
Noname manuscript No.
(will be inserted by the editor)

A spatio-temporal model for Red Sea surface
temperature anomalies

Christian Rohrbeck1,2 · Emma
S. Simpson1 · Ross P. Towe3,4

Received: date / Accepted: date

Abstract This paper details the approach of team Lancaster to the 2019 EVA
data challenge, dealing with spatio-temporal modelling of Red Sea surface
temperature anomalies. We model the marginal distributions and dependence
features separately; for the former, we use a combination of Gaussian and
generalised Pareto distributions, while the dependence is captured using a
localised Gaussian process approach. We also propose a space-time moving
estimate of the cumulative distribution function that takes into account spatial
variation and temporal trend in the anomalies, to be used in those regions
with limited available data. The team’s predictions are compared to results
obtained via an empirical benchmark. Our approach performs well in terms of
the threshold-weighted continuous ranked probability score criterion, chosen
by the challenge organiser.

Keywords Extreme value analysis · Gaussian processes · Red Sea ·
Spatio-temporal dependence

1 Introduction

Understanding the behaviour of environmental processes, such as precipita-
tion, wind speed or temperature, is critical for a number of applications, in-
cluding weather forecasting and predicting the effects of climate change (Coo-
ley et al., 2007; Towe et al., 2017; Rohrbeck et al., 2018). Interest in these
environmental processes can be at a single location or over large spatial ar-
eas, as well as over a range of time periods. For example, questions of interest
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may be what percentage of the United Kingdom will observe a mean average
temperature of above 15◦C for the month of May, or what is the expected
maximum Red Sea surface temperature in 2050.

In some instances, interest lies in the largest values of a spatial process,
such as determining the likely spatial extent of a flood event or a heatwave; ex-
ample methods and applications can be found in Davison et al. (2012), Winter
et al. (2016) and Tawn et al. (2018). Approaches include max-stable processes
(Smith, 1990; Schlather, 2002) and Pareto processes (Ferreira and de Haan,
2014); these are applicable when locations experience concomitant extremes,
which may not always be the case. More recent literature that addresses this
issue includes work based on Laplace random fields (Opitz, 2016), the Gaus-
sian scale mixture model of Huser et al. (2017), and the conditional spatial
model of Wadsworth and Tawn (2019). Review papers on the topic of spatial
extremes include Davison and Huser (2015) and Davison et al. (2019).

There has been work to extend some of these approaches for modelling
spatio-temporal dependence. While a range of statistical techniques, such
as Gaussian processes, exist for analysing spatio-temporal data (Cressie and
Wikle, 2011; Wikle et al., 2019), current spatio-temporal extremes models are
limited to problems of moderate dimensions. For example, spatio-temporal
max-stable processes are considered by Davis et al. (2013) and Huser and
Davison (2014), but these models suffer from being computationally expensive
to fit. Alternative approaches include the skew-t model of Morris et al. (2017),
and a space-time extension of the conditional extremes approach (Simpson
and Wadsworth, 2020), neither of which are currently feasible for the very
high number of dimensions we will consider here. A key aspect that unites
these models and applications is the importance of understanding the spatio-
temporal dependence.

Our analysis focuses on gaining a better understanding of Red Sea surface
temperatures. The Red Sea supports a rich and diverse ecosystem and these
high temperatures may result in coral bleaching. This degradation of the bio-
diversity of the Red Sea could have an impact on the local economy, with
the north-west coast being a particularly popular tourist destination (Fine
et al., 2019). This will also have impact on the fishing industries in the area
that support a number of communities situated around the Red Sea. Previous
studies such as Allison et al. (2009) and Brander (2010) have investigated the
complex impacts of climate change on fisheries. As a result, it is important
to understand the changing behaviour of the Red Sea and determine which
regions are more susceptible to global warming. Examples of existing extreme
value analyses of Red Sea surface temperatures can be found in Hazra and
Huser (2020) and Simpson and Wadsworth (2020).

The Red Sea surface temperature data for this challenge are not direct
measurements, but are instead daily anomalies available from the period 1985-
2015, with the Red Sea being discretised into 16703 grid cells (locations). Data
for some of the locations and times have been artificially removed. The aim of
the challenge was to issue a probabilistic forecast of the temperature anoma-
lies within specific space-time regions; predictive performance of our proposed
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model against the benchmark was assessed by using a specific metric, in this
case the threshold-weighted continuous ranked probability score (twCRPS) of
Gneiting and Ranjan (2011). For more details on the data set and the chal-
lenge, see Huser (2020).

In order to model the sea surface temperature anomalies, we adopt a two-
step approach which accounts for spatio-temporal variations in the marginal
behaviour and dependence structure. The marginal behaviour at a spatial lo-
cation is modelled via an extreme mixture model, which allows us to capture
differences in the body and tails of the data. We find interesting spatial varia-
tions in the model parameters, and these can be linked to geographical features
of the Red Sea. Conditional on the fitted marginal models, spatio-temporal
dependence is then modelled by using a localised Gaussian process. While
Gaussian processes imply a restrictive spatio-temporal dependence structure
on the extremes, existing spatial extreme methods are too computationally
expensive for large data sets. For those locations with insufficient data to fit a
Gaussian process, the predictive distribution is estimated through pooling the
observed data over a spatio-temporal window.

The paper is structured as follows: Section 2 details the data analysis and
the methods used to model both the marginal and dependence behaviour of the
sea surface temperature anomalies; Section 3 assesses performance with respect
to the provided benchmark estimate and the twCRPS; Section 4 concludes
with a discussion of the ways in which the analysis could be improved.

2 Methods and Data Analysis

2.1 Exploratory data analysis

2.1.1 Challenge description and benchmark prediction

Let Y (s, t) be the sea surface temperature recorded at grid cell s ∈ S ⊂ R2

and time t ∈ T = {1, . . . , T}, where |S| = 16703 and T = 11315. Our analysis
focuses on the anomalies

A(s, t) = Y (s, t)− µ̂(s, t),

where µ̂(s, t), (s, t) ∈ X = S × T , is an estimated mean effect. Parts of
the anomaly data {A(s, t) : (s, t) ∈ X} were masked artificially by the EVA
2019 data competition organiser; see Huser (2020) for more details. We de-
note the subset of X for which anomalies are available by XT and we refer to
{A(s, t) : (s, t) ∈ XT } as the training data set.

High temperature events are likely to affect large scale areas for sus-
tained periods of time. Therefore interest lies in the distribution of the spatio-
temporal minimum rather than the minimum in a particular point in time and
space. For each particular space-time point, a local neighbourhoodN (s, t) ⊂ X
is constructed. Herein, we consider

N (s, t) = {B(s, r)× {t− 3, . . . , t, . . . , t+ 3}} ∩ X ,
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where B(s, r) is a ball centred at location s with radius r = 50 km, and we are
interested in the smallest anomaly within the local neighbourhood,

X(s, t) = min
(s′,t′)∈N (s,t)

A(s′, t′). (1)

The aim is to predict X(s, t) for certain space-time points within a validation
set XV , (s, t) ∈ XV ⊂ X \ XT , by providing a corresponding distribution
function Fs,t(·); these validation points all lie in the period 2007-2015.

Huser (2020) derives an estimate, termed the benchmark prediction, for the
distribution function Fs,t(·), (s, t) ∈ XV , in three steps. Firstly, the set NC of
neighbourhoods with no missing values is identified, i.e.NC = {(s, t) : N (s, t) ⊂ XT }.
Next, the spatio-temporal minima as defined in (1) are determined for the
neighbourhoods in NC . Finally, the benchmark prediction for Fs,t(·) is de-

fined as the empirical cumulative distribution function F̂ ben of the values
{X(s, t) : (s, t) ∈ NC}.

2.1.2 Exploring spatial and temporal features

The benchmark prediction, F̂ ben, assumes that the data are stationary in
space and time. Evidence suggests that this assumption may not be valid.
As an illustrative example, we focus on the temporal component (the same
idea holds for the spatial component) and separate the data into two time
horizons H and H∗, where H = {1, . . . , T ∗} and H∗ = {T ∗ + 1, . . . , 11315}
with T ∗ ∈ (1, 11315).

We can test whether there is a difference between the empirical cumulative
distribution functions evaluated in these two time horizons, denoted F̂ benH and

F̂ benH∗ . We adopt the two-sample Kolmogorov-Smirnov test to detect whether
there is any change in the distribution function. The Kolmogorov-Smirnov test
statistic is

DH,H∗ = sup
x∈R

∣∣∣F̂ benH (x)− F̂ benH∗ (x)
∣∣∣ ,

where sup is the supremum function, and DH,H∗ is tested against a 5% signif-
icance level.

We choose T ∗ = 8030, which is equivalent to separating the data into
two time periods: 1985-2006 and 2007-2015. The estimated test statistic is
DH,H∗ = 0.125, corresponding to a p-value of 0.004. Thus, we reject the hy-
pothesis that the cumulative distribution function remains stationary over the
time period.

We are also interested in how the spatial dependence changes as a function
of distance. The variogram can be used to determine the spatial dependence
of the spatial process Y and is given by

2δ(w,w′) = Var[Y (w)− Y (w′)],

for two particular sites (w,w′), where δ is the semi-variogram function (Math-
eron, 1963). If the process Y is stationary, then δ(w,w′) = δ(w − w′). The
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variogram explains the spatial dependence of average values of the process,
however our interest also lies in how the spatial dependence changes for the
largest values of the process. The F-madogram is an equivalent function to
the variogram that instead describes the spatial dependence of the extremes
(Cooley et al., 2006). The F-madogram is given by

ν(w,w′) =
1

2
E[F (Y (w))− F (Y (w′))],

where F is the distribution function of the spatial process.

These two functions help us to determine the dependence structure of the
anomaly data and plots are provided in the Appendix. Across subsets of S, the
empirical variograms indicate a variation in the spatial dependence structure,
while the F-madograms exhibit a similar spatial dependence for the highest
anomalies. We further examine a potential trend in the dependence by esti-
mating variograms and F-madograms for the horizons H = {1, . . . , 5000} and
H∗ = {5001, . . . , T = 11315}. We find little, or no, change in the dependence
of the highest anomalies, while the overall spatial dependence increases slightly
for some parts of Red Sea.

2.1.3 Space-time moving cumulative distribution function

The main method we propose in Section 2.2 relies on there being sufficient data
in a space-time neighbourhood of each validation point (s, t) ∈ XV . For those
validation points with insufficient data, we could resort to using the benchmark
prediction F̂ ben, given in Section 2.1.1. However, since there is some evidence
of non-stationarity in X(s, t), we propose to alter this slightly by deriving
cumulative distribution functions across local space-time moving cylinders.
Instead of pooling all of those locations that have complete observations, we
use a neighbourhood N∗(s, t) with

N∗(s, t) = {B(s, r)× {t− 365, . . . , t, . . . , t+ 365}} ∩ X ,

where B(s, r) is a ball centred at location s with radius r = 75 km. The esti-
mate F̂ ∗s,t(·) for Fs,t(·), (s, t) ∈ XV , is then derived as the empirical cumulative
distribution function of observations in {X(s′, t′) : (s′, t′) ∈ NC ∩N∗(s, t)}.

For some of the validation points (s, t) ∈ XV , the neighbourhood N (s, t)
contains space-time points for which the anomalies are available, i.e. N (s, t)∩
XT 6= ∅. Then, X(s, t) cannot be larger than any of the observed anomalies
{A(s′, t′) : (s′, t′) ∈ N (s, t) ∩ XT }. Therefore, the minimum observed anomaly
within the neighbourhoodN (s, t) provides an upper bound forX(s, t). We take
this property into account by setting F̂ ∗s,t(x) = 1 for x ≥ min {A(s′, t′) : (s′, t′) ∈ N (s, t) ∩ XT }.
The same approach is also applied to our estimates derived in Section 2.2.
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2.2 Spatio-temporal model

2.2.1 Introduction

The empirical distribution derived in Section 2.1.3 captures large-scale spatio-
temporal trends in X(s, t) (s ∈ S; t ∈ T ), but does not account for short-term
variations in the anomalies which the challenge asks us to predict. This section
introduces our model for these short-term variations. Instead of {X(s, t) : (s, t) ∈ X},
we first model the process {A(s, t) : (s, t) ∈ X}, and then derive our estimates
for {Fs,t(·) : (s, t) ∈ XV }.

Section 2.1.2 shows that the data exhibit spatio-temporal dependence. This
motivates pooling data across nearby space-time points in the training data
set XT to model the anomaly A(s′, t′), where (s′, t′) ∈ X \ XT refers to a
space-time point for which the recorded anomaly is not available. We may
consider modelling {A(s, t) : (s, t) ∈ X} via a Gaussian process. However, such
an approach would have to account for, amongst others, the spatial variation in
both the dependence structure and the marginal distributions of the anomalies.

We address these aspects in two modelling steps. In the first step, we
fit a marginal model to the observed values of A(s, 1), . . . , A(s, T ) separately
for each grid cell s ∈ S in Section 2.2.2, yielding an estimated distribution
function Gs(·). We then consider the process of transformed random vari-
ables {U(s, t) = Gs [A(s, t)] : (s, t) ∈ X}, which provides approximate uniform
marginal distributions for each grid cell. In the second step, in Section 2.2.3,
we model the non-stationary process {U(s, t) : (s, t) ∈ X} and derive estimates
for {Fs,t(·) : (s, t) ∈ XV }.

2.2.2 Marginal modelling

Since the anomalies represent deviations from an estimated mean, we first
test whether A(s, 1), . . . , A(s, T ) (s ∈ S) are normally distributed; for nota-
tional brevity, we drop the location index s in the rest of this subsection. The
Lilliefors test (Lilliefors, 1967) rejects the null hypothesis of A(1), . . . , A(T )
being normally distributed at the 1% significance level for 13,200 of the 16,703
locations. A closer examination of the model fit indicates that the normal
distribution is poor at capturing the lower and upper tail behaviour of the
anomalies, while providing a very good fit for the bulk of the distribution.

Extreme value theory provides us with an asymptotically justified mod-
elling framework for the highest (lowest) values of a continuous random vari-
able Z. We adopt a peaks-over threshold approach and consider Z | Z > u
(u ∈ R). For some suitably high threshold u, exceedances by Z of u are mod-
elled using the generalised Pareto distribution GPD(ψ, ξ) with

P(Z ≤ z + u | Z > u) = 1−
(

1 +
ξz

ψ

)−1/ξ
+

:= H (z;ψ, ξ) (z > 0),

where {z}+ = max {0, z}, and (ψ, ξ) ∈ R+ × R are the scale and shape pa-
rameters respectively. Pickands (1975) shows that this family of distributions
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arises as the only possible non-degenerate limit for scaled excesses of Z as u
tends to the upper end point of the distribution. The lower tail of Z is mod-
elled in the same way by first picking a sufficiently small threshold ` and then
fitting a generalised Pareto distribution using that P (Z < `− z | Z < `) =
P (−Z > z − ` | −Z > −`).

To improve upon the marginal fit of the normal model, we define an ex-
treme mixture model (Frigessi et al., 2002; Behrens et al., 2004; MacDonald
et al., 2011) which provides more flexibility regarding the tail behaviour of
the distribution function G(·). Given thresholds ` and u (` < u), observations
are modelled as being normally distributed within the interval [`, u], and gen-
eralised Pareto distributed otherwise, with separate parameters (ψ`, ξ`) and
(ψu, ξu) for the lower and upper tail, respectively. The distribution function is
thus

G(a) =



Φ

(
`− µ
σ

)
[1−H (`− a;ψ`, ξ`)] if a < `,

Φ

(
a− µ
σ

)
if ` ≤ a ≤ u,

Φ

(
u− µ
σ

)
+

[
1− Φ

(
u− µ
σ

)]
H (a− u;ψu, ξu) if a > u,

(2)
where Φ(·) denotes the standard normal cumulative distribution function.

Prior to estimating the spatially varying model parameters (µ, σ, ψ`, ξ`, ψu, ξu)
in (2), we consider threshold stability plots (Coles, 2001) for a subset of 50
grid cells. As a result, we choose the empirical 6% and 94% quantiles of the
observed anomalies A(1), . . . , A(T ) as thresholds ` and u, separately for each
grid cell. Parameter estimates are derived using likelihood inference; note that
for fixed ` and u, (µ, σ) can be estimated independently of (ψ`, ξ`) and (ψu, ξu).

Figure 1 demonstrates the estimated model parameters over space, indi-
cating a north-south trend in the marginal behaviour of the anomalies. In-
terestingly, the strong north-south trend for σ correlates with topographical
features of the Red Sea; the water in the northern Red Sea is generally deeper
than in the southern Red Sea. When studying the tail behaviour, most esti-
mates for the shape parameters ξ` and ξu are negative, corresponding to the
distribution of A1, . . . , AT being short-tailed with finite lower and upper end
points; this agrees with previous studies on extreme low and high temperatures
(Thibaud et al., 2016; Winter et al., 2016). We also calculate the site-wise 80%
and 90% quantiles of the estimated GPD distributions. Similarly to σ, we find
a north-south decrease in these quantiles, with the trend being stronger in
the upper tail. Consequently, anomalies in the northern Red Sea appear to be
more variable than in the southern Red Sea. To assess the fit of the extreme
mixture model (2), we examine the quantile-quantile plots for two locations in
Figure 2. The plots show a very good overall fit and illustrate that the lower
and upper tail behaviour are well captured.
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Fig. 1 Parameter estimates (µ̂, σ̂) (top), (ψ̂`, ξ̂`) (middle) and (ψ̂u, ξ̂u) (bottom) for the
extreme mixture model in Section 2.2.
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Fig. 2 Quantile-quantile plots for the grid cells with spatial index 3500 (left) and 9000
(right). The solid line represents the fit for a normal distribution, while the dashed line
corresponds to the extreme mixture model fit. The dotted vertical lines are the thresholds
` and u used in the extreme mixture model.

2.2.3 Dependence modelling

We now require a model to capture the spatio-temporal dependence between
the anomalies. For spatial extremes, a variety of such models exist, but the
spatio-temporal case is less well-studied in the literature. The most well-known
models for spatio-temporal extremes are max-stable processes (Davis et al.,
2013; Huser and Davison, 2014), however, currently available inferential meth-
ods are computationally expensive, and cannot handle the large number of
space-time locations we wish to study. We instead propose the use of Gaus-
sian processes to model the spatio-temporal dependence. As well as bringing
computational efficiency to our approach, they facilitate the simulation of ob-
servations for locations with missing data, allowing us to estimate the distri-
bution of the process X(s, t) for space-time locations in the validation set XV
via a conditional approach.

Consider a Gaussian process {Z(w) : w ∈ Rm} with mean function µ :
Rm → R and covariance function ρ(w1, w2), for w1, w2 ∈ Rm. In our appli-
cation, we are interested in the Gaussian process at a finite set of space-time
locations (s, t)1, . . . , (s, t)n ∈ S × T . The process at these locations follows
a multivariate Gaussian distribution with mean vector µ ∈ Rn and covari-
ance matrix Σ ∈ Rn×n, obtained via the covariance function ρ. Suppose we
want to generate observations for the first n1 space-time locations, condi-
tioning on observations at a further n2 locations. The mean vector µ and
covariance matrix Σ can be partitioned to represent these two sets of loca-

tions, i.e., µ = (µ1,µ2) for µ1 ∈ Rn1 and µ2 ∈ Rn2 , and Σ =

[
Σ11 Σ12

Σ21 Σ22

]
for

Σ11 ∈ Rn1×n1 , Σ12 ∈ Rn1×n2 , Σ21 ∈ Rn2×n1 and Σ22 ∈ Rn2×n2 . Conditioning
on observations z ∈ Rn2 at space-time locations (s, t)n1+1, . . . , (s, t)n, we can
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generate observations for locations (s, t)1, . . . , (s, t)n1 by sampling from a mul-
tivariate Gaussian distribution with mean vector µ∗ and covariance matrix
Σ∗ given by

µ∗ = µ1 +Σ12Σ
−1
22 (z − µ2); Σ∗ = Σ11 −Σ12Σ

−1
22 Σ21.

In order to focus on modelling the dependence of our temperature anoma-
lies, we consider fitted quantiles at each spatial location, defined by û(s, t) =
Ĝs {A(s, t)} ∈ [0, 1], where Ĝs denotes the fitted extreme mixture model (2)
at location s. To obtain values on a scale conducive to Gaussian process mod-
elling, we apply a probit transformation to these empirical quantiles, obtaining

z(s, t) = Φ−1 [û(s, t)] ∈ (−∞,∞),

for each (s, t) ∈ XT ; Φ−1 denotes the inverse cumulative distribution function
of the standard normal distribution. Then, the marginal observations for grid
cell s ∈ S, z(s, 1), . . . , z(s, T ), are Normal(0, 1) distributed. However, the size
of the data makes the estimation of a single Gaussian process across S × T
infeasible in R.

Instead, we fit a local Gaussian process separately for each (s, t) ∈ XV ,
using non-missing values of z(s, t) at locations within a space-time cylinder

N ′(s, t) = {B(s, r′)× {t− 3, t− 2, t− 1, t, t+ 1, t+ 2, t+ 3}} ∩ X .

Here, B(s, r′) denotes a ball centred at s with some radius r′ > r, i.e.,
N ′(s, t) ⊃ N (s, t). We take an exponential separable covariance function,

ρ {(s, t)1, (s, t)2} = exp

(
−|s1,lon − s2,lon|

φlon
− |s1,lat − s2,lat|

φlat
− |t1 − t2|

φtime

)
,

with (s, t)1, (s, t)2 ∈ S × T and | · | denoting the absolute difference. In our
analysis, we generally find that φtime is larger than φlon and φlat, corresponding
to consecutive daily anomalies for the same grid cell being more dependent
than the anomalies for two grid cells on the same day which are 1◦ in longitude
(latitude) apart.

The radius r′ is initially set to 60km, and increased in 10km increments
until the cylinderN ′(s, t) contains at least 100 points, up to a maximum radius
of 150km. This approach ensures sufficient data to estimate the parameters of
the Gaussian process, while still accounting for spatial trends in the data. We
fit these Gaussian process models using the package DiceOptim in R (Picheny
et al., 2016), and generate 500 samples for each missing observation within the
original space-time cylinder N (s, t), using the conditional simulation approach
detailed above. For those validation locations with less than 100 available
data points in N ′(s, t) at radius r′ = 150km, we use the distribution function
obtained via the space-time moving cylinders discussed in Section 2.1.3.

Having generated these observations for the space-time locations with miss-
ing data, we transform back to the interval [0, 1] using the cumulative normal
distribution function, and transform to the original scale using the marginal
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fits discussed in Section 2.2. Taking the minimum observation in N (s, t) for
each sample results in 500 simulations of X(s, t) for each (s, t) ∈ XV . We fi-
nally use these observations to empirically estimate the required distribution
function.

3 Results

3.1 Comparison to the benchmark

We first compare our method to the empirical approach used to calculate
the benchmark. In Figure 3, we present the benchmark CDF, as well as a
recalculated benchmark using data only from the validation period (2007 to
2015). We also present results for our proposed method, by averaging our
predicted distributions across all space-time locations in XV , i.e., we take the
average CDF for each anomaly value where the distribution functions are
evaluated.

−1 0 1 2 3

0
.2

0
.4

0
.6

0
.8

1
.0

Temperature anomaly

C
D

F

Fig. 3 A comparison of the original benchmark (solid line); a version of the benchmark
for the validation period only (dashed line); and the average of our estimated CDFs for all
locations in XV (dotted line).

Here, we observe a clear difference in the results obtained via the bench-
mark approach computed for the training data with complete neighbourhoods
and observations within the validation period, particularly for anomalies in the
range [−1, 1]. This disparity highlights the existence of a temporal trend in the
anomaly data (see Section 2), and supports our use of a localised approach. On
average, our method closely agrees with the empirical results within the valida-
tion period, demonstrating that, overall, we are able to capture this temporal
behaviour.
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3.2 Evaluation of the score

We further examine the performance of our approach using the threshold-
weighted continuous ranked probability score (twCRPS) from the data chal-
lenge. Let F̂s,t be the predicted distribution function for the minimum anomaly
X(s, t) over N (s, t), and denote the true value by x(s, t). The twCRPS is then
approximated by

1

100

400∑
k=1

[
F̂s,t

(
xk
)
− 1

{
x(s, t) ≤ xk

}]2
Φ

(
xk − 1.5

0.4

)
where xk = −1+k/100 (k = 1, . . . , 400). We select a test data set X ∗ ⊂ X con-
taining 4,200 space-time locations, such that no data are missing over N (s, t)
for (s, t) ∈ X ∗. Data are then randomly removed from N (s, t) for (s, t) ∈ X ∗;
the amount of missing data is sampled from the empirical distribution function
of missing values within N (s′, t′) for (s′, t′) ∈ XV . We generate five such data
sets for each (s, t) ∈ X ∗, with the aim to recover the true value x(s, t) using
our approach in Section 2.

The approximated score across the test points in X ∗ is 0.17 × 10−4. The
discrepancy between the scores for the set X ∗ and the validation set XV used
by Huser (2020) is subsequently explained. Firstly, our generated test data is
only similar to the validation data with respect to the number of missing data
points within the 50km radius. However, the test data exhibit less missing
observations within the 150km radius, and our Gaussian process approach can
thus be applied more often. In particular, the space-time moving cumulative
distribution function had to be derived only once for the points in X ∗, while
we had to use it for 15% of the space-time points in XV . The second reason
for the discrepancy in the scores is that X ∗ covers the years 1985-2015 while
the challenge considers the period 2007-2015. Given the positive trend in the
anomalies, and the fact that the twCRPS gives more weight to predicting high
values of X(s, t), a higher average score is to be expected for space-time points
in the later years.

4 Discussion

We thank Raphaël Huser for organising this data challenge. Our approach
utilised tools from spatial statistics and extreme value analysis, and could be
extended. For instance, other teams showed that machine learning techniques
can be applied successfully to recover the missing values in the data. It would
be interesting to explore whether a combination of these approaches could
yield better results. Specifically, our localised Gaussian process estimates may
potentially be replaced by their approaches. The implementation of a cross-
validation scheme would help to distinguish the advantages and disadvantages
of both approaches.

One drawback of using Gaussian processes for extreme value modelling, is
their ability to capture only asymptotic independence, i.e., situations where
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the largest values occur separately across different variables. The development
of computationally efficient models that are able to capture both asymptotic
dependence and asymptotic independence is a topic that still requires atten-
tion, and it is likely that our approach would be improved by the added flex-
ibility such models would bring. Conditional models for extremes (Heffernan
and Tawn, 2004; Wadsworth and Tawn, 2019), which are able to capture these
different tail dependence classes as well as allowing for straightforward sim-
ulation of missing data, have recently been extended to the spatio-temporal
setting by Simpson and Wadsworth (2020), and provide one possible avenue
for the improvement of our approach.

Another extension may be to address the temporal non-stationarity in the
marginal behaviour of the anomalies. We again used the Lilliefors test to decide
whether the anomalies may be modelled via a normal distribution. The data
were split into blocks of length 500 days, and the null hypothesis was rejected
for 30%-80% of locations on the 5% significance level across blocks. Next, we
considered the two time series A(1), . . . , A(5000) and A(5001), . . . , A(T ) and
fit separate extreme mixture models. The thresholds ` and u were set to the
empirical 6% and 94% quantiles of the respective time series. The mean pa-
rameter µ was higher for the second time period for all locations, and the
highest difference was found for the central Red Sea. Further, σ was higher
in the first period for most locations, except the most northern and southern
locations. Finally, the 80% quantiles of the GPD for the lower tail were similar
across the two periods, while the 80% quantiles of the GPD(ψu, ξu) were on
average slightly shorter in the second period. In addition to a temporal trend,
we considered seasonality in the parameters of the extreme mixture model; the
estimates were very similar for all seasons. In summary, we found a positive
trend in the mean of the anomalies and a negative trend in their variation. Fur-
thermore, the results indicated that the temporal trend in marginal behaviour
varies across locations. To capture these features, one may define a spatio-
temporal model for each of the parameters; however, we did not investigate
this aspect further due to time constraints.

Appendix: Empirical analysis of the spatial and extremal spatial
dependence

We produce variograms and F-madograms for the four sub-regions in Figure 4.
The left column in Figure 5 shows that spatial dependence varies across sub-
regions. Furthermore, there appears to be a temporal variation in the spatial
dependence for two of the sub-regions. The right column of Figure 4 indicates
that the extremal spatial dependence exhibits less spatial variation than the
overall spatial dependence. Furthermore, the plots demonstrate slight changes
in the extremal spatial dependence, but not as strong as for the overall spatial
dependence.
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