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Abstract 

In our modern society we are exposed to a myriad of chemical substances. Before 

these substances can be brought onto the market for use and consumption, their 

safety – when used as intended – needs to be confirmed in a risk assessment. 

Typically, a risk assessment comprises a toxicological hazard assessment, the 

quantification of a dose-response relationship, an exposure assessment and a risk 

characterisation under the assessed conditions. Traditionally, a toxicological hazard 

assessment is performed in vivo in laboratory animals, and more recently, in targeted 

in vitro testing. However, due to calls for replacement, reduction and refinement of 

animal testing alternative methods such as in silico models are increasingly being 

used. Also, increasing emphasis is being placed on understanding mechanisms and 

pathways of toxicity as well as quantifying exposure which leads to an adverse effect 

in individuals. Physiologically-based kinetic and mechanistic models allow for a 

mathematical description of causal relationships between an exposure scenario and 

a toxicological outcome in a biological system.  

 

While much research has been focussed on investigating mechanisms of 

hepatotoxicity, little is known about adverse effects induced in the kidney and only 

limited computational models exist to investigate nephrotoxicity. However, the 

kidney is a major target for toxicity by pharmaceuticals and environmental 

pollutants. Accumulation is known to play an important role in certain nephrotoxicity 

pathways. Therefore, physiologically-based kinetic and mechanistic models are 

considered to offer valuable insights into mechanisms of nephrotoxicity. 

 

This thesis addresses the growing attention given to exposure-based and 

toxicokinetics-driven toxicity which has resulted in increasing recent application of 

PBK modelling. The overall aim of this thesis was to propose novel ways to use 

publicly available data for the quantitative assessment of adverse effects induced in 

the kidney following chemical exposure. The first part of this thesis examines the 

suitability of publicly available PBK models for the prediction of urine-level 

concentrations in the general population following oral doses of various chemicals. 

Human biomonitoring (HBM) data were used for validation of simulation results and 

a mixture risk assessment to illustrate how predictions may be used in a risk 

assessment context.  The second part of this thesis shows the development of a 
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mechanistic kidney model embedded in a full-body PBK model parameterised for 

aspirin (ASA) and salicylic acid (SA). The research presented herein demonstrates the 

generation of a novel kidney model which is set up for a young and healthy individual; 

this was amended to simulate kinetics of elderly individuals and tested for three 

exposure scenarios. Key challenges in this endeavour revolve around limited data 

available in the public literature and uncertainties related to scaling in vitro data to 

an in vivo setting. 
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1.0 INTRODUCTION 

1.1 Renal toxicity: a major chemical safety issue 

Acute renal failure in critically ill patients, as well as those with chronic kidney 

disease, was related to drug therapy in about 20% and 35% of cases reported 

respectively (Mehta et al., 2004; Uchino et al., 2005; Zhang et al., 2005). As a result 

of such toxicity, six prescription drugs (beta-ethoxy-lacetanilanide, bucetin, 

phenacetin, suprofen, thiobutabarbitone and zomepirac) were withdrawn from the 

market between 1983 and 1993, at great cost, due to renal adverse events, solely or 

in combination with other adverse effects (Fung et al., 2001). Therefore, eliminating 

drug candidates which cause these adverse effects at early stages of drug design is 

extremely important to ensure patient safety. However, despite its importance for 

drug development and for many other industrial sectors, nephrotoxicity is a complex 

endpoint and often occurs gradually or as a complication related to other pathologies 

such as diabetes (Zaza et al., 2015) and hypertension (Folli et al., 2010), thus making 

it difficult to identify even with sophisticated toxicity testing or clinical trials.  

 

In drug research and development, established approaches to identify kidney 

toxicants have traditionally relied on extensive animal testing. However, the “Toxicity 

Testing in the 21st Century” paradigm calls for use of alternative testing strategies 

(National Research Council, 2007). Computational approaches such as (quantitative) 

structure-activity relationships ((Q)SARs)1 and structural alerts are currently used to 

predict a variety of organ toxicities e.g. for hepatic toxicity (Przybylak and Cronin, 

2012). In recent years, much emphasis has been placed on understanding the 

underlying mechanisms of liver toxicity which have led to the development of several 

Adverse Outcome Pathways (AOPs)2, many structural alerts and QSARs (Przybylak 

and Cronin, 2012; Hewitt and Przybylak, 2016; Cronin and Richarz, 2017). The relative 

progress of the development of alternatives to identify liver toxicants has 

demonstrated that success can be achieved and it is possible to address other organ 

level toxicity in a similar manner. Thus, there is a growing movement to investigate 

 
1In this thesis, (Q)SAR will be mentioned if both SAR and QSAR are referred to while SAR and QSAR 

refer to either approach specifically. 
2An AOP is a conceptual framework that organises scientific knowledge into a sequence of causally 

linked key events between a molecular initiating event (MIE) and an adverse outcome (AO) which 

occur at molecular, cellular, organ/tissue, organism and population levels. AOPs are becoming central 

elements of chemical risk assessment (Ankley et al., 2010; OECD, 2019). 
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these approaches with reference to other important organs in the body in order to 

reach the ultimate goal of mapping the toxicological pathways of pharmaceuticals, 

cosmetics and other chemicals within humans (Sturla et al., 2014).  

 

The kidney is a major target for toxicity elicited by pharmaceuticals but also 

environmental pollutants. Approximately 20% of acquired acute kidney injury (AKI) 

cases are associated with the use of drugs (Naughton, 2008). Being burdened with 

multiple comorbidities, the average patient tends to take several medications which 

may cause kidney injury (Farooqi and Dickhout, 2016). Environmental chemicals 

including certain heavy metals, trichloroethylene, and bromobenzene have been 

known to cause nephrotoxic effects (Van Vleet and Schnellmann, 2003). One of the 

reasons for the kidney being a key target of toxicity may be related to the kinetics of 

many xenobiotic substances. High exposures are reached because of a high blood 

flow in the kidneys and extensive reabsorption, predominantly in the proximal 

tubule.  

 

Considering that renal toxicity is a major chemical safety issue, standard testing, 

which often does not investigate underlying mechanisms, has proven not to be an 

adequate assessment approach. As such, this is an opportunity for the application of 

computational approaches that utilise the knowledge and structure of existing AOPs 

(Cronin and Richarz, 2017; Cronin et al., 2017) to provide a weight of evidence on 

specific mechanisms and dose-response relationships related to nephrotoxicity. In 

addition, in silico approaches using multi-scale data have been demonstrated to 

provide valuable insight into hepatotoxicity pathways and the assessment of inter-

individual variability (Bhattacharya et al., 2012; Diaz Ochoa et al., 2013). Multi-scale 

models incorporate data which span various biological scales, i.e. population, 

individual whole body, tissue and multi-cellular and sub-cellular metabolic and 

signalling pathways (Sluka et al., 2016). As multi-scale modelling has answered some 

of the pressing questions regarding adverse events in the liver, it is likely to hold the 

same potential for kidney related toxicity.  

 

In this introductory Chapter, the current scientific landscape related to 

computational methods for the assessment of pharmaceuticals and other chemicals 

with regard to their potential to elicit nephrotoxicity was reviewed. Current in silico 
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approaches – more specifically physiologically-based mechanistic models – related 

to nephrotoxicity were examined and existing knowledge of relevant toxic 

mechanisms assessed, in order to understand to which extent these have already 

been covered by existing approaches, including AOPs. The following subchapter 

summarises key mechanisms of kidney toxicity in order to outline current knowledge 

which may be used to inform a computational model. 

 

 

1.2 Mechanisms of kidney toxicity 

In order to understand the highly specific adverse effects that may take place in the 

kidney and associated organs, it is essential to appreciate its function and physiology. 

The key function of the kidney is to eliminate endogenous waste products, control 

and maintain blood volume levels, endocrine function, electrolyte content and acid-

base balance (Perazella, 2009; Rang et al., 2016). As a major site of elimination of 

drugs and other chemical compounds, the kidney is a common target for toxicity. 

Since the kidney is highly vascularised, receiving about 25% of the resting cardiac 

output, it is exposed to exogenous compounds in large quantities through the 

systemic circulation (John and Herzenberg, 2009; Perazella, 2009). The functional 

units of the kidney are nephrons - each kidney contains around one million, which 

consist of the glomerulus (a ball of capillaries), Bowman’s capsule and the tubular 

element (proximal tubule, loop of Henle, distal tubule and collecting duct). When a 

substance reaches the glomerulus through the afferent arteriole it is likely to be 

filtered into the proximal tubules where the vast majority is reabsorbed back into the 

blood (Boroujerdi, 2015). Compound accumulation and “local” toxic metabolite 

formation may occur, making the kidney vulnerable to toxicity via various and 

simultaneously occurring mechanisms (Naughton, 2008; John and Herzenberg, 2009; 

Perazella, 2009). 

 

As a result of physiology, there are four main mechanisms of drug-induced renal 

toxicity which are most commonly manifested as acute kidney injury, namely 

haemodynamic alteration, (proximal and distal) tubular cell toxicity, (tubular, 

interstitial, tubulo-interstitial and glomerular) nephritis and tubular obstruction 

(Vaidya et al., 2010; Blatt and Liebman, 2013). An understanding of mechanisms, 

such as it is, will assist in the development of in silico models as well as the 
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organisation of the associated data. Figure 1.1 shows the sites of the main 

mechanisms of chemical-induced kidney toxicity. 

 

 

Figure 1.1: Sites and mechanisms of chemical-induced renal toxicity and respective 

substances potentially causing an effect at each site (adapted from Vaidya et al., 

2010). 
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1.2.1 Nephrotoxicity-related mechanistic knowledge organised as Adverse 

Outcome Pathways 

A consideration of mechanistic toxicology also provides the opportunity to link to 

relevant AOPs. The AOP framework facilitates the organisation of mechanistic 

knowledge and grants validity and robustness to data included in the AOP Knowledge 

Base (AOP-KB), (OECD, 2017; http://aopkb.org), sponsored by the Organisation for 

Economic Co-operation and Development (OECD). Mechanistic data gathered and 

organised in the form of AOPs serve as a robust basis for the development of 

computational toxicology models (Ellison et al., 2016; Cronin and Richarz, 2017). If 

an MIE and/or Key Events (KEs) have been defined and respective data are available, 

a predictive approach to estimate a substance’s potential to elicit one of more of 

these may be achieved using the knowledge in the AOP-KB and the public literature. 

Table 1.1 provides a starting point for in silico analyses based around the MIE in 

particular. Additionally, AOPs may aid the grouping of chemicals for read-across 

(Cronin and Richarz, 2017). Only a handful of AOPs related to the kidney have been 

developed and proposed so far which implies that only a small proportion of MIEs 

and KEs have been defined. Table 1.1 provides an overview of relevant AOPs that 

existed at the time of the preparation of the thesis, as sourced from the AOP Wiki 

(OECD, 2019; https://aopwiki.org), one of the key resources for distributing AOPs. 

https://aopwiki.org/
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Table 1.1: Mechanisms of kidney toxicity, related (groups of) substances and established and / or proposed MIEs and AOPs directly or indirectly associated 

with kidney toxicity.   

Mechanism Overview MIE AOP Compounds Biomarkers 

Haemodynamic 

alteration 

 

 

Impaired 

autoregulatory 

capacity of the renal 

vasculature to 

vasodilate or 

vasoconstrict 

leading to a reduced 

GFR 

 

 

 

 

 

 

 

 

COX-1 and/or COX-2 inhibition leading to reduced 

prostaglandin synthesis and uncontrolled renal 

vasoconstriction (aspirin, other NSAIDs, calcineurin 

inhibitors) (Naesens et al., 2009; Drewe and Surfraz, 2015) 

AOP proposed by Lhasa Ltd. 

(Drewe and Surfraz, 2015) 

ACE inhibitors, ARBs, 

NSAIDs (e.g. aspirin), 

amphotericin B, tacrolimus, 

radiocontrast agents, 

calcineurin inhibitors 

(cyclosporine, tacrolimus) 

(Naughton, 2008; Vaidya et 

al., 2010) 

IL-18I), lipocalin 2 

(LCN-2 aka NGAL)II) 

(Wilmes et al., 2014) 

Prevention of formation of angiotensin II (ACE inhibitors) 

(Brown and Vaughan, 1998) 
No AOP found 

Blockage of angiotensin II type 1 (AT1) receptors (ARBs) 

(Palmer, 2002) 
No AOP found 

Increase endothelin and thromboxane and activation of the 

renin-angiotensin system (RAS) (vasoconstriction), and 

reduction prostacyclin, prostaglandin E2 and nitric oxide 

(NO) (vasodilation) (calcineurin inhibitors) (Naesens et al., 

2009) 

No AOP found 

Changing vascular smooth muscle cell permeability, cell 

depolarization with resultant opening of voltage-

dependent calcium channels and muscle cell contraction 

(potential mechanism for amphotericin B) (Fanos and 

Cataldi, 2000; Evenepoel, 2010) 

No AOP found 
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Proximal and 

distal tubular 

cell toxicity 

 

 

 

 

 

Extensive cellular 

uptake and intra-

cellular 

accumulation 

inducing 

compromised 

mitochondrial 

respiration, 

oxidative stress, and 

the activation of 

intrinsic apoptotic 

and necrotic 

pathways 

Metabolism by oxidase in hepatocyte to 

benzoquinoneimine, followed by formation of GSH S-

conjugates (4-aminophenol) (OECD, 2011) 

OECD 

ENV/JM/MONO(2011)8: 

Nephrotoxicity induced by 4-

aminophenols (OECD, 2011)  

 

 

 

 

 

aminoglycoside antibiotics, 

amphotericin B, 4-

aminophenols, cisplatin, 

nucleotide and nucleoside 

antivirals (stavudine, 

cidofovir) (Vaidya et al., 

2010; OECD, 2011; Drewe et 

al., 2014) 

 

 

 

 

 

 

clusterinIII),  

β2-microglobulinIV), 

cystatin CV), heme 

oxygenase-1VI),  

IL-18I), lipocalin 2 

(LCN-2 aka NGAL)II), 

KIM-1VII), miR-34aIX) 

(Ferguson et al., 

2008; Bhatt et al., 

2010; Bonventre et 

al., 2010; Zager et 

al., 2012; 

Wunnapuk et al., 

2013; Schena et al., 

2014; Wilmes et al., 

2014) 

Mitochondrial toxicity pathways:  

a) Mitochondrial DNA incorporation (stavudine, cidofovir) 

(Drewe et al., 2014) 

b) Mitochondrial DNA polymerase gamma inhibition 

(stavudine, cidofovir) (Drewe et al., 2014) 

c) Depletion of SH-groups leading to ROS induction 

(cisplatin) (Walker and Endre, 2013) 

AOP proposed by Lhasa Ltd. 

(stavudine, cidofovir) (Drewe 

et al., 2014) 

Accumulation-induced lysosomal effects:  

a) accumulation induced lysosomal leakage leading to 

tubular dysfunction (aminoglycosides) (Mingeot-Leclercq 

and Tulkens, 1999) 

b) fusion of compound-containing pinocytic vacuoles and 

lysosomes causing osmotic nephrosis (contrast agents) 

(Dickenmann et al., 2008) 

No AOP found 

After moving through cellular membrane, polyunsaturated 

region participates in auto-oxidation, lipid peroxidation and 
No AOP found 
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cell membrane damage; forming pores (amphotericin B) 

(Fanos and Cataldi, 2000; Evenepoel, 2010) 

 

 

 

 

 

Tubular, 

interstitial, 

tubulo-

interstitial and 

glomerular 

nephritis  

 

 

 

 

Inflammatory 

changes in the 

glomerulus, 

interstitial and 

tubular cells 

predominantly 

caused by immune 

mechanisms 

resulting in fibrosis 

and renal scarring  

Interaction with hOAT1 and 3, accumulation within 

proximal tubule cells, followed by uncoupling/inhibition of 

mitochondrial oxidative phosphorylation and 

tubular/papillary necrosis (aspirin)* (Drewe and Surfraz, 

2015) 

AOP proposed by Lhasa Ltd. 

(Drewe and Surfraz, 2015) 

NSAIDs (indomethacin, 

phenylbutazone, 

mefenamic acid, aspirin); 

antibiotics (cephalosporins, 

ciprofloxacin, ethambutol, 

isoniazid, macrolides, 

penicillins, rifampicin, 

tetracycline); loop 

(furosemide), potassium-

sparing (triamterene) and 

thiazide diuretics; proton 

pump inhibitors 

(omeprazole); allopurinol, 

lithium, aristolochic acid, 

phenytoin, propylthiouracil, 

ranitidine (Kodner and 

Kudrimoti, 2003; Naughton, 

2008; Ursem et al., 2009; 

Vaidya et al., 2010; Drewe 

 

 

 

 

 

 

 

 

 

IL-18I); lipocalin 2 

(LCN-2 aka NGAL)II); 

osteopontinVIII) 

(Hudkins et al., 

1999; Vaidya et al., 

2008; Bonventre et 

al., 2010; Schmid et 

al., 2015) 

Production of inflammatory response triggering TNF-α 

(cisplatin) (Pabla and Dong, 2008; Walker and Endre, 2013) 
No AOP found 

Formation of immune complex deposits (methicillin, 

rifampin, allopurinol, phenytoin) (Krishnan and Perazella, 

2015) 

No AOP found 

Formation of drug-protein hapten conjugates in renal tissue 

which elicit an immunogenic response (sulfamethoxazole 

metabolite = nitrososulfamethoxazole, methicillin) 

(Krishnan and Perazella, 2015) 

No AOP found 

(Event 244 (AOP 38):Protein alkylation)** (OECD, 2019) 

(AOP 38: Protein alkylation 

leading to liver fibrosis)** 

(OECD, 2019) 
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and Surfraz, 2015; Krishnan 

and Perazella, 2015) 

Tubular 

obstruction 

Crystal precipitation 

within the renal 

tubule depending on 

urinary pH and 

favoured by high 

concentrations in 

the urine 

OAT interaction causing secretion via proximal tubule cells, 

accumulation and crystal formation in urine leading to 

concentration in renal tissue/tubule and obstructive 

nephropathy (acyclovir) (Drewe et al., 2014) 

AOP proposed by Lhasa Ltd. 

(Drewe et al., 2014) 

antibiotics (e.g. ampicillin, 

ciprofloxacin, vancomycin 

and sulphonamides), 

antivirals (e.g. indinavir and 

acyclovir), methotrexate 

(Naughton, 2008; Drewe et 

al., 2014; Luque et al., 2017) 

ClusterinIII), lipocalin 

2 (LCN-2 aka 

NGAL)II), IL-18I), KIM-

1VII) (Chevalier, 

1996; Schmid et al., 

2015) 

* Interstitial nephritis is not the adverse outcome of these AOPs. However, as NSAIDs have been associated with this mechanism of nephrotoxicity, and KEs, e.g. ROS production and necrosis, 

are part of this pathway, these AOPs were allocated here. 

** This AOP is not directly related to nephrotoxicity but may be relevant for the following pathways: 

I) IL-18: inflammatory response, activating NFκB in response to ischemia-reperfusion injury of renal tubules (e.g. after contrast agent exposure) 

II) LCN-2, NGAL: maximally expressed in kidney after early ischemic injury, in response to contrast agents; important mediator of innate immune responses 

III) Clusterin: associated with membrane recycling, cell repair, ischemic injury in proximal and distal tubule 

IV) β2-microglobulin: early marker of tubular injury 

V) Cystatin C: related to ischemic injury in proximal tubule 

VI) Heme oxygenase-1: changes in response to ischemic and cisplatin-induced injury 

VII) KIM-1: found in urine after proximal tubular cell injury 

VIII) Osteopontin: associated with accumulation of macrophages, expressed in the distal convoluted tubules, the thick ascending limbs of the loop of Henle and the proximal tubule 

IX) miR-34: was upregulated following cisplatin induced acute kidney injury, may play a cytoprotective role for cell survival 

Abbreviations:  

ACE: angiotensin-converting enzyme; ARB: angiotensin receptor blockers; GFR: glomerular filtration rate; GSH: glutathione; KIM: kidney injury molecule; NSAID: nonsteroidal anti-inflammatory 

drug; hOAT: human organic anion transporter; ROS: reactive oxygen species.
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In the following subchapter, only proximal and distal tubular cell toxicity pathways 

are discussed in more detail since the mechanistic model of the kidney described in 

Chapter 4 is applied for this mechanism of nephrotoxicity. More information on the 

other mechanisms outlined above are included in Pletz et al. (2018b). 

 

 

1.2.2 Proximal and distal tubular cell toxicity 

Renal tubular cells, especially proximal tubule cells, are vulnerable to the toxic effects 

of drugs. This is because their apical and basolateral transport systems facilitate 

extensive cellular uptake in their function of re-absorbing glomerular filtrate 

(Perazella, 2009; Boroujerdi, 2015). Thereby, proximal tubular cells are exposed to a 

high amount of circulating endogenous and exogenous compounds, including 

potential nephrotoxicants (Naughton, 2008; Perazella, 2009; Boroujerdi, 2015).  

 

Tubular cell toxicity may be elicited via different pathways which are induced by 

therapeutic agents such as aminoglycoside antibiotics, cisplatin and amphotericin B 

(Naughton, 2008; Vaidya et al., 2010). For instance, aminoglycosides are cationically 

charged and therefore attracted to the anionic phospholipid-rich brush border 

located at the proximal tubular apical membrane (Perazella, 2010). Accumulation of 

the aminoglycosides in tubular cells leads to the disruption of endosomal and 

lysosomal membrane and activation of intrinsic apoptotic pathway (Mingeot-

Leclercq and Tulkens, 1999; Markowitz and Perazella, 2005; Lopez-Novoa et al., 

2011). This includes impaired mitochondrial respiration and induction of oxidative 

stress through increased free radical levels within the cell. The kidney is particularly 

vulnerable to reactive oxygen species (ROS) damage (Ozbek, 2012). Several 

nephrotoxic compounds, e.g. cisplatin, immunosuppressant drugs, nonsteroidal anti-

inflammatory drugs (NSAIDs) and aminoglycosides, exert their toxic effects due to 

excess ROS production, and depletion of the antioxidant defence mechanism (Ozbek, 

2012). 

 

Oxidative injury, inflammation, apoptosis, acute tubular necrosis as well as 

vasoconstriction have been associated with aminoglycosides as well as exposure to 

cisplatin (Markowitz and Perazella, 2005; Pabla and Dong, 2008). The extent of 
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exposure is suggested to determine whether apoptotic or necrotic cell death is 

induced. High concentrations of cisplatin in the millimolar range were reported to 

result in necrosis while concentrations in the micromolar range provoked apoptosis 

– via the intrinsic mitochondrial, extrinsic death receptor and endoplasmic reticulum 

(ER) stress pathways (Pabla and Dong, 2008).  

 

Experimental data suggested the intrinsic mitochondrial pathway to be the major 

pathway of cisplatin-induced apoptosis, likely to be induced by sulfhydryl group and 

mitochondrial glutathione (GSH) depletion (Walker and Endre, 2013). Basolateral 

uptake by the organic cation transporter OCT2 has been demonstrated to be critical 

for cisplatin’s toxic response to be elicited in the kidney (Pabla and Dong, 2008). Also, 

different segments (S1, S2, S3) of the nephron demonstrate diverse sensitivities to 

cisplatin which did not appear to be due to differences in uptake characteristics but 

intracellular effects (Kröning et al., 1999). S1 cells derived from the early portion of 

the proximal tubule expressed a considerably lower amount of the anti-apoptotic 

protein BCL-XL than S3 cells derived from the late portion of the proximal tubule and 

distal convoluted tubular cells (Kröning et al., 1999).  

 

The mitochondria of proximal tubular cells also appear to be key targets of nucleotide 

and nucleoside antiviral drugs stavudine and cidofovir (Drewe et al., 2014). 

Mitochondrial toxicity induced via mitochondrial DNA incorporation or 

mitochondrial DNA polymerase gamma inhibition may lead to tubular cell necrosis 

and acute renal failure (Drewe et al., 2014). 

 

Amphotericin B is also commonly associated with acute tubular necrosis which may 

be secondary to changes in haemodynamics and cell membrane permeability as 

described above, and resulting renal tubular acidosis and hypokalemia (Baley et al., 

1990; Markowitz and Perazella, 2005; Klaassen, 2008). Unlike aminoglycosides and 

cisplatin, amphotericin B appears to elicit cellular toxicity predominantly in distal 

tubular regions as opposed to the proximal tubules (Pabla and Dong, 2008; Vaidya et 

al., 2010; Blatt and Liebman, 2013).  

 

Another pathway leading to renal tubular necrosis is documented in an AOP related 

to 4-aminophenol exposure whereby 4-aminophenol cysteine S-conjugates reach 
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and get concentrated in proximal tubules (OECD, 2011). There, cysteine S-conjugates 

are metabolised to benzoquinoneimines which cause oxidative stress and necrotic 

tubular cell death (OECD, 2011). 

 

Ways to use and interpret such mechanistic data quantitatively are described in the 

following subchapter. 

 

 

1.3 Physiologically-based mechanistic models to simulate kinetics and toxicity: 

current state-of-the-art 

As noted above, as part of the hazard identification process it is important to be able 

to predict human nephrotoxicity accurately. The traditional approach for 

determining safety and toxicity of drug candidates is through histopathological 

observation from in vivo animal studies (Tong et al., 2004; Bonventre et al., 2010; 

Low et al., 2011; Lee et al., 2013) or, more recently, from targeted in vitro testing. 

However, in recent decades, alternative methods for hazard assessment without the 

need for testing, such as in silico approaches, have been increasingly applied, 

particularly for the prioritisation of data requirements and identification of chemicals 

that may require more detailed risk assessment.  

 

Two fundamentally different in silico toxicology methods are often applied to assess 

chemical safety, i.e. chemistry driven (Q)SARs and physiologically-based mechanistic 

models. The former identify relationships between a structure of a molecule and its 

toxicity using statistics while the latter simulate the physiologically-based 

toxicokinetics of a compound in the entire body, a specific organ or tissue or a subset 

of organs. Mechanistic models are rooted in chemical kinetics and use mathematical 

equations – typically ordinary differential equations (ODEs) –  which reflect causal 

mechanisms driving input-output behaviours of a biological system (Oates and 

Mukherjee, 2012; Baker et al., 2018). This allows predictions of whether (and which) 

effects may be elicited based on the simulation of concentrations at a putative site 

of toxicity over a defined time period following dosing. More information on 

nephrotoxicity-related (Q)SARs was included in a recent review (Pletz et al., 2018b) 

whereas mathematical mechanistic and physiologically-based full-body and kidney-

related models are described in more detail here. 
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In contrast to (Q)SAR methods, mathematical mechanistic and physiologically-based 

models can be used to simulate the kinetics of a compound through the body and at 

the site of toxicity. As a vast number and quantity of substances are moving through 

the kidney, and considering the key principle of toxicology – the dose makes the 

poison (Paracelsus) – an understanding of a compound’s movement and its potential 

for accumulation at specific sections of the kidney are considered critical. In 

subchapter 1.2, accumulation is ascertained as playing an important role in certain 

nephrotoxicity pathways. In order to predict a compound’s potential for 

accumulation within the kidney, in comparison to other organs and tissues, or 

accumulation at a specific site of the kidney, full-body physiologically-based kinetic 

(PBK) and kidney-specific mechanistic models may be applied, respectively. 

 

 

1.3.1 Full-body physiologically-based kinetic models 

Physiologically-based kinetic (PBK) models predict the absorption, distribution, 

metabolism and excretion (ADME) of a chemical in an organism via a series of 

differential equations, which mathematically represent these ADME processes. PBK 

models are often synonymously termed physiologically-based pharmacokinetic 

(PBPK), physiologically-based toxicokinetic (PBTK) or physiologically-based biokinetic 

(PBBK) models (Paini et al., 2017a). These have gained substantial attention in the 

field of non-animal methods in toxicology, in particular as more models emerge 

which increasingly integrate in vitro and in silico data (Paini et al., 2017a). 

Pharmaceutical, chemical and consumer goods companies have used PBK models to 

inform ADME-related decision-making in drug discovery, development and safety 

assessment, and to derive occupational exposure limits (Kawai et al., 1994; Jones and 

Rowland-Yeo, 2013; Ferl et al., 2016; Mori et al., 2016; Poet et al., 2016; Punt et al., 

2016; Miller et al., 2019). A workshop held recently by the European Union Reference 

Laboratory European Centre for the Validation of Alternative Methods (EURL 

ECVAM) on the new generation of PBK models and new guidance by the European 

Medicines Agency and the U.S. Food and Drug Administration on the format, content 

and reporting of these models indicate increasing attention and regulatory 

acceptance (Paini et al., 2017; European Medicines Agency, 2018; U.S. Food and Drug 

Administration, 2018). 
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A PBK model consisting of all key organs and tissues of a human body predicts how 

much of an administered dose accumulates in the kidney over time, in relation to 

how much is distributed to and cleared from other organs and tissues. This may help 

to understand whether a certain exposure scenario will lead to toxicity-inducing 

concentrations in the kidney and/or other organs. Hence, a PBK model supports 

efforts to differentiate between cases where a compound accumulates in various 

organs and causes overall non-specific toxicity from kidney-specific accumulation-

induced toxicity.  

 

So far, there is a very limited number of publicly available in silico tools that 

incorporate a PBK model to predict target organ concentrations over time coupled 

to a kidney specific component. This component may be a toxicodynamic model, 

(Q)SAR or a detailed kinetic model of the kidney that supports organ-level toxicity 

evaluation. The need for further research in this area is indisputable and future 

efforts will have a great potential to move non-animal approaches in toxicology a 

substantial step forward. Kidney-specific mechanistic models will be discussed in 

further detail in the following subchapter. 

 

Besides commercial packages such as the Simcyp® Simulator provided by Certara and 

GastoPlus® offered by SimulationsPlus, publicly available PBK models have been 

developed, such as IndusChemFate and Httk (Jongeneelen and ten Berge, 2011a; 

Pearce et al., 2017; Madden et al., 2019), and others published ordinary differential 

equations (ODEs) to facilitate the generation of a new PBK model (Kawai et al., 1994; 

Peters, 2008a; Jones and Rowland-Yeo, 2013; Hoffman and Hanneman, 2017). 

 

1.3.2 Kidney-specific mechanistic models 

As explained above, mechanistic models simulate the kinetics of a compound in a 

biological system which may be defined as an entire human body, a specific organ or 

a subset of organs. Some of the early mechanistic models of renal function predict 

renal clearance while considering passive reabsorption and urine flow (Tang-Liu et 

al., 1983). These are supplemented by protein binding and glomerular filtration (Hall 

and Rowland, 1984; Komiya, 1986, 1987; Mayer et al., 1988) and active secretion 

(Russel et al., 1987b, a; c; Katayama et al., 1990). Of these, Russel et al. (1987a; b) 
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and Katayama et al. (1990) were the first to differentiate between renal blood, tissue 

and tubular compartments. Subsequently, Felmlee et al. (2010, 2013) developed a 

universal mechanistic model predicting renal clearance of substances which were 

subject to active secretion, active reabsorption or both of these processes, for a 

broad applicability domain. Here, two ultrafiltrate compartments were included to 

represent the proximal and distal tubules. 

 

Two of the most detailed mechanistic kidney models were reported by Neuhoff et al. 

(2013) and Huang and Isoherranen (2018). Both predict renal elimination by 

accounting for glomerular filtration, active and passive reabsorption, active and 

passive secretion and renal metabolism. Bypass of parts of the renal blood flow and 

population variability are considered by Neuhoff et al. (2013). In both models, the 

nephron is divided into segments representing the glomerulus, proximal and distal 

tubules, loop of Henle and collecting ducts. Each segment encompasses three 

compartments, illustrating the blood space, tubular fluid and cellular mass. ODEs 

describe the movement of a compound between compartments. However, the 

model developed by Neuhoff et al. (2013) is embedded in the commercial software 

Simcyp® Simulator and details of the ODEs are not publicly available. The model 

generated by Huang and Isoherranen (2018) predicts drug renal clearance 

considering in vitro permeability, unbound filtration, active tubular secretion and pH 

dependent bidirectional passive diffusion. It was validated with data for 46 drugs and 

can quantify concentrations in each compartment. 

 

In drug development, pharmacokinetic-pharmacodynamic (PK/PD) modelling has 

been applied to understand which dosing regimens lead to effective or ineffective 

exposure, or toxic effects in patient populations and investigate inter-individual PK 

and PD differences. For drugs intended to be used by patients with compromised 

renal function, such investigations are particularly relevant as pharmacokinetics are 

likely to be altered in these individuals (Verbeeck and Musuamba, 2009; Eyler and 

Mueller, 2010). These patients may require an adjusted dosing regimen to reach an 

effective and nontoxic internal dose which can be selected based on a PK/PD study 

(Fisher et al., 1999; Skerjanec et al., 2003; Stangier et al., 2010; Chandorkar et al., 

2015; Katsube et al., 2017). Furthermore, PK/PD-informed dose adjustments are 

frequently necessary due to multi-drug therapy-induced drug-drug interactions or 
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additional treatment such as haemodialysis (Chanu et al., 2010; Eyler and Mueller, 

2010; Stangier et al., 2010). In the PK/PD studies mentioned above, the PK are 

typically described as one- to three-compartment model. Most of these PK/PD 

analyses are performed using a (linear or nonlinear) mixed-effects modelling 

approach which incorporates a covariate analysis to understand demographic and 

(patho-)physiological factors influencing inter-individual variability. Looking beyond 

pharmaceutical related applications, Diamond et al. (2003) used PK/PD analysis to 

understand the relationships between environmental or dietary exposures and risks 

of kidney toxicity.  

 

Overall, there are limited computational toxicity methods available for complex 

endpoints such as nephrotoxicity – this is likely to be due to the highly intricate 

mechanisms of toxicity or limitations of the availability of structured, high quality 

data and a narrow applicability domain of the methods which have been established 

so far. Also, such models are in part not publicly available. To date, there is no multi-

scale nephrotoxicity model available which is embedded in a full-body PBK model, 

capable of quantifying concentration-time profiles of substances in toxicologically 

relevant segments of the human kidney and tested for a sensitive population; such a 

model would be of great benefit in establishing alternatives to in vivo testing for 

these endpoints. 

 

1.4 Context and Aim of this Thesis 

For nearly a decade now, AOPs have been considered a key component of the 

“Toxicity Testing in the 21st Century” paradigm. The fundamental concept of the AOP 

approach is to evaluate and document a mechanism and/ or pathway spanning from 

the molecular to the organism level, representing a systems biology/toxicology 

context. Since mechanistic data organised in the form of an AOP provide a robust 

basis for the generation of novel in silico toxicology methods, these naturally may 

inform physiologically-based mechanistic models. The aim of this thesis was not to 

quantify an AOP per se, but to attempt to quantify the relationship between an 

externally applied dose and the induction of an effect that could relate to renal 

toxicity. It is clear that the data provided in an AOP are not sufficient to provide a full 

dataset needed to parameterise such a model. It is also important to reiterate that a 

detailed understanding of many renal toxicity pathways is often lacking. As ever, data 
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availability and data quality are core issues in the field of computational toxicology, 

which are addressed throughout this thesis. Approaches to use available data and 

evaluate their validity will be discussed, in particular in Chapters 3 and 4. 

 

Quantitative approaches, based on human-relevant data, provide a significant 

opportunity to gain a better understanding of renal mechanisms of toxicity. Many 

human-relevant parameters to build physiologically-based mechanistic models are 

available, even though certain parameters are not quantifiable with current testing 

approaches. However, these may be estimated – partly using computational 

methods – and further refined when more data become available. Particularly 

relevant to the fact that renal failure is observed in vulnerable populations, such as 

patients with decreased renal function, is the possibility to amend specific parameter 

values within a mechanistic model, which typically differ between healthy and 

vulnerable individuals. Overall, the physiological basis and human relevance is a core 

strength of such models, which has not been fully leveraged to date in the field of 

renal toxicology. Thus, the overall aim of this thesis was to propose novel ways to use 

publicly available data for the quantitative assessment of adverse effects induced in 

the kidney following chemical exposure. Data organised in the form of an AOP were 

focussed on in particular. 

 

This thesis addresses the growing attention that is being given to exposure-based 

and toxicokinetics-driven toxicity, which is reflected by the increasing application of 

PBK modelling. The following objectives were addressed in the thesis. 

I. First, the suitability and validity of publicly available PBK models was tested 

for a set of chemicals the general population is exposed to, i.e. phenols, 

parabens and phthalates (Chapter 2). This work was performed during a 

traineeship at the European Commission Joint Research Centre under the 

supervision of Drs. Stephanie Bopp, Alicia Paini, Nikolaos Parissis and Andrew 

Worth. Two models were used to predict safe urinary concentrations 

following oral exposure to a safe dose, i.e. a tolerable daily intake (TDI) or 

reference dose (RfD) value. Moreover, urine-level concentrations were 

predicted on the basis of estimated daily intakes, which were calculated to 

include exposure from food, dust and air. These simulated urine 

concentrations were compared to human biomonitoring (HBM) data which 
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capture measurements of these compounds or their metabolites present in 

the urine of cohorts of Norwegian mothers and children and Danish children. 

These data were kindly provided under respective Data Transfer 

Agreements. A mixture risk assessment was performed with predicted safe 

concentrations and measured concentrations to demonstrate how such data 

may be used in a risk assessment context. The evaluation of results aimed to 

address uncertainties and limitations of the use of both models selected for 

this study. 

 

II. In order to guarantee full transparency and flexibility when applying a PBK 

model, a full-body PBK model was developed based on ordinary differential 

equations available in the literature (Chapter 3). This model was intended to 

quantify the relationship between an administered dose and concentrations 

in various organs over time for a broad range of chemical substances. 

Therefore, it was validated with nine substances covering a broad physico-

chemical space to gauge whether the model predicts well over a wide 

applicability domain. Even though this PBK model does not represent the sole 

reproduction of a previously developed model but a product based on 

various sources, it may not necessarily be considered a scientific novelty. Its 

use in conjunction with a newly generated mechanistic kidney model formed 

the core theme and novelty of this thesis. 

 

III. The aim of Chapter 4 was to develop a mechanistic model of the kinetics of 

drugs in the kidney with specific reference to salicylic acid (SA), a major 

metabolite of aspirin (ASA). Specific objectives included:  

i. Incorporation of the previously developed sub-compartment kidney 

model in order to validate it with full-body kinetic data. 

ii. Investigation of whether a quantitative relationship may be 

established between therapeutic doses of SA, predicted proximal 

tubular cell concentrations in young and elderly virtual individuals and 

toxicity events in proximal tubular cells.  

 

Chapters 3 and 4 follow the convention applied in mathematics to present scientific 

work in the present tense.  
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2.0 PHYSIOLOGICALLY-BASED KINETIC (PBK) MODELLING AND HUMAN 

BIOMONITORING DATA FOR MIXTURE RISK ASSESSMENT 

 

Note for Information and Explanation of Contribution to this Chapter 

Julia Pletz and Samantha Blakeman worked together on this project under the 

supervision of Drs. Stephanie Bopp, Alicia Paini, Nikolaos Parissis and Andrew Worth 

at the European Commission’s Joint Research Centre. 

As certain tasks were split between both researchers, others were performed 

simultaneously to compare results afterwards. Tasks which were split included: 

• Both researchers sourced parameter values (e.g. density, molecular weight, 

vapour pressure, log Kow, water solubility, absorption rate constant, hepatic 

metabolism related Vmax and Km values) to inform the IndusChemFate 

software of eight compounds each.  

• In IndusChemFate, Samantha performed a 24-h simulation of EDI-based 

urine concentrations and predicted BERfD and BETDI values for two Norwegian 

females and children, while Julia performed the simulation of steady state 

concentrations for BPA and several other compounds for the same 

individuals. However, only the results for BPA are shown as steady state was 

not reached for the other compounds. 

• While Samantha extended the Httk code so that EDIs could be used as doses 

in two virtual populations of female adults and children, Julia ran some 

checks of the code to ensure the accuracy of the results. 

• While Samantha generated the results of the number of individuals 

exceeding calculated BETDI values, the comparison of measured urine 

concentrations and BEEDI levels established in Httk, and the mixture 

assessment, Julia focussed on report writing. However, both contributed to 

the writing of the report. 

 

Tasks performed simultaneously included: 

• Familiarisation with the use of IndusChemFate and Httk, 
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• Working together on a strategy of how to convert a Vmax value in "per mg 

microsomal protein" to "per g liver”, and 

• Calculation of BETDI concentrations based on virtual populations, and BEEDI 

values for Norwegian children and female adults and Danish children. 

 

Julia additionally contributed to the work by proposing a computational model to 

calculate absorption rate constants used in IndusChemFate and proposed the 

consideration of steady state concentrations and the 5th of BETDI distributions for data 

analysis. 

 

2.1. Introduction 

Human biomonitoring (HBM) is a process of evaluating to which degree a human 

population is exposed to chemicals. It allows assessment of exposure to chemicals by 

measuring these compounds, their metabolites or other biomarkers present in easily 

accessible body fluids (blood, urine, saliva, breast milk), or other biological matrices 

(hair, nails and teeth). Ideally HBM should be performed in conjunction with the 

monitoring of indoor and outdoor media (air and dust), as well as the collection of 

information on study participants’ age, sex, socioeconomic background and 

identification of chemical exposure associated with food intake via diet diaries. Thus, 

HBM allows for the derivation of a complete picture of external and internal 

exposure. These exposures can be linked to data on sources and epidemiological 

surveys to attempt to identify trends associated with potential health risks. 

 

There have been numerous HBM programmes across the globe for a number of 

decades. One of the best and well known examples is the American HBM “National 

Health and Nutrition Examination Survey” (NHANES) programme. NHANES is the 

largest ongoing project which has been operational since 1971 (McDowell, 1971). 

There have been a number of HBM projects in Europe over the years (Choi et al., 

2015). In the Democophes project, mother child pairs over large parts of Europe were 

studied (Den Hond et al., 2015) and in 2017 "The European Human Biomonitoring 

Initiative" (HBM4EU) project, a joint effort of 28 EU countries, was launched by the 

European Commission. The aim of the HBM4EU project is to collect and interpret 

HBM data from across Europe in order to safely manage chemicals and protect 

https://www.hbm4eu.eu/
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human health (HBM4EU, 2019). The long-time goal of HBM4EU is to build bridges 

between the research and policy communities and deliver benefits to society in 

terms of enhanced chemical safety. 

 

Interpretation of HBM data is particularly valuable in the context of combined 

exposure to multiple chemicals. The environment we live in is made up of an 

assortment of chemicals, some of these potentially harmful if taken up at sufficiently 

high concentrations or in conjunction with other chemicals. HBM data provide a 

measure of internal co-exposure to multiple chemicals and aggregate exposure 

across routes and sources of exposure. The interpretation of HBM data using 

internally based reference values is, therefore, one way to improve the assessment 

of risks from exposure to mixtures of multiple chemicals. 

 

As collection of HBM data is on-going, the challenge and important task is to 

understand and interpret what those concentrations measured in biological samples, 

such as human blood and urine, mean in terms of exposure to chemicals and risks to 

both individual and population health. In terms of practical use, there is a need to 

determine how to apply this information, how it can be translated into usable 

knowledge to inform risk assessment for decision making. The best method to 

interpret HBM data is to compare them to a concentration that is deemed safe. 

Currently, the majority of these safe values are established as an intake dose, known 

as acceptable or tolerable daily intakes (ADI or TDI) or reference doses (RfD), 

referring to how much of one chemical a person can ingest daily over a lifetime 

without diminishing their health (FAO and WHO, 2009). Only recently have studies 

begun to look into establishing safe levels in urine or blood against which to compare 

the measured values. These values are known as biomonitoring equivalents (BE) 

(Hays et al., 2007) or as HBM Guidance values (HBM4EU, 2019).  

 

Some of the existing BE values have been related to biomonitoring data with the use 

of physiologically-based kinetic (PBK)3 models (WHO, 2015). An idealised PBK model 

is shown in Figure 2.1. These models are based on mathematical descriptions of 

physiological characteristics (tissue volumes, blood flow, etc.) and biochemical 

 
3 The term PBK model is synonymous with physiologically-based pharmacokinetic (PBPK), 

physiologically-based biokinetic (PBBK), and physiologically-based toxicokinetic (PBTK) models. 
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processes (e.g. metabolism characterised by the maximum rate of a metabolic 

reaction Vmax and the Michaelis-Menten constant Km) (Krishnan et al., 1994). PBK 

models describe the body as a set of interconnected compartments, which represent 

the human organs and plasma, describing the absorption, distribution, metabolism, 

and excretion (ADME) (Krishnan and Andersen, 2007) properties of a chemical or 

drug within the body. PBK models integrate exposure information (external dose) to 

predict the time-course of a parent chemical, its metabolite(s) or biomarkers of 

exposure as target tissue concentrations in an organism.  

 

 

Figure 2.1. Schematic representation of a full-body PBK model, which is illustrated 

and discussed in full detail in Chapter 3. 𝑄 = blood flow rates corresponding to an 

organ or tissue compartment, namely lung (LU), heart (HE), thymus (TH), adipose 

tissue (AD), muscle (MU), brain (BR), skin (SK), kidney (KI), spleen (SP), pancreas 

(PA), liver (LI), hepatic artery (HA), stomach (ST), and gut (GU); blood compartments 

include the venous blood (VE) and the arterial blood (AR); 𝑘𝑒(𝑟) = renal elimination 

rate constant; 𝐶𝐿ℎ𝑒𝑝 = hepatic clearance rate; 𝑘𝑏𝑖𝑙 = biliary elimination rate 

constant; 𝐺𝐸𝑅 = gastric emptying rate. An intravenous dose is applied to the venous 

blood compartment, and an oral dose to the stomach compartment. 
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Results from PBK models can also allow the refinement of the setting of safe levels 

combining dose–response data. PBK models can be used in two ways, via either 

forward dosimetry or reverse dosimetry (Hays et al., 2007). The former uses an intake 

dose and estimates the concentration of a compound in human fluids, whilst the 

latter uses the measured concentration in a body fluid and identifies the dose the 

person was subjected to. In addition, PBK models allow comparison of subgroups 

(gender, age and sensitive populations), inter-individual variation and extrapolations 

(acute to chronic exposure, route to route, low to high doses) and can support read-

across by comparing kinetic profiles of structurally similar substances. A PBK model 

may be linked to Benchmark Dose (BMD) modelling to derive an occupational 

exposure limit as proposed for N-methylpyrrolidone (Poet et al., 2016). 

 

PBK models can be chemical specific or generic. A chemical specific PBK model is built 

using specific knowledge of the physico-chemical properties, mode of action (MoA) 

and ADME for the specific chemical under study; relevant target organs and specific 

metabolite formation should be included (Kawai et al., 1994; Abbiati and Manca, 

2017; Hoffman and Hanneman, 2017; Moss et al., 2017). A six step approach to build 

"specific" PBK models was reported by Rietjens et al. (2011). On the other hand, a 

more generic PBK model has a defined compartmental structure for all chemicals 

tested. These models are usually built on specific software (see Madden et al., 2019 

for an overview of such platforms). This allows for the computation of multiple 

chemicals with the same type of input data and the same assumptions and 

limitations. Furthermore, the simulation of more than one chemical can be 

performed without detailed parameterisation and hence simplifies the task of 

carrying out a mixture risk assessment. Even though PBK models have been proposed 

for the derivation of BE values more than 10 years ago (Hays et al., 2007) and this 

approach has been applied to assess occupational exposures (Droz et al., 1989; 

Leung, 1992; Thomas et al., 1996; Truchon et al., 2006), little work has been done in 

the field of exposures of the general population so far. Furthermore, no study exists 

to this date which uses publicly available PBK models to derive BE values based on 

which a mixture risk assessment is performed. 

 

The aim of this investigation was to examine the suitability of using generic PBK 

models to derive BE values based on agreed reference values that can then be used 
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in a screening level mixture risk assessment using HBM data. The aim was to establish 

a method to interpret HBM data on multiple chemicals easily, e.g. for prioritisation 

purposes, which are not intended to be ready for direct uptake in regulatory risk 

assessment. Two models were considered in this investigation, IndusChemFate and 

High-Throughput Toxicokinetics (Httk). IndusChemFate (ICF) was developed by 

IndusTox Consult & Santoxar, funded by the CEFIC Long Range Research Initiative 

(LRI) and built in an MS excel spreadsheet-file (Jongeneelen and ten Berge, 2011a). 

The model contains 11 body compartments. The Httk package is available in the 

CRAN r project (https://cran.r-project.org/web/packages/httk/index.html) and was 

created by the U.S. Environmental Protection Agency’s (U.S. EPA’s) National Center 

for Computational Toxicology. It constitutes a compilation of a one, three and seven-

compartment (called PBTK – physiologically based toxicokinetic) models intended to 

compute concentration vs. time curves (Pearce et al., 2017, more information can be 

found in methodology). 

 

Both models were used in a forward-dosimetry approach with established TDI or RfD 

values in order to obtain urinary BE concentrations, i.e. BERfD and BETDI. Subsequently, 

with the information collected a mixture risk assessment was performed using HBM 

data of Norwegian and Danish cohort studies. This case study presents another 

example of how HBM data may be used to inform a mixture risk assessment, noting 

that they should not be regarded as a detailed risk assessment at this time. 

 

 

2.2. Methods 

The overall approach to achieve the aim of this investigation is represented 

schematically in Figure 2.2. The methods for the HBM analysis reported in Figure 2.2 

include the choice of chemicals (parabens, phenols, phthalates), the application of 

Monte Carlo sampling approach for generation of ‘virtual populations’ (to be able to 

capture the response for a representative population) and the steps for the risk 

assessment. The individual steps are summarised below and described in more detail 

throughout this study in an iterative manner: 

 

https://cran.r-project.org/web/packages/httk/index.html
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1. HBM data for Norwegian and Danish cohorts (mothers and children) were 

selected. These contained measured urine concentrations and calculated EDIs for the 

Norwegian cohort.  

2. Review of available PBK model platforms and selection of ICF and Httk. When ICF 

was applied, steady state was not reached for most chemicals tested. Metabolism is 

currently not simulated in Httk, therefore, urinary concentrations of phthalate 

metabolites could not be predicted in Httk.  

2.1. Chemicals were selected for simulation, i.e. two phenols and two phthalates for 

ICF predictions and three phenols and four parabens for Httk predictions.  

2.2. TDIs were sourced from the public literature.  

2.3. Physiological parameters were selected in both models for women and children 

to represent the kinetics of both HBM cohorts. In ICF, simulations were performed 

for four individuals, one normal and one obese woman and one normal and one 

obese child. In Httk, virtual populations of 4000 mothers aged 32 to 56 and children 

between the ages of 6 to 11, including 5000 males and females, were created. 

3. Forward dosimetry was performed to obtain BETDI, BERfD and BEEDI values using 

available TDIs, RfDs and EDIs as input doses.  

4. The performance of PBK models was evaluated by comparing BEEDI with measured 

urine concentrations and BETDI / BERfD with established HBM values.  

5. BETDI / BERfD values generated with Httk were compared to corresponding 

measured urine concentrations for each substance.  

6. As a case study, a mixture risk assessment was carried out on the basis of BETDI / 

BERfD values generated with Httk. 

 

Figure 2.3 illustrates the process of using TDI, RfD and EDI values as input doses in a 

forward dosimetry approach to obtain BETDI, BERfD and BEEDI values and compare 

these to measured urine concentrations (Steps 3 to 5). 

 

Chemicals included in the analysis are phenols (bisphenol A, triclosan, 

benzophenone-3), phthalates (di-n-butyl phthalate/DnBP, butylbenzyl 

phthalate/BBzP) and parabens (methyl paraben, ethyl paraben, n-propyl paraben, n-

butyl paraben). 
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Figure 2.2. The workflow for the application of ICF/excel and the Httk/r highlighting the steps undertaken in the HBM analysis. Only Httk results were used 

for mixture risk assessment (MRA). HBM: Human biomonitoring, TDI: Tolerable daily intake, EDI: Estimated daily intake, BE: Biomonitoring equivalent. 

Step 1. Selection of HBM data

(Norwegian and Danish cohorts; 
measured urine concentrations 

and calculated EDIs for Norwegian 
cohort)

Step 2. PBK model selection

(Selection of ICF: steady state not 
reached for most chemicals tested; 
selection of Httk: no simulation of 

metabolism, therefore, no 
prediction for phthalates, 
simulation at steady state)

Step 2.1. Selection of chemicals to 
simulate

(Four chemicals for ICF predictions 
- phenols and phthalates; 

seven for Httk predictions -
parabens and phenols*)

Step 2.2. Literature search for TDIs

Step 2.3. Selection of physiological 
parameters in model 

(Simulation for four individuals in 
ICF; 

Monte Carlo simulation with 
virtual populations in Httk)

Step 3. Forward dosimetry 

(With TDI/RfD to obtain 
BETDI/BERfD; with EDIs of Norwegian 
and Danish cohorts to obtain BEEDI

values)

Step 4. Evaluation of modelling 
results

(Comparing BEEDI with measured 
urine; comparing BETDI/BERfD with 

established HBM values)  

Step 5. Single substance risk 
assessment

(Comparing measured urine 
concentrations with BETDI)

Step 6. Application in case study: 
Mixture risk assessment with Httk 

results
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Figure 2.3: Forward dosimetry with TDI, RfD and EDI values as input doses to obtain 

urine-level BETDI, BERfD and BEEDI values and comparison of these to urine 

concentrations measured in Norwegian and Danish cohorts (Steps 3 to 5). 

 

2.2.1. Step 1: Selection of human biomonitoring data 

The HBM data used in this study were of a Norwegian and a Danish cohort population 

obtained from January to May 2012 and between 2006 and 2007, respectively. They 

were kindly provided by the Norwegian Institute for Public Health and the Danish 

Rigshospitalet, Department of Growth and Reproduction under respective Data 

Transfer Agreements. In these datasets, several classes of chemicals have been 

included, but for the study presented here, we focused on phthalates and phenols as 

substance groups. 

The Norwegian dataset was based on a mother-child study cohort (48 mothers aged 

32-56 years and 48 children aged 6-11 years). Urine samples were taken from 48 

mothers and 46 children as 24h morning spot samples as this approach is considered 

the "gold standard" to assess chemical exposure in the urine (Boeniger et al., 1993; 

Aprea et al., 2002; Cequier et al., 2017). Concentrations of several chemicals were 

measured from each of these urine samples; there were missing data for 23 adult 

females because of interferences or they were below limit of detection (LoD) (two of 

these women are missing two values whilst the rest are only missing one), 28 children 

were missing values (one child is missing two values whilst the rest were missing only 

a single value). Further details about the enrolment, dietary intake (recording of food 

consumption), sample collection and analysis have been published elsewhere 

(Cequier et al., 2015, 2017). For some compounds, food, dust and air samples were 

also analysed to determine external exposure from which estimated daily intakes 
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(EDIs) were calculated and provided (Haug et al., 2011; Cequier et al., 2014; Sakhi et 

al., 2014; Liagkouridis et al., 2017). 

The study population of Norwegian mothers was divided, based on their body mass 

index (BMI), into normal, obese and overweight individuals. As reported by the World 

Health Organisation (WHO), adults are considered overweight if their BMI is equal to 

or greater than 25 and obese if their BMI is equal to or greater than 30 (WHO, 2019). 

28 normal, 12 overweight and 6 obese women with a mean weight of 62.2 kg, 75.2 

kg and 100.1 kg, respectively, were part of the Norwegian study. The children in this 

study had a mean weight of 34.3 kg. Their BMI values were made available, however, 

as their individual ages and sex are unknown they could not be classified into the 

normal, overweight or obese categories.  

 

The Danish study population was made up of subsets of two cohort studies: firstly 

data from spot urine samples of 849 children aged 4 to 9 years from the Copenhagen 

Mother-Child Cohort (http://www.edmarc.net/mother-child-cohort.html; Boas et 

al., 2010; Frederiksen et al., 2014), secondly from 24h urine samples of 129 children 

and adolescents between 6 and 21 years of age from the Copenhagen Puberty Study 

collected in 2007 (http://www.edmarc.net/puberty-cohort.html; Frederiksen et al., 

2013, 2014). For the purpose of this study, only urine measurements in children aged 

6-11 years were considered in order to compare the Danish group of children to the 

same age group of Norwegian children. This sub-group consisted of 725 children in 

total (660 from the Copenhagen Mother Child cohort and 65 from the Copenhagen 

Puberty study), with a mean weight of 26.9 kg. Grouping into normal, overweight and 

obese children would have been possible as individual ages, weights, heights and sex 

are known. However, this was unnecessary as this dataset was used in the validation 

of the Httk model chosen to calculate the BE values which included children of all 

weight categories. The Danish dataset did not include any measurements in mothers. 

 

2.2.2. Step 2: PBK model selection 

2.2.2.1. The IndusChemFate (ICF) physiologically-based kinetic model platform 

ICF was developed by IndusTox Consult & Santoxar, funded by the CEFIC Long Range 

Research Initiative (LRI) within the context of the HBM2 project. The ICF version 2.00 

which is used here is freely available on the CEFIC-LRI website (Jongeneelen and ten 

Berge, 2011a; b). The model is distributed in an MS excel spreadsheet, the source 
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code is written in Visual Basic and is not password protected. The model contains 11 

body compartments (i.e. lung, heart, brain, skin, adipose, muscles, bone, bone 

marrow, stomach & intestines (lumped), liver and kidney) and calculates parent 

compound and one or more metabolite concentrations in organs over time, as well 

as the amount excreted in urine. This allows for the study of phthalates as they are 

rapidly metabolised (Frederiksen et al., 2007) for which the concentration of some 

of their metabolites is an adequate indicator of exposure to the parent compound 

(Ramesh Kumar and Sivaperumal, 2016). By default, the model assumes physiological 

and anatomical parameters of a reference human of 70 kg, however, several 

different subjects (e.g. male or female adult or child, with normal weight or obese) 

can be selected.  

 

2.2.2.2. The High-Throughput Toxicokinetics (Httk) physiologically-based kinetic 

model platform  

High-Throughput Toxicokinetics (Httk) is a package found in the CRAN r project 

(https://cran.r-project.org/web/packages/httk/index.html) which was created by 

the U.S. EPA's National Center for Computational Toxicology. It constitutes a 

compilation of a one, three and seven-compartment PBTK (physiologically based 

toxicokinetic) models intended to compute concentration vs. time curves. A series of 

additional functions are built in to calculate steady state concentrations, the number 

of days to reach steady state and uncertainty and variability using a Monte Carlo 

analysis. The oral - via ingestion - exposure route was selected to make predictions 

and the seven compartmental model applied. All data used to parametrise the Httk 

model (physiological, tissue, as well as physico-chemical data sources) are described 

in Pearce et al. (2017) and Wambaugh et al. (2018). In contrast to ICF, there is no 

option to simulate the process of a substance being metabolised and consequently 

predict parent substance and metabolite concentrations in the current version of the 

Httk. Currently in Httk, only the concentration of the parent substance is predicted 

following metabolism which is why the model could not be used for phthalates. 

Httk/r version 1.8 (2018) was used in the current study and the following functions 

were applied: httkpop_generate, get_httk_params, "solve_pbtk", "calc_css". 
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2.2.3. Step 2.1: Selection of chemicals to simulate  

Nine compounds were selected with measured values in both populations to perform 

the analysis. The compounds selected are listed in Table 2.1. Several other chemicals 

and metabolites were available in the cohorts’ data sets, but were not considered for 

this analysis and the MRA due to limitations of both PBK models. For ICF, a steady 

state was not reached for most chemicals and Httk was limited to compounds 

measured as parent compounds in urine as it does not include metabolism. Four 

compounds were selected for the application of ICF, namely two phenols (i.e. 

bisphenol A and triclosan) and two phthalates (i.e. DnBP and BBzP). For Httk, four of 

the compounds under consideration were parabens (i.e. methyl paraben, ethyl 

paraben, n-propyl paraben and n-butyl paraben) along with two phenols (i.e. 

bisphenol A and triclosan). Furthermore, benzophenone-3 was included in the 

analysis with Httk to complete the phenol group and therefore improve the MRA.  

 

 

2.2.4. Step 2.2: Literature search for tolerable daily intakes (TDIs) 

The TDIs established by public authorities were collected from databases or the 

literature and are presented in Table 2.1 including information of the source of the 

data. Table 2.1 shows all compounds selected for the HBM analysis and MRA, as well 

as their TDIs and RfD if available. For phthalates, in addition to the parent compound, 

information on the main metabolite measured in urine as an indicator of exposure is 

presented.
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Table 2.1: Compounds selected for the HBM analysis and MRA, and available TDIs and RfDs.  

Parent 

Compound 
Abb. CAS 

TDIs 

(mg/kg/day) 

RfD 

(mg/kg/day) 

Human urine 

metabolite 

measured 

Abb. of 

metabolite 

CAS of 

metabolite 

Bisphenol A BPA 80-05-7 0.0041 0.052 -/- -/- -/- 

Triclosan TCS 3380-34-5 0.0473 0.32 -/- -/- -/- 

Benzophenone-3/ 

Oxybenzone 
BP-3/Oxy 131-57-7 0.14 NA 

-/- -/- -/- 

Methyl paraben MeP 99-76-3 105 NA -/- -/- -/- 

Ethyl paraben EtP 120-47-8 105 NA -/- -/- -/- 

n-Propyl paraben n-PrP 94-13-3 0.026 NA -/- -/- -/- 

n-Butyl paraben n-BuP 94-26-8 0.026 NA -/- -/- -/- 

Di-n-butyl phthalate DnBP 84-74-2 0.017 0.12 
Mono-n-butyl 

phthalate 
MnBP 131-70-4 

Butylbenzyl phthalate BBzP 85-68-7 0.58 0.22 
Monobenzyl 

phthalate 
MBzP 2528-16-7 

Abb.: abbreviations; NA: not available; -/- : not applicable; References: 1 EFSA, 2015; 2 U.S. EPA, 2019; 3 ITER, 2019; 4 Council of Europe, 2009; 5 Group TDI from EFSA, 2018; 6 Moos et al., 2017;  

7EFSA, 2005b; 8EFSA, 2005a.     
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2.2.5. Step 2.3: Selection of physiological parameters in the model 

2.2.5.1. IndusChemFate input parameters 

Four chemicals were selected initially to test the model. These chemicals were two 

phthalates (DnBP, BBzP) and two phenols (bisphenol A, triclosan). They were chosen 

based on the simplicity of their metabolism and the availability of the estimated daily 

intakes/tolerable daily intakes and measured urine concentrations. 

The physico-chemical input parameters needed for each compound and its 

metabolites included the molecular weight, density, vapour pressure, logarithm of 

the octanol-water partition coefficient at the pH of blood (pH 7.4) and water 

solubility. In addition, the model required estimates of the oral absorption rate, 

resorption in renal tubuli, enterohepatic removal as well as Vmax and Km values with 

respect to each metabolic step that is intended to be considered. All values of these 

parameters are presented in Table 2.A.1 of Appendix 2.A. Properties of the BPA 

glucuronide used are those saved in the ICF model.  

Based on the conclusions of Pelkonen et al. (1973), Hakooz et al. (2006), Barter et al. 

(2007) and Zhang et al. (2015), a factor of 40 mg/g was adopted to scale Vmax values 

from a value established in vitro to an in vivo hepatic drug clearance value. The 

absorption rate (ka) was calculated using the Winiwarter et al. (1998) model 3b to 

derive the logarithm of the effective permeability (Peff) and Peters (2008, Eq. 1) to 

then calculate the ka. 

 

For more information on how model-inherent parameters were defined or 

generated, see Jongeneelen and ten Berge (2011a, 2011b). To test the model, two 

females and two children from the Norwegian population were selected; one of 

"normal" weight (Woman/ Child 1) and one "obese" (Woman/ Child 2). Respective 

population scenarios were selected in ICF, i.e. a normal and obese woman, and a 

normal and obese child at rest. As mentioned previously, to categorise the BMI of a 

child the age and sex are required. However, a BMI of 16 is a normal weight for a 

child under 11 regardless of sex and a BMI of 22 is overweight or obese (CDC, 2018). 

Accordingly, a child with a BMI of 16 was selected for the normal category and a child 

with a BMI of 22 for the obese category. Their respective weights were entered into 

the code (via Developer -> VisualBasic) for the corresponding normal/obese 

woman/child at rest. The duration of simulation was set for an acute oral exposure 

at 24 hr and for long-term exposure to steady state.  
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2.2.5.2. Httk input parameters  

2.2.5.2.1. Sample size for general population Monte Carlo simulations and generation 

of virtual population-specific physiological parameters for BETDI calculation 

The urine-related BETDI values were intended to be applicable to a diverse population, 

therefore it is more accurate if individual variability is taken into account. This 

variability can be met in Httk with the creation of a virtual population. Using the 

function "httkpop_generate", a virtual population with physiological data taken from 

the NHANES (Johnson et al., 2014) was generated. The gender, age range, weight 

category, kidney function category and ethnicity may be defined and together they 

addressed the inter-individual variability. The characteristics of a created virtual 

population may then be used to generate population-specific parameters to run the 

PBTK model. 

 

In the present work we used the Yamane formula to define a sample size based on a 

given population size (Yamane, 1967):  𝑛 = 𝑁[1 + 𝑁(𝑒2)] 
 (Eq. 2.1) 

Where 𝑛 = sample size, 𝑁 = population, 𝑒 = 0.05, error tolerance.  

  

The Yamane formula was used to characterise European Union general population 

size, based on 508 million inhabitants, a sample size of 400 is estimated. Samples of 

400 and 4,000 persons were feasible in Httk, a Yamane-formula-based 400-subject 

and a 4,000-subject population were created to simulate the BETDI. As performed for 

the adult population, two populations, one with a larger sample size than the other, 

were created for children. The result was a sample size of 1,000 made up of 500 

males and 500 females and a sample size of 10,000 made up of 5,000 males and 5,000 

females; all between the ages of 6 and 11 years.  

 

These populations constituted a random selection of individuals from all weight 

categories (underweight, normal, overweight and obese), "non-hispanic white" and 
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"other" ethnicities, with normal kidney function and from 32 to 56 years of age for 

female adults and 6 to 11 for children. For each individual in these populations and 

each chemical, the function "get_httk_params" was used to generate parameters to 

run the PBK model. When running this function, poor metabolisers were considered.  

 

 

2.2.5.2.2. Generation of virtual population-based physiological parameters for BEEDI 

calculation 

For the calculation of BEEDI from the EDIs provided for the Norwegian women and 

children, virtual populations were created which represented both Norwegian 

groups as accurately as possible. Therefore, the adult females were split into three 

weight categories based on their BMI. Virtual populations were then created with 

the same number of individuals in each category. As a result, the three virtual 

populations were: i) 28 normal weight, ii) 12 overweight and iii) 6 obese individuals.  

 

The Norwegian population of children could not be separated according to weight 

categories as information of their individual age and sex was not available. A virtual 

population of children (both male and female) between 6 and 11 years old and of all 

weight categories was created to visualise the ranges in weight and BMI. The results 

showed that, in Httk, any child with a BMI over 25 is considered obese, however, with 

BMIs under 25 the overlap between normal and overweight was too close to 

compare without the information of age. Therefore, looking at the HBM data of the 

children with EDIs and corresponding urine measurements, only one child is obese 

and the other 43 are normal/overweight. For the BEEDI calculation of the obese child, 

an obese population (200 boys and 200 girls) was simulated and the individual with 

the closest BMI and weight (weight_adj in Httk) to the child was chosen. For the other 

individuals, a population of 200 boys and 200 girls with the weight categories normal 

and overweight was created. Individuals with weights or BMIs outside the limits of 

those measured in the population were then eliminated. To solve for the same 

number of individuals as in the data, 43 individuals were randomly selected until the 

maximum, minimum, median and mean were similar to that of the HBM data. 
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2.2.6. Step 3: Forward dosimetry 

As illustrated in Figure 2.3, the forward dosimetry approach was used in this study 

to estimate the concentration of a substance in human urine from an oral intake 

dose, i.e. a BEEDI from an EDI, a BETDI from a TDI, and a BERfD from an RfD.  

 

2.2.6.1. Forward dosimetry with ICF 

The estimated daily intakes (EDI) measured in the Norwegian HBM project for the 

chosen individuals, as well as the tolerable daily intakes (TDIs) and reference doses 

(RfDs) of the chemicals were entered into the model as oral bolus doses (in mg/kg 

BW) at hour 0. No EDIs were measured for triclosan.  

 

The model was run at 10,000 iterations per hour for 24 hours. The time to reach 

steady state was assessed using the equation 𝑇𝑠𝑠 = 5 × 𝑡(1/2), with 𝑡(1/2) being the 

elimination half-life. Of all compounds under consideration, triclosan takes the 

longest time to reach steady-state, namely 145 hours (6.04 days) if considering the 

maximum human elimination half-life of 29 hours (European Commission Scientific 

Committee on Consumer Safety (SCCS), 2009). Therefore, to predict BE values at 

steady state, all compounds were predicted for seven days to make sure that all 

reached steady state at the end of simulation time. As results for each BETDI, BERfD 

and BEEDI and individual scenario (Woman/Child 1 and 2), the 24-hour and steady 

state Cmax values were recorded. 

 

ICF predicts the concentration of the metabolites, which is directly applicable for the 

phthalates, where relevant metabolites have been analysed in the urine samples. For 

TCS and BPA, the ICF model predicts the urinary concentrations of the glucuronidated 

metabolites (TCS-glu and BPA-glu) while the hydrolysed TCS and BPA forms were 

analysed in the urine samples. In order to match the results and compare predicted 

with measured concentrations, the resulting urine concentrations of TCS-glu and 

BPA-glu were converted from µmol/L to ng/mL based on the molecular weight of the 

parent compound. 

 

2.2.6.2. Forward dosimetry with Httk to calculate BETDI 

In order to calculate the ‘urinary reference values’, the TDI was entered as a daily 

dose. Subsequently, "solve_pbtk" was run for each individual in each population. 
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When the model was run for the time to reach steady state as defined by the function 

“calc_css”, it was found that the amount excreted in the urine was still increasing at 

the end of the simulation time. Therefore, simulation times were defined as shown 

in Table 2.2 to ensure that steady state was reached in the urine by the end of 

simulation time.  

 

Table 2.2: Times to steady state and selected simulation time for each compound 

run in Httk 

 Calc_css results (days) Simulation time (days) 

MeP 1 7 

EtP 1 7 

PrP 2 7 

BuP 2 7 

TCS 4 10 

BP-3/Oxy 2 7 

BPA 11 30 

 

 

The PBK output table generated for each individual included the amount of the 

chemicals in the renal tubules. This amount was interpreted as the amount excreted 

in the urine. The maximum amount excreted was converted from mg/day to ng/day 

and then divided by the volume of urine expected to be excreted (1600mL for adult 

females and 820mL for children (Sakhi et al., 2018)) to obtain a value in ng/mL. 

 

BETDI calculations were performed on two sets of 4,000 and 400 women and two sets 

of 10,000 and 1,000 children to evaluate whether the BETDI values would differ 

considerably based on the different populations. The mean values differed very little 

between the larger versus the smaller populations but the standard errors of the 

mean of the larger populations were reduced and therefore populations of 4,000 and 

10,000 individuals were used for women and children respectively. When choosing 

between the two 10,000 and two 4,000 individual populations the 5th percentile and 

median BETDI values were compared. The differences were marginal and the one 

population per age group with the overall lower BETDI values was chosen. 

 

Of the distribution of 4,000 urine TDI equivalents excreted per day in the adult female 

population and 10,000 values in the children, the 5th percentile, as a conservative 
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measure, and the median were used as BETDI values and compared with measured 

urine concentrations. 

 

2.2.6.3. Forward dosimetry with Httk to calculate BEEDI 

In order to assess potential risks from the exposure information derived from urinary 

excretion levels, it is common practice to calculate back to the daily intake values. 

For the current data set and the covered chemicals, many papers were available that 

had partly already done that for parabens (Asimakopoulos et al., 2014; Moos et al., 

2016) and phenols (Frederiksen et al., 2013; Asimakopoulos et al., 2014). In some 

cases, an EDI is then calculated by multiplying the urinary concentrations with the 

urine volume over 24h. In reality, in these cases higher exposure was most likely to 

have occurred. 

 

EDIs derived from ambient air, dust and food concentrations were provided by the 

Norwegian Institute of Public Health. They were intended to be used for forward 

dosimetry to obtain a urine level BEEDI which may be compared to measured urine 

concentrations in order to assess how well simulated and measured values correlate 

(Step 4 of Figure 2.2).  

 

For the Norwegian populations, the only EDIs available for the chosen chemicals 

were those for BPA. As discussed in 2.2.5.2.2, virtual populations were created 

comprising 28 normal weight, 12 overweight and 6 obese women, as well as one 

obese and 43 normal/overweight children. To calculate the BEEDI values for both 

Norwegian adults and children, every individual's EDI was used as a daily intake for 

the individual's corresponding virtual population. Therefore, the same EDI has 

several BEEDI values, one for each individual in the virtual population (e.g. 28 for the 

adult female normal weight population). For each EDI the average of its resulting 

BEEDI values was then compared against the corresponding measured urine 

concentration. To illustrate this with an example, a normal weight woman having an 

EDI of 1.40 × 10−4 mg/kg was selected. This value was used as the input for the 

normal female virtual population of 28 individuals, thus generating 28 BEEDI. The 

average BEEDI (∑BEEDI/28) was 0.131 ng/mL. The measured urine concentration of the 

individual woman (with EDI = 1.40 × 10−4 mg/kg) was 1.88 ng/mL, thus an order of 

magnitude higher than the simulated BEEDI of 0.131 ng/mL. 
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2.3. Step 4: Evaluation of modelling results 

In order to test the model and estimate the quality and validity of the BETDI, all 

predicted values – i.e. BEEDI, BETDI, BERfD – were contrasted with comparable values. 

BEEDI, which represent the predicted urine concentration reached at oral exposure to 

the EDI, were compared to the urine concentration measured in individuals. Under 

the assumption that EDI values are reliable, the closer BEEDI are to measured urine 

concentrations, the better the performance of the model. BETDI and BERfD, which 

constitute safe chronic urine concentrations, were compared to previously 

established BE values. 

 

2.3.1. Deriving BEEDI values with IndusChemFate and comparing these to measured 

concentrations for four individuals 

Using the calculated EDI from external sources for two women and two children from 

the Norwegian HBM dataset, the corresponding urinary concentrations BEEDI were 

simulated with ICF and compared to the measured urinary concentrations for these 

four individuals. For data protection reasons, individual urine concentrations and 

individual EDI are not shown but the factor of deviation between measured and 

predicted values are shown (Tables 2.3-2.5). 

 

2.3.1.1. BEEDI predictions with IndusChemFate following 24-hour simulation time 

A comparison of urinary concentrations of the two women to simulated BEEDI, BETDI 

and BERfD values for DnBP, BBzP, TCS and BPA is  presented in Table 2.3. A comparison 

of these values related to the two children is included in Table 2.4. For DnBP, the EDI 

of woman 1 is approximately a factor of two higher than the EDI of woman 2, which 

is reflected in the corresponding calculated BEEDI. This indicates that predicting urine 

concentrations for individuals of different weight categories does not necessarily 

generate substantially different results. The same relationship between the EDI of 

both women for BBzP and the corresponding BEEDI was observed; the EDI and BEEDI 

of woman 2 for BBzP is approximately a factor of 2.5 lower than the respective EDI 

and BEEDI of woman 1. In contrast, for BPA, the EDI of woman 1 - which is similar to 

the DnBP-related EDI of woman 1 – results in a BEEDI four orders of magnitude higher 

than the DnBP-related BEEDI. With regard to EDI and the corresponding BEEDI of both 

children, the same holds for both phthalates and BPA. EDI values of child 1 for DnBP 
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and BBzP are approximately three times higher than respective EDI values of child 2, 

which is reflected in all corresponding BEEDI. However, for BPA, the same relationship 

between EDI and BEEDI is observed as previously seen in both female adults. 

 

When comparing measured urine concentrations (not detailed due to data 

protection reasons) to calculated BEEDI, they differ by a factor of 3 to just over one 

order of magnitude for BPA, and three to over four orders of magnitude for both 

phthalates. For DnBP and BBzB, BEEDI are always lower than measured urine 

concentrations. The measured urine concentrations of both women and child 1 for 

MnBP (DnBP metabolite) were very similar, and three to just over four orders of 

magnitude higher than the calculated BEEDI. Whereas the measured urine 

concentration of child 2 is a factor of 3.5 higher than the concentration measured in 

child 1 while the estimated EDI of child 2 is over a factor of three lower than the EDI 

of child 1. Therefore, corresponding BEEDI of child 2 differs by four orders of 

magnitude from the measured urine concentration. While for child 1, the measured 

urine concentrations of MBzP (BBzP metabolite) differ by only three orders of 

magnitude from the BEEDI, for child 2 and both female adults measured urine 

concentrations are four orders of magnitude higher than corresponding BEEDI. This 

could indicate that there are other sources of the selected chemicals that are not 

covered when calculating the EDI, but it can also indicate that ICF is underpredicting. 

Overall, it is suspected that total exposure is underestimated for these substances. 

 

In contrast, the BEEDI of BPA for the normal weight adult female and the obese child 

are higher than measured concentrations in urine by just over an order of magnitude 

and a factor of three, respectively. Interestingly, the measured urine concentrations 

of BPA of the obese adult female and the normal weight child were very similar, and 

a factor of five and nine higher than their respective BEEDI for these individuals. 

Unfortunately, there were no measurements to estimate EDIs for triclosan so no BEEDI 

was calculated for this compound.  

 

2.3.1.2. BEEDI predictions with IndusChemFate for steady-state simulations 

When running the simulation for all compounds for seven days, only BPA reached a 

steady-state concentration. The venous blood concentration of all other substances 

continued to increase steadily, even when the simulation was run for a period 
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substantially longer than seven days (100-300 days). Therefore, steady state 

simulation results presented in Table 2.5 are only shown for BPA. Interestingly the 

steady state BEEDI is very similar to the 24-hour BEEDI for all four individuals. Therefore 

again, measured urine concentrations and those estimated from the EDI differed by 

between a factor of three and one order of magnitude. 

 

In conclusion, 24-hour and steady state results suggested that kinetics of BPA were 

calculated substantially differently to the kinetics of both phthalates included. 

Predictions for BPA were considered more accurate than predictions for other 

substances in ICF since steady state was reached only for BPA. This may be related to 

the fact that the BPA was a test chemical for the development of the ICF model and 

its data were already provided in ICF when the model was downloaded from the 

Cefic-LRI website. Uncertainties underlying EDI values were not quantified and 

further discussed in subchapter 2.3.4. 
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Table 2.3: Comparison of urinary concentrations of two Norwegian female adults to ICF simulated BEEDI (EDI-based urine concentrations) and predicted BERfD 

and BETDI values after a 24-hour simulation time with IndusChemFate 

NA: not available. Up to three significant figures are reported.

 
Woman 

Parent 

compound 
Metabolite 

TDI 

(mg/kg/day) 

RfD 

(mg/kg/day) 

BETDI 

(ng/mL) 

BERfD 

(ng/mL) 

Factor measured 

urine conc. / BEEDI 

Exceedance of 

threshold (conc. in 

urine/BETDI) 

Exceedance of 

threshold (conc. 

in urine/BERfD) 

P
h

th
a

la
te

s 

1 DnBP MnBP 0.01 0.1 0.14 1.37 8,875 112 11.40 

2 DnBP MnBP 0.01 0.1 0.13 1.34 18,500 129 12.50 

1 BBzP MBzP 0.5 0.2 7.8 3.12 7,770 0.67 1.66 

2 BBzP MBzP 0.5 0.2 7.66 3.06 11,400 0.37 0.92 

P
h

e
n

o
ls

 

1 TCS TCS-glu 0.047 0.3 0.44 2.67 NA 0.16 0.04 

2 TCS TCS-glu 0.047 0.3 0.39 2.36 NA 0.12 0.03 

1 BPA BPA-glu 4 × 10−3 0.05 377 4,700 0.1 0.005 4 × 10−4 

2 BPA BPA-glu 4 × 10−3 0.05 437 5,460 9.3 0.025 2 × 10−3 
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Table 2.4: Predicted BEEDI for a variety of chemicals for two Norwegian children after 24-hour simulation time with IndusChemFate 

 

Child 
Parent 

compound 
Metabolite 

TDI 

(mg/kg/day) 

RfD 

(mg/kg/day) 

BETDI 

(ng/mL) 

BERfD 

(ng/mL) 

Factor measured 

urine conc. / BEEDI 

Exceedance of 

threshold (conc. 

in urine/BETDI) 

Exceedance of 

threshold (conc. 

in urine/BERfD) 

P
h

th
a

la
te

s 

1 DnBP MnBP 0.01 0.1 0.23 2.26 1,510 73.0 7.42 

2 DnBP MnBP 0.01 0.1 0.23 2.26 17,600 251 25.6 

1 BBzP MBzP 0.5 0.2 10.9 4.36 1,220 0.25 0.62 

2 BBzP MBzP 0.5 0.2 10.9 4.36 10,600 0.91 2.27 

P
h

e
n

o
ls

 

1 TCS TCS-glu 0.047 0.3 0.73 4.46 NA 0.08 0.02 

2 TCS TCS-glu 0.047 0.3 0.67 4.11 NA 0.05 0.01 

1 BPA BPA-glu 4 × 10−3 0.05 637 7,970 16.2 0.0166 0.0013 

2 BPA BPA-glu 4 × 10−3 0.05 736 9,190 0.56 2 × 10−3 2 × 10−4 

NA: not available. Up to three significant figures are reported.
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Table 2.5: Simulated BEEDI of BPA at steady state for four individuals predicted with IndusChemFate  

Woman 
Parent 

compound 
Metabolite 

TDI 

(mg/kg/day) 

RfD  

(mg/kg/day) 

BETDI 

(ng/mL) 

BERfD 

(ng/mL)  

Factor measured 

urine conc. / BEEDI 

Exceedance of 

threshold 

(conc. in 

urine/BETDI) 

Exceedance of 

threshold 

(conc. in 

urine/BERfD) 

1 BPA BPA-glu 4 × 10−3 0.05 428 5,350 0.126 4.4 × 10−3 4 × 10−4 

2 BPA BPA-glu 4 × 10−3 0.05 473 5,910 8.59 0.0232 1.9 × 10−3 

Child 
Parent 

compound 
Metabolite 

TDI 

(mg/kg/day) 

RfD (mg/kg/ 

day) 

BETDI 

(ng/mL) 

BERfD 

(ng/mL) 

Factor measured 

urine conc. / BEEDI 

Exceedance of 

threshold 

(conc. In 

urine/BETDI) 

Exceedance of 

threshold 

(conc. In 

urine/BERfD) 

1 BPA BPA-glu 4 × 10−3 0.05 649 8,120 0.063 0.0163 1.3 × 10−3 

2 BPA BPA-glu 4 × 10−3 0.05 739 9,240 1.80 2 × 10−3 2 × 10−4 

Up to three significant figures are reported.
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2.3.2. Deriving BEEDI values with Httk and comparing these to measured 

concentrations of the Norwegian dataset 

Similar to the calculation of BEEDI using ICF, as presented in the previous subchapter, 

EDI values were used in Httk to calculate urine-based BEEDI values which were 

subsequently compared to measured urine concentrations. For the Norwegian 

populations, the only EDIs available for the chemicals selected for the use of Httk 

were those for BPA.  Figures 2.4A and 2.4B show the BEEDI values calculated for BPA 

based on the EDIs of women and children of the Norwegian study group. The 

horizontal lines in both graphs illustrates the range between the minimum and 

maximum urine concentrations measured in these individuals. Overall, the difference 

between the measured and simulated urine concentrations of Norwegian adult 

females and children is, on average, two to three orders of magnitude, with a 

minimum of one and a maximum of five orders of magnitude. It is interesting to note 

is that the higher the EDI value used as the daily dose, the closer the predicted result 

to the measured urine concentration. This may indicate that either the higher the 

EDI, the more complete and reliable this value is which results in a more reliable BEEDI, 

or that Httk performs better with higher oral doses.  
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A 

 

B  

 

Figure 2.4A. BEEDI concentrations for BPA based on EDIs of 28 normal weight, 12 

overweight and 6 obese female adults of the Norwegian group of women in relation 

to the area between the minimum and maximum measured urine concentration of 

this study population. 2.4B. BEEDI concentrations for BPA based on EDIs of 43 

Norwegian children in relation to the area between the minimum and maximum 

measured urine concentration of this study population. 
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2.3.3. Deriving BETDI values with IndusChemFate and Httk and comparing these to 

previously established BE values  

In order to better understand whether the BETDI values calculated in ICF and Httk are 

somewhat similar to previously established BE values of the compounds considered 

here, a search of comparable values was performed. Urine-based BE values were only 

found in the literature for TCS and BPA. These had been established by the German 

HBM Commission termed HBM-I values (Angerer et al., 2011) on the basis of TDI 

values published by Krishnan et al. (2010a, 2010b). The BE values for TCS were 3.000 

and 2.000 ng/mL for adults and children, respectively, as well as 200 and 100 ng/mL 

for BPA. 

 

Table 2.6 shows that for TCS, all BETDI values obtained from Httk and ICF are 

comparatively similar to each other and differ from previously established levels by 

three to four orders of magnitude. It needs to be taken into account, however, that 

the TDI value used for establishing the HBM-I-values was 0.12 mg/kg/day and 

therefore higher than the TDI of 0.047 mg/kg/day used in our study. For BPA, 

however, existing BE values were in the same order of magnitude when considering 

BETDI values calculated in ICF for female adults and one order of magnitude different 

to those simulated for children. The ICF-related values shown here are only based on 

two individual scenarios offered by the model. Therefore, a range of BETDI values 

reflecting inter-individual variability was not obtained with this model. All median-

based BETDI values obtained for BPA from Httk are two orders of magnitude lower 

than previously established values. Therefore, even the lower BETDI for BPA based on 

the 5th percentile may be considered particularly conservative. 
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Table 2.6: BETDI values calculated in IndusChemFate and Httk for female adults and 

children compared to previously proposed BE values (HBM-I-Werte) by the German 

HBM Commission 

  TCS BPA 

BETDI values 

established in ICF 

Normal weight female adult (ng/mL) 0.44a 428b 

Obese female adult (ng/mL) 0.39a 437b 

Normal weight child (ng/mL) 0.73a 649b 

Obese child (ng/mL) 
0.67a 739b 

BETDI values 

established in 

Httk 

Female adults, 5th percentile (ng/mL) 0.89 1.08 

Female adults, median (ng/mL) 2.57 3.08 

Children, 5th percentile (ng/mL) 0.64 0.79 

Children, median (ng/mL) 1.73 2.09 

Existing BE values 

(HBM-I-Werte) 

Adults (ng/mL) 
3,000c 200 

Children (ng/mL) 
2,000c 100 

a BETDI values for TCS were derived in ICF using 24h simulations, since a steady state was not reached. 

b BETDI values for BPA were derived in ICF using steady state simulations, which is the best comparable 

to the concept of deriving TDIs as a safe dose based on chronic daily exposure. The difference between 

24h simulations and steady state simulations for BPA in ICF are however small (see Table 2.3-2.5). 

c HBM-I-values for TCS are based on a TDI of 0.12 mg/kg BW and day as opposed to 0.047 mg/kg BW 

and day which was used for BETDI values established in this study. 

 

 

2.3.4. Evaluation of IndusChemFate and Httk modelling results 

It is difficult to evaluate the validity of ICF and Httk modelling results as the only 

exercise undertaken to test both models was the forward dosimetry approach using 

EDI values of four individuals with ICF and of 46 women and 43 children of the 

Norwegian study group with Httk. 

 

It is crucial to consider that, besides uncertainties inherent in ICF and Httk 

predictions, several uncertainties are likely to be associated with the EDI values used. 

Typically, these uncertainties generally relate to source variability (e.g. changes in 

exposure rates, sources and duration), variability of model input parameters to 

calculate the EDI, incomplete capture of precursor compounds, and metabolic 

variability within a population and with respect to changes in metabolic rate of an 

individual which are not considered when calculating the intake of precursor 

compounds (Haug et al., 2011; Hines et al., 2011). The approach used to calculate EDI 
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values for Norwegian adult females included assumptions of the amount of drinking 

water consumed and indoor air inhaled as well as three scenarios for dust ingestion 

in order to achieve sufficiently certain results (see Haug et al., 2011). Another aspect 

contributing to uncertainty of BEEDI results is related to the use of the EDI value as a 

whole as an oral dose even though a fraction of it is related to inhalation exposure. 

Overall, in comparison to other parts of a risk assessment (i.e. hazard identification, 

dose-response assessment), an even broader range of uncertainties may be involved 

in exposure assessment due to e.g. incomplete capturing of exposure sources 

(National Research Council, 2009; Bang et al., 2012; Yao et al., 2018). Therefore, an 

EDI is assumed to be an estimate of the minimal exposure, while higher exposure 

has, in reality, most likely occurred. 

 

In conclusion, predictions for BPA are considered more accurate than predictions for 

other substances in ICF. The reason for this is primarily that steady state was only 

achieved for BPA. Because of this, ICF results are not considered for single substance 

risk assessment (Step 5) and mixture risk assessment (Step 6). With regard to the Httk 

results, simulated urine levels BEEDI differ by, on average, two to three orders of 

magnitude from measured urine concentrations in 46 adult females and 43 children. 

This exceeds the conventionally accepted difference of one order of magnitude 

between predicted and measured results. Interesting to note is that predicted BEEDI 

concentrations (in ng/mL) follow the same trend as EDIs (mg/kg BW) (data not 

shown). This indicates linearity between model input and output reflecting linear 

biological processes. However, metabolism may for instance saturate and therefore 

be non-linear.  

 

When compared to previously established TDI-based BE concentrations in urine, the 

BETDI values obtained with Httk appear to be conservative. Additionally, reference 

values such as TDIs and RfDs also bear uncertainties (e.g. extrapolation from animal 

to human populations, see also Hays et al. (2007)) and are continuously updated 

which indicates, to some degree at least, lack of robustness overall. An overview of 

limitations and uncertainties of both models is outlined in subchapter 2.3.5. 
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2.3.5. Uncertainties and assumptions when applying IndusChemFate and Httk to 

assess HBM data  

It is difficult to assess and quantify all uncertainties underlying ICF and Httk modelling 

results and data interpretation. Table 2.7 summarises assumptions, limitations, and 

uncertainties identified with regard to the formulated research problem and the 

workflow of this study (as outlined in subchapter 2.2). Particular regard was given to 

limitations and uncertainties related to the application of both PBK models, their 

input parameters, model structure and output since these link strongly to the 

problem formulation. These aspects are discussed further in the Discussion 

(subchapter 2.6). Assumptions, limitations and uncertainties related to the 

presented HBM analysis do not affect the applicability of the selected PBK models 

but need to be considered when interpreting all simulated results.  
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Table 2.7: Assumptions, limitations and uncertainties of the IndusChemFate and Httk platforms 

 IndusChemFate Httk 

Problem 

formulation 

How can PBK models be used to interpret exposure by applying HBM data in the context of assessing the risk of environmental pollutants? 

Limitations and 

uncertainties 

related to input 

parameters 

Uncertainty in in vitro data (e.g. nominal as opposed to the effective 

free concentration is recorded). 

In vitro to in vivo extrapolation uncertainty (e.g. uncertainty related 

to the scaling factor used for Vmax values). 

Chemical-specific parameters were sourced from different 

databases and the public literature; therefore, based on a wide 

variety of techniques. 

Absorption rate calculated using a QSAR model. 

Predictions of physiological input parameters based on various 

QSPRs (blood:air partitioning, tissue:blood partitioning, renal 

excretion, tubular resorption). The QSPR calculating solubility in 

blood assumes that human blood consists of 0.7% lipids.  

8% of arterial blood is assumed to be turned into primary urine. 

 

 

Uncertainty in in vitro data (e.g. nominal as opposed to the effective free 

concentration is recorded).  

In vitro to in vivo extrapolation uncertainty. 

Inbuilt chemical-specific parameter values were used. Only the p-value 

related to the intrinsic clearance of TCS was changed manually. Fewer 

variety of sources and higher consistency of methodology. 

High degree of parameters are based on in vitro data or QSAR models.  

Perfusion-limited kinetics. 

Negligible blood volume fractions in all tissues to justify dividing by the 

tissue volume without a blood volume fraction and partition coefficient 

dependency in PBK tissue concentration equations.  

Allows only for metabolism in liver. 

Linear, non-saturated metabolism considered. 

Rblood2plasma is constant throughout the body. 
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Urinary excretion is driven by the lipophilicity of the molecule. 

No tubular resorption of very soluble substances with a log Kow  

< -1.5. 

Physiological parameters do not change by gender. 

Lack of detailed consideration of population variability specific 

protein binding, interaction with intestinal flora, intestinal transport, 

and excretion by faeces. 

Clearance is assumed to be relative to the amount unbound in whole blood 

instead of plasma, but converted to use with plasma concentration. 

The function Wetmore.data comprising Wetmore et al. (2012, 2013) and 

Wetmore (2015) assumed the fraction unbound (fub) = 0.005 for chemicals 

with fub below the limit of detection. 

Prediction for populations which are based on U.S. NHANES data; degree of 

variability to European/Scandinavian population unclear. 

Model structure High number of compartments. 

 

Moderate number of compartments. 

Simulation of metabolite kinetics unavailable. 

Model output Steady state not reached for most compounds. 

Mass balance can easily be checked but shows errors, especially in 

children's populations. 

Size of adult female population above 4,000 individuals gave error 

message. 

Conversion from chemical amount in renal tubule to urine concentration 

necessary. 

Assumptions, 

limitations and 

uncertainties 

related to the 

presented HBM 

analysis 

Intake is assumed to come from the oral route, although it is known 

that it can also come from air or dust.  

Uncertainties underlying EDIs and TDIs. 

Uncertainties in urine concentration measurements. 

Only metabolism in liver was considered. 

Intake is assumed to come from the oral route, although it is known that it 

can also come from air or dust. 

Uncertainties underlying EDIs and TDIs. 

Uncertainties in urine concentration measurements. 

 

QSPR: Quantitative Structure-Property Relationships. 
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2.4. Step 5: Single substance risk assessment 

In order to interpret the measured urinary concentrations, they can be compared to 

toxicological and health based reference values. BETDI and BERfD values can serve as 

such reference values to compare to. In this study, the results of BETDI calculations 

were applied in Step 5 to assess whether a potential risk may be associated with the 

concentration of compound measured in urine. The application of the BETDI values 

derived here is performed for illustration of the possible use and cannot be 

considered as detailed risk assessment. 

 

2.4.1. IndusChemFate: Comparison of BETDI and BERfD predicted after 24-hour 

simulation time and at steady state with measured urine concentrations 

When considering the 24-hour calculated BERfD and BETDI values in comparison to the 

measured urine concentrations, all four individuals appear to be exposed to 

concentrations below the BPA and TCS internal RfD or TDI values. For BBzP, urine 

concentrations measured in all four individuals were below the BETDI. However, for 

woman 1 and child 2 their measured urine concentration is higher than that of the 

BERfD. For DnBP, all measured urine concentrations are above the calculated BETDI and 

BERfD values for all four individuals; by one to two orders of magnitude for all BETDI 

values. Urinary concentrations above BERfD or BETDI indicate a potential risk, but have 

to be interpreted carefully here considering all the uncertainties around the derived 

BE values. Tables 2.3 and 2.4 summarise BERfD and BETDI values for DnBP, BBzP, TCS 

and BPA of the two adult females and children of the Norwegian study group 

following a 24-hour simulation time. 

 

Interestingly the steady state BETDI and BERfD are very similar to the 24-hour BETDI and 

BERfD. All measured urine concentrations are below the calculated BETDI and BERfD 

values. Table 2.5 includes BERfD and BETDI values for DnBP, BBzP, TCS and BPA of the 

two adult females and children of the Norwegian study group at steady state. 
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2.4.2. Httk: results of BETDI calculations and comparing these to measured 

concentrations 

Httk allowed for the creation of virtual populations based on which a distribution of 

BETDI were generated. In risk assessment, the 5th percentile of a dose-response 

distribution (representing the incidence of an adverse effect in 5% of a population; 

these 5% are considered more sensitive individuals) is often selected as point of 

departure (POD) (IPCS WHO, 2014; Shao and Gift, 2014; Haber et al., 2018). The POD 

is typically divided by safety factors (also called adjustment factors), for instance to 

extrapolate from an animal POD to a human POD, and then applied as safe reference 

value (e.g. TDI, ADI or RfD) (U.S. Environmental Protection Agency (EPA), 2012; IPCS 

WHO, 2014). The 5th percentile of the BETDI distribution was selected as a BE value 

which is protective of sensitive individuals of the virtual population and the median 

of the BETDI distribution was selected to allow comparison. As the TDI itself is 

considered a protective value, the BETDI based on the 5th percentile may be over-

conservative. In this case, the BETDI based on the median would be a more adequate 

value for risk assessment. 

Table 2.8 shows the BETDI values based on the 5th percentile and the median of the 

distribution of maximum urine concentrations of virtual populations of 4,000 female 

adults and 10,000 children who ingested daily doses of the TDI until steady state is 

reached in the urine. 

 

Table 2.8: BETDI values established in virtual populations of 4,000 female adults and 

10,000 children based on daily doses of the TDI. 

 BETDI values (ng/mL) 

Female adults, 5th 

percentile  

Female adults, 

median  

Children,  

5th percentile  

Children, 

median  

MeP 1,010 2,970 716 1,940 

EtP 1,890 5,390 1,360 3,670 

MeP+EtP 1,220 4,050 865 2,690 

PrP 4.73 13.9 3.41 9.45 

BuP 4.56 12.9 3.19 8.65 

TCS 0.89 2.57 0.64 1.73 

BP-3/Oxy 11.1 32.1 8.05 21.6 

BPA 1.08 3.08 0.79 2.09 

Up to three significant figures are reported. 
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The 5th percentile BETDI values are all at least half the concentration of the median 

BETDI values. For MeP and EtP only a TDI is established for the sum of MeP and EtP. 

For the calculation of the BETDI of MeP+EtP, the TDI of 10 mg/kg/day was used to 

calculate the BETDI of MeP and EtP individually. From these, the BETDI for the sum of 

MeP+EtP was obtained by grouping all the urine TDI equivalents for MeP and EtP 

together and calculating the 5th percentile and median. Httk contains parameter data 

for n-propyl and n-butyl parabens but not their isomers. For certain individuals of the 

Danish dataset only measurements of the sum of n- and i-propyl as well as n- and i-

butyl parabens are available. In these cases, data points based on sum measurements 

are plotted separately in the graph (see Figure 2.5C). 

 

Measured urinary concentrations of Norwegian adult females, and Norwegian and 

Danish children, were then compared to the simulated BETDI values, both 5th 

percentile and median (Figure 2.5A, 2.5B, 2.5C). Measured concentrations greater 

than BETDI values indicate a potential risk. However, data need to be interpreted with 

care and uncertainties around the BETDI values need to be taken into account.  

 

By and large when identifying urine concentrations higher than the BETDI values, 

these data indicate that exposure to BPA is of greatest concern. Over all chemicals 

and populations and considering both the 5th percentile and median based measures, 

more that 50% exceed the BETDI established for BPA. With respect to the 5th 

percentile based BETDI, 95%, 100% and over 70% of Norwegian adult females, their 

children and Danish children, respectively, exceed this level. While TCS exposure only 

exceeds both BETDI values in 10-21% of the Norwegian adult and child populations, 

63 and 30% of the Danish children exceed the 5th percentile and median based 

measures, respectively. In both groups of children, both PrP BETDI values are 

exceeded by 9 to 26 % of individuals while 34 and 48 % of adult females show higher 

urine concentrations. Considering the 5th percentile based BETDI for BP-3/Oxy, 

approximately 35 to 40 of both Norwegian populations show higher levels of 

exposure, whereas fewer than 20% (including the Danish group) exceed the median-

based value. Exposures to MeP+EtP and BuP appear to constitute the least concern. 

Up to 6 % of all population groups exceed both 5th percentile and median based BETDI 

for these chemicals. 
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As expected, the 5th percentile based BETDI may be a rather conservative measure. In 

the cases of BP-3/Oxy in Norwegian children and female adults, BPA in adult females, 

and n-PrP and TCS in Danish children, the difference in the number of individuals 

exceeding the 5th percentile and the median based BETDI is substantial. In cases where 

the BETDI is exceeded by roughly 20% or less of the population, the difference to the 

median-based BETDI does not seem to be significant. 
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A  

B   

C  

Figure 2.5A. Number of individuals (in %) in the Norwegian adult females' group 

whose urine concentration exceed the 5th percentile and median based BETDI. 2.5B. 

Number of individuals (in %) in the Norwegian children group whose urine 
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concentration exceed the 5th percentile and median based BETDI. 2.5C. Number of 

individuals (in %) in the Danish children group whose urine concentration exceed the 

5th percentile and median based BETDI. 

 

Since Httk application and results are considered superior to ICF application and 

results, as outlined above, Httk results were used for the subsequent mixture risk 

assessment. 

 

 

2.5. Step 6: Mixture assessment case study with Httk results 

In order to illustrate how the BETDI values predicted with Httk may be applied, a 

screening level mixture risk calculation was performed. Some parabens and phenols 

are known as endocrine disruptors, associated with effects on reproductive hormone 

and thyroid levels (Aker et al., 2016). In order to assess the risk individuals face from 

these chemicals as a whole, a Hazard Index (𝐻𝐼) approach was used. The 𝐻𝐼 is 

calculated by summing all of the risk quotients (𝑅𝑄) of an individual, each 𝑅𝑄 is the 

concentration of a chemical (𝑗) found in the urine of an individual (𝑖) divided by the 

BETDI values established in this report (see Table 2.8 and Eq. 2.2 and 2.3) (Price and 

Han, 2011; DG Health & Consumers, 2012; Bopp et al., 2018). Ideally, only chemicals 

with the same MoA leading to the same adverse outcome should be considered for 

the combined assessment and in calculating the 𝐻𝐼 (Kienzler et al., 2016). However, 

including all chemicals in a first screening level estimate, independent of the detailed 

MoA and adverse outcome consideration, is a worst-case conservative approach. If 

the resulting 𝐻𝐼 is smaller than 1, it indicates that there is low concern. If a potential 

concern is identified (i.e. if the 𝐻𝐼 > 1), a refinement looking more in depth into 

grouping chemicals that are expected to contribute to a specific effect should be 

performed, but this is out of scope of this case study.  

 

𝑅𝑄(𝑖𝑗) = 𝑈𝑟𝑖𝑛𝑒 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (𝑖𝑗)𝐵𝐸𝑇𝐷𝐼(𝑗)   
 (Eq. 2.2) 

𝐻𝐼(𝑖) =  ∑ 𝑅𝑄(𝑖𝑗) 

 (Eq. 2.3) 
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2.5.1. Mixture assessment results 

The Hazard Index was calculated for each individual against the two BETDI values 

established in subchapter 2.3.3, i.e. 5th percentile BETDI and median BETDI. In addition, 

a 𝐻𝐼 was determined for each study population in order to represent the risk each 

one faces. These 𝐻𝐼s presented here were calculated using the median measured 

urine concentration of each chemical against the median BETDI calculated (Figure 

2.6A-C for Norwegian female adults, Norwegian children and Danish children, 

respectively). The 𝐻𝐼 for all three study population groups is above the 

recommended maximum of 1 and is mainly constituted by the 𝑅𝑄 for the group of 

phenols, in particular the 𝑅𝑄 related to BPA. It should be noted that the median is 

estimated for some chemicals with fewer samples than for others (i.e. n-BuP). More 

information on 𝐻𝐼s calculated with the 5th percentile BETDI and the 95th as well as the 

median of measured urine concentrations is presented in Appendix 2.B, Figures 2.B.1 

and 2.B.2, respectively. In fact, the phenols make up over 95% of the 𝐻𝐼 for both 

child populations. In terms of chemicals, BPA has the highest 𝑅𝑄 in all of the 

populations, whilst n-BuP and MeP+EtP have the lowest. In addition, two chemicals 

of note for the Norwegian mothers are BP-3 and n-PrP. The latter shows that the 

mothers are more exposed to parabens than their children, however, their 𝐻𝐼 is 

lower than both child populations. Finally, although Norwegian children have the 

highest 𝐻𝐼 they appear to be less exposed to TCS than the Danish children. In the 

comparison between the Norwegian and the Danish children, it needs to be taken 

into account however, that samples were taken in different years (2012 for 

Norwegian study and 2006/2007 for the Danish study), so that a decrease of external 

exposure concentrations over time might also play a role.  

 

The risk quotients and 𝐻𝐼 using the BETDI values established in this study have to be 

interpreted with care, taking into account the uncertainties around the BETDI values 

and the orders of magnitude difference in them when using different models or 

comparing to formerly established BE thresholds.  

 



59 

 

A  

B  

C  

Figure 2.6. Comparison of median measured urine concentration to the median of 

the BETDI distribution established using Httk. Risk Quotients (𝑅𝑄) for individual 

chemicals, sum of 𝑅𝑄 for the chemical groups phenols and parabens, and the overall 

Hazard Index (𝐻𝐼) are presented for A. Norwegian female adults, B. Norwegian 

children, C. Danish children. 
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2.6. Discussion  

According to the “Toxicity Testing in the 21st Century” paradigm, human 

biomonitoring data provide valuable information on exposure concentrations that 

may be related to toxicity pathways known to affect human populations (NRC, 2007). 

With the use of PBK models, these exposure concentrations can be compared to 

concentrations that caused perturbations of biological pathways in vitro. Therefore, 

the purpose of this study was to examine the suitability of using generic PBK models 

to derive urine-level BE values considered to be safe based on agreed reference 

values. Two publicly available PBK models, ICF and Httk, were applied and their 

performance assessed by comparing BEEDI values with urine concentration data, and 

BETDI / BERfD with established HBM values. Subsequently, a mixture assessment was 

performed as a case study showing how simulated BETDI values may be compared to 

measured urine concentrations. 

 

Both generic and publicly available PBK models provide valuable insights into the 

application of such models and use of results for HBM data analysis. ICF contains 11 

body compartments and by default assumes physiological and anatomical 

parameters of a reference human of 70 kg. However, several subjects can be 

selected, such as male, female and child, of normal weight or obese. The model 

contains algorithms as Quantitative Structure-Property Relationships (QSPRs) for 

blood:air, tissue:blood partitioning and for urinary excretion in order to estimate 

concentrations and amounts in body fluids (air excreted, urine and blood) and in 

organs after inhalation, oral intake or dermal exposure according to user defined 

exposure scenarios. A detailed analysis of the QSPRs used in ICF exceeded the scope 

of this study. For further information on these models, please refer to Jongeneelen 

and ten Berge (2011a). For the present work, various population scenarios were 

selected, e.g. normal child or obese woman at rest. As organ and tissue volumes and 

blood flows are scaled relative to the body weight, these are amended for a 

prediction for a normal or obese woman or child. Besides calculating parent and 

metabolite concentrations in organs over time, the amount excreted in urine was 

also predicted. ICF was primarily selected because of its user-friendly qualities. 

Furthermore, conversion of a parent compound to one or more metabolites may be 

modelled in parallel. This is particularly relevant for phthalates as they are rapidly 

metabolised (Frederiksen et al., 2007) and the concentration of some of their 
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metabolites are an adequate indicator of exposure to the parent compound (Ramesh 

Kumar and Sivaperumal, 2016). However, a steady-state concentration was only 

reached for BPA whereas the venous blood concentration of all other substances 

continued to steadily increase, even when the simulation was performed for a period 

of 100-300 days. When this issue emerged, initial attempts to resolve it did not 

improve the results and an email to the developers addressing the problem was 

unanswered. As the objective of this project was to examine the suitability of 

applying ICF and Httk, the focus was not placed on investigating issues in the model 

code or minor adjustments to parameterisation, but on continuing with Httk. This 

does not mean that this issue cannot be resolved. In fact, it is likely that checking of 

the model code and parameterisation will clarify the problem which can then be 

addressed and resolved. At the beginning of the project, the equations applied in ICF 

were reviewed in the model’s documentation, however the model code 

implemented in the Excel file was not checked. With respect to potential 

improvements of applied parameter values, it may be worth searching for additional 

data, potentially considering read-across, to establish a better understanding of 

ranges of parameter values suitable for the populations of women and children. Of 

particular interest are ranges of clearance values. Also, as will be shown in Chapter 

4, additional scaling factors, such as a relative activity factor (RAF) and a relative 

expression factor (REF), may be necessary to achieve improved in vivo Vmax values. 

 

The High-Throughput Toxicokinetics (Httk) constitutes a compilation of a one, three 

and seven-compartment PBK model intended to compute concentration vs. time 

curves. In this study, the exposure route applied was oral - via ingestion – and the 

seven compartmental model was used to perform the simulations. The model was 

used to calculate the number of days to reach steady state and urine concentrations 

for all compounds selected. Models were parameterised with high-throughput in 

vitro data and structure-derived physico-chemical properties for over 1,300 

compounds, and physiological data was taken from the most recent U.S. Centers for 

Disease Control and Prevention (CDC) NHANES data. At present, there is no option 

to estimate metabolite concentrations in the current version of the Httk which is why 

the model could not be used for phthalates. Httk was primarily selected because of 

the richness of data made available within the model.  
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Variability of a population is factored into the analysis which is lacking in ICF 

predictions. Even though population data taken from NHANES represent individuals 

in the U.S. as opposed to Scandinavian (or other European) populations who are at 

the centre of this investigation. Among the many functions built into Httk is the code 

to create a virtual population based on which parameter values are defined. Many 

different approaches exist to determine the sample size of a virtual population. For 

simulations considering the general population, Monte Carlo simulations with a 

sample size of 10,000 is often used (Slob, 2006; Sprandel et al., 2006; Goutelle et al., 

2009; Punt et al., 2016). However, a study on the number of replicates required in 

Monte Carlo simulations found that for all 22 studies considered, the minimum 

recommended number of replicates (which corresponds to the sample size) is less 

than 10,000 (Mundform et al., 2011). Overall, 7,500 to 8,000 replicates produce 

robust results, while in a number of cases 5,000 may be sufficient (Mundform et al., 

2011). Others use the Yamane formula to define a sample size based on a given 

population size (Yamane, 1967). When applying the Yamane formula for the 

population of the European Union sized 508 million inhabitants, a sample size of 400 

people was estimated. Unfortunately, in Httk, a virtual population of 10,000 females 

could not be created and most attempts to create a population of 5,000 females 

produced error messages. As samples of 400 and 4,000 are feasible in Httk, a 

Yamane-formula-based 400-subject and a 4,000-subject population were created to 

simulate the BETDI which were compared to urine concentrations measured in 

mothers. For the population of children, to be similar to the two mother samples, 

500 males and 500 females of the same age group was produced. These populations 

constitute a random selection of individuals from all weight categories (underweight, 

normal, overweight and obese), "non-hispanic white" and "other" ethnicities, with 

normal kidney function and from 32 to 56 years of age for female adults and 6 to 11 

for children. When the model was run for the time to reach steady state as calculated 

by “calc_css”, it was found that the amount excreted in the urine was still increasing 

at the end of simulation time. Therefore, simulation times were extended to ensure 

that steady state is reached in the urine by the end of simulation time. 

 

Other limitations of the application of ICF and Httk revolve around the use of 

adequate parameter values, as outlined in Table 2.7. In particular, ICF requires 

parameter values which may not easily be obtained, such as Vmax and Km values. 
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These are typically established in in vitro assays. Uncertainties related to the use of 

in vitro data have been recognised; for instance the discrepancy between the 

nominal concentration which has been added to the in vitro system and the free, 

bioavailable and actual toxic concentration (Blaauboer, 2010; Kramer, 2010). The 

free concentration can deviate greatly from the nominal concentration due to 

binding to the plastic of the culture plate, binding to proteins in the medium or 

evaporation from the medium. While this aspect was not considered in the data used 

for ICF, these issues were partly minimised in in vitro assays factored in in Httk 

(Wambaugh et al., 2018). Other inbuilt and sourced parameter values used in ICF 

were calculated using QSAR and QSPR models which bear uncertainties and may 

indicate that the model may only be applied for screening level assessments. For 

example, the human tissue-blood partition coefficient algorithms were specifically 

established for five tissue types and used for 11 tissue types in ICF (Jongeneelen and 

ten Berge, 2011a). Tissue-blood partition coefficients are assigned to tissues based 

on the lipid fraction of the tissue. However, considering the composition of various 

tissues presented by Woodard and White (1986) a clustering of tissues according to 

lipid content would not result in the grouping of tissues for tissue:blood partitioning 

performed by Jongeneelen and ten Berge (2011a). In a similar manner, all other 

assumptions stated in Table 2.7 may be debated but a more detailed analysis is 

outside the scope of this study. In terms of applicability, priority was given to the 

results generated in Httk which were then used for the MRA. 

 

Overall, many factors need to be considered when using generic PBK models. Also, 

interpretation and use of modelling results require a great degree of care. The great 

difference in mixture risk assessment results when applying the 5th percentile of the 

BETDI distribution compared to the median BETDI highlights this. In order to add value 

to the model validation and gain more confidence in model validation results 

generated in Step 4, confidence in the accuracy of EDI values needs to be increased. 

 

 

2.7. Conclusions 

The aim of the study was to develop a methodology to ultimately assess the risks 

caused by exposure to multiple chemicals using HBM data, thus taking into account 

realistic co-exposure scenarios for humans. One straightforward way to facilitate the 
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use of HBM data in risk assessment focuses on establishing safe levels in urine or 

blood to which measured HBM values can be compared. These safe levels are known 

as biomonitoring equivalents (BE) (Hays et al., 2007).  

 

This study applied two generic PBK models to establish such BE values, using different 

assumptions and virtual populations to cover female adults and 6-11 year old 

children. HBM data from a Danish and a Norwegian cohort study were used. This is 

the first study investigating the use of ICF and Httk for HBM data analysis. However, 

only a limited number of compounds could be simulated, i.e. 4 chemicals in ICF and 

7 chemicals using the seven compartmental Httk model. These models were used to 

assess provisional biomonitoring equivalents (BEs), in a forward dosimetry manner, 

when applying reference doses (RfDs) or tolerable daily intakes (TDIs). With the 

preliminary results presented in this study, we can conclude that the performance of 

the two generic PBK models suggest that these models can help to provide a better 

understanding and interpretation of HBM results.  

 

The use of a generic PBK model is still supported if BE values are derived for a specific 

population by adapting the model’s physiological parameters to said population. 

Another option for the future is to use chemical specific PBK models to establish 

general BE values for children and adults using some more general assumptions 

about a wider (e.g. European) population to be used as a virtual population. 

 

In the current study, ICF had the advantage of including metabolism features to 

address chemicals such as phthalates for which usually metabolite concentrations 

are analysed in urine samples. However, the model seemed to work only for BPA and 

be less adequate for other tested chemicals. Furthermore, it required a substantial 

number of input parameters which were not easy to find in the literature or to be 

simulated, in particular for the metabolites. 

 

The use of Httk is an elegant solution as it has a library of relevant parameters built 

into the model covering many chemicals, thus being very user friendly and limiting 

the time needed to gather input parameters. However, in its current version (1.8, 

2018), metabolism is only addressed via intrinsic clearance. This means that 
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metabolite concentration predictions were not included, so that it can only be 

applied for chemicals where the parent is measured in the urine samples. 

 

The performance of the PBK models for the chemicals under investigation has been 

evaluated for the Norwegian dataset, estimated daily intakes resulting from external 

exposure measurements in dust, air and food were used to simulate related urinary 

concentrations, which were compared to measured urinary concentrations. These 

EDI were then used in the study models to predict urinary concentrations and to 

compare to the measured urinary concentrations. The higher BEEDI were predicted, 

the more conservative may the estimation be considered. Concentrations predicted 

were mostly by orders of magnitude lower than the measured urinary 

concentrations. This underprediction indicates that the BETDI values established in the 

same way tend to be too low, i.e. too conservative, indicating a risk at very low levels. 

This was also confirmed when comparing to formerly established HBM-I values by 

the German HBM Commission which were much higher for TCS and BPA than the 

BETDI of this study. 

 

The study shows that establishing safety threshold levels in urine is a difficult and 

complex task. The approach might be more straightforward for chemicals that are 

analysed as parent compounds in blood but high uncertainties have to be considered 

around simulated metabolite concentrations in urine. 

 

Based on the experience gained with this study, the performance of the models for 

other chemicals could be investigated. From this exercise more could be learned 

about the uncertainties underlying used input parameter values (including EDIs) and 

their sources (specified in Table 2.7). However, in order to finally improve the 

accuracy of the simulations, uncertainties need to be estimated. Also, a generic PBK 

model may be developed, validated and subsequently applied for the set of 

phthalates, or other substances, which have not been assessed in Httk. Generating a 

new PBK model implies incorporating the level of detail needed to perform the HBM 

analysis. In the case of phthalates, this means including the prediction of metabolite 

concentrations. Also, challenges such as the inability of ICF to reach steady-state for 

most substances tested, which seem to be related to an error in the model code, may 
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be corrected with more ease due to the complete control over the model code and 

setup. 

 

This study complements efforts to 1) incorporate more human data into chemical 

risk assessment related to the general population, including vulnerable populations 

such as children, 2) consider risk posed by chemical mixtures and 3) apply 

computational methods such as the PBK models used in order to estimate internal 

exposure. Other researchers investigated the use of PBK models to establish safe 

internal exposure levels in the context of occupational settings. For example, Droz et 

al. (1989), Leung 1992, Thomas et al. (1996) and Truchon et al. (2006) used 

occupational exposure limits (OELs) and the American Conference of Governmental 

Industrial Hygienists (ACGIH) equivalent Threshold Limit Value (TLV) – which are 

concentrations of a chemical in the air of a workplace considered safe for workers – 

to derive acceptable levels of chemicals in biological media called biological exposure 

indexes (BEIs) in urine. Thomas et al. (1996) and Truchon et al. (2006) also estimated 

interindividual variability in physiological and ADME-related parameters using Monte 

Carlo Simulation through which a probability distribution of exposure predictions 

was obtained. All PBK models used in these studies were comparable in terms of their 

number of compartments to Httk, even though none of these models had specific 

kidney and gut compartments. The models used by Leung 1992 and Thomas et al. 

(1996) calculated metabolite concentrations. Validation of predicted results were not 

specifically presented in any of these studies discussed above. Perbellini et al. (1990) 

extended the approach and attempted to validate the model by comparing 

calculated urine-level BEI values to urine concentrations measured in workers. The 

only study which used PBK modelling to derive HBM guidance values previously was 

Arnold et al. (2015) who used a PBK and pharmacodynamic model for chlorpyrifos to 

predict the impact of age and human variability on levels of target organ and systemic 

biomarker activation. The work presented here intended to extend this approach to 

a broad array of chemicals the general population is exposed to. This was not entirely 

achieved due to the above discussed limitations of both applied models. However, 

the key lesson learned from this study is that Httk may be used to derive urine-level 

BE values and evaluate HBM data in a screening-level risk assessment for single 

substances and mixtures. Further research is needed to validate the modelling results 

presented.  
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3.0 PBK MODELLING TO STUDY THE KINETICS OF TOXICOLOGICALLY 

RELEVANT COMPOUNDS 

Physiologically based kinetic (PBK) models are powerful tools in the currently used 

battery of quantitative computational toxicology approaches. PBK predictions 

provide insights into i) how much of a given external dose actually arrives at the site 

of toxicity (typically termed as internal dose), ii) to which extent would exposure at 

this site differ if the dose is administered via a different route of exposure or 

formulation, iii) would a similar internal dose be expected in vulnerable populations 

such as children, elderly individuals or patients. These are all questions which cannot 

be assessed or are costly to be quantified via current testing methods. Furthermore, 

PBK results help to explore whether effects observed in vitro may be relevant in in 

vivo settings. 

 

Consequently, PBK models have been widely used, for instance to simulate drug-drug 

interactions (DDIs) (Siccardi et al., 2013; Ferl et al., 2016; Min and Bae, 2017; Rajoli 

et al., 2019), for reverse dosimetry approaches (Liao et al., 2007; Bartels et al., 2012), 

species extrapolation (Martin et al., 2015), in vitro to in vivo extrapolation (IVIVE) 

(Louisse et al., 2010; Yoon et al., 2012; Martin et al., 2015) and to understand 

variability in pharmacokinetic outcome when considering vulnerable populations 

(Ferl et al., 2016; Stader et al., 2019). To evaluate inter-individual human variation in 

bioactivation and DNA adduct formation, a PBK model has been coupled to Monte 

Carlo modelling (Punt et al., 2016). Many of these issues have also been investigated 

using commercial software such as the Simcyp® Simulator and GastroPlus® (Posada 

et al., 2015; Mori et al., 2016; Polasek et al., 2018; Miller et al., 2019); while others 

develop their own model. A more comprehensive review of published PBK studies 

has been compiled by Sager (2015). However, only a small proportion of these 

include the details and complete set of ODEs associated with their models which may 

be chemical-specific (Kawai et al., 1994; Hoffman and Hanneman, 2017) or generic 

(Peters, 2008a; Jones and Rowland-Yeo, 2013). The use of previously developed and 

fully accessible PBK models, such as Httk, does not allow the full flexibility and 

transparency which is granted when developing our own model. The most detailed 

model of Httk, for instance, only compartments for the lung, gut, liver, kidney, blood 

and the rest of the body (Pearce et al., 2017). A newly generated PBK model based 

on previously established and validated ODEs provides the transparency needed to 
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interpret results adequately and may best be tailored to our research needs as 

outlined in more detail below.  

 

Being based on mathematical descriptions of physiological characteristics and 

biochemical processes which determine the fate of a compound in a body, PBK 

models simulate the change in concentration of a compound in defined 

compartments of a (human or animal) body over time, following administration of a 

dose intravenously, orally or via other routes (Krishnan and Andersen, 2001; Peters, 

2008a). These compartments typically include arterial and venous blood 

compartments as well as – depending on the research question to answer – specific 

organs (e.g. liver, kidney, heart) or groups of organs in which a similar kinetic 

behaviour is observed (e.g. highly versus slowly-perfused compartments) (Krishnan 

and Andersen, 2001). Reviews of the parameter estimation tools and in silico 

resources to develop and evaluate such models have been discussed elsewhere 

(Bessems et al., 2014; Madden et al., 2019). 

 

The aim of this Chapter is to develop a human-relevant PBK model which can be used 

to quantify the relationship between an administered dose and concentrations in 

various organs over time for a broad range of chemical substances. Similar to the 

model developed by Peters (2008a), the model is intended to contain the key organs 

and tissues of the human body and cover a broad applicability domain in order to 

simulate the kinetics of a broad range of substances reliably. In order to assess the 

domain of applicability of the model, simulations are performed with a set of 

substances which are diverse in terms of their physico-chemical and pharmacokinetic 

characteristics. Subsequently (see Chapter 4), this PBK model is coupled with a newly 

generated mechanistic kidney model to predict concentration-time profiles in 

proximal tubular cells. 

 

3.1 Methods 

3.1.1 Development of the model 

A PBK model is set up using the SimBiology® desktop (version 5.7), an app provided 

by MATLAB®, version 2017b. SimBiology uses ordinary differential equations (ODEs) 

and numerical solvers to predict pharmacokinetic and pharmacodynamics processes 

with outputs of concentration vs. time curves for organ or tissue-specific 
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compartments (MathWorks, 2019d; c). The ODEs created in SimBiology are then 

solved by numerical integration using the Matlab solver ode15s which integrates the 

system of stiff differential equations (MathWorks, 2019b). 

 

3.1.1.1 PBK (including ACAT) model structure and physiological parameters 

The model consists of 15 somatic compartments including the lungs, eight non-

eliminating organs and tissues (i.e. heart, spleen, thymus, pancreas, adipose, muscle, 

brain, skin), four eliminating and absorbing organs (i.e. liver, stomach, gut, kidney) as 

well as two blood compartments (venous and arterial) which connect all 13 

previously mentioned organs and tissues. As in human physiology, arterial blood at 

the arteriole level reaches tissues and organs where a substance may leave the blood 

compartment via passive diffusion. From the tissue, the substance moves into the 

venous blood compartment from where it flows to the lungs and subsequently back 

to arterial blood. An intravenous dose is applied as concentration to the venous 

blood compartment. To predict an oral concentration profile, an oral absorption 

model is added, i.e. the Advanced Compartmental Absorption and Transit (ACAT) 

model created by Agoram et al. (2001). The ACAT model consists of the stomach, 

seven gut sub-compartments, i.e. duodenum, jejunum 1, jejunum 2, ileum 1, ileum 

2, ileum 3, caecum and the ascending colon. Here, the volumes of the gut sub-

compartments and the colon are taken from Li et al. (2012). As mentioned earlier, 

contrary to the equations used by Peters (2008a) to express the ACAT model 

mathematically, the present model does not include ODEs representing degradation 

in the gastro-intestinal tract (GIT). Figure 3.1 shows the schematic diagram of the PBK 

model connected to the ACAT model.  
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Figure 3.1: Schematic representation of the PBK model illustrating anatomical and 

physiological characteristics taken into account. 𝑄 = blood flow rates corresponding 

to an organ or tissue compartment, namely lung (LU), heart (HE), thymus (TH), 

adipose tissue (AD), muscle (MU), brain (BR), skin (SK), kidney (KI), spleen (SP), 

pancreas (PA), liver (LI), hepatic artery (HA), stomach (ST), and gut (GU); blood 
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compartments include the venous blood (VE) and the arterial blood (AR); 𝑘𝑒(𝑟) = 

renal elimination rate constant; 𝐶𝐿ℎ𝑒𝑝 = hepatic clearance rate; 𝐸𝐻𝑅 = 

enterohepatic recirculation; 𝑘𝑏𝑖𝑙 = biliary elimination rate constant; 𝐶𝑃 = 

conversion of the metabolite to the parent compound; the undissolved (UND) and 

dissolved (DIS) amounts of all ACAT compartments, namely stomach lumen (STL), 

duodenum lumen (DUO), jejunum 1 lumen (JE1), jejunum 2 lumen (JE2), ileum 1 

lumen (IL1), ileum 2 lumen (IL2), ileum 3 lumen (IL3), caecum lumen (CAE), 

ascending colon lumen (ACO); 𝑘𝑎 = absorption rate constant in stomach (𝑘𝑎(𝑆𝑇)) and 

gut (𝑘𝑎(𝐺𝑈)); 𝑘𝑖𝑙 = intestinal loss rate constant; 𝐾𝐷 = dissolution rate constant; 𝐺𝐸𝑅 = gastric emptying rate; 𝑘𝑡 = transit rate in small intestine (𝑘𝑡(𝐺𝑈)) and colon 

(𝑘𝑡(𝐶𝑂)). An intravenous dose is applied to the venous blood compartment, and an 

oral dose to the undissolved stomach (ST-UND) compartment. 

 

The basics of mathematical representations of PBK models have been described 

extensively elsewhere (O’Flaherty, 1981; Krishnan and Andersen, 2001; Jones et al., 

2006, 2011; Peters, 2008a; Thompson and Beard, 2011; Jones and Rowland-Yeo, 

2013; Ferl et al., 2016). All ODEs used in this study are based on those published by 

Peters (2008a) and are compiled in Appendix 3.A. The ODE of the arterial blood 

compartment [Eq. (3.1)] is slightly amended from that used in Peters (2008a) in order 

to preserve mass balance, thus it becomes: 𝑑𝐶𝐴𝑅𝑑𝑡 = 𝑄𝐿𝑈𝑉𝐴𝑅  (𝐶𝐿𝑈  ×  𝑅𝐾𝑝  ) – ∑ 𝑄𝑖  ×  𝐶𝐴𝑅𝑉𝐴𝑅𝑖  

 (Eq. 3.1) 

where i = heart (HE), hepatic artery (HA), stomach (ST), gut (GU), spleen (SP), kidney 

(KI), thymus (TH), pancreas (PA), adipose tissue (AD), muscle (MU), brain (BR), skin 

(SK). 

The change of arterial and venous blood concentrations as described by Eqs. 3.1 and 

7 in Appendix 3.A.1) represent plasma concentrations (Jones and Rowland-Yeo, 

2013; Ye et al., 2016). 

Also, ODEs representing amounts degraded (ADEG) from any GIT compartment are 

simplified to the following term:  𝑑𝐴𝐷𝐸𝐺(𝑗)𝑑𝑡 = 𝑘𝑖𝑙 × 𝐴𝐷𝐼𝑆(𝑗) 

 (Eq. 3.2) 
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where j = ST, GU1-7, CO. 

 

The change in concentration of a compound within each somatic compartment over 

time is expressed by a differential equation. Each somatic and ACAT compartment is 

associated to a tissue or organ volume and a blood flow rate whose values 

characterise a healthy human body of 70 kg. The same blood flow rates are used in 

Peters (2008a) and expressed here as function of the cardiac output and fractional 

tissue blood flow: 𝑄𝑇 = 𝑄𝐶 × 𝐹𝑄𝑇 

 (Eq. 3.3) 

with QT = blood flow of a tissue compartment, QC = cardiac output and FQT = 

fractional tissue blood flow. Somatic organ and tissue volumes are also taken from 

Peters (2008a). Further physiological parameters incorporated are the pHs of each 

ACAT compartment, GIT transit rates and the radius of the small intestine. These 

values are used to estimate oral absorption besides compound-specific parameters 

explained in subchapter 3.1.1.2. Table 3.1 contains all physiological parameters used 

which are average values for a 70 kg human body and kept constant for all 

compounds. 

 

Table 3.1: Physiological parameters used in the PBK and ACAT model 

Physiological parameters  References 

Organ and tissue volumes mL  

Lung (VLU) 1172 Peters, 2008a 

Heart (VHE) 310 Davies and Morris, 1993; Peters, 

2008a 

Liver (VLI) 1690 Bernareggi and Rowland, 1991; 

Davies and Morris, 1993; Peters, 

2008a 

Stomach (VST) 154 Peters, 2008a 

Gut (VGU) 1650 Bernareggi and Rowland, 1991; 

Davies and Morris, 1993; Peters, 

2008a 

Spleen (VSP) 192 Bernareggi and Rowland, 1991; 

Davies and Morris, 1993; Peters, 

2008a 

Kidney (VKI) 280 Davies and Morris, 1993; Peters, 

2008a 

Thymus (VTH) 29 Peters, 2008a 

Pancreas (VPA) 77 Peters, 2008a 

Adipose tissue (VAD) 10’000 Bernareggi and Rowland, 1991; 

Davies and Morris, 1993; Peters, 

2008a 
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Muscle (VMU) 35’000 Davies and Morris, 1993; Peters, 

2008a 

Brain (VBR) 1450 Bernareggi and Rowland, 1991; 

Davies and Morris, 1993; Peters, 

2008a 

Skin (VSK) 7800 Bernareggi and Rowland, 1991; 

Davies and Morris, 1993; Peters, 

2008a 

Venous blood (VVE) 3396 Peters, 2008a 

Arterial blood (VAR) 1698 Peters, 2008a 

   

ACAT compartment 

volumes (mL) 

mL  

Stomach lumen (VSTL) 50 Li et al., 2012 

Duodenum lumen (VDUO) 48 Li et al., 2012 

Jejunum 1 lumen (VJE1) 175 Li et al., 2012 

Jejunum 2 lumen (VJE2) 140 Li et al., 2012 

Ileum 1 lumen (VIL1) 108 Li et al., 2012 

Ileum 2 lumen (VIL2) 79 Li et al., 2012 

Ileum 3 lumen (VIL3) 56 Li et al., 2012 

Caecum lumen (VCAE) 53 Li et al., 2012 

Ascending colon lumen 

(VACO) 

57 Li et al., 2012 

   

pH in ACAT compartments   

Stomach lumen 1.3 Dressman et al., 1998; Li et al., 2012 

Duodenum lumen 6 Dressman et al., 1998; Li et al., 2012 

Jejunum 1 lumen 6.2 Dressman et al., 1998; Li et al., 2012 

Jejunum 2 lumen 6.4 Dressman et al., 1998; Li et al., 2012 

Ileum 1 lumen 6.6 Dressman et al., 1998; Li et al., 2012 

Ileum 2 lumen 6.9 Dressman et al., 1998; Li et al., 2012 

Ileum 3 lumen 7.4 Dressman et al., 1998; Li et al., 2012 

Caecum lumen 6.4 Dressman et al., 1998; Li et al., 2012 

Ascending colon lumen 6.8 Dressman et al., 1998; Li et al., 2012 

   

Blood flow rates mL/min 

(fraction of 

QC ) 

 

Lung (QLU) 6.338 × 103 

(1) 

Peters, 2008a[1] 

Heart (QHE) 150 (0.024) Bernareggi and Rowland, 1991; 

Peters, 2008a 

Hepatic artery (QHA) 300 (0.047) Bernareggi and Rowland, 1991; 

Davies and Morris, 1993 

Liver (total) (QLI) [2] 1.650 × 103  

(0.260) 

Bernareggi and Rowland, 1991; 

Peters, 2008a 

Gut (QGU) 1.10 × 103 

(0.174) 

Bernareggi and Rowland, 1991; 

Peters, 2008a 

Spleen (QSP) 77 (0.012) Bernareggi and Rowland, 1991; 

Peters, 2008a 

Stomach (QST) 38 (0.006) Kawai et al., 1994; Peters, 2008a 



74 

 

Kidney (QKI) 1.10 × 103 

(0.174) 

Bernareggi and Rowland, 1991; 

Peters, 2008a 

Thymus (QTH) 80 (0.013) Bernareggi and Rowland, 1991; 

Peters, 2008a 

Pancreas (QPA) 133 (0.021) Kawai et al., 1994; Peters, 2008a 

Adipose tissue (QAD) 260 (0.041) Bernareggi and Rowland, 1991; 

Peters, 2008a 

Muscle (QMU) 750 (0.118) Bernareggi and Rowland, 1991; 

Peters, 2008a 

Brain (QBR) 700 (0.110) Bernareggi and Rowland, 1991; 

Peters, 2008a 

Skin (QSK) 300 (0.047) Bernareggi and Rowland, 1991; 

Peters, 2008a 

   

Other physiological 

parameters 

  

Cardiac output (QC) 

(mL/min) 

6.338 × 103  Peters, 2008a[1] 

Gastric emptying rate 

(GER) (min-1) 

0.066 Oberle et al., 1990  

Small intestine transit rate 

(kt(GU)) (min-1) 

0.035 Yu and Amidon, 1998  

Colon transit rate (kt(CO))  

(min-1) 

0.0007 Peters, 2008a 

Radius of the small 

intestine (cm) 

1 Oh et al., 1993  

[1]Peters (2008a) used 5.233 × 103 mL/min as lung blood flow while the sum of all the tissue blood flows 

is 6.338 × 103. However, to make sure that the sum of all tissue blood flows equals the lung blood flow 

(which is equal to QC) (see (IPCS WHO, 2010)), the lung blood flow is set to 6.338 × 103 mL/min. This 

value is within the normal ranges of QC values established for the age groups 18-19.9, 30-59.9 and 60+ 

(Cattermole et al., 2017). The QC confidence intervals are 3.06-9.00, 2.51-7.77 and 2.97-7.49 L/min, 

respectively. 

[2]Flows  of the hepatic artery and portal vein which collects the blood leaving the gut, spleen, stomach, 

pancreas and gallbladder (gallbladder not included in the model) (Eipel et al., 2010). 

 

Principle assumptions of the model include well-stirred compartments and 

perfusion-limited (as opposed to permeability-limited) kinetics, which implies 

instantaneous and homogenous absorption of a compound into, and distribution 

within, a compartment (Wilkinson and Shand, 1975; Yang et al., 2007; Peters, 2008a). 

The kinetics of metabolism are assumed to be similarly homogeneous within a 

compartment. Active transport and diffusion delay are disregarded (Yang et al., 

2007). Perfusion rate-limited kinetics applies to small lipophilic compounds for which 

the blood flow towards the tissues represents the rate-limiting process (Peters, 

2008a; Jones and Rowland-Yeo, 2013). 
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3.1.1.2 Literature search and estimation of compound-specific parameters to 

simulate the pharmacokinetics of nine drugs 

Similar to Peters (2008a), the model is used to simulate and validate against the 

venous blood concentration-time profiles of nine drugs, i.e. atenolol, bisoprolol, 

chlorpropamide, cimetidine, diazepam, hexobarbital, ivermectin, mebendazole and 

theophylline. These drugs are diverse in terms of their physico-chemical and 

pharmacokinetic profiles, in particular regarding their solubility and permeability. 

While atenolol and cimetidine show high solubility and low permeability, 

mebendazole has low solubility and high permeability properties and ivermectin 

both low solubility and low permeability (Peters, 2008a). The remaining five 

compounds – theophylline, hexobarbital, diazepam, chlorpropamide and bisoprolol 

– demonstrate high solubility and high permeability. For these compounds, minor or 

no impact of enterohepatic recirculation, gut wall metabolism, gastric emptying or 

transporter-driven absorption and intestinal efflux is reported (Peters, 2008a). 

Compound-related physico-chemical and biochemical (related to the binding and 

metabolising capacities in tissues) parameters needed for the model are explained 

below and the values used are shown in Tables 3.4 and 3.5. In cases where more than 

one parameter value is sourced from the literature, the mean of all values is 

determined and used for simulation. Given the variability in the values found, the 

mean, in contrast to the median, is considered acceptable. 

- Kp is a multiplicative factor used by Peters (2008a) to increase or reduce the 

tissue distribution coefficients of all tissue compartments. It is referred to as 

the tissue partition coefficient and, mathematically, it is defined as follows: 𝐾𝑝 = 𝑓𝑢(𝑝) × 𝐾𝑝,𝑢(𝑇) 

 (Eq. 3.4) 

where fu(p) is the fraction unbound in plasma, which is, in fact, dependent 

upon the drug affinity to human serum albumin and the individual’s albumin 

level in plasma (Peters, 2008a; Jamei et al., 2009). Only the fraction unbound 

or freely circulating in the plasma penetrates cell membranes and interacts 

with cellular receptors (Boroujerdi, 2015). Kp,u(T) is the unbound tissue 

partition coefficient which may be defined for individual tissues and organs. 

However, in the present model only one Kp value is applied to all 

compartments. Peters (2008a) set the value of Kp for each compound 
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through fitting to an observed intravenous curve. These and all fu(p) values 

are taken from Peters (2008a). 

- R is the whole blood to plasma concentration ratio; an additional drug 

distribution parameter (Hinderling, 1997; Peters, 2008a). If a substance binds 

to, or distributes into, erythrocytes, plasma clearance exceeds blood 

clearance. This needs to be taken into account besides fu(p) when considering 

behaviour of a compound in the blood compartment. R  values are sourced 

from the public scientific literature and, if not available, assumed to be 1. 

- ka is the absorption rate constant which feeds into the oral absorption part 

of the model and describes the rate of absorption from the GIT (represented 

by ACAT compartments) into the systemic circulation. ka values are sourced 

from clinical/PK studies, and in cases where no clinical data are available,  

calculated using the approach proposed by Winiwarter et al. (1998), namely:  log Peff  =  −3.067 +  0.162 CLOGP −  0.010 PSA −  0.235 HBD 

 (Eq. 3.5) 

with CLOGP = calculated log P, PSA = polar surface area, HBD = number of 

hydrogen bond donors. These parameter values for all nine compounds are 

sourced from Peters (2008a, Table II). 

 

Peff  is then used to calculate ka with Eq. 3.6 (Yu and Amidon, 1999; Peters, 

2008a): 

 𝑘𝑎 = 𝑃𝑒𝑓𝑓 × 2𝑅𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑠𝑚𝑎𝑙𝑙 𝑖𝑛𝑡𝑒𝑠𝑡𝑖𝑛𝑒 

 (Eq. 3.6) 

 

If a value is available from a clinical/PK study, it is compared to the calculated 

ka of that compound. For atenolol, the calculated value is one to two orders 

of magnitude lower than the two absorption rates sourced from Mason et 

al.'s (1979) 3-compartment model of which one is used for gastric absorption 

and the other for intestinal absorption. However, Mason et al. (1979)  does 

not specifically assign any of them to absorption from the stomach or the gut 

which contributes to the level of uncertainty associated with these values. 

The higher value is used as the intestinal absorption rate constant of 

atenolol, while the lower value is used as a gastric absorption rate constant.  
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For cimetidine, the calculated absorption rate constant is, by slightly more 

than an order of magnitude, lower than the value established in a group of 

volunteers (Veng Pedersen and Miller, 1980). No obvious aspect of that study 

is identified which might contribute to the uncertainty inherent in the 

experimental value. Interestingly, both atenolol and cimetidine are absorbed 

via paracellular pathways. Calculated absorption rate constants for 

chlorpropamide, diazepam, hexobarbital and ivermectin differ up to one 

order of magnitude from their respective literature values. 

An absorption rate constant may also be derived from an in vitro Caco-2 

apparent permeability value (𝑃𝑎𝑝𝑝) (often given in 10−6𝑐𝑚 𝑠−1) by a) 

conversion to 𝑐𝑚 𝑚𝑖𝑛−1, b) if needed applying a scaling factor to convert 

from an in vitro apparent permeability value to in vivo 𝑃𝑒𝑓𝑓 and c) applying 

Eq. 3.6 to obtain 𝑘𝑎 (Peters, 2008a; Fabian et al., 2019). However, as in vitro 

Caco-2 data are not obtained for all nine compounds, this approach is not 

applied here and the QSAR model explained above is chosen instead. If 

available, in vitro Caco-2 permeability data are typically preferred over a 

QSAR model to derive 𝑘𝑎 as Caco-2 cells are considered an adequate model 

to mimic the transport of substances through the human intestinal 

epithelium (Van Breemen and Li, 2005; Yang et al., 2017).  

Oral bioavailability (𝐹) is a parameter tightly connected to the oral 

absorption rate constant as well as stability, and considered crucial for drug 

candidate selection and formulation strategies in drug development. 

Mathematically, 𝐹 may be expressed as product of the fraction of drug 

absorbed (𝑓𝑎), the fraction that escapes metabolism in the GIT (𝑓𝑔) and the 

fraction that enters the liver and escapes first-pass hepatic metabolism (𝑓ℎ) 

(Jamei et al., 2009; Yang et al., 2017) or as a function of 𝑃𝑒𝑓𝑓 (Yu and Amidon, 

1999). Many PBK models are set up to investigate various aspects related to 

oral drug absorption and biovailability (Peters and Dolgos, 2019) and oral 

bioavailability may be predicted and compared to a measured oral 

bioavailability value or used to calculate the area under the concentration vs. 

time curve (AUC) as part of the model validation. However, this study did not 

specifically assess oral bioavailability.  

- kil is the intestinal loss rate constant which accounts for chemical 

degradation in the lumen, gut wall metabolism and/or P-glycoprotein efflux 
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from the GIT compartments (Peters, 2008a; b). All initial kil values are 

estimated to be 1 ×  10−7 min-1 if no data are found in the public literature 

and intestinal loss is assumed to be negligible. A higher value is estimated if 

experimental data indicate that intestinal loss may occur. 

- kbil refers to a first-order biliary elimination rate constant taking into account 

the excretion of a compound from the liver compartment into the bile from 

where it is transported to the duodenal compartment (Peters, 2008a). 

Enterohepatic recirculation (EHR) occurs when, after its excretion from the 

liver into the bile and via the bile into the GIT, a compound is reabsorbed 

from the intestinal compartment and re-distributed to the liver (Abbiati and 

Manca, 2017). If EHR takes places, a value of 𝑘𝑏𝑖𝑙 = 1 min-1 is selected, while 

it is 0 if no EHR takes place (Peters, 2008a). kbil values are sourced from the 

literature and estimated if no data are available. A value of 0 is selected if no 

indication of enterohepatic recirculation is identified.  

- ke(r) is the linear first-order renal elimination rate constant which determines 

the amount of a compound being excreted in the urine (Peters, 2008a). ke(r) 

values are either sourced from the literature or derived from renal clearance 

and volume of distribution values or the renal elimination half-life. See Table 

3.3 for more information. 

- CLhep represents the hepatic clearance rate. We use hepatic clearance as 

opposed to intrinsic clearance as used by Peters (2008a), as our values are 

measured in clinical settings rather than intrinsic clearance values obtained 

from in vitro experiments. CLhep accounts for the linear first-order process in 

which the parent compound is converted to a metabolite (Peters, 2008a). 

For chlorpropamide and diazepam, plasma clearance values are used as liver 

specific metabolic clearance data are not available (Huupponen and 

Lammintausta, 1981; Herman and Wilkinson, 1996). The value sourced for 

hexobarbital is predicted from rat data (Sawada et al., 1985). 

- MW  is the molecular weight and is taken from PubChem (National Center 

for Biotechnology Information, 2018; https://pubchem.ncbi.nlm.nih.gov) 

and DrugBank (Wishart et al., 2018; www.drugbank.ca). 𝑀𝑊 is used when 

converting an oral or intravenous dose given in mg or mg/mL (or equivalent) 

to μmol or μmol/mL, respectively. Also, MW is needed to calculate the 

paracellular absorption rate constant ka,p,ACAT as outlined in Eq. 3.8. 
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- Log P  is used to calculate ka as stated above (see Eq. 3.5) and ka,p,ACAT (see 

Eqs. 3.8 and 3.9). 

- CP  is a constant representing the conversion from a metabolite back to the 

parent compound (Peters, 2008a). In cases where no data are available, 

indicating that this process takes place with a particular compound, this 

value is set to 0. 

- Since the solubility of a substance depends on the pH present in a 

compartment, solubility values corresponding to the pHs of each ACAT 

model compartment are generated with the ACD/Percepta 14.0.0 (Build 

2726) software. According to Li et al. (2012), the pHs in the stomach, 

duodenum, jejunum1, jejunum2, ileum1, ileum2, ileum3, caecum and 

ascending colon lumen are 1.3, 6, 6.2, 6.4, 6.6, 6.9, 7.4, 6.4, and 6.8 

respectively. These eight different pH values may induce up to eight different 

solubility values. The generated solubility value at pH 6.4 is used in the model 

as solubility parameter S.  In order to account for solubility values different 

to S, a solubility coefficient corresponding to each ACAT compartment (i.e. 

KS(STL), KS(DUO), KS(JE1), KS(JE2), KS(IL1), KS(IL2), KS(IL3), KS(CAE), KS(ACO)) is multiplied 

by S.  

- The diffusion coefficient (D), particle density (p), particle radius (r) and 

diffusion layer thickness (T) are used to calculate the dissolution rate 

constant KD of a drug in a gastrointestinal compartment (i) using Eq. 3.7 

(Peters, 2008a).  𝐾𝐷 = 3𝐷𝑝 𝑟 𝑇 (𝑆 × 𝐾𝑆(𝑖) − 𝐶𝑖) 

 (Eq. 3.7) 

where 𝐾𝑆(𝑖) is the solubility coefficient and 𝐶𝑖 the concentration in the respective 

compartment.  

 

Small, hydrophilic compounds, including atenolol, cimetidine and theophylline, are 

subject to paracellular absorption. In order to account for this, a paracellular 

absorption rate constant for each ACAT compartment (ka,p,ACAT) is calculated using 

Eq. 3.8 and 3.9 as proposed by Peters (2008a) and Leahy et al. (1989, 1994). Namely, 𝑘𝑎,𝑝,𝐴𝐶𝐴𝑇 = ø × 𝐽𝑚𝑠𝑉𝐴𝐶𝐴𝑇  

 (Eq. 3.8) 
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where Jms is the physiological flux of water from the mucosal to the serosal side of 

the lumen. The mean of five Jms values (8.6, 8.2, 19.7, 20.6, 8.1 cm3 hr-1) published by 

Leahy et al. (1994) is used, i.e. 𝐽𝑚𝑠 = 0.2173 mL/min.  

VACAT defines the volume of the ACAT compartment under consideration, e.g. the 

stomach (VST) etc. 

ø is a compound-dependent fraction ranging from 0 to 1, depending on the 

lipophilicity, represented by the Log P, and the molecular weight (MW) of the 

molecule (Leahy et al., 1989, 1994; Peters, 2008a). Following Eq. 3.9, large lipophilic 

compounds are assigned a ø  value of 0, while small hydrophilic compounds a ø value 

approaching 1: 𝐿𝑜𝑔 𝑃 > 0.7: ø = 0 𝐿𝑜𝑔 𝑃 < 0.7: 𝑀𝑊 > 200 but < 360: ø = 0.1 𝑀𝑊 < 200: ø =  −0.0045 ×  𝑀𝑊 + 1. 
 (Eq. 3.9) 

 

For atenolol, cimetidine and theophylline the following ka,p,ACAT  values are calculated 

as proposed in Peters (2008a) using the approach established by Leahy et al. (1989, 

1994) (see Table 3.2). 

 

Table 3.2: Paracellular absorption rate constants for each ACAT compartment  

ka,p,ACAT 

parameter 

Atenolol,  

Cimetidine (min-1) 

Theophylline (min-1) 

ka,p,STL 4.347 × 10−4 8.226 × 10−4 

ka,p,DUO 4.528 × 10−4 8.569 × 10−4 

ka,p,JE1 1.242 × 10−4 2.350 × 10−4 

ka,p,JE2 1.552 × 10−4 2.938 × 10−4 

ka,p,IL1 2.012 × 10−4 3.808 × 10−4 

ka,p,IL2 2.751 × 10−4 5.206 × 10−4 

ka,p,IL3 3.881 × 10−4 7.345 × 10−4 

ka,p,CAE 4.101 × 10−4 7.670 × 10−4 

ka,p,ACO 3.813 × 10−4 7.216 × 10−4 
STL= stomach, DUO= duodenum, JE1= jejunum 1, JE2= jejunum 2, IL1= ileum 1, IL2= ileum 2, IL3= 

ileum 3, CAE= caecum, ACO= ascending colon 
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These ka,p,ACAT  values are added to the ka value used in each ACAT compartment so 

that for these compounds: 𝑘𝑎𝐴𝐶𝐴𝑇 = 𝑘𝑎 + 𝑘𝑎,𝑝.𝐴𝐶𝐴𝑇 . 
 (Eq. 3.10) 

 

Initial oral and IV doses which are based on clinical study data sourced from the 

public literature (Mason et al., 1979; Leopold et al., 1986; Huupponen and 

Lammintausta, 1981; Somogyi and Gugler, 1983; Kaplan et al., 1973; van der Graaff 

et al., 1986, and Breimer, 1977; Okonkwo et al., 1993; Dawson et al., 1985; Aslaksen 

et al., 1981) are presented in Table 3.3. For ivermectin, only oral data are available. 

Apart from the data presented by van der Graaff et al. (1986), all experimental data 

applied here are also used by Peters (2008a) to evaluate the performance of their 

PBK model. 

 

An IV dose is applied directly to the venous blood compartment as initial venous 

blood concentration while typically the initial concentration in any other 

compartment is zero. An oral dose is applied as an amount to the undissolved 

stomach compartment, from which the dissolved amount of the substance is 

calculated. The amount absorbed over time into the stomach and intestinal tissues 

depends on the amount dissolved and the absorption rate constant in each ACAT 

compartment: 𝑑𝐴𝐴𝐵𝑆(𝑖)𝑑𝑡  = 𝑘𝑎(𝑖) × 𝐴𝐷𝐼𝑆(𝑖) 

 (Eq. 3.11) 

where i= gastrointestinal tract compartments 1 to 7, colon and stomach. 

 

In general, the kinetics of a substance in non-eliminating organs and tissues are 

described by Eq. 3.12. The ODE represents the change in concentration within that 

tissue compartment over a concentration gradient between the capillary and tissue 

(𝐶𝑏𝑙𝑜𝑜𝑑 − 𝐶𝑡𝑖𝑠𝑠𝑢𝑒; Boroujerdi, 2015). The binding to fatty acids (e.g. in plasma 

proteins or erythrocytes) as well as the perfusion rate (expressed as the tissue blood 

flow rate over the tissue volume; Arundel, 1997), are considered: 
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𝑑𝐶𝑇𝑑𝑡 = 𝑄𝑇𝑉𝑇 (𝐶𝐴𝑅 − 𝐶𝑇  ×  𝑅𝐾𝑝 ) 

 (Eq. 3.12) 

where T represents all organs and tissues, except for the stomach, gut, kidney, liver 

and lung. 

 

In eliminating tissues such as the kidney, terms representing for instance renal 

clearance are subtracted: 𝑑𝐶𝐾𝐼𝑑𝑡 = 1𝑉𝐾𝐼  × [𝑄𝐾𝐼  (𝐶𝐴𝑅 − 𝐶𝐾𝐼  ×  𝑅𝐾𝑝  )] – 𝐶𝐾𝐼  ×  𝑘𝑒(𝑟)𝐾𝑝  × 𝑓𝑢(𝑝) 

 (Eq. 3.13) 

 

Venous blood concentrations, which are compared to blood or plasma 

concentrations in patients, are calculated using Eq. 3.14. 𝑑𝐶𝑉𝐸𝑑𝑡 = 1𝑉𝑉𝐸  (∑ 𝑄𝑇  × 𝐶𝑇 ×  𝑅𝐾𝑝 − 𝑄𝐿𝑈  ×  𝐶𝑉𝐸) 

 (Eq. 3.14) 

where T stands for all tissues and organs excluding the gut, pancreas, spleen, 

stomach, and lung. 
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Table 3.3: Initial oral and IV doses to generate PK simulations for all nine compounds 

Doses Atenolol 

(Mason et 

al., 1979) 

Bisoprolol 

(Leopold et 

al., 1986) 

Chlorpropamide 

(Huupponen and 

Lammintausta, 

1981) 

Cimetidine 

(Somogyi and 

Gugler, 1983) 

Diazepam 

(Kaplan et 

al., 1973) 

Hexobarbital 

(Breimer, 1977; 

van der Graaff 

et al., 1986) 

Ivermectin 

(Okonkwo et 

al., 1993) 

Mebendazole 

(Dawson et 

al., 1985) 

Theophylline 

(Aslaksen et 

al., 1981) 

Oral (μmol) 188 31 225 800 35 2,100 12.2 4.01 ×  10−3 

1,400 

IV (μmol/mL) 0.0553 0.0091 0.0663 0.236 0.0103 0.742 NA 1.18 ×  10−6 

0.569 

NA= not available. Reported up to three significant figures. 
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Table 3.4: Physico-chemical and kinetic parameters used in the PBK model which are subject to fitting and their experimental(a), calculated(c) and, where 

applicable, fitted(b) values 

Parameter  

 

Atenolol Bisoprolol Chlorpropamide Cimetidine Diazepam Hexobarbital Ivermectin Mebendazole Theophylline 

Kp factor(a) 1.7 [1] 2.5 [1] 50 [1] 1.2 [1] Kp:2 [1]; 

Kp(AD):12.5[1] 

1.7 [1] 1* 5 [1] 1.3 [1] 

Kp factor(b) 3.43 × 10−3 NA 1.81 × 10−3 NA Kp: 0.533 NA 1 × 10−7* 0.301 0.345 

Kp factor(b) SE 6.14 × 10−4 NA 3.30 × 10−4 NA Kp: 0.453 NA NA 0.067 0.047 

R(a) 1.11 [2] 1.1 [7] 1* 0.98 [10] 0.5587 [12] 1.0 [15] 1* 1* 0.83 [2] 

R(b) 1.74 × 10−3 0.569 0.024 0.741 1.180 0.323 0.348 0.081 NA 

R(b) SE 1.98 × 10−4 0.068 3.46 × 10−3 0.093 0.912 0.137 0.071 0.016 NA 

fu(p)
(a) 0.96 [1] 0.7 [1] 0.04 [1] 0.835 [1] 0.013 [1] 0.53 [1] 0.069 [1] 0.073 [1] 0.44 [1] 

fu(p)
(b) NA NA NA NA NA NA NA NA NA 

fu(p)
(b) SE NA NA NA NA NA NA NA NA NA 

ka (min-1) 

(literature)(a) 

0.0363 [3] 

0.175 [4] 

NA 0.0967 [8] 0.0478 [11] 

 

0.0319 [13] 0.015[16] 

 
7.7 × 10−3 
[16] 

NA NA 

ka (min-1) 

(calculated)c) 

0.0013 0.0159 0.0119 0.0033 0.1622 0.0216 2.8 × 10−3 0.0160 0.0142 

ka (min-1)(b) NA NA NA NA NA NA NA NA NA 

ka (min-1)(b) SE NA NA NA NA NA NA NA NA NA 

kil (min-1)(a) 3 × 10−3* 1 × 10−7* 1 × 10−7* 1 × 10−7* 1 × 10−7* 1 × 10−7* 1 × 10−4* 1 × 10−7* 1 × 10−7* 

kil (min-1)(b) NA NA NA NA NA NA NA NA NA 

kil (min-1)(b) SE NA NA NA NA NA NA NA NA NA 

kbil (min-1)(a) 1 × 10−3* 0* 0* 1 × 10−3[10] 1 × 10−4  [14] 1 × 10−4 [17] 0.0859 [18] 4.6 × 10−3 [19] 7.2 × 10−4 [20] 

kbil (min-1)(b) NA NA NA NA NA NA NA NA NA 
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kbil (min-1)(b) SE NA NA NA NA NA NA NA NA NA 

ke(r) (min-1)(a) 1.8 × 10−3  
[5] 

7.08 ×10−4 [5] 

2.383 × 10−4
 [5] 5.4 × 10−3 

[5] 

3.75 × 10−4 
[13] 

2.1 × 10−3 [5] 1 × 10−7 
[18] 

4.6 × 10−3 [19] 7.2 × 10−4 [5] 

ke(r) (min-1)(b) NA NA NA NA NA NA NA NA NA 

ke(r) (min-1)(b) SE NA NA NA NA NA NA NA NA NA 

CLhep (mL/min)(a) 1.0 ×10−7[6] 

91 [6] 1.5 [9] 147 [10] 21.5 [14] 249 [15] 140 [1] 650 [19] 76 [21] 

CLhep (mL/min)(b) NA NA NA NA NA NA NA NA NA 

CLhep (mL/min)(b) 

SE 

NA NA NA NA NA NA NA NA NA 

(a)sourced from literature 

(b)fitted in SimBiology 

(c)calculated using Winiwarter et al. (1998, model 3b), with data provided by Peters (2008a) and Eq. 3.5 

SE= standard error; NA= not available; *estimated 

[1]Peters (2008a): Kp is fitted value; diazepam has two Kp values, i.e. Kp(AD) = 12.5 which is used for adipose tissue and Kp = 2 for all other tissues; p (μmol/mL) is based on 𝑝 = 1 𝑔𝑚𝐿 

[2]Rodgers and Rowland (2007) 

[3]ka(ST) derived from k13 in Mason et al. (1979), used for the ACAT stomach compartment 

[4]ka(GU) derived from k12 in Mason et al. (1979), used for all ACAT compartments from duodenum to ascending colon 

[5]calculated using 𝑘𝑒(𝑟) = 𝐶𝐿𝑟𝑉𝑑 = ln(2)𝑡1 2⁄ (𝑒𝑙𝑖𝑚), while CLr is the renal clearance, Vd  the volume of distribution and t1/2(elim) the elimination half-life; parameter values for atenolol are sourced from 

Mason et al. (1979); for bisoprolol from Leopold et al. (1986); for chlorpropamide from Neuvonen et al. (1987); for cimetidine from Somogyi and Gugler (1983) (weighted mean CLr value); for 

hexobarbital from the OCHEM database (Sushko et al., 2011; www.ochem.eu/home/show.do); for mebendazole from Dawson et al. (1985), CLr is estimated at 400 mL/min; for theophylline 

from Antal et al. (1981) 

[6]McGinnity et al. (2004); also for atenolol: Kirch and Görg (1982) 

[7]Li et al. (2012): CP is assumed to be 0 as either non-metabolised form of bisoprolol is excreted via the urine or it is metabolised in the liver to inactive metabolites 

[8]Danlami et al. (2011) 

[9]Huupponen and Lammintausta (1981): plasma clearance value is used as CLhep, comparable value, 3.15 mL/min, in Obach et al. (2008); evidence for enterohepatic circulation is discussed in 

this paper 



86 

 

[10]Somogyi and Gugler (1983): kbil is estimated, biliary excretion of cimetidine accounts for only 2% of the dose; CLhep is based on weighted mean CLp – weighted mean CLr 

[11]Veng Pedersen and Miller (1980) 

[12]Jones and Larsson (2004): R derived from plasma/blood distribution 

[13]Kaplan et al. (1973): ka is mean value; ke(r) is mean elimination rate constant 

[14]Herman and Wilkinson (1996): kbil and EHR are estimated based on evidence provided; CLhep is approximated mean of the two age groups 

[15]Sawada et al. (1985): CLhep is predicted from rat data 

[16]𝑘𝑎 = ln(2)𝑡1 2⁄ (𝑎𝑏𝑠): for hexobarbital the absorption half-life (t1/2(abs)) is derived from Lagas et al. (1980, Figure 6), digitized acid pure, acid and sodium data; for ivermectin mean t1/2(abs) is 

calculated from González Canga et al. (2008) 

[17]Drew et al. (1977): kbil is estimated based on altered PK in rats after 72-hour bile duct ligation 

[18]González Canga et al. (2008, 2009): for ivermectin the main route of elimination is via bile, kbil is estimated based on the value fitted for atenolol; ke(r) is estimated to be close to 0 as 

urinary excretion of ivermectin is very low (1%); 𝐶𝑃 = 0 is assumed as ivermectin is extensively metabolised in the liver and hardly excreted via urine 

[19]Dawson et al. (1985): kbil is estimated based on assumption that 50% of the mebendazole dose is eliminated via urine and 50% via bile (see also Dayan, 2003), therefore 𝑘𝑏𝑖𝑙 = 𝑘𝑒(𝑟) is 

assumed; ke(r) is calculated, see [5]; 𝐶𝑃 = 0 is assumed as AUCs of metabolites are higher than the AUC of the parent compound; CLhep is an estimate based on data in Dawson et al. (1985) 

and Dayan (2003)  

[20]𝑘𝑏𝑖𝑙 = 𝑘𝑒(𝑟) is assumed, ke(r) is calculated, see [5]  

[21]Antal et al. (1981) 
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Table 3.5: Physico-chemical and kinetic parameters used in the PBK model which are not subject to fitting  

Parameters 

(not subject 

to fitting) 

Atenolol Bisoprolol Chlorpropamide Cimetidine Diazepam Hexobarbital Ivermectin Mebendazole Theophylline 

MW (g/mol)  266.34 [22] 325.45 [22] 276.74 [22] 252.34 [22] 284.74 [22] 236.27 [22] 875.11 [22] 295.30 [22] 180.17 [22] 

Log P -0.11 [1] 1.83 [1] 2.35 [1] 0.19 [1] 3 [1] 1.63 [1] 5.4 [1] 3.08 [1] -0.03 [1] 

EHR 1 [23] 0* 1 [9] 0 [10] 0 [14] 0* 1 [26] 1 [27] 0* 

CP 0* 0 [7] 0* 0* 0* 0 [25] 0 [18] 0 [19] 0* 

S (μmol/mL) 4,600 [24] 3,070 [24] 31.4 [24] 43.5 [24] 0.02 [24] 1.31 [24] 0.002 [24] 0.04 [24] 79.8 [24] 

KS(STL)  1 1 0.0156 55.6 136.5 0.985 1 42.7 0.995 

KS(DUO)  1 1 0.408 2.067 1 0.992 1 1 0.998 

KS(JE1)  1 1 0.637 1.41 1 0.992 1 1 0.999 

KS(JE2) 1 1 1 1 1 1 1 1 1 

KS(IL1) 0.941 0.922 1.58 0.740 1 1.02 1 1 1.00 

KS(IL2) 0.783 0.717 3.13 0.520 1 1.05 1 1 1.01 

KS(IL3) 0.539 0.424 8.18 0.366 

 

1 1.18 1 1 1.05 

KS(CAE) 1 1 1 1 1 1 1 1 1 

KS(ACO) 0.835 0.782 2.49 0.577 1 1.03 1 1 1.01 

          

D (cm2/min) 1 × 10−4 [1] 1 × 10−4 [1] 1 × 10−4 [1] 1 × 10−4 [1] 1 × 10−4 [1] 1 × 10−4 [1] 1 × 10−4 [1] 1 × 10−4 [1] 1 × 10−4 [1] 

p (μmol/mL) 3,754 [1] 3,687 [7] 3,613 [1] 3,962 [1] 3,511 [1] 4,232 [1] 1,142 [1] 3,386 [1] 5,550 [1] 

r (cm) 5 × 10−4 [1] 2.5 × 10−3  
[7] 

5 × 10−4 [1] 5 × 10−4 [1] 5 × 10−4 [1] 5 × 10−4 [1] 5 × 10−4 [1] 5 × 10−4 [1] 5 × 10−4 [1] 

T (cm) 3 × 10−3  [1] 2.5 × 10−3 [7] 3 × 10−3  [1] 3 × 10−3  [1] 3 × 10−3  [1] 3 × 10−3  [1] 3 × 10−3  [1] 3 × 10−3  [1] 3 × 10−3  [1] 

*estimated; Log P = logarithm of the octanol-water partition coefficient; KS = solubility coefficient; STL = stomach lumen; DUO = duodenum lumen; JE1 = jejunum1 lumen; JE2 = jejunum2 

lumen; IL1 = ileum1 lumen; IL2 = ileum2 lumen; IL3 = ileum3 lumen; CAE = caecum lumen; ACO = ascending colon lumen 
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For [1-21], please refer to captions of Table 3.4  

[22]PubChem (U.S. National Center for Biotechnology Information, 2018) (https://pubchem.ncbi.nlm.nih.gov) 

[23]Mofenson et al. (2016): enterohepatic recirculation is observed which is why a value of 1 is assigned; 

[24]sourced from ACD/Percepta 14.0.0 (Build 2726) software 

[25]CP is assumed 0 as hexobarbital is completely metabolised by the human liver (Breimer et al., 1975) 

[26]Baraka et al. (1996) 

[27]Braithwaite et al. (1982)  
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3.1.1.3 Fitting of parameters based on sensitivity analysis 

Simulations are initially performed with literature sourced and estimated parameters 

as identified in Tables 3.1-3.5. In order to explore whether the simulated oral and IV 

concentration-time curves may be approximated to their respective experimental 

data points, typically fitting of 2-3 selected parameters is undertaken. A parameter is 

selected for fitting if a local sensitivity analysis performed in SimBiology indicated 

that the modelling outcome is highly sensitive to the value of this parameter. 

 

3.1.1.3.1 Sensitivity analysis: theory and application 

Calculating sensitivities allows for the determination of a specific condition (e.g. 

change in hepatic clearance), defined by a model parameter (e.g. 𝐶𝐿ℎ𝑒𝑝), which has 

the most impact on an output in a model (e.g. concentration of a substance in the 

venous blood compartment, 𝐶𝑉𝐸). In other words, this method determines to which 

extent a model output is sensitive to a slight change of a specific parameter value. To 

do this, a time-dependent sensitivity coefficient Cq(t) for a model parameter q is 

calculated to denote the parameter’s sensitivity to CVE(t), namely: 

 𝐶𝑞(𝑡) = 𝑞𝐶𝑉𝐸 (𝑡) 𝜕(𝐶𝑉𝐸 (𝑡))𝜕(𝑞)
= (𝑞 + ∆𝑞 2⁄ )(𝐶𝑉𝐸 (𝑡, 𝑞 + ∆𝑞) + 𝐶𝑉𝐸 (𝑡, 𝑞)) 2⁄ (𝐶𝑉𝐸 (𝑡, 𝑞 + ∆𝑞) − 𝐶𝑉𝐸 (𝑡, 𝑞))∆𝑞  

 (Eq. 3.15) 

 

Here, 𝑞 represents the model parameters 𝐾𝑝, 𝑅, 𝑓𝑢(𝑝), 𝑘𝑎 , 𝑘𝑖𝑙 , 𝑘𝑏𝑖𝑙 , 𝑘𝑒(𝑟) and 𝐶𝐿ℎ𝑒𝑝. 

Each Cq is normalised so that each sensitivity calculation output is dimensionless. 

This helps to assess the relative sensitivity of each parameter to the model output. 

From these, the corresponding time-integral sensitivity coefficients (𝑆𝑞) are 

calculated, which give an indication of the total sensitivity of the model parameter 

to 𝐶𝑉𝐸 over a pre-defined timecourse of simulation.  
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The timespan over which a sensitivity analysis is run, is set to be equal to the time 

span the compound’s experimental data are based on (e.g. 1450 minutes in the case 

of atenolol): 

  𝑆𝑞 = ∫ |𝐶𝑞(𝑡)| 𝑑𝑡.𝑡=1450 𝑚𝑖𝑛𝑠
𝑡=0  

 (Eq. 3.16) 

 

Full details of this method can be found, for example, in Martins et al. (2000, 2001) 

and Ingalls and Sauro (2003). The end result, however, is a number for each 

parameter indicating how sensitive the venous blood concentration is to 

perturbations to this parameter. The larger the value indicates a higher sensitivity 

and, therefore, small changes in this model parameter would cause large changes to 

venous blood concentrations, and vice-versa. Both oral and IV experimental data are 

considered for sensitivity analysis. 

 

3.1.1.3.2 Fitting method  

Subsequent to a sensitivity analysis for each compound, all fittings are performed in 

SimBiology using fminsearch as an estimation method to minimise the distance 

between the model output and experimental data points. Lagarias et al. (1998) 

provide further information on this method. 

IV and oral curves are fitted simultaneously to their respective experimental data. 

The parameters subject to sensitivity analysis and fitting include those presented in 

Table 3.4, i.e. Kp, R, fup, ka, kil, kbil, ke(r), and CLhep. Fitted values and their standard 

errors (SE) are given in Table 3.4 with subscript (b).  

 

3.1.1.4 Goodness-of-fit statistics to evaluate the performance of the PBK model 

quantitatively 

In order to quantify how well the model describes the clinical data used for testing 

the model, several goodness-of-fit statistics are calculated. These are R-squared (R2), 

the adjusted R2, the mean squared error (MSE) and the root mean squared error 

(RMSE). To understand quantitatively to which degree fitting improved the 

representation of clinical data, goodness-of-fit measures are calculated for each 

simulation before fitting, with all initial parameters, and after fitting. R-squared is 
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only applicable to linear models with an intercept term (Kvalseth, 1985; Spiess and 

Neumeyer, 2010) and the PBK model output does not meet these requirements. 

Therefore, the majority of R-squared and adjusted R-squared values calculated are 

negative (data not shown) while an R-squared value useful for the interpretation of 

a fit is any value between 0 and 1 (Kvalseth, 1985; MathWorks, 2019a). The MSE and 

RMSE are common statistics to measure model accuracy, which is defined as the 

overall distance between the true value and estimated values (Bainbridge, 1985; 

Walther and Moore, 2005). The MSE is calculated by dividing the summed squares of 

residuals (𝑆𝑆𝑟𝑒𝑠) by the degree of freedom (𝐷𝐹) (Walther and Moore, 2005; 

MathWorks, 2019a) (Eq. 3.17-3.21). 

𝑆𝑆𝑟𝑒𝑠 = ∑(𝑦𝑖 − 𝑓𝑖)2𝑛
𝑖=0  

 (Eq. 3.17) 

where 𝑛 is the number of oral and IV experimental data points (𝑛 = 𝑛𝑜𝑟𝑎𝑙 + 𝑛𝐼𝑉), 𝑦𝑖  

the value of the ith experimental data point and 𝑓𝑖 the value of the corresponding 

estimation. 𝐷𝐹 = 𝑛 − 𝑚 

 (Eq. 3.18) 

where 𝑚 is the number of fitted parameters. 

  

The MSE values specific to the oral data fit (𝑀𝑆𝐸𝑜𝑟𝑎𝑙), the IV data fit (𝑀𝑆𝐸𝐼𝑉) and 

both fittings overall (𝑀𝑆𝐸𝑡𝑜𝑡𝑎𝑙) are calculated using Eq. 3.19-3.21. 

𝑀𝑆𝐸𝑜𝑟𝑎𝑙 = 𝑆𝑆𝑟𝑒𝑠𝑜𝑟𝑎𝑙𝐷𝐹  

 (Eq. 3.19) 

where 𝑆𝑆𝑟𝑒𝑠𝑜𝑟𝑎𝑙 is the summed squares of residuals between the oral measured data 

points and their corresponding estimated data points. 

𝑀𝑆𝐸𝐼𝑉 = 𝑆𝑆𝑟𝑒𝑠𝐼𝑉𝐷𝐹  

 (Eq. 3.20) 

where 𝑆𝑆𝑟𝑒𝑠𝐼𝑉  is the summed squares of residuals between the IV measured data 

points and their corresponding estimated data points. 𝑀𝑆𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑆𝑟𝑒𝑠𝑜𝑟𝑎𝑙 + 𝑆𝑆𝑟𝑒𝑠𝐼𝑉𝐷𝐹  

 (Eq. 3.21) 
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While the MSE equals the variance of estimates plus the squared mean error, the 

RMSE is calculated as the square root of the MSE (Eq. 3.22) and is therefore defined 

as the standard deviation of the random component in the data (Walther and Moore, 

2005; MathWorks, 2019a). 𝑅𝑀𝑆𝐸 = √𝑀𝑆𝐸 

 (Eq. 3.22) 

 

The closer both statistics are to 0, the better is the predictive accuracy of the model. 

However, there is no well-defined threshold for both MSE and RMSE distinguishing 

an acceptable from a non-acceptable quality of predictions (Roy et al., 2016). 

Veerasamy et al. (2011) noted that an RMSE of <0.3 may indicate a good predictive 

model. Besides considering the statistical value, the data underlying it need to be 

taken into account. For example, the robustness of the RMSE and other statistics are 

likely to be compromised if the sample size is small (𝑛 < 10) (Chai and Draxler, 2014). 

The datasets used for testing consist of 7 to 18 data points as shown in Table 3.6. 

RMSEs and MSEs based on fewer than 10 data points, i.e. the oral data based 

statistics of bisoprolol, chlorpropamide and theophylline and the IV data based 

measures of hexobarbital, need to be interpreted with care. 

 

Table 3.6: Number of data points used to test the PBK model performance 

 Oral IV 

Atenolol 14 12 

Bisoprolol 9 13 

Chlorpropamide 7 10 

Cimetidine 18 13 

Diazepam 14 18 

Hexobarbital 11 7 

Ivermectin 10 NA 

Mebendazole 10 11 

Theophylline 7 12 
NA = not available 
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3.2 Results 

The aim of this Chapter is to generate a human-relevant PBK model which can 

quantify the relationship between an administered dose and concentrations in 

various organs over time for a broad range of chemical substances. The PBK model 

consists of 15 somatic compartments including the lungs, eight non-eliminating 

organs and tissues (i.e. heart, spleen, thymus, pancreas, adipose, muscle, brain, skin), 

four eliminating and absorbing organs (i.e. liver, stomach, gut, kidney) as well as two 

blood compartments (venous and arterial). It also includes the ACAT model to 

simulate oral absorption from the stomach and seven gut sub-compartments. 

Organ/tissue-specific blood flow determines the rate a substance flows between the 

arterial blood, venous blood, and organ/tissue compartments. Rate constants 

determine the rate of absorption, renal elimination, hepatic clearance, intestinal loss, 

biliary elimination, gastric emptying and gut transit. In order to evaluate whether the 

model is able to simulate the kinetics of a broad range of substances reliably, 

simulated venous blood concentration-time profiles and compared to measured 

profiles of nine drugs.  

 

 

3.2.1 Results of sensitivity analyses and simulations with initial and fitted values 

Simulations are initially performed with literature sourced and estimated 

parameters. Subsequently, a sensitivity analysis is undertaken to identify which 

parameters have a major impact on the predicted venous blood concentration. 

Results of the sensitivity analyses for bisoprolol, diazepam and theophylline are 

illustrated in Appendix 3.B, while a summary of the findings for the other compounds 

is given below. For all compounds, the parameters identified as having a major 

impact (shown in sensitivity matrices of Appendix Figures 3.B.1, 3.B.4 and 4.B.7 as 

yellow bars) are included in fitting, as outlined in subchapter 3.1.1.3.  

 

For each substance, simulations before and after fitting are inspected visually to 

make sure that simulations with fitted parameters represent clinical data a) better 

than simulations with initial parameters and b) predicted values and clinical data are 

in close proximity (within the same order of magnitude) to each other over the entire 

data set. Appendix 3.B contains plots of the fitted simulated output and observed 

data of bisoprolol, diazepam and theophylline, as well as the residual plots of these 
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fitted plots. For all sensitive parameters, fitted values and their standard errors (SE) 

are presented in Table 3.4 with superscript (b) and discussed in more detail in the 

following. 

 

In the case of atenolol, the sensitivity analysis performed to determine parameters 

which have the most impact on CVE identified Kp and R as sensitive factors. With 

initial values of 1.7 and 1.11 (see also Table 3.4), fitting for these parameters achieves 

a good fit according to visual inspection with Kp  of 3.43 × 10−3 (± 6.14 × 10−4) and 

R of 1.74 × 10−3 (± 1.98 × 10−4). Both fitted values are three orders of magnitude 

lower than their initial values. As Kp is a fitted value by itself, this is not considered 

an issue. It is interesting to note that both are in the same order of magnitude before 

and after fitting.  

For bisoprolol, primarily R and to a lower extent Kp are identified as sensitive 

parameters. However, fitting for both parameters produces high standard errors. 

Good results are achieved when R is fitted on its own. The fitted value of 0.569 (±0.068) differs by less than an order of magnitude from the experimental 

value of 1.1.  

In the case of chlorpropamide, Kp and R are identified as sensitive parameters. As Kp 

is a fitted value and 𝑅 = 1 is estimated, it is considered acceptable that their fitted 

values of 1.81 ×  10−3(±3.30 ×  10−4) and 0.024 (±3.46 ×  10−3), respectively, 

are more than two orders of magnitude smaller than the initially set values. Also, the 

initial value of 50 for Kp is an order of magnitude or more higher than all the other 

Kp values proposed by Peters (2008a).  

For cimetidine, the two oral experimental data sets of Somogyi and Gugler (1983) are 

available, i.e. where the compound is administered with and without food. For fitting, 

data based on administration without food are used. Also, two plasma 

concentration-time profiles following IV administration established in two patients 

are available (Somogyi and Gugler, 1983). Mean values of both profiles are used for 

fitting. R is identified as most sensitive parameter at the initial input parameter value 

of 0.98 and fit to 0.741 (±0.093). The new value is within the acceptable one order 

of magnitude difference. Less sensitive parameters are Kp and fu(p). In order to assess 

whether the oral fitted curve may be improved, fitting is performed with R and Kp, 

and R and fu(p) (data not shown) but does not result in a significantly better fit.  
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With the data considered for diazepam, R is identified as most sensitive parameter 

followed by Kp with initial values of 0.5587 and 2, respectively. Fitted values of both 

R and Kp, i.e. 1.180 ± 0.912 and 0.533 ± 0.453, are less than one order of 

magnitude different to the initial values. These and both fitted curves are considered 

acceptable. Two concentration-time profiles following two oral doses administered 

to the same individual are available (van der Graaff et al., 1986). Mean values of both 

profiles are calculated and used for fitting.  

A sensitivity analysis for hexobarbital-related data reveals that R is the most sensitive 

parameter followed by Kp. Fitting attempts of R on its own, and R and Kp show that 

the latter does not generate better results than the former. Therefore, fitting results 

are adopted for R only. Its initial value of 1.0 is amended to 0.323 ± 0.137.  
As mentioned above, only oral data are available for ivermectin. The initial simulation 

using literature and estimated parameter values differs substantially from 

experimental data points. A sensitivity analysis identifies R, kbil and Kp as virtually 

equally sensitive parameters. Neither fitting with all three parameters 

simultaneously, nor fitting of kbil on its own, produce acceptable results. kbil on its 

own is mostly fit to zero while the fitted curve is less adjusted to given experimental 

data than the initial simulation. When R and Kp are fitted together, they are 

estimated to be 0.348 ± 0.071 and zero, respectively. Subsequently, R is set to the 

proposed value and Kp is fitted on its own. A most adequately fitted curve is achieved 

with Kp set to zero which is why this parameter is proposed to be 1.0 𝑥 10−7 

(approaching 0).  

For mebendazole, again, R and Kp are identified as sensitive parameters. Their initial 

values of 1 and 5 for R and Kp are fitted to 0.081 ± 0.016 and 0.301 ± 0.067, 

respectively. Both estimated values are more than an order of magnitude smaller 

than their initial values. However, as the initial Kp is fitted and R is estimated, this 

difference is not considered an issue. Both IV and oral clinical theophylline profiles 

are taken from Aslaksen et al. (1981). The IV data Peters (2008a) used are based on 

a single individual presented by Chrzanowski et al. (1977). It is considered that IV 

data from an experiment on six individuals as presented in Aslaksen et al. (1981) are 

more robust than using the data assessed from a single individual. The most sensitive 

parameter for this compound is R, followed by Kp. When fitting is performed for both 

parameters, R is estimated to be its initial value of 0.83. Therefore, Kp is fitted on its 

own resulting in 0.345 ± 0.047 which differs less than an order of magnitude from 
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its initial value of 1.3. Results of the fitted simulated concentration-time profiles and 

observed data points of bisoprolol, diazepam and theophylline are included in 

Appendix 3.B. 

 

 

3.2.2 Results of goodness-of-fit statistics 

Goodness-of-fit statistics are calculated as presented in subchapter 3.1.1.4, before 

and after fitting to evaluate if simulated output (i.e. venous blood concentration) 

curves with fitted values are closer to observed data points than output curves 

simulated with initial input values (before fitting). Overall, MSEs and RMSEs after 

fitting are lower than those calculated with initial parameter values (see Table 3.7). 

Yet, this is not the case for the oral data based MSE and RMSE of hexobarbital, and 

the IV and total data based MSEs and RMSEs of atenolol, bisoprolol, cimetidine and 

diazepam. While the oral data based MSE and RMSE of hexobarbital after fitting are 

slightly higher than before fitting, the IV data based MSE and RMSE values improved 

considerably (by one order of magnitude) as well as the total data based MSE and 

RMSE values. Similarly, the oral data based MSEs and RMSEs of atenolol, bisoprolol, 

cimetidine and diazepam are improved substantially at the slight expense of the IV 

and total data based values. Generally, RMSE values that are higher after fitting than 

their corresponding MSE and RMSEs calculated before fitting are lower than the 

proposed 0.3 threshold.
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Table 3.7: Goodness-of-fit parameters for oral, IV and total data, before and after fitting, of all compounds studied 

 MSE RMSE 

 Oral IV Total Oral IV Total 

 BF AF BF AF BF AF BF AF BF AF BF AF 

Atenolol 8.14× 10−7 

1.11× 10−7 

1.70× 10−6 

2.52× 10−6 

2.51× 10−6 

2.63× 10−6 

9.02× 10−4 

3.33× 10−4 

1.30× 10−3 

1.60× 10−3 

1.60× 10−3 

1.60× 10−3 

Bisoprolol 1.81× 10−9 

5.60× 10−10 

3.14× 10−8 

4.39× 10−8 

3.32× 10−8 

4.45× 10−8 

4.26× 10−5 

2.37× 10−5 

1.77× 10−4 

2.10× 10−4 

1.82× 10−4 

2.11× 10−4 

Chlorpropamide 1.37× 10−4 

1.96× 10−6 

1.70× 10−4 

1.95× 10−6 

3.07× 10−4 

3.91× 10−6 

0.0117 1.40× 10−3 

0.0130 1.40× 10−3 

0.0175 2.00× 10−3 

Cimetidine 8.21× 10−6 

4.25× 10−6 

4.53× 10−6 

6.14× 10−6 

1.27× 10−5 

1.04× 10−5 

2.90× 10−3 

2.10× 10−3 

2.10× 10−3 

2.50× 10−3 

3.60× 10−3 

3.20× 10−3 

Diazepam 2.64× 10−8 

8.27× 10−9 

8.29× 10−8 

1.64× 10−7 

1.09× 10−7 

1.72× 10−7 

1.62× 10−4 

9.09× 10−5 

2.88× 10−4 

4.05× 10−4 

3.31× 10−4 

4.15× 10−4 

Hexobarbital 1.56× 10−5 

2.15× 10−5 

6.24× 10−5 

6.19× 10−6 

7.80× 10−5 

2.77× 10−5 

3.90× 10−3 

4.60× 10−3 

7.90× 10−3 

2.50× 10−3 

8.80× 10−3 

5.30× 10−3 

Ivermectin 6.52× 10−10 

1.11× 10−10 

NA NA 6.52× 10−10 

1.11× 10−10 

2.55× 10−5 

1.05× 10−5 

NA NA 2.55× 10−5 

1.05× 10−5 

Mebendazole 9.35× 10−18 

2.34× 10−18 

2.77× 10−17 

7.12× 10−18 

3.71× 10−17 

9.46× 10−18 

3.06× 10−9 

1.53× 10−9 

5.27× 10−9 

2.67× 10−9 

6.09× 10−9 

3.08× 10−9 

Theophylline 1.13× 10−4 

8.47× 10−6 

0.0136 0.0134 0.0137 0.0134 0.0106 2.90× 10−3 

0.117 0.116 0.117 0.116 

BF= before fitting, AF= after fitting, NA= not available. 
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3.3 Discussion 

With an indisputable lack of mechanistic and quantitative understanding of renal 

toxicity pathways, it is important to know how much of a dose reaches the kidney 

and potentially accumulates there. PBK models provide these insights. A newly 

generated PBK model based on previously established and validated ODEs is judged 

to provide the transparency and flexibility needed for its use in conjunction with a 

mechanistic kidney model. For example, as shown in Chapter 4, to simulate the 

kinetics of aspirin and salicylic acid, ODEs of the PBK model are extended, amongst 

other things to incorporate metabolism of aspirin to salicylic acid in the liver 

compartment. Therefore, a newly generated PBK model, as opposed to using a 

previously established one, best fulfils the requirements addressed in the study 

described in Chapter 4. In comparison to the amount of studies published on PBK 

models, only a small proportion of these studies include full details on the model 

structure and ODEs. Of these, Peters (2008a) presents a comprehensive description 

which is why it is used as key source for the development of the PBK model presented 

here. Nevertheless, the model published by Peters (2008a) cannot be reproduced as 

such, due to missing details and minor errors. Therefore, the study presented here 

proposes a unique PBK model, and the extensive level of detail used to describe the 

model’s structure adds value to the scientific literature. 

 

This study presents the development of a generic human-data-based PBK model, 

which simulates the kinetics of a broad range of chemical substances. In order for the 

model to be robust, i.e. representing the physiology of the human body, 15 major 

human organs and tissues are included as compartments and key physiological 

processes such as tissue permeation, hepatic and renal elimination, oral absorption 

including paracellular absorption and gastro-intestinal dissolution, enterohepatic 

recirculation and biliary elimination, intestinal loss as well as the conversion of the 

metabolite to the parent compound, are incorporated. In order to evaluate whether 

the model may be used for a broad range of chemicals, the model is parameterised 

and validated against nine compounds which possess diverse physico-chemical and 

pharmacokinetic characteristics. Following each simulation, a local sensitivity 

analysis is performed in order to assess which parameters influence the 

concentration-time curve the most. Parameters identified as most sensitive are fitted 

so that the model output best represents clinical data. Overall, when fitted 



99 

 

simulations are compared to clinical data via visual inspection, simulations are found 

to provide a good representation of experimentally established data. Also, all RMSE 

values, a goodness-of-fit parameter measuring model accuracy, are below the critical 

0.3 threshold, indicating a good fit to the data in each case.  

 

The level of confidence in a PBK model may be characterised on the basis of three 

criteria outlined in the WHO/IPCS Guidance on the Characterisation and Application 

of Physiologically Based Pharmacokinetic Models in Risk Assessment (IPCS WHO, 

2010). These criteria are 

1) biological basis of the model structure and parameters,  

2) comparison of model simulations with experimental data and 

3) reliability of model predictions of dose metrics relevant to risk assessment 

(model testing, uncertainty analysis and sensitivity analysis). 

The model structure and parameters are considered to have a reasonable biological 

basis as  

1.1) the cardiac output is equal to the sum of all tissue blood flow rates (see Table 

3.1), 

1.2) the blood flow rates and tissue volumes applied are within the documented 

range for a human weighing 70 kg (see Table 3.1),  

1.3) the vast majority of chemical-specific parameter values are based on human 

data established in clinical studies (see 3.1.1.2, particularly Table 3.4), and 

1.4) key physiological processes outlined above have been mathematically expressed 

and incorporated into the model (see 3.1. and Appendix 3.A). 

 

The only parameter values that are based on animal data are CLhep of hexobarbital 

and Jms to calculate the paracellular absorption rate constant of atenolol, cimetidine 

and theophylline. Considering the amount of parameters based on human data, this 

is judged to be acceptable.  

Another aspect supporting the confidence in the model is that fitting of typically one 

or two parameters resulted in an acceptable representation of experimental data. In 

six of nine compounds, Kp, a previously fitted value, had to be re-fitted. In cases 

where an experimental value of R is not found in the literature, a value of R=1 is 

assumed, namely in the cases of chlorpropamide, ivermectin and mebendazole. The 

value of R may have a substantial impact on predicted blood concentrations as 
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confirmed by the sensitivity analysis results. Based on these results, the value of R is 

fitted for 8 of the 9 substance profiles selected (including chlorpropamide, ivermectin 

and mebendazole). Therefore, potential flaws related to the assumption of R=1 are 

corrected. Assuming R=1 while the actual value of R<1 implies that the predicted 

plasma concentration suggests a higher blood concentration than actually exists 

since the majority of the compound is located in the plasma. Fitted values of R for 

hexobarbital differ by a factor of three from the initially used experimental value. 

Even though this is by far higher than the factor of two proposed by the WHO/IPCS 

guidance for adequate PBK predictions, it is within acceptable limits of common 

modelling practice. The only value that differs by more than an order of magnitude 

from its experimentally established value is atenolol-related R. Underlying 

uncertainties may compromise the validity of the experimental value. Overall, 

assuming a value of 1 may produce suboptimal results and may be corrected in a 

future refined version by using QSARs to estimate R (Peyret et al., 2010; Peyret and 

Krishnan, 2011; Najafi et al., 2013). 

According to criterion 2) of the WHO/IPCS guidance, confidence in a PBK model will 

be high if a variety of data are reproduced. The nine compounds chosen cover a 

broad chemical space and a wide spectrum of PK profiles in terms of solubility and 

permeability. For each of the studied compounds, oral and IV data generated in one 

human PK study following a single dose are used for validation – apart from the 

validation of ivermectin since only oral data are available for this compound.  

It is appreciated that the consideration of additional PK data would benefit the 

validation of the model further. Since only one set of PK study data is considered for 

each route of administration, it remains unknown whether the model performs 

equally well for higher or lower dose levels or for datasets established in different 

young and healthy individuals or with different measurement techniques. At higher 

doses, certain metabolism or excretion processes may be saturated so that the 

hepatic clearance or renal elimination rate constant is lower overall (and no longer 

proportional to the drug concentration) in comparison to these elimination 

processes when non-saturated. To model saturated elimination processes, an 

elimination rate constant or clearance parameter is replaced by a Michaelis-Menten 

term (as explained in Chapter 4).  

Including additional data established in groups of young and healthy individuals and 

by using a range of measurement techniques would help understanding 
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interindividual and interstudy variability and uncertainty underlying certain 

parameter values. Moreover, in order to use this PBK model to quantitatively assess 

mechanisms and dose-response relationships related to renal toxicity, physiological 

parameters need to be modified to simulate the PK of elderly and/or patient 

individuals or even elderly/patient populations. The reason for this is, as discussed in 

Chapter 1, that renal toxicity is predominantly observed in elderly patients with 

various comorbidities. In addition, since the vast majority of renal adverse effects are 

recorded after repeated drug exposure and often associated with accumulation in 

renal tissues, PK after repeated doses need to be assessed. Both latter aspects, 

prediction of renal kinetics in elderly individuals and repeated dose administration, 

are considered in the study in Chapter 4. Except for cardiac output, all physiological 

parameters modified in Chapter 4 to simulate kinetics in elderly individuals are 

kidney-related. However, in drug development, PBK models aim to predict the PK in 

the intended patient population early in the development process so that a PBK 

model based on an average young and healthy individual is of limited value. In order 

to account for age- and/or disease-related changes in the human body overall, 

various physiological characteristics are typically adapted; these include 

modifications of enzyme and transporter activity and abundance (mainly in the liver 

and intestines), organ size (according to anthropometric data), organ blood flow, 

circulating levels of erythrocytes and plasma proteins, intestinal surface area, gastro-

intestinal pH as well as intestinal and stomach motility (Rostami-Hodjegan and 

Tucker, 2007; Jamei et al., 2009; Bosgra et al., 2012). For instance, organ volumes 

and blood flows may be derived from distributions of anthropometric parameters – 

such as body weight, height, body surface area and body mass index – which 

represent interindividual variability of a population (Price et al., 2003; Willmann et 

al., 2007; Bosgra et al., 2012). Open-source or proprietary virtual populations have 

been created to facilitate population-based predictions (Willmann et al., 2007; Jamei 

et al., 2009; Pearce et al., 2017; Sarigiannis et al., 2020). Considering such additional 

data would help to adequately predict PK in elderly individuals and/or patient 

populations. However, at this stage the focus of this model validation is given to the 

coverage of a broad range of physicochemical and PK properties. 

For all nine chemicals used here, both oral and IV data are simulated and fitted 

simultaneously. Therefore, both routes of exposure are taken into account. Visual 

inspection is applied to evaluate in a qualitative manner if the simulated curve 
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reproduces the general trend of experimental observations. For all nine compounds, 

reproduction of the general trend of clinical concentration-time curves is found to be 

adequate when assessed via visual inspection. The ability of the model to replicate 

experimental data is assessed quantitatively using the goodness-of-fit statistics MSE 

and RMSE which indicate a good fit to clinical data for each substance. The validation 

approach taken here may be further extended by quantifying additional simulation-

based dose metrics and PK parameters (e.g. AUC, Cmax, trough concentration Ctrough 

and t1/2) and comparing these to their measured equivalents as proposed by PBK 

guidance and best practice documents (IPCS WHO, 2010; EMA, 2018) and recent case 

studies (Fàbrega et al., 2016; Moss et al., 2017; Rajoli et al., 2019). Cmax and Ctrough 

values characterise upper and lower bound values and the AUC quantifies exposure 

over a defined time span. Comparing simulated and measured AUC, Cmax and Ctrough 

values, in addition to predicted and measured venous blood concentrations, would 

help to quantitatively assess whether the model reproduces a variety of measured 

data adequately which are typically generated to characterise the PK of a compound. 

One limitation of this study relates to simulations of whole blood concentrations. As 

stated above, predicted arterial and venous blood concentrations represent plasma 

concentrations. For six of the tested compounds (atenolol, bisoprolol, cimetidine, 

hexobarbital, ivermectin and mebendazole), experimental observations are 

presented as plasma concentrations. For chlorpropamide and theophylline, clinical 

measurements are given as serum concentrations which is comparable to plasma 

concentrations. However, diazepam related clinical data are recorded as whole blood 

concentrations which are not corrected for in the present study. Though this explains 

the discrepancy between the experimentally derived and the fitted value of R for 

diazepam (measured R=0.5587; fitted R=1.180 with a standard error of 0.912). In 

future studies considering measured concentrations in whole blood, ODEs similar to 

those presented by Krishnan et al. (1994, 2009) may be applied to predict blood 

concentrations. 

With regard to criterion 3) of the WHO/IPCS guidance, a detailed assessment of 

uncertainty inherent in experimental data considered here goes beyond the scope of 

this study. However, apart from one study taken into account for hexobarbital, all 

other studies considered here have previously been accepted by Peters (Peters, 

2008a) for the evaluation of model performance. Local sensitivity analyses are 

performed for each chemical which highlight that overall, Kp and R are the most 
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sensitive parameters. Interestingly, CLhep, the parameter that Peters (2008a) fitted in 

the first instance, is not found to be sensitive for any dataset tested.  

 

Further limitations of this study include that transporter-driven (permeability rate-

limited) kinetics are ignored. Permeability rate-limited kinetics, implying that 

distribution into tissue is limited by drug-specific membrane permeability, are 

predominantly observed with larger (MW > 300 Da) polar molecules (Jones and 

Rowland-Yeo, 2013; Cheng and Ng, 2017). Also, interaction between compounds and 

transporters may be significantly altered in a specific patient population, potentially 

attributed to DDIs, so that PK studies in healthy volunteers may be not provide 

transferable results (Evers et al., 2018). In general, a PBK model may benefit from 

incorporating active transport terms in specific compartments if these are necessary 

to express the kinetics of a substance to the required degree of accuracy in an 

individual or population. An increasing number of in vitro data characterising the rate 

of active transport are being generated and protein expression data provide an 

opportunity to account for interindividual variability. Examples of such models 

applying active transporter terms in the gut, liver, kidney, lung, brain and vascular 

compartments are presented by Thompson and Beard (2011), Ball et al. (2013), 

Gaohua et al. (2015), Emami Riedmaier et al. (2016) and Cheng and Ng (2017). Even 

though transporter-driven absorption and intestinal efflux are confirmed to have 

minimal impact in vivo (Peters, 2008a), it is appreciated that all compounds tested 

above may show permeability rate-limited kinetics (ivermectin due to its MW and 

remaining compounds due to polarity) to some extent in certain compartments. 

Overall, active transport processes are considered to have low impact on the PK of 

the group of compounds studied. However, to simulate the PK of compounds which 

are significant transported via active processes, the model’s code needs to be 

amended accordingly. For instance, active transport is considered in the mechanistic 

kidney model discussed in the following Chapter.  

Furthermore, for the purpose of this study, no tissue-specific partition coefficients 

are used but a compound-specific partition coefficient is applied to each 

compartment even though it is known that partitioning of a chemical differs from 

tissue to tissue (Brown et al., 1997; Björkman, 2002). Also, differences in transit rates 

through the gastrointestinal tract have not been investigated. Li et al. (2012) showed 

that stomach transit time may be a sensitive parameter. Furthermore, the lungs and 
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skin have not been considered as portals of entry which is why inhalation and dermal 

exposures may not be simulated at this point. Additionally, metabolism is solely 

incorporated in the liver compartment. However, metabolism can take place for 

some chemicals in various tissues including the kidneys, gut, lungs, skin, testis and 

bone marrow (Brown et al., 1997; Krishnan and Andersen, 2001; Boroujerdi, 2015). 

Moreover, since this PBK model is tested and validated with small molecule drugs, its 

validity to predict the kinetics of substances which are not classified as small 

molecule drugs – e.g. nanoparticles or large biopharmaceuticals – would have to be 

reassessed. Lastly, this model does not include certain organs which may be target 

organs of toxicity such as reproductive organs or the bone marrow. All these aspects 

may be added in the future. 

Overall, the level of confidence in this model for a broad chemical applicability 

domain and the organs and tissues taken into account is considered to be good. 

 

In Chapter 4, the PBK model is applied in conjunction with a newly developed 

mechanistic model of the kidney which simulates the kinetics of SA in that particular 

organ. When applied in conjunction, both the PBK model and the mechanistic kidney 

model provide a novel way to evaluate dose-response relationships in the context of 

renal toxicology, as discussed in more detail in Chapter 4. As mentioned in 1.4, the 

PBK model on its own may not necessarily be considered a scientific novelty. 

However, besides being used in conjunction with the mechanistic kidney model, it 

may be used in different ways for quantitative risk assessment approaches. For 

example, concentration-time profiles from the PBK may feed into a variety of organ 

or tissue-specific mechanistic toxicokinetic, toxicodynamic or (Q)SAR models. In 

contrary to the more costly and time-consuming pharmacokinetic studies in animals 

and humans, this PBK model not only provides information on blood, urine and other 

easily accessible biological matrices but also organ-level concentrations. Hence, it 

bridges the knowledge gap between external and internal exposure in a transparent 

way for a broad range of substances and helps to better interpret in vitro toxicity 

testing results.  
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4.0 A MECHANISTIC MODEL TO STUDY THE KINETICS OF SALICYLIC ACID 

IN THE KIDNEY 

4.1 Introduction 

The costs of chronic kidney disease (CKD) constitute a major and increasing challenge 

for national health care systems worldwide, with expenditures in England reaching 

£1.45 billion in 2009 and taking up close to 30% of general medical care (Medicare) 

costs in the U.S. in 2011 (Kerr et al., 2012; Collins et al., 2015; Eriksson et al., 2016). 

The kidney is a major target of drug-induced toxicity, particularly in vulnerable 

individuals such as patients who are critically ill and or have chronic kidney disease 

(Mehta et al., 2004; Uchino et al., 2005; Zhang et al., 2005). Some of the 

pharmaceuticals responsible for nephrotoxicity have been on the market for 

decades. Whilst much is known about some classes of drugs, a detailed 

understanding of the mechanisms and toxicity pathways of all drugs is lacking (Pletz 

et al., 2018b). 

 

 

Figure 4.1: Summary of a proposed AOP for the nephrotoxicity of NSAIDs via the 

uncoupling/inhibition of mitochondrial oxidative phosphorylation (adapted from 

Drewe and Surfraz, 2015) 

 

The role mitochondrial dysfunction plays in renal disease has been well, and 

increasingly, researched over the last few decades (You, 1983; Ishimoto and Inagi, 

2016; Eirin et al., 2017; Guo et al., 2018). It has been known for many years that 

therapeutic concentrations of salicylic acid (SA) in serum – 0.5 to 2.2 mM – are high 

enough to induce mitochondrial swelling if the cytosolic concentration of an exposed 

cell is at the same level as the plasma concentration (You, 1983). SA is the major 

metabolite of the NSAID aspirin (acetyl salicylic acid; ASA). Despite the importance of 
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this effect, a quantitative evaluation of the concentration reached in proximal tubular 

cells at therapeutic and toxic exposures is still lacking. Such a quantitative assessment 

would help with the interpretation of mechanistic in vitro data and add clarity to the 

current understanding of nephrotoxic effects observed in individuals at different 

dosing levels.  

 

Previously developed mechanistic models (formerly introduced in subchapter 1.3.2) 

to simulate renal kinetics consider urine flow and passive reabsorption (Tang-Liu et 

al., 1983), complemented by glomerular filtration and protein binding (Hall and 

Rowland, 1984; Komiya, 1986, 1987; Mayer et al., 1988) and active secretion (Russel 

et al., 1987a; b; c; Katayama et al., 1990). Most of these early models (Tang-Liu et al., 

1983; Hall and Rowland, 1984; Komiya, 1986, 1987; Mayer et al., 1988) derive 

quantitative relationships between renal clearance and urine flow, renal 

reabsorption, glomerular filtration and protein binding in various species and for a 

selection of substances, without compartmentalising the kidney. Hence, these 

models do not facilitate the quantification of a substance’s concentration (i.e. 

internal exposure) in a particular compartment of renal tissue. Russel et al. (1987a; 

b) and Katayama et al. (1990) differentiate between renal blood, tissue and tubular 

compartments. Felmlee et al. (2010, 2013) generated a universal mechanistic model 

for a broad applicability domain predicting renal clearance driven by active secretion, 

active reabsorption or both of these processes. The authors separate a proximal 

tubule from a distal tubule compartment, besides including a renal blood and urine 

compartment but do not consider metabolism and passive reabsorption. 

 

Two of the most sophisticated mechanistic models to predict kinetics of chemicals in 

the kidney are reported by Neuhoff et al. (2013) and Huang and Isoherranen (2018). 

The structure of their models represents a nephron divided into segments illustrating 

the glomerulus, proximal and distal tubules, loop of Henle and collecting ducts. Each 

segment contains three compartments, characterising the cellular mass, blood space 

and tubular fluid. Both models predict renal elimination by accounting for active and 

passive reabsorption, active and passive secretion, glomerular filtration and renal 

metabolism. Bypass of parts of the renal blood flow and population variability are 

considered by Neuhoff et al. (2013). In both models, ODEs describe the movement 

of a compound between compartments so that the concentration of a substance can 
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be quantified in each compartment. However, the model developed by Neuhoff et 

al. (2013) is embedded in the commercial software Simcyp® Simulator and details of 

the ODEs are not publicly available. Applications of this model are reported (Hsu et 

al., 2014; Posada et al., 2015; Burt et al., 2016; Emami Riedmaier et al., 2016; 

Scotcher et al., 2017; Hsueh et al., 2018). Limitations of this model revolve around 

missing data, e.g. on proximal tubular cells per gram of kidney (PTCPGK) and absolute 

renal transporter abundances at different parts of the nephron. The model generated 

by Huang and Isoherranen (2018) predicts drug renal clearance considering in vitro 

permeability, unbound filtration, active tubular secretion and pH dependent 

bidirectional passive diffusion. It is validated with data from 46 drugs and can 

quantify concentrations in each compartment, even though it is not used in this way. 

 

In addition to models simulating drug or chemical compound related kinetics, Layton 

(2013) reviewed mathematical models on (patho-)physiological processes of the 

kidney. Among others, these processes include the regulation of renal oxygen 

transport. Incorporating intrarenal oxygen transport and consumption into a 

toxicokinetic kidney model may be valuable since hypoxia in renal tissue has been 

argued to drive kidney dysfunction (Palm and Nordquist, 2011; Fu et al., 2016). 

 

In summary, there are limited computational models which quantify concentration-

time profiles of substances in toxicologically relevant segments of the human kidney. 

To date, a publicly available kidney model is lacking which is embedded in a full-body 

PBK model and has been tested for a sensitive population.  

 

The aim of the study undertaken in this Chapter is to develop a mechanistic model of 

renal kinetics with specific reference to SA, the major metabolite of ASA. Specific 

objectives included: 

1) Incorporation of this sub-compartment kidney model in our previously 

developed PBK model in order to validate it with full-body kinetic data. 

2) Investigation whether a quantitative relationship may be established 

between therapeutic doses of SA, predicted proximal tubular cell 

concentrations in young and elderly virtual individuals and toxicity events in 

proximal tubular cells. Since ASA is rapidly metabolised to SA, the 
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mechanistic kidney model is set up to simulate the kinetics of SA only while 

the PBK model is parameterised to simulate the kinetics of both ASA and SA. 

 

 

4.2 Methods 

4.2.1 Development of the model 

A mechanistic model of the kidney is created using the SimBiology® desktop (version 

5.8.1), an app provided by MATLAB®, version R2018b. SimBiology uses ordinary 

differential equations (ODEs) and numerical solvers to predict biokinetic and 

biodynamic processes with outputs of concentration vs. time curves for tissue or 

organ-specific compartments (MathWorks, 2019d). The ODEs created in SimBiology 

are solved using the Matlab solver ode15s which integrates the system of stiff 

differential equations (MathWorks, 2019b). A principal assumption of the model is 

that compartments are well-stirred, which implies instantaneous and homogenous 

distribution of a compound within a compartment.  

 

As the nephron is the functional unit of a kidney, we assume that the core element 

of the kidney submodel is that of a nephron, connecting to a collecting duct. In the 

scientific literature, the latter is not considered part of the nephron (Fenton and 

Praetorius, 2015). The main components of a nephron include the glomerulus, 

proximal tubules, loop of Henle and distal tubules as shown in Figure 4.2. In a human 

kidney, 85% of the nephrons are predominantly located in the cortex, the outer 

region of the kidney, with short loops of Henle reaching the outer medulla (Feher, 

2017). The remaining 15% are juxtamedullary nephrons which originate close to the 

corticomedullary boundary with long loops of Henle extending into the inner medulla 

(Fenton and Praetorius, 2015; Feher, 2017). Figure 4.2 shows a longitudinal cross-

section of the kidney depicting key anatomic structures including the cortex and 

medulla.  
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Figure 4.2: A schematic diagram of the structure of nephrons and their cortical and 

juxtamedullary locations relevant for the development of a mechanistic model 

(adapted from Feher, 2017). The main components of the mechanistic model 

developed here are the glomerulus (G), proximal tubules divided into three sections 

(PT1-3), loop of Henle (HL), distal tubules (DT) and collecting ducts divided into two 

sections (CD1-2). 

 

A substance reaches the nephrons via arterial blood vessels, so-called afferent 

arterioles which connect to the glomerulus where approximately 120 mL of water 

along with small, unbound substances are filtered per minute into the glomerular 

space. From there, the filtrate flows through the proximal tubule, subsequently the 

loop of Henle, distal tubule and collecting duct through which the filtrate reaches the 

bladder where it is excreted as urine. Compounds that are not filtered at the 
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glomerulus move through peritubular capillaries which surround the proximal and 

distal tubules and vasa recta surrounding the loop of Henle and collecting ducts from 

where they may be absorbed into the tubular cells and from there into the tubular 

lumen via active and passive transport. Active and passive reabsorption from the 

tubular lumen may also occur back into tubular cells. The kinetic processes of SA 

reaching and moving through a nephron are described in subchapter 4.2.2. 

 

Since tubular cells in the early proximal tubule (PT) section differ in morphology to 

those in later sections and the same holds for cells in collecting ducts, these parts of 

the nephron are divided into three (PT1-3) and two (CD1-2) sections, respectively. 

The model comprises eight blood compartments, representing arterial and venous 

blood vessels at different locations of the nephron (glomerular blood, proximal 

tubular blood sections 1-3, loop of Henle blood, distal tubular blood, collecting duct 

blood sections 1-2), and eight corresponding luminal compartments (i.e. glomerular 

space, proximal tubular lumen sections 1-3, loop of Henle lumen, distal tubular 

lumen, collecting duct lumen sections 1-2). Seven cellular compartments (proximal 

tubular cells sections 1-3, loop of Henle cells, distal tubular cells, collecting duct cells 

sections 1-2) connect to site-equivalent luminar and blood compartments via passive 

diffusion and active transport. Metabolism is incorporated in all cellular 

compartments. Figure 4.3 shows a schematic diagram of the mechanistic kidney 

model including all compartments, flows and metabolism that are taken into 

account. 
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Figure 4.3: Schematic representation of the mechanistic kidney model. The white 

central box stands for the kidney compartment (𝐾𝐼). The light orange boxes 

represent the compartments of the kidney model while the darker orange boxes 

represent concentrations of SA, SU and glucuronides. Compartments: GB = 

glomerular blood; GS = glomerular space; PTB1-3 = proximal tubular blood 1-3; HLB 
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= loop of Henle blood; DTB = distal tubular blood; CDB = collecting duct blood 1-2; 

PTC1-3 = proximal tubular cells 1-3; HLC = loop of Henle cells; DTC = distal tubular 

cells; CDC1-2 = collecting duct cells 1-2; PTL1-3 = proximal tubular lumen 1-3; HLL = 

Loop of Henle lumen; DTL = distal tubular lumen; CDL1-2 = collecting duct lumen 1-

2; Concentrations: -SA = SA concentration in respective compartment; -SU = SU 

concentration in respective compartment; -glucs = glucuronide concentration in 

respective compartment; Blood and fluid flows: 𝐺𝐹𝑅 = glomerular filtration rate; 𝑄𝐾𝐼 = renal blood flow rate; 𝑄𝐻𝐿−𝐶𝐷2 = blood flow in loop of Henle and collecting 

ducts; 𝐹𝐹𝑃𝑇 = fluid flow leaving the glomerular space and proximal tubules; 𝐹𝐹𝐻𝐿 = 

fluid flow leaving the loop of Henle; 𝐹𝐹𝐷𝑇 = fluid flow leaving the distal tubules and 

collecting ducts; Active transport: single-sided arrows between blood and cellular, 

and between cellular and luminal concentrations with rate 𝑘𝐴𝑇, equations presented 

in Appendix 4.A show that 𝑘𝐴𝑇 represents added Michaelis-Menten terms of relevant 

active transport processes in the respective compartment; Passive diffusion: double-

sided arrows between blood and cellular, and between cellular and luminal 

concentrations with rate 𝑘𝑃𝑇; Metabolism: 𝑘𝑀𝐸𝑇 = rate of metabolism to form SU 

or glucuronides in a subcompartment, Eq. 9-20 of Appendix 4.A.2 show that 𝑘𝑀𝐸𝑇 

represents added Michaelis-Menten terms of relevant metabolic reactions in the 

respective compartment; exposure is entering the kidney compartment from the 

arterial blood compartment (𝐴𝑅) and moves from the kidney compartment into the 

bladder (𝐵𝐿) or the venous blood compartment (𝑉𝐸). 

 

 

4.2.1.1 Compartment volumes 

Each compartment is assigned a physiologically-based volume. For this, a gross 

estimate of the volumes of renal tubules (comprising cellular and luminal 

compartments) and blood vessels is performed as described in subchapter 4.2.1.1.1. 

Glomerular blood and glomerular space compartment volumes are discussed 

subsequently in subchapter 4.2.1.1.2. The volume of each compartment for a single 

nephron is calculated based on values sourced from the literature. For the cellular 

and luminal compartments, the external diameter of the tubular section, the cell 

height and compartment length are used to derive cylindrical compartmental 

volumes. For estimates of cell height of collecting duct cells, measurements of 

histological images of the collecting duct are utilised to derive these values whereas 
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all other cell height estimates are taken from text sources. All these calculations are 

presented in subchapter 4.2.1.1.3. Subsequently, compartmental volumes per 

nephron and collecting duct are scaled to those present in a human, i.e. in both 

kidneys containing one million nephrons each totalling 280 mL (Davies and Morris, 

1993; Peters, 2008a). 

 

 

4.2.1.1.1 Gross estimation of cellular, luminal and blood compartments 

The composition of the tissue in the renal cortex differs greatly from the tissue 

composition in the renal medulla. While the cortex contains virtually all components 

of all nephrons, with the exception of the parts of loops of Henle, it is assumed that 

the cortex volume comprises all glomeruli, proximal tubules and distal tubules. The 

volume of peritubular capillaries, the blood vessels surrounding renal tubules, has 

previously been estimated to be 7% of the total kidney volume (Neuhoff et al., 2013), 

so whether capillaries are equally distributed in the cortex and medulla had to be 

defined. According to animal and human data of the architecture of the renal medulla 

(Knepper et al., 1977; Wei et al., 2015), the medullary peritubular capillary volume is 

estimated at 7% of the medulla volume, and the same fraction is set for the cortical 

capillary volume. The vasa recta which arises from efferent arterioles of 

juxtamedullary nephrons and forms a capillary network in the renal medulla, takes 

up 15% of the volume of the medulla (Pallone and Cao, 2013; Feher, 2017). It is 

known that the vasa recta interacts with the loop of Henle and collecting duct to 

exchange urea and NH4
+, respectively (Feher, 2017). While the vasa recta appears to 

exchange substances mainly with the loop of Henle (Alpern et al., 2013; Fenton and 

Praetorius, 2015), the volume of the collecting ducts significantly exceeds the volume 

of the loop of Henle, even though a quantitative estimation is not retrieved from the 

literature. Therefore, it is assumed that the medullary blood compartments, taking 

up 22% of the medullary volume, as they comprise capillary and vasa recta volumes, 

are equally distributed around the loop of Henle and collecting ducts.  

 

The interstitial volume in the cortex has been estimated at 4% of the cortical volume 

(Eaton and Pooler, 2013; Neuhoff et al., 2013) while animal and human data indicate 

that the interstitium occupies between 15 and 25% of the renal medulla (Knepper et 

al., 1977; Wei et al., 2015). Hence, a fraction of 23% of medullary volume is estimated 
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for the interstitium. This fraction is added to the tubular cell fractions of the loop of 

Henle and collecting ducts, and concurrently 4% of the cortical volume assigned for 

the interstitium is added to the tubular cell fraction of the cortex. Since the volume 

ratio of cortex/medulla is found to be 0.92 in healthy subjects (Kojima et al., 2001), 

133 and 147 mL are assigned to the cortex and medulla, respectively, adding up to a 

total kidney volume of 280 mL. Table 4.1 summarises the volumes of cortex and 

medulla and fractional distribution of tubular, blood and interstitial volumes. 

 

Table 4.1: Fraction between cellular and luminal, blood and interstitial volumes in the 

renal cortex and medulla 

 Cortex Medulla 

Volume (mL) 133 147 

Tubular fraction (%) 

(cellular and luminal) 

89 55 

Blood fraction (%) 7 22 (7 – capillaries;  

15 – vasa recta) 

Interstitial fraction (%) 4 23 

 

 

4.2.1.1.2 Glomerular blood and glomerular space compartment volumes 

Since the volume of one million glomeruli is estimated to be 4.2 mL (Rouiller, 1969), 

8.4 mL is assigned to the entire glomerular blood compartment accounting for two 

million glomeruli in both kidneys. The volume of the glomerular (or Bowman’s) space, 

the urinary cavity that connects to the lumen of the proximal tubule, is derived from 

the volume of the Bowman’s capsule which represents the total glomerular volume 

minus the volume of the glomerular blood compartment (Rouiller, 1969; Fenton and 

Praetorius, 2015). As the volume of the Bowman’s capsule has been estimated to be 

0.044 mL per gram of kidney, the total Bowman’s capsule volume per person yields 

12.32 mL, which results in 3.92 mL for the glomerular space. 
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4.2.1.1.3 Calculation of cellular and luminal compartment volumes for a single 

nephron 

We assume that a renal tubule and collecting duct have the shape of a hollow 

cylinder, where the volume of the hollow cylinder (𝑉𝑐) represents volume of tubular 

or collecting duct cells and the inner space (𝑉𝑙) constitutes the tubular or collecting 

duct lumen. Figure 4.4A illustrates the parameter values relevant to calculate the 

volume of a hollow cylinder: 

 

A   B      

C   D        

Figure 4.4: A. Illustration of the values necessary to calculate the volume of a hollow 

cylinder, where 𝑉𝑐 = volume of a hollow cylinder; 𝑅1 = outer radius of a cylinder; 𝑅2 = radius of the hollow part of a cylinder; 𝐿𝑐 = length of the cylinder. B. Parameter 

values available to calculate the volumes of the cellular compartments of proximal 

and distal tubules and collecting ducts, where 𝑉𝐶𝐶 = volume of cellular compartment 

(𝑉𝑃𝑇𝐶1, 𝑉𝑃𝑇𝐶2, 𝑉𝑃𝑇𝐶3, 𝑉𝐷𝑇𝐶, 𝑉𝐶𝐷𝐶1, 𝑉𝐶𝐷𝐶2); 𝐷𝑒𝑥𝑡𝐶𝐶 = external diameter of the cellular 

compartment; 𝐻𝐶𝐶 = height of cells in the compartment; 𝐿𝐶𝐶 = length of cellular 

compartment. C. Parameter values available to calculate the volume of the cellular 

compartment of the loop of Henle (𝑉𝐻𝐿𝐶), where 𝐷𝐿𝐶 = diameter of the luminal 

compartment of the loop of Henle. D. Volume of luminal compartments of proximal 

and distal tubules and collecting ducts (𝑉𝐿𝐶 =  𝑉𝑃𝑇𝐿1, 𝑉𝑃𝑇𝐿2, 𝑉𝑃𝑇𝐿3, 𝑉𝐷𝑇𝐿, 𝑉𝐶𝐷𝐿1, 𝑉𝐶𝐷𝐿2). 
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Eq. 4.1 calculates the volume of a hollow circular cylinder by subtracting the volume 

of the inner cylinder with radius R2 from the volume of the outer cylinder with radius 

R1: 𝑉𝑐 = 𝜋 (𝑅12 − 𝑅22) 𝐿𝑐 

 (Eq. 4.1) 

Where 𝑉𝑐 = volume of the hollow cylinder; 𝑅1 = outer radius of the cylinder; 𝑅2 = 

radius of the hollow part of the cylinder; 𝐿𝑐 = length of the cylinder. 

 

For proximal and distal tubules and collecting ducts, instead of the radii of renal 

tubules, the external diameters and the average height of the cells present in these 

tubular sections are available. Figure 4.4B shows the parameter values available to 

calculate the volumes of cellular compartments of proximal tubules (PTC1-3), the 

distal tubule (DTC) and collecting ducts (CDC1-2), i.e. 𝑉𝑃𝑇𝐶1, 𝑉𝑃𝑇𝐶2, 𝑉𝑃𝑇𝐶3, 𝑉𝐷𝑇𝐶, 𝑉𝐶𝐷𝐶1, 𝑉𝐶𝐷𝐶2. Therefore, Eq. 4.1 is translated to Eq. 4.2 to derive the volume of a 

cellular compartment: 

𝑉𝐶𝐶  (𝑚𝐿)  = 𝜋 ((𝐷𝑒𝑥𝑡𝐶𝐶2 )2 − (𝐷𝑒𝑥𝑡𝐶𝐶2 − 𝐻𝐶𝐶)2) 𝐿𝐶𝐶 × 0.001 

 (Eq. 4.2) 

With 𝑉𝐶𝐶 = volume of cellular compartment (𝑉𝑃𝑇𝐶1, 𝑉𝑃𝑇𝐶2, 𝑉𝑃𝑇𝐶3, 𝑉𝐷𝑇𝐶, 𝑉𝐶𝐷𝐶1, 𝑉𝐶𝐷𝐶2) (mL); 𝐷𝑒𝑥𝑡𝐶𝐶 = external diameter of the cellular compartment (mm); 𝐻𝐶𝐶 = 

height of cells in the compartment (mm); 𝐿𝐶𝐶 = length of cellular compartment 

(mm); 0.001 = factor to convert from mm3 to mL. 

  

Instead of the cell height, the diameter of the loop of Henle lumen is available and 

used to derive the volumes of the cellular and luminal compartments of the loop of 

Henle. Figure 4.4C shows the parameter values available to calculate the volume of 

the loop of Henle cellular compartment. In this case, Eq. 4.2 is amended to Eq. 4.3 to 

calculate the cellular volume of the loop of Henle: 

𝑉𝐻𝐿𝐶  (𝑚𝐿) = 𝜋 ((𝐷𝑒𝑥𝑡𝐶𝐶2 )2 − (𝐷𝐿𝐶2 )2) 𝐿𝐶𝐶 × 0.001 

 (Eq. 4.3) 

Where 𝑉𝐻𝐿𝐶 = volume of the cellular compartment of the loop of Henle (HLC) (mL); 𝐷𝐿𝐶 = diameter of the luminal compartment of the loop of Henle (mm). 
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Figure 4.4D illustrates the values used to calculate the volumes of luminal 

compartments of proximal tubules (PTL1-3), the distal tubule (DTL) and collecting 

ducts (CDL1-2), i.e. 𝑉𝑃𝑇𝐿1, 𝑉𝑃𝑇𝐿2, 𝑉𝑃𝑇𝐿3, 𝑉𝐷𝑇𝐿, 𝑉𝐶𝐷𝐿1, 𝑉𝐶𝐷𝐿2.  

 

Eq. 4.4 shows that these are calculated by subtracting the volume of the cellular 

compartment (𝑉𝐶𝐶) from the volume of the outer cylinder with diameter 𝐷𝑒𝑥𝑡𝐶𝐶: 

𝑉𝐿𝐶  (𝑚𝐿) = (𝜋 (𝐷𝑒𝑥𝑡𝐶𝐶2 )2 𝐿𝐶𝐶 × 0.001) − 𝑉𝐶𝐶 

 (Eq. 4.4) 

Where 𝑉𝐿𝐶 = volume of luminal compartment of proximal tubules (PTL1-3), the distal 

tubule (DTL) and collecting ducts (CDL1-2), i.e. 𝑉𝑃𝑇𝐿1, 𝑉𝑃𝑇𝐿2, 𝑉𝑃𝑇𝐿3, 𝑉𝐷𝑇𝐿, 𝑉𝐶𝐷𝐿1, 𝑉𝐶𝐷𝐿2 

(mL). 

 

In parallel to the amendment to Eq. 4.2, Eq. 4.4 is modified to Eq. 4.5 to calculate the 

luminal volume of the loop of Henle (HLL): 

𝑉𝐻𝐿𝐿  (𝑚𝐿) = 𝜋 (𝐷𝐿𝐶2 )2 𝐿𝐶𝐶 × 0.001 

 (Eq. 4.5) 

Where 𝑉𝐻𝐿𝐿 = volume of the luminal loop of Henle compartment (mL). 

All values used to calculate tubular and luminal volumes are presented in Table 4.2. 
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Table 4.2: Parameters applied to derive tubular and luminal volumes using Eq. 4.2 to 

4.5. Part A considers volumes of the proximal and distal tubules (PT1-3 and DT) and 

the collecting ducts (CD). Part B considers volumes of the loop of Henle (HL). 

A 

Compartments External 

diameter 

(mm)[1] 

Cell 

height 

(mm)[2] 

Compartment 

length 

(mm)[3] 

References 

PTC1 and PTL1 0.06 0.011 6 [1,3] Neuhoff et al., 

2013; [2] estimates 

based on Pitts, 1968; 

and Maunsbach and 

Christensen, 2011 

PTC2 and PTL2 0.06 0.011 6 

PTC3 and PTL3 0.06 0.008 6 

DTC and DTL 0.05 0.006 5.5 [1,3] Neuhoff et al., 

2013; [2] estimate 

based on Ericsson et 

al., 1965; Rouiller, 

1969; Fenton and 

Praetorius, 2015 

CDC1 and CDL1 0.04 0.009 11 [1] Rouiller, 1969; [2] 

estimate based on 

Ericsson et al., 1965; 
[3] Neuhoff et al., 

2013 

CDC2 and CDC2 0.2 0.02 11 [1] Rouiller, 1969; 

Neuhoff et al., 2013; 
[2] estimate based on 

Madsen et al., 1988; 
[3] Neuhoff et al., 

2013 

B 

Compartments External 

diameter 

(mm)[1] 

Luminal 

diameter 

(mm)[2] 

Compartment 

length 

(mm)[3] 

References 

HLC and HLL 0.018 0.0125 7 [1,3] Neuhoff et al., 

2013; [2] estimate 

based on Rouiller, 

1969 
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4.2.1.1.4 Scaling of cellular, luminal and glomerular blood volumes per nephron 

to volumes per person 

4.2.1.1.4.1 Cortical compartments 

Equations 4.2-4.5 give volumes per single tubule or collecting duct. In order to obtain 

the volumes of each compartment per person, having one million nephrons per 

kidney and two kidneys (Nyengaard and Bendtsen, 1992; Hoy et al., 2003; Bertram 

et al., 2011), the cellular and luminal volumes of proximal and distal tubular 

compartments are multiplied by 2 × 106. When summed up, the volumes of all 

cortical cellular and luminal as well as glomerular blood and space compartments 

amount to 135.11 mL which is considered to be fairly close to the intended value of 

123.47 mL (93% of the cortical volume since 7% of it are assigned to capillary blood). 

Subsequently, all cortical cellular and luminal, as well as glomerular blood and space, 

compartments are scaled down to yield 123.47 mL. Interestingly, the scaled 

glomerular blood value is in line with the volume of the glomerulus proposed by 

Nyengaard and Bendtsen (1992). 

 

 

4.2.1.1.4.2 Medullary compartments 

Scaling up the cellular and luminal volumes of CD1 and CD2 per collecting duct (as 

obtained with Eq. 4.2-4.5) to volumes per person is not as straightforward as scaling 

up cortical compartments from one to two million nephrons. This is because on 

average 11 nephrons drain into a cortical collecting duct and approximately 2,570 

into a terminal inner medullary collecting duct (Kaissling and Kriz, 2011). Estimating 

average quantities of collecting ducts in CD1 and CD2 compartments and multiplying 

these with cellular and luminal volumes per collecting duct produced values which 

are nearly a factor of 20 lower than the gross estimates shown in subchapter 

4.2.1.1.1. Also, since the interstitium takes up a substantial proportion of the medulla 

and it is not considered in the calculated cellular and luminal volumes obtained from 

Equations 4.2-4.5, the interstitium needs to be taken into account specifically. 

Therefore, 23% of the total medulla volume allocated to the medullary interstitium 

(see Table 4.1) is proportionally assigned to cellular compartments of the medulla, 

i.e. HLC, CDC1 and CDC2. These volumes of medullary cellular and luminal 

compartments are then scaled up proportionally so that they add up to 115 mL in 

total (78% of medullary volume, see Table 4.1). 
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Table 4.3: Compartment volumes of the kidney model 

Compartment volumes Parameter 

value (mL) 

References; derivation of 

parameter value 

Glomerular blood (𝑉𝐺𝐵) 7.64 Rouiller, 1969; scaling see 

4.2.1.1.4.1 

Proximal tubular blood 1 (𝑉𝑃𝑇𝐵1) 2.56 27.5 % of cortical peritubular 

blood 

Proximal tubular blood 2 (𝑉𝑃𝑇𝐵2) 2.56 27.5 % of cortical peritubular 

blood 

Proximal tubular blood 3 (𝑉𝑃𝑇𝐵3) 2.56 27.5 % of cortical peritubular 

blood 

Loop of Henle blood (𝑉𝐻𝐿𝐵) 11.78 36.36 % of medullary blood 

Distal tubular blood (𝑉𝐷𝑇𝐵) 1.63 17.5 % of cortical peritubular 

blood 

Collecting duct blood 1 (𝑉𝐶𝐷𝐵1) 6.55 20.21 % of medullary blood 

Collecting duct blood 2 (𝑉𝐶𝐷𝐵2) 14.07 43.42 % of medullary blood 

   

Proximal tubular cells 1 (𝑉𝑃𝑇𝐶1) 18.49 See Table 4.1 and Eq. 4.2; scaling 

see 4.2.1.1.4.1 

Proximal tubular cells 2 (𝑉𝑃𝑇𝐶2) 18.49 See Table 4.1 and Eq. 4.2; scaling 

see 4.2.1.1.4.1 

Proximal tubular cells 3 (𝑉𝑃𝑇𝐶3) 14.27 See Table 4.1 and Eq. 4.2; scaling 

see 4.2.1.1.4.1 

Loop of Henle cells (𝑉𝐻𝐿𝐶) 26.80 See Table 4.1 and Eq. 4.3; scaling 

see 4.2.1.1.4.2  

Distal tubular cells (𝑉𝐷𝑇𝐶) 8.30 See Table 4.1 and Eq. 4.2; scaling 

see 4.2.1.1.4.1 

Collecting duct cells 1 (𝑉𝐶𝐷𝐶1) 22.60 See Table 4.1 and Eq. 4.2; scaling 

see 4.2.1.1.4.2 

Collecting duct cells 2 (𝑉𝐶𝐷𝐶2) 29.16 See Table 4.1 and Eq. 4.2; scaling 

see 4.2.1.1.4.2 

   

Glomerular space (𝑉𝐺𝑆) 3.57 Rouiller, 1969; 𝑉𝐺_𝑡𝑜𝑡𝑎𝑙 − 𝑉𝐺𝐵; for 

a total glomerular volume (𝑉𝐺_𝑡𝑜𝑡𝑎𝑙) averaging 44 mm3 per 

g kidney; scaling see 4.2.1.1.4.1 

Proximal tubular lumen 1 (𝑉𝑃𝑇𝐿1) 12.38 See Table 4.1, Eq. 4.2 and Eq. 4.4; 

scaling see 4.2.1.1.4.1 

Proximal tubular lumen 2 (𝑉𝑃𝑇𝐿2) 12.38 See Table 4.1, Eq. 4.2 and Eq. 4.4; 

scaling see 4.2.1.1.4.1 

Proximal tubular lumen 3 (𝑉𝑃𝑇𝐿3) 16.60 See Table 4.1, Eq. 4.2 and Eq. 4.4; 

scaling see 4.2.1.1.4.1 

Loop of Henle lumen (𝑉𝐻𝐿𝐿) 14.20 See Table 4.1, Eq. 4.3 and Eq. 4.5; 

scaling see 4.2.1.1.4.2 

Distal tubular lumen (𝑉𝐷𝑇𝐿) 11.35 See Table 4.1, Eq. 4.2 and Eq. 4.4; 

scaling see 4.2.1.1.4.1 

Collecting duct lumen 1 (𝑉𝐶𝐷𝐿1) 3.51 See Table 4.1, Eq. 4.2 and Eq. 4.4; 

scaling see 4.2.1.1.4.2 

Collecting duct lumen 2 (𝑉𝐶𝐷𝐿2) 18.57 See Table 4.1, Eq. 4.2 and Eq. 4.4; 

scaling see 4.2.1.1.4.2 
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Bladder (𝑉𝐵𝐿) 350 Lukacz et al., 2011; average value 

Arterial blood (𝑉𝐴𝑅) 1698 Peters, 2008a 

Venous blood (𝑉𝑉𝐸) 3396 Peters, 2008a 

 

 

4.2.1.1.5 Determination of blood compartments 

Since capillaries surround renal tubules, the volume of each cortical peritubular 

blood compartment is assigned in proportion to the volume of the respective cellular 

and luminal sections (see Figure 4.2). This also applies to medullary blood 

compartments since medullary blood including capillaries and vasa recta are 

assumed to be distributed equally around the loop of Henle and collecting ducts. 

Cortical peritubular blood compartments, i.e. PTB1-3 and DTB, total 9.2937 mL which 

is 7% of the overall cortical volume. Medullary blood compartments, i.e. HLB and 

CDB1-2, amount to 32.3914 mL, which is 22% of the medullary volume (see Table 

4.1). Table 4.3 summarises all compartment volumes of the kidney model. 

 

 

4.2.1.2 Blood flow, fluid flow and glomerular filtration rates 

The change in concentration of a compound within each renal compartment over 

time is represented by ODEs that conserve mass balance. All ODEs are compiled in 

Appendix 4.A. The change in concentration within each compartment is driven by 

physiological flow rates and compound-specific parameters. Physiological flow rates 

such as the blood flow or fluid flow at different sections of the tubular lumen are 

presented in Table 4.4.  

 

The renal blood flow determines the movements of the compound from the 

glomerular blood to consecutive blood compartments. The selected value of 1100 

mL/min for the renal blood flow is used in a previously established PBK model in 

which the mechanistic kidney model will be embedded. The renal blood flow value is 

within the range of 800-1200 mL/min and 1100-1200 mL/min presented by Hallow 

and Gebremichael (2017) and Boroujerdi (2015), respectively, and within an order of 

magnitude of the value of 1000 mL/min selected by Neuhoff et al. (2013) and Hallow 

and Gebremichael (2017).  
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Table 4.4: Physiological flow rates at different sections of the tubular lumen 

Flow rates Parameter 

value 

(mL/min) 

References 

Renal blood flow  (𝑄𝐾𝐼 = 𝑄𝐶 × 𝐹𝑄𝐾𝐼) 

1100 Bernareggi and Rowland, 1991; 

Peters, 2008a; Boroujerdi, 2015 

Blood flow in loop of Henle and 

collecting ducts 2 (𝑄𝐻𝐿−𝐶𝐷2) 

100 Eaton and Pooler, 2013 

Glomerular filtration rate (𝐺𝐹𝑅) 

120 Neuhoff et al., 2013; mL of 

water/min 

Fluid flow leaving glomerular 

space and proximal tubules (𝐹𝐹𝑃𝑇) 

45 Neuhoff et al., 2013 

Fluid flow leaving loop of Henle (𝐹𝐹𝐻𝐿) 

25 Neuhoff et al., 2013 

Fluid flow leaving distal tubules 

and collecting ducts (𝐹𝐹𝐷𝑇) 

12 Neuhoff et al., 2013 

𝑄𝐶 = cardiac output (6338 mL/min); 𝐹𝑄𝐾𝐼 = fractional tissue blood flow in the kidney (0.174) 

 

Medullary blood flow occurs predominantly through the vasa recta which connects 

the loop of Henle and the inner medullary collecting duct (CDB2) and is slower than 

cortical blood flow (Eaton and Pooler, 2013). Shunt vessels bypassing juxtamedullary 

glomeruli are considered to have a minor impact on renal kinetics (Alpern et al., 2013; 

Calzavacca et al., 2014; Munger et al., 2015) and a quantitative estimation of 

periglomerular shunting has not been obtained from the literature. Thomas et al. 

(1998) suggest that shunts are formed in the aging kidney. One of the consequences 

of periglomerular shunting is a decreased glomerular filtration rate (GFR) which will 

be taken into account in subchapter 4.4, within the modelling scenario reflecting an 

elderly individual. Fluid flows determine the rate at which the filtrate (forming urine) 

flows from the glomerular space through lumen compartments of the nephron and 

collecting ducts. Parameter values for the fluid flows leaving the glomerular space 

and collecting ducts are not identified in the scientific literature, instead fluid flows 

leaving the proximal tubules, loop of Henle and distal tubules are obtained from 

Neuhoff et al. (2013). For glomerular space and collecting duct luminal 

compartments, the same flow rates are assumed as those leaving the proximal 

tubules and distal tubules, respectively. Compound-specific parameters relate to 

active and passive transport between the cellular, blood and luminal compartments, 

and metabolic activities. As mentioned earlier, this mechanistic model is developed 

to explore the kinetics of SA at the kidney level. The following section describes the 
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kinetics of SA and all compound-specific parameters used in this model to simulate 

active and passive transport, as well as metabolic activity. 

 

 

4.2.2 Prediction of SA-specific kinetics in the kidney: GFR, active and passive 

transport, and metabolic activity 

The key kinetic processes of SA incorporated in the kidney model include glomerular 

filtration, active secretion and reabsorption, passive secretion and reabsorption, and 

metabolism. The key metabolites of SA include salicyluric acid (SU) and acyl and 

phenolic glucuronides (glucs) which are all considered in this kidney model. 

 

4.2.2.1 Glomerular filtration rate of SA 

SA reaches the kidney via the renal artery represented by the glomerular blood 

compartment. From there, compounds with a molecular weight of about 60,000 

Dalton and lower are filtered into the glomerular space from where they flow into 

the proximal tubular lumen and later luminal compartments as part of the urinary 

filtrate (Boroujerdi, 2015). Clearance of substances from glomerular blood (𝐶𝐿𝐺𝐵) by 

glomerular filtration is typically presented as the product of the glomerular filtration 

rate (𝐺𝐹𝑅) and the fraction of the compound unbound in the plasma (𝑓𝑢(𝑝)) (Tucker, 

1981; Rowland, 1984; Janků, 1993; Fenton and Praetorius, 2015) as shown in Eq. 4.6:  𝐶𝐿𝐺𝐵 = 𝐺𝐹𝑅 𝑓𝑢(𝑝) 

 (Eq. 4.6) 

 

Please refer to Table 4.4 for the value of GFR. About 20% of SA is free in plasma 

(therefore 𝑓𝑢(𝑝) = 0.2), indicating approximately 80% of SA is bound to plasma 

proteins, such as albumin, and therefore is not readily filtered (Navar, 2009; Tojo and 

Kinugasa, 2012). The fraction not undergoing glomerular filtration passes onto 

peritubular capillaries surrounding the proximal tubules. Through active transport 

and passive diffusion, SA may be secreted from the proximal tubular blood into 

proximal tubular cells, and from there into the proximal tubular lumen or reabsorbed 

from there back into the blood.  
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4.2.2.2 Active transport of SA in the kidney 

Active transport is a saturable process and typically expressed as a Michaelis-Menten 

term (Felmlee et al., 2010, 2013; Ménochet et al., 2012a; Boroujerdi, 2015) as 

presented in Eq. 4.7: 𝑘𝐴𝑇(𝑇) = 𝐽max (𝑇) 𝐶𝑖𝐾𝑚(𝑇) + 𝐶𝑖 

 (Eq. 4.7) 

where 𝑘𝐴𝑇(𝑇) is the rate of active transport via transporter protein 𝑇,  𝐽max (𝑇) is the 

maximum rate of transport or flux via transporter 𝑇, 𝐾𝑚(𝑇) is the Michaelis-Menten 

constant which represents the affinity of the transporter 𝑇 for its substrate and 𝐶𝑖 
the concentration of SA in compartment 𝑖 in which a drug concentration increases or 

decreases due to active transport. 

 

Membrane proteins responsible for active transport through the basolateral 

membrane of proximal tubular cells include OATP4C1, OCT2, OAT1, OAT2, OAT3, 

while OAT4, URAT1, PEPT1, PEPT2, MRP2, MRP4, MATE1, MATE2-K, P-gp, OCTN1, 

OCTN2 are found on the apical (luminal) membrane (Giacomini et al., 2010). All 

membrane protein terms used here are explained below4.  

 

For SA, transporter inhibition and kinetics studies have been performed for OAT1, 

OAT2, OAT3, OAT4, MRP2, MRP4, BCRP, URAT1 and NPT1 (Sekine et al., 1998; Cha et 

al., 2000; Deguchi et al., 2002; Takeda et al., 2002; Khamdang et al., 2002; El-Sheikh 

et al., 2007; Matsson et al., 2007; Nozaki et al., 2007; Iharada et al., 2010; Ohtsu et 

al., 2010; Sedykh et al., 2013). Various techniques exist to measure 𝐽𝑚𝑎𝑥 and 𝐾𝑚 

values characterising the rate of active transport, such as uptake by kidney slices, 

kidney cell lines or cell lines expressing a specific transporter (Kusuhara and 

Sugiyama, 2009; Felmlee et al., 2013). Generally, data on active transport rates are 

scarce. A SA-specific 𝐾𝑚 value established in human cells is identified only for URAT1 

(Ohtsu et al., 2010). Neither a 𝐽𝑚𝑎𝑥 is obtained from this study, nor a URAT1-related 𝐽𝑚𝑎𝑥 of another NSAID. A URAT1 associated 𝐽𝑚𝑎𝑥 value of perfluorooctanoate is 

 
4 OATP4C1 = organic anion transporter polypeptide 4C1; OCT2/OCTN1/OCTN2 = organic 

cation transporter 2/N1/N2; OAT1/OAT2/OAT3/OAT4 = organic anion transporter 1-4; 

URAT1 = urate transporter 1; PEPT1/PEPT2 = peptide transporter 1-2; MRP2/MRP4 = 

multidrug resistance-associated protein 2/4; MATE1/MATE2-K = multidrug and toxin 

extrusion protein 1/2-K; P-gp = P-glycoprotein; BCRP = breast cancer resistance protein; 

NPT1 = sodium-dependent phosphate transport protein 
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sourced and utilised (Yang et al., 2010). Salicylate has been observed to be 

transported by the human OAT1 (hOAT1) and hOAT3 (Cha et al., 2001; Khamdang et 

al., 2002). However, since no SA-specific 𝐽𝑚𝑎𝑥 and 𝐾𝑚 values are identified for these 

transporters, values established for para-aminosalicylic acid are incorporated in the 

present model. 𝐽𝑚𝑎𝑥 and 𝐾𝑚 values for OCT2 are found for para-aminosalicylic acid 

and used for the OCT2-mediated active transport of SA. The remaining active 

transport related parameter values used are established either with non-salicylates 

and non-NSAIDs in human embryonic kidney (HEK) cells or with SA in animal cells.  

 

When SA-specific animal data are available, these are preferred to data established 

with different substances in human cells, even though interactions between SA and 

other NSAIDs with rat OAT2 (rOAT2) appear to differ significantly from their 

interactions with the hOAT2 (Morita et al., 2001; Khamdang et al., 2002). SA is found 

to be transported by hOAT2 to a lesser extent than hOAT1 and hOAT3 (Khamdang et 

al., 2002) which would be reflected in a lower 𝐽𝑚𝑎𝑥 or higher 𝐾𝑚 for the OAT2 term 

compared to parameters used for the OAT1 and OAT3 terms. However, the equally 

high 𝐾𝑚 established with SA in rat liver and higher creatinine-specific 𝐽𝑚𝑎𝑥 are likely 

to overestimate the transport of SA via OAT2. For NPT1, SA-specific 𝐽𝑚𝑎𝑥 and 𝐾𝑚 

values are obtained, established with mouse NPT1 protein (Iharada et al., 2010). For 

hOAT4, low and no inhibitory potency data are identified but no data on the rate of 

transport of salicylates or other NSAIDs (Cha et al., 2001; Khamdang et al., 2002). 

While SA is classified as a non-substrate for transport via MRP2 and MRP4, and ASA 

a non-substrate for MDR1 (a P-gp) (Sedykh et al., 2013; University of Cambridge, 

2019), no data are obtained for the active transport of SA or other NSAIDs via these 

transporters. Similarly, no data are obtained for all the other transporters present in 

proximal tubular cells. In order to account to some degree for uncertainty associated 

with this lack of data, active transport of the bi-directional transporter OAT4 is 

incorporated using 𝐽𝑚𝑎𝑥 and 𝐾𝑚 values of perfluorooctanoate (Yang et al., 2010). 

Apart from the 𝐽𝑚𝑎𝑥 of the URAT1 term, all 𝐽𝑚𝑎𝑥 values are given in μmol/mg 

protein/min. These values are scaled from a per-mg-protein-of-a-HEK-cell level to 

their equivalence of whole kidney mass for a 70 kg person. The scaling factor (𝑆𝐹𝐴𝑇) 

applied to 𝐽𝑚𝑎𝑥 values comprises of the following components: 
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𝑆𝐹𝐴𝑇 = 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝐻𝐸𝐾293 × 𝑃𝑇𝐶𝑃𝐺𝐾3 × 𝑤𝑒𝑖𝑔ℎ𝑡𝐾𝐼 

 (Eq. 4.8) 

where 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝐻𝐸𝐾293 is the mass of protein per HEK 293 cell, 𝑃𝑇𝐶𝑃𝐺𝐾 is the 

number of proximal tubular cells per gram of kidney which is set at 60 × 106 

(Neuhoff et al., 2013) one third of which accounts for the number of proximal tubular 

cells per PTC compartment; 𝑤𝑒𝑖𝑔ℎ𝑡𝐾𝐼 is the total kidney weight per person; 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝐻𝐸𝐾293 is calculated as the sum of membrane protein, nuclear protein and 

cytoplasmic protein (as presented by Han and Ni, 2004, in mg protein/g HEK 293 cell) 

multiplied by the weight of a HEK 293 cell (Ho et al., 2004). The values of these 

parameters are summarised in Table 4.5. 

 

Table 4.5: Components and value of the scaling factor (𝑆𝐹𝐴𝑇) applied to transporter-

related 𝐽𝑚𝑎𝑥 values 

Parameter (unit) Value References 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝐻𝐸𝐾293 ( 𝑚𝑔𝐻𝐸𝐾293 𝑐𝑒𝑙𝑙 ) 1.09 × 10−7 Han and Ni, 2004; Ho et al., 

2004 𝑃𝑇𝐶𝑃𝐺𝐾 (𝑐𝑒𝑙𝑙𝑠𝑔 ) 
60 × 106 Neuhoff et al., 2013 𝑤𝑒𝑖𝑔ℎ𝑡𝐾𝐼 (𝑔) 280 Fenton and Praetorius, 

2015; weight of human 

kidney ranges from 115 g to 

170 g; average weight of 

one kidney is estimated to 

be 140 g 𝑆𝐹𝐴𝑇  ( 𝑚𝑔 𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑃𝑇𝐶 𝑐𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡)  611 Calculated with Eq. 4.8 

 

Since the 𝐽𝑚𝑎𝑥 associated with transport via URAT1 is given in μmol/well/min, it is 

scaled on the basis of 2 × 105 HEK 293 cells per well (Yang et al., 2010) and 𝑆𝐹𝑇𝑃𝑝𝑟𝑜𝑡𝑒𝑖𝑛𝐻𝐸𝐾293. Neuhoff et al. (2013) proposed a similar scaling of renal transporter 

data including a relative activity factor (RAF) which accounts for in vitro-in vivo 

differences or differences between animal and human activity. Since the majority of 𝐽𝑚𝑎𝑥 and 𝐾𝑚 values are established in human cells and details related to in vitro-in 

vivo differences are unknown, no RAF is applied. As plasma protein binding is found 

to affect active (as well as passive) drug transport in the Caco-2 cell model (Neuhoff 

et al., 2006), only the unbound fraction of drug concentration is considered to be 

relevant for active transport from blood to cellular compartments. Table 4.6 shows 
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the transporter proteins which are taken into account in this model, i.e. OCT2, OAT1, 

OAT2, OAT3, OAT4, URAT1 and NPT1, their direction, 𝐽max and 𝐾𝑚 values used, 

whether these are established for SA or another compound, in human or animal cells. 

Active transport with all these transporters is factored in in all proximal tubular 

compartments. Other models (Neuhoff et al., 2013; Huang and Isoherranen, 2018) 

only consider active transport in the proximal tubules. However, evidence exists 

indicating the presence of active transport mechanisms in the renal medulla and 

collecting ducts (Madsen et al., 1988; Pearce et al., 2015). Also, when validating the 

performance of the model with excretion data reported by Levy (1965), initial 

simulations show that passive diffusion is insufficient to achieve the almost complete 

excretion of SA within 39 hours. Therefore, the OAT1 active transport term is 

included at each level of the nephron to reach the rate of excretion observed in 

healthy volunteers. 

 

Table 4.6: Transporter proteins considered, their location and direction, and 𝐽𝑚𝑎𝑥 

and 𝐾𝑚 values utilised in this model 

Transporter (𝑻) 
𝑱𝐦𝐚𝐱(𝐓) 

(μmol/min) 

𝑲𝒎(𝑻) 

(μM) 

Compound Cells/ 

species 

Direction Reference 

OCT2  0.0432 28.7 Para-amino-

salicylic acid 

HEK PTB → PTC Parvez et 

al., 2017 

OAT1 1.16 78 Para-amino-

salicylic acid 

HEK PTB → PTC Parvez et 

al., 2017 

OAT2 15.3 [1] 88.8 [2] Creatinine[1]

/ SA[2] 

HEK[1]/ 

rat liver 

cells[2] 

PTB → PTC  [1] Shen et 

al., 2015 / 
[2] Sekine et 

al., 1998 

OAT3 0.961 100 Para-amino-

salicylic acid 

HEK PTB → PTC Parvez et 

al., 2017 

OAT4 22.4 172 Perfluoro-

octanoate 

HEK PTC → PTL 

PTL → PTC 

Yang et al., 

2010 

NPT1 78.2 1.9× 103 

SA Mouse 

protein 

PTC → PTL Iharada et 

al., 2010 

URAT1 8.96 [1] 25.3 [2] Perfluoro-

octanoate [1] 

/ SA [2] 

HEK  PTL → PTC [1] Yang et 

al., 2010 / 
[2] Ohtsu et 

al., 2010 

HEK = human embryonic kidney; PTB = proximal tubular blood; PTC = proximal tubular cells. Up to three 

significant figures reported. 
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4.2.2.3 Passive diffusion of SA and metabolites in the kidney 

Passive diffusion is a bidirectional, non-saturable process and of particular relevance 

to the reabsorption of substances from the tubular lumen rather than secretion from 

renal blood and tubular cells (Ménochet et al., 2012a; Felmlee et al., 2013; 

Ducharme, 2016). In this kidney model, passive diffusion is included between blood 

and cellular, and cellular and luminal compartments of all parts of the nephron and 

collecting ducts. The pH of the urine and the pKa of a compound affect the extent of 

reabsorption from the urine, as both factors determine the degree of ionisation of 

the compound (Ducharme, 2016). An unionised species is more lipid soluble and 

therefore permeates the phospholipid bilayer of tubular membranes more easily 

than ionised species. Ménochet et al. (2012b) present a QSAR for logarithm of the 

unbound passive diffusion clearance (𝑃𝑑𝑖𝑓𝑓,𝑢) observed in human hepatocytes based 

on the pH 7.4-based logarithm of the distribution coefficient (𝑙𝑜𝑔 𝐷7.4) as shown in 

Eq. 4.9. In the absence of any additional kidney specific data, it is assumed that the 

unbound passive diffusion clearance in human hepatocytes and human renal cells is 

the same. Therefore, Eq. 4.9 is used to account for passive diffusion of SA between 

all blood and cellular, as well as cellular and luminal compartments.  𝐿𝑜𝑔 𝑃𝑑𝑖𝑓𝑓,𝑢 = 0.632 × 𝑙𝑜𝑔. 𝐷7.4 − 0.314 

 (Eq. 4.9) 

Log D values of SA and its metabolites, i.e. salicyluric acid, SA acyl glucuronide and SA 

phenolic glucuronide, are calculated in the ACD/Percepta 14.0.0 (Build 2726) 

software and presented in Table 4.6. An average 𝑃𝑑𝑖𝑓𝑓,𝑢 value for all glucuronides (𝑃𝑑𝑖𝑓𝑓,𝑢𝑔𝑙𝑢𝑐𝑠) is calculated with the average of log D values of SA acyl glucuronide and 

SA phenolic glucuronide. Since the resulting 𝑃𝑑𝑖𝑓𝑓,𝑢 is given in 
𝜇𝐿𝑚𝑖𝑛 ×106 𝑐𝑒𝑙𝑙𝑠, scaling 

to the PTC cell population of 20 × 106 per g of kidney is needed for all substances. 

The scaled 𝑃𝑑𝑖𝑓𝑓,𝑢 values for SA, SU and glucuronides are 0.3297, 0.0313 and 2.03 × 10−3 mL/min, respectively. Table 4.7 summarises all Log D and 𝑃𝑑𝑖𝑓𝑓,𝑢 values 

of SA, SU and SA glucuronides at pH 7.4.  
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Table 4.7: Log D and resulting 𝑃𝑑𝑖𝑓𝑓,𝑢 values of SA and its glucuronide and salicyluric 

acid metabolites at pH 7.4 

Substance (S) Log D at pH 7.4 𝑷𝒅𝒊𝒇𝒇,𝒖(𝑺) (mL/min) 

SA -1.45 0.330 

Salicyluric acid (SU) -3.07 0.0313 

SA acyl glucuronide -4.36 NA 

SA phenolic glucuronide -5.54 NA 

Glucuronide average 

(glucs) 

-4.95 2.03 × 10−3 

 

The passive diffusion term, in which the SA and metabolite 𝑃𝑑𝑖𝑓𝑓,𝑢 values are applied, 

is defined in Eq. 4.10. 𝑘𝑃𝑇 = 𝑃𝑑𝑖𝑓𝑓𝐶𝑖 − 𝑃𝑑𝑖𝑓𝑓𝐶𝑗 

 (Eq. 4.10) 

where 𝐶𝑖 and 𝐶𝑗 are concentrations subject to passive diffusion , e.g. 𝐶𝑃𝑇𝐵1 and 𝐶𝑃𝑇𝐶1, or 𝐶𝑃𝑇𝐶1 and 𝐶𝑃𝑇𝐿1. All 𝑘𝑃𝑇 terms are included in detail in ODEs presented in 

Appendix 4.A.  

 

 

4.2.2.4 Active transport of SA metabolites 

As described above for SA, active secretion terms are added on all levels of the 

nephron and collecting ducts since including active secretion only at proximal tubular 

segments is insufficient to achieve a nearly complete excretion of SA within 39 hours. 

Similar to these observations on SA, initial simulations indicated that active secretion 

is necessary for SA metabolites to achieve excretion rates similar to those reported 

by Levy (1965).  

 

Glucuronides are reported to interact with hOAT3 (Weiner et al., 1960; Lien, 1975; 

Wolff et al., 2007) and SA shows a high affinity to hOAT1 (Motojima et al., 2002). 

Since SU and SA glucuronides appear to share the same mechanism of active 

secretion as SA, an active secretion term is included for SA metabolites from PTC1-3 

to PTL1-3, HLC to HLL, DTC to DTL, CDC1 to CDL1 and CDC2 to CDL2 with estimated 𝐾𝑚 and 𝐽𝑚𝑎𝑥 values similar to those of OAT transporters, i.e. 𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) = 0.07  

μmol/mL and 𝐽max (𝑂𝐴𝑇𝑚𝑒𝑡𝑠) = 20 μmol/min. 
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4.2.2.5 Metabolism of SA in the kidney 

Many phase I and phase II enzymes expressed in hepatocytes are also found in 

proximal tubular cells. However, levels in proximal tubular cells typically reach only 

5-20 % of those in hepatocytes (Jakobsson and Cinti, 1973; Lash et al., 2008). This is 

also true for UGT enzymes, whereas UGT1A9, UGT2B7 and, to a lesser extent, 

UGT1A6 are found to be significantly expressed in the kidney (Knights and Miners, 

2010; Margaillan et al., 2015). These enzymes are considered in an IVIVE study of 

renal clearance previously (Knights et al., 2016) and are taken into account here. In 

the kidney, SA is metabolised to salicyluric acid, salicyl acyl glucuronide and salicyl 

phenolic glucuronide (Levy, 1965; Needs and Brooks, 1985). Similar to the 

mathematical representation of active transport, the Michaelis-Menten equation, as 

defined in Eq. 4.11, is used to express a metabolic reaction (Felmlee et al., 2010; 

Boroujerdi, 2015; Cornish-Bowden, 2015): 

𝑘𝑀𝐸𝑇(𝑀,𝑖) = 𝑉max (𝑀,𝑖) 𝐶𝑖𝐾𝑚(𝑀) + 𝐶𝑖  

 (Eq. 4.11) 

where 𝑘𝑀𝐸𝑇 is the rate of metabolism, 𝑀 represents the metabolite resulting from 

this reaction, 𝐶𝑖 stands for the concentration in the compartment in which 

metabolism takes place, 𝑉max (𝑀,𝑖) is the maximum rate of metabolism for the 

formation of metabolite 𝑀 in compartment 𝑖, 𝐾𝑚(𝑀) for the Michaelis-Menten 

constant for the formation of metabolite 𝑀. 

 

While some evidence shows that glucuronidation catalysing enzymes, UGT2B7 and 

UGT1A, are relatively evenly distributed across the tubular parts of the kidney 

(excluding the vasculature, glomeruli and the proximal straight tubule) (Gaganis et 

al., 2007), other sources report the contrary (Boroujerdi, 2015). In line with this, it 

might be appropriate to assume slightly higher concentrations of UGT1A enzymes in 

the proximal tubule than in subsequent compartments, however, since specific data 

on metabolism rates in these subsequent compartments are lacking, an even 

distribution across all cellular compartments of the proximal and distal tubule, loop 

of Henle and collecting duct is assumed.  

 

Similar to the scaling of transporter related 𝐽𝑚𝑎𝑥 values, 𝑉𝑚𝑎𝑥 values given in 

μmol/mg protein/min are scaled to the whole kidney level by multiplying these with 
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a metabolism related compartment-specific scaling factor (𝑆𝐹𝑚𝑒𝑡𝐶𝑃𝑇) as defined in 

Eq. 4.12: 𝑆𝐹𝑚𝑒𝑡𝐶𝑃𝑇 = 𝑀𝑃𝑃𝐺𝐾 × 𝑤𝑒𝑖𝑔ℎ𝑡𝐾𝐼 × 𝑓𝑟𝑎𝑐𝐶𝑃𝑇 

 (Eq. 4.12) 

where 𝐶𝑃𝑇 is the compartment in which the scaling factor is applied, i.e. PTC1-3, 

HLC, DTC, CDC-2; 𝑀𝑃𝑃𝐺𝐾 is the weighted mean microsomal protein per gram of 

human kidney; 𝑤𝑒𝑖𝑔ℎ𝑡𝐾𝐼  is the kidney weight as discussed above, and 𝑓𝑟𝑎𝑐𝐶𝑃𝑇 is 

the fraction of the compartment volume in relation to the entire kidney volume.  

 

A 𝑀𝑃𝑃𝐺𝐾 of 13.6 mg homogenate protein/g kidney tissue is calculated by Scotcher 

(2016) from values presented by Jakobsson and Cinti (1973), Pacifici et al. (1988), Al-

Jahdari et al. (2006) and Knights et al. (2016). Table 4.8 outlines all 𝑓𝑟𝑎𝑐𝐶𝑃𝑇 and 

resulting 𝑆𝐹𝑚𝑒𝑡𝐶𝑃𝑇 values used to scale above mentioned 𝑉𝑚𝑎𝑥 values: 

 

Table 4.8: 𝑓𝑟𝑎𝑐𝐶𝑃𝑇 and resulting 𝑆𝐹𝑚𝑒𝑡𝐶𝑃𝑇 values used to scale 𝑉𝑚𝑎𝑥 values from 

μmol/mg protein/min to kidney-level metabolism (i.e. μmol/min) for each cellular 

compartment 

Compartment (𝑪𝑷𝑻) 𝒇𝒓𝒂𝒄𝑪𝑷𝑻 𝑺𝑭𝒎𝒆𝒕𝑪𝑷𝑻 

PTC1 0.134 510 

PTC2 0.134 510 

PTC3 0.103 393 

HLC 0.194 739 

DTC 0.060 229 

CDC1 0.164 623 

CDC2 0.211 804 

 

Since the 𝑉𝑚𝑎𝑥 of 𝑆𝑈 is based on clinical data, no scaling is necessary for this value, 

while for all other 𝑉𝑚𝑎𝑥 values scaling is applied. It turns out that initial simulations 

indicated that the amounts of glucuronides excreted were particularly low (approx. 

5%) compared to amounts reported by Levy (1965). Therefore, all glucuronidation-

related 𝑉𝑚𝑎𝑥 values are increased accordingly to reach the rate of excretion observed 

in humans (see results in subchapter 4.3; we find that an order of magnitude increase 

is necessary). For all three metabolism reactions – conjugation with glycine to form 

salicyluric acid (SU) and conjugation with glucuronic acid catalysed by UGT1A6, 
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UGT1A9 and UGT2B7 to form the salicyl phenolic and salicyl acyl glucuronides (SAPG 

and SAAG) – 𝑉𝑚𝑎𝑥 and 𝐾𝑚 values are presented in Tables 4.9 and 4.10.  

 

In order to place the results of the kidney model in the context of whole-body 

kinetics, the kidney model is incorporated into a full-body PBK model parameterised 

for ASA and SA predicting ASA and SA concentrations. For this, several additional 

parameters are required to run the PBK model.  All additional SA- and ASA-specific 

parameters are defined in the following subchapter.
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Table 4.9: 𝑉𝑚𝑎𝑥 and 𝐾𝑚 values sourced from the literature to account for SA conjugation with glycine to form SU in cellular compartments 

Metabolite Parameter 

designation (𝑴) 

𝑽𝐦𝐚𝐱(𝐌) 

(μmol/min) 

𝑲𝒎(𝑴) 

(μM) 

Reference 

SU 𝑆𝑈 6.3 [1,2] (a) 103.5 [2] [1] Levy and Tsuchiya, 1972; 
[2] Bochner et al., 1981 

(a)average of 𝑉𝑚𝑎𝑥  cited from Levy and Tsuchiya (1972) and Bochner et al. (1981) 

 

Table 4.10: 𝑉𝑚𝑎𝑥 and 𝐾𝑚 values applied to account for SA glucuronidation in cellular compartments 

Metabolite 

(catalysing 

enzyme) 

Parameter 

designation (𝑴) 

𝑲𝒎(𝑴) 

(μM) 

𝑽𝐦𝐚𝐱(𝐌,𝐏𝐓𝐂𝟏) 

(µmol/min) 

𝑽𝐦𝐚𝐱(𝐌,𝐏𝐓𝐂𝟐) 

(µmol/min) 

𝑽𝐦𝐚𝐱(𝐌,𝐏𝐓𝐂𝟑) 

(µmol/min) 

𝑽𝐦𝐚𝐱(𝐌,𝐇𝐋𝐂) 

(µmol/min) 

𝑽𝐦𝐚𝐱(𝐌,𝐃𝐓𝐂) 

(µmol/min) 

𝑽𝐦𝐚𝐱(𝐌,𝐂𝐃𝐂𝟏) 

(µmol/min) 

𝑽𝐦𝐚𝐱(𝐌,𝐂𝐃𝐂𝟐) 

(µmol/min) 

SAPG 

(UGT1A6) 

𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6 40.7 9.69 × 10−4 9.69 × 10−4 7.48 × 10−4 1.40 × 10−3 4.35 × 10−4 1.18 × 10−3 1.53 × 10−3 

SAAG 

(UGT1A6) 

𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6 78.0 9.18 × 10−4 9.18 × 10−4 7.08 × 10−4 1.33 × 10−3 4.12 × 10−4 1.12 × 10−3 1.45 × 10−3 

SAPG 

(UGT1A9) 

𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9 94.2 0.0762 0.0762 0.0588 0.1105 0.0342 0.0932 0.1202 

SAAG 

(UGT1A9) 

𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9 334.3 0.0162 0.0162 0.0125 0.0235 0.0073 0.0198 0.0256 

SAPG 

(UGT2B7) 

𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7 1242 0.0145 0.0145 0.0112 0.0210 0.0065 0.0177 0.0228 

SAAG 

(UGT2B7) 

𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7 1640 0.0094 0.0094 0.0072 0.0136 0.0042 0.0115 0.0148 

Reference for values presented in Table 4.10: Kuehl et al., 2006.  
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4.2.3 Mechanistic model coupled to a PBK model 

The development and validation of the PBK model used here, including sensitivity 

analysis and fitting of sensitive parameters of nine drugs, are fully described in 

Chapter 3. Here, we now describe how the PBK model developed in Chapter 3 is 

parameterised for ASA and extended with metabolism (i.e. hydrolysis) to and kinetics 

of SA. Since hydrolysis of ASA to SA is incorporated in the gut, liver, arterial and 

venous blood compartments, the ODEs of these compartments are amended as 

shown in Appendix 4.B1. After performing a sensitivity analysis and fitting for plasma 

concentrations of ASA and SA in the extended PBK model, we embed and validate 

the mechanistic kidney model in subchapter 4.3. 

 

4.2.3.1 Initial fit of ASA parameter values to simulate ASA plasma concentration 

As a first step, the PBK model is parameterised for ASA, without including SA, with 

the values presented in Tables 4.11 and 4.12. As outlined in Chapter 3, to account for 

metabolic clearance and renal elimination, a hepatic clearance and renal elimination 

rate are typically used in the PBK model. However, for ASA, instead of these rates, a 

total plasma clearance value of SA is used to account for the clearance of ASA via 

both, hepatic and renal, processes. This clearance value is incorporated into the renal 

compartment while the hepatic clearance is set to zero for the fitting to ASA data 

only. With these parameters, the simulated venous blood concentration-time curve 

resulting from an oral dose of 6,720 µmol (1.2 g) of ASA is compared to the plasma 

concentration of ASA reported by Roberts et al. (1983) in six young individuals. A 

sensitivity analysis of parameters included in Table 4.11 identifies 𝑅, the 𝐾𝑝 factor 

and 𝑘𝑎 as parameters which have a significant influence on the venous blood 

concentration curve of ASA. The results of the sensitivity analysis are shown in Figure 

4.5. Through a fitting of the simulated curve to the observed concentration-time 

profile, fitted values of 𝑅, the 𝐾𝑝 factor and 𝑘𝑎 are obtained, as shown in Table 4.11.  
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Figure 4.5: Time-integral sensitivity coefficients (Sq), giving an indication of the total sensitivity of the model parameters 𝐾𝑝𝐴𝑆𝐴 , 𝑅𝐴𝑆𝐴, 𝑓𝑢(𝑝)𝐴𝑆𝐴 , 𝑘𝑎𝐴𝑆𝐴 , 𝑘𝑖𝑙𝐴𝑆𝐴 , 𝑘𝑏𝑖𝑙𝐴𝑆𝐴  and 𝐶𝐿𝑟𝐴𝑆𝐴  on the predicted venous blood concentrations following oral administration of ASA. Sensitivity analysis of model parameters and fitting 

of simulated ASA venous blood concentration to pharmacokinetic data reported by Roberts et al. (1983, Figure 1). 𝐾𝑝𝐴𝑆𝐴 = tissue partition coefficient of ASA, 𝑅𝐴𝑆𝐴 = whole blood to plasma concentration ratio of ASA, 𝑓𝑢(𝑝)𝐴𝑆𝐴 = fraction unbound in plasma of ASA, 𝑘𝑎𝐴𝑆𝐴 = absorption rate constant of ASA, 𝑘𝑖𝑙𝐴𝑆𝐴 = 

intestinal loss rate constant of ASA, 𝑘𝑏𝑖𝑙𝐴𝑆𝐴 = first-order biliary elimination rate constant of ASA and 𝐶𝐿𝑟𝐴𝑆𝐴 = renal clearance rate of ASA.   
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Table 4.11: Kinetic parameters of ASA which are subject to fitting to observed ASA 

plasma concentrations, and their experimental, calculated and, where applicable, 

their fitted values  

Parameter  

 

ASA  References 𝐾𝑝𝐴𝑆𝐴  factor(a) 1.19 (a) U.S. National Center 

for Biotechnology 

Information, 2019a 
𝐾𝑝𝐴𝑆𝐴  factor(b) 3.21 × 10−4 𝐾𝑝𝐴𝑆𝐴  factor(b) SE 3.79 × 10−4 𝑅𝐴𝑆𝐴(a) 1.0* *estimated value 𝑅𝐴𝑆𝐴  (b) 3.11 × 10−3 𝑅𝐴𝑆𝐴(b) SE 8.82 × 10−4 𝑓𝑢(𝑝)𝐴𝑆𝐴 (a) 0.417 (a) Ghahramani et al., 

1998 𝑓𝑢(𝑝)𝐴𝑆𝐴 (b) NA 𝑓𝑢(𝑝)𝐴𝑆𝐴 (b) SE NA 𝑘𝑎𝐴𝑆𝐴  (min-1) (literature)(a) 0.014 (a) Ijaz et al., 2003 𝑘𝑎𝐴𝑆𝐴  (min-1) (calculated)c) 0.022 𝑘𝑎𝐴𝑆𝐴  (min-1)(b) 0.033 𝑘𝑎𝐴𝑆𝐴  (min-1)(b) SE 0.016 𝑘𝑖𝑙𝐴𝑆𝐴  (min-1)(a) 0* *estimated value 𝑘𝑖𝑙𝐴𝑆𝐴  (min-1)(b) NA 𝑘𝑖𝑙𝐴𝑆𝐴  (min-1)(b) SE NA 𝑘𝑏𝑖𝑙𝐴𝑆𝐴  (min-1)(a) 1 × 10−7* *estimated value 

based on Brune et al., 

1993 
𝑘𝑏𝑖𝑙𝐴𝑆𝐴  (min-1)(b) NA 𝑘𝑏𝑖𝑙𝐴𝑆𝐴  (min-1)(b) SE NA 𝐶𝐿𝑟𝐴𝑆𝐴(mL/min)(a) 33.6 (a) Miners et al., 1986  𝐶𝐿𝑟𝐴𝑆𝐴  (mL/min)(b) NA 𝐶𝐿𝑟𝐴𝑆𝐴  (mL/min)(b) SE NA 𝐶𝐿ℎ𝑒𝑝𝐴𝑆𝐴 (mL/min)(a) 0 (a) see text above, CLr 

value includes hepatic 

clearance 
𝐶𝐿ℎ𝑒𝑝𝐴𝑆𝐴 (mL/min)(b) NA 𝐶𝐿ℎ𝑒𝑝𝐴𝑆𝐴  (mL/min)(b) SE NA 

(a)sourced from the literature 

(b)fitted in SimBiology 

(c)calculated using Winiwarter et al. (Winiwarter et al., 1998), model 3b, with data provided by Peters 

(2008a) and Eq. 3.5 

SE=standard error; Kp factor = multiplicative factor to increase or reduce tissue distribution coefficients; 

R = whole blood to plasma concentration ratio; 𝑓𝑢(𝑝)= fraction unbound in plasma; 𝑘𝑎= absorption 

rate constant; kil = intestinal loss rate constant; kbil = biliary elimination rate constant; CLr = renal 

clearance; CLhep = hepatic clearance  
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Figure 4.6 presents the fitted simulated plot of the venous blood concentration over 

time in comparison to the plasma concentration profile for ASA observed by Roberts 

et al. (1983, Figure 1). In Figure 4.7, the residual distribution of the ASA fit is shown 

indicating that the residuals are evenly distributed around the zero line. 

 

 

 

Figure 4.6: ASA simulated venous blood concentration curve fitted to observed 

pharmacokinetic data reported by Roberts et al. (1983, Figure 1) 

 

 

 

 

 Figure 4.7: Residual distribution of aspirin fit (blue line) in relation to data points 

measured by Roberts et al. (1983, Figure 1) 

 

Table 4.12 includes ASA-specific parameters used in the PBK model which are not 

subject to fitting. These parameters are, with the exception of enterohepatic 

recirculation (𝐸𝐻𝑅), all used in the oral absorption part of the model. 
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Table 4.12: Physico-chemical and kinetic parameters of ASA which are not subject 

to fitting 

Parameters (not 

subject to fitting) 

ASA References 

MW (g/mol)  180.16 U.S. National Center for Biotechnology 

Information, 2019a 

Log P 1.19 U.S. National Center for Biotechnology 

Information, 2019a 

PSA 63.6 U.S. National Center for Biotechnology 

Information, 2019a 

HBD 1 U.S. National Center for Biotechnology 

Information, 2019a 

EHR 0 Brune et al., 1993 

CP 0* *estimated value 

S (μmol/mL) 2,170 sourced from ACD/Percepta 14.0.0 (Build 

2726) software, pH 6.4 

KS(STL) (dimensionless) 0.0057 based on S for ASA at pH 1.3 

KS(DUO)  0.664 based on S for ASA at pH 6.0 

KS(JE1)  0.825 based on S for ASA at pH 6.2 

KS(JE2) 1 based on S for ASA at pH 6.4 

KS(IL1) 1.19 based on S for ASA at pH 6.6 

KS(IL2) 1.50 based on S for ASA at pH 6.9 

KS(IL3) 2.06 based on S for ASA at pH 7.4 

KS(CAE) 1 based on S for ASA at pH 6.4 

KS(ACO) 1.40 based on S for ASA at pH 6.8 

D (cm2/min) 1 × 10−4 Peters, 2008a 

p (μmol/mL) 5’550.7 Peters, 2008a 

r (cm) 5 × 10−4 Peters, 2008a 

T (cm) 3 × 10−3 Peters, 2008a 
*estimated; MW = molecular weight; Log P = logarithm of the octanol-water partition coefficient; PSA 

= polar surface area; HBD = number of hydrogen bond donors; EHR = enterohepatic recirculation; CP 

= conversion from metabolite back to parent compound; S = solubility; KS = solubility coefficient; STL 

= stomach lumen; DUO = duodenum lumen; JE1 = jejunum1 lumen; JE2 = jejunum2 lumen; IL1 = 

ileum1 lumen; IL2 = ileum2 lumen; IL3 = ileum3 lumen; CAE = caecum lumen; ACO = ascending colon 

lumen; D = diffusion coefficient; p = particle density; r = particle radius; T = diffusion layer thickness 

 

These parameters are utilised for the extended PBK model which simulates 

concentrations of both ASA and SA, as explained in the following. 
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4.2.3.2 Extension of the PBK model to include ASA and SA concentrations 

ASA is rapidly hydrolysed to SA in the gut, liver and plasma (Yelland et al., 1991; 

Summerbell, 1992; Grešner et al., 2006; Imai et al., 2006; Tang et al., 2006). 

Therefore, in the extended version of the PBK model, hydrolysis reactions expressed 

as Michaelis-Menten terms are included in the gut, liver, arterial blood and venous 

blood compartments to generate SA concentrations. The amendments to gut, liver, 

arterial blood and venous blood compartment ODEs are shown in Appendix 4.B.1.  

 

 

4.2.3.2.1 ASA parameters to account for ASA hydrolysis to form SA and renal 

elimination 

All 𝑉𝑚𝑎𝑥 and 𝐾𝑚 values for ASA hydrolysis reactions are presented in Table 4.13. An 

estimated renal elimination rate (𝑘𝑒(𝑟)𝐴𝑆𝐴) replaces the previously used 𝐶𝐿𝑟 for ASA 

which represented a total plasma clearance value. Since hepatic clearance is now 

reflected by all hydrolysis terms, a specific ASA renal elimination rate with the 

estimated value of 1 × 10−4 mL/min is inserted.  
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Table 4.13: Kinetic parameters of ASA which are subject to fitting to observed ASA 

and SA plasma concentrations and their experimental, calculated and, where 

applicable, their fitted values. 

Parameter  

 

ASA  Reference / conversion 

factor[1] 𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐴𝑅−𝑉𝐸)(mM)a) 4.5 (a) Summerbell, 1992 𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐴𝑅−𝑉𝐸)(mM)(b) 2.95 𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐴𝑅−𝑉𝐸)(mM)(b) SE 0.33 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐴𝑅)(μmol/min)(a) 1,015 (a) Summerbell, 1992; 1698 mL 

(𝑉𝐴𝑅) 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐴𝑅)(μmol/min)(b) NA 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐴𝑅)(μmol/min)(b) SE NA 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝑉𝐸)(μmol/min)(a) 2,030 (a) Summerbell, 1992; 3396 mL 

(𝑉𝑉𝐸) 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝑉𝐸)(μmol/min)(b) NA 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝑉𝐸)(μmol/min)(b) SE NA 𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐺𝑈)(mM)(a) 0.36 (a) Tang et al., 2006; HCE2 

value as HCE2 is 

predominantly expressed in 

the gut 

𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐺𝑈)(mM)(b) NA 𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐺𝑈)(mM)(b) SE NA 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐺𝑈)(μmol/min)(a) 1.62 (a) Imai et al., 2006;  2977 mg 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐺𝑈)(μmol/min)(b) NA 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐺𝑈)(μmol/min)(b) SE NA 𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐿𝐼)(mM)(a) 1.20 (a) Tang et al., 2006; average of 

HCE1 and HCE2 values as both 

are expressed in the liver 
𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐿𝐼)(mM)(b) NA 𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐿𝐼)(mM)(b) SE NA 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐿𝐼)(μmol/min)(a) 28.6 (a) Imai et al., 2006;  56000 mg 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐿𝐼)(μmol/min)(b) NA 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐿𝐼)(μmol/min)(b) SE NA 𝑘𝑒(𝑟)𝐴𝑆𝐴  (min-1)(a) 1 × 10−4* *estimated value 𝑘𝑒(𝑟)𝐴𝑆𝐴  (min-1)(b) NA 𝑘𝑒(𝑟)𝐴𝑆𝐴  (min-1)(b) SE NA 

(a)sourced from literature 

(b)fitted in SimBiology 

[1] The derivation of in vitro to in vivo conversion factors to scale the 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐿𝐼)  and 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐺𝑈) from 

nmol/min/mg protein to µmol/min is outlined in detail in Appendix 4.B.2. 𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐴𝑅−𝑉𝐸) = 𝐾𝑚  for hydrolysis of ASA in the arterial and venous blood compartments;  𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐴𝑅) = 𝑉𝑚𝑎𝑥  for hydrolysis of ASA in the arterial blood compartment; 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝑉𝐸) = 𝑉𝑚𝑎𝑥  for hydrolysis of ASA in the venous blood compartment; 𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐺𝑈) = 𝐾𝑚 for hydrolysis of ASA in the gut compartment; 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐺𝑈) = 𝑉𝑚𝑎𝑥  for hydrolysis of ASA in the gut compartment; 𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐿𝐼) = 𝐾𝑚 for hydrolysis of ASA in the liver compartment; 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐿𝐼) = 𝑉𝑚𝑎𝑥  for hydrolysis of ASA in the liver compartment; 𝑘𝑒(𝑟)𝐴𝑆𝐴 = renal elimination rate for ASA 
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4.2.3.2.2 SA parameters used for the extended PBK model 

The mechanistic kidney model is embedded in the PBK model described in Chapter 3 

to predict the kinetics of SA in the human body, providing greater detail for kinetics 

within the kidney. All SA-specific parameter values inserted to predict SA 

concentrations in PBK compartments are presented in Table 4.14. SA is assumed to 

be formed in the gut tissue after ASA is absorbed from the gut lumen. Equivalent to 

ASA, the intestinal loss rate (𝑘𝑖𝑙) and enterohepatic recirculation (𝐸𝐻𝑅) are assumed 

to be 0 for SA, and the biliary excretion rate (𝑘𝑏𝑖𝑙) is set to 1 × 10−7 min-1. Since SA 

is predominantly removed from the body by renal excretion and metabolism in the 

kidney (Needs and Brooks, 1985), hepatic clearance (𝐶𝐿ℎ𝑒𝑝) is set to 0. All additional 

initial parameter values used for SA and ASA subject to fitting are presented in Tables 

4.13 and 4.14, respectively. 

 

Table 4.14: Physico-chemical and kinetic parameters of SA which are subject to fitting 

to observed ASA and SA plasma concentrations and their experimental, calculated 

and, where applicable, their fitted values. 

Parameter  SA  References 𝐾𝑝𝑆𝐴  factor(a) 2.26 (a)U.S. National Center for 

Biotechnology Information, 

2019b 
𝐾𝑝𝑆𝐴  factor(b) 1.57 𝐾𝑝𝑆𝐴  factor(b) SE 1.16 𝑅𝑆𝐴  (a) 1.0*  *estimated value 𝑅𝑆𝐴  (b) 0.997 𝑅𝑆𝐴  (b) SE 0.892 𝑓𝑢(𝑝)𝑆𝐴  (a) 0.20*  (a)estimated based on 

Milne et al., 1958; 

Ghahramani et al., 1998 
𝑓𝑢(𝑝)𝑆𝐴  (b) 0.601 𝑓𝑢(𝑝)𝑆𝐴  (b) SE 0.376 𝑘𝑏𝑖𝑙𝑆𝐴  (min-1)(a) 1 × 10−7* *estimated value 𝑘𝑏𝑖𝑙𝑆𝐴  (min-1)(b) NA 𝑘𝑏𝑖𝑙𝑆𝐴  (min-1)(b) SE NA 

(a)sourced from literature 

(b)fitted in SimBiology 
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4.2.3.2.3 Sensitivity analysis and fitting for ASA and SA plasma concentrations in 

the extended PBK model 

A sensitivity analysis of non-kidney related parameters which influence the plasma 

concentrations of ASA and SA is performed including 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜 and 𝐾𝑚ℎ𝑦𝑑𝑟𝑜 values 

which determine the hydrolysis rate metabolising ASA to SA in the gut, liver and 

blood, the 𝑘𝑒(𝑟) of ASA, and 𝐾𝑝, 𝑅, 𝑓𝑢(𝑝) and 𝑘𝑏𝑖𝑙 for SA. The analysis is performed 

with a dose of 6.72 × 103 μmol and over the course of 1,440 minutes as in Roberts 

et al. (1983, Figures 1 and 3). Results shown in Figure 4.8 show that slight changes to 𝑓𝑢(𝑝), 𝐾𝑝 and 𝑅 of SA have the most impact on SA blood concentration even though 

the impact is still relatively low (since the bar colour for these parameters is only 

slightly lighter than the bar colour of the other parameters, indicating higher impact 

of 𝑓𝑢(𝑝), 𝐾𝑝 and 𝑅 of SA in comparison to the other parameters). When the sensitivity 

analysis is run with slightly different initial values and a less elaborated kidney model 

included (i.e. active transporter terms only included on proximal tubular level and 

only for SA, data not shown), 𝑓𝑢(𝑝)𝑆𝐴, 𝐾𝑝𝑆𝐴  and 𝑅𝑆𝐴 of SA show a much greater impact 

on SA blood concentration. Also, results of the sensitivity analysis illustrate that slight 

changes to 𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐴𝑅−𝑉𝐸)  have a great impact on the blood concentration of ASA. 

Therefore, 𝑓𝑢(𝑝)𝑆𝐴, 𝐾𝑝𝑆𝐴  and 𝑅𝑆𝐴 and 𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐴𝑅−𝑉𝐸)  are included in the fitting. 

Values of these parameters fitted to Roberts et al. (1983, Fig. 1 and 3) are shown in 

Tables 4.13 and 4.14. Figure 4.9 presents the fitted simulated plot of the venous 

blood concentration over time in comparison to the plasma concentration profiles 

for ASA and SA observed by Roberts et al. (1983, Figures 1 and 3). The distribution of 

residuals of the ASA and SA fit is shown in Figure 4.10, indicating that the residuals 

are relatively evenly distributed around the zero line. 
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Figure 4.8: Time-integral sensitivity coefficients (Sq), giving an indication of the total sensitivity of the model parameters 𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐴𝑅−𝑉𝐸), 𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐺𝑈) , 𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐿𝐼) , 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐴𝑅), 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐺𝑈) , 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐿𝐼) , 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝑉𝐸) , 𝐾𝑝𝑆𝐴 , 𝑅𝑆𝐴, 𝑓𝑢(𝑝)𝑆𝐴 , 𝑘𝑏𝑖𝑙𝑆𝐴 , 𝑘𝑒(𝑟)𝐴𝑆𝐴  on the predicted venous blood concentrations of ASA and SA following 

oral administration of ASA. For more details on the parameters included here please refer to the captions of Tables 4.11 and 4.13.  
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Figure 4.9: ASA and SA fitted simulated venous blood concentration curve fitted to 

observed pharmacokinetic data reported by Roberts et al. (1983, Figures 1 and 3) 

 

 

Figure 4.10: Residual distribution of ASA and SA fit (blue line) in relation to data 

points measured by Roberts et al. (1983, Figures 1 and 3)
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The fitted values of the 𝐾𝑝𝑆𝐴  factor, 𝑅𝑆𝐴 and the 𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐴𝑅−𝑉𝐸)  value for ASA are 

close to the initially proposed values of 2.26, 1.0 and 4.5, respectively. The fitted 

value of 𝑓𝑢(𝑝)𝑆𝐴  is 0.6013, which is higher than unbound fractions that have typically 

been reported for SA, namely between 0.07 to 0.27 (Milne et al., 1958; Furst et al., 

1979; Verbeeck et al., 1984). However, the fraction unbound of salicylic acid is 

reported to reach about 0.6 in plasma when the total concentration is very high and 

clearly toxic (Alvan et al., 1981). Therefore, the fitted value of 𝑓𝑢(𝑝) may be slightly 

too high for therapeutic concentrations but adequate for toxic blood concentrations. 

All fitted parameters are subsequently incorporated in the model. 

 

 

4.3 Validation of the mechanistic kidney model 

In order to assess whether the mechanistic kidney model simulates the excretion of 

ASA, SA and SA metabolites as reported in individuals, the percentage of an orally 

administered dose excreted in the urine as SA, SU, glucuronides and ASA is predicted. 

Experimental data on these values are obtained from Levy (1965). Predicted 

percentages of four orally administered doses, i.e. 1,400, 5,600, 8,400 and 11,200 

µmol, excreted in the urine after 2,340 minutes (39 hours) are reported in Table 4.15. 

 

Table 4.15: Predicted fractions of an orally administered dose excreted in the urine 

as SA, SU, glucuronides and ASA 

Oral dose 

(µmol) 

% of dose 

excreted in 

urine as SA 

% of dose 

excreted in 

urine as SU 

% of dose 

excreted in 

urine as glucs 

% of dose 

excreted in 

urine as ASA 

1,400 6.89 81.1 11.5 0.40 

5,600 11.5 77.2 10.8 0.41 

8,400 15.2 73.9 10.4 0.41 

11,200 18.7 70.8 9.95 0.42 

 

For the recovery of SU, a slightly wider range, from 59.2 to 91.4%, is reported by Levy 

(1965) for four individuals at the same doses used for prediction. However, Roberts 

et al. (1983) reported similar percentage recoveries for SU in young and elderly 

individuals as predicted, i.e. between about 70 and 80%. SA recoveries reported by 

Levy (1965) and Roberts et al. (1983), ranging from 2 to 5.1% for the lowest dose 
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level, from 3.6 to 10.3% for both mid-range doses and 17.1% for the highest dose 

level, are on average slightly lower but comparable to the predicted excretion 

percentages. The reason for the slightly increased predicted SA excretion may be that 

the rates of glucuronide formation are still too low even though glucuronidation 

related 𝑉𝑚𝑎𝑥 values sourced from the literature had already been increased by an 

order of magnitude, as discussed earlier. The percentage recoveries of glucuronides 

recorded by Levy (1965) range from 4.7 to 33.4%. Overall, the PBK coupled 

mechanistic kidney model simulates the rates of metabolism of SA to SU and 

glucuronides and excretion of these compounds well, for the doses and excretion 

time considered. It is of interest to note that SA and SU concentrations found in the 

urine of people not taking salicylate drugs are in the nano to micromolar range, 

respectively, and are assumed to stem from the intake of salicylate-containing plants 

(Baxter et al., 2002). 

 

 

4.4 Application of the kidney model to predict renal tubular concentrations of 

drugs in three virtual individuals: young and healthy, elderly at risk of CDK 

and elderly with signs of renal dysfunction 

4.4.1 Setting parameter values characterising an elderly person at risk of CDK and 

an elderly person with signs of renal dysfunction 

The mechanistic kidney model described above is set up with parameter values 

representing a young and healthy individual. However, acute renal failure or other 

adverse effects observed in the kidney are typically observed in elderly individuals or 

persons who have been diagnosed with a compromised renal function (Zhang et al., 

2005). In order to establish to what degree renal tubular concentrations predicted 

for a young and healthy adult differ from those predicted for the elderly, two virtual 

elderly individuals are defined. For this, key parameters whose values are known to 

be decreased in the elderly at risk of CKD and with signs of renal dysfunction are set 

accordingly. These parameters are the GFR, cardiac output, cortical renal blood flow, 

rates determining the flow of urinary filtrate in the tubular lumen and the number of 

nephrons. Also, urinary pH is decreased in one individual, since pH influences urinary 

excretion of SA. 
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4.4.1.1 Glomerular filtration rate in elderly individuals 

GFR is a key parameter of kidney function. The GFR observed with normal kidney 

function ranges from 110 to 140 mL/min/1.73 m2 body surface area of an adult 

(Weinstein and Anderson, 2010; Delanaye et al., 2012) and is set at 120 mL/min in 

the kidney model. Glomerular filtration has been observed to decrease in elderly 

people (Denic et al., 2016; Abdulkader et al., 2017). Once the GFR falls below 60 

mL/min for more than three months and in the presence of an increased quantity of 

proteins in the urine (proteinuria), chronic kidney disease (CKD) is typically diagnosed 

in an individual (Delanaye et al., 2012). For both cases of elderly people, one at risk 

of CKD and the second with signs of renal dysfunction, the GFR is decreased to 60 

and 50 mL/min, respectively. 

 

4.4.1.2 Cardiac output and cortical renal blood flow in elderly individuals 

Cortical renal blood flow is set at 1,100 mL/min for the young and healthy (Bernareggi 

and Rowland, 1991; Peters, 2008a) while it may reach about 440 to 600 mL/min for 

adults up to the age of 70 (Weinstein and Anderson, 2010). Renal blood flow is 

dependent on the cardiac output (as discussed in the PBK notes in Chapter 3). In the 

elderly, a cardiac output of 2,970 mL/min is set, a value reported by Cattermole et al. 

(2017) for a group of 60 to 89-year olds. With a 𝑄𝐶 of 2,970 mL/min and the fractional 

tissue blood flow to the kidney of 0.174, as previously set in the PBK model, 𝑄𝐾𝐼 for 

both elderly cases is 515 mL/min (according to Eq. 3.3). Therefore, in both elderly 

individuals, the renal blood flow in the cortex is set at 515 mL/min. Blood flow in the 

medulla is decreased less in the aging kidney (Weinstein and Anderson, 2010) and 

remains therefore unchanged in the model. 

 

4.4.1.3 Flow rate of the urinary filtrate in elderly individuals 

Besides the blood flow, the filtrate flow in the tubular lumen may decrease due to 

tubular epithelial cell swelling, crystal precipitation forming obstructive casts and 

adversities in the lower urinary tract (Sutaria and Staskin, 2000; Fogo et al., 2017; 

Mulay and Anders, 2017). In the elderly with signs of renal dysfunction, the luminal 

flows 𝐹𝐹𝑃𝑇, 𝐹𝐹𝐻𝐿 and 𝐹𝐹𝐷𝑇 are decreased from 45, 25 and 12 mL/min to 30, 18 and 

8 mL/min, respectively. 
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4.4.1.4 Urinary pH influencing the rate of passive diffusion 

Urinary pH and SA excretion are positively correlated, so at a low urine pH SA urinary 

excretion is relatively low while SU and glucuronide excretion is less affected (Levy, 

1965). Urine pH may range from 4.6 to 8.0 (Cook et al., 2007). In the elderly with 

signs of renal dysfunction, the pH is set to 5.3 since 5.3 is the lowest pH recorded by 

Levy (1965) when recording the pharmacokinetics of ASA and its metabolites. At a 

low urine pH, a higher proportion of ionised substances will be present which cannot 

be passively diffused. Calculations of the unionised fractions and amended rates of 

passive diffusion for SA, SU and glucuronides are outlined in subchapter 4.4.1.5, since 

passive diffusion is also affected by a decreased number of nephrons. Table 4.16 

summarises physiological parameters changed in both elderly individuals. 

 

Table 4.16: Physiological parameters determining three cases, a young and healthy 

adult, an elderly person at risk of CKD, and an elderly individual with signs of renal 

dysfunction 

Parameter Young and 

healthy adult 

Elderly, at risk 

of CKD 

Elderly with signs of 

renal dysfunction 𝐺𝐹𝑅 (mL/min) 120 60 50 𝑄𝐶 (mL/min) 6,338 2,970 2,970 𝑄𝐾𝐼 (mL/min) 1100 515 515 𝐹𝐹𝑃𝑇, 𝐹𝐹𝐻𝐿,  𝐹𝐹𝐷𝑇 

(mL/min) 

45, 25, 12 45, 25, 12 30, 18, 8 

Urinary pH 7.4 7.4 5.3 

Number of nephrons 1 × 106 5 × 105 5 × 105 

 

 

4.4.1.5 Number of nephrons influencing the active transporter and metabolic 

activity 

The number of nephrons within an individual may vary from 200,000 to 2.5 million 

nephrons per kidney while an average of about 1 million nephrons per kidney is 

generally expected (Nyengaard and Bendtsen, 1992; Hoy et al., 2003; Bertram et al., 

2011). With increasing age, the number of nephrons decreases, with an average loss 

of approximately 6,000 to 7,000 nephrons per year (Hoy et al., 2003; Denic et al., 

2017). This implies that the number of functional renal tubular cells and consequently 

the overall transporter and metabolism function of both kidneys decreases. In a 

group of 70 to 75-year olds, roughly 500,000 nonsclerotic glomeruli are found per 

kidney (Denic et al., 2017). Hence, the number of functional nephrons in both elderly 
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populations, and tubular cell numbers to scale transporter 𝐽𝑚𝑎𝑥 and 𝑃𝑑𝑖𝑓𝑓,𝑢 values 

are halved, and the metabolism-related parameter 𝑀𝑃𝑃𝐺𝐾 is halved to scale SU and 

glucuronide 𝑉𝑚𝑎𝑥 values accordingly. All elderly-based 𝐽𝑚𝑎𝑥, 𝑃𝑑𝑖𝑓𝑓,𝑢 and 𝑉𝑚𝑎𝑥 values 

are presented in Tables 4.17, 4.18 and 4.19. 

 

Table 4.17: Transporter 𝐽𝑚𝑎𝑥 values for both elderly cases 

Transporter (𝑻) 𝑱𝐦𝐚𝐱(𝐓)𝐞𝐥𝐝𝐞𝐫𝐥𝐲  (μmol/min) 

OCT2  0.0216 

OAT1 0.580 

OAT2 7.64 

OAT3 0.480 

OAT4 11.2 

NPT1 39.1 

URAT1 4.48 

OATmets 10 

 

Table 4.18: 𝑃𝑑𝑖𝑓𝑓,𝑢 values of SA and its glucuronide metabolites and SU at pH 7.4 for 

both elderly cases, and fractions unionised at a urine pH of 5.3. 

Substance (S) 𝑷𝒅𝒊𝒇𝒇,𝒖(𝑺)𝒆𝒍𝒅𝒆𝒓𝒍𝒚 

(mL/min) 

𝒇𝒓𝒂𝒄𝒖𝒏𝒊𝒐𝒏𝒊𝒔𝒆𝒅(𝑺) 

SA 0.165 4.66 × 10−3 

Salicyluric acid (SU) 0.0156 0.0124 

Glucuronide average 

(glucs) 

1.01 × 10−3 3.54 × 10−3 

 

Eq. 4.9, the calculation of 𝐿𝑜𝑔 𝑃𝑑𝑖𝑓𝑓,𝑢, is established on the basis of a log D at a pH of 

7.4. To calculate the unbound passive diffusion clearance of SA and its metabolites 

at a urinary pH of 5.3, the 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆)𝑒𝑙𝑑𝑒𝑟𝑙𝑦 is multiplied with the Henderson-

Hasselbalch equation-based term (Ducharme, 2016; Huang and Isoherranen, 2018) 

presented in Eq. 4.13 to calculate the fraction of the unionised substance at a pH of 

5.3. This results in a 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆)𝑒𝑙𝑑𝑒𝑟𝑙𝑦(𝑢𝑛𝑖𝑜𝑛𝑖𝑠𝑒𝑑)  as shown in Eq. 4.14: 

𝑓𝑟𝑎𝑐𝑢𝑛𝑖𝑜𝑛𝑖𝑠𝑒𝑑(𝑆) = 11 + 10𝑝𝐻−𝑝𝐾𝑎  

 (Eq. 4.13) 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆)𝑒𝑙𝑑𝑒𝑟𝑙𝑦(𝑢𝑛𝑖𝑜𝑛𝑖𝑠𝑒𝑑) = 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆)𝑒𝑙𝑑𝑒𝑟𝑙𝑦 × 𝑓𝑟𝑎𝑐𝑢𝑛𝑖𝑜𝑛𝑖𝑠𝑒𝑑(𝑆) 

 (Eq. 4.14) 
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At a urinary pH of 5.3 and with the pKa of SA of 2.97 (U.S. National Center for 

Biotechnology Information, 2019b), this fraction for SA (𝑓𝑟𝑎𝑐𝑢𝑛𝑖𝑜𝑛𝑖𝑠𝑒𝑑(𝑆𝐴)) is 4.66 × 10−3. For salicyluric acid, SA acyl glucuronide and SA phenolic glucuronide, 

the pKa is calculated in the GALAS module of the ACD/Percepta 14.0.0 (Build 2726) 

software at 3.4, 2.9 and 2.8, respectively. At a glucuronide pKa average of 2.85, the 

unionised fraction of SA glucuronides (𝑓𝑟𝑎𝑐𝑢𝑛𝑖𝑜𝑛𝑖𝑠𝑒𝑑(𝑔𝑙𝑢𝑐𝑠)) is 3.54 × 10−3, and the 

unionised fraction of SU (𝑓𝑟𝑎𝑐𝑢𝑛𝑖𝑜𝑛𝑖𝑠𝑒𝑑(𝑆𝑈)) at a urinary pH of 5.3 is 0.0124. The 

fractions of SA, SU and glucuronides unionised at a pH of 5.3 are presented in Table 

4.18. Since the pH in renal tubular cells and the blood is assumed to be 7.4, the 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆)𝑒𝑙𝑑𝑒𝑟𝑙𝑦(𝑢𝑛𝑖𝑜𝑛𝑖𝑠𝑒𝑑)  is only relevant for passive diffusion from luminal to cellular 

compartments.
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Table 4.19: 𝑉𝑚𝑎𝑥 values applied to account for SU formation and SA glucuronidation in cellular compartments of both elderly individuals 

Metabolite 

(catalysing 

enzyme) 

Parameter 

designation (𝑴) 

𝑽𝐦𝐚𝐱(𝐌)𝐏𝐓𝐂𝟏𝐞𝐥𝐝𝐞𝐫𝐥𝐲  

(µmol/min) 

𝑽𝐦𝐚𝐱(𝐌)𝐏𝐓𝐂𝟐𝐞𝐥𝐝𝐞𝐫𝐥𝐲  

(µmol/min) 

𝑽𝐦𝐚𝐱(𝐌)𝐏𝐓𝐂𝟑𝐞𝐥𝐝𝐞𝐫𝐥𝐲  

(µmol/min) 

𝑽𝐦𝐚𝐱(𝐌)𝐇𝐋𝐂𝐞𝐥𝐝𝐞𝐫𝐥𝐲  

(µmol/min) 

𝑽𝐦𝐚𝐱(𝐌)𝐃𝐓𝐂𝐞𝐥𝐝𝐞𝐫𝐥𝐲  

(µmol/min) 

𝑽𝐦𝐚𝐱(𝐌)𝐂𝐃𝐂𝟏𝐞𝐥𝐝𝐞𝐫𝐥𝐲  

(µmol/min) 

𝑽𝐦𝐚𝐱(𝐌)𝐂𝐃𝐂𝟐𝐞𝐥𝐝𝐞𝐫𝐥𝐲  

(µmol/min) 

SU 𝑆𝑈 3.15 3.15 3.15 3.15 3.15 3.15 3.15 

SAPG 

(UGT1A6) 

𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6 4.84 × 10−4 4.84 × 10−4 3.74 × 10−4 7.02 × 10−4 2.17 × 10−4 5.92 × 10−4 7.64 × 10−4 

SAAG 

(UGT1A6) 

𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6 4.59 × 10−4 4.59 × 10−4 3.54 × 10−4 6.65 × 10−4 2.06 × 10−4 5.61 × 10−4 7.24 × 10−4 

SAPG 

(UGT1A9) 

𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9 0.0381 0.0381 0.0294 0.0552 0.0171 0.0466 0.0601 

SAAG 

(UGT1A9) 

𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9 0.0081 0.0081 0.0063 0.0117 0.0036 0.0099 0.0128 

SAPG 

(UGT2B7) 

𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7 0.0072 0.0072 0.0056 0.0105 0.0033 0.0088 0.0114 

SAAG 

(UGT2B7) 

𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7 0.0047 0.0047 0.0036 0.0068 0.0021 0.0057 0.0074 
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4.4.2 Sensitivity analysis for simulations with all three individuals 

4.4.2.1 Parameters included in the sensitivity analysis 

Sensitivity analyses are performed on the impact of parameters used in the 

mechanistic kidney model, including 𝐺𝐹𝑅, 𝑓𝑢(𝑝), blood and filtrate flow rates (𝑄𝐶, 𝐹𝑄𝐾𝐼, 𝑄𝐻𝐿−𝐶𝐷2, 𝐹𝐹𝑃𝑇, 𝐹𝐹𝐻𝐿, 𝐹𝐹𝐷𝑇), passive diffusion parameters (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴), 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈), 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠)), active transporter parameters (𝐽max  and 𝐾m values for 

OATmets and the transporters OCT2, OAT1-4, NPT1 and URAT1) and metabolism 

parameters (𝑉max  and 𝐾m values for the formation of SU and salicyl phenolic and 

salicyl acyl glucuronides catalysed by UGT1A6, UGT1A9 and UGT2B7). The method 

underlying the sensitivity analysis approach used here is outlined in Chapter 3 

(subchapter 3.1.1.3.1). The aim of the sensitivity analysis is to identify parameters 

which, when perturbed (i.e. changed to a minor degree), have a high impact on the 

predicted SA and SU concentrations in PTC compartments. This is relevant since a 

certain degree of uncertainty underlies each of these parameters. Also, there will be 

inter-individual differences in blood flows, transporter expression or the rate of 

metabolism. Since it is important to understand how the behaviour of a model 

changes with a wide range or parameter values (representing for instance a variety 

of individuals), the parameters which are identified to have the most impact on 

predicted PTC concentrations will be changed over a biologically plausible range. As 

a result, a range of PTC concentrations is predicted which may reflect exposure levels 

in a variety of individuals with respect to the dosing scenarios defined. Since one of 

the aims of this study is to compare predicted proximal tubular cell concentrations 

to toxicity events observed in vitro, only concentrations in the PTC1-3 compartments 

are evaluated. Besides SA, concentrations for SU are taken into account, since about 

70 to 80% of an oral dose of ASA is excreted in the form of SU as discussed in 

subchapter 4.3. 
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4.4.2.2 Dosing scenarios considered for all three individuals 

For the three individuals – a young and healthy adult, an elderly person at risk of CKD 

and an elderly person with signs of renal dysfunction – three different scenarios are 

set which differ in the dose applied daily and the length of exposure. In the first 

scenario, a common low dose of 420 µmol/day (75 mg/day) (Petersen et al., 1989; 

The Salt Collaborative Group, 1991; Wallentin, 1991; Hansson et al., 1998; The 

Medical Research Council’s General Practice Research Framework, 1998; Derry, 

2000; NHS, 2018; Mayo Clinic, 2019; MedicineNet, 2019) is applied to prevent 

cardiovascular events. In the second scenario, a venous blood concentration of 2.2 

µmol/mL is used as initial concentration, since at therapeutic doses, a SA steady state 

concentration of up to 2.2 µmol/mL is reached (Furst et al., 1979; Needs and Brooks, 

1985). The first two scenarios are simulated for a period of two weeks representing 

chronic exposure. Even though an exposure duration of two weeks with a dose 

applied once per day would be classified as sub-acute rather than chronic, the 

maximum concentration (Cmax) reached in the proximal tubular cells on the first day 

is equal to the Cmax values reached on subsequent days. Also, under constant 

exposure, the steady state in the proximal tubular cells is reached after 

approximately 7 minutes. Therefore, a two-week simulation period is judged to be 

adequate to represent chronic exposure. The third scenario represents a case of 

intoxication which requires therapeutic intervention at a salicylate plasma (in the 

model as venous blood) concentration of 3.24 µmol/mL (450 mg/L, mean of 400-500 

mg/L as reported by Wood et al., 2005). The simulation period for this case is one 

day. All scenario data are shown in Table 4.20. 

 

Table 4.20: Exposure levels, duration and simulation times used in three different 

exposure scenarios  

Scenario Dose (compartment, 

in which substance is 

applied) 

Exposure time  Simulation time 

(min) 

Low therapeutic 

dose, chronic 

420 µmol (ASA, 

stomach undissolved) 

Once a day 20,160 (14 days) 

High therapeutic 

dose, chronic 

2.2 µmol/mL  

(SA, venous blood) 

Constant  20,160 (14 days) 

Intoxication, 

acute 

3.24 µmol/mL  

(SA, venous blood) 

Constant  1,440 (1 day) 
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4.4.2.3 Sensitivity analysis results: chronic, low therapeutic dose of ASA 

For all three individuals, both parameters determining the formation of SU, 𝑉max (𝑆𝑈) 

and 𝐾m (𝑆𝑈), are predicted to have moderate impact on the concentration of SA in 

the PTC1 compartment, high impact in PTC2 and highest impact in PCT3. The 

concentration of SU in all PTC compartments is highly influenced by parameters 

defining the rate of active transport of all metabolites, 𝐽max (𝑂𝐴𝑇𝑚𝑒𝑡𝑠) and 𝐾m (𝑂𝐴𝑇𝑚𝑒𝑡𝑠), in all three individuals. In the young, all PTC concentrations of SA and 

SU are highly sensitive to the fraction unbound of SA (𝑓𝑢(𝑝)) and to a lesser extent  𝐽max (𝑂𝐴𝑇2) and 𝐾m (𝑂𝐴𝑇2). In both elderly individuals, 𝑓𝑢(𝑝) has a moderate impact 

on all PTC concentrations. For the young and healthy adult and the elderly person at 

risk of CKD, the sensitivity analysis results for this dose are illustrated in Figures 4.11 

and 4.12, respectively. 

 

4.4.2.4 Sensitivity analysis results: chronic upper therapeutic dose reaching a SA 

venous blood concentration of 2.2 mM 

At a constant SA venous blood concentration of 2.2 mM of SA, sensitivity analyses 

are identical for all three individual cases tested. Sensitivity analysis results are 

shown in Figure 4.13 for the elderly individual with signs of renal dysfunction. 

Parameters determining the rate of the active transport of SA via NPT1, 𝐽max (𝑁𝑃𝑇1) 

and to a lesser extent 𝐾m (𝑁𝑃𝑇1), as well as 𝑓𝑢(𝑝) moderately influence SA 

concentrations in all PTC compartments. SU concentrations are highly sensitive to 

the 𝑉𝑚𝑎𝑥 of SU formation (𝑉max (𝑆𝑈)) and to the active transport of metabolites 

(𝐽max (𝑂𝐴𝑇𝑚𝑒𝑡𝑠) and to a lower extent 𝐾m (𝑂𝐴𝑇𝑚𝑒𝑡𝑠)).  

 

4.4.2.5 Sensitivity analysis results: acute intoxication at 3.24 mM SA venous blood 

concentration 

Results of sensitivity analyses related to a constant SA venous blood concentration 

of 3.24 mM for 24 hours are equal to results outlined above for a 14-day constant SA 

venous blood concentration of 2.2 mM. Results are specifically shown in Figure 4.14 

for the elderly person at risk of CKD. 
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Figure 4.11: Time-integral sensitivity coefficients (Sq), giving an indication of the total sensitivity of the model parameters 𝑄𝐶, 𝐹𝑄𝐾𝐼, 𝑄𝐻𝐿−𝐶𝐷2, 𝐺𝐹𝑅, 𝐹𝐹𝑃𝑇, 𝐹𝐹𝐻𝐿, 𝐹𝐹𝐷𝑇, 𝐽𝑚𝑎𝑥(𝑂𝐶𝑇2), 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇1), 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇2), 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇3), 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇4), 𝐽𝑚𝑎𝑥(𝑁𝑃𝑇1), 𝐽𝑚𝑎𝑥(𝑈𝑅𝐴𝑇1), 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇𝑚𝑒𝑡𝑠), 𝐾𝑚(𝑂𝐶𝑇2), 𝐾𝑚(𝑂𝐴𝑇1), 𝐾𝑚(𝑂𝐴𝑇2), 𝐾𝑚(𝑂𝐴𝑇3), 𝐾𝑚(𝑂𝐴𝑇4), 𝐾𝑚(𝑁𝑃𝑇1), 𝐾𝑚(𝑈𝑅𝐴𝑇1) , 𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠), 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴), 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈), 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠), 𝑉max(𝑆𝑈), 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6), 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9), 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7), 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6), 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9), 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7), 𝐾m(𝑆𝑈), 𝐾m(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6), 𝐾m(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9), 𝐾m(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7), 𝐾m(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6), 𝐾m(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9), 𝐾m(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7), 𝑓𝑢(𝑝)𝑆𝐴   

on the predicted PTC concentrations of SA and SU following the oral administration of a chronic, low therapeutic dose of ASA in the young and healthy adult 
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Figure 4.12: Time-integral sensitivity coefficients (Sq), giving an indication of the total sensitivity of the model parameters 𝑄𝐶, 𝐹𝑄𝐾𝐼, 𝑄𝐻𝐿−𝐶𝐷2, 𝐺𝐹𝑅, 𝐹𝐹𝑃𝑇, 𝐹𝐹𝐻𝐿, 𝐹𝐹𝐷𝑇, 𝐽𝑚𝑎𝑥(𝑂𝐶𝑇2) , 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇1) , 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇2) , 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇3) , 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇4) , 𝐽𝑚𝑎𝑥(𝑁𝑃𝑇1), 𝐽𝑚𝑎𝑥(𝑈𝑅𝐴𝑇1) , 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) , 𝐾𝑚(𝑂𝐶𝑇2) , 𝐾𝑚(𝑂𝐴𝑇1), 𝐾𝑚(𝑂𝐴𝑇2), 𝐾𝑚(𝑂𝐴𝑇3) , 𝐾𝑚(𝑂𝐴𝑇4), 𝐾𝑚(𝑁𝑃𝑇1), 𝐾𝑚(𝑈𝑅𝐴𝑇1), 𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) , 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴), 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈), 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠), 𝑉max(𝑆𝑈), 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6), 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9), 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7), 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6), 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9), 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7), 𝐾m(𝑆𝑈), 𝐾m(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6), 𝐾m(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9), 𝐾m(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7), 𝐾m(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6), 𝐾m(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9), 𝐾m(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7), 𝑓𝑢(𝑝)𝑆𝐴 

on the predicted PTC concentrations of SA and SU following the oral administration of a chronic, low therapeutic dose of ASA in the elderly at risk of CKD 
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Figure 4.13: Time-integral sensitivity coefficients (Sq), giving an indication of the total sensitivity of the model parameters 𝑄𝐶, 𝐹𝑄𝐾𝐼, 𝑄𝐻𝐿−𝐶𝐷2, 𝐺𝐹𝑅, 𝐹𝐹𝑃𝑇, 𝐹𝐹𝐻𝐿, 𝐹𝐹𝐷𝑇, 𝐽𝑚𝑎𝑥(𝑂𝐶𝑇2) , 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇1) , 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇2) , 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇3) , 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇4) , 𝐽𝑚𝑎𝑥(𝑁𝑃𝑇1), 𝐽𝑚𝑎𝑥(𝑈𝑅𝐴𝑇1) , 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) , 𝐾𝑚(𝑂𝐶𝑇2) , 𝐾𝑚(𝑂𝐴𝑇1), 𝐾𝑚(𝑂𝐴𝑇2), 𝐾𝑚(𝑂𝐴𝑇3) , 𝐾𝑚(𝑂𝐴𝑇4), 𝐾𝑚(𝑁𝑃𝑇1), 𝐾𝑚(𝑈𝑅𝐴𝑇1), 𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) , 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴), 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈), 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠), 𝑉max(𝑆𝑈), 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6), 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9), 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7), 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6), 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9), 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7), 𝐾m(𝑆𝑈), 𝐾m(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6), 𝐾m(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9), 𝐾m(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7), 𝐾m(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6), 𝐾m(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9), 𝐾m(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7), 𝑓𝑢(𝑝)𝑆𝐴 

on the predicted PTC concentrations of SA and SU following the oral administration of a chronic, low therapeutic dose of ASA in the elderly with signs of renal 

dysfunction 
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Figure 4.14: Time-integral sensitivity coefficients (Sq), giving an indication of the total sensitivity of the model parameters 𝑄𝐶, 𝐹𝑄𝐾𝐼, 𝑄𝐻𝐿−𝐶𝐷2, 𝐺𝐹𝑅, 𝐹𝐹𝑃𝑇, 𝐹𝐹𝐻𝐿, 𝐹𝐹𝐷𝑇, 𝐽𝑚𝑎𝑥(𝑂𝐶𝑇2) , 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇1) , 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇2) , 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇3) , 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇4) , 𝐽𝑚𝑎𝑥(𝑁𝑃𝑇1), 𝐽𝑚𝑎𝑥(𝑈𝑅𝐴𝑇1) , 𝐽𝑚𝑎𝑥(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) , 𝐾𝑚(𝑂𝐶𝑇2) , 𝐾𝑚(𝑂𝐴𝑇1), 𝐾𝑚(𝑂𝐴𝑇2), 𝐾𝑚(𝑂𝐴𝑇3) , 𝐾𝑚(𝑂𝐴𝑇4), 𝐾𝑚(𝑁𝑃𝑇1), 𝐾𝑚(𝑈𝑅𝐴𝑇1), 𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) , 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴), 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈), 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠), 𝑉max(𝑆𝑈), 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6), 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9), 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7), 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6), 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9), 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7), 𝐾m(𝑆𝑈), 𝐾m(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6), 𝐾m(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9), 𝐾m(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7), 𝐾m(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6), 𝐾m(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9), 𝐾m(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7), 𝑓𝑢(𝑝)𝑆𝐴 

on the predicted proximal tubular concentrations of SA and SU following acute ASA intoxication in the elderly at risk of CKD 
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All parameters which have been identified to have the most impact on predicted 

proximal tubular concentrations are presented in Table 4.22 and included in scans 

over a predefined range in subchapter 4.4.4. In order to understand which 

concentration of SA may be considered to be toxic, relevant toxicity data are 

reviewed in the following subchapter. 

 

 

4.4.3 Pathway of SA toxicity and concentrations at which SA is hypothesised to 

be toxic 

SA has been shown to act as a mitochondrial swelling and uncoupling agent at 

concentrations of approximately 0.25 mM and above in rat liver and kidney 

mitochondria (Brody and Fouts, 1956; Whitehouse and Dean, 1965; Thompkins and 

Lee, 1969; You, 1983; Gutknecht, 1992; Mingatto et al., 1996; Al-Nasser, 1999). At 

0.25, 0.5 and 0.75 mM, oxidative phosphorylation decreases by roughly 30, 45 and 

55% in rat liver mitochondria, respectively (Thompkins and Lee, 1969). At a 

concentration of 1 to 2 mM, sodium SA and SA uncouple oxidative phosphorylation 

completely, abolish inorganic phosphate uptake and the aerobic synthesis of 

adenosine triphosphate (ATP) in the mitochondria (Brody and Fouts, 1956; 

Thompkins and Lee, 1969; You, 1983). 

 

With a lag time of approximately 7-8 minutes, 90 µM of SA causes large-amplitude 

swelling in rat liver mitochondria (Martens et al., 1986). Since liver and kidney 

mitochondria in rats show similar sensitivity to mitochondrial effects (Brody and 

Fouts, 1956), the delayed large-amplitude swelling observed at 90 µM in rat liver 

mitochondria is expected to occur in rat kidney mitochondria as well at that 

concentration. Large-amplitude swelling indicates permeability transition and 

compromised integrity of the inner mitochondrial membrane (Al-Nasser, 1999; 

Armstrong, 2006). Mitochondrial swelling, mitochondrial permeability transition 

(MPT) and assessment of ATP levels are common endpoints to assess mitochondrial 

toxicity (Broom, 2015). However, it is unclear which endpoint is most relevant, and 

when a change or perturbation may be considered a true toxic effect that could lead 

to functional impairment of an organ. MPT implies free access of small solutes to the 

mitochondrial matrix, dissipation of the mitochondrial membrane potential, 

suspension of ATP synthesis and structural breakdown of the organelle (Bernardi et 
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al., 2015; Bonora et al., 2015; Izzo et al., 2016). This effect is inhibited by cyclosporine 

A suggesting that the pathway relies on cyclophilin D which has been linked to 

apoptosis and more commonly necrosis (Al-Nasser, 1999; Kim et al., 2003; Zamzami 

et al., 2005; Izzo et al., 2016). Mitochondrial permeability transition (MPT) occurs in 

several pathways of necrotic cell death, including pH-dependent 

ischemia/reperfusion injury and oxidative stress and has been suggested to be a key 

event in SA-induced in rat hepatocyte cytotoxicity (Trost and Lemasters, 1997; 

Lemasters et al., 1998; Armstrong, 2006).  

 

However, at the current state of science, it is not possible to define the threshold 

concentration, and duration of exposure in human proximal tubular cells, above 

which an inhibition of mitochondrial oxidative phosphorylation is expected which will 

cause acute tubular necrosis on the renal tissue level, with the potential to ultimately 

induce acute renal failure. However, in line with the Martens et al. (1986) study 

referenced above, for the purposes of this study, it is hypothesised that a SA PTC 

concentration of 90 µM which causes large-amplitude swelling in rat liver 

mitochondria induces the same effect in human PTC mitochondria followed by MPT, 

acute tubular necrosis and clinical signs of renal dysfunction. The key assumptions 

underlying this hypothesis are that: 

1) predicted PTC concentrations are achieved in all nephrons at the same time,  

2) large-amplitude swelling induces MPT in all PTCs at the same time which 

enables the development of acute tubular necrosis across both kidneys and 

manifestation of clinical signs as a linear, non-reversible process. 

 

In contrast, SU is reported to have no uncoupling effect (Whitehouse and Dean, 1965; 

Thompkins and Lee, 1969; Gutknecht, 1992) nor is SU a mitochondrial swelling agent 

(You, 1983). However, in opossum kidney cells, SU inhibits cell proliferation and 

stimulates the production of free radicals at cellular concentration of 2.5 mM or 

higher (Motojima et al., 2002). Since the predicted concentrations of SA in PTC 

compartments significantly exceed predicted SU concentrations (by up to a factor of 

24 for the scenarios tested), results presented in the following section will focus on 

SA concentrations only. 
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Glucuronides in general are not considered of toxicological concern. Even though the 

acyl glucuronide metabolite of diclofenac, another NSAID, has been found to bind 

covalently to endogenous serum albumin in man, an immune-mediated adverse 

reaction has not been associated with the acyl glucuronide (Regan et al., 2010; 

Hammond et al., 2014). No evidence is found associating SA glucuronides exposure 

with mitochondrial dysfunction. 

In the following subchapters, simulated PTC concentrations of SA are compared to 

the hypothesised threshold of 90 µM. 

 

 

4.4.4 Results of predictions with initial parameter values and scans over 

predefined ranges 

Table 4.21 shows the highest predicted Cmax across PTC1-3 compartments when the 

model is simulated with the parameter values sourced from the literature. Generally, 

for any of the scenarios, the Cmax in PTC1 is very similar to the Cmax in PTC2 and PTC3. 

Therefore, only the highest Cmax across all PTC compartments is presented in Table 

4.21 but for each scenario, all Cmax values are detailed below. 

 

Table 4.21: Cmax concentrations (in mM) predicted with initial parameters for the 

three individual cases exposed at three different dose levels 

 Maximum PTC 

concentration at 

chronic, low 

therapeutic dose 

(mM) 

(compartment) 

Maximum PTC 

concentration at 

chronic, high 

therapeutic dose 

(mM) 

(compartment) 

Maximum PTC 

concentration at 

acute intoxication 

(mM) 

(compartment) 

Young and 

healthy adult 

0.0090 (PTC1) 0.6079 (PTC3) 0.6534 (PTC3) 

Elderly, at risk of 

CKD 

0.0124 (PTC1) 0.5575 (PTC3) 0.5970 (PTC2) 

Elderly with 

signs of renal 

dysfunction 

0.0133 (PTC1) 0.5467 (PTC3) 0.5734 (PTC2) 

 

As mentioned in subchapter 4.4.2, the parameter values highlighted in sensitivity 

analyses performed for each of the nine exposure scenarios (3 individuals and 3 

dosing conditions) are changed over five steps spread over a predefined range. All 
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parameter values selected for each scenario are presented in Table 4.22 and ranges 

designated for these parameters are shown in Table 4.23. 

 

Table 4.22: Parameters identified to have the most impact on SA concentrations in 

PTC compartments for the scenarios tested  

 Chronic, low 

therapeutic dose 

Chronic, high 

therapeutic dose 

Acute 

intoxication 

Young and healthy 

adult 

𝑓𝑢(𝑝),  𝑉max (𝑆𝑈), 𝐾m (𝑆𝑈) 

𝐽max (𝑁𝑃𝑇1) 𝐽max (𝑁𝑃𝑇1) 

Elderly, at risk of 

CKD 

𝑉max (𝑆𝑈), 𝐾m (𝑆𝑈) 𝐽max (𝑁𝑃𝑇1) 𝐽max (𝑁𝑃𝑇1) 

Elderly with signs of 

renal dysfunction 

𝑉max (𝑆𝑈), 𝐾m (𝑆𝑈) 𝐽max (𝑁𝑃𝑇1) 𝐽max (𝑁𝑃𝑇1) 

 

 

Table 4.23: Ranges over which parameter values will be changed using the scans 

function in SimBiology 

Parameter Initial value, 

young and 

healthy adult 

Initial value, 

elderly 

individuals 

Range 

𝑓𝑢(𝑝) (dimensionless) 0.601 NA 0.07 – 0.601 𝑉max (𝑆𝑈) (μmol/min) 6.3 3.15 3.15 – 12.6 𝐾m (𝑆𝑈) (mM) 0.104 0.104 0.0109 – 0.197 𝐽max (𝑁𝑃𝑇1) 

(μmol/min) 

78.2 39.1 0.0432 – 782 

 

The fraction unbound of salicylic acid is fitted to 0.6013 which may be higher than 

expected for therapeutic concentrations, as indicated earlier, but adequate for toxic 

SA blood concentrations. Since the lower bound of reported 𝑓𝑢(𝑝) values lies at 

approximately 0.07 (Furst et al., 1979), the range for 𝑓𝑢(𝑝) is set between 0.07 and 

0.6013. For the rate of SU formation, the widest range (mean ± standard deviation) 

of 𝑉𝑚𝑎𝑥 and 𝐾𝑚 values is found in Roberts et al. (1983) who included values for both 

young adults and elderly individuals. The maximum 𝐾𝑚 and 𝑉𝑚𝑎𝑥 values are based 

on the young group and the minimum 𝐾𝑚 is based on the elderly group. Since the 

minimum 𝑉𝑚𝑎𝑥 of both groups is 3.8 μmol/min and therefore slightly higher than the 𝑉max (𝑆𝑈) for both elderly cases set at 3.15 μmol/min, the lower bound of the 𝑉max (𝑆𝑈) range is set at 3.15 μmol/min. The 𝐽max (𝑁𝑃𝑇1) value taken from the 

literature is established with mouse protein which implies a high degree of 
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uncertainty underlying this value. It is difficult to estimate a biologically adequate 

range for this parameter. Since the 𝐽max of NPT1 is the highest 𝐽max  value used in this 

model, the higher bound is selected an order of magnitude higher than the literature 

value. The lower bound is set at 0.0432 μmol/min which is the lowest 𝐽max value used 

in this model (for OCT2). 

 

4.4.4.1 Detailed simulation and scan results: chronic, low therapeutic dose of ASA 

When the model is simulated with the initial 𝑓𝑢(𝑝), 𝑉max (𝑆𝑈) and 𝐾m (𝑆𝑈) values for 

the young and healthy adult, PTC1, PTC2 and PTC3 concentrations plateau at 0.0090, 

0.0068 and 0.0056 mM, respectively. 

 

In the elderly at risk of CKD and initial 𝑉max (𝑆𝑈) and 𝐾m (𝑆𝑈) values, maximum PTC1, 

PTC2 and PTC3 concentrations are predicted at 0.0124, 0.110 and 0.0091, 

respectively. For the elderly with signs of renal dysfunction, maximum PTC1, PTC2 

and PTC3 concentrations are predicted at 0.0133, 0.0113 and 0.0090 mM, 

respectively, when simulated with initial 𝑉max (𝑆𝑈) and 𝐾m (𝑆𝑈) values. With any of 

the values included in the scan, no maximum concentration in PTC1-3 compartments 

exceeds 0.02 mM for all three individuals. Figures 4.15 and 4.16 show Cmax values 

predicted for the elderly individual with signs of renal dysfunction in each PTC 

compartment over the scan ranges of 𝑉max (𝑆𝑈) and 𝐾m (𝑆𝑈) values, respectively. 

When performing the scans for two and three parameters simultaneously over 

20,160 minutes, as defined in subchapter 4.4.2.2, an error occurred in SimBiology. 

Therefore, scan performance times are amended for the young and healthy 

individual and both elderly individuals to 7,200 and 10,080 minutes, respectively. 
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Figure 4.15: Cmax values predicted for the elderly individual with signs of renal 

dysfunction in each PTC compartment over the scan ranges of 𝑉max (𝑆𝑈) values, in 

relation to the defined threshold of toxicity at 0.09 mM. 

 

Figure 4.16: Cmax values predicted for the elderly individual with signs of renal 

dysfunction in each PTC compartment over the scan ranges of 𝐾m (𝑆𝑈) values, in 

relation to the defined threshold of toxicity at 0.09 mM. 
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4.4.4.2 Detailed simulation and scan results: chronic, upper therapeutic dose 

reaching a SA venous blood concentration of 2.2 mM 

For the young and healthy adult, PTC1, PTC2 and PTC3 concentrations plateau at 

0.602, 0.6035 and 0.6079 mM, respectively, when the model is run with the initial 𝐽max (𝑁𝑃𝑇1) at 78.2316 μmol/min. A scan including five steps over the range of 0.0432 

to 782.3160 μmol/min for 𝐽max (𝑁𝑃𝑇1) shows that for a value close to 700 μmol/min, 

PTC1-3 concentrations reach their maxima at around 0.09 mM. At lower 𝐽max (𝑁𝑃𝑇1) 

values PTC concentrations plateau at a level exceeding the 0.09 mM threshold, and 

at higher 𝐽max (𝑁𝑃𝑇1) values maximum PTC concentrations are below it. For the 

elderly individual at risk of CKD, maximum concentrations in PTC1, PTC2 and PTC3 

with the initial 𝐽max (𝑁𝑃𝑇1) are at 0.5549, 0.5564 and 0.5575 mM, respectively. The 

scan for the elderly individual at risk of CKD indicates that at a 𝐽max (𝑁𝑃𝑇1) of 391.18 

μmol/min and higher maximum PTC1-3 concentrations are below 0.09 mM while at 

195.61 μmol/min and lower PTC1-3 concentrations plateau at a level above the 

threshold. The scan for the elderly individual with signs of renal dysfunction gives the 

same results as described for the elderly at risk of CKD. When simulated with initial 

parameter values for the elderly with signs of renal dysfunction, PTC1, PTC2 and PTC3 

concentrations reach 0.5452, 0.5462 and 0.5467 mM, respectively. Figure 4.17 shows 

Cmax values predicted for the elderly individual at risk of CKD in each PTC 

compartment over the scan ranges of 𝐽max (𝑁𝑃𝑇1). 
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Figure 4.17: Cmax values predicted for the elderly individual at risk of CKD in each PTC 

compartment over the scan ranges of 𝐽max (𝑁𝑃𝑇1), in relation to the defined threshold 

of toxicity at 0.09 mM. Predicted Cmax values for PTC3 are superimposed on the 

predicted Cmax values for PTC1 and PTC2. 

 

4.4.4.3 Detailed simulation and scan results: acute intoxication at 3.24 mM SA 

venous blood concentration 

When the model is simulated with the initial 𝐽max (𝑁𝑃𝑇1), PTC1, PTC2 and PTC3 

concentrations of the young and healthy adult are 0.6482, 0.6496 and 0.6534 mM. A 

scan including five steps over the range of 0.0432 to 782.32 μmol/min for 𝐽max (𝑁𝑃𝑇1) 

shows slightly higher but very similar results as generated with the chronic upper 

therapeutic dose. At a SA venous blood concentration at 3.24 mM and a 𝐽max (𝑁𝑃𝑇1) 

value at 695 μmol/min, PTC1, PTC2 and PTC3 concentrations reach their maxima at 

0.0944, 0.0945 and 0.096 mM, respectively. Only the highest 𝐽max (𝑁𝑃𝑇1) value 

generates PTC values below 0.09 mM. For the elderly individual at risk of CKD, 

maximum concentrations in PTC1, PTC2 and PTC3 with the initial 𝐽max (𝑁𝑃𝑇1) are at 

0.5959, 0.5970 and 0.5964 mM, respectively. The scan results for both elderly 

individuals at a SA venous blood concentration of 3.24 mM are similar to those 
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obtained at a constant SA venous blood concentration of 2.2 mM. At a 𝐽max (𝑁𝑃𝑇1) of 

391.18 μmol/min and higher maximum PTC1-3 concentrations are below 0.09 mM 

while at 195.61 μmol/min and lower PTC1-3 concentrations plateau at a level above 

the threshold. When the model is simulated with the initial 𝐽max (𝑁𝑃𝑇1) for the elderly 

individual with signs of renal dysfunction, maximum concentrations in PTC1, PTC2 

and PTC3 are at 0.5730, 0.5734 and 0.5721 mM, respectively. Figure 4.18 shows Cmax 

values predicted for the elderly individual with signs of renal dysfunction in each PTC 

compartment over the scan ranges of 𝐽max (𝑁𝑃𝑇1). 

 

 

Figure 4.18: Cmax values predicted for the elderly individual with signs of renal 

dysfunction in each PTC compartment over the scan ranges of 𝐽max (𝑁𝑃𝑇1), in relation 

to the defined threshold of toxicity at 0.09 mM. Predicted Cmax values for PTC3 are 

superimposed on the predicted Cmax values for PTC1 and PTC2. 
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4.5 Key results 

This subchapter summarises those results, presented in subchapters 4.4.2.3 to 

4.4.4.3, that are most relevant to the quantitative assessment of toxicity in the 

proximal tubules, induced by SA. For the three virtual individuals and the chronic, 

low therapeutic dose scenario, parameter values determining the rate of formation 

of SU, i.e.  𝑉max (𝑆𝑈) and 𝐾m (𝑆𝑈), have a significant impact on the SA concentration 

in PTC compartments. 𝑉max (𝑆𝑈) is the maximum rate of metabolism for the 

formation of SU, the main metabolite of SA formed in the kidney, and 𝐾m (𝑆𝑈) is the 

Michaelis-Menten constant which represents the affinity of the metabolising enzyme 

for SA. For the chronic, high therapeutic dose and acute intoxication scenarios and 

all three individuals, the maximum rate of transport via the transporter protein NPT1, 

i.e. 𝐽max (𝑁𝑃𝑇1), predominantly influences SA concentrations in all PTC 

compartments. 𝑉max (𝑆𝑈), 𝐾m (𝑆𝑈) and 𝐽max (𝑁𝑃𝑇1) are parameters which contribute 

to the decrease of SA in PTC compartments. 

 

Results of prediction with initial parameter values show that a hypothesised toxicity 

threshold of 90 µM PTC concentration is not exceeded for any individual at the 

chronic, low therapeutic dose. However, PTC concentrations reached in any 

individual at the chronic, high therapeutic dose and acute intoxication exposure are 

above the hypothesised toxicity threshold, with highest Cmax values reaching between 

0.547 and 0.653 mM. 

 

For each parameter identified in the sensitivity analyses, scans are performed over 

five steps over a predefined range. For the chronic, low therapeutic dose scenario 

and all three individuals, no maximum concentration in PTC compartments exceeds 

0.02 mM with any of the values included in the scans for 𝑉max (𝑆𝑈) and 𝐾m (𝑆𝑈). For 

the young and healthy adult exposed to the chronic, high therapeutic dose, the scan 

for 𝐽max (𝑁𝑃𝑇1) shows that at a value close to 700 μmol/min and higher, maximum 

PTC concentrations are below 0.09 mM. For both elderly individuals at this exposure, 

the turning point is at a 𝐽max (𝑁𝑃𝑇1) value of approx. 390 μmol/min. This means that 

at this level and higher maximum PTC concentrations are below the hypothesised 

toxicity threshold. For the acute intoxication scenario, results are very similar to 

those predicted for the chronic, high therapeutic dose scenario. While for both 



169 

 

 

elderly individuals the toxicity threshold is exceeded at 𝐽max (𝑁𝑃𝑇1) values below 390 

μmol/min, the threshold is exceeded at 695 μmol/min and lower for the young and 

healthy adult. 

 

 

4.6 Discussion 

In accordance with the first aim defined in subchapter 4.1., this study offers a 

detailed description of the development of a mechanistic kidney model predicting 

the kinetics of SA through eight renal blood and luminal, and seven cellular, 

compartments. Major kinetic processes included in this model comprise blood and 

luminal fluid flows, glomerular filtration, active and passive secretion and 

reabsorption processes, and metabolism to SU and glucuronides. With regard to the 

first objective (i) defined in subchapter 4.1, this study shows how the mechanistic 

kidney model is embedded into a full-body PBK model parameterised for ASA and SA 

and validated with data on the fractions of a dose excreted in urine as SA, ASA, SU 

and glucuronides. In accordance with the second objective (ii) set out subchapter 4.1, 

an example is presented of how the PBK-coupled kidney model may be applied. For 

this, key parameters of this model, which is initially set up for a young and healthy 

adult, are adjusted to simulate kinetics of two virtual elderly individuals, one at risk 

of CKD and one with signs of renal dysfunction. For these three individuals three 

exposure scenarios are defined, including a chronic, low therapeutic dose, a chronic 

high therapeutic dose and acute intoxication. For these three individuals and three 

exposure scenarios defined, sensitivity analyses are performed to understand which 

parameter values, when changed slightly, have the most impact on the predicted 

proximal tubular concentrations. To account for inter-individual variability and to 

some degree to account for uncertainty underlying parameter values, parameters 

identified in sensitivity analyses are changed over a predefined range. Then, 

simulations are run for five steps spanning this predefined range. 

 

To sum up the results of the sensitivity analyses, values for the 𝑉max (𝑆𝑈) and 𝐾m (𝑆𝑈) 

significantly influence PTC concentrations at the chronic, low therapeutic dose, and 𝐽max (𝑁𝑃𝑇1) has the most impact on PTC concentrations at the two higher exposure 

scenarios. 𝑉max (𝑆𝑈), 𝐾m (𝑆𝑈) and 𝐽max (𝑁𝑃𝑇1) are parameters which contribute to the 
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decrease of SA in PTC compartments – as opposed to parameters contributing to the 

increase of SA such as rates of SA transport into PTC compartments. This indicates 

that in comparison to SA influx processes into PTC compartments, processes driving 

efflux and metabolism of SA are less saturated. However, this interpretation only 

holds for the current set of parameter values since a sensitivity analysis with different 

parameter values may produce different results. Important to note is that among all 

the transporter related 𝐽max values applied here, 𝐽max (𝑁𝑃𝑇1) has by far the highest 

value which may explain why this value has a significant impact on PTC 

concentrations. Even though this value is established with SA while most other 

transporter parameter values are generated with other substances other than SA, it 

is not based on a human but mouse protein system. Therefore, there may be a higher 

uncertainty underlying this value in comparison to the much lower 𝐽max values.  

 

The results of simulations with initial parameter values indicate that for all three 

individuals (young and healthy adult, elderly person at risk of CKD and elderly person 

with signs of renal dysfunction) only the chronic, low therapeutic dose leads to 

proximal tubular concentrations below the previously set toxic concentration 

threshold of 0.09 mM. Interestingly, at the two higher exposure levels, proximal 

tubular concentrations predicted for both elderly individuals are lower than those 

predicted in the young and healthy adult. Further data may be required to validate 

these results. 

 

The results of scans for the chronic, low therapeutic dose show that for any value 

included in the scan, predicted proximal tubular concentrations are below 0.02 mM, 

so well below the hypothesised toxic threshold. Results of the scans for the two 

higher exposure scenarios re-emphasise that active transport 𝐽𝑚𝑎𝑥 values impact 

proximal tubular concentrations greatly and that interindividual variability in 

transporter expression may determine whether an adverse effect is experienced by 

an individual or not. As discussed earlier, there are uncertainties underlying all active 

transporter 𝐽𝑚𝑎𝑥 values which is a limitation of this study. A reliable quantification of 

these uncertainties is crucial to the development of a robust model. Interesting to 

note is that for the two higher exposure scenarios the hypothesised toxicity threshold 

is exceeded at a 𝐽max (𝑁𝑃𝑇1) of approx. 390 μmol/min and lower for the two elderly 

individuals while the threshold is reached at approx. 700 μmol/min for the young and 
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healthy adult. This discrepancy reflects the difference in transporter activity between 

the young and both elderly individuals initially set due to the difference in the 

number of nephrons among them.  

 

Overall, this study adds to the knowledgebase of mechanistic models related to 

kinetic processes and IVIVE approaches to increase the common understanding of 

nephrotoxicity induced by pharmaceutical compounds. All major kinetic factors (e.g. 

protein binding) and processes (i.e. glomerular filtration, urine flow, active and 

passive secretion and reabsorption) included in early models (Tang-Liu et al., 1983; 

Hall and Rowland, 1984; Komiya, 1986, 1987; Russel et al., 1987a; b; Mayer et al., 

1988; Katayama et al., 1990) are taken into account in this model. Similar to the two 

most sophisticated mechanistic model to predict renal kinetics (Neuhoff et al., 2013; 

Huang and Isoherranen, 2018), the present model has the structure of a nephron 

divided into segments illustrating the glomerulus, proximal and distal tubules, loop 

of Henle and collecting ducts. These segments are divided into vascular, cellular and 

luminal compartments. While the present model has the same number of 

compartments overall, the model presented by Huang and Isoherranen (2018) has 

two segments for the loop of Henle and five for the collecting duct, instead of one 

and two in the model presented here, respectively. These differ in the tubular flow 

rate entering each tubular segment and the tubular pH. Even though no references 

are given by Huang and Isoherranen (2018) to explain the choice of pH values, the 

values applied may be a good starting point to incorporate different pHs in each 

luminal compartment. Since luminal pH has an impact on the extent of passive 

reabsorption, one of the major kinetic processes in the kidney, it needs to be 

considered if the available data allow for it. Huang and Isoherranen (2018) address 

the issue of lacking factors to scale from in vitro to in vivo system activity, and 

propose a factor to scale the surface area of the in vitro systems to the real intrinsic 

permeability by considering microvilli expression. The model is validated with data 

from 46 drugs so it covers a comparatively wider applicability domain while the 

model presented here is specific to SA.  

 

Also, it may be valuable to re-assess the volumes assigned to each compartment in 

both models. As outlined in subchapter 4.2.1.1, all compartment volumes of the 

mechanistic kidney model presented here add up to a total kidney volume of 280 mL. 
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This volume is used in PBK models generated in the past (Davies and Morris, 1993; 

Peters, 2008a). In contrast, the volumes of all subsegments defined by Huang and 

Isoherranen (2018) add up to approx. one litre which may exceed the typical 

physiological volume of a kidney. The volumes which may have to be revised in the 

model developed here are those of the loop of Henle since they seem to be high in 

comparison to how volumes of the loop of Henle are described qualitatively or semi-

quantitatively in the literature. The discrepancy between the approach to scale up 

volumes calculated from the external diameter, cell height and compartment length 

and the gross estimates of medullary compartments (discussed in subchapter 

4.2.1.1.4.2) may also indicate that these volumes need to be re-assessed. A 

nephrologist’s expert opinion is needed to further refine these volumes. Since the 

present investigation focusses on proximal tubular cell concentrations, potential 

inaccuracies in subsequent compartment volumes do not have a significant impact 

on the results of this study. Furthermore, the models presented by Neuhoff et al. 

(2013) and Huang and Isoherranen (2018) only incorporate renal metabolism and 

active transport processes at proximal tubular level. However, in this study 

metabolism is included on all levels starting from the proximal tubule since 

glucuronidation catalysing enzymes are reported to occur in latter tubular segments 

(Gaganis et al., 2007). Also, evidence indicates that active transport mechanisms exist 

in the renal medulla and collecting ducts (Madsen et al., 1988; Pearce et al., 2015). 

Furthermore, when validating the performance of the model with excretion data 

reported by Levy (1965), initial simulations show that active transport is needed to 

achieve the almost complete excretion of SA within 39 hours. In contrast to the 

model developed by Neuhoff et al. (2013), all data applied to generate this model are 

presented in this study. 

 

This study contributes to the field of in silico toxicology since it is the first mechanistic 

model of the kidney which is embedded in a full-body PBK model whose data and 

ODEs used to generate both models are comprehensively reported. Additionally, in 

contrast to Huang and Isoherranen (2018), we amended certain physiological 

parameters of the model to simulate the physiology of two sensitive elderly 

individuals to address issues of variability. 
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The model presented here may be extended by making active transport processes 

from cellular to blood or luminal compartments only accessible to the fraction 

unbound. Due to a lack of information on protein binding of SA and metabolites in 

tubular cells, this component is not added to this model. However, it may be 

necessary to make active transport from cellular compartments only accessible to 

the fraction unbound in order to increase passive reabsorption of SA from cellular 

compartments. This process has currently a minor influence, but salicylic acid has 

been proposed to be reabsorbed in the distal renal tubule in the physiological range 

of urine pH, however to a lower extent at a high pH (Proudfoot et al., 2003). Also, in 

order to reach the renal tissue/tubule level of the AOP proposed in Figure 4.1., 

reliable data explaining a quantitative relationship between an exposure level and 

acute tubular necrosis in humans are needed. However, these data do not exist to 

this date. As soon as these become available, a quantitative dose-response 

relationship may be established between a dose or exposure scenario and necrosis 

observed at renal tubular level. 

 

 

4.7 Conclusions 

There are several lessons learned from this study. The results of the sensitivity 

analyses performed for all individuals and exposure scenarios highlight that it is of 

major importance to use active transporter and metabolism data that are of good 

quality. Also, 𝑓𝑢(𝑝) may have a major impact on the predicted concentration in 

proximal tubules. The need for an accurate estimate of renal active transporter 𝑉𝑚𝑎𝑥 

values is highlighted previously (Felmlee et al., 2013). Since it is not necessarily 

straight forward to assess the quality of such data, using and comparing data from 

various sources helps to find an adequate value to inform the model (Min and Bae, 

2017). Also, the application of a relative expression factor (REF) or a RAF is proposed 

to scale from in vitro to in vivo transporter expression or activity, respectively, but 

such values are typically lacking (Neuhoff et al., 2013; Scotcher et al., 2016). The fact 

that glucuronidation 𝑉𝑚𝑎𝑥 values have to be increased in order to predict similar 

fractions of the dose excreted as glucuronides as observed in individuals indicates 

that a REF or RAF is needed to scale these 𝑉𝑚𝑎𝑥 values to in vivo activity. Overall, 

more human-based compound-specific data are needed to simulate kinetic 
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processes. This holds in particular for active transport 𝐽𝑚𝑎𝑥 and 𝐾𝑚 data since most 

of these values used are generated with substances other than SA and/or in animal 

cell systems. IVIVE approaches to predict hepatic clearance are more advanced than 

IVIVE to simulate renal processes (Houston and Galetin, 2008; Obach, 2011; Chen et 

al., 2012; Scotcher et al., 2016; Min and Bae, 2017). The value of using certain 

extrapolation factors established for hepatic drug elimination for the prediction of 

renal drug elimination has not been assessed comprehensively but may hold 

potential to move the field of IVIVE for renal processes forward. 

 

In summary, a lot of high-quality data are needed in order to generate a reliable 

mechanistic model. Some of the data gaps may be bridged with read-across or other 

approaches but these add to the uncertainty associated with predicted results. As 

with any new method, the more mechanistic models are used the more their 

weaknesses are understood and potential unlocked.  
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5.0 DISCUSSION 

In this final Chapter, a summary of the findings and conclusions with respect to this 

thesis’s relevance for the field of chemical risk and drug safety assessment is 

presented. A full discussion of the study results is included within each of Chapters 2 

to 4. Overall, this Chapter attempts to address how the quantitative methods 

developed in this thesis may be leveraged to answer pressing questions in 

nephrotoxicology and how the work performed within this thesis may help the 

progress of in silico toxicology in general. The final subchapter will focus on the future 

work required to ensure further progress with the use of PBK and organ-level 

mechanistic models and adequate interpretation of results.  

 

These efforts respond to the “Toxicity Testing in the 21st Century” paradigm (NRC, 

2007) and the principles of the 3Rs (replacement, reduction and refinement) 

(Tannenbaum and Bennett, 2015) which call for the use of non-animal methods for 

toxicity testing where feasible. These calls have been taken up by European 

regulatory frameworks such as the European REACH (Registration, Evaluation, 

Authorisation and Restriction of Chemicals) Regulation which promotes the use of 

alternative methods and the European Cosmetics Regulation which prohibits using 

animal testing to prove the safety of ingredients, formulations or final cosmetic 

products for human health (European Commission, 2006, 2009). Also, emphasis has 

been given to quantifying and using human exposure data, including HBM data, to 

guide and inform toxicity testing and assessment (NRC, 2007). The use of HBM data 

in the in silico toxicology context is specifically addressed in Chapter 2 and, in the 

broader sense, this thesis responds to the increasing demand to focus on human-

based toxicity assessment. This means that human health hazard assessments are 

increasingly based on human-based data, computational models or in vitro systems 

based on human cell lines. Last, but foremost, with regard to the aims of this thesis, 

toxicology has been moving from a semi-quantitative endpoint-focussed science 

towards a more quantitative human pathway-based science. PBK modelling and 

mechanistic understanding have played a central role in the vision and strategy set 

out by ECVAM and the U.S. National Research Council to advance chemical risk 

assessments (NRC, 2007; Coecke et al., 2013). How this thesis contributed to the 

progress of quantitative human pathway-based toxicology is discussed in the 

summary of findings. 



176 

 

 

 

 

5.1 Summary of findings 

As a major organ of elimination and therefore subject to high exposure of 

compounds, the kidney has been recognised as a significant target for drug and 

chemical induced toxicity. As adverse renal effects typically occur in patients who 

take several medications and as many chemicals are suspected to elicit toxicity via 

unspecific cytotoxicity (Judson et al., 2011; Thomas et al., 2012; Vinken and 

Blaauboer, 2017), supersaturation of parts of the renal system may be an important 

mechanism of inducing renal toxicity. Therefore, accounting for toxicokinetics and 

the potential of a substance to accumulate at organ-level or at a specific site within 

the kidney is considered to be vital. Also, a detailed mechanistic understanding of 

nephrotoxicity pathways is often lacking and clearly needs effort for improvement.  

 

For the registration of many chemicals and pharmaceuticals, adverse effects to the 

kidney are currently assessed through traditional toxicological approaches, involving 

in vitro and in vivo animal studies (WHO, 1991). However, a standardised test 

specifically designed to investigate a substance’s potential and mechanisms to elicit 

nephrotoxicity does not exist to date; normally repeat dose toxicity testing is used. 

In drug development, whilst safety pharmacology studies on the kidney are not part 

of the core required animal study battery, supplemental safety pharmacology studies 

on the renal and urinary system may be performed if there is cause for concern 

(International Conference on Harmonisation (ICH), 2000). Furthermore, clinical 

studies of drug compounds in humans cover endpoints related to renal toxicity but 

their efficacy to assess this pathology adequately has been challenged because of the 

high number of drug-induced acute renal failure cases in critically ill and chronic 

kidney disease patients. 

 

In silico methods, in particular multiscale models that incorporate data spanning 

various biological scales, have the capacity to provide vital insights into 

nephrotoxicity mechanisms. As highlighted in Chapter 1, this thesis addresses the 

growing attention given to exposure-based and toxicokinetics-driven toxicity. In this 

context, PBK modelling has been regarded as the most appropriate approach to 

integrate in vitro data for the assessment of dose-response relationships for adverse 
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effects observed in humans (Coecke et al., 2013). Therefore, the aims and key results 

of this study were 

 

I. To examine the suitability of publicly available generic PBK models to derive 

BE values based on agreed reference values that can then be used in a 

screening level mixture risk assessment using HBM data (Chapter 2). The aim 

was to establish a method to interpret HBM data on multiple chemicals easily, 

e.g. for prioritisation purposes. Two models were used to predict safe urinary 

concentrations following oral exposure to a safe dose, i.e. a TDI or RfD value. 

Safe urinary-level concentrations are termed BERfD and BETDI values. In order to 

test the performance of both PBK models, urine-level concentrations were 

predicted on the basis of estimated daily intakes of the chemicals considered, 

which were provided with other HBM data from cohorts of Norwegian 

mothers and children and Danish children. These simulated urine 

concentrations were compared to HBM data which capture measurements of 

these compounds or their metabolites present in the urine of these cohorts. A 

single substance and mixture risk assessment were performed with predicted 

safe concentrations, BERfD and BETDI, and measured concentrations to 

demonstrate how such data may be used in a risk assessment context. 

 

It was demonstrated that, despite the limitations of both models applied, 

IndustChemFate (ICF) and Httk, PBK models help to evaluate HBM data in a 

risk assessment context. The limitations of ICF related mainly to the inability 

of the model to reach steady-state concentrations for most compounds tested 

and the substantial number of input parameters required to perform 

simulations. Limitations of the current version of Httk were associated with 

the inability to simulate metabolite concentrations; this explains why the 

model could not be used to predict urine concentrations of phthalates. As Httk 

has recently been developed (Pearce et al., 2017), studies such as the 

comparison of urine-level EDI (BEEDI) to measured urine concentrations 

presented in this thesis can help to validate this model. However, more studies 

are needed to validate this model fully and adequately interpret the results 

obtained here. High confidence data, such as EDI and measured urine 
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concentrations for which key uncertainties have been quantified are 

necessary, as well as increasing use of in vitro data in which the free and actual 

toxic concentration is measured. Although the comparison of BEEDI to 

measured urine concentrations showed a difference of, on average, two to 

three orders of magnitude, this may not only be as a result of the performance 

of Httk performance but also due to uncertainties underlying input values (i.e. 

EDI, TDI and RfD).  

 

These input values, in particular EDI, but also the accuracy of urine 

measurements, need to be challenged to explain the differences between 

predicted BEEDI and measured urine concentrations. Uncertainties underlying 

these values were acknowledged; such uncertainties underlying EDI may relate 

to source variability, variability of input parameters to calculate EDI, 

incomplete capture of precursor compounds etc. However, their 

quantification, even though necessary in order to interpret predicted results 

with higher confidence, exceeded the scope of this study. Therefore, one of 

the main conclusions from this Chapter was that future efforts are needed to 

quantify uncertainties related to EDI and urine concentration measurements. 

This may be achieved by using probabilistic methods and a range of EDI and 

urine concentration values which have been established with a variety of 

methods (National Research Council, 2009). The uncertainties underlying the 

reference values (i.e. TDI, RfD) relate to the periodic reassessment of these 

values in which new data may be considered and may result in the derivation 

of a reference value lower than the previously adopted one. 

 

Predicted BERfD and BETDI values were considered to be conservative, 

particularly since previously established BE values were three to four orders of 

magnitude higher than those derived here. This was also reflected and taken 

into account when comparing the results of the mixture risk assessment based 

on the 5th percentile of the BETDI distribution to those based on the median 

BETDI. 

 

A refined mixture risk assessment only groups substances leading to the same 

adverse outcome via the same mechanism of action (MoA). Since the approach 
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taken here grouped substances according to their structural similarity (i.e. 

phenols and parabens) independent of their MoA, the mixture risk assessment 

results were to be interpreted as worst-case scenarios (most conservative). In 

cases where the crude risk assessment indicates an unacceptable risk, a more 

refined risk assessment is needed before taking risk management measures. 

Overall, the aim of Chapter 2 was therefore fulfilled since it showed that 

generic PBK models, such as Httk, may be applied to analyse HBM data in the 

chemical risk assessment context. How to perform such an analysis was 

explained in detail. However, as outlined earlier, more studies with high 

confidence data are needed to further validate such models. 

 

II. The second aim was to develop a human-relevant PBK model based on 

ordinary differential equations available in the public literature and which can 

be used to quantify the relationship between an administered dose and 

concentrations in key organs of the human body over time for a broad range 

of chemical substances (Chapter 3). The reason why a new PBK model was 

generated as opposed to using a publicly available one, such as Httk, for 

further analysis was to ensure full transparency and flexibility when using it in 

conjunction with a subsequently generated mechanistic kidney model 

(Chapter 4). Full transparency means knowing all parameter values and 

algorithms used in the model and, whenever an error occurred or an 

unexpected result was simulated, being able to get to rationalise and explain 

the issue and rectify it. Full flexibility characterises a model such that it may be 

easily amended and extended to fulfil the objective of a new study – in our 

case, the objective was to couple the PBK model to a mechanistic kidney model 

and apply both to predict concentration-time profiles in proximal tubular cells 

following oral exposure, in healthy and renally-compromised individuals. 

 

A literature review showed that, in comparison to the high number of 

publications on PBK models, only a small proportion of these include 

information on the model structure and ODEs in full detail. Therefore, the 

development, parameterisation and validation of the model generated in the 

frame of this thesis was described with an extensive level of detail so that 

researchers who intend to build a PBK model in the future may use it as 
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guidance. With increasing regulatory acceptance of PBK study results for the 

registration of pharmaceuticals and other chemicals (e.g. industrial, 

pesticidal), there is increasing demand for expert knowledge in this area. The 

information presented here offers a solid starting point to gain expert 

knowledge in PBK modelling. Also, transparent publication of PBK models and 

applied data is vital to build credibility in predicted results and confidence in 

using these for risk assessment and regulatory decision-making (Cohen Hubal 

et al., 2019). 

 

The PBK model generated here contained compartments of 15 major human 

organs and tissues and included mathematical terms representing key 

physiological processes (e.g. tissue permeation, hepatic and renal elimination, 

oral absorption, enterohepatic recirculation and biliary elimination). In order 

to gauge whether the model predicted well over a significant applicability 

domain, the PBK model was parameterised and validated with nine substances 

covering a broad physico-chemical space. For each compound, a local 

sensitivity analysis of the impact of model parameters on the simulated venous 

blood concentration profile and fitting of most sensitive parameters were 

performed. Resulting simulations demonstrated a good representation of 

experimentally established data which were quantified with the calculation of 

goodness-of-fit parameters measuring model accuracy. According to the 

criteria outlined in the WHO/IPCS Guidance on the Characterisation and 

Application of Physiologically Based Pharmacokinetic Models in Risk 

Assessment (IPCS WHO, 2010), the level of confidence in the PBK model 

presented was considered to be good. 

 

Limiting factors of the PBK model which were not considered in the current 

version of the model were transporter-driven kinetics, tissue-specific partition 

coefficients, differences in transit rates through the gastrointestinal tract, 

uptake through the skin or lungs and metabolism in tissues other than the 

liver. Also, since this PBK model was tested and validated to simulate the 

kinetics of small molecular weight chemicals, and the application of these 

models goes far beyond such chemical classes, there is a need to assess how 

well this model performs to predict the kinetics of, for instance, nanoparticles, 
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large biopharmaceuticals or even microbial pathogens. The kinetics of 

nanoparticles are driven by moving from the blood compartment into the 

interstitial spaces of organs by extravasation or transcytosis, opsonisation to 

facilitate phagocytotic uptake into macrophages and transport into the venous 

blood via the lymphatic system (Li et al., 2017; Aborig et al., 2019). Therefore, 

ODEs for nanoparticle PBK models are fundamentally different to those 

described in this thesis. 

 

When applying this PBK model in further kinetics studies, the quality of 

simulation results depend strongly on the availability and quality of input data 

for the chemical under consideration. For data poor chemicals, PBK modelling 

results are typically used for rapid screening purposes while for data rich 

substances, the model may be refined to answer a specific research question 

(Cohen Hubal et al., 2019). In many cases, in vitro data are used to inform such 

models and scaling is needed to extrapolate to an in vivo activity. The in vitro 

value most typically used is intrinsic hepatic clearance established in liver 

microsomes, hepatocytes or liver slices. For this, scaling approaches have been 

established (Barter et al., 2007) but not necessarily for other in vitro data. This 

issue is discussed further in Chapter 4 with regard to metabolism in the kidney. 

 

In summary, the aim of Chapter 3 was fulfilled since a human-relevant PBK 

model was successfully developed which can be used to quantify the 

relationship between an administered dose and concentrations in key organs 

of the human body over time for a broad range of chemical substances. This 

was shown in further detail in Chapter 4 where the PBK model was applied and 

extended. 

 

III. The third aim was to develop a mechanistic model of the kinetics of drugs in 

the kidney with specific reference to salicylic acid (SA), a major metabolite of 

aspirin (ASA) (Chapter 4). Twenty-three renal blood, cellular and luminal 

compartments were defined resembling the structure of a nephron, 

connecting to a collecting duct and surrounded by vasculature. The 

quantification of all compartment volumes was described in sufficient detail to 
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enable them to be reproduced. However, since the distribution of the 

medullary volume among medullary compartments may need revising, it is 

appreciated that the data in the public literature may not be sufficient to 

quantify the medullary volumes with high confidence. A revision is needed in 

particular for assessments of toxicity endpoints which occur mainly in the 

medulla and for which the quantification of substance concentrations in 

medullary compartments are required. This highlighted one of the pressing 

issues in quantitative in silico toxicology: the lack of readily usable human-

based quantitative data, in particular of high quality.  

 

Studies such as those in this thesis help to identify data gaps so that they may 

be filled in the future. Computational methods may also be used to estimate 

certain parameter values but in cases where considerable uncertainty 

underlies these it will be difficult to estimate all of these values with high 

confidence.  

 

ODEs were generated which include mathematical terms representing major 

renal kinetic processes for SA such as blood and luminal fluid flows, glomerular 

filtration, active and passive secretion and reabsorption processes, and 

metabolism to SU and glucuronides. Then, in line with the first objective (i) of 

Chapter 4, this sub-compartment kidney model was embedded in our 

previously developed PBK model, in order to be able to predict proximal 

tubular cell concentrations from an oral dose. The mechanistic kidney model, 

in conjunction with the full-body PBK model, was validated with data on the 

fractions of a dose excreted in urine as SA, ASA, SU and glucuronides. 

 

In line with the “Toxicity Testing in the 21st Century” paradigm, a considerable 

proportion of data used for the mechanistic kidney model were based on 

alternative methods and, to a high degree, were human-based. However, the 

transporter related 𝐽max value which had the most impact on all predicted 

proximal tubular cell concentrations in both higher dose scenarios for all three 

virtual individuals was generated in a mouse protein in vitro model. This value 

was also considerably higher than any other 𝐽max value used in the kidney 

model. This is why we estimated that this value has much higher uncertainties 
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than much lower 𝐽max values which were established in a human kidney cell 

line. The issue is that even though the model was based predominantly on 

human data, a single animal-based value may have a significant impact on the 

predicted outcome. This concern needs to be interpreted with care and 

validated with further data. 

 

This study adds to the efforts of using in vitro sub-cellular level data (e.g. 

transporter or metabolism 𝑉𝑚𝑎𝑥 and 𝐾𝑚), sub-organ level data (such as data 

used to define compartment volumes) and organism level data (e.g. the clinical 

kinetic data used for model validation) for the generation and validation of a 

multiscale model. In this context, an IVIVE approach was applied to scale sub-

cellular level data to organism level data (assuming two kidneys per person). 

Limitations of this IVIVE approach were addressed in the context of scaling up 

glucuronidation in vitro data and it was highlighted that additional scaling 

factors (e.g. RAF, REF) are needed. 

 

The second objective (ii) of this study was to investigate whether a quantitative 

relationship can be established between therapeutic doses of SA, predicted 

proximal tubular cell concentrations in young and elderly virtual individuals 

and toxicity events in proximal tubular cells. For this, key parameters of the 

model, which was initially set up for a young and healthy adult, were adjusted 

to simulate kinetics of two virtual elderly individuals (one at risk of CKD and 

one with signs of renal dysfunction). This objective addressed the issue of 

interindividual variability which is of particular importance since the vast 

majority of acute renal failures occurs in elderly patients. Since no significant 

difference in the results of the sensitivity analyses and predictions was noted 

for both elderly individuals, it is suggested to decrease certain parameter 

values (e.g. the GFR or renal blood flow) more for the elderly with signs of renal 

dysfunction to evaluate whether a greater difference in predicted results is 

observed. For this, it would be particularly beneficial to investigate whether 

additional data may be obtained from the public literature or elsewhere. 

 

Due to the lack of human data, the toxicity threshold applied to discriminate 

between toxic and non-toxic concentrations in the proximal tubular cell 
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compartments was derived from an animal assay with rat liver mitochondria. 

Even though SA is a very data rich chemical, only a few quantitative toxicity 

data were identified which inform the AOP illustrated in Figure 4.1 for SA. This 

pathway is initiated by the interaction of a substance with organic anion 

transporters located in the basolateral membrane of proximal tubular cells. 

There, these substances subsequently accumulate and uncouple or inhibit 

mitochondrial oxidative phosphorylation. The mechanistic kidney model study 

in Chapter 4 simulated this part of the AOP and added information on different 

dosing and individual scenarios. Following the AOP, uncoupling or inhibition of 

mitochondrial oxidative phosphorylation may lead to acute tubular necrosis 

and acute renal failure. At this stage, it is typically unlikely to obtain data which 

clarify at which (internal or external) dose acute tubular necrosis is induced in 

humans. More attainable are data on the exposure level causing the adverse 

outcome, in this case acute renal failure, even though these are usually 

restricted to poisoning case reports or clinical data of patients. The quality and 

usability of these data need to be assessed carefully since case reports often 

do not contain a reliable quantification of the dose and as patients may have 

preconditions or various comorbidities. Reliable dosing/exposure information 

leading to adverse outcomes in humans is needed to bridge the knowledge gap 

between effects observed in vitro and adversities induced in the human in vivo 

context. This information may be in the form of HBM data or clinical 

information for individuals who have experienced, or are susceptible to 

develop, adverse renal effects, which are potentially more common in highly 

exposed residential or occupational areas. HBM data provide a distribution of 

exposure for selected substances and clinical information, which could include 

novel kidney disease biomarkers (Pletz et al., 2018b). Population-level HBM 

and kidney disease biomarker data may be used to establish probabilistic 

distributions of exposure-response relationships. For example, a probability 

distribution informs about the level of exposure at which, for instance, 5%, 

50% or 95% of a population are expected to develop acute tubular necrosis;  

this may provide more confidence in a chosen toxicity threshold than one 

single (deterministic) value (Chiu and Slob, 2015). Overall, a probabilistic 

approach helps to quantify uncertainties, however, such probability 

distribution data are mostly unavailable.  
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In summary, the aim of Chapter 4 – to develop a mechanistic model of the 

kinetics of SA in the kidney – was achieved, along with both specific objectives: 

to embed the sub-compartment kidney model in our previously developed PBK 

model and validate it with full-body kinetic data; and to investigate the 

quantitative relationship between exposure to SA, predicted proximal tubular 

cell concentrations in young and elderly virtual individuals and toxicity events 

in proximal tubular cells. Both objectives (i and ii) are novel in the field of in 

silico nephrotoxicology as, to date, no study exists in the public literature 

which offers a mechanistic kidney model embedded in a full-body PBK model 

which was subsequently used to simulate concentrations at the site of toxicity 

for the young and healthy, as well as vulnerable individuals. This study adds to 

the efforts in toxicology to progress towards a more quantitative human 

pathway-based science. However, since not all parameter values are human-

based and uncertainties underlying the data used in this model have not been 

quantified, e.g. through a distribution of dose-response relationships, there is 

still great potential for further improvement. 

 

 

5.2 Conclusions related to mechanistic modelling in nephrotoxicology 

Nephrotoxicity is a complex endpoint which often occurs gradually or as a result of 

other pathologies. Therefore, even sophisticated toxicity testing and clinical trials 

have not provided the mechanistic understanding needed to adequately quantify 

exposure-response relationships for chemical risk assessments. In silico models, 

including PBK and organ-level mechanistic models, have been evolving steadily and 

have the potential to contribute immensely to the field of nephrotoxicology.  

 

If the development of AOPs and multi-scale models is currently considered to be the 

panacea of 21st century toxicology, knowledge and information spanning molecular 

to population levels are necessary to generate multi-scale models resembling the 

structure of kidney toxicity-related AOPs. In order to improve and expedite the 

development of in silico models for kidney toxicity, at least three – highly interrelated 

– problems have to be overcome. These are: 
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i) The identification and definition of effects to the kidney that may be brought 

about by chemical exposure. 

ii) A full description of relevant mechanisms of action (and their translation to 

AOPs) relevant to kidney toxicity. 

iii) Access to appropriate data ranging from in vivo through to in vitro and 

molecular responses.  

 

The identification of effects to the kidney requires existing knowledge to be extended 

and unified. Networked AOPs may facilitate this, although these efforts may require 

a systematic evaluation of current knowledge and data. With regard to the data from 

which to develop the models, no assay exists which is specifically targeted towards 

renal toxicity endpoints. In addition, interspecies variability between rats and 

humans is known to be relevant for certain pathways (i.e. certain transporter-driven 

and α2μ-globulin related nephrotoxicity). Therefore, the usefulness of in vivo data in 

this area needs to be assessed carefully. Human and in vitro assay data are widely 

available but need to be utilised with care due to challenges related to their relevance 

to the known nephrotoxicity mechanisms, comparability of studies and other factors 

related to data interpretation. For instance, whilst providing the most human-

relevant information, the quality and usability of poisoning case reports or patient 

adverse event reports need to be reviewed thoroughly, since case reports often do 

not contain a reliable quantification of the dose and patients may have various pre-

existing comorbidities. Thus, a strategy to utilise existing data at different levels of 

AOPs may prove to be extremely effective to provide information relating to 

chemical toxicity and risk assessment as this does not require full testing of every 

compound and could be a solution to model development. In addition, as the lack of 

readily available data is considered to be a key limiting factor when it comes to the 

generation of future computational models in this field, the following 

recommendations may help to drive future modelling efforts forward: 

 

(i) There is a need to improve understanding of mechanisms of nephrotoxicity, how 

novel, recently proposed, biomarkers relate to these mechanisms and how 

biomarker data are related quantitatively to each other at various dose levels. This 

will result in alternative sources of data and could be facilitated by appropriate 

statistical approaches such as Bayesian networks. With these, quantitative 
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relationships between KEs within an AOP from multiple biological levels may be 

established.  

(ii) A global review of the quality of currently available kidney toxicity data is needed 

as well as an assessment of how these data relate to each other (e.g. cellular vs. tissue 

vs. organ-level effects). Information would be leveraged more readily if databases 

allowed for searches on both compounds and mechanistic data (including dosing 

information) enabling discrimination between the various nephrotoxicity endpoints.  

(iii) Generation of more AOPs for nephrotoxicity with MIE and KE related data being 

searchable in a central database linked to respective mechanistic toxicological data 

would also assist the development of more computational models. 

 

The development of a mechanistic model spanning an entire AOP requires an 

extensive amount of data, time and resources. Therefore, it appears inefficient to 

aim for a mechanistic model for each AOP that has been generated. Other in silico 

approaches which have been proposed to quantify an AOP apply dose-response 

modelling and dynamic Bayesian networks (Zgheib et al., 2019). The former defines 

empirical equations that fit the data which may, however, over-simplify underlying 

biology. The latter derives probabilistic relationships between components of an 

AOP, e.g. between KEs or the MIE and a KE. This method is less data-hungry than a 

mechanistic model. However, the data used to inform the model are ideally obtained 

using uniform dose and time schedules across experiments. In practice, this requires 

that data need to be experimentally generated for the model since it will be highly 

unlikely to source adequate data from the public literature. Also, it might not be 

achievable to observe various KEs within the same time frame since molecular 

reactions happen in seconds, cells react in hours and tissues within days (Zgheib et 

al., 2019).  

 

 

5.3 Conclusions related to mechanistic modelling in chemical risk assessment 

The work undertaken within this thesis covered several aspects of how PBK and 

organ-level mechanistic modelling may be used to assess the risk posed by chemicals. 

For all modelling efforts, compounds were selected which are considered data rich. 

However, as shown for the active transporter data for SA in Chapter 4, even for these 
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data rich compounds a full set of parameter values, based on human in vitro or 

clinical studies, could not be found. For the vast majority of substances, fewer data 

are available. For these substances, modelling needs to be feasible using fewer data 

and/or more data need to be generated in a systematic way to inform such models. 

Since PBK and mechanistic models have recently been used increasingly, these will 

continue to be applied with growing frequency in the field of chemical risk 

assessment. With the growing acceptance of AOPs, researchers are motivated to 

generate multi-scale in silico models which evaluate the quantitative relationships 

between two or more KEs. In cases where data allow it, these relationships may be 

investigated by applying mechanistic models. Alternatively, a combination of various 

approaches as described in Zgheib et al. (2019) may provide a valuable insight as all 

have different advantages. In other human health hazard assessment areas such as 

benchmark dose (BMD) estimation, results of a set of accepted dose-response 

models have been used to derive a Bayesian model averaging (BMA) BMD estimate 

(Shao and Gift, 2014). Potentially, a similar approach or strategy may be derived to 

leverage all results in a systematic way. In cases where data gaps prevent the 

application of a mechanistic model, other less data hungry methods may be applied 

and further extended once more data become available.  

 

Researchers have increasingly been using IVIVE approaches, including PBK modelling, 

for screening and risk assessment on the basis of in vitro assay results (Wetmore et 

al., 2012; Martin et al., 2015; Fabian et al., 2019). Therefore, for data poor substances 

which are not addressed in any AOP but showed toxicity-related effects in in vitro 

assays, PBK models such as that generated in Chapter 3 may be used for initial 

screening purposes to predict an expected target organ concentration. This 

concentration may then be compared to the in vitro study results – potentially 

following a fingerprint method which is briefly outlined in the following and final 

subchapter (Yoon et al., 2012). If the predicted target organ concentration is below 

the effect concentration observed in the in vitro assay, it may be argued that no 

further assessment is necessary at this stage. If the predicted target organ 

concentration is above the in vitro effect concentration, a more detailed assessment 

should then be undertaken. Another aspect which has been discussed in the context 

of understanding the toxic concentration in an in vitro assay is the free and 

bioavailable concentration (Blaauboer, 2010; Kramer, 2010). The free concentration 
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can deviate greatly from the nominal concentration which has been added to the in 

vitro system due to binding to the plastic of the culture plate, binding to proteins in 

the medium or evaporation from the medium. Modelling approaches to calculate the 

free concentration exist (Kramer, 2010; Paini et al., 2017b) and would have to be 

considered where possible. Missing PBK parameter values for a data poor substance 

may be obtained from QSAR models (e.g. calculation of the absorption rate constant 

using Winiwarter et al. (1998), model 3b, and Peters (2008a) as performed in 

Chapters 2 and 3), QSPR models (such as those used in IndusChemFate as explained 

in Jongeneelen and ten Berge (2011)) or read-across (i.e. using parameter values of 

substances which are structurally similar based on which similar kinetics may be 

assumed). Again, the use of a set of computational methods to evaluate data poor 

substances is vital to shed light on data gaps or compensate for limitations of in vitro 

approaches. Since there is typically no agreement on which computational methods 

are best to use, using a set of models may add to variability of results which needs to 

be characterised and understood. 

 

Initial screening to prioritise data poor substances based on in vitro toxicity data may 

even be improved if external exposure data are considered (Wetmore et al., 2012). 

HBM data are typically only generated for selected substances which implies that 

they may not be available for data poor (with regard to toxicity data) substances. 

However, external exposure data may be calculated from intake and inhalation rates, 

use or emission patterns and environmental concentrations, such as EDIs calculated 

from food, dust and air samples (Cequier et al., 2014; Sakhi et al., 2014; Liagkouridis 

et al., 2017) (see Chapter 2). These estimations bear more uncertainties than 

measured exposure data as many factors influence the extent an individual or 

population is exposed, e.g. distribution of a substance within food, estimation of 

amount ingested, weather conditions influencing environmental concentrations etc. 

(WHO, 2005). However, in the absence of more specific data, these estimations may 

be used for a crude risk assessment.  

 

Overall, with respect to all modelling scenarios discussed in this thesis, an iterative 

approach is necessary, in particular if the dataset used for a model is incomplete or 

its underlying uncertainties have not been assessed. The challenge to reproduce a 

PBK model from one publication (as discussed in Chapter 3) highlighted the need for 
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uniform methods for the reporting of computational models to ensure that correct 

and complete information is captured and can be reused. Moving forward, it is clear 

that experimental and computational efforts have to go hand-in-hand, along with the 

development of mechanistic knowledge, to achieve much needed progress in this 

area. 

 

5.4 Future work 

Depending on the data available, topics in this thesis may be extended in many ways, 

for instance by testing the model(s) with different substances which principally 

requires the update of active and passive transport and metabolism parameter 

values. For the evaluation of distal tubular cell toxicity, it may be valuable to revisit 

medullary compartment volumes first, since the distal tubules follow the loop of 

Henle which is associated with the medulla. 

 

No significant difference in the results of the sensitivity analyses and simulations was 

observed for both virtual elderly individuals. Therefore, the public literature and 

databases need to be searched for distributions of parameter values and dose-

response relationships observed in individuals with renal dysfunction. Simulations 

can then be re-performed to assess how results for the elderly individual with signs 

of renal dysfunction differ from those of the elderly individual at risk of CKD or the 

young and healthy individual.  

 

It would be more challenging to use the model to elucidate other mechanisms of 

nephrotoxicity, such as haemodynamic alteration, tubular obstruction and 

glomerular, tubulo- and/or interstitial nephritis (see Figure 1.1). As outlined in 

Chapter 1, the research need for a better understanding of nephrotoxicity pathways 

clearly exists. The most feasible option is to develop SAR profilers for each individual 

nephrotoxicity endpoint and couple the mechanistic kidney model with these 

profilers. Initial work has been performed for the generation of an “in silico profiler” 

for nephrotoxicity in general (Pletz et al., 2018a). The existing knowledge needs to 

be rationalised such that a robust set of structural alerts can be established. Such an 

“in silico profiler” will assist in the designing-out of toxicity as well as grouping, 

allowing for read-across, especially to estimate the chronic toxicity of data-poor 
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substances. A potentially rich source of information to develop further structural 

information are the data resultant from ToxCast. It has been shown that fingerprints 

using available ToxCast data on kidney tissue cell lines may be developed (Madden 

et al., 2017). Such fingerprints could consist of a defined number of in vitro assays 

reflecting the toxic mechanism of a specific group of known nephrotoxicants. If a new 

chemical is shown to generate hits according to one of the defined fingerprints, the 

likelihood of the chemical to cause nephrotoxic effects is considered to be high. A 

more mechanistic and data-demanding option would be to add toxicodynamic 

components to the mechanistic kidney model which help understand concentration-

effect relationships in specific compartments of the kidney.  
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7.0 APPENDICES 

Appendix 2.A: Supplemental information on simulations with IndusChemFate and Httk 

Table 2.A.1: Parameter values used for predictions on DnBP, BBzP, bisphenol A, triclosan and their metabolites with IndusChemFate, Part A 

Abb. Chemical 

name 

Metabolite 

of 

CAS Molecular 

Weight (g/mol) 

(EPA ) 

Density (mg/cm3 

or grams/litre) 

Vapour 

Pressure (Pa) 

Log(Kow) in 

blood pH 7.4 

Water 

Solubility 

(mg/litre) 

DnBP Dibutyl 

phthalate 

-/- 84-74-2 278 1,050 (av est) 2.68 × 10−3  4.50 11.2 

MnBP Mono-n-butyl 

phthalate 

DnBP  131-70-4 222 1,180 (av est) 1.88 × 10−3  

(av est) 

2.77  

(av est) 

769  

(av est) 

BBzP Butylbenzyl 

phthalate 

-/- 85-68-7 312 1,130 (av est) 1.01 × 10−3 4.73 2.69 

MBzP Mono-benzyl 

phthalate 

BBzP  2528-16-7 256 1,270 (av est) 1.26 × 10−4  

(av est) 

2.80  

(av est) 

119  

(av est) 

TCS Triclosan -/- 3380-34-5 289 1,510 (av est) 1.30 × 10−3  

(av est) 

4.76 9.99 

TCS-glu Triclosan 

glucuronide 

TCS 63156-12-7 463 1,780 (av est) 3.80 × 10−8 

(av est) 

2.26  

(av est) 

73.7 

 BPA Bisphenol A -/- 80-05-7 228 1,170 (av est) 1.12 × 10−4 

(av est) 

3.32 120 

Abb: abbreviations; -/- : not applicable; (av est): average estimate; Reference: All parameter values illustrated in Part A of this table are sourced  

from U.S. EPA, 2019; up to three significant figures are reported. 
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Table 2.A.1: Parameter values used for predictions on DnBP, BBzP, bisphenol A, triclosan and their metabolites with IndusChemFate, Part B 

Abb. Vmax Liver 

(parent[total] 

μmol/kg tissue/hr) 

Km Liver 

(parent[total] 

μmol/litre) 

Enterohepatic 

removal (relative 

to liver venous 

blood) 

Polar Surface 

Area (PSA) 

(A^2) 

Hydrogen Bond 

Donor (HBD) 

Oral absorption 

rate ka (1/h) 

Elimination 

half-life (t1/2) 

(h) 

Time to steady state 

(estimated; t1/2*5) 

(h) 

DnBP 41,2801 99.71 12 52.63 03 9.854 65 30 

MnBP -/- -/- 12 -/- -/- -/- 2.66 13 

BBzP 173,0407 16.17 18 52.63 03 10.74 249 120 

MBzP -/- -/- 18 -/- -/- -/- 249 120 

TCS 34.3510 122.510 011,12 29.53 13 10.84 2911 145 

TCS-glu -/- -/- 011,12 -/- -/- -/- 2911 145 

BPA 11,30413 45.813 0.214,15 (est) 40.53 23 2.84 5.416 27 

Abb: abbreviations; -/- : not applicable; (est): estimated; For none of the chemicals selected, information on resorption in renal tubuli was found in the literature. Therefore, for all chemicals a 

question mark (?) was entered as input value which, according to the documentation in ICF, means that this value is unknown. The time to reach steady state was assessed using the equation 

Tss=5*t(1/2), with t(1/2) being the elimination half-life. Properties of the BPA glucuronide used are those saved in the IndusChemFate model; hence BPA-glu is not included in this table.  

References: 1Hanioka et al., 2012; 2ATSDR, 2018; 3U.S. National Center for Biotechnology Information, 2018; 4calculated using PSA, HBD and the Winiwarter et al. (1998) model 3b to derive the 

logarithm of the effective permeability (Peff) and Peters (2008, Eq. 1) to then calculate the ka; 5Aylward et al., 2009; 6Koch et al., 2012; 7Takahara et al., 2014; 8Eigenberg et al., 1986; 9European 

Commission, 2007; 10Ashrap et al., 2017; 11European Commission Scientific Committee on Consumer Safety (SCCS), 2009; 12ECHA, 2015; 13Coughlin et al., 2012; 14Teeguarden et al., 2005; 15Yang 

et al., 2015; 16Völkel et al., 2002.
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Appendix 2.B: Mixture assessment results with the 95th percentile and 

median of measured urine concentrations and the 5th percentile of the BETDI 

distribution 

A  

B  

C  

Figure 2.B.1: Hazard Index calculated with the 95th percentile concentration of a 

chemical in urine with respect to the BE value selected on the basis of the 5th 

percentile of the BETDI distribution. A. Norwegian female adults, B. Norwegian 

children, C. Danish children. 
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A  

B  

C  

Figure 2.B.2: Hazard Index calculated with the median concentration of a chemical in 

urine with respect to the BE value selected on the basis of the 5th percentile of the 

BETDI distribution. A. Norwegian female adults, B. Norwegian children, C. Danish 

children. 
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Appendix 3.A: Ordinary differential equations (ODEs) to generate the PBK 

model 

All terms presented here are defined in subchapters 3.1.1.1 and 3.1.1.2.  

Somatic compartments: 𝐿𝑈 = lung; 𝐻𝐸 = heart; 𝑇𝐻 = thymus; 𝐴𝐷 = adipose 

tissue; 𝑀𝑈 = muscle; 𝐵𝑅 = brain; 𝑆𝐾 = skin; 𝐾𝐼 = kidney; 𝑆𝑃 = spleen; 𝑃𝐴 = 

pancreas; 𝐿𝐼 = liver; 𝐻𝐴 = hepatic artery; 𝑆𝑇 = stomach; 𝐺𝑈 = gut; 𝑉𝐸 = venous 

blood; 𝐴𝑅 = arterial blood; Oral absorption compartments: 𝑆𝑇𝐿 = stomach lumen; 𝐷𝑈𝑂 = duodenum lumen; 𝐽𝐸1 = jejunum 1 lumen; 𝐽𝐸2 = jejunum 2 lumen; 𝐼𝐿1 = 

ileum 1 lumen; 𝐼𝐿2 = ileum 2 lumen; 𝐼𝐿3 = ileum 3 lumen; 𝐶𝐴𝐸 = caecum lumen; 𝐴𝐶𝑂 = ascending colon lumen; Parameters: 𝑄 = blood flow rates corresponding to 

an organ or tissue compartment; 𝐾𝑝 = tissue partition coefficient; 𝑅 = whole blood 

to plasma concentration ratio; 𝐶𝐿ℎ𝑒𝑝 = hepatic clearance rate; 𝐸𝐻𝑅 = 

enterohepatic recirculation; 𝑘𝑏𝑖𝑙 = biliary elimination rate constant; 𝐶𝑃 = 

conversion of the metabolite to the parent compound; 𝑘𝑒(𝑟) = renal elimination rate 

constant; 𝑘𝑎 = absorption rate constant in stomach (𝑘𝑎(𝑆𝑇)) and gut (𝑘𝑎(𝐺𝑈)); 𝑘𝑖𝑙 = 

intestinal loss rate constant; 𝑓𝑢(𝑝) = fraction unbound in plasma; 𝐾𝐷 = dissolution 

rate constant; 𝐺𝐸𝑅 = gastric emptying rate; 𝑘𝑡 = transit rate in small intestine 

(𝑘𝑡(𝐺𝑈)) and colon (𝑘𝑡(𝐶𝑂)). 

 

For each somatic compartment, the ODE represents the change in concentration 

within that tissue compartment over a concentration gradient between the capillary 

and tissue (𝐶𝑏𝑙𝑜𝑜𝑑 − 𝐶𝑡𝑖𝑠𝑠𝑢𝑒; Boroujerdi, 2015). The binding to fatty acids (e.g. in 

plasma proteins or erythrocytes) as well as the perfusion rate (expressed as the tissue 

blood flow rate over the tissue volume) are considered. ODEs of eliminating tissues, 

e.g. liver and kidney, include a term representing processes of elimination or 

clearance. Compartments are located within the model and interlinked according to 

human physiology. 

 

Throughout t is time and concentration is measured in the unit mM. All compartment 

volumes (e.g. 𝑉𝑐𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, for all compartments defined above), blood flow rates 

(𝑄𝑐𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡) and other physiological parameters (including 𝐺𝐸𝑅, 𝑘𝑡(𝐺𝑈), 𝑘𝑡(𝐶𝑂)) 

are given in Table 3.1. All chemical-specific parameters used in Chapter 3 are 

presented in Tables 3.3-3.5. 

 



247 

 

 

3.A.1 Differential equations for somatic compartments: 

1. Lungs (LU) 𝑑𝐶𝐿𝑈𝑑𝑡 =  𝑄𝐿𝑈𝑉𝐿𝑈  (𝐶𝑉𝐸 − (𝐶𝐿𝑈 × 𝑅)𝐾𝑝 ) 

 

2. Non-eliminating organs and tissues  𝑑𝐶𝑇𝑑𝑡 = 𝑄𝑇𝑉𝑇 (𝐶𝐴𝑅 − 𝐶𝑇 × 𝑅𝐾𝑝 ) 

where T represents 𝐻𝐸 = heart, 𝑆𝑃 = spleen, 𝑇𝐻 = thymus, 𝑃𝐴 = pancreas, 𝐴𝐷 = 

adipose, 𝑀𝑈 = muscle, 𝐵𝑅 = brain, 𝑆𝐾 = skin. 

 

3. Liver (LI) 𝑑𝐶𝐿𝐼𝑑𝑡 = 1𝑉𝐿𝐼  (𝑄𝐻𝐴 × 𝐶𝐴𝑅 +  ∑ 𝑄𝑖 × 𝐶𝑖 × 𝑅𝐾𝑝 − 𝑄𝐿𝐼 × 𝐶𝐿𝐼 × 𝑅𝐾𝑝 − 𝐶𝐿𝐼 × 𝐶𝐿ℎ𝑒𝑝𝐾𝑝 × 𝑓𝑢(𝑝)
− 𝐸𝐻𝑅 × 𝑘𝑏𝑖𝑙 × 𝐶𝐿𝐼 × 𝑉𝐿𝐼𝐾𝑝 − 𝐶𝑃 × 𝑘𝑏𝑖𝑙 × 𝐶𝐿𝐼 × 𝑉𝐿𝐼𝐾𝑝 ) 

 

where i = 𝐺𝑈 (gut), 𝑆𝑇 (stomach), 𝑃𝐴, 𝑆𝑃; therefore: 

∑ 𝑄𝑖 ×  𝐶𝑖 ×  𝑅𝐾𝑝𝑖 = 𝑄𝐺𝑈 ×  𝐶𝐺𝑈  ×  𝑅𝐾𝑝 + 𝑄𝑃𝐴 ×  𝐶𝑃𝐴 ×  𝑅𝐾𝑝 + 𝑄𝑆𝑃 ×  𝐶𝑆𝑃 ×  𝑅𝐾𝑝+ 𝑄𝑆𝑇 ×  𝐶𝑆𝑇 ×  𝑅𝐾𝑝  

Also, hepatic artery (HA) blood flow equals:  𝑄𝐻𝐴 = 𝑄𝐿𝐼 − (𝑄𝐺𝑈 +  𝑄𝑃𝐴 +  𝑄𝑆𝑃 +  𝑄𝑆𝑇) 

4. Stomach (ST) 𝑑𝐶𝑆𝑇𝑑𝑡 = 𝑄𝑆𝑇 𝑉𝑆𝑇  (𝐶𝐴𝑅 − 𝐶𝑆𝑇 ×  𝑅𝐾𝑝 ) + 𝐴𝐴𝐵𝑆(𝑆𝑇)𝑉𝑆𝑇  
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5. Gut (GU) 𝑑𝐶𝐺𝑈𝑑𝑡 = 1𝑉𝐺𝑈  (𝑄𝐺𝑈  (𝐶𝐴𝑅 − 𝐶𝐺𝑈 ×  𝑅𝐾𝑝  ) +  𝐴𝑇𝐼𝐴) 

6. Kidney (KI) 𝑑𝐶𝐾𝐼𝑑𝑡 = 1𝑉𝐾𝐼  × [𝑄𝐾𝐼  (𝐶𝐴𝑅 − 𝐶𝐾𝐼 ×  𝑅𝐾𝑝  )] – 𝐶𝐾𝐼 × 𝑘𝑒(𝑟)𝐾𝑝  𝑥 𝑓𝑢(𝑝) 

7. Venous blood (VE) 𝑑𝐶𝑉𝐸𝑑𝑡 = 1𝑉𝑉𝐸  (∑ 𝑄𝑇 × 𝐶𝑇 × 𝑅𝐾𝑝 − 𝑄𝐿𝑈 × 𝐶𝑉𝐸  ) 

 

Excluding the gut, pancreas, spleen, stomach, and lung; (no venous infusion rate (VIR) 

included) 

∑ 𝑄𝑇  ×  𝐶𝑇 ×  𝑅𝐾𝑝 = 𝑖
𝑄𝐻𝐸 × 𝐶𝐻𝐸 ×  𝑅𝐾𝑝 + 𝑄𝐿𝐼 × 𝐶𝐿𝐼 ×  𝑅𝐾𝑝 + 𝑄𝐾𝐼 × 𝐶𝐾𝐼 ×  𝑅𝐾𝑝+ 𝑄𝑇𝐻 × 𝐶𝑇𝐻 ×  𝑅𝐾𝑝 + 𝑄𝐴𝐷 × 𝐶𝐴𝐷 ×  𝑅𝐾𝑝 + 𝑄𝑀𝑈 × 𝐶𝑀𝑈 ×  𝑅𝐾𝑝+ 𝑄𝐵𝑅 × 𝐶𝐵𝑅 ×  𝑅𝐾𝑝 + 𝑄𝑆𝐾 × 𝐶𝑆𝐾 ×  𝑅𝐾𝑝  

8. Arterial blood (AR) 𝑑𝐶𝐴𝑅𝑑𝑡 = 1𝑉𝐴𝑅  (𝑄𝐿𝑈 𝐶𝐿𝑈 × 𝑅𝐾𝑝  ) – ∑ 𝑄𝑖 × 𝐶𝐴𝑅𝑉𝐴𝑅   
 

where i = HE, HA, ST, GU, SP, KI, TH, PA, AD, MU, BR, SK; therefore: 

∑ 𝑄𝑖 × 𝐶𝐴𝑅𝑉𝐴𝑅 = 𝑄𝐻𝐸 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝐻𝐴 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝑆𝑇 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝐺𝑈 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝑆𝑃 × 𝐶𝐴𝑅𝑉𝐴𝑅− 𝑄𝐾𝐼 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝑇𝐻 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝑃𝐴 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝐴𝐷 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝑀𝑈 × 𝐶𝐴𝑅𝑉𝐴𝑅− 𝑄𝐵𝑅 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝑆𝐾 × 𝐶𝐴𝑅𝑉𝐴𝑅  
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3.A.2 Differential equations for oral absorption compartments: 

For each of the nine gastrointestinal compartments, the amounts undissolved 

(𝐴𝑈𝑁𝐷), dissolved (𝐴𝐷𝐼𝑆), degraded (𝐴𝐷𝐸𝐺) and absorbed (𝐴𝐴𝐵𝑆) from that 

compartment are calculated over time. Only dissolved amounts are subject to 

absorption. Amounts absorbed from the stomach lumen (𝐴𝐴𝐵𝑆(𝑆𝑇)) feed into the 

stomach compartment and amounts absorbed from any gut compartment including 

colon (𝐴𝐴𝐵𝑆(𝐺𝑈1−7) and 𝐴𝐴𝐵𝑆(𝐶𝑂)) feed into the gut compartment. 

 

9. Undissolved Stomach 𝑑𝐴𝑈𝑁𝐷(𝑆𝑇)𝑑𝑡 =  −𝐺𝐸𝑅 × 𝐴𝑈𝑁𝐷(𝑆𝑇) − 3𝐷𝑝𝑟𝑇 × 𝐴𝑈𝑁𝐷(𝑆𝑇)  (𝐾𝑆(𝑆𝑇) × 𝑆 − 𝐴𝐷𝐼𝑆(𝑆𝑇)𝑉𝑆𝑇𝐿 ) 

 

10. Dissolved Stomach 𝑑𝐴𝐷𝐼𝑆(𝑆𝑇)𝑑𝑡 =  −𝐺𝐸𝑅 × 𝐴𝐷𝐼𝑆(𝑆𝑇) + 3𝐷𝑝𝑟𝑇 × 𝐴𝑈𝑁𝐷(𝑆𝑇)  (𝐾𝑆(𝑆𝑇) × 𝑆 − 𝐴𝐷𝐼𝑆(𝑆𝑇)𝑉𝑆𝑇𝐿 )− 𝑘𝑖𝑙(𝑆𝑇) × 𝐴𝐷𝐼𝑆(𝑆𝑇) −  𝑘𝑎(𝑆𝑇) × 𝐴𝐷𝐼𝑆(𝑆𝑇) 

 

11. Degraded Stomach 𝑑𝐴𝐷𝐸𝐺(𝑆𝑇)𝑑𝑡 =  𝑘𝑖𝑙(𝑆𝑇) × 𝐴𝐷𝐼𝑆(𝑆𝑇) 

 

12. Absorbed Stomach 𝑑𝐴𝐴𝐵𝑆(𝑆𝑇)𝑑𝑡 =  𝑘𝑎(𝑆𝑇) × 𝐴𝐷𝐼𝑆(𝑆𝑇) 

 

13. Undissolved Gut 1 𝑑𝐴𝑈𝑁𝐷(𝐺𝑈1)𝑑𝑡 = 𝐺𝐸𝑅 × 𝐴𝑈𝑁𝐷(𝑆𝑇) − 𝑘𝑡(𝐺𝑈) × 𝐴𝑈𝑁𝐷(𝐺𝑈1)− 3𝐷𝑝𝑟𝑇 × 𝐴𝑈𝑁𝐷(𝐺𝑈1) × (𝐾𝑆(𝐷𝑈𝑂) × 𝑆 − 𝐴𝐷𝐼𝑆(𝐺𝑈1)𝑉𝐷𝑈𝑂 ) 
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14. Dissolved Gut 1 𝑑𝐴𝐷𝐼𝑆(𝐺𝑈1)𝑑𝑡 = 𝐺𝐸𝑅 × 𝐴𝐷𝐼𝑆(𝑆𝑇) − 𝑘𝑡(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈1)+ 3𝐷𝑝𝑟𝑇 × 𝐴𝑈𝑁𝐷(𝐺𝑈1) × (𝐾𝑆(𝐷𝑈𝑂) × 𝑆 − 𝐴𝐷𝐼𝑆(𝐺𝑈1)𝑉𝐷𝑈𝑂 )− 𝑘𝑖𝑙(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈1) − 𝑘𝑎(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈1)+ 𝐸𝐻𝑅 × 𝑘𝑏𝑖𝑙 × 𝐶𝐿𝐼 × 𝑉𝐿𝐼𝐾𝑝   
 

15. Degraded Gut 1 𝑑𝐴𝐷𝐸𝐺(𝐺𝑈1)𝑑𝑡 = 𝑘𝑖𝑙(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈1) 

 

16. Absorbed Gut 1 𝑑𝐴𝐴𝐵𝑆(𝐺𝑈1)𝑑𝑡 = 𝑘𝑎(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈1) 

 

17. Undissolved Gut 2-7 𝑑𝐴𝑈𝑁𝐷(𝐺𝑈𝑖)𝑑𝑡 = 𝑘𝑡(𝐺𝑈) × 𝐴𝑈𝑁𝐷(𝐺𝑈𝑖−1) − 𝑘𝑡(𝐺𝑈) × 𝐴𝑈𝑁𝐷(𝐺𝑈𝑖)− 3𝐷𝑝𝑟𝑇 × 𝐴𝑈𝑁𝐷(𝐺𝑈𝑖) × (𝐾𝑆(𝐺𝑈𝑖) × 𝑆 − 𝐴𝐷𝐼𝑆(𝐺𝑈𝑖)𝑉𝐺𝑈𝑖 ) 

 

18. Dissolved Gut 2-7 𝑑𝐴𝐷𝐼𝑆(𝐺𝑈𝑖)𝑑𝑡 = 𝑘𝑡(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈𝑖−1) − 𝑘𝑡(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈𝑖)+ 3𝐷𝑝𝑟𝑇 × 𝐴𝑈𝑁𝐷(𝐺𝑈𝑖) × (𝐾𝑆(𝐺𝑈𝑖) × 𝑆 − 𝐴𝐷𝐼𝑆(𝐺𝑈𝑖)𝑉𝐺𝑈𝑖 )− 𝑘𝑖𝑙(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈𝑖) − 𝑘𝑎(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈𝑖) 

 

19. Degraded Gut 2-7 𝑑𝐴𝐷𝐸𝐺(𝐺𝑈𝑖)𝑑𝑡 = 𝑘𝑖𝑙(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈𝑖) 

 

20. Absorbed Gut 2-7 𝑑𝐴𝐴𝐵𝑆(𝐺𝑈𝑖)𝑑𝑡 = 𝑘𝑎(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈𝑖) 

 

Where i = 2-7 and VGUi corresponds to VJE1, VJE2, VIL1, VIL2, VIL3, and VCAE. 
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21. Undissolved Colon 𝑑𝐴𝑈𝑁𝐷(𝐶𝑂)𝑑𝑡 = 𝑘𝑡(𝐺𝑈) × 𝐴𝑈𝑁𝐷(𝐺𝑈7) − 𝑘𝑡(𝐶𝑂) × 𝐴𝑈𝑁𝐷(𝐶𝑂)− 3𝐷𝑝𝑟𝑇 × 𝐴𝑈𝑁𝐷(𝐶𝑂) × (𝐾𝑆(𝐶𝑂) × 𝑆 − 𝐴𝐷𝐼𝑆(𝐶𝑂)𝑉𝐴𝐶𝑂 ) 

 

22. Dissolved Colon 𝑑𝐴𝐷𝐼𝑆(𝐶𝑂)𝑑𝑡 = 𝑘𝑡(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈7) − 𝑘𝑡(𝐶𝑂) × 𝐴𝐷𝐼𝑆(𝐶𝑂)+ 3𝐷𝑝𝑟𝑇 × 𝐴𝑈𝑁𝐷(𝐶𝑂) × (𝐾𝑆(𝐶𝑂) × 𝑆 − 𝐴𝐷𝐼𝑆(𝐶𝑂)𝑉𝐴𝐶𝑂 ) − 𝑘𝑖𝑙(𝐶𝑂) × 𝐴𝐷𝐼𝑆(𝐶𝑂)
− 𝑘𝑎(𝐶𝑂) × 𝐴𝐷𝐼𝑆(𝐶𝑂) + 𝐶𝑃 × 𝐶𝐿𝐼 × 𝑉𝐿𝐼 × 𝑘𝑏𝑖𝑙𝐾𝑝  

 

23. Degraded Colon 𝑑𝐴𝐷𝐸𝐺(𝐶𝑂)𝑑𝑡 = 𝑘𝑖𝑙(𝐶𝑂) × 𝐴𝐷𝐼𝑆(𝐶𝑂) 

 

24. Absorbed Colon 𝑑𝐴𝐴𝐵𝑆(𝐶𝑂)𝑑𝑡 = 𝑘𝑎(𝐶𝑂) × 𝐴𝐷𝐼𝑆(𝐺𝑈7) 

 

25. Total Intestinal Absorption (𝑇𝐼𝐴) 𝑑𝐴𝑇𝐼𝐴𝑑𝑡 =  ∑[𝑘𝑎(𝑖) × 𝐴𝐷𝐼𝑆(𝑖)]  
 

Where i = 𝐺𝑈1 to 𝐺𝑈7, and 𝐶𝑂; therefore: 𝑑𝐴𝑇𝐼𝐴𝑑𝑡 = 𝑘𝑎(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈1) + 𝑘𝑎(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈2) +  𝑘𝑎(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈3)+  𝑘𝑎(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈4) + 𝑘𝑎(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈5) +  𝑘𝑎(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈6)+  𝑘𝑎(𝐺𝑈) × 𝐴𝐷𝐼𝑆(𝐺𝑈7) + 𝑘𝑎(𝐶𝑂) × 𝐴𝐷𝐼𝑆(𝐶𝑂) 
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Appendix 3.B: Results of the sensitivity analyses and fitting for bisoprolol, 

diazepam and theophylline 

For each compound, a simulation with initial parameter values, the results of the 

sensitivity analysis and a simulation with the fitted parameter values are generated. 

For bisoprolol, diazepam and theophylline, results of the sensitivity analyses, the 

fitted plots and residual distributions are presented here. In the sensitivity analysis, 

the bar to the right of the bar chart indicates that the perturbation of parameters the 

venous blood concentration is most sensitive to have a yellow bar while those whose 

perturbation have the least effect have a dark blue bar. In the fitted plots, the orange 

fitted curves and data points relate to the IV route while the blue fitted curves and 

data points relate to the oral route. Residual distributions show the differences 

between measured data points and the fit to these at each predictor value 

(MathWorks, 2018). Ideally, residuals are equally distributed below and above zero 

indicating that the model describes the measure data well. 
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For bisoprolol, the renal elimination rate constant (𝑘𝑒(𝑟)) is calculated from the renal clearance (𝐶𝐿𝑟) and the volume of distribution (𝑉𝑑). Therefore, these 

parameters are included in the sensitivity analysis. Primarily R and to a lower extent Kp are identified as sensitive parameters. 

 

Figure 3.B.1: Time-integral sensitivity coefficients (Sq), giving an indication of the total sensitivity of the model parameters Kp(ad), Kp, R, fu(p), ka, kil, kbil, ke(r) and 

CLhep on the predicted venous blood concentrations following oral and IV administration of bisoprolol  
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The fitted plot of bisoprolol shows that both predicted curves represent the observed 

data well. The predicted oral curve slightly overpredicts exposure at early time 

points. 

 

 

Figure 3.B.2: Bisoprolol fitted simulated curve fitted to observed pharmacokinetic 

data reported by Leopold et al. (1986) 
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The residual distribution of the bisoprolol fit shows that for the oral fit residuals are 

higher than for the IV fit. As oral residuals as equally distributed above and below 

zero the model is considered to describe the observed data well. 

 

Figure 3.B.3: Residual distribution of bisoprolol fit (blue line) in relation to data points 

measured by Leopold et al. (1986) 
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For diazepam, since a partition coefficient for the adipose tissue (𝐾𝑝(𝐴𝐷)) is included in the model, this parameter was also included in the sensitivity analysis. 

R is identified as most sensitive parameter followed by Kp. 

 

Figure 3.B.4: Time-integral sensitivity coefficients (Sq), giving an indication of the total sensitivity of the model parameters Kp(ad), Kp, R, fu(p), ka, kil, kbil, ke(r) and 

CLhep on the predicted venous blood concentrations following oral and IV administration of diazepam  
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The fitted plot of diazepam shows that both predicted curves represent the observed 

data well. At early time poins, the oral fit slightly underpredicts measured data. 

 

 

Figure 3.B.5: Diazepam fitted simulated curve fitted to observed pharmacokinetic 

data reported by Kaplan et al. (1973) 
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The residual distribution of the diazepam fit shows that residuals are fairly low and 

equally distributed around the zero line. Therefore, the model is considered to 

describe the observed data well. 

 

Figure 3.B.6: Residual distribution of diazepam fit (blue line) in relation to data points 

measured by Kaplan et al. (1973) 
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For theophylline, the most sensitive parameter is R, followed by Kp. 

 

Figure 3.B.7: Time-integral sensitivity coefficients (Sq), giving an indication of the total sensitivity of the model parameters Kp, R, fu(p), ka, kil, kbil, ke(r) and CLhep 

on the predicted venous blood concentrations following oral and IV administration of theophylline
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The fitted plot of theophylline shows that both predicted curves represent the 

observed data very well.  

 

Figure 3.B.8: Theophylline fitted simulated curve fitted to observed pharmacokinetic 

data reported by Aslaksen et al. (1981) 
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The residual distribution of the theophylline fit shows that for the oral fit residuals 

are higher than for the IV fit. Overall, residuals of the oral fit are fairly low and equally 

distributed around the zero line. Hence, the model is considered to describe both 

observed datasets well. 

 

Figure 3.B.9: Residual distribution of theophylline fit (blue line) in relation to data 

points measured by Aslaksen et al. (1981) 
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Appendix 4.A: Ordinary differential equations (ODEs) for renal blood, 

cellular and luminal compartments of the mechanistic kidney model 

All terms presented here are defined in subchapters 4.2.1.2 and 4.2.2.1 to 4.2.2.5. 

Compartments: 𝐺𝐵 = glomerular blood; 𝐺𝑆 = glomerular space; 𝑃𝑇𝐵1 − 3 = 

proximal tubular blood 1-3; 𝐻𝐿𝐵 = Loop of Henle blood; 𝐷𝑇𝐵 = distal tubular 

blood; 𝐶𝐷𝐵 = collecting duct blood 1-2; 𝑃𝑇𝐶1 − 3 = proximal tubular cells 1-3; 𝐻𝐿𝐶 = Loop of Henle cells; 𝐷𝑇𝐶 = distal tubular cells; 𝐶𝐷𝐶1 − 2 = collecting duct 

cells 1-2; 𝑃𝑇𝐿1 − 3 = proximal tubular lumen 1-3; 𝐻𝐿𝐿 = Loop of Henle lumen; 𝐷𝑇𝐿 = distal tubular lumen; 𝐶𝐷𝐿1 − 2 = collecting duct lumen 1-2; 𝐾𝐼 = kidney; 𝐴𝑅 = arterial blood; 𝑉𝐸 = venous blood; 𝐵𝐿 = bladder;   Concentrations: 𝑆𝐴 = 

SA concentration in respective compartment; 𝑆𝑈 = SU concentration in respective 

compartment; 𝑔𝑙𝑢𝑐𝑠 = glucuronide concentration in respective compartment; 

Blood and fluid flows: 𝐺𝐹𝑅 = glomerular filtration rate; 𝑄𝐾𝐼 = renal blood flow rate; 𝑄𝐻𝐿−𝐶𝐷2 = blood flow in loop of Henle and collecting ducts; 𝐹𝐹𝑃𝑇 = fluid flow 

leaving the glomerular space and proximal tubules; 𝐹𝐹𝐻𝐿 = fluid flow leaving the 

loop of Henle; 𝐹𝐹𝐷𝑇 = fluid flow leaving the distal tubules and collecting ducts. 

 

For each blood compartment, the ODE represents the change in SA concentration 

within that compartment driven by blood flows (𝑄𝐾𝐼 and 𝑄𝐻𝐿−𝐶𝐷2), the glomerular 

filtration rate (𝐺𝐹𝑅), and unidirectional active and bidirectional passive transport to 

cellular compartments. Active transport is expressed by the fraction unbound and 

Michaelis-Menten terms (e.g. 
𝐽𝑚𝑎𝑥 𝐶𝑏𝑙𝑜𝑜𝑑 𝑓𝑢(𝑝)𝐾𝑚+𝐶𝑏𝑙𝑜𝑜𝑑  ) and passive transport occurs due to 

a concentration gradient between the capillary and cells (𝑃𝑑𝑖𝑓𝑓,𝑢 𝐶𝑏𝑙𝑜𝑜𝑑 −𝑃𝑑𝑖𝑓𝑓,𝑢 𝐶𝑐𝑒𝑙𝑙𝑠).  

 

In cellular compartments, the change in concentration of SA, SU and glucuronides 

(glucs), occurs due to a concentration gradient between the capillary and cells, and 

cells and the tubular lumen (𝑃𝑑𝑖𝑓𝑓,𝑢 𝐶𝑏𝑙𝑜𝑜𝑑 − 𝑃𝑑𝑖𝑓𝑓,𝑢 𝐶𝑐𝑒𝑙𝑙𝑠 and 𝑃𝑑𝑖𝑓𝑓,𝑢 𝐶𝑐𝑒𝑙𝑙𝑠 −𝑃𝑑𝑖𝑓𝑓,𝑢 𝐶𝑙𝑢𝑚𝑒𝑛) and active transport between these compartments, expressed by 

Michaelis-Menten terms (e.g. 
𝐽𝑚𝑎𝑥 𝐶𝑐𝑒𝑙𝑙𝑠𝐾𝑚+𝐶𝑐𝑒𝑙𝑙𝑠  ).  

 

Metabolism in cellular compartments is also expressed as Michaelis-Menten term (e.g. 
𝑉𝑚𝑎𝑥 𝐶𝑐𝑒𝑙𝑙𝑠𝐾𝑚+𝐶𝑐𝑒𝑙𝑙𝑠  ). For each luminal compartment, the ODE represents the change in 
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SA concentration within that compartment driven by fluid flow rates (𝐹𝐹𝑃𝑇, 𝐹𝐹𝐻𝐿 

and 𝐹𝐹𝐷𝑇) determining the flow of filtrate through luminal compartments and into 

the bladder, and active transport and passive diffusion to and from cellular 

compartments. Throughout t is time and concentration is measured in the unit mM. 

 

For the young and healthy adult, blood flow, fluid flow and GFR are defined in 

subchapters 4.2.1.2. All active transport related 𝐾𝑚 and 𝐽𝑚𝑎𝑥 values for the young 

and healthy adult are shown in Table 4.6 and in subchapter 4.2.2.4. Passive diffusion 

determining parameter values are outlined in Tables 4.7. Parameter values for 

metabolism related Michaelis-Menten terms are presented in Table 4.9 and 4.10.  

 

For the elderly individuals, amended blood flow, fluid flow, GFR, 𝐽𝑚𝑎𝑥, 𝑃𝑑𝑖𝑓𝑓,𝑢 and 𝑉𝑚𝑎𝑥 values are stated in Tables 4.16 to 4.19. 

 

All compartment volumes (e.g. 𝑉𝑐𝑜𝑚𝑝𝑎𝑟𝑡𝑚𝑒𝑛𝑡, for all compartments defined above) 

are given in Table 4.3. 

 

 

4.A.1 Blood compartments 

1. Glomerular blood (𝐺𝐵) 𝑑𝐶𝐺𝐵𝑑𝑡 = 1𝑉𝐺𝐵 (𝑄𝐾𝐼 (𝐶𝐴𝑅𝑆𝐴 − 𝐶𝐺𝐵) − 𝐺𝐹𝑅 𝑓𝑢(𝑝) 𝐶𝐺𝐵) 

 

2. Proximal tubular blood 1 (𝑃𝑇𝐵1) 𝑑𝐶𝑃𝑇𝐵1𝑑𝑡 = 1𝑉𝑃𝑇𝐵1 (𝑄𝐾𝐼 (𝐶𝐺𝐵 − 𝐶𝑃𝑇𝐵1)
− 𝐶𝑃𝑇𝐵1 𝑓𝑢(𝑝) ( 𝐽max(OCT2)𝐾𝑚(𝑂𝐶𝑇2) + 𝐶𝑃𝑇𝐵1 + 𝐽max(𝑂𝐴𝑇1)𝐾𝑚(𝑂𝐴𝑇1) + 𝐶𝑃𝑇𝐵1+ 𝐽max(𝑂𝐴𝑇2)𝐾𝑚(𝑂𝐴𝑇2) + 𝐶𝑃𝑇𝐵1 + 𝐽max(𝑂𝐴𝑇3)𝐾𝑚(𝑂𝐴𝑇3) + 𝐶𝑃𝑇𝐵1)
− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝑃𝑇𝐵1 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝑃𝑇𝐶1)) 
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3. Proximal tubular blood 2 (𝑃𝑇𝐵2) 𝑑𝐶𝑃𝑇𝐵2𝑑𝑡 = 1𝑉𝑃𝑇𝐵2 (𝑄𝐾𝐼 (𝐶𝑃𝑇𝐵1 − 𝐶𝑃𝑇𝐵2)
− 𝐶𝑃𝑇𝐵2 𝑓𝑢(𝑝) ( 𝐽max(OCT2)𝐾𝑚(𝑂𝐶𝑇2) + 𝐶𝑃𝑇𝐵2 + 𝐽max(𝑂𝐴𝑇1)𝐾𝑚(𝑂𝐴𝑇1) + 𝐶𝑃𝑇𝐵2+ 𝐽max(𝑂𝐴𝑇2)𝐾𝑚(𝑂𝐴𝑇2) + 𝐶𝑃𝑇𝐵2 + 𝐽max(𝑂𝐴𝑇3)𝐾𝑚(𝑂𝐴𝑇3) + 𝐶𝑃𝑇𝐵2)
− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝑃𝑇𝐵2 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝑃𝑇𝐶2)) 

 

4. Proximal tubular blood 3 (𝑃𝑇𝐵3) 𝑑𝐶𝑃𝑇𝐵3𝑑𝑡 = 1𝑉𝑃𝑇𝐵3 (𝑄𝐾𝐼 (𝐶𝑃𝑇𝐵2 − 𝐶𝑃𝑇𝐵3) − 𝑄𝐻𝐿−𝐶𝐷 𝐶𝑃𝑇𝐵3− 𝐶𝑃𝑇𝐵3 𝑓𝑢(𝑝) ( 𝐽max(OCT2)𝐾𝑚(𝑂𝐶𝑇2) + 𝐶𝑃𝑇𝐵3 + 𝐽max(𝑂𝐴𝑇1)𝐾𝑚(𝑂𝐴𝑇1) + 𝐶𝑃𝑇𝐵3+ 𝐽max(𝑂𝐴𝑇2)𝐾𝑚(𝑂𝐴𝑇2) + 𝐶𝑃𝑇𝐵3 + 𝐽max(𝑂𝐴𝑇3)𝐾𝑚(𝑂𝐴𝑇3) + 𝐶𝑃𝑇𝐵3)
− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝑃𝑇𝐵3 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝑃𝑇𝐶3)) 

 

5. Loop of Henle blood (𝐻𝐿𝐵) 𝑑𝐶𝐻𝐿𝐵𝑑𝑡 = 1𝑉𝐻𝐿𝐵  (𝑄𝐻𝐿−𝐶𝐷2 (𝐶𝑃𝑇𝐵3  − 𝐶𝐻𝐿𝐵) − 𝐶𝐻𝐿𝐵 𝑓𝑢(𝑝) 𝐽max(𝑂𝐴𝑇1)𝐾𝑚(𝑂𝐴𝑇1) + 𝐶𝐻𝐿𝐵
− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐻𝐿𝐵 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐻𝐿𝐶)) 

 

6. Distal tubular blood (𝐷𝑇𝐵) 𝑑𝐶𝐷𝑇𝐵𝑑𝑡 = 1𝑉𝐷𝑇𝐵  (𝑄𝐾𝐼 (𝐶𝑃𝑇𝐵3 − 𝐶𝐷𝑇𝐵) − 𝐶𝐷𝑇𝐵 𝑓𝑢(𝑝) 𝐽max(𝑂𝐴𝑇1)𝐾𝑚(𝑂𝐴𝑇1) + 𝐶𝐷𝑇𝐵− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐷𝑇𝐵 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐷𝑇𝐶)) 

 

7. Collecting duct blood 1 (𝐶𝐷𝐵1) 𝑑𝐶𝐶𝐷𝐵1𝑑𝑡 = 1𝑉𝐶𝐷𝐵1  (𝑄𝐾𝐼 (𝐶𝐷𝑇𝐵 − 𝐶𝐶𝐷𝐵1) − 𝐶𝐶𝐷𝐵1 𝑓𝑢(𝑝) 𝐽max(𝑂𝐴𝑇1)𝐾𝑚(𝑂𝐴𝑇1) + 𝐶𝐶𝐷𝐵1− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐶𝐷𝐵1 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐶𝐷𝐶1) ) 
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8. Collecting duct blood 2 (𝐶𝐷𝐵2) 𝑑𝐶𝐶𝐷𝐵2𝑑𝑡 = 1𝑉𝐶𝐷𝐵2  (𝑄𝐻𝐿−𝐶𝐷2 (𝐶𝐻𝐿𝐵  − 𝐶𝐶𝐷𝐵2)
− 𝐶𝐶𝐷𝐵2 𝑓𝑢(𝑝) 𝐽max(𝑂𝐴𝑇1)𝐾𝑚(𝑂𝐴𝑇1) + 𝐶𝐶𝐷𝐵2− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐶𝐷𝐵2 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐶𝐷𝐶2)) 

 

 

4.A.2 Cellular compartments 

9. Proximal tubular cells 1-3 (𝑃𝑇𝐶1, 𝑃𝑇𝐶2, 𝑃𝑇𝐶3) 𝑑𝐶𝑃𝑇𝐶𝑖𝑑𝑡 = 1𝑉𝑃𝑇𝐶𝑖 (𝐶𝑃𝑇𝐵𝑖 𝑓𝑢(𝑝) ( 𝐽max(OCT2)𝐾𝑚(𝑂𝐶𝑇2) + 𝐶𝑃𝑇𝐵𝑖 + 𝐽max(𝑂𝐴𝑇1)𝐾𝑚(𝑂𝐴𝑇1) + 𝐶𝑃𝑇𝐵𝑖+ 𝐽max(𝑂𝐴𝑇2)𝐾𝑚(𝑂𝐴𝑇2) + 𝐶𝑃𝑇𝐵𝑖 + 𝐽max(𝑂𝐴𝑇3)𝐾𝑚(𝑂𝐴𝑇3) + 𝐶𝑃𝑇𝐵𝑖)+ 𝐶𝑃𝑇𝐿𝑖 ( 𝐽max(𝑂𝐴𝑇4)𝐾𝑚(𝑂𝐴𝑇4) + 𝐶𝑃𝑇𝐿𝑖 + 𝐽max(𝑈𝑅𝐴𝑇1)𝐾𝑚(𝑈𝑅𝐴𝑇1) + 𝐶𝑃𝑇𝐿𝑖)
− 𝐶𝑃𝑇𝐶𝑖 ( 𝐽max(𝑂𝐴𝑇4)𝐾𝑚(𝑂𝐴𝑇4) + 𝐶𝑃𝑇𝐶𝑖 + 𝐽max(𝑁𝑃𝑇1)𝐾𝑚(𝑁𝑃𝑇1) + 𝐶𝑃𝑇𝐶𝑖 + 𝑉max(𝑆𝑈)𝐾𝑚(𝑆𝑈) + 𝐶𝑃𝑇𝐶𝑖+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6)𝑃𝑇𝐶𝑖𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6) + 𝐶𝑃𝑇𝐶𝑖 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6)𝑃𝑇𝐶𝑖𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6) + 𝐶𝑃𝑇𝐶𝑖+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9)𝑃𝑇𝐶𝑖𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9) + 𝐶𝑃𝑇𝐶𝑖 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9)𝑃𝑇𝐶𝑖𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9) + 𝐶𝑃𝑇𝐶𝑖+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7)𝑃𝑇𝐶𝑖𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7) + 𝐶𝑃𝑇𝐶𝑖 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7)𝑃𝑇𝐶𝑖𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7) + 𝐶𝑃𝑇𝐶𝑖)+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝑃𝑇𝐵𝑖 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝑃𝑇𝐶𝑖)− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝑃𝑇𝐶𝑖 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝑃𝑇𝐿𝑖)) 

𝑖 = 1 − 3; where 𝑖 refers to the section of proximal tubule (see Figures 4.2 and 4.3). 

 

 

10. SU in proximal tubular cells 1-3 (𝑃𝑇𝐶1𝑆𝑈, 𝑃𝑇𝐶2𝑆𝑈, 𝑃𝑇𝐶2𝑆𝑈) 𝑑𝐶𝑃𝑇𝐶𝑖𝑆𝑈𝑑𝑡 = 1𝑉𝑃𝑇𝐶1 (𝐶𝑃𝑇𝐶𝑖 ( 𝑉max(𝑆𝑈)𝐾𝑚(𝑆𝑈) + 𝐶𝑃𝑇𝐶𝑖) − 𝐶𝑃𝑇𝐶𝑖𝑆𝑈  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝑃𝑇𝐶𝑖𝑆𝑈− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝑃𝑇𝐶𝑖𝑆𝑈 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝑃𝑇𝐿𝑖𝑆𝑈 )) 

𝑖 = 1 − 3; where 𝑖 refers to the section of proximal tubule (see Figures 4.2 and 4.3). 



266 

 

 

11. Glucuronides in proximal tubular cells 1-3 (𝑃𝑇𝐶1𝑔𝑙𝑢𝑐𝑠, 𝑃𝑇𝐶2𝑔𝑙𝑢𝑐𝑠, 𝑃𝑇𝐶3𝑔𝑙𝑢𝑐𝑠) 

 𝑑𝐶𝑃𝑇𝐶𝑖𝑔𝑙𝑢𝑐𝑠𝑑𝑡 = 1𝑉𝑃𝑇𝐶1 (𝐶𝑃𝑇𝐶𝑖 ( 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6)𝑃𝑇𝐶𝑖𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6) + 𝐶𝑃𝑇𝐶𝑖 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6)𝑃𝑇𝐶𝑖𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6) + 𝐶𝑃𝑇𝐶𝑖+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9)𝑃𝑇𝐶𝑖𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9) + 𝐶𝑃𝑇𝐶𝑖 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9)𝑃𝑇𝐶𝑖𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9) + 𝐶𝑃𝑇𝐶𝑖+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7)𝑃𝑇𝐶𝑖𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7) + 𝐶𝑃𝑇𝐶𝑖 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7)𝑃𝑇𝐶𝑖𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7) + 𝐶𝑃𝑇𝐶𝑖)− 𝐶𝑃𝑇𝐶𝑖𝑔𝑙𝑢𝑐𝑠  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝑃𝑇𝐶𝑖𝑔𝑙𝑢𝑐𝑠− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝑃𝑇𝐶𝑖𝑔𝑙𝑢𝑐𝑠 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝑃𝑇𝐿𝑖𝑔𝑙𝑢𝑐𝑠 )) 

𝑖 = 1 − 3; where 𝑖 refers to the section of proximal tubule (see Figures 4.2 and 4.3). 

 

12. Loop of Henle cells (𝐻𝐿𝐶) 𝑑𝐶𝐻𝐿𝐶𝑑𝑡 = 1𝑉𝐻𝐿𝐶  (𝐶𝐻𝐿𝐵 𝑓𝑢(𝑝) 𝐽max(𝑂𝐴𝑇1)𝐾𝑚(𝑂𝐴𝑇1) + 𝐶𝐻𝐿𝐵  − 𝐶𝐻𝐿𝐶  𝐽max(𝑂𝐴𝑇1)𝐾𝑚(𝑂𝐴𝑇1) + 𝐶𝐻𝐿𝐶+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐻𝐿𝐵 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐻𝐿𝐶)− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐻𝐿𝐶 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐻𝐿𝐿)− 𝐶𝐻𝐿𝐶 ( 𝑉max(𝑆𝑈)𝐾𝑚(𝑆𝑈) + 𝐶𝐻𝐿𝐶+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6)𝐻𝐿𝐶𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6) + 𝐶𝐻𝐿𝐶 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6)𝐻𝐿𝐶𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6) + 𝐶𝐻𝐿𝐶+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9)𝐻𝐿𝐶𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9) + 𝐶𝐻𝐿𝐶 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9)𝐻𝐿𝐶𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9) + 𝐶𝐻𝐿𝐶+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7)𝐻𝐿𝐶𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7) + 𝐶𝐻𝐿𝐶 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7)𝐻𝐿𝐶𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7) + 𝐶𝐻𝐿𝐶)) 
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13. Distal tubular cells (𝐷𝑇𝐶) 𝑑𝐶𝐷𝑇𝐶𝑑𝑡 = 1𝑉𝐷𝑇𝐶  (𝐶𝐷𝑇𝐵 𝑓𝑢(𝑝) 𝐽max(𝑂𝐴𝑇1)𝐾𝑚(𝑂𝐴𝑇1) + 𝐶𝐷𝑇𝐵 − 𝐶𝐷𝑇𝐶  𝐽max(𝑂𝐴𝑇1)𝐾𝑚(𝑂𝐴𝑇1) + 𝐶𝐷𝑇𝐶+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐷𝑇𝐵 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐷𝑇𝐶)− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐷𝑇𝐶 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐷𝑇𝐿)− 𝐶𝐷𝑇𝐶 ( 𝑉max(𝑆𝑈)𝐾𝑚(𝑆𝑈) + 𝐶𝐷𝑇𝐶+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6)𝐷𝑇𝐶𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6) + 𝐶𝐷𝑇𝐶 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6)𝐷𝑇𝐶𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6) + 𝐶𝐷𝑇𝐶+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9)𝐷𝑇𝐶𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9) + 𝐶𝐷𝑇𝐶 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9)𝐷𝑇𝐶𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9) + 𝐶𝐷𝑇𝐶+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7)𝐷𝑇𝐶𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7) + 𝐶𝐷𝑇𝐶 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7)𝐷𝑇𝐶𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7) + 𝐶𝐷𝑇𝐶)) 

 

14. Collecting duct cells 1-2 (𝐶𝐷𝐶1, 𝐶𝐷𝐶2) 𝑑𝐶𝐶𝐷𝐶𝑖𝑑𝑡 = 1𝑉𝐶𝐷𝐶𝑖  (𝐶𝐶𝐷𝐵𝑖 𝑓𝑢(𝑝) 𝐽max(𝑂𝐴𝑇1)𝐾𝑚(𝑂𝐴𝑇1) + 𝐶𝐶𝐷𝐵𝑖 − 𝐶𝐶𝐷𝐶𝑖  𝐽max(𝑂𝐴𝑇1)𝐾𝑚(𝑂𝐴𝑇1) + 𝐶𝐶𝐷𝐶𝑖+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐶𝐷𝐵𝑖 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐶𝐷𝐶𝑖)− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐶𝐷𝐶𝑖 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐶𝐷𝐿𝑖)− 𝐶𝐶𝐷𝐶𝑖 ( 𝑉max(𝑆𝑈)𝐾𝑚(𝑆𝑈) + 𝐶𝐶𝐷𝐶𝑖+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6)𝐶𝐷𝐶𝑖𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6) + 𝐶𝐶𝐷𝐶𝑖 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6)𝐶𝐷𝐶𝑖𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6) + 𝐶𝐶𝐷𝐶𝑖+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9)𝐶𝐷𝐶𝑖𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9) + 𝐶𝐶𝐷𝐶𝑖 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9)𝐶𝐷𝐶𝑖𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9) + 𝐶𝐶𝐷𝐶𝑖+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7)𝐶𝐷𝐶𝑖𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7) + 𝐶𝐶𝐷𝐶𝑖 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7)𝐶𝐷𝐶𝑖𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7) + 𝐶𝐶𝐷𝐶𝑖)) 𝑖 = 1 − 2; where 𝑖 refers to the section of proximal tubule (see Figures 4.2 and 4.3). 

 

15. SU in loop of Henle cells (𝐻𝐿𝐶𝑆𝑈) 𝑑𝐶𝐻𝐿𝐶𝑆𝑈𝑑𝑡 = 1𝑉𝐻𝐿𝐶 (𝐶𝐻𝐿𝐶 𝑉max(𝑆𝑈)𝐾𝑚(𝑆𝑈) + 𝐶𝐻𝐿𝐶 − 𝐶𝐻𝐿𝐶𝑆𝑈  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝐻𝐿𝐶𝑆𝑈− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝐻𝐿𝐶𝑆𝑈 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝐻𝐿𝐿𝑆𝑈)) 
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16. Glucuronides in loop of Henle cells (𝐻𝐿𝐶𝑔𝑙𝑢𝑐𝑠) 𝑑𝐶𝐻𝐿𝐶𝑔𝑙𝑢𝑐𝑠𝑑𝑡 = 1𝑉𝐻𝐿𝐶 (𝐶𝐻𝐿𝐶 ( 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6)𝐻𝐿𝐶𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6) + 𝐶𝐻𝐿𝐶 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6)𝐻𝐿𝐶𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6) + 𝐶𝐻𝐿𝐶+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9)𝐻𝐿𝐶𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9) + 𝐶𝐻𝐿𝐶 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9)𝐻𝐿𝐶𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9) + 𝐶𝐻𝐿𝐶+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7)𝐻𝐿𝐶𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7) + 𝐶𝐻𝐿𝐶 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7)𝐻𝐿𝐶𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7) + 𝐶𝐻𝐿𝐶)− 𝐶𝐻𝐿𝐶𝑔𝑙𝑢𝑐𝑠  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝐻𝐿𝐶𝑔𝑙𝑢𝑐𝑠− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝐻𝐿𝐶𝑔𝑙𝑢𝑐𝑠 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝐻𝐿𝐿𝑔𝑙𝑢𝑐𝑠)) 

 

17. SU in distal tubular cells (𝐷𝑇𝐶𝑆𝑈) 𝑑𝐶𝐷𝑇𝐶𝑆𝑈𝑑𝑡 = 1𝑉𝐷𝑇𝐶 (𝐶𝐷𝑇𝐶 𝑉max(𝑆𝑈)𝐾𝑚(𝑆𝑈) + 𝐶𝐷𝑇𝐶 − 𝐶𝐷𝑇𝐶𝑆𝑈  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝐷𝑇𝐶𝑆𝑈− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝐷𝑇𝐶𝑆𝑈 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝐷𝑇𝐿𝑆𝑈)) 

 

18. Glucuronides in distal tubular cells (𝐷𝑇𝐶𝑔𝑙𝑢𝑐𝑠) 𝑑𝐶𝐷𝑇𝐶𝑔𝑙𝑢𝑐𝑠𝑑𝑡 = 1𝑉𝐷𝑇𝐶 (𝐶𝐷𝑇𝐶 ( 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6)𝐷𝑇𝐶𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6) + 𝐶𝐷𝑇𝐶 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6)𝐷𝑇𝐶𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6) + 𝐶𝐷𝑇𝐶+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9)𝐷𝑇𝐶𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9) + 𝐶𝐷𝑇𝐶 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9)𝐷𝑇𝐶𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9) + 𝐶𝐷𝑇𝐶+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7)𝐷𝑇𝐶𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7) + 𝐶𝐷𝑇𝐶 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7)𝐷𝑇𝐶𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7) + 𝐶𝐷𝑇𝐶)− 𝐶𝐷𝑇𝐶𝑔𝑙𝑢𝑐𝑠  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝐷𝑇𝐶𝑔𝑙𝑢𝑐𝑠− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝐷𝑇𝐶𝑔𝑙𝑢𝑐𝑠 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝐷𝑇𝐿𝑔𝑙𝑢𝑐𝑠)) 

 

19. SU in collecting duct cells 1-2 (𝐶𝐷𝐶1𝑆𝑈, 𝐶𝐷𝐶2𝑆𝑈) 𝑑𝐶𝐶𝐷𝐶𝑖𝑆𝑈𝑑𝑡 = 1𝑉𝐶𝐷𝐶𝑖 (𝐶𝐶𝐷𝐶𝑖 𝑉max(𝑆𝑈)𝐾𝑚(𝑆𝑈) + 𝐶𝐶𝐷𝐶𝑖 − 𝐶𝐶𝐷𝐶𝑖𝑆𝑈  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝐶𝐷𝐶𝑖𝑆𝑈− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝐶𝐷𝐶𝑖𝑆𝑈 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝐶𝐷𝐿𝑖𝑆𝑈)) 

𝑖 = 1 − 2; where 𝑖 refers to the section of proximal tubule (see Figures 4.2 and 4.3). 
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20. Glucuronides in collecting duct cells 1-2 (𝐶𝐷𝐶1𝑔𝑙𝑢𝑐𝑠, 𝐶𝐷𝐶2𝑔𝑙𝑢𝑐𝑠) 𝑑𝐶𝐶𝐷𝐶𝑖𝑔𝑙𝑢𝑐𝑠𝑑𝑡 = 1𝑉𝐶𝐷𝐶𝑖 (𝐶𝐶𝐷𝐶𝑖 ( 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6)𝐶𝐷𝐶𝑖𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴6) + 𝐶𝐶𝐷𝐶𝑖 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6)𝐶𝐷𝐶𝑖𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴6) + 𝐶𝐶𝐷𝐶𝑖+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9)𝐶𝐷𝐶𝑖𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇1𝐴9) + 𝐶𝐶𝐷𝐶𝑖 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9)𝐶𝐷𝐶𝑖𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇1𝐴9) + 𝐶𝐶𝐷𝐶𝑖+ 𝑉max(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7)𝐶𝐷𝐶𝑖𝐾𝑚(𝑃ℎ𝑒𝑛𝑈𝐺𝑇2𝐵7) + 𝐶𝐶𝐷𝐶𝑖 + 𝑉max(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7)𝐶𝐷𝐶𝑖𝐾𝑚(𝐴𝑐𝑦𝑙𝑈𝐺𝑇2𝐵7) + 𝐶𝐶𝐷𝐶𝑖)− 𝐶𝐶𝐷𝐶𝑖𝑔𝑙𝑢𝑐𝑠  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝐶𝐷𝐶𝑖𝑔𝑙𝑢𝑐𝑠− (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝐶𝐷𝐶𝑖𝑔𝑙𝑢𝑐𝑠 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝐶𝐷𝐿𝑖𝑔𝑙𝑢𝑐𝑠)) 

𝑖 = 1 − 2; where 𝑖 refers to the section of proximal tubule (see Figures 4.2 and 4.3). 

 

 

4.A.3 Luminal compartments 

21. Glomerular space (𝐺𝑆) 𝑑𝐶𝐺𝑆𝑑𝑡 = 1𝑉𝐺𝑆 (𝐺𝐹𝑅 𝑓𝑢(𝑝) 𝐶𝐺𝐵 − 𝐹𝐹𝑃𝑇 𝐶𝐺𝑆) 

 

22. Proximal tubular lumen 1-3 (𝑃𝑇𝐿1, 𝑃𝑇𝐿2, 𝑃𝑇𝐿3) 𝑑𝐶𝑃𝑇𝐿𝑖𝑑𝑡 = 1𝑉𝑃𝑇𝐿𝑖  (𝐹𝐹𝑃𝑇 (𝐶𝑃𝑇𝐿𝑖−1 − 𝐶𝑃𝑇𝐿𝑖)
− 𝐶𝑃𝑇𝐿𝑖 ( 𝐽max(𝑂𝐴𝑇4)𝐾𝑚(𝑂𝐴𝑇4) + 𝐶𝑃𝑇𝐿𝑖 + 𝐽max(𝑈𝑅𝐴𝑇1)𝐾𝑚(𝑈𝑅𝐴𝑇1) + 𝐶𝑃𝑇𝐿𝑖)+ 𝐶𝑃𝑇𝐶𝑖  ( 𝐽max(𝑂𝐴𝑇4)𝐾𝑚(𝑂𝐴𝑇4) + 𝐶𝑃𝑇𝐶𝑖 + 𝐽max(𝑁𝑃𝑇1)𝐾𝑚(𝑁𝑃𝑇1) + 𝐶𝑃𝑇𝐶𝑖)
+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝑃𝑇𝐶𝑖 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝑃𝑇𝐿𝑖)) 

𝑖 = 1 − 3; where 𝑖 refers to the section of proximal tubule (see Figures 4.2 and 4.3). 𝐶𝑃𝑇𝐿𝑖−1 refers to the concentration of SA in the segment preceding the current 

proximal tubular lumen section, i.e 𝑃𝑇𝐿1 − 1 = 𝐺𝑆; 𝑃𝑇𝐿2 − 1 = 𝑃𝑇𝐿1;  𝑃𝑇𝐿3 −1 = 𝑃𝑇𝐿2. 
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23. SU in proximal tubular lumen 1 (𝑃𝑇𝐿1𝑆𝑈) 𝑑𝐶𝑃𝑇𝐿1𝑆𝑈𝑑𝑡 = 1𝑉𝑃𝑇𝐿1  (𝐶𝑃𝑇𝐶1𝑆𝑈  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝑃𝑇𝐶1𝑆𝑈+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝑃𝑇𝐶1𝑆𝑈 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝑃𝑇𝐿1𝑆𝑈) − 𝐹𝐹𝑃𝑇 𝐶𝑃𝑇𝐿1𝑆𝑈) 

 

24. SU in proximal tubular lumen 2-3 (𝑃𝑇𝐿2𝑆𝑈, 𝑃𝑇𝐿3𝑆𝑈) 𝑑𝐶𝑃𝑇𝐿𝑖𝑆𝑈𝑑𝑡 = 1𝑉𝑃𝑇𝐿𝑖  (𝐶𝑃𝑇𝐶𝑖𝑆𝑈  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝑃𝑇𝐶𝑖𝑆𝑈+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝑃𝑇𝐶𝑖𝑆𝑈 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝑃𝑇𝐿𝑖𝑆𝑈 )+ 𝐹𝐹𝑃𝑇 (𝐶𝑃𝑇𝐿𝑖−1𝑆𝑈 − 𝐶𝑃𝑇𝐿𝑖𝑆𝑈 )) 

𝑖 = 2 − 3; where 𝑖 refers to the section of proximal tubule (see Figures 4.2 and 4.3). 𝐶𝑃𝑇𝐿𝑖−1𝑆𝑈  refers to the concentration of SU in the previous proximal tubular lumen 

section, i.e. 𝑃𝑇𝐿2 − 1 = 𝑃𝑇𝐿1;  𝑃𝑇𝐿3 − 1 = 𝑃𝑇𝐿2. 

 

 

25. Glucuronides in proximal tubular lumen 1 (𝑃𝑇𝐿1𝑔𝑙𝑢𝑐𝑠) 𝑑𝐶𝑃𝑇𝐿1𝑔𝑙𝑢𝑐𝑠𝑑𝑡 = 1𝑉𝑃𝑇𝐿1  (𝐶𝑃𝑇𝐶1𝑔𝑙𝑢𝑐𝑠  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝑃𝑇𝐶1𝑔𝑙𝑢𝑐𝑠+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝑃𝑇𝐶1𝑔𝑙𝑢𝑐𝑠 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝑃𝑇𝐿1𝑔𝑙𝑢𝑐𝑠)− 𝐹𝐹𝑃𝑇 𝐶𝑃𝑇𝐿1𝑔𝑙𝑢𝑐𝑠) 

 

26. Glucuronides in proximal tubular lumen 2-3 (𝑃𝑇𝐿2𝑔𝑙𝑢𝑐𝑠, 𝑃𝑇𝐿3𝑔𝑙𝑢𝑐𝑠) 𝑑𝐶𝑃𝑇𝐿𝑖𝑔𝑙𝑢𝑐𝑠𝑑𝑡 = 1𝑉𝑃𝑇𝐿𝑖  (𝐶𝑃𝑇𝐶𝑖𝑔𝑙𝑢𝑐𝑠  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝑃𝑇𝐶𝑖𝑔𝑙𝑢𝑐𝑠+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝑃𝑇𝐶𝑖𝑔𝑙𝑢𝑐𝑠 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝑃𝑇𝐿𝑖𝑔𝑙𝑢𝑐𝑠)
+ 𝐹𝐹𝑃𝑇  (𝐶𝑃𝑇𝐿𝑖−1𝑔𝑙𝑢𝑐𝑠 − 𝐶𝑃𝑇𝐿𝑖𝑔𝑙𝑢𝑐𝑠 )) 

𝑖 = 2 − 3; where 𝑖 refers to the section of proximal tubule (see Figures 4.2 and 4.3). 𝐶𝑃𝑇𝐿𝑖−1𝑔𝑙𝑢𝑐𝑠  refers to the concentration of glucuronides in the previous proximal 

tubular lumen section, i.e. 𝑃𝑇𝐿2 − 1 = 𝑃𝑇𝐿1;  𝑃𝑇𝐿3 − 1 = 𝑃𝑇𝐿2. 
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27. Loop of Henle lumen (𝐻𝐿𝐿) 𝑑𝐶𝐻𝐿𝐿𝑑𝑡 = 1𝑉𝐻𝐿𝐿  (𝐹𝐹𝑃𝑇 𝐶𝑃𝑇𝐿3 − 𝐹𝐹𝐻𝐿  𝐶𝐻𝐿𝐿 + 𝐶𝐻𝐿𝐶  𝐽max(𝑂𝐴𝑇1)𝐾𝑚(𝑂𝐴𝑇1) + 𝐶𝐻𝐿𝐶+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐻𝐿𝐶 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐻𝐿𝐿)) 

 

28. Distal tubular lumen (𝐷𝑇𝐿) 𝑑𝐶𝐷𝑇𝐿𝑑𝑡 = 1𝑉𝐷𝑇𝐿 (𝐹𝐹𝐻𝐿  𝐶𝐻𝐿𝐿 − 𝐹𝐹𝐷𝑇 𝐶𝐷𝑇𝐿 + 𝐶𝐷𝑇𝐶  𝐽max(𝑂𝐴𝑇1)𝐾𝑚(𝑂𝐴𝑇1) + 𝐶𝐷𝑇𝐶+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐷𝑇𝐶 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐷𝑇𝐿)) 

 

29. Collecting duct lumen 1-2 (𝐶𝐷𝐿1, 𝐶𝐷𝐿2) 𝑑𝐶𝐶𝐷𝐿𝑖𝑑𝑡 = 1𝑉𝐶𝐷𝐿𝑖  (𝐹𝐹𝐷𝑇 (𝐶𝐶𝐷𝐿𝑖−1 − 𝐶𝐶𝐷𝐿𝑖) + 𝐶𝐶𝐷𝐶𝑖  𝐽max(𝑂𝐴𝑇1)𝐾𝑚(𝑂𝐴𝑇1) + 𝐶𝐶𝐷𝐶𝑖+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐶𝐷𝐶𝑖 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝐴) 𝐶𝐶𝐷𝐿𝑖)) 

𝑖 = 1 − 2; where 𝑖 refers to the section of collecting duct (see Figures 4.2 and 4.3). 𝐶𝐶𝐷𝐿𝑖−1 refers to the concentration of SA in the segment preceding the current 

collecting duct lumen section, i.e. 𝐶𝐷𝐿1 − 1 = 𝐷𝑇𝐿;  𝐶𝐷𝐿2 − 1 = 𝐶𝐷𝐿1. 

 

 

30. SU in loop of Henle lumen (𝐻𝐿𝐿𝑆𝑈) 𝑑𝐶𝐻𝐿𝐿𝑆𝑈𝑑𝑡 = 1𝑉𝐻𝐿𝐿 (𝐹𝐹𝑃𝑇 𝐶𝑃𝑇𝐿3𝑆𝑈 − 𝐹𝐹𝐻𝐿  𝐶𝐻𝐿𝐿𝑆𝑈 + 𝐶𝐻𝐿𝐶𝑆𝑈  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝐻𝐿𝐶𝑆𝑈+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝐻𝐿𝐶𝑆𝑈 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝐻𝐿𝐿𝑆𝑈)) 

 

 

31. Glucuronides in loop of Henle lumen (𝐻𝐿𝐿𝑔𝑙𝑢𝑐𝑠) 𝑑𝐶𝐻𝐿𝐿𝑔𝑙𝑢𝑐𝑠𝑑𝑡 = 1𝑉𝐻𝐿𝐿 (𝐹𝐹𝑃𝑇 𝐶𝑃𝑇𝐿3𝑔𝑙𝑢𝑐𝑠 − 𝐹𝐹𝐻𝐿  𝐶𝐻𝐿𝐿𝑔𝑙𝑢𝑐𝑠
+ 𝐶𝐻𝐿𝐶𝑔𝑙𝑢𝑐𝑠  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝐻𝐿𝐶𝑔𝑙𝑢𝑐𝑠+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝐻𝐿𝐶𝑔𝑙𝑢𝑐𝑠 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝐻𝐿𝐿𝑔𝑙𝑢𝑐𝑠)) 



272 

 

 

32. SU in distal tubular lumen (𝐷𝑇𝐿𝑆𝑈) 𝑑𝐶𝐷𝑇𝐿𝑆𝑈𝑑𝑡 = 1𝑉𝐷𝑇𝐿 (𝐹𝐹𝐻𝐿  𝐶𝐻𝐿𝐿𝑆𝑈 − 𝐹𝐹𝐷𝑇 𝐶𝐷𝑇𝐿𝑆𝑈 + 𝐶𝐷𝑇𝐶𝑆𝑈  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝐷𝑇𝐶𝑆𝑈+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝐷𝑇𝐶𝑆𝑈 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝐷𝑇𝐿𝑆𝑈)) 

 

33. Glucuronides in distal tubular lumen (𝐷𝑇𝐿𝑔𝑙𝑢𝑐𝑠) 𝑑𝐶𝐷𝑇𝐿𝑔𝑙𝑢𝑐𝑠𝑑𝑡 = 1𝑉𝐷𝑇𝐿 (𝐹𝐹𝐻𝐿  𝐶𝐻𝐿𝐿𝑔𝑙𝑢𝑐𝑠 − 𝐹𝐹𝐷𝑇 𝐶𝐷𝑇𝐿𝑔𝑙𝑢𝑐𝑠
+ 𝐶𝐷𝑇𝐶𝑔𝑙𝑢𝑐𝑠  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝐷𝑇𝐶𝑔𝑙𝑢𝑐𝑠+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝐷𝑇𝐶𝑔𝑙𝑢𝑐𝑠 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝐷𝑇𝐿𝑔𝑙𝑢𝑐𝑠)) 

  

34. SU in collecting duct lumen 1-2 (𝐶𝐷𝐿1𝑆𝑈, 𝐶𝐷𝐿2𝑆𝑈) 𝑑𝐶𝐶𝐷𝐿𝑖𝑆𝑈𝑑𝑡 = 1𝑉𝐶𝐷𝐿𝑖 (𝐹𝐹𝐷𝑇 (𝐶𝐶𝐷𝐿𝑖−1𝑆𝑈 − 𝐶𝐶𝐷𝐿𝑖𝑆𝑈) + 𝐶𝐶𝐷𝐶𝑖𝑆𝑈  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝐶𝐷𝐶𝑖𝑆𝑈+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝐶𝐷𝐶𝑖𝑆𝑈 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑆𝑈) 𝐶𝐶𝐷𝐿𝑖𝑆𝑈)) 

𝑖 = 1 − 2; where 𝑖 refers to the section of collecting duct (see Figures 4.2 and 4.3). 𝐶𝐶𝐷𝐿𝑖−1𝑆𝑈 refers to the concentration of SU in the segment preceding the current 

collecting duct lumen section, i.e. 𝐶𝐷𝐿1 − 1 = 𝐷𝑇𝐿;  𝐶𝐷𝐿2 − 1 = 𝐶𝐷𝐿1. 

 

 

35. Glucuronides in collecting duct lumen 1-2 (𝐶𝐷𝐿1𝑔𝑙𝑢𝑐𝑠, 𝐶𝐷𝐿2𝑔𝑙𝑢𝑐𝑠) 𝑑𝐶𝐶𝐷𝐿𝑖𝑔𝑙𝑢𝑐𝑠𝑑𝑡 = 1𝑉𝐶𝐷𝐿𝑖 (𝐹𝐹𝐷𝑇  (𝐶𝐶𝐷𝐿𝑖−1𝑔𝑙𝑢𝑐𝑠 − 𝐶𝐶𝐷𝐿𝑖𝑔𝑙𝑢𝑐𝑠)
+ 𝐶𝐶𝐷𝐶𝑖𝑔𝑙𝑢𝑐𝑠  𝐽max(𝑂𝐴𝑇𝑚𝑒𝑡𝑠)𝐾𝑚(𝑂𝐴𝑇𝑚𝑒𝑡𝑠) + 𝐶𝐶𝐷𝐶𝑖𝑔𝑙𝑢𝑐𝑠+ (𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝐶𝐷𝐶𝑖𝑔𝑙𝑢𝑐𝑠 − 𝑃𝑑𝑖𝑓𝑓,𝑢(𝑔𝑙𝑢𝑐𝑠) 𝐶𝐶𝐷𝐿𝑖𝑔𝑙𝑢𝑐𝑠)) 

𝑖 = 1 − 2; where 𝑖 refers to the section of collecting duct (see Figures 4.2 and 4.3). 
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𝐶𝐶𝐷𝐿𝑖−1𝑔𝑙𝑢𝑐𝑠 refers to the concentration of glucuronides in the segment preceding 

the current collecting duct lumen section, i.e. 𝐶𝐷𝐿1 − 1 = 𝐷𝑇𝐿;  𝐶𝐷𝐿2 − 1 =𝐶𝐷𝐿1. 

 

 

36. Urine 𝑑𝐶𝑢𝑟𝑖𝑛𝑒𝑑𝑡 = 1𝑉𝐵𝐿  (𝐹𝐹𝐷𝑇 𝐶𝐶𝐷𝐿2) 

 

37. SU in urine 𝑑𝐶𝑢𝑟𝑖𝑛𝑒𝑆𝑈𝑑𝑡 = 1𝑉𝐵𝐿  (𝐹𝐹𝐷𝑇 𝐶𝐶𝐷𝐿2𝑆𝑈) 

 

38. Glucuronides in urine 𝑑𝐶𝑢𝑟𝑖𝑛𝑒𝑔𝑙𝑢𝑐𝑠𝑑𝑡 = 1𝑉𝐵𝐿  (𝐹𝐹𝐷𝑇 𝐶𝐶𝐷𝐿2𝑔𝑙𝑢𝑐𝑠) 

 

39. SA arterial blood (𝐴𝑅𝑆𝐴) 𝑑𝐶𝐴𝑅𝑆𝐴𝑑𝑡 = 1𝑉𝐴𝑅  (𝑄𝐿𝑈 𝐶𝐿𝑈𝑆𝐴 × 𝑅𝑆𝐴𝐾𝑝𝑆𝐴  ) – ∑ 𝑄𝑖 × 𝐶𝐴𝑅𝑆𝐴𝑉𝐴𝑅𝑖 − 𝑄𝐾𝐼 (𝐶𝐴𝑅𝑆𝐴 − 𝐶𝐺𝐵)𝑉𝐴𝑅  

 

where i = HE, HA, ST, GU, SP, TH, PA, AD, MU, BR, SK; therefore: ∑ 𝑄𝑖 × 𝐶𝐴𝑅𝑆𝐴𝑉𝐴𝑅𝑖 = 𝑄𝐻𝐸 × 𝐶𝐴𝑅𝑆𝐴𝑉𝐴𝑅 − 𝑄𝐻𝐴 × 𝐶𝐴𝑅𝑆𝐴𝑉𝐴𝑅 − 𝑄𝑆𝑇 × 𝐶𝐴𝑅𝑆𝐴𝑉𝐴𝑅 − 𝑄𝐺𝑈 × 𝐶𝐴𝑅𝑆𝐴𝑉𝐴𝑅− 𝑄𝑆𝑃 × 𝐶𝐴𝑅𝑆𝐴𝑉𝐴𝑅 − 𝑄𝑇𝐻 × 𝐶𝐴𝑅𝑆𝐴𝑉𝐴𝑅 − 𝑄𝑃𝐴 × 𝐶𝐴𝑅𝑆𝐴𝑉𝐴𝑅 − 𝑄𝐴𝐷 × 𝐶𝐴𝑅𝑆𝐴𝑉𝐴𝑅− 𝑄𝑀𝑈 × 𝐶𝐴𝑅𝑆𝐴𝑉𝐴𝑅 − 𝑄𝐵𝑅 × 𝐶𝐴𝑅𝑆𝐴𝑉𝐴𝑅 − 𝑄𝑆𝐾 × 𝐶𝐴𝑅𝑆𝐴𝑉𝐴𝑅  

 

 

40. SA venous blood (𝑉𝐸𝑆𝐴) 𝑑𝐶𝑉𝐸𝑆𝐴𝑑𝑡 = 1𝑉𝑉𝐸  (∑ 𝑄𝑇 × 𝐶𝑇𝑆𝐴 × 𝑅𝑆𝐴𝐾𝑝𝑆𝐴 + 𝑄𝐻𝐿−𝐶𝐷2 𝐶𝐶𝐷𝐵2 + 𝑄𝐾𝐼 𝐶𝐶𝐷𝐵1𝑖− 𝑄𝐿𝑈 × 𝐶𝑉𝐸𝑆𝐴 ) 
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Excluding the kidney, gut, pancreas, spleen, stomach, and lung; (no venous 

infusion rate (VIR) included) ∑ 𝑄𝑇  ×  𝐶𝑇𝑆𝐴 ×  𝑅𝑆𝐴𝐾𝑝𝑆𝐴 = 𝑖
𝑄𝐻𝐸 × 𝐶𝐻𝐸𝑆𝐴 ×  𝑅𝑆𝐴𝐾𝑝𝑆𝐴 + 𝑄𝐿𝐼 × 𝐶𝐿𝐼𝑆𝐴 ×  𝑅𝑆𝐴𝐾𝑝𝑆𝐴+ 𝑄𝑇𝐻 × 𝐶𝑇𝐻𝑆𝐴 ×  𝑅𝑆𝐴𝐾𝑝𝑆𝐴 + 𝑄𝐴𝐷 × 𝐶𝐴𝐷𝑆𝐴 ×  𝑅𝑆𝐴𝐾𝑝𝑆𝐴+ 𝑄𝑀𝑈 × 𝐶𝑀𝑈𝑆𝐴 ×  𝑅𝑆𝐴𝐾𝑝𝑆𝐴 + 𝑄𝐵𝑅 × 𝐶𝐵𝑅𝑆𝐴 ×  𝑅𝑆𝐴𝐾𝑝𝑆𝐴+ 𝑄𝑆𝐾 × 𝐶𝑆𝐾𝑆𝐴 ×  𝑅𝑆𝐴𝐾𝑝𝑆𝐴  

 

 

Appendix 4.B: ODEs and calculations related to the extended PBK model which is 

coupled to the mechanistic kidney model 

 

4.B.1 Amendments to gut, liver compartments to account for hydrolysis of ASA to 

SA, and amendments to arterial blood and venous blood compartment ODEs of the 

full-body PBK model to account for hydrolysis of ASA to SA and terms connecting 

to the mechanistic kidney model 

 

All terms are defined in Chapter 3 and subchapter 4.2.3. All parameter values for ASA 

and SA are stated in Tables 4.11 to 4.14. Please note that all chemical-specific 

parameters stated in 4.B.1.1 to 4.B.1.4 are those of ASA. 

 

4.B.1.1 Gut compartment (𝐺𝑈) 𝑑𝐶𝐺𝑈𝑑𝑡 = 1𝑉𝐺𝑈  (𝑄𝐺𝑈  (𝐶𝐴𝑅 − 𝐶𝐺𝑈 ×  𝑅𝐾𝑝  ) − 𝐶𝐺𝑈 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐺𝑈)𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐺𝑈) + 𝐶𝐺𝑈 +  𝐴𝑇𝐼𝐴) 

where 𝐴𝑇𝐼𝐴 is defined in equation 25 of Appendix 3.A.2. 

 

4.B.1.2 Liver compartment (𝐿𝐼) 𝑑𝐶𝐿𝐼𝑑𝑡 = 1𝑉𝐿𝐼  (𝑄𝐻𝐴 × 𝐶𝐴𝑅 +  ∑ 𝑄𝑖 × 𝐶𝑖 × 𝑅𝐾𝑝𝑖 − 𝑄𝐿𝐼 × 𝐶𝐿𝐼 × 𝑅𝐾𝑝 − 𝐶𝐿𝐼 × 𝐶𝐿𝑖𝑛𝑡𝐾𝑝 × 𝑓𝑢(𝑝)
− 𝐸𝐻𝑅 × 𝑘𝑏𝑖𝑙 × 𝐶𝐿𝐼 × 𝑉𝐿𝐼𝐾𝑝 − 𝐶𝑃 × 𝑘𝑏𝑖𝑙 × 𝐶𝐿𝐼 × 𝑉𝐿𝐼𝐾𝑝− 𝐶𝐿𝐼 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐿𝐼)𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐿𝐼) + 𝐶𝐿𝐼) 
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where i = GU (gut), ST (stomach), PA, SP; therefore: ∑ 𝑄𝑖 ×  𝐶𝑖 ×  𝑅𝐾𝑝𝑖 = 𝑄𝐺𝑈 ×  𝐶𝐺𝑈  ×  𝑅𝐾𝑝 + 𝑄𝑃𝐴 ×  𝐶𝑃𝐴 ×  𝑅𝐾𝑝 + 𝑄𝑆𝑃 ×  𝐶𝑆𝑃 ×  𝑅𝐾𝑝+ 𝑄𝑆𝑇 ×  𝐶𝑆𝑇 ×  𝑅𝐾𝑝  

 

4.B.1.3 Arterial blood compartment (𝐴𝑅) 𝑑𝐶𝐴𝑅𝑑𝑡 = 1𝑉𝐴𝑅  (𝑄𝐿𝑈 𝐶𝐿𝑈 × 𝑅𝐾𝑝  − 𝐶𝐴𝑅 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐴𝑅)𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐴𝑅−𝑉𝐸) + 𝐶𝐴𝑅) – ∑ 𝑄𝑖 × 𝐶𝐴𝑅𝑉𝐴𝑅𝑖  

 

where i = HE, HA, ST, GU, SP, KI, TH, PA, AD, MU, BR, SK; therefore: ∑ 𝑄𝑖 × 𝐶𝐴𝑅𝑉𝐴𝑅𝑖 = 𝑄𝐻𝐸 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝐻𝐴 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝑆𝑇 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝐺𝑈 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝑆𝑃 × 𝐶𝐴𝑅𝑉𝐴𝑅− 𝑄𝐾𝐼 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝑇𝐻 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝑃𝐴 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝐴𝐷 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝑀𝑈 × 𝐶𝐴𝑅𝑉𝐴𝑅− 𝑄𝐵𝑅 × 𝐶𝐴𝑅𝑉𝐴𝑅 − 𝑄𝑆𝐾 × 𝐶𝐴𝑅𝑉𝐴𝑅  

 

4.B.1.4 Venous blood compartment (𝑉𝐸) 𝑑𝐶𝑉𝐸𝑑𝑡 = 1𝑉𝑉𝐸  (∑ 𝑄𝑇 × 𝐶𝑇 × 𝑅𝐾𝑝 − 𝑄𝐿𝑈 × 𝐶𝑉𝐸  − 𝐶𝑉𝐸 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝑉𝐸)𝐾𝑚ℎ𝑦𝑑𝑟𝑜(𝐴𝑅−𝑉𝐸) + 𝐶𝑉𝐸𝑖 ) 

 

Excluding the gut, pancreas, spleen, stomach, and lung; (no venous infusion rate 

(VIR) included) ∑ 𝑄𝑇  ×  𝐶𝑇 ×  𝑅𝐾𝑝 = 𝑖
𝑄𝐻𝐸 × 𝐶𝐻𝐸 ×  𝑅𝐾𝑝 + 𝑄𝐿𝐼 × 𝐶𝐿𝐼 ×  𝑅𝐾𝑝 + 𝑄𝐾𝐼 × 𝐶𝐾𝐼 ×  𝑅𝐾𝑝+ 𝑄𝑇𝐻 × 𝐶𝑇𝐻 ×  𝑅𝐾𝑝 + 𝑄𝐴𝐷 × 𝐶𝐴𝐷 ×  𝑅𝐾𝑝 + 𝑄𝑀𝑈 × 𝐶𝑀𝑈 ×  𝑅𝐾𝑝+ 𝑄𝐵𝑅 × 𝐶𝐵𝑅 ×  𝑅𝐾𝑝 + 𝑄𝑆𝐾 × 𝐶𝑆𝐾 ×  𝑅𝐾𝑝  
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4.B.2: Conversion factors to scale ASA-hydrolysis related 𝑽𝒎𝒂𝒙 values from in 

nmol/min/mg protein to micromol/min 

Conversion factors were derived to convert 𝑉𝑚𝑎𝑥 values sourced from Imai et al. 

(2006) for the rate of hydrolysis of ASA in the liver and gut from nmol/min/mg protein 

to the in vivo rates 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐿𝐼)  and 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐺𝑈)  in μmol/min. Both conversion 

factors and all values used to derive these are presented in Table 4.B.2.1. 

 

Table 4.B.2.1: Derivation of conversion factors to scale in vitro 𝑉𝑚𝑎𝑥 values to the in 

vivo rates 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐿𝐼)  and 𝑉𝑚𝑎𝑥ℎ𝑦𝑑𝑟𝑜(𝐺𝑈)  

Parameters Liver[1] Gut[2] Reference 

mg microsomal 

protein/g organ 

40 NA [1] Hakooz et al., 

2006; Zhang et al., 

2015 

Organ weight (g) 1400 NA [1] Johnson et al., 

2005 

Conversion factor 

(mg microsomal 

protein/organ) 

56000 2977 [2] Paine et al., 

1997 

 

 

 

 


