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Abstract—This paper describes a novel approach to the
problem of developing explainable machine learning models.
We consider a Deep Reinforcement Learning (DRL) model
representing a highway path planning policy for autonomous
highway driving [1]. The model constitutes a mapping from
the continuous multidimensional state space characterizing
vehicle positions and velocities to a discrete set of actions in
longitudinal and lateral direction. It is obtained by applying
a customized version of the Double Deep Q-Network (DDQN)
learning algorithm [2]. The main idea is to approximate the
DRL model with a set of IF...THEN rules that provide an
alternative interpretable model, which is further enhanced by
visualizing the rules. This concept is rationalized by the uni-
versal approximation properties of the rule-based models with
fuzzy predicates. The proposed approach includes a learning
engine composed of 0-order fuzzy rules, which generalize locally
around the prototypes by using multivariate function models.
The adjacent (in the data space) prototypes, which correspond to
the same action are further grouped and merged into so-called
"MegaClouds" reducing significantly the number of fuzzy rules.
The input selection method is based on ranking the density of
the individual inputs. Experimental results show that the specific
DRL agent can be interpreted by approximating with families
of rules of different granularity. The method is computationally
efficient and can be potentially extended to addressing the
explainability of the broader set of fully connected deep neural
network models.

Index Terms—Deep Reinforcement Learning, explainable
AI, rule-based models, prototype- and density-based models,
density-based input selection, autonomous driving.

I. INTRODUCTION

RESEARCH on self-driving vehicles have made signif-
icant progress in recent years. However, a challenging

topic in the field of self-driving cars concerns the trans-
parency of the trained machine learning models which is
needed for validation, verification, and certification [3]–[8].
The demand of understandable models involves interpretabil-
ity and explainability of a trained agent in order to fully
understand the knowledge encoded in them.

Linguistic IF ... THEN fuzzy rule-based models offer
transparent insights in contrast to neural networks rather
‘black box’ approaches [9], [10]. Although these ‘black box’
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Fig. 1. Example of host (ego) and surrounding vehicles on a highway,
where the host vehicle is represented by the center vehicle (yellow car). The
forwards arrows indicate the possible directions which the ego vehicle can
move. The backwards arrow indicates the brake maneuver.

models reach impressive classification and approximation
accuracy, their nested non-linear structure makes them highly
non-transparent [11], [12].

This paper proposes a new explainable self-organizing
approach to transform a trained deep neural network model
into a set of IF . . . THEN rules. We use a Deep Reinforce-
ment Learning (DRL) model of the path planning policy for
highway self-driving [1] to simulate data corresponding to
driving scenarios. The model maps the set of continuous
state variables characterizing the position and velocities of the
ego vehicle (EV) and the surrounding vehicles on a divided
highway into a set of discrete actions in longitudinal and
lateral direction.

State variables include meaningful affordance indicators of
the road situation such as the longitudinal and lateral position
and velocity of the host vehicle and relative longitudinal and
lateral positions and velocities of the surrounding vehicles.
The output of the model is a set of eight possible deci-
sions/actions in longitudinal (maintain, accelerate, brake, and
hard brake) and lateral (lane keep, change lane to right, and
change lane to left) directions - Fig. (1).

The main idea of this paper is to provide an approximation
of the DRL model with an alternative interpretable model
with a similar performance. Our approach is based on the
following main concepts: i) the universal approximation
ability of the rule-based models with fuzzy predicates; ii)
the better interpretability of the prototype-based fuzzy rules
(including visualization). The method allows to potentially
learn the rules incrementally during the DRL training process.

The proposed method for learning rules expands from
the previously published work [13], [14] by introducing a
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density-based method for selecting the most important inputs
and a two-stage hierarchical approach to group the adjacent
prototypes in the data space that correspond to the same
action. These two novel techniques allow us to reduce the
number of prototypes needed and improve the explainability.
This is achieved both linguistically as a set of hierarchical
IF...THEN rules and through visualisation. In addition, we
also propose a sequence of pair-wise decision process, rather
than one decision for the recommended action, and a method
for balancing the training data set to have approximately
the same data samples per action. In combination, these
innovations allow us to get an explainable approximation of
the DRL agent decisions under multiple driving conditions
and to summarize its performance in diverse situations.

In order to validate our concept, experiments were con-
ducted using the DRL model provided by Ford Motor
Company, see [1] for details. Results demonstrate that the
proposed approach can achieve a computationally efficient,
compact and easily explainable approximation of DRL mod-
els.

The focus of the paper is on the methodology for modeling
of the multidimensional data set that is obtained through
approximation of the simulated DRL model. The method
is not constrained to DRL models and can be extended
and adapted to other type of deep learning structures and
architectures as well as to learning from data generated by
human drivers.

The remainder of this paper is structured as follows. Sec-
tion II introduces the proposed method. The data employed
in the analysis is presented in Section III. The results and the
discussion are provided in Section IV. Section V concludes
the paper.

II. THE PROPOSED APPROACH

In this section, we will introduce the approach briefly
describing the general architecture, learning and validation.
Let T = {(xk,ak)}Nk=1 be training data set with xk ∈ Rn
denoting the state vector and ak ∈ {1, ..., A} denoting the
action vector for each k ∈ {1, ..., N}. The layered architec-
ture (Fig. (2)) can be seen as a mapping, f : Rn → RA;
n is the number of inputs; A is the number of actions; i is
the specific data sample/point k; N is the number of training
data samples. Separate learning cycles are introduced for each
action. Therefore, the data set is split into A sub-sets.

The learning process starts with analyzing the mutual
proximity of the data [15]. As a result, a small number of
prototypes are being selected which are actual data samples
that are most representative locally. When prototypes are
being formed only data samples that correspond to the same
action are being considered. When prototypes that correspond
to different actions are being put together in the data space
a further level of analysis is being made, namely merging
adjacent (in the data space) prototypes that correspond to
the same action together forming so-called "MegaClouds".
Finally, the MegaClouds can be visualized and also repre-
sented by IF...THEN rules. The general architecture of the
proposed approach is given in Fig. (2).

As a result, we compose A parallel IF...THEN rules, each
of which corresponds to one of the A actions and has the
following form:

Rl : IF (x ∼ p1
l ) OR (x ∼ p2

l ) OR ... OR (x ∼ pPll )

THEN (action l)
(1)

where pjl (j ∈ {1, ..., Pl}) is the jth prototype of the lth

action; Pl is the number of identified prototypes that represent
the lth action.

The identified prototypes are connected with logical "OR"
(implemented as a t−conorm). Strictly speaking, each of the
conditions within the IF...THEN rules are fuzzy rules on their
own but all of them have the same consequent pointing to
the same action. The so-called "winner takes all" principle
is used to decide the action of the IF...THEN rule during the
validation process.

In summary, the proposed method can be represented as
a hierarchy (see Fig. (3)) where the bottom layer is the data
set and the next layer up is composed of all the identified
prototypes during the learning process, while the top layer
of the structure consists of a much smaller sub-set of highly
informative prototypes corresponding to MegaClouds.

In the following two subsections, the main steps of learning
and validation are described.

A. Learning rules from the data

The proposed method learns the prototypes associated with
each action in a separate loop. Therefore, the data set is split
during the training into sub-sets.

As each IF...THEN rule is identified separately for
each action, unless specifically declared otherwise, all the
mathematical notations in the algorithm consider the lth

action by default and the index l is omitted for clarity.

Step 1. Standardize the newly observed data sample, x.
Standardization is performed on a per input basis:

x̂(i) =
x(i)− µ(x(i))

σ(x(i))
(2)

where x̂(i) denotes the standardized value of the i-th input of
the data sample; µ(x(i)) denotes the mean of the i-th input
and σ(x(i)) denotes the standard deviation of the i-th input;
µ ∈ Rn denotes the vector of the mean values and σ ∈ Rn
denotes the vector of the standard deviations.

Following the standardization the data is being normalized
converting it to the range [0, 1]. Unity-based normalization
of the i-th input is given by [16]:

x̄(i) =
x̂(i)−min(x̂(i))

max(x̂(i))−min(x̂(i))
(3)

where x̄(i) denotes the normalized values of the i-th input.

Step 2. Initialize the algorithm meta-parameters with the
first data sample, x̄1 observed:



XXXX 3

Fig. 2. General structure of the proposed approach. aDRL refers to the DRL output. The comparison between a and aDLR is used to determine the
accuracy of the proposed method.

µ1 ← x̄1; P ← 1; p1 ← x̄1

C1 ← {x̄1}; S1 ← 1; r1 ← ro;
(4)

These include: i) the mean being initialized with the first
normalized data point; ii) the number of prototypes being set
to 1; iii) the first prototype being initialized with the first data
point; iv) initialize the first so-called data cloud, C1 as a set
of data points that are associated with the first prototype (data
clouds were defined in [17] as set of data points described
by a prototype and differ somewhat form clusters by shape
and boundaries and other properties); v) the so-called support
of the data cloud S1 defined as the number of data points
associated with a certain data cloud [15]; vi) the radius
of the area of influence around the prototype, r1, in this
paper we initialize it with ro = 0.5. In a multidimensional
space ro = 0.5 is reasonable (not too low to avoid getting
significant number of prototypes and not too high to allow a
certain level of detail and granularity). Notice that r1 is the
only meta-parameter, its value is automatically determined by
the algorithm. However, it is not user-defined and problem-
specific as it only refers to an initial value which later will
be updated with the real data.

Based on this initialization define the first IF...THEN rule
for the given (l-th action) as follows:

Rl : IF (x ∼ p1
l ) THEN (action l) (5)

Step 3. Calculate the data density at the current data
point, x̄k; k ∈ {1, ..., N}. Starting from the mutual dis-
tances (Euclidean or Mahalanobis type) between the data
points (samples) in the feature space it can be demonstrated
theoretically [9] that the data density takes the form of a
Cauchy type function as in Eq. (6).

D(x̄k) =
1

1 + ||x̄k−µN ||2
||σN ||2

; (6)

where D is the data density, and σN denotes the standard
deviation.

In this step we also identify the prototype pj
∗

that is
nearest to x̄k:

j∗ = argmin
j∈{1,...,P}

{||x̄k − pj ||2} (7)

Then, using the density and the distance to the nearest
prototype, pj , we check the following condition [9] based on
which we determine if the current data point is going to be
added to the set of prototypes or not. If the condition is met,
go to Step 4; otherwise, go to Step 5.

IF (D(x̄k) ≥ max
j∈{1,...,P}

(D(pj)))

OR (D(x̄k) ≤ min
j∈{1,...,P}

(D(pj)))

OR (||pj
∗
− x̄k|| > rj

∗
)

THEN (add a new data cloud)

(8)

where D(pj) is density of the nearest prototype, pj .
Step 4. Add a new data cloud:

P ← P + 1; CP ← {x̄k};
pP ← x̄k; SP ← 1; rP ← ro;

(9)

Then, go to Step 6.
Step 5. Update the meta-parameters of the nearest data

cloud:

Cj
∗
← Cj

∗
+ {x̄k};

pj
∗
← Sj

∗

Sj∗ + 1
pj

∗
+

Sj
∗

Sj∗ + 1
x̄k;

Sj
∗
← Sj

∗
+ 1;

rj
∗
←

√
(rj∗)2 + ||σj∗2||

2
;

(10)
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The radius rj
∗

of the area of influence Cj
∗

is recursively
updated to allow data clouds to converge to the local areas
where data samples are densely distributed. Prototypes pj

∗

are also updated through Eq. (6).

Step 6. Update the IF...THEN rule, Rl with the identified
prototypes:

Rl : IF (x ∼ p1
l ) OR (x ∼ p2

l ) OR ...OR (x ∼ pPl )

THEN (action l)
(11)

B. Hierarchical organisation of the prototypes

Prototypes are organized in a hierarchical manner (Fig.
(3)). At the bottom layer of the hierarchical architecture
is the raw data set. In the layer above it is the set of
prototypes (which are selected data points/samples). Each of
the prototypes is a focal point in the data space forming data
clouds, see Fig. (4) shaping the so-called Voronoi tessellation
[18]. Since the prototypes are defined in isolation (per action)
once they are put together in the data space quite often
data clouds that correspond to the same action (describing
IF...THEN rules with the same consequent) are adjacent. This
allows us to merge these data clouds and, respectively fuzzy
IF...THEN rules into so-called "MegaClouds" which have the
same consequent (THEN part) and, respectively correspond
to the same action. In this way, we minimise the amount of
IF...THEN rules and improve the interpretablity of the model.
We illustrate this in Fig. (3).

The membership function (MF) to a MegaCloud is formed
as a Minkowski type kernel [19]. λ is the parameter of the
kernel such that λ ∈ (−∞,∞). We found experimentally that
order of λ=6 gives best results in terms of accuracy. This can
be explained with the fact that the higher the order of λ the
more narrow the local Cauchy-type function becomes and
less its generalization. However, the lower the order of λ is
the less accurate it is as it starts to blur with the neighbouring
functions that are centred at other prototypes:

MF k(x̄i) =

 1

P k

Pk∑
j=1

 1

1 + ||x̄i−pj ||2
||σ2||

λ


1
λ

(12)

where MF k is the degree of membership of the data point,
x̄i to the k-th MegaCloud. The membership function is multi-
modal: each of its peaks is located at one of the prototypes,
defined by a Cauchy-type function as described in Eq. (6)
One can see that the prototypes, identified earlier, p are the
parameters of the MF. One can, however, find new parameters
of the MegaClouds - the most obvious choice is the mean of
each MegaCloud (since these Voronoi tessellation areas are
adjacent by definition they form a larger area, see Fig. (4)),
where mM is the mean,

∑P
j=1

pj

P , of the M -th MegaCloud
associated with the lth action; m ∈ Rn.

The IF...THEN rules over the MegaClouds have the same
form, but the key difference is that the number of conditions

linked with T-conorm/disjunction (logical OR) are much less.
They have the following format:

Rl : IF (x ∼m1
l ) OR ...OR (x ∼mM

l )

THEN (action l)
(13)

where mM is the mean,
∑P
j=1

pj

P , of the M -th MegaCloud
associated with the lth action; m ∈ Rn.

C. Density-Based Input Selection

Inputs ranking and selection is a technique to reduce
the dimensionality of a problem. A subset of relevant or
more descriptive inputs facilitates model interpretation, and
can produce better results due to the elimination of inputs
that may confound the uncovering of patterns, trends, and
relationships.

In this paper we estimate the contribution of each input
using the density of data per input:

D(x̄(i)) =
1

1 + ||x̄(i)−µ(i)||2
(σ(i))2

(14)

where D(x̄(i)) denotes the density for i-th input of x̄(i); (i ∈
{1, ..., n}).

The cumulative effect across all data samples for each
input can be obtained according to the Eq. (15).

Λ(i) = ΣNj=1D(x̄j(i)). (15)

The cumulative contribution for each input Λ(i) can be
ranked. The higher the value of Λ(i) is for a particular
input, the more descriptive and important is the i-th input
[20]. The idea is that interesting inputs have higher density
than other inputs - meaning that it conveys unique, different
clean information, and as consequence it contributes more
to the rule-based model result because the overlap between
data clouds of different actions is less pronounced in these
inputs. Less descriptive inputs are left one by one based on its
Λ(i) score until reduction in accuracy performance is noted.
This sensitivity selection is helpful to reduce computational
complexity which is an advantage especially in online im-
plementation.

III. SIMULATION DATA

The data set used for learning the rule-based approximation
was generated by simulating the DRL model described in
[1]. It contains 256960 instances described by 20 different
inputs as described by Table I. The data set is divided into 8
different actions, each action represent a different state of the
ego vehicle. The description of the actions are given below:
• Action 1 (Maintain): 217494 samples
• Action 2 (Accelerate by +2m/s2): 12706 samples
• Action 3 (Brake by −2m/s2): 6033 samples
• Action 4 (Hard brake by −4m/s2): 4530 samples
• Action 5 (Lane change to left): 8078 samples
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Fig. 3. Hierarchical structure - MegaClouds, where mM is the mean of the M -th MegaCloud associated with the lth action

Fig. 4. MegaClouds visualization in terms of Voronoi Tesselation

• Action 6 (Lane change left and also brake by −2m/s2):
213 samples

• Action 7 (Lane change right): 7704 samples
• Action 8 (Lane change right and also brake by
−2m/s2): 102 samples

Fig. 5. Data Distribution in terms of different maneuvers/actions by the ego
vehicle, showing the clearly data imbalance nature of the the data set.

The data set provided by Ford Motor Co. was obtained
by a simulating DRL model representing driving policy of a

TABLE I
DESCRIPTION OF THE INPUTS

Inputs Description
1 Ego lateral position
2 Relative velocity between ego and center vehicles
3 Front left vehicle position longitudinal
4 Front left vehicle velocity
5 Front left vehicle lateral position
6 Front center vehicle position longitudinal
7 Front center vehicle velocity
8 Front center vehicle lateral position
9 Front right vehicle position longitudinal
10 Front right vehicle velocity
11 Front right vehicle lateral position
12 Rear left vehicle position longitudinal
13 Rear left vehicle velocity
14 Rear left vehicle lateral position
15 Rear center vehicle position longitudinal
16 Rear center vehicle velocity
17 Rear center vehicle lateral position
18 Rear right vehicle position longitudinal
19 Rear right vehicle velocity
20 Rear right vehicle lateral position

self-driving vehicle in diverse traffic conditions. More details
can be found in [1].

The data set was divided into 80% for training and 20%
for validation purposes as usual for such tasks [21]. We
used 10-fold cross validation for the experimental setup. It is
important to highlight that the analyzed dataset is imbalanced
as illustrated in Fig. (5). However, due to the prototype-
based nature of the hierarchical approach no pre-processing
is required in this case.

A. Performance Evaluation

In order to evaluate the performance of the proposed
method the accuracy index is considered. Accuracy is defined
as follows:

ACC(%) =
TP + TN

TP + FP + TN + FN
, (16)

where TP, FP, TN, FN denote true and false, negative and
positive respectively.

All the experiments were conducted with MATLAB 2018a
using a personal computer with a 1.8 GHz Intel Core i5
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processor, 8-GB RAM, and MacOS operating system. The
experiments were executed using 10-fold cross validation
under the same ratio of training-to-testing sample sets. The
following methods were used for comparison: K-nearest
Neighbors (KNN) [22], Naive Bayes (NB) [23], Support
Vector Machine (SVM) [24], Decision Tree [25], Random
Forest [26], XGBoost [27], and Catboost [28]. Parameters for
XGBoost and CatBoost were optmized through Auto-sklearn
hyper-parameter optimization [29]. For the other state-of-the-
art approaches we consider the default parameters according
to their references.

IV. RESULTS AND ANALYSIS

Computational simulations were performed to assess the
accuracy of the explainable rule-based approach combined
with the sensitivity selection method. Table II summarizes the
results obtained by the proposed method considering different
number of inputs.

Table II shows that, in general, the proposed autonomous
method tends to be more accurate when the data space
is reduced as we remove inputs with the lowest densities.
Because of the parallel nature of the rule-based method, the
sensitivity selection is able to work per action. Therefore,
the proposed density-based input selection is able to create
an individualized subset of inputs per action.

Table III, shows that, for the best scenario with 7 inputs
(Table IV and Fig. (6) details the 7 inputs with higher densi-
ties for action 1, similar trend happened with all the actions).
The proposed autonomous method reached the best result in
terms of overall accuracy compared to the other state-of-the-
art methods. The rule-based method outperformed the other
state-of-the-art approaches in terms of accuracy for 5 out
of 8 actions. It is also possible to note through Table III
that the SVM, Adaboost, Discriminant analysis, XGBoost,
and CatBoost were not able to detect some of the actions,
mainly actions 6 and 8 where the respective accuracy was
0%. Actions 6 and 8, refer to rare maneuvers during the
driving simulation, are extremely difficult to recognise due
the highly imbalanced data set, as illustrated in Fig. (5).

When all available information is considered as model’s
inputs it may cause overfitting, and then be prejudicial to
the model’s accuracy. Therefore, when the proposed density-
based input selection method creates individualized subset of
the most descriptive inputs per action it helps to overcome the
dimensionality problem. For example, the overall accuracy of
the proposed recommendation system increases from 94.54%
to 98.94% using one third of the original dimensions of the
input space, moreover, accuracy per action is also improved.
Therefore, one can note that when a self-driving car needs to
take an action such as "Lane change right and also brake by
−2m/s2" a different subset of inputs will have more impact
than when a self-driving car needs to "Lane change left
and also brake by −2m/s2" as different maneuvers require
different set of actions by the driver/agent.

Fig. (7) illustrates the confusion matrix for the best sce-
nario. It is notable from the confusion matrix that even though
the data set is imbalanced, the proposed method is able to

Fig. 6. Accumulated density histogram, density bars above the dotted line
denote the top seven density inputs.

correctly identify uniformly all the actions. Fig. (8) illustrates
how the performance is affected as the data space is reduced
with the removal of inputs with the lowest densities. One
can see from Fig. (8) that the sensitivity selection helps
to improve the computational complexity by reducing the
number of inputs (less calculations are required due to the O
(log n) nature of the proposed approach).

Fig. 7. Confusion matrix for the best scenario (7 inputs)

Fig. 8. Computational complexity vs Overall performance

Besides the improvement in terms of accuracy, the hi-
erarchical method contributed to improving interpretability
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TABLE II
PERFORMANCE COMPARISON FOR DIFFERENT ACTIONS AND NUMBER OF INPUTS

``````````̀# Inputs 1
Accuracy

Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 Action 7 Action 8 Overall

20 98.46% 85.03% 75.52% 49.46% 80.16% 66.66% 92.96% 50.0% 94.54%
10 98.75% 88.02% 83.06% 91.34% 91.72% 72.72% 96.85% 38.09% 97.41%
7 99.8% 93.3% 98.5% 94.3% 90.02% 92.7% 95.4% 66.7% 98.94%
5 98.71% 83.97% 81.66% 78.06% 87.91% 80.00% 95.84% 76.47% 96.75%
3 98.36% 84.43% 77.92% 39.92% 78.98% 81.08% 93.06% 66.67% 94.89%

TABLE III
PERFORMANCE COMPARISON FOR DIFFERENT ACTIONS WITH 7 INPUTS WITH THE HIGHEST DENSITY

``````````Method
Accuracy Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 Action 7 Action 8 Overall

This paper 99.8% 93.3% 98.5% 94.3% 90.02% 92.7% 95.4% 66.7% 98.94%
This paper (MegaClouds) 99.34% 89.82% 82.9% 81.45% 92.76% 72.0% 97.31% 72.72% 97.88%

SVM 88.65% 53.6% 0% 0% 100.0% 100.0% 74.7% 0% 87.08%
KNN 97.34% 83.1% 85.6% 84.7% 72.6% 100.0% 90.2% 70.00% 95.23%

Decision Tree 98.82% 88.16% 83.4% 82.26% 93.36% 82.92% 92.45% 70.00% 97.02%
Adaboost 94.3% 72.9% 88.0% 97.9% 87.9% 0% 86.0% 0% 92.95%

Discriminant analysis 91.0% 42.3% 33.9% 0% 36.6% 32.8% 38.6% 10.3% 85.43%
Random Forest 99.4% 90.2% 88.6% 98.1% 94.2% 75.2% 86.0% 75.4% 98.31%

XGBoost 99.2% 84.5% 86.9% 87.3% 89.9% 32.8% 89.4% 0% 97.12%
CatBoost 93.2% 78.7% 90.1% 92.2% 88.2% 52.3% 87.1% 0% 91.45%

TABLE IV
DESCRIPTION OF THE 7 INPUTS WITH HIGHER DENSITIES

Inputs Description
Rv Relative velocity between Ego and center vehicles
dFL Front left vehicle position longitudinal
V FL Front left vehicle velocity
dFC Front center vehicle position longitudinal
dFR Front right vehicle position longitudinal
V FR Front right vehicle velocity
dBC Rear center vehicle position longitudinal

of the proposed approach. It allowed to infer a meaningful
approximation of the DRL model and enabled quick eval-
uation of its performance for specific use cases. Table V
details the number of prototypes produced by the proposed
recommendation system considering different layers and 7
inputs (best scenario).

Generated trapezoidal fuzzy rules for the MegaClouds
layer (highly abstract layer) can be illustrated in terms of
inputs as illustrated by Fig. (9). It also can be visualized in
terms of rules per prototype as given by Fig. (10).

Fig. (11) illustrates the actions given by the proposed
method along the time. This is helpful to analyse the driving
behavior and sequence of events by specialists.

In general, experiments have shown that the proposed
explainable method is an efficient framework for this chal-
lenging task. Results showed advantages (98.94%) compared
to similar methods for addressing the approximation task.
Moreover, the proposed method in its top layer also pro-
duced transparent linguistic fuzzy rules, which are human

1Inputs with the highest density

interpretable. In addition, the hierarchical architecture allows
to reduce the rule antecedents and to simplify the structure
of the rule-based models.

V. CONCLUSION

In this paper, we propose a novel explainable rule-based
machine learning model that can be used to approximate the
decisions policy of a DRL agent. To generate training data
we used a DRL model representing a highway path planning
policy for autonomous driving. The model is composed of
a 0-order fuzzy rules. Experiments have shown that the
proposed method was able to produce more accurate results
than the other similar state-of-the-art methods.

We also present a new hierarchical mechanism to sig-
nificantly reduce the number of generated fuzzy rules. In
this case, adjacent (in the data space) prototypes which
correspond to the same action are grouped and merged into
so-called "MegaClouds". The proposed method helped to im-
prove the interpretability of the generated models. Moreover,
the input selection method based on ranking the density per
input dimension in the data space contributed to improve the
accuracy of the models as it creates individualized subsets of
inputs per action, taking advantage of the parallel character-
istic of the proposed explainable self-organizing method. Ex-
perimental results show that an accurate and computationally
efficient explainable alternative to the deep neural network
model can be successfully developed providing opportunities
to explain and validate the decisions by the DRL agent.
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TABLE V
NUMBER OF IDENTIFIED PROTOTYPES PER ACTION FOR DIFFERENT HIERARCHICAL LAYERS

``````````Layer
# Prototypes Action 1 Action 2 Action 3 Action 4 Action 5 Action 6 Action 7 Action 8 Total

Bottom Layer 1315 1009 482 360 649 17 607 4 4443
MegaClouds 13 14 8 10 15 6 11 4 81

IF (Rv ∼ )

AND (dFL ∼ )

AND (V FL ∼ )

AND (dFC ∼ )

AND (dFR ∼ )

AND (V FR ∼ )

AND (dBC ∼ )
THEN ‘Lane change left and also brake by −2m/s2’

Fig. 9. Trapezoidal rule per feature for ‘Lane change left and also brake by
−2m/s2’ (Action 6)
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IF (x ∼ )
OR

(x ∼ )
OR

(x ∼ )
OR ... OR

(x ∼ )
THEN "Maintain"

Fig. 10. Visual interpretation of trapezoidal rule for "Maintain" (Action 1),
where the watermarked cars represent the soft trapezoidal fuzzy boundaries
and the solid cars denotes the limits of the MegaClouds. Rv denotes the
relative velocity between EV and center vehicle, and V denotes the velocities
for the front left and front right vehicles, both Rv and V are in m/s

from Unseen Situations".
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