kingdom generally permits free drug pricing for li-

censed medicines, a national rate-of-return regulation scheme includes

mechanisms for price cuts and profit controls. Cost-effectiveness ana-

lysis is also used as a key criterion in drug reimbursement, which may

indirectly pressure manufacturers to lower drug prices when cost-ef-

fectiveness is not realized (Schoonveld, 2015). The impact from this

policy may be particularly strong in oncology, as all newly licensed

cancer drugs are now referred to the national HTA agency for re-

commendations on whether they should be made available for routine

commissioning throughout the National Health System (NHS)(NHS

England Cancer Drugs Fund Team, 2016). Historically a model for

governments seeking to contain drug expenditures (Doran and

Alexander Henry, 2008), Australian drug prices have generally been

characterized as low to comparable with those observed elsewhere

(Australian Government Productivity Commission, 2001; Kanavos

et al., 2013; Medbelle, 2019; Vogler et al., 2016). Australian authorities

use internal reference pricing for drugs that are deemed to be clinically

comparable to existing treatments, and recommendations for public

coverage may be based on pharmacoeconomic evaluations and cost-

minimization assessments (Verghese et al., 2019; Vitry et al., 2015).

Single- or multi-source medicines that are deemed to be reimbursable

may also be subject to price negotiations, rebates, mandatory price

reductions, and statutory price disclosure (Paris and Belloni, 2014;

Vitry et al., 2015). Managed Entry Agreements (MEAs) may be used to

optimize cost-effective commissioning of drugs when their clinical

benefits or financial impact are uncertain. When, how, and for what

purpose these contractual agreements are used nevertheless varies

across countries (Pauwels et al., 2017; Robinson et al., 2018; Verghese

et al., 2019). In contrast, drug pricing policies in the United States are

fragmented (Blumenthal and Squires, 2016) and do not generally focus

on enhancing the cost-effective use of medicines. In all settings, the use

and impact of market-regulating strategies may also be influenced by

assessments of health prospects, treatment intent, unmet health needs,

and availability of alternative treatments (Dolan et al., 2005; Simoens,

2011; Tordrup et al., 2014; Wellman-Labadie et al., 2010), with disease

type and rarity potentially influencing cancer drug pricing (Chicoye and

Chhabra, 2009; Drummond et al., 2007; Simoens, 2011; Turkstra et al.,

2015).

The extent to which strategies currently used in different countries

ultimately deliver value to patients remains an important question. In

the United States, some have reported a positive correlation between

the episode treatment price of new medicines—defined as each drug's

monthly cost to the Medicare program—and incremental survival

benefits (Howard et al., 2015). Important issues nevertheless remain

unexplored. First, the lack of international comparisons in these studies

leaves readers unable to judge the strength of correlation estimates in

any single country. Second, treatment duration varies across cancer

medicines, making month-denominated drug costs an imprecise mea-

sure of the total financial impact from treatment and biasing drug cost

and value comparisons. The use of annualized costing estimates in other

settings is equally susceptible to this bias (Mailankody and Prasad,

2015) and reflects the lack of a standard approach for estimating cancer

drug treatment costs from unit prices. Finally, regression-based studies

of this sort should consider measures of efficacy, as well as other clin-

ical outcome measures that matter to patients, including quality of life

and safety (Schnipper et al., 2015).

In addressing these gaps, this study tests the value-based proposition

that the cost of cancer medicines newly approved between 2003 and

2013 does indeed bear a relationship to their beneficial impact to pa-

tients in four countries that take different approaches to the regulation

of drug pricing: Australia, France, the United Kingdom and the United

States (World Health Organization, 2015).

2. Methods

2.1. Sample selection

All New Molecular Entities approved by the Food and Drug

Administration (FDA) or European Medicines Agency (EMA) between

2003 and 2013 with an initial, primary anti-cancer indication were

eligible for inclusion. This time period was chosen to coincide with

previous research on the clinical risks and benefits associated with

cancer medicines (Salas-Vega et al., 2016). Supplemental applications,

new non-active treatments, licensing supplements, labeling revisions,

and new or modified indications were not considered, as the benefits

from new drugs for non-initial indications may be unknown at the time

of launch, and thus may be difficult to incorporate into pricing deci-

sions (Howard et al., 2015). To reconcile across available data sources,

cancer drugs were also excluded if they had been approved to treat

multiple disease conditions (n = 9), or if consumer list pricing data

were not available from the IQVIA Multinational Integrated Analysis

System (MIDAS®) dataset (n = 5).

2.2. Data sources

Average annual pricing data for cancer drugs marketed in Australia,

France, the United Kingdom, and the United States was obtained from

the IQVIA MIDAS® dataset. MIDAS® gathers international drug sales

and pricing data via periodic audits corresponding to all domestic

channels of distribution and has previously been used in comparative

pricing and expenditure studies (Danzon and Furukawa, 2006; Divino

et al., 2016; Kanavos et al., 2013). Our MIDAS® extract provided cancer

medicine list prices—set by manufacturers with or without input from

national regulators—collected at the point-of-sale from both hospital

and retail pharmacy settings for each year between 2003 and 2015.

Cancer drugs were defined by IQVIA as any molecule with an L01 or

L02 Anatomical Therapeutic Chemical (ATC) classification. Adjuvant

therapies and products with other ATC codes were excluded from this

analysis. Due to data licensing restrictions, this study does not publish

any list pricing data from MIDAS®.

Summary measures of the comparative effect on overall survival

(OS), quality of life (QoL), and safety from the cancer drugs included in

our sample were adopted from previous publications (Salas-Vega et al.,

2016). Drug-related effects on OS were coded as a continuous variable,

while QoL and safety effects were coded as overall improvement, re-

duction, mixed evidence, or no difference relative to existing standards

of care. In all cases, summary measures of clinical benefit were based on

a review of English-language HTA agency technology evaluations from

Australia, France, and the United Kingdom that were published be-

tween 2003 and May 2015. This time period was chosen to allow for

potential delays between initial drug licensing and publication of HTA

evaluations (Jaksa et al., 2017). The US is a major producer of HTA

evidence, with for instance the United States Centers for Medicare &

Medicaid Services (CMS) and private insurers commissioning HTA re-

ports on new medical technologies to inform coverage decisions at

national and local levels, the Veterans Health Administration (VHA)

performing pharmaceutical HTA through its Pharmacy Benefits Man-

agement Strategic Healthcare Group, and the Institute for Clinical and

Economic Review (ICER) evaluating the clinical and economic value of

new health technologies. However, there is still no national HTA agency

in the US that provides guidance on coverage, pricing, or reimburse-

ment decisions. Nevertheless, unlike licensing authorities such as the

FDA, HTA agencies may have the authority to require submission of all

applicable clinical data, published and unpublished; their assessments

may include any clinical evidence comparing the clinical performance

of new medicines against that of the therapies that would most likely be

replaced by the new intervention (Haute Autorité de Santé, 2009;

National Institute for Health and Care Excellence, 2016; Panteli et al.,

2016; Pharmaceutical Benefits Advisory Committee, 2014); and they
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systematically assess clinical efficacy, quality of life, and safety when

evaluating new medicines, with the former often defined in terms of

patient survival and length of life (Australian Government Department

of Health, 2016; Haute Autorité de Santé, 2012; NICE, 2013). HTA

agency recommendations on drug coverage, pricing, or reimbursement

were not incorporated into this study.

FDA approved primary indications, date of initial FDA approval,

and date of first FDA-approved new or modified indication (target),

new dosing regimen, or modified patient population through Jan 1,

2016 were obtained from FDA prescription drug labels and associated

medical and statistical reviews. For the EMA, these data were obtained

from European public assessment reports (EPARs), and by reviewing

documents from the EMA's drug assessment history. For Australia, they

were obtained by conducting a search of Australian Register of

Therapeutic Goods (ARTG) registrations, Australian Public Assessment

Reports (AusPARs), Therapeutic Goods Administration (TGA) Product

Information documents, the search engine of the TGA website, the

TGA's Orphan Drugs registry, the Pharmaceutical Benefits Scheme

(PBS) A-Z drug list, and Adis Insight (Springer) drug profiles. Data from

each country was linked to the corresponding drug-indication.

Pre-defined recommendations on treatment dose and duration were

extracted from FDA and EMA prescription drug labels that corre-

sponded to initial drug licensure. In some instances, licensing autho-

rities may recommend that treatment continue until clinical benefits

cease, progressive disease occurs, or unacceptable toxicity develops,

[e.g. (European Medicines Agency, 2010; US Food and Drug

Administration, 2007, 2012, 2013)] and clinical trials may also be

designed for to discontinue treatment or allow for patient cross-over

once symptoms deteriorate, toxicity develops, or progression occurs.

Estimates of the treatment duration required to achieve the reported

clinical benefits observed in approval trials were therefore sought from

FDA reviews and prescription drug labels if end-of-therapy re-

commendations were instead based on symptom assessment.

Latest available anthropometric reference data were obtained for

Australia (2014–2015) by querying the Australian Health Survey;

(Australian Bureau of Statistics, 2015) for France (2006–2007), by

contacting the authors of Castetbon et al., (2009); for the United

Kingdom (2010), by querying the Health Survey for England 2010 (NHS

Digital, 2011); and for the United States (2007–2010), by querying the

Anthropometric Reference Data for Children and Adults: United States,

2007–2010 dataset from the United States Centers for Disease Control

and Prevention (Fryar et al., 2012).

Orphan drug status in the United States and European Union and

Anatomical Therapeutic Chemical (ATC) classifications for approved

indications were obtained from FDA and EMA registries of orphan drug

designations and the World Health Organization Collaborating Centre

for Drug Statistics Methodology ATC/Defined Daily Doses (DDD) index.

Australian orphan drug status was obtained from the TGA's orphan drug

registry. A clinical expert also used approved primary indications to

classify all newly licensed cancer medicines by their therapeutic target,

which included malignant ascites, as well as thyroid, gastrointestinal

(GI), lung, hematological, prostate, skin, renal, and breast malig-

nancies.

3. Analysis

3.1. Cancer drug costs

Standard posology was used to estimate the total per patient cost for

drug acquisition over the expected period of treatment with each in-

cluded medicine in Australia, France, the United Kingdom, and the

United States (DrugAbacus, 2017; Goldstein et al., 2017; Herold and

Hieke, 2003; Iyengar et al., 2016; Osterlund et al., 2016; Ray et al.,

2010). Country-specific anthropometric reference data were used to

adjust for international differences in the weight/body surface area

(BSA) of treatment populations, and were stratified by age and sex to

account for age- (adult/pediatric) and sex-specific drug indications.

MIDAS® euro pricing for all countries included in our analysis was

converted to US dollar equivalents using period average euro-USD ex-

change rates for Q4 2015, the delivery quarter of the QuintilesIMS

dataset, and nominal pricing was converted to constant 2015 terms by

using consumer price inflation indices from the World Bank. Costing

estimates were calculated over the first three years following market

launch, and were censored once new or modified indications, dosing

regimens, or modifications to the approved patient population were

approved for the drugs in our sample. Cost analysis was used to describe

mean estimates of the total, per patient cost borne by payers for drug

treatment.

3.2. Cancer drug costs versus clinical benefits

Simple and multiple linear regression analysis was used to test the

value-based proposition that the cost of cancer drugs is associated with

their beneficial impact to patients. Models were designed in accordance

with the American Society for Clinical Oncology's (ASCO) Value

Framework, which recommends that value be assessed by comparing

the cost of cancer regimens with their clinical efficacy (overall survival,

when possible), and effects on toxicity and quality of life (Schnipper

et al., 2016, 2015), implicitly defining value by the strength of positive

associations between measures of drug clinical benefits and cost. The

relationship between measures of drug clinical benefits and cancer drug

spending may vary by country; interaction effects were therefore con-

sidered. Regression analysis used robust standard errors, square root

transformed drug cost estimates in the first year of their marketing, and

modeled OS as a continuous variable and QoL and safety as categorical

variables. As they independently influence cancer drug pricing (Chicoye

and Chhabra, 2009; Drummond et al., 2007; Simoens, 2011; Turkstra

et al., 2015), and may affect assessments of the relative clinical impact

of new medicines, drug indication and orphan status were adjusted for

in regression analyses. Ethical approval was not required for this study

as human subjects were in no way involved and no patient-level data

was used. For more information on study methods, please refer to the

Online Supplementary.

4. Results

62 cancer molecules were approved by the United States (FDA) and

European Union (EMA) between 2003 and 2013 with a primary in-

dication for oncology. Of those, treatment duration and recommended

dosing information was unavailable for 6 drugs. Another 9 were ap-

proved for multiple primary indications or disease conditions, and

pricing data was not available from IQVIA for 5 drugs. The remaining

42 drugs were included in costing analyses (Table 1). Of those, 36 were

assessed for OS by at least one of the three HTA agencies through May

2015 and were therefore included in subsequent analyses examining

the link between drug costs and clinical benefits.

4.1. Cancer drug costs

For all cancer drugs approved between 2003 and 2013 for which

data was available, drug costs were on average lowest in France and

Australia and highest in the United Kingdom and United States (Fig. 1).

The average per patient cost for treatment in these settings equaled

$35,114.98, $35,499.50, $55,616.63, and $68,255.17 respectively,

meaning that cancer drugs were on average between 1.2 and 1.9 times

more expensive in the United States compared with Australia, France,

and the United Kingdom in the first year of drug marketing. This

finding persisted after limiting the sample to drugs that were available

in all four countries. Per patient drug costs for treatment also remained

lowest in Australia ($38,621.04) and France ($42,888.09) in the third

year of drug marketing and highest in the United Kingdom

($56,959.31) and the United States ($76,888.09).
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The total expected per patient cost of cancer drugs over a typical

duration of treatment varied widely. Among the 25 drugs for which

data was available from all four countries, sorafenib was associated

with the smallest cost difference between the least and most expensive

country (27%) in its first year of marketing. Another 4 were associated

with a cost difference of between 33% (degarelix, lapatinib) and 88%

(pazopanib); 7 of between 102% (dabrafenib) and 138% (sorafenib); 5

of between 158% (pertuzumab) and 197% (crizotinib); and 5 of greater

than or equal to 213% (abiraterone, enzalutamide, trastuzumab em-

tansine, bortezomib, and azacitidine), all of which cost the least in

Australia.

4.2. Cancer drug costs versus clinical benefits

Overall survival benefits were, in general, positively associated with

the total expected per patient drug cost for a typical course of treatment

(Fig. 2). However, the magnitude of that association varied across the

four countries that were considered. Simple linear regression showed

that gains in overall survival significantly predicted total per patient

drug costs for a typical course of treatment in the United Kingdom in

the first year that drugs were marketed (b = 9.86, p = 0.04), with

overall survival benefits alone accounting for 12% of the variability in

drug costs. A positive, albeit weaker, relationship was also observed in

France (b = 7.15, p = 0.07). Correlation coefficients were not sig-

nificantly different from zero in the United States (b = 7.07, p = 0.17)

or Australia (b = −1.69, p = 0.79). Similar results were observed in

Table 1

Cancer drug sample.

Active ingredient Indication1 Comparator(s) Total Expected Drug Cost per Patient for Treatment2

Australia France UK US

Ascites

catumaxomab Ascites (EMA) paracentesis . . $10,001-$30,000 .

Breast

trastuzumab emtansine Breast cancer lapatinib + capecitabine $30,001-$50,000 $50,001-$70,000 $90,001-$110,000 > $110,000

eribulin Breast cancer TPC $10,001-$30,000 $10,001-$30,000 $30,001-$50,000 $50,001-$70,000

ixabepilone Breast cancer n/a . . . $50,001-$70,000

lapatinib Breast cancer capecitabine monotherapy $10,001-$30,000 $10,001-$30,000 $10,001-$30,000 $10,001-$30,000

pertuzumab Breast cancer trastuzumab + docetaxel $50,001-$70,000 $50,001-$70,000 $90,001-$110,000 > $110,000

bevacizumab Colorectal carcinoma IFL/5-FU/LV $30,001-$50,000 $10,001-$30,000 $30,001-$50,000 $50,001-$70,000

cetuximab Colorectal carcinoma BSC $30,001-$50,000 $30,001-$50,000 $30,001-$50,000 $90,001-$110,000

panitumumab Colorectal carcinoma BSC/cetuximab (safety) $10,001-$30,000 $10,001-$30,000 $10,001-$30,000 $30,001-$50,000

regorafenib Colorectal cancer placebo > $110,000 $10,001-$30,000 $10,001-$30,000 $30,001-$50,000

ziv-aflibercept Colorectal cancer placebo . $10,001-$30,000 $10,001-$30,000 $50,001-$70,000

azacitidine MDS conventional care < $10,001 $70,001-$90,000 > $110,000 $90,001-$110,000

bendamustine Lymphocytic leukemia chlorambucil . < $10,001 $10,001-$30,000 $50,001-$70,000

bortezomib Multiple myeloma high-dose dexamethasone < $10,001 $30,001-$50,000 $30,001-$50,000 $30,001-$50,000

carfilzomib Multiple myeloma n/a . . $90,001-$110,000 $90,001-$110,000

clofarabine ALL non-comparative $70,001-$90,000 $90,001-$110,000 > $110,000 > $110,000

decitabine MDS n/a . $30,001-$50,000 $50,001-$70,000 $30,001-$50,000

ibrutinib MCL n/a $90,001-$110,000 $70,001-$90,000 > $110,000 > $110,000

nelarabine ALL/LL non-comparative . $10,001-$30,000 $30,001-$50,000 $30,001-$50,000

obinutuzumab CLL chlorambucil $30,001-$50,000 . $50,001-$70,000 $50,001-$70,000

ofatumumab CLL chlorambucil $50,001-$70,000 $50,001-$70,000 $70,001-$90,000 > $110,000

romidepsin Cutaneous lymphoma n/a . . . > $110,000

ruxolitinib Myelofibrosis BSC $30,001-$50,000 $30,001-$50,000 $70,001-$90,000 $50,001-$70,000

tositumomab NHL n/a . . . < $10,001

vorinostat Cutaneous lymphoma BSC . . . $50,001-$70,000

Lung

afatinib NSCLC erlotinib/gefitinib $30,001-$50,000 $30,001-$50,000 $50,001-$70,000 $90,001-$110,000

crizotinib NSCLC pemetrexed < $10,001 $50,001-$70,000 $70,001-$90,000 $70,001-$90,000

erlotinib NSCLC placebo/BSC $10,001-$30,000 < $10,001 $10,001-$30,000 $10,001-$30,000

gefitinib NSCLC paclitaxel + carboplatin < $10,001 . $10,001-$30,000 < $10,001

Prostate

abiraterone acetate Prostate cancer BSC (prednisolone) $10,001-$30,000 $10,001-$30,000 $30,001-$50,000 $30,001-$50,000

cabazitaxel Prostate cancer mitoxantrone $30,001-$50,000 $50,001-$70,000 $70,001-$90,000 $90,001-$110,000

degarelix Prostate cancer leuproprelin + LHRH agonists < $10,001 < $10,001 < $10,001 < $10,001

enzalutamide Prostate cancer placebo $10,001-$30,000 $30,001-$50,000 $50,001-$70,000 $70,001-$90,000

Renal

axitinib RCC BSC $30,001-$50,000 $30,001-$50,000 $50,001-$70,000 $70,001-$90,000

everolimus RCC BSC . $10,001-$30,000 $10,001-$30,000 $10,001-$30,000

pazopanib Advanced RCC BSC/interferon-alfa $10,001-$30,000 $10,001-$30,000 $30,001-$50,000 $50,001-$70,000

sorafenib RCC BSC $10,001-$30,000 $10,001-$30,000 $10,001-$30,000 $10,001-$30,000

temsirolimus RCC interferon-alfa . < $10,001 $10,001-$30,000 .

Skin

dabrafenib Melanoma dacarbazine/vemurafenib (safety) $30,001-$50,000 $30,001-$50,000 $50,001-$70,000 $30,001-$50,000

ipilimumab Melanoma dacarbazine . . > $110,000 > $110,000

trametinib Melanoma dabrafenib $10,001-$30,000 . $30,001-$50,000 $30,001-$50,000

Thyroid

cabozantinib Medullary thyroid cancer placebo . . > $110,000 .

1 EMA indication used in instances where FDA approval was not available. MDS =myelodysplastic syndromes; ALL = acute lymphoblastic leukemia; CLL = Chronic

lymphocytic leukemia; LL = lymphoblastic lymphoma; MCL = Mantle cell lymphoma; NHL = Non-Hodgkin's lymphoma; NSCLC = non-small cell lung cancer;

RCC = renal cell carcinoma. 2 Drug costs were not estimated if drug pricing information was unavailable for countries within our period of analysis, e.g. if medicines

were not licensed for sale. Medicine costing bins are defined in terms of 2015 USD. Drug sample selection and parameters, as described in Methods section.
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subsequent years of drug marketing: overall survival benefits were

positively associated with drug costs corresponding to the second year

of drug marketing in France (b = 8.85, p = 0.02) and both the second

(b = 10.96, p = 0.03) and third (b = 10.53, p = 0.04) years of drug

marketing in the United Kingdom. Drug costs tended to rise with im-

provements in quality of life in France and the United Kingdom, but did

not increase with improvements in safety in any setting (Fig. 2).

Including drug-related effects on OS, QoL, and safety in multiple

regression analysis increased the predictive power of the regression

model (Table 2), suggesting that these measures of drug clinical benefit

can help explain drug costs more than treatment descriptors alone.

Nevertheless, a majority of the model's explanatory power came from

accounting for drug-related effects on OS and quality of life. Breast, GI,

hematological, prostate, skin, and thyroid indications, for example,

were associated with significantly higher drug costs than the reference

malignant ascites indication. The association between orphan status

and higher drug costs under model (3)—preferred based on the ad-

justed R2 statistic—also approached statistical significance (p = 0.06).

Compared to Australia, interactions between country and OS ben-

efits on cancer drug costs were positive and significant in the United

Kingdom and France under the preferred model (3), and their magni-

tudes varied between countries. Interaction terms between there being

no drug-related QoL effect and both the United Kingdom and France

were also significant and negative under alternative model specifica-

tions (4, 6). These findings suggest that while drug clinical benefits are,

in general, weakly associated with costs for treatment, it is also possible

for that relationship to be mediated by domestic policy.

5. Discussion

In part because of the impact of drug costs on healthcare ex-

penditures, medication adherence, and, ultimately, patient outcomes,

the importance of critically assessing the added value of new cancer

drugs has increasingly become apparent to providers, payers, and pol-

icymakers. To better understand the value from spending on new

cancer treatments, this study took a novel approach to examine cancer

drug treatment costs in Australia, France, the United Kingdom, and the

United States, and the relationship between cancer drug costs and their

clinical benefits.

Just as cancer drug prices vary widely across countries (Savage

et al., 2017), so too do their costs corresponding to a typical duration of

treatment. We find that payers in Australia and France generally bear

lower costs for cancer drugs than those in the United Kingdom or

United States. This remains true through to the third year of drug

marketing and even when only considering the drugs that are available

in all four countries. Cancer drug costs are particularly high in the

United States, where treatment with cancer drugs in their first year of

marketing is on average between 1.2 and 1.9 times more expensive than

in Australia, France, and the United Kingdom.

Notwithstanding important questions over affordability, patient

access, and adherence to treatment, high cancer drug costs may be

justified if new medicines offer equally large clinical benefits to pa-

tients. This study finds some evidence to suggest that the clinical ben-

efits from cancer drugs may be associated with their cost for treatment.

However, the strength of this relationship is weak at best, varies across

countries, and is not significantly different from zero in some settings.

Overall survival benefits were predictive of cancer drug costs in France

and the United Kingdom. In both settings, drug costs also tended to rise

with quality of life benefits. Under no circumstance, however, was the

relationship between overall survival, quality of life, or safety benefits

and drug costs significant in Australia or the US.

Why should we care whether the cost of new cancer medicines is

related to their beneficial impact to patients? Consider how the value,

affordability, innovation, and patient choice objectives intertwine.

Lowering drug prices can improve treatment affordability and broaden

access to medicines, two necessary objectives in healthcare decision-

making. Yet, some have suggested that doing so may stifle innovation

and patient choice (Parker-Lue et al., 2015). Accounting for value in

this process can further refine the drive to make drugs more afforda-

ble—it can help identify drugs whose prices are not justified by their

benefits, and thus whose prices may be most subject to review and

negotiation. In a world of limited resources, such efforts may help to

rationalize drug expenditures, maximize health outcomes at a societal

level, and incentivize drug development that is truly clinically mean-

ingful (Claxton, 2007; Howard et al., 2015; Kyle, 2018).

Do we therefore pay for what we get with cancer drugs? This study

offers evidence to refute the notion that cancer drug costs are ne-

cessarily related to their therapeutic benefits (Schnipper et al., 2015).

This is particularly true for the US, where a subset of new cancer

medicines may be both expensive and no better for patients compared

to existing alternatives. Yet, we also find that countries appear capable

of altering the relationship between drug costs and clinical benefits.

That US cancer drug costs are both high and unrelated to therapeutic

benefits suggests that governmental intervention—as utilized by France

and the United Kingdom—may play an appropriate economic role in

the pricing of cancer medicines.

Governments may for instance use cost and clinical efficacy data

within the context of HTA to inform mechanisms that help to ensure

value for money, including price negotiations, arbitrations, and terms

of drug reimbursement. Such an approach may be particularly useful

when there are questions about the cost and health benefits of new

treatments (Sorenson et al., 2008). In the US, CMS is prohibited from

negotiating prices or taking costs into consideration during the drug

reimbursement decision-making process; that process also often does

Fig. 1. Total expected cost of cancer medicines over a typical duration of treatment in the first year of their marketing (percentage share of all eligible cancer

medicines in each country). Bins are defined in terms of thousand 2015 USD. Authors' analysis of data, as described in Methods section.
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Fig. 2. Cost of cancer medicines approved between 2003 and 2013 versus their impact on overall survival, quality of life, and safety (first year of marketing, mean

measure of cost, 2015 USD). Authors' analysis of data, as described in Methods section.
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not consider the clinical evidence supporting drug use (Bach and

Pearson, 2015; Barnieh et al., 2014). CMS may also be required to cover

all or substantially all medicines that fall within six protected classes,

including anti-neoplastics and immunosuppressants (Bach and Pearson,

2015). As healthcare costs rise, Congress has introduced initiatives to

better control drug spending, including by empowering the federal

government to negotiate drug prices (Morten and Kapczynski, 2019)

and recent efforts by CMS help to promote the use of lower-cost alter-

native therapies (Centers for Medicare and Medicaid Services, 2019).

While the US and other countries should consider such initiatives to

improve the affordability of new treatments, their focus on drug costs

raises questions about how they may specifically impact the relation-

ship with drug clinical benefits and value from spending. Additional

research should consider replicating our analysis to include new cancer

medicines to address this question. In the meantime, innovative policies

meant to rationalize drug costs could also be designed to consider drug

clinical benefits.

As it stands, among the countries considered in this study, France

appears to be particularly adept at ensuring that recently licensed

cancer drugs are both affordable and that their costs reflect their ben-

eficial impact to patients. The US stands at the opposite end of this

spectrum: US payers and patients consistently pay more for recently

licensed cancer drugs than those in other countries, yet do so without it

necessarily leading to any greater health benefit. While all countries

share in the opportunity to improve value-for-money in cancer drug

spending, the US may benefit the most from a re-imagined approach to

drug pricing. As the country seeks to contain drug costs while also

improving patient outcomes, other countries may offer lessons on how

to better ensure affordability and value-for-money in oncology.

5.1. Limitations

Our study has several limitations that should be considered. First,

the drug pricing data used in our analysis reflects the list price rather

than the transaction price; confidential discounts and rebates are not

built in (Vogler et al., 2012). Various approaches have been used to try

Table 2

Regression analysis.

Source: Authors' analysis of data, as described Methods section.

Variable1 Model2

(1) (2) (3) (4) (5) (6)

Dep. Var. sqrt_

TCp

sqrt_

TCp

sqrt_

TCp

sqrt_

TCp

sqrt_

TCp

sqrt_

TCp

orphan −0.14 [19.80] 7.67 [24.87] 44.99 [23.74] 51.19 [26.99] 23.79 [29.75] 77.46* [35.18]

breast 65.56* [25.16] 73.87* [34.71] 105.8* [42.46] 109.6* [43.57] 124.5* [60.22] 149.6* [63.14]

gi 50.96* [24.94] 62.42 [34.15] 97.71* [38.33] 97.50* [41.01] 112.20 [56.40] 139.9* [62.99]

hematological 98.67*** [14.54] 89.76*** [24.97] 95.20** [32.46] 102.2** [35.55] 115.1* [48.04] 115.6* [53.08]

lung 25.81 [26.52] 37.37 [42.84] 64.44 [43.92] 74.27 [47.06] 80.20 [58.25] 111.50 [63.22]

prostate 32.59 [30.20] 73.82 [43.46] 109.9* [49.66] 113.3* [49.94] 123.90 [63.25] 153.5* [66.74]

renal 23.81* [11.61] 8.91 [31.55] 5.01 [34.41] −5.42 [36.19] 36.66 [50.77] 11.78 [53.54]

skin 90.83** [30.11] 252.0*** [34.68] 249.3*** [40.45] 273.8*** [42.12] 280.6*** [60.08] 316.6*** [63.83]

thyroid 192.5*** [19.80] 237.4*** [29.07] 274.0*** [28.32] 276.8*** [28.73] 289.5*** [57.64] 342.1*** [63.33]

OS 3.51 [3.456] −6.66 [6.141] 3.63 [3.044] 4.37 [2.938] −0.54 [7.243]

QoL −13.91 [11.18] −13.54 [9.269] −13.19 [9.939]

safety 37.13** [12.17] 36.36** [11.02] 32.97** [11.76]

FR −30.47 [36.62] 78.45* [36.64] 19.12 [13.09] 0.06 [29.90]

UK 3.89 [38.23] 125.3** [37.10] 60.61** [19.13] 38.68 [26.61]

US 44.26 [39.36] 140.1** [43.20] 33.92 [34.81] 26.12 [45.27]

FR # OS 13.49* [6.319] 7.42 [7.764]

UK # OS 15.61* [6.533] 9.51 [7.828]

US # OS 11.43 [6.999] 3.67 [8.436]

QoL_reduce −52.88 [38.29] −70.72 [54.07]

QoL_NE 57.37 [60.49] 96.59 [72.04]

QoL_reduce # FR −47.44 [39.77] 27.53 [84.19]

QoL_reduce # UK −63.19 [41.10] 21.46 [84.42]

QoL_NE # FR −115.8* [57.72] −142.70 [74.42]

QoL_NE # UK −129.9* [59.56] −154.2* [75.09]

QoL_NE # US −111.00 [65.54] −176.2* [80.97]

safety_ME −12.33 [44.16] −28.15 [51.42]

safety_reduce 60.66 [47.34] −32.10 [66.22]

safety_NE 91.11 [61.35] −25.21 [76.99]

safety_ME # FR 35.80 [54.46] 55.68 [62.13]

safety_ME # UK 38.68 [60.99] 50.36 [66.89]

safety_ME # US 80.17 [68.61] 98.18 [80.26]

safety_reduce # FR −30.37 [51.14] 69.10 [68.27]

safety_reduce # UK −32.43 [54.07] 67.68 [73.65]

safety_reduce # US 31.49 [63.38] 153.40 [90.69]

safety_NE # FR 13.28 [66.62] 126.40 [79.79]

safety_NE # UK 10.24 [73.23] 132.80 [85.44]

safety_NE # US 74.49 [75.52] 207.9* [95.69]

Constant 146.1*** [19.80] 45.33 [57.44] 5.76 [68.63] −90.00 [69.11] 12.92 [63.77] −20.23 [66.79]

Observations 136 94 94 94 94 94

R2 0.149 0.295 0.463 0.482 0.444 0.539

Adj R2 0.088 0.19 0.334 0.33 0.228 0.26

1OS = overall survival; QoL = quality of life; improve = overall improvement; reduce = overall reduction; ME = mixed evidence; NE = no established difference

in outcome measure relative to best alternative treatment. 2Square root transformation of the dependent variable, total cost per patient per full expected course of

treatment (TCp) in the first year of marketing. 3Reference categories: ascites; AU; QoL: improve; safety: improve. 4Standard errors (SE) are provided in brackets. ***:

p ≤ 0.01, **: p ≤ 0.05, *: p ≤ 0.10.
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to address this issue, with one, for instance, using disclosed rebate of-

fers from CMS to assume a constant price reduction on the published

price for purchasers of two specialty medicines for Hepatitis C in

multiple countries (Iyengar et al., 2016). Assuming a fixed discount to

published drug prices in our study would have led to drug cost esti-

mates that were proportionally discounted. There is however little

reason to justify one price discount level over another across multiple

products (Mattingly et al., 2018), or across countries. Moreover, any

fixed price reduction would not have impacted our findings regarding

international cost trends or their relationship with drug clinical bene-

fits. We agree with arguments that net prices should be used instead.

However, without information on confidential discounts and rebates,

net prices would have to be calculated from aggregated sales data,

raising questions over how and to what extent they would accurately

reflect the transactional price incurred by any single payer. Despite the

challenges inherent to their use, list prices are set by manufacturers

with or without the input of national regulators. In theory, they may

reflect transactional prices when rebates and discounts are not applied

(e.g. the uninsured, private patients), meaning that our results provide

accurate, international costing estimates in this scenario. Future studies

should nevertheless repeat our analysis as information on transactional

prices become available. We see progress in this regard, with survey-

based methods encompassing a limited number of cancer centers

starting to offer data on the actual cost of some new cancer medicines

(van Harten et al., 2016), and recent bipartisan policy initiatives that

would require CMS to publish drug discounts and rebates (Spanberger,

2019).

Next, 42 drugs were eligible for inclusion in this study. Although

this sample encompasses all New Molecular Entities that had been ap-

proved by either the FDA or EMA with a single, primary anti-cancer

indication over the 10-year period 2003–2013, and which could be

reconciled with the longest longitudinal dataset that is available from

IQVIA, this remains a relatively small sample. Future studies should

build on this analysis by extending it to other countries, or by re-run-

ning it to include additional cancer drugs that have been approved in

the intervening period.

This study is in part based on a review of HTA agency assessments of

the added clinical benefits associated with cancer medicines. To do so,

these agencies evaluate the primary clinical data to perform technology

appraisals. It is well known that clinical research may be subject to

various forms of bias, which may impact the reliability of technology

appraisals by licensing and regulatory authorities. The summary mea-

sures of drug clinical benefits used in this study were based on a review

of technology appraisals from three HTA agencies. The bodies also may

require submission of all relevant information, published and un-

published, including RCTs necessary to complete their appraisal, and

they base their assessments on systematic reviews and expert evalua-

tions of the evidence. This approach not only helps to mitigate any

impact from bias present in the primary clinical evidence, it is also less

subject to interpretation bias and provides a more representative as-

sessment of the clinical impact from new cancer medicines (Salas-Vega

and Mossialos, 2017).

Finally, this study focuses on drug-related effects on OS, QoL, and

safety. This approach is designed to reflect recommendations from

ASCO's Value Framework, which is specific to cancer; was designed

through a deliberative consensus process; is rules-based; weights clin-

ical measures according to their perceived value to patients; explicitly

synthesizes clinical benefits; and incorporates direct costs from treat-

ment (Schnipper et al., 2016, 2015). This study did not consider sur-

rogate measures of efficacy, including progression-free survival and

response rates. If it is accepted that surrogate efficacy markers represent

unique dimensions to the clinical benefits from treatment, then their

absence would mean that our analysis may be prone to bias. However,

ASCO's Value Framework recommends that these variables only be used

to assess efficacy if data on overall survival is not available. For its part,

the FDA states that while surrogate markers of efficacy may be

predictive of clinical benefits, they are “not themselves a measure of

clinical benefit” (US Food and Drug Administration, 2016). Further-

more, there is evidence to suggest that any difference between OS and

PFS is often negligible (Howard et al., 2015).
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