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ABSTRACT
We study stellar property statistics, including satellite galaxy occupation, of haloes in
three cosmological hydrodynamics simulations: BAHAMAS + MACSIS, IllustrisTNG,
and Magneticum Pathfinder. Applying localized linear regression, we extract halo mass-
conditioned normalizations, slopes, and intrinsic covariance for (i) Nsat, the number of stellar
mass-thresholded satellite galaxies within radius R200c of the halo; (ii) M�,tot, the total stellar
mass within that radius, and (iii) M�,BCG, the gravitationally bound stellar mass of the central
galaxy within a 100 kpc radius. The parameters show differences across the simulations, in part
from numerical resolution, but there is qualitative agreement for the Nsat–M�,BCG correlation.
Marginalizing over Mhalo, we find the Nsat kernel, p(ln Nsat | Mhalo, z) to be consistently skewed
left in all three simulations, with skewness parameter γ = −0.91 ± 0.02, while the M�,tot kernel
shape is closer to lognormal. The highest resolution simulations find γ � −0.8 for the z = 0
shape of the M�,BCG kernel. We provide a Gaussian mixture fit to the low-redshift Nsat kernel as
well as local linear regression parameters tabulated for Mhalo > 1013.5 M� in all simulations.

Key words: methods: statistical – galaxies: clusters: general – galaxies: evolution – galaxies:
haloes.

1 IN T RO D U C T I O N

Clusters of galaxies, and the underlying dark matter haloes that host
these systems, are important to study as their population behaviour is
sensitive to both the expansion history and the gravitational growth
of large-scale structure in our Universe (Allen, Evrard & Mantz
2011).

When using clusters of galaxies for cosmology, the statistical
relationship between an observable cluster property and the total
mass of its host halo, which we call the mass–property relation
(MPR), is a key model element (e.g. Vikhlinin et al. 2009; Mantz
et al. 2010; Rozo et al. 2010; Zhang et al. 2011; de Haan et al.
2016; Pillepich et al. 2018c; Bocquet et al. 2019; Costanzi et al.
2019; Mulroy et al. 2019). Current and near-future experiments will
expand cluster sample sizes into the tens of thousands (The Dark

� E-mail: dhayaa@umich.edu

Energy Survey Collaboration 2005; Laureijs et al. 2011; Merloni
et al. 2012; Pillepich, Porciani & Reiprich 2012; Predehl et al.
2014; Spergel et al. 2015; Ade et al. 2019), allowing for improved
understanding of the MPR for hot gas and stellar properties. This
understanding, along with careful modelling of survey selection,
are crucial elements that empower studies of cosmic acceleration
and of new physics using massive haloes.

When the observable property is a count of galaxies above
some size (luminosity, stellar mass, etc.) threshold, the MPR is
analogous to the halo occupation distribution (HOD, Berlind &
Weinberg (HOD; Berlind & Weinberg 2002; Cooray & Sheth
2002; Hearin et al. 2013; Zentner, Hearin & van den Bosch
2014; Hearin et al. 2016; Zehavi et al. 2018). The stellar property
statistics of dark matter haloes lie within the broad category of
the ‘galaxy–halo connection’ which was reviewed recently by
Wechsler & Tinker (2018). The focus of this work is the high
mass population of haloes, each of which host multiple bright
galaxies.
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The statistics of the stellar component properties – galaxy
occupation, central galaxy stellar mass, and total stellar mass of
a halo – across a broad range of total halo mass and redshift is a
fundamental outcome of the complex astrophysical processes that
drive galaxy formation (see e.g. Pillepich et al. 2018b, for a detailed
discussion).

A low-accretion rate mode of supermassive black hole (SMBH)
feedback within the cores of large galaxies (Croton et al. 2006; De
Lucia et al. 2006) is employed to solve the problem of excessive
cooling and star formation at the centres of groups and clusters
seen in early simulations (Katz & White 1993; Evrard, Summers &
Davis 1994). Jet-driven, turbulent feedback from SMBH accretion
appears to be an important regulator of the thermodynamic state
of core gas (McNamara & Nulsen 2012; Voit et al. 2015) and its
inclusion in cosmological simulations has significantly improved
the fidelity of galaxy and hot gas properties within the population
of high mass haloes (Gaspari, Ruszkowski & Oh 2013; Ragone-
Figueroa et al. 2013; Hirschmann et al. 2014; Khandai et al. 2015;
Rasia et al. 2015; Hahn et al. 2017; Kaviraj et al. 2017; McCarthy
et al. 2017; Nelson et al. 2018; Pillepich et al. 2018b)

While hydrodynamic and magnetohydrodynamic methods have
improved dramatically in terms of both numerical resolution and
astrophysical treatments (Kravtsov & Borgani 2012; Vogelsberger
et al. 2020), direct inter-comparisons of different numerical so-
lutions reveal varying degrees of inconsistency (e.g. Scannapieco
et al. 2012; Elahi et al. 2016). The aim of this work is to compare
compressed statistical summaries of the aforementioned stellar
properties for populations of massive haloes realized by independent
state-of-the-art methods. We apply a local linear regression (LLR)
approach first used by Farahi et al. (2018) to describe the statistics of
hot gas and stellar mass, conditioned on total halo mass, for haloes
realized by the BAHAMAS and MACSIS simulations. As long as
halo properties are well behaved functions of mass and redshift, the
LLR method is highly effective at compressing the full range of
discrete population measurements into a small number of statistical
parameters.

This work expands on Farahi et al. (2018) by (i) using multiple
stellar properties associated with a halo and (ii) performing a
verification test using results from multiple simulation teams.

We utilize three cosmological hydrodynamics simulations – a
superset of BAHAMAS and MACSIS, the IllustrisTNG 300-1 run,
and the Magneticum Pathfinder 500 Mpc volume – each of which
contains >1000 haloes with M200c > 1013.5 M� at z = 0. Bootstrap
resampling of each discrete population is used to estimate statistical
uncertainties in scaling relation parameters.

The statistical power of these large halo samples is reflected by
relatively small fractional errors in the recovered LLR parameters. It
is worth keeping in mind that the bootstrap-estimated errors should
conservatively be treated as lower bounds relative to what might
be achieved by sampling an essentially infinite cosmic volume.
Still, the different simulations frequently produce results in mild
statistical tension with one another, in which case the range of
values in a particular quantity of interest can be considered an
estimate of the magnitude of that parameter’s theoretical uncertainty
as estimated by first-principle simulations.

While statistical tensions exist for many of the derived LLR
parameter values, we also find areas of congruence, particularly in
the fundamental forms of mass-conditioned property kernels. Con-
gruent results offer a necessary step of verification (e.g. Salvadori
2019), meaning that halo populations with consistent stellar MPRs
emerge from independent solutions of the equations governing the
complex, non-linear system of large-scale structure. A validation

step using observational data must be done using observable proxies
for the intrinsic true properties we use here. Observational analysis
with careful treatment of sample selection is emerging (Mantz et al.
2016; Bocquet et al. 2019; Farahi et al. 2019a; Mulroy et al. 2019)
but we do not attempt detailed comparisons to observational samples
in this paper.

We employ an M200c spherical overdensity mass scale
convention,1 and define Nsat as the integer count of satellite galaxies
with M�,sat > 1010 M� lying within that radius.2 The form of the
conditional likelihood, p(ln Nsat | Mhalo, z), a core component of
HOD models, is a particular area of focus, and a key finding of our
study is that all three simulations produce a consistent shape for
both this kernel and that of the total stellar mass within R200c.

We also find that, at fixed halo mass, satellite galaxy number is
anticorrelated with the stellar mass of the central galaxy of a halo,
as would be expected if central galaxies, which we refer to as the
brightest central galaxy (BCG), grow primarily at late times by
cannibalizing satellite galaxies (Tremaine & Richstone 1977; De
Lucia & Blaizot 2007). Larger than average BCG stellar masses
are also associated with magnitude gaps measured with respect to
lower ranked galaxies (e.g. Golden-Marx & Miller 2018).

The structure of this paper is as follows. In Section 2, we describe
the simulation samples while Section 3 describes the localized linear
regression (LLR) method applied to generate summary statistics
for each simulation’s halo sample. We examine satellite galaxy
scaling relations in Section 4, along with relevant aspects of scaling
relations of total stellar mass and central galaxy stellar mass. Here,
we also provide a two-component Gaussian mixture model (GMM)
fit to p(Nsat | M, z) that describes the consistent shape seen in all
simulation ensembles at z < 1. The interrelationships of BCG stellar
mass with other properties is explored in Section 5. We elaborate
briefly on the future of such multisimulation comparison studies in
Section 6, and summarize our findings in Section 7. Appendices
provide complete results for all stellar properties (Appendix A) as
well as the GMM and LLR parameter tables (Appendix B).

2 SI M U L AT I O N S A N D H A L O PO P U L AT I O N S

We analyse three different simulations – BAHAMAS + MACSIS
(BM), TNG300-1 from the IllustrisTNG project (TNG300), and
the 500 Mpc high-resolution box 2 from Magneticum Pathfinder
(MGTM) – with characteristics summarized in Table 1. We also
include a z = 0.12 output of a higher resolution BAHAMAS run, a
143 Mpc volume (labelled B100), to examine resolution dependence
of the derived statistics. Collectively, the simulations produce nearly
15 000 haloes with total mass, M200c > 1013.5 M�, at z = 0.

The simulations use slightly different cosmological parameters,
but all assume a flat geometry with matter density parameter in the
range �m ∈ [0.2726, 0.3175]. The cosmic baryon fraction, fb ≡
�b/�m, which varies from a low of 0.154 for BM to a high of 0.167
for MGTM, is important for setting the normalization of the stellar
mass formed within haloes and so we make small adjustments to
the satellite galaxy stellar mass cut-off described below.

The BAHAMAS simulations (McCarthy et al. 2017) use a version
of the smoothed particle hydrodynamics (SPH) code GADGET

(Springel 2005) to model a 596 Mpc periodic cube. The MACSIS

1The radius R200c satisfies 3M(< R200c)/(4πR3
200c) = 200ρcrit(z), where

ρcrit(z) is the critical density of the universe, and M200c ≡ M(<R200c).
2Slight adjustments are made to normalize the mean cosmic baryon fraction,
as described in Section 2.2.
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688 D. Anbajagane et al.

Table 1. Simulation characteristics and z = 0 halo population sizes. Empirical sources for tuning sub-grid parameters are given in the last column and consist
of the galaxy stellar mass function (GSMF), supermassive black hole (SMBH) scaling, metallicity scaling (Metals), and cluster hot gas mass fraction <R500c

(CL fgas). All assume a flat � cold dark matter cosmology, so �� = 1 − �m, and their cosmic mean baryon fraction is fb ≡ �b/�m. The MGTM output is
actually z = 0.03 and B100 (used only for testing resolution) is z = 0.12 while the other two are exactly z = 0. See text for references.

Simulationa L (Mpc)b �m fb σ 8 εz=0
DM (kpc) m� ( M�)c log10(M20)d Nsam

e Calibration

BM 596 0.3175 0.154 0.834 5.96 1.2 × 109 15.6 9430 GSMF, CL fgas

B100 143 0.2793 0.166 0.821 2.86 1.4 × 108 14.1 96 GSMF, CL fgas

MGTM 500 0.2726 0.167 0.809 5.33 5.0 × 107 14.9 4207 SMBH, metals, CL fgas

TNG300 303 0.3089 0.157 0.8159 1.48 1.1 × 107 14.6 1146 See Pillepich et al. (2018a)

aSee text for description of acronyms.
bComoving simulation cube length except for MACSIS (subset of the BM data), which subsamples a 3.2 Gpc cubic volume.
cInitial stellar particle mass.
dUpper limit of LLR regression at z = 0, the 20th most massive halo mass, in M�.
eNumber of haloes with total mass, M200c > 1013.5 M�. The number above 1013.8 M� for BM is ≈4400.

ensemble (Barnes et al. 2017) comprises 390 ‘zoom-in’ simulations
of individual halo regions, drawn from a parent 3.2 Gpc N-body
simulation, that completely resamples the most massive haloes in
the large parent volume. The MACSIS resimulations use the same
code base and have the same numerical resolution and astrophysical
treatments as BAHAMAS but the resimulation technique enables
LLR fits extending to M200c = 4 × 1015 M� at z = 0. The BM
sample is the superset of BAHAMAS and MACSIS populations.
Conversely, the 140 Mpc Bahamas higher resolution simulation
(B100) contains only 96 haloes with M200c > 1013.5 M� at z = 0,
only a few dozen of which lie above 1014 M�.

The MGTM 500 Mpc run (Hirschmann et al. 2014) uses a
different fork of GADGET with an improved fluid solver (Donnert
et al. 2013) to model the co-evolution of supermassive black holes
and their host galaxies. While both BM and MGTM employ variants
of the same base GADGET code, the detailed treatments of star
formation, black hole seeding and growth, and feedback from these
compact populations were developed independently.

IllustrisTNG (Marinacci et al. 2018; Naiman et al. 2018; Nelson
et al. 2018; Pillepich et al. 2018b; Springel et al. 2018) is a
follow-up to the Illustris simulations (Vogelsberger et al. 2014)
based on the deformable-mesh hydroydynamics solver, AREPO

(Springel 2010). As detailed in Pillepich et al. (2018b), the stellar
mass functions and stellar mass to halo mass relations are in
reasonable agreement with observational and empirical constraints.
At the same time, Springel et al. (2018) show that the observed
large-scale spatial clustering of galaxies, and its dependence on
mass and colour, is also reproduced. In this paper, we use the
TNG300 run, the simulation of the TNG suite with the largest
volume.

The last four columns of Table 1 highlight important similarities
and differences among the simulations. The gravitational softening
length used for dark matter and stars is similar in BM and MGTM
(5–6 kpc) but both are a factor ∼3 larger than that of TNG300.
TNG300 and MGTM employ star particles that are significantly
less massive than that of BM. Because BM models a 1010 M� stellar
mass galaxy with as few as nine star particles, we find below that
the variance in satellite galaxy count is enhanced with respect to
both B100 and the other two simulations.

Resolution convergence is a non-trivial issue for all hydrodynam-
ical simulations of galaxy formation. For example, Pillepich et al.
(2018a,b) analyse the rate of convergence in stellar mass contents
of haloes in the TNG model, finding shifts of ∼40 per cent in galaxy
stellar mass between the two highest levels of resolution of TNG
at the high-mass end. The three simulations span a range of length,
mass, and time resolution, so the differences in stellar mass statistics

Figure 1. Upper: Halo mass function of all four simulations for Mhalo >

1013.5 M� at z = 0 (BAHAMAS, TNG300), z = 0.03 (MGTM), and
0.12 (B100). Lower: Satellite galaxy stellar mass function within R200c

in haloes with M200c > 1013.5 M� at z = 0 (BAHAMAS, TNG300), z =
0.06 (MGTM), and 0.12 (B100). Stellar masses for BAHAMAS, B100, and
TNG300 are adjusted to match the MGTM baryon fraction. Errorbars do
not include cosmic variance.

represents a convolution of numerical (e.g. resolution) and physical
model (e.g. forms of feedback) differences.

Given the modest range of cosmologies explored by the simula-
tions in the ensemble, one expects similar dark matter halo mass
functions at z = 0. The top panel of Fig. 1 shows that this is the
case, with the high �m cosmologies of BM and TNG300 shifted

MNRAS 495, 686–704 (2020)
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Multisim massive halo property statistics 689

Table 2. Property definitions.

Quantity Definition

Halo centre Minimum gravitational potentiala

Halo total mass, M200c All species within R200c sphereb

Halo stellar mass, M�,tot All stellar particles within R200c

Galaxy centre Most bound particlec

Galaxy stellar mass, M� Gravitationally bound stellar particles

aFOF links of 0.2 (BM, TNG) and 0.16 (MGTM) mean separation.
bTNG halo masses use only FOF particle set.
cOf any species (BM, TNG) or collisionless only (MGTM).

above MGTM, which has comparatively lower values of both �m

and σ 8.
The satellite galaxy stellar mass function (S-GSMF) for groups

and clusters, shown in the bottom panel of Fig. 1, is derived from
the full collection of satellite galaxies within R200c of our target halo
population with M200c > 1013.5 M�. The S-GSMF space density is
computed here using the full simulation volume (not the volume
occupied by haloes), and stellar masses have been normalized to
the baryon fraction of MGTM.

There is fairly good agreement in the S-GSMF among the
simulations for galaxies with 1010 < M�/M� < 1011 but the popula-
tions diverge somewhat at high masses. Note that the BAHAMAS
simulation, despite the higher stellar particle mass, shows no sign
of incompleteness down to the 1010 M� stellar mass limit. At
1012 M�, the MGTM simulation produces nearly seven times as
many galaxies per unit volume as the TNG300 solution. Given that
MGMT has the lowest space density of high mass haloes (top panel
of Fig. 1), we anticipate that the HOD normalization of MGTM is
higher than those of the other two simulations. The differences in
the outcome of the z ∼ 0 GSMF are a consequence of different
underlying choices and implementations of stellar and black hole
feedback leading to different effective outcomes in the regulation
and quenching of star formation.

2.1 Halo finding and catalogues

Our analysis methods employ catalogue-level products derived
independently by each simulation team. The methods operate to
identify common halo and stellar properties listed in Table 2.

The identification of the parent population of haloes is done in
a similar fashion across the four simulations, with a percolation
(friends-of-friends) step followed by an identification of locally
bound sub-structures using the SUBFIND algorithm (Springel et al.
2001; Dolag et al. 2009). Halo centres are identified as the location
of the most-bound particle and M200c enclosed masses are derived
using all particle species.

Stellar properties of galaxies within sub-haloes are then derived.
The common use of SUBFIND means that the galaxy stellar masses
are well aligned across the simulations, employing common defini-
tions of the centre as well as the local binding energy condition.

Our study is based on halo catalogues defined by a total mass
threshold, M200c > 1013.5 M�, and we examine snapshots at z = 0,
0.5, 1, 1.5, and 2. Due to their larger volumes, BM and MGTM
offer samples of more than 4000 haloes at z = 0 while the higher
resolution TNG300 simulation yields 1130.

2.2 Stellar property vector

We use a vector of stellar properties listed in Table 3. The satellite
galaxy count, Nsat, is the number of galaxies within R200c having

Table 3. Property components of LLR regression vector, S.

Symbol Quantity

Nsat Count of non-central galaxies within R200c
a

M�,tot Total stellar mass within R200c ( M�)
M�,BCG Central galaxy stellar mass within 100 kpc (M�)

aStellar mass-limited, M� > ( f b, Sim
f b, MGTM

) × 1010 M�.

individual stellar mass M� > ( f b, Sim
f b, MGTM

) × 1010 M�. We apply the
linear correction to account for global baryon fraction differences
across the simulations (see Table 1) and arbitrarily normalize to
the MGTM value. The mass limits for BM and TNG300 are thus
∼8 per cent smaller than the MGTM value.

This stellar mass threshold is chosen to balance resolution
considerations with discreteness in Nsat counts. At 1010 M�, we
are working with galaxies resolved by 9 (BM), 73 (B100), 200
(MGTM), and 910 star particles (TNG300). Lowering the threshold
would decrease the minimum number of stellar particles in our
selected galaxies leading to unacceptably small values for BM.
Raising the threshold instead leaves us with more haloes exhibiting
either no satellites or just 1 or 2 of them, which complicates our
calculations using ln Nsat. Our stellar mass cut-off of ∼1010 M�
lies significantly below the ∼1010.8 M� knee of the observed stellar
mass function (Moustakas et al. 2013).

The rest of the stellar property vector consists of M�,tot, the total
stellar mass within R200c as well as M�,BCG, the central galaxy’s
bound stellar mass within a fixed sphere of 100 kpc physical radius.

3 LO C A L L I N E A R R E G R E S S I O N M E T H O D

From dimensional arguments one can infer that integral properties
of massive haloes, such as aggregate stellar mass or global X-ray
temperature measured at some redshift will, in the mean, scale as
power laws with total system mass (Kaiser 1986; Bryan & Norman
1998). Due to variations in formation history and dynamical state,
any individual halo will be offset from the population mean, and
this intrinsic dispersion is often assumed to be lognormal in form
(Evrard et al. 2014).

Linear regression of the simple least-squares variety has been a
canonical method used to characterize cluster scaling laws, but its
utility is limited by the fact that it reduces full population statistics
for a given property down to three numbers: a slope, normalization,
and variance/standard deviation. With large halo samples extracted
from cosmological simulations, we can perform a more sensitive
analysis using localized linear regression (Farahi et al. 2018). The
LLR method generates mass-conditioned estimates of the slope,
normalization, and property covariance, where the term ‘mass-
conditioned’ implies that we are determining these parameters given
a certain halo mass and redshift.

3.1 Mass-conditioned parameters and normalized residuals

Using natural logarithms of the properties, s = ln S, the population
mean of the log of property, Sa, at a fixed redshift scales with halo
mass M as

〈sa | M, z〉 = πa(Mc, z) + αa(Mc, z) ln(M/Mc), (1)

where Mc is a mass scale of interest, and the log-linear relation has
slope, αa(Mc, z), and intercept, πa(Mc, z), that, in general, depend
on both redshift and the chosen halo mass scale. The subscript a

MNRAS 495, 686–704 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/495/1/686/5826180 by Liverpool John M
oores U

niversity user on 02 June 2020
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denotes the property under consideration and, at mass Mc, the modal
and median value of Sa is eπa (M,z).

The mass dependence of the fit parameters is found by applying
a mass-dependent weight factor centred on the chosen mass scale.
Letting Mc → M for simplicity, we minimize the weighted square
error

ε2
a (M, z) =

n∑
i=1

w2
i (sa,i − αa(M, z)μi − πa(M, z))2, (2)

where μi ≡ ln (Mhalo,i/M), the sum i is over all haloes, and wi is the
mass-dependent Gaussian weight factor

wi = 1√
2πσLLR

exp

{
− μ2

i

2σ 2
LLR

}
, (3)

with σ LLR the width of the log-mass filter. For ideal mass local-
ization, we want σ LLR to be very small, but the finite sample sizes
from the simulations prevent us from using too small a value. We
use σ LLR = 0.46, equivalent to 0.2 dex in halo mass. Our results are
relatively insensitive to this choice, but choosing too small a value
leads to noisy features at high mass where the population density is
sparse.

As the central filter mass scale, M, is varied in fixed logarithmic
steps, we estimate the local slope, α̃a(M, z), intercept, π̃a(M, z), and
scatter, σ̃a(M, z), parameters by minimizing the locally weighted
square error (equation 2). The residual deviation in property a for a
specific halo of mass Mi is then defined as

δsa,i ≡ sa,i − π̃a(Mi, z), (4)

where the second term is determined by linear interpolation of the
values sampled uniformly in the log of halo mass.

These residuals are combined to form the halo mass-conditioned
property covariance

COV(sa, sb) = A

n∑
i=1

wi δsa,i δsb,i , (5)

with normalizing pre-factor

A =
n∑

i=1

wi /

⎡⎣( n∑
i=1

wi

)2

−
n∑

i=1

w2
i

⎤⎦ . (6)

The corresponding property pair correlation coefficient is

ra,b = COV(sa, sb)

σaσb

, (7)

where σa = √
COV(sa, sa) is the intrinsic scatter in property a at

fixed halo mass, and similarly for property b.
Finally, we focus attention below on the normalized residuals in

logarithmic properties, defined as

δ̂sa,i ≡ δsa,i

σ̃a

= sa,i − π̃a(Mi, z)

σ̃a

(8)

4 LLR SCALING AND KERNEL SHAPES O F
STELLAR PRO PERTIES

We begin by presenting z = 0 scaling behaviours of the three
stellar properties with Mhalo, finding qualitative agreement in many
respects but also discrepancies in the details. Marginalizing over
halo mass, we obtain estimates of the kernel shapes and find
consistent support for p(ln Nsat|M, z) to be negatively skewed while
the kernel of total stellar mass is much closer to lognormal. We then
examine off-diagonal elements of the mass-conditioned property

covariance as motivation for exploring secondary selection by
M�,BCG, presented in Section 5.

We provide tables of LLR fit parameters for these properties in
Appendix A. While our figures present parameter values in the range
1013.5 M� < Mhalo < M20, where M20 is the mass of the 20th most
massive halo, the LLR method computes these parameters using all
available haloes

4.1 Present-epoch stellar property scaling relations

Fig. 2 shows the z = 0 scalings of satellite galaxy counts, Nsat, with
halo mass for the four simulation populations. Solid lines show the
LLR mean behaviours, which are inter-compared in the bottom right
panel. As anticipated from the space densities of Fig. 1, the MGTM
simulation has a higher normalization compared to the other two
simulations. Numerical resolution is an important factor; the B100
simulation has 58 per cent more galaxies per halo compared to the
BM model, whose dark matter particle mass is ∼9 times larger
than that of B100. A shift of similar order of magnitude is found
for the TNG300 suite. TNG300-1, the highest resolution run, has
86 per cent more galaxies per halo than TNG300-2, whose dark
matter particle mass is eight times that of the TNG300-1 run. The
quoted values are the mean shifts for haloes with Mhalo > 1013.8 M�.

The local slope and scatter for Nsat as a function of halo mass
are presented in Fig. 3, with shaded regions showing 68 per cent
confidence intervals from bootstrap resampling. The local slopes lie
close to the simplest self-similar expectation of unity, with values
in the range 0.90–1.05.

Above a halo mass of ∼1014 M�, where the mean occupation
numbers are ten or larger, the scatter in ln Nsat declines with mass in a
manner that roughly follows Poisson expectations, 〈Nsat | M, z〉−1/2,
shown as dashed lines. The scatter in the BM model is significantly
larger than this, but the low stellar mass resolution of this simulation
appears to be adding extra variance. Evidence for this is given by
the B100 simulation result. The scatter in ln Nsat near 1014 M� drops
from 44 per cent (BM) to 30 per cent (B100), a factor of 2 decline
in variance that brings B100 much closer to the scatter values seen
in TNG300 and MGTM populations. We confirm that a similar
increase in variance occurs for the lower resolution TNG300-2
simulation. At 1014 M�, the scatter in ln Nsat is 48 per cent in the
TNG300-2 run, compared to 37 per cent for TNG300-1.

For the sake of economy, we show the raw data for the scalings
of central and total stellar mass measures (M�,BCG and M�,tot) with
halo mass at z = 0 in Appendix A. The mean stellar mass fraction
within R200c of a 1014 M� halo ranges from a high of 0.025 in
MGTM to a low of 0.013 in TNG300, with Bahamas intermediate.
These population values lie within the range of individual cluster
stellar mass fractions inferred from small observational samples
[see fig. 3 from Tremmel et al. (2019), and also work from
Pillepich et al. (2018b) for additional comparisons]. The stellar
mass fractions are fairly stable with redshift in all models (see
tables in Appendix B) but its absolute value is again sensitive to
resolution. Mean stellar masses in the higher resolution B100 run
are elevated by ∼25 per cent relative to those of BM.

The slope and scatter of M�,tot and M�,BCG derived from the
simulations are compared in Fig. 4. For the M�,tot–Mhalo relation,
all simulations show sub-linear scaling, but approach self-similarity
(α = 1) at high halo mass, a result already published for the BM
simulation (Farahi et al. 2018).

An observational study of 21 nearby clusters using an R500c scale
finds a somewhat shallower slope for the total stellar mass scaling,
α = 0.6 ± 0.1 (Kravtsov, Vikhlinin & Meshcheryakov 2018). The
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Figure 2. Number of stellar mass limited satellite galaxies, Nsat, as a function of total halo mass in the halo populations of each simulation at z = 0. Lines
show mean LLR fits, computed using all available haloes, from the lower halo mass limit of 1013.5 M� to an upper limit determined by the 20th most massive
halo of each sample. The lower right panel compares mean behaviours and includes results from B100, the higher resolution run of the BAHAMAS simulation
from the BM sample.

Figure 3. LLR slope, α (top), and natural logarithmic scatter, σ (bottom),
of the Nsat scaling with halo mass for the z = 0 populations shown in Fig. 2.
Dashed lines show the Poisson-expected fractional scatter, 〈Nsat | M, z〉−1/2

obtained from the mean satellite number as a function of halo mass. B100,
the high-resolution 140 Mpc BAHAMAS run, exhibits smaller scatter over
the mass range accessible within that volume, reducing the tension with the
other simulation outcomes.

tension in slope may reflect physical or numerical deficiencies in
the simulations or it may reflect systematic differences in the two
quantities being compared – true quantities in simulations versus
those inferred from multiband photometry and other observations.

Future work using synthetic observations to analyse the simulation
expectations directly in the space of survey observables, including
intracluster light, is needed to explore this discrepancy in more
detail.

For the central galaxy scaling, all simulations display slopes that
are sub-linear, lying in the range [0.45, 0.65], a range that en-
compasses values derived from the UniverseMachine semi-analytic
models (Bradshaw et al. 2020).

Empirical studies of the BCG stellar mass slope find contradictory
results. Some are in agreement with our results (Golden-Marx &
Miller 2018) while some are shallower (Zhang et al. 2016; Kravtsov
et al. 2018; Mulroy et al. 2019). The seemingly inconsistent results
can be mitigated by redshift evolution of the slope (Golden-Marx &
Miller 2019). We note, as quantified by Pillepich et al. (2018b), that
both the slope and scatter of the stellar mass-halo mass (SMHM)
relations depend sensitively on the operational definition of stellar
mass. For example, different choices of aperture for the M�,BCG

calculation results in slopes varying from ∼0.5 to 0.75 in TNG300,
and also in TNG100, the 100 Mpc box simulation from the TNG
suite (see table 4 of Pillepich et al. 2018b).

The scatter in the BCG stellar mass relation lies in the range
0.3−0.4 for all simulations over the entire mass range. This range
encompasses the empirical value of 0.39 ± 0.07 found by Kravtsov
et al. (2018) but it is lower than the value of 0.5 derived from the
UniverseMachine analysis of Bradshaw et al. (2020).

Consistency with Bradshaw et al. (2020) is found for the scatter in
total stellar mass. The simulations also find that the scatter in M�,tot

is below 10 per cent for haloes above ∼1014.3 M�. This supports
the observational finding that total K-band luminosity (∝ M�,tot) is
a tight mass proxy for high-mass clusters (Mulroy et al. 2014, 2019;
Chiu et al. 2016) selected by X-ray flux.
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692 D. Anbajagane et al.

Figure 4. LLR parameters (slope, α, and natural log scatter σ ) for the M�,tot–Mhalo (left) and M�,BCG- − Mhalo (right) scaling relations for all simulations at
z = 0. The underlying data for M�,tot and M�,BCG in each simulation are shown in Figs A1 and A2, respectively.

We note that the MGTM simulation finds no trend of scatter
with halo mass while the other two simulations, along with the
UniverseMachine study, find that the scatter in total stellar mass
monotonically decreases with increasing halo mass. In MGTM,
the constant scatter in total stellar mass arises from compensating
effects of central and satellite galaxy contributions. At low halo
masses, the scatter in the central galaxy stellar mass is lower than
at high masses, but the scatter in satellite count is higher, leaving
the scatter in total stellar mass nearly constant.

4.2 Kernel shapes of normalized residuals

Forward modelling counts of massive haloes as a function of an
observable property, s, is sensitive to the assumed shape of the
conditional kernel, p(s | M, z) (e.g. Shaw, Holder & Dudley 2010;
Erickson, Cunha & Evrard 2011; Costanzi et al. 2019). Moving
beyond the mild tensions in stellar property variance seen above,
we seek here to test whether consistent kernel shapes emerge from
the different simulation treatments.

While the complex coupling of physical and numerical factors
makes it difficult to prove that kernel shapes should be preserved
under transformations in the simulation control space, we take
a purely empirical approach and simply ask whether consistent
forms emerge. While lack of consistency in kernel shapes would
be troubling, we caution that consistency is a necessary, but not
sufficient, condition that the simulations have converged to the true
form.

4.2.1 Satellite galaxy count kernel

At halo masses near our cut-off value of 1013.5 M�, the mean
occupation number is less than 10 and the fractional scatter is
larger than ∼0.4. The odds of encountering a halo with Nsat = 0 is
therefore non-negligible. The BM simulation has 72 such satellite-
empty haloes, a higher frequency than MGTM and TNG300, both of
which have 5. For BM, we therefore introduce a cut-off of 1013.8 M�
when we extract the normalized residual kernel. Above this modified
mass, we find only two haloes with zero satellites. The skewness

Figure 5. Mean mass-conditioned kernel – PDF of the normalized resid-
uals, equation (8) – for ln Nsat at z = 0 using a lower halo mass limit
of 1013.8 M� for BM (to avoid discreteness features from the lowest Nsat

haloes, see text) and 1013.5 M� for the other two simulations. A Gaussian
mixture model (bold black line, with two components shaded) provides a
much better fit than a single Gaussian (grey line). GMM fit parameters for
the combined z ≤ 1 samples across all simulations are given in Table 4 and
individual sample values in Table B1.

and other statistics are not strongly affected by this choice.3 In all
simulations, the small number of empty haloes are removed before
producing LLR statistics.

The PDF of the normalized, mass-conditioned residuals, equa-
tion (8), in ln Nsat, defines the kernel shown for the z = 0 halo
populations in Fig. 5. Confidence bands are constructed from
1000 bootstrap realizations of the samples, through computing 1σ

confidence intervals for the probability in each normalized residual
bin.

3An alternative approach where we smooth the occupation count by adding
random deviates in the range ±0.5 to Nsat produces a similar effect of
removing the discreteness feature.
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The three simulation populations exhibit very similar kernel
shapes evident in their overlapping contours. The standard normal,
G(x, 1),4 shown as the grey line, is not a good description of this
left-leaning distribution, which has a normalized skewness value of
γ ≡ E[( x−μ

σ
)3] = −0.9.

A natural extension, one that enables efficient calculation with the
analytical framework of Evrard et al. (2014), is a two-component
Gaussian mixture

Pr(x) = f1 G(x − μ1, σ1) + (1 − f1) G(x − μ2, σ2), (9)

where f1 is the weight of a Gaussian with mean, μ1, and standard
deviation, σ 1, and 1 − f1 the weight of a second Gaussian with
mean, μ2, and standard deviation, σ 2.

The GMM result, shown as the bold black line with individual
components as grey, shaded regions, provides a good fit to the
reduced population statistics of all three simulations. Performing
a Bayesian Information Criterion (BIC) test confirms that a two-
component model is the most optimal at replicating this distribution.
Increasing the number of components in the GMM is not supported
by the BIC criteria and adds no significant improvement in fitting
the residuals. We considered an alternative fit using an Edgeworth
expansion (Shaw et al. 2010) but the mixture model is preferred
because, unlike the Edgeworth expansion, it guarantees a positive-
definite probability distribution.

The GMM fit parameters and skewness measures are presented
in Section 4.4, where we explore the dependence of this shape
on redshift. The dominant component of the GMM, representing
80 per cent of the halo population, is centred near 0.3 and has
normalized variance of (0.68)2, smaller than the complete popu-
lation by a factor of 2. The remaining one-fifth of the population
is centred near −1 with variance (1.13)2. Given the important role
of variance in cluster cosmological applications (e.g. Allen et al.
2011), empirical methods to separate these populations could yield
significant benefits.

4.2.2 Total and central stellar mass kernels

Unlike the skewed residuals in satellite galaxy count, the residuals
in total stellar mass within R200c, shown in the top panel of Fig. 6,
are much closer to Gaussian in shape. The skewness is consistent
with zero for TNG300 and MGTM, and the BM value of γ =
−0.24 ± 0.02 at z = 0 value is much smaller than the −0.9 value
displayed by the satellite galaxy counts. The Gaussianity of the
residuals in ln M�,tot for TNG300 and MGTM confirm the same
result found previously for the BM sample only by Farahi et al.
(2018).

When a system is subject to many random multiplicative factors,
the central limit theorem argues for a kernel shape that is lognormal,
or Gaussian in log-space (Adams & Fatuzzo 1996). We postulate
that the formation of individual stellar particles in cosmological
simulations is dictated by such multiplicative factors, while the
aggregated effort to form many individual star particles into a single
galaxy entails fewer effective degrees of freedom and so can deviate
more from log-normality.

The kernel shape for central galaxy stellar mass, shown in the
bottom panel of Fig. 6, is also negatively skewed. The shapes for
TNG300 and MGTM show good agreement, with γ � −0.8, while
BM tends closer to log-normality, with γ � −0.3. Unfortunately,

4Using notation G(x − μ, σ ) dx = 1√
2πσ

exp(− (x−μ)2

2σ 2 ) dx.

Figure 6. Mean mass-conditioned kernels for ln M�,tot (top) and ln M�,BCG

(bottom) at z = 0 for haloes with mass above 1013.5 M� in all simulations.
The solid black line shows the standard normal distribution.

the shape of the kernel from the higher resolution B100 run is not
well defined because of the much smaller sample of haloes available
in that simulation. Given the low stellar particle resolution of BM,
we tentatively promote the −0.8 value as more likely, but defer
more careful analysis to future simulations with higher resolution.

4.3 Mass-conditioned correlations in stellar properties

There are physical reasons to anticipate correlations between
elements of the stellar property vector conditioned on total halo
mass. The tidal disruption and accretion of satellite galaxy stellar
material on to a halo’s central galaxy is a well-known mechanism
for producing an anticorrelation between Nsat and M�,BCG.

It has long been postulated that central galaxies in groups and
clusters increase their stellar mass via mergers (e.g. Tremaine &
Richstone 1977). Recent high-resolution hydrodynamical simula-
tions (Cui et al. 2014; Bahé et al. 2017; Bahé et al. 2019; Tremmel
et al. 2019) and semi-analytic models (Croton et al. 2006; De
Lucia & Blaizot 2007; Bradshaw et al. 2020) confirm the growth of
centrals at the expense of satellites.

The Hydrangea suite of simulations (Bahé et al. 2019) find that,
across the mass range we study here, the majority of galaxies
accreted at z < 2 do not survive to the present. While some caution
is required, as even the highest resolution studies may not yet be
converged (van den Bosch & Ogiya 2018, but see appendix of
Bahé et al. 2019), observational studies also support the growth
of central galaxies and intracluster light over time (Zhang et al.

MNRAS 495, 686–704 (2020)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/495/1/686/5826180 by Liverpool John M
oores U

niversity user on 02 June 2020



694 D. Anbajagane et al.

Figure 7. Correlation coefficients, at fixed Mhalo, of Nsat and M�,BCG (top),
M�,tot and M�,BCG (middle), and M�,tot and Nsat (bottom).

2016; Tang et al. 2018; Zhang et al. 2019). In the Illustris and
TNG300 simulations, galaxies with stellar mass greater than a few
1011 M� are mostly made of ex situ stars accumulated through
the merging and accretion of material from other galaxies (see
Rodriguez-Gomez et al. 2016; Pillepich et al. 2018b, and references
therein).

As a result of this dynamical processing, all simulations display
mildly anticorrelated behaviour between Nsat and M�,BCG at z =
0. The top panel of Fig. 7 shows that correlation coefficient, r �
−0.4, is nearly independent of halo mass in all realizations. The
smaller values of the BM correlation at low halo masses are driven
by the larger variance in ln Nsat seen in that run. The high-resolution
B100 model, with lower scatter in Nsat compared to BM, yields a
larger correlation coefficient consistent with the values seen in the
TNG300 and MGTM.

The correlation coefficients of the remaining pairs are sensitive to
the central galaxy stellar mass statistics, particularly the normaliza-
tion and scatter, and the MGTM central galaxy population is extreme
in both measures. As a result, the mass-conditioned correlation
coefficients of M�,tot and M�,BCG, as well as Nsat and M�,tot (middle
and lower panels of Fig. 7, respectively) show behaviours for which
MGTM differs from the others.

For the pairing of M�,tot and M�,BCG at fixed halo mass, stronger
correlation is seen in MGTM because that simulation has a very
low scatter in total stellar mass, making the role of central galaxy
variations more prominent. The central galaxies in MGTM also
contribute the largest fraction of total stellar mass. At 1014 M�, the

stellar mass fraction of the central galaxy, M�,BCG
M�,tot

, in the simulations
are 0.42 (MGTM), 0.40 (TNG300), 0.35 (B100), and 0.27 (BM).

One would reasonably anticipate a positive correlation between
Nsat and M�,tot at fixed Mhalo, as haloes with more satellite galaxies
should also have a larger total stellar mass. The bottom panel
of Fig. 7 shows that the BM, B100, and TNG300 simulations
follow that expectation, albeit with somewhat different magnitudes
between 0.25 and 0.5. The MGTM simulation, however, exhibits a
weak anticorrelation between these two properties. This counter-
intuitive result is explained by the non-Gaussian scatter in the full
space of residuals that we examine next.

4.3.1 Non-Gaussian features in residual space

Except for total stellar mass, the one-dimensional kernels in Figs 5
and 6 display non-Gaussian features that we speculate could be
related to merger tree entropy, which also displays a skew normal
form (Obreschkow et al. 2020). To expand the view into the full 3D
space of residuals, Fig. 8 shows normalized residuals in Nsat and
M�,tot for each halo coloured by its M�,BCG residuals.

It is evident by eye that the three simulations exhibit somewhat
different forms. The BM and TNG300 residuals show positive
correlation in Nsat and M�,tot with shapes that are approximately
elliptical. In particular, all haloes with extreme low satellite galaxy
counts (given a halo mass) also have low total stellar mass. The
lower right quadrant, corresponding to haloes with low numbers of
satellites but high total stellar mass, is relatively vacant.

The MGTM residuals, in contrast, include a few outlying points
in this lower-right quandrant, and it is these systems that drive the
weak anticorrelation between Nsat and M�,tot seen for this simulation
in the lower panel of Fig. 7.

Note that the applied point colours change in the same manner
in all the simulations, with low to high M�,BCG residuals running
from the top-left to the bottom-right. This pattern reflects the rough
agreement of the correlations involving M�,BCG shown in the top
two panels of Fig. 7.

4.4 Redshift behaviour and low-z GMM Nsat fit

Returning to the issue of kernel shapes, we find that the skewness
in the Nsat and M�,tot kernel shapes varies little with redshifts z

≤ 1. Fig. 9 shows these values at discrete redshifts for simulation
samples with at least 300 haloes above 1013.5 M�.

As noted previously, the BCG stellar mass (shown at z = 0 only)
is skew negative with γ � −0.8 in both MGTM and TNG300, while
the value for BM is much smaller, −0.3. For B100 we find γ =
−0.71 ± 0.26, where the large error reflects the small sample size
of <100 haloes.

The skewness in total stellar mass varies across the simulations,
but is limited to the range [−0.3, 0.3]. The TNG300 results are
consistent with zero at all redshifts while zero values are found by
MGTM and BM at some redshifts.

In contrast, the skewness in ln Nsat is both consistent across
simulations and persistent in redshift. Having verified robustness
of the Nsat kernel shape, we combine the z = 0, 0.5, and 1 redshift
samples from all three simulations into a superset ensemble of more
than 26 000 haloes. Parameters from this superset, given in Table 4,
are precisely constrained by this large halo ensemble, with statistical
uncertainties of a few per cent in most parameters.

Beyond skewness, there is also good agreement in the GMM
parameters of the Nsat kernel, shown for the three different
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Multisim massive halo property statistics 695

Figure 8. Normalized residuals of Nsat and M�,tot coloured by the M�,BCG residuals for all haloes at z = 0. The BM sample uses a halo mass threshold of
1013.8 M� while the others use 1013.5 M�.

Figure 9. Skewness of the normalized, mass-conditioned residuals in Nsat

(solid circles) and M�,tot (open circles) for samples with at least 300 haloes
above 1013.5 M� at each redshift. The M�,BCG skewness (open diamond) is
shown only at z = 0, offset by −0.05 in redshift to improve readability. The
grey band is a 68 per cent interval for the Nsat skewness obtained using the
combined halo populations of all three simulations at z = 0, 0.5, and 1.

Table 4. Satellite galaxy kernel skewness, γ , and GMM fit
parameters for the combined z = 0, 0.5, 1 halo populations of
all three simulations above a halo mass of 1013.5 M� (1013.8 M�
for BM at z = 0 only), with uncertainties from bootstrap
(skewness) and MCMC posterior sampling (GMM parameters).
The superset contains a total of 26 332 haloes.

Parameter Value

γ − 0.91 ± 0.02
f1 0.79 ± 0.01
μ1 0.28 ± 0.01
μ2 − 1.04 ± 0.05
σ 1 0.68 ± 0.01
σ 2 1.13 ± 0.02

simulations as a function of redshift in Fig. 10. The superset sample
values of Table 4, shown as the grey bands in Fig. 10, indicate that
the halo population consists of an 80 per cent majority with mean
0.28 ± 0.01 and dispersion 0.68 ± 0.01 along with a wider, left-
leaning minority having mean −1.04 ± 0.05 and scatter 1.13 ± 0.02.
In the next section, we use importance sampling to trace how these
components map to different distributions in central galaxy stellar
mass.

Due to the steepness of the cosmic mass function, the shape of
the Nsat kernel is heavily weighted by haloes near the cut-off mass
scale of 1013.5 M�. In Fig. 11, we show how the skewness runs

Figure 10. Gaussian mixture model parameters for the Nsat kernel, equa-
tion (9), with solid and open circles giving the first and second components,
respectively. Values for each simulation are given in Table B1. Grey bands
are 68 per cent confidence bands derived from the superset of all simulation
populations at z = 0, 0.5 and 1 (see Table 4).

with applied cut-off mass, up to a limit for each sample at which
the number of haloes falls below 300. While somewhat arbitrary,
the 68 per cent bootstrap uncertainties for smaller samples become
large and the results uninformative.

At 1014 M�, all simulations show that the shape is somewhat less
skewed, with γ ∼ −0.75. At higher masses, we rely solely on the
massive MACSIS sample, which displays asymptotic behaviour to
∼−0.65 ± 0.15. We leave it to future work with larger simulation
ensembles to address this question in more detail.

5 TOWARDS SURV EY VA LI DATI ON:
SECONDARY SELECTI ON EFFECTS

In this section, we explore how secondary selection in BCG stellar
mass affects the statistical properties of satellite count and total
stellar mass. For the TNG300 simulation, we also explore secondary
selection in halo formation epoch.
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696 D. Anbajagane et al.

Figure 11. Skew in the ln Nsat kernel as a function of lower mass limit,
Mcut. The maximum Mcut value is set by a requirement that samples contain
at least 300 haloes.

Application of secondary selection to cluster surveys requires
a statistical model relating cluster properties, especially those in-
volved in selection, to our primary selection variable. The consistent
patterns exhibited by these simulations are testable with current
surveys when selection and projection effects are properly included.
A preparatory step towards sample modelling could be to use
synthetic Chandra and XMM observations of the simulated halo
ensembles (Biffi et al. 2012; Le Brun et al. 2014; Koulouridis
et al. 2018; ZuHone et al. 2018) to explore expectations for cluster
samples selected by core-excised X-ray flux (Mantz et al. 2018).

The ultimate aim is to validate these expectations in observed
cluster samples with high-quality, uniform optical properties, such
as SDSS (York et al. 2000), DES (The Dark Energy Survey
Collaboration 2005) and, in the future, LSST (Ivezić et al. 2019) and
Euclid (Laureijs et al. 2011; Racca et al. 2016). Such validation will
require an observable mass proxy, such as weak lensing mass or hot
gas mass, that itself is likely to correlate with the stellar properties
under consideration (Wu et al. 2015; Farahi et al. 2018, 2019b).

5.1 Secondary selection on M�,BCG

The correlation structure in the top two panels of Fig. 7 provides
a lever arm for secondary selection in BCG stellar mass. We first
explore this structure using the mixture model in satellite galaxy
count, Nsat.

The top panel of Fig. 12 displays the residual correlations of
M�,BCG and Nsat for the z = 0 TNG300 halo population (results are
similar for the other two simulations). This panel is merely a rotated
version of the middle panel in Fig. 8. An anticorrelation is apparent,
with non-Gaussian tails in both directions. As shown below, the tail
to low central galaxy stellar mass is associated with late-forming
systems.

The lower panel of Fig. 12 illustrates the utility of the Gaussian
mixture model for Nsat to stratify the halo population in a property
correlated with it. The two shaded regions shown in the lower panel
of Fig. 12 are built from importance sampling the two components
of the mixture whose parameters are given in Table 4. Haloes
associated with the minority component, the broad tail displaced to
lower Nsat, possess central galaxies with higher M�,BCG values (mean
of 0.4 and width of 0.7) shown by the darker shaded component
(consistent with the darker shaded component of Fig. 5). This region
overlaps with the dominant, lighter shaded component that has a

Figure 12. Mixture model demonstration for the TNG300 halo pop-
ulation at z = 0. Upper: Distribution of normalized residuals in the
ln M�,BCG– ln Nsat plane, coloured by the residual in ln M�,tot. Lower:
Importance-sampling of the two GMM components in satellite galaxy count
produces offset kernels in ln M�,BCG. The darker shading at high M�,BCG

corresponds to the darker shaded GMM component at low Nsat in Fig. 5,
and vice versa for the light shading, as anticipated by the residuals above.

mean of −0.09 and standard deviation 0.99. Both components are
skewed negative with similar values of γ = −0.75, reflecting the
non-Gaussian structure of the residuals in both components.

This structure implies that sub-samples of haloes with lower
than average (given their halo mass) central galaxy stellar masses,
those below roughly −2σ , are comprised almost exclusively of
the dominant component in Nsat. Haloes with higher than average
central galaxy stellar masses, in contrast, consist of an Nsat mixture
in which the minority component is enhanced but not dominant.

We can expand on this result by treating M�,BCG as a secondary
selection variable (total halo mass being the primary selection). We
divide each simulation sample into two subsets based on whether a
halo’s central galaxy stellar mass lies above or below the LLR mean
expectation at that halo mass, meaning we are selecting secondarily
on the sign of the residual (equation 4). Note that, due to the
non-Gaussian shape of the M�,BCG kernel, this does not split the
population into sub-samples of equal size.

Fig. 13 shows cumulative distribution functions (CDFs) for Nsat

(top) and M�,tot (bottom) for the full population (dotted lines) as
well as the high and low M�,BCG halo subsets. Because the scatter
in Nsat for the BM simulations is spuriously enhanced by its coarse
stellar mass resolution (see Figs 3 and 7), we do not show that model
in the top panel.

Secondary selection by M�,BCG generates fairly dramatic shifts
in the CDFs of both ln Nsat and ln M�,tot. Haloes with lower than
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Figure 13. Cumulative distribution functions for residuals in ln Nsat (upper)
and ln M�,tot (lower) conditioned on relative M�,BCG and total halo mass.
Solid lines show haloes with higher than LLR-averaged M�,BCG while
dashed lines show the opposite. Dotted lines show the behaviour of the
full population, unconditioned on M�,BCG. The BM sample is omitted from
the top plot (see text).

Table 5. Kernel offsets, the shifts in normalized cumulants shown as the
dashed and solid lines in Figs 13 and 14, for sub-samples split by M�,BCG

and (for TNG300 only) zform.

Sample (selection) Nsat M�,tot M�,BCG

rms max rms max rms max

BM (M�,BCG) (0.30) (0.39) 0.63 0.86 – –
MGTM (M�,BCG) 0.72 1.03 0.98 1.16 – –
TNG300 (M�,BCG) 0.63 1.02 0.57 0.65 – –
TNG300 (zform) 0.41 0.59 0.18 0.39 0.79 1.22

average BCG stellar masses tend to have both higher numbers of
satellite galaxies as well as lower total stellar masses. Table 5 lists
root mean square and maximum values of the CDF offsets, |x2 −
x1|, in normalized Nsat or M�,tot deviation, where x is the cumulant
location at which the integrated probability takes some fixed value,
CDF(x2) = CDF(x1) = constant. To minimize discreteness effects
in the rare event tails of these distributions, values in the table are
limited to CDF values in the range (0.1, 0.9).

The rms values, in Table 5 give us the same information as
the correlations, as evidenced by the simulation ordering of the
cumulant shifts reflecting the ordering of the M�,BCG–Nsat and
M�,BCG–M�,tot correlations in Fig. 7. For residual CDFs in both
ln Nsat and ln M�,tot, MGTM shows the largest rms offset, and its

correlations also have the largest magnitude. For the residual CDFs
of ln M�,tot, BM and TNG300 show similar deviations, since their
correlations are in agreement for a large part of the halo mass
range.

5.2 Secondary selection on formation epoch, zform

The mass-conditioned covariance among stellar properties and
non-Gaussian kernel shapes in Nsat and M�,BCG are related to the
formation histories sampled by these discrete halo populations. For
example, Bradshaw et al. (2020) use the semi-analytic UniverseMa-
chine model (Behroozi et al. 2019) to demonstrate that relative BCG
stellar mass is correlated with the age of a halo, while total stellar
mass is nearly independent of age.

We examine this behaviour for TNG300, the simulation for which
data to derive formation time estimates are publicly available.
Analysing the merger tree of each z = 0 halo, we define the
formation redshift, zform, as the epoch at which the total mass of a
halo falls to half of its final value. After LLR fitting zform versus halo
mass, we condition the residuals of ln Nsat, ln M�,tot, and ln M�,BCG

on the sign of the zform residuals.
In Fig. 14, we present the residual CDFs for the two sub-

populations in all three stellar properties. For the upper two panels,
showing Nsat and M�,tot, we compare to secondary conditioning
using M�,BCG, presented above.

The Nsat CDF (top panel) shows similar deviations when condi-
tioned on either M�,BCG or zform. Namely, haloes of a younger age
(i.e. with lower than average zform) and with lower central galaxy
stellar mass are surrounded by a larger number of satellite galaxies.
Our results agree with those of Bose et al. (2019), who find a split
in the Nsat scaling relations when conditioning on zform for a TNG
sample spanning a wider range in halo mass.

In contrast, the M�,tot CDF (middle panel) shows differences
between the two secondary selection variables. The positive corre-
lation with M�,BCG produces a shift of 0.57 in the M�,tot CDF split by
central galaxy stellar mass. A much weaker correlation with zform

yields a smaller shift of 0.16 in the M�,tot CDF. The latter finding is
in qualitative agreement with Bradshaw et al. (2020), who find no
offset in the SMHM relation when conditioning on zform.

The central galaxy stellar mass (bottom panel of Fig. 14) is most
sensitive to formation history, with an 0.8σ rms shift in the CDF. The
tail below −1σ in M�,BCG is almost exclusively late-forming haloes.
These shifts are again in qualitative agreement with Bradshaw
et al. (2020), who find a difference of 0.2 dex in the M�,BCG–Mhalo

relation between the top and bottom 20 per cent ranked haloes in
zform.

Fig. 15 provides a view of how formation redshift maps on to the
space of residuals in total and BCG stellar masses in the TNG300
population. Loci of constant formation time are oriented roughly
along the diagonal, with early-forming systems tending to have
brighter than average BCGs overall but with total stellar masses
that span the full range above and below the mean.

Other hydrodynamic simulation studies have also studied the
satellite galaxy HOD conditioned on zform, finding that younger
haloes have preferentially more satellites (Artale et al. 2018;
Bose et al. 2019). This feature they explain by older haloes
losing more satellites to mergers with central galaxies, an in-
terpretation supported by Matthee et al. (2017) and Bradshaw
et al. (2020).

Bradshaw et al. (2020) also find that the ex situ stellar mass, ma-
terial obtained through mergers with satellites, correlates strongly
with zform, with central galaxies in older haloes containing more ex
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Figure 14. For the TNG300 z = 0 sample, cumulative distribution functions
for satellite galaxy counts (top) and total stellar mass (middle) conditioned on
halo formation time, zform (orange) and M�,BCG (purple). The bottom panel
shows the residual CDFs of the central galaxy stellar mass conditioned on
zform.

situ stellar mass. Conversely, the in situ stellar mass shows no zform

dependence.
While halo formation times are not directly observable, other

properties, such as the magnitude gap, can serve as a proxy. Farahi,
Ho & Trac (2020) use the same TNG300 simulation as us to
study the secondary conditioning of multiple halo properties –
including the three we investigate here – on the magnitude gap.
Their results are qualitatively in agreement with ours, showing
magnitude gap-dependent separations in the Nsat- and M�,BCG–Mhalo

scaling relations, and little to no striation in the M�,tot–Mhalo scaling
relation.

Figure 15. Normalized residuals in the M�,tot–M�,BCG plane coloured by
zform for the TNG300 z = 0 halo sample.

6 D ISCUSSION

6.1 Property extensions and scale dependence of halo
population statistics

The capacity of cosmological hydrodynamical simulations has
expanded to the point where multiple simulation methods can
produce halo populations containing many millions of objects
across the full range of resolved scales, from individual galaxies
to rich clusters of galaxies. Future work can investigate the degree
of self-similarity of our findings by considering a wider range in
halo mass. The sensitivity of a halo’s properties to its merger tree
entropy may yield new insights (Obreschkow et al. 2020).

In general, integrated physical properties connect to halo mass
and redshift in a way that combines secular scaling of mean
behaviour with stochastic variations for individual objects. We
intend to expand our study to include more features, such as hot gas
masses, X-ray temperatures and luminosities, and galaxy velocities.
For example, Farahi et al. (2018) find that the joint kernel of hot
gas mass and total stellar mass is well described by a simple two-
dimensional Gaussian with moderate anticorrelation between these
mass fractions. The anticorrelation reflects the fact that, compared
to the 1012 M� haloes hosting individual bright galaxies that lose
considerable fraction of their baryons (Bregman et al. 2018), the
cosmic mix of baryons is more nearly retained within the deep
gravitational potential wells of clusters. Verifying this and other
multiphase signatures in TNG and MGTM solutions remains to be
done.

Our study is focused on verifying stellar property statistics for
massive halo populations derived from simulations that employ
multiple cosmological hydrodynamics methods. However, other
approaches, particularly semi-analytic methods (SAMs) that assign
galaxy properties to N-body haloes and sub-haloes in a manner
constrained by empirical data, are also capable of producing
population-level expectations. The qualitative agreement we find
with Bradshaw et al. (2020) on property correlations, and other
features such as running of Nsat scatter with mass, should be
investigated more carefully to gain insights into the robustness
of our findings and the limitations of both SAM and full hydro
methods.

An open question is whether SAM methods produce kernel
shapes for satellite galaxy counts and central galaxy stellar mass that
are negatively skewed to the degree seen in the three cosmological
simulations studied here. It is worth noting that, compared to
cosmological hydrodynamics simulations, SAM populations re-
quire significantly less computational time and energy to produce,
meaning that sensitive kernel shape measurements may be possible
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using large populations even at mass scales above 1015 M�. Direct
comparison of SAM and hydro population statistics would be a
preliminary step in this direction.

6.2 Implications for optical cluster survey likelihoods

The intrinsic satellite galaxy count is a core ingredient of models
that use optical cluster counts in richness and redshift to constrain
cosmology (Rozo et al. 2010; Chiu et al. 2019; Costanzi et al. 2019).
However, due primarily to line-of-sight projection, the optical
richness measured for a cluster is a noisy measure of the 1 + Nsat

occupation intrinsic to haloes (e.g. Cohn et al. 2007), an expectation
confirmed by spectroscopic follow-up studies of SDSS redMaPPer
clusters (Sohn et al. 2018).

Cluster richness can be modelled as a sum of partial contributions
from haloes (Farahi et al. 2016), so future work may lead to likeli-
hoods employing a mixture of mixtures, one mixture representing
contributions of multiple haloes to the richness λ, the other mixture
expressing intrinsic richness at a given halo mass (the one we study
here).

We note that secondary selection to identify the narrow Nsat

component is a potential boon to cosmological studies. Shifts in
mean halo mass associated with property selection scale as the
variance (Evrard et al. 2014), so the factor two smaller variance in
satellite galaxy count at fixed halo mass for the narrow component
(Table 4) could potentially be exploited to more accurately calibrate
mean masses via stacked weak lensing analysis (e.g. McClintock
et al. 2019).

6.3 Cyberinfrastructure improvements

Our study has been greatly enabled by the availability of full data
releases of the IllustrisTNG simulations (Nelson et al. 2019), and
a partial public release of Magneticum Pathfinder (Ragagnin et al.
2017). The democratization of the data, through the availability of
uniform, catalogue-level simulation products to the public, is key
to permitting more in-depth analyses of halo population statistics
derived from multiple cosmological simulations.

Looking even further, reproducible computational science bene-
fits from having open community access to the specific simulation
methods, both production and analysis code bases, used in simu-
lation studies (e.g. Stodden et al. 2016). The scale of simulation
data volumes makes it difficult to move high-resolution data to
a central location, but a future in which distributed, containerized
analysis environments (Raddick et al. 2019) operate using improved
discoverability standards (Languignon et al. 2017) could greatly
simplify and empower verification studies of the type we perform
here.

7 SU M M A RY

Motivated by the need to verify the highly detailed solutions
produced by complex cosmological simulations, we perform a sta-
tistical study of the stellar and satellite galaxy contents within halo
populations produced by three large cosmological hydrodynamics
simulations. These include simulated samples from BAHAMAS
and MACSIS, a volume from the Magneticum suite, and TNG300
from the IllustrisTNG Project. We focus here on features that
describe the galaxy–halo connection – the stellar-mass limited
satellite galaxy occupation, Nsat, the stellar mass of the central
galaxy, M�,BCG, and the total stellar mass within the halo, M�,tot

– in haloes with total mass exceeding 1013.5 M�.

By applying a local linear regression method, we summarize the
form of the mass-conditioned kernel, Pr(ln S | Mhalo, z), where S
is the set of aforementioned stellar properties. We provide local
regression fit parameters for these properties – normalizations,
slopes, and covariance – sampled over roughly two orders of
magnitude in halo mass at z = 0. These samples contain from 1000
to 9000 objects, and this large scale allows us, by marginalizing over
halo mass, to analyse the mean shape of the conditional kernel for
each stellar property. Our analysis effectively compresses a large
amount of raw output data into a highly compact analytic form
useful for modelling statistical likelihoods.

Our main results are summarized in the following points.

(i) We verify common kernel shapes for the satellite count, Nsat,
and total stellar mass, M�,tot, where the former is skewed negatively,
with skewness parameter γ = −0.91 ± 0.02, and the latter being
much closer to Gaussian (|γ | < 0.3). For the population of haloes
above 1013.5 at z≤ 1, we provide a two-component Gaussian mixture
fit to the Nsat kernel (Table 4), but note the shape is mildly sensitive
to this halo mass threshold. The z = 0 kernel shape of M�,BCG is
also negatively skewed, with MGTM and TNG300 finding skewness
−0.8.

(ii) While the values of halo mass-conditioned regression pa-
rameters (slope, normalization, and covariance) are often in mild
tension among the three simulations, we find areas of qualitative
agreement: (i) the scatter in ln Nsat depends on halo mass and is
slightly super-Poissonion (Fig. 3); (ii) the scaling of total stellar
mass is consistently sub-linear and the fractional scatter in M�,tot is
below 10 per cent for haloes above 2 × 1014 M� (Fig. 4); (iii) the
mass-conditioned residuals in Nsat and M�,BCG are anticorrelated
while those in M�,BCG and M�,tot are positively correlated (Fig. 7).

(iii) All simulations find that haloes with bigger than average
central galaxies have both fewer than average satellite galaxies
and larger than average total stellar mass. The former is consistent
with a picture in which earlier-forming systems cannibalize satellite
galaxies to the benefit of the BCG.

(iv) For TNG300, the mass-conditioned formation redshift cor-
relates strongly with M�,BCG and Nsat but weakly with M�,tot.

(v) The structure of the mass-conditioned stellar property resid-
uals is more similar in BM and TNG300 than MGTM (Fig. 8).

The low-order statistical measures of our study are empirically
testable through careful analysis of scaling behaviour in large
cluster samples. Sample selection, mis-centring, projection, and
the evolution of galaxy colours are all confounding factors to be
addressed in such studies.

With nearly one million haloes above 1014 M� anticipated on the
full sky (Allen et al. 2011), the demand for improved statistical
representations linking cluster observable properties to those of the
underlying halo population will only grow in the era of deep all-sky
surveys across millimetre, optical-IR, and X-ray wavelengths.
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also the Max Planck Computing and Data Facility (MPCDF) of the
Max Planck Society.

The TNG simulations were run with compute time granted by
the Gauss Centre for Supercomputing (GCS) under Large-Scale
Projects GCS-ILLU and GCS-DWAR on the GCS share of the
supercomputer Hazel Hen at the High Performance Computing
Center Stuttgart (HLRS).

The Magneticum simulations were performed at the Leibniz-
Rechenzentrum with CPU time assigned to the Project ‘pr86re’.

All analysis in this work was enabled greatly by the following
software: PANDAS (McKinney 2011), NUMPY (van der Walt, Colbert
& Varoquaux 2011), SCIPY (Virtanen et al. 2020), SCI-KIT LEARN

(Pedregosa et al. 2011), and MATPLOTLIB (Hunter 2007).
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APPENDI X A : LLR FI TS TO BCG AND TOTA L
STELLAR MASS

Fig. A1 shows the scaling of total stellar mass within R200c with
halo mass at z = 0, including a panel for comparisons of the
normalizations. Note that we do not account for differences in
the cosmic baryon fraction, fb = �b/�m, of the simulations here.
Accounting for these differences brings the normalizations into
slightly better agreement.

The scaling relations for M�,BCG–Mhalo, shown in Fig. A2, reveal
that the central galaxies in MGTM are a factor ∼2–3 more massive
than those in TNG300 and BM.

Figure A1. Scaling of total stellar mass within R200c at z = 0 in the three simulations. Format is identical to Fig. 2.
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Figure A2. Scaling of central galaxy stellar mass within R200c at z = 0 in the three simulations. Format is identical to Fig. 2.

APPENDIX B: G MM, SKEWNESS, AND LLR
FIT PA R A M ETERS

We provide individual simulation values of the Nsat skewness and
GMM fit parameters in Table B1. We also provide the LLR fit

parameters for massive halos at z = 0 for BM (Table B2), B100
(Table B3), MGTM (Table B4), and TNG300 (Table B5).

The remaining tables provide z = 0 LLR fit parameters as a
function of total halo mass, sampled in 0.1 dex intervals in the log
of halo mass.

Table B1. Parameters of the Nsat Gaussian mixture model (Fig. 10), and the kernel skewness (Fig. 9) for all simulations having samples of
>300 haloes with Mhalo > 1013.5 M� at the available redshifts.

z μ1 μ2 σ 1 σ 2 f1 γ (Nsat) γ (M�,tot) γ (M�,BCG)

BM
0a 0.25 ± 0.03 −0.91 ± 0.12 0.67 ± 0.02 1.05 ± 0.04 0.79 ± 0.03 −0.85 ± 0.05 −0.26 ± 0.02 −0.31 ± 0.03
0.5 0.31 ± 0.02 −0.90 ± 0.08 0.64 ± 0.01 1.05 ± 0.03 0.74 ± 0.03 −0.93 ± 0.04 −0.19 ± 0.03 −0.39 ± 0.03
1 0.29 ± 0.02 −0.99 ± 0.1 0.63 ± 0.02 1.06 ± 0.04 0.77 ± 0.027 −0.99 ± 0.05 −0.05 ± 0.04 −0.34 ± 0.04
1.5 0.28 ± 0.03 −1.01 ± 0.18 0.67 ± 0.02 1.06 ± 0.06 0.78 ± 0.04 −0.87 ± 0.06 −0.20 ± 0.10 −0.39 ± 0.09
2 0.24 ± 0.06 −1.03 ± 0.35 0.70 ± 0.39 1.06 ± 0.11 0.81 ± 0.07 −0.73 ± 0.09 −0.23 ± 0.21 −0.56 ± 0.14

MGTM
0 0.25 ± 0.02 −1.08 ± 0.14 0.71 ± 0.02 1.19 ± 0.05 0.82 ± 0.03 −0.96 ± 0.05 −0.020 ± 0.05 −0.80 ± 0.05
0.5 0.23 ± 0.02 −1.02 ± 0.15 0.65 ± 0.02 1.05 ± 0.05 0.83 ± 0.03 −0.89 ± 0.07 0.31 ± 0.06 N/Ab

1 0.23 ± 0.03 −0.99 ± 0.18 0.65 ± 0.02 1.08 ± 0.07 0.82 ± 0.04 −0.98 ± 0.10 0.33 ± 0.06 N/Ab

TNG300
0 0.25 ± 0.05 −1.09 ± 0.25 0.67 ± 0.03 1.04 ± 0.08 0.81 ± 0.05 −0.90 ± 0.07 0.034 ± 0.06 −0.73 ± 0.09
0.5 0.23 ± 0.05 −1.05 ± 0.3 0.66 ± 0.03 1.04 ± 0.09 0.81 ± 0.06 −0.92 ± 0.08 0.016 ± 0.13 −0.57 ± 0.08
1 0.28 ± 0.11 −0.72 ± 0.35 0.67 ± 0.07 0.98 ± 0.11 0.74 ± 0.14 −0.70 ± 0.18 −0.06 ± 0.14 −0.59 ± 0.15

aFor GMM parameters and Nsat kernel skewness, the sample uses Mhalo > 1013.8 M�. For the other skewness computations, it is Mhalo >

1013.5 M�
bWe do not have M�,BCG values for MGTM at z > 0.
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Table B2. LLR Fits for BM at z = 0 for Nsat, M�,tot, and M�,BCG. We show the decimal normalization (π10 = log10eπ ), slope (α), and scatter (σ , in ln terms)
for each property, along with the correlation coefficients of property pairs (r).

BM, z = 0
Nsat M�,tot M�,BCG r

log10MHalo π10 α σ π10 α σ π10 α σ NSat–M�,tot NSat–M�,BCG M�,tot–M�,BCG

13.5 0.509 0.888 0.552 11.774 0.826 0.292 11.409 0.436 0.400 0.410 − 0.120 0.630
13.6 0.600 0.911 0.543 11.857 0.828 0.279 11.452 0.434 0.390 0.439 − 0.129 0.582
13.7 0.693 0.931 0.526 11.940 0.831 0.264 11.495 0.433 0.379 0.468 − 0.139 0.530
13.8 0.788 0.947 0.502 12.023 0.836 0.247 11.539 0.436 0.366 0.493 − 0.152 0.476
13.9 0.884 0.955 0.470 12.108 0.843 0.228 11.584 0.443 0.353 0.513 − 0.168 0.421
14.0 0.980 0.957 0.435 12.194 0.852 0.210 11.629 0.451 0.340 0.529 − 0.189 0.368
14.1 1.075 0.953 0.398 12.280 0.860 0.193 11.676 0.461 0.330 0.540 − 0.214 0.319
14.2 1.169 0.946 0.364 12.368 0.869 0.177 11.723 0.469 0.322 0.548 − 0.239 0.277
14.3 1.262 0.937 0.333 12.456 0.878 0.164 11.772 0.478 0.316 0.554 − 0.266 0.240
14.4 1.354 0.928 0.307 12.546 0.890 0.151 11.821 0.489 0.311 0.559 − 0.295 0.203
14.5 1.446 0.917 0.284 12.637 0.903 0.138 11.873 0.505 0.308 0.560 − 0.331 0.163
14.6 1.536 0.908 0.263 12.730 0.916 0.124 11.927 0.526 0.308 0.555 − 0.371 0.123
14.7 1.626 0.903 0.241 12.823 0.927 0.110 11.984 0.553 0.314 0.544 − 0.406 0.096
14.8 1.716 0.902 0.218 12.917 0.936 0.098 12.043 0.579 0.327 0.522 − 0.429 0.091
14.9 1.806 0.904 0.196 13.012 0.941 0.087 12.103 0.590 0.345 0.493 − 0.438 0.107
15.0 1.897 0.909 0.179 13.106 0.946 0.079 12.161 0.576 0.366 0.469 − 0.437 0.127
15.1 1.989 0.919 0.167 13.201 0.952 0.074 12.216 0.544 0.385 0.456 − 0.427 0.138
15.2 2.082 0.936 0.158 13.297 0.960 0.072 12.268 0.516 0.398 0.449 − 0.412 0.141
15.3 2.178 0.954 0.151 13.394 0.969 0.069 12.318 0.509 0.404 0.439 − 0.395 0.141
15.4 2.275 0.967 0.145 13.492 0.977 0.067 12.371 0.522 0.404 0.424 − 0.379 0.142
15.5 2.373 0.979 0.140 13.591 0.983 0.065 12.426 0.542 0.400 0.406 − 0.365 0.148

Table B3. LLR Fits for B100 at z = 0.12 for Nsat, M�,tot, and M�,BCG. We show the decimal normalization (π10 = log10eπ ), slope (α), and scatter (σ , in ln
terms) for each property, along with the correlation coefficients of property pairs (r).

B100, z = 0.12
Nsat M�,tot M�,BCG r

log10MHalo π10 α σ π10 α σ π10 α σ NSat–M�,tot NSat–M�,BCG M�,tot–M�,BCG

13.5 0.646 1.105 0.516 11.836 0.899 0.180 11.545 0.628 0.314 0.269 − 0.367 0.507
13.6 0.758 1.128 0.483 11.926 0.903 0.178 11.608 0.625 0.308 0.281 − 0.349 0.499
13.7 0.871 1.127 0.439 12.016 0.897 0.172 11.667 0.592 0.301 0.300 − 0.325 0.485
13.8 0.980 1.100 0.389 12.104 0.883 0.163 11.718 0.526 0.292 0.334 − 0.298 0.455
13.9 1.084 1.059 0.341 12.190 0.868 0.151 11.759 0.455 0.285 0.385 − 0.279 0.400
14.0 1.184 1.018 0.302 12.275 0.861 0.139 11.800 0.428 0.282 0.452 − 0.281 0.320

Table B4. LLR Fits for MGTM at z = 0.03 for Nsat, M�,tot, and M�,BCG. We show the decimal normalization (π10 = log10eπ ), slope (α), and scatter (σ , in ln
terms) for each property, along with the correlation coefficients of property pairs (r).

MGTM, z = 0.03
Nsat M�,tot M�,BCG r

log10MHalo π10 α σ π10 α σ π10 α σ NSat–M�,tot NSat–M�,BCG M�,tot–M�,BCG

13.5 0.652 1.038 0.445 11.920 0.943 0.102 11.687 0.668 0.294 − 0.068 − 0.479 0.618
13.6 0.756 1.018 0.429 12.014 0.941 0.102 11.754 0.664 0.297 − 0.066 − 0.473 0.618
13.7 0.858 1.000 0.410 12.109 0.941 0.102 11.820 0.660 0.300 − 0.065 − 0.467 0.619
13.8 0.957 0.987 0.387 12.203 0.941 0.101 11.886 0.657 0.305 − 0.067 − 0.461 0.623
13.9 1.054 0.979 0.360 12.297 0.943 0.100 11.951 0.654 0.311 − 0.075 − 0.458 0.630
14.0 1.152 0.977 0.332 12.392 0.946 0.099 12.016 0.652 0.318 − 0.090 − 0.459 0.640
14.1 1.250 0.976 0.304 12.487 0.948 0.099 12.081 0.650 0.323 − 0.109 − 0.465 0.654
14.2 1.347 0.970 0.277 12.582 0.951 0.098 12.146 0.647 0.327 − 0.130 − 0.471 0.669
14.3 1.441 0.956 0.253 12.678 0.953 0.098 12.210 0.645 0.329 − 0.148 − 0.473 0.684
14.4 1.533 0.935 0.230 12.774 0.956 0.098 12.275 0.649 0.331 − 0.161 − 0.471 0.698
14.5 1.623 0.919 0.209 12.870 0.961 0.097 12.342 0.657 0.334 − 0.167 − 0.464 0.707
14.6 1.715 0.919 0.189 12.968 0.967 0.096 12.408 0.654 0.339 − 0.169 − 0.459 0.710
14.7 1.811 0.939 0.170 13.065 0.971 0.094 12.467 0.625 0.342 − 0.170 − 0.462 0.707
14.8 1.912 0.970 0.151 13.162 0.971 0.091 12.518 0.572 0.343 − 0.175 − 0.473 0.700
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Table B5. LLR fits for TNG300 at z = 0 for Nsat, M�,tot, and M�,BCG. We show the decimal normalization (π10 = log10eπ ), slope (α), and scatter (σ , in ln
terms) for each property, along with the correlation coefficients of property pairs (r).

TNG300, z = 0
Nsat M�,tot M�,BCG r

log10MHalo π10 α σ π10 α σ π10 α σ NSat–M�,tot NSat–M�,BCG M�,tot–M�,BCG

13.5 0.520 1.025 0.493 11.670 0.863 0.163 11.414 0.622 0.300 0.222 − 0.348 0.526
13.6 0.623 1.025 0.477 11.757 0.865 0.155 11.476 0.609 0.297 0.234 − 0.355 0.492
13.7 0.725 1.023 0.455 11.844 0.869 0.147 11.536 0.596 0.294 0.245 − 0.364 0.449
13.8 0.827 1.021 0.429 11.931 0.874 0.138 11.594 0.588 0.293 0.255 − 0.374 0.404
13.9 0.929 1.020 0.399 12.020 0.883 0.130 11.653 0.585 0.294 0.262 − 0.379 0.367
14.0 1.031 1.018 0.367 12.110 0.892 0.122 11.711 0.585 0.295 0.269 − 0.381 0.339
14.1 1.133 1.016 0.336 12.200 0.899 0.114 11.770 0.586 0.294 0.278 − 0.378 0.316
14.2 1.234 1.015 0.305 12.291 0.902 0.108 11.829 0.585 0.290 0.291 − 0.373 0.296
14.3 1.335 1.014 0.276 12.381 0.899 0.102 11.885 0.575 0.285 0.305 − 0.369 0.283
14.4 1.437 1.016 0.248 12.470 0.894 0.096 11.938 0.546 0.283 0.314 − 0.370 0.278
14.5 1.539 1.019 0.221 12.558 0.889 0.088 11.983 0.499 0.285 0.317 − 0.378 0.273
14.6 1.642 1.022 0.199 12.646 0.886 0.081 12.024 0.451 0.290 0.314 − 0.392 0.257

This paper has been typeset from a TEX/LATEX file prepared by the author.
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