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Abstract16

Understanding ecosystem state on the North-West European (NWE) Shelf is of major im-17

portance for both economy and climate research. The purpose of this work is to advance18

our modelling of in-water optics on the NWE Shelf, with important implications for how19

we model primary productivity, as well as for assimilation of water-leaving radiances. We20

implement a stand-alone bio-optical module into the existing coupled physical-biogeo-21

chemical model configuration. The advantage of the bio-optical module, when compared22

to the pre-existing light scheme is that it resolves the underwater light spectrally and dis-23

tinguishes between direct and diffuse downwelling streams. The changed underwater light24

compares better with both satellite and in-situ observations. The module lowered the un-25

derwater Photosynthetically Active Radiation, decreasing the simulated primary productiv-26

ity, but overall the improved underwater light had relatively limited impact on the phyto-27

plankton seasonal dynamics. We showed that the model skill in representing phytoplank-28

ton seasonal cycle (e.g phytoplankton bloom) can be substantially improved either by as-29

similation of satellite Phytoplankton Functional Type (PFT) chlorophyll, or by assimilating30

a novel PFT absorption product. Assimilation of the two PFT products yields similar re-31

sults, with an important difference in the PFT community structure. Both assimilative runs32

lead to lower plankton biomass and increase the nutrient concentrations. We discuss some33

future directions on how to improve our model skill in biogeochemistry without using as-34

similation, e.g. by improving nutrient forcing, re-tuning the model parameters and using35

the bio-optical module to provide a two-way physical-biogeochemical coupling, improving36

the consistency between model physical and biogeochemical components.37

1 Introduction38

Ecosystems convert inorganic matter into organic compounds mostly through the39

process of photosynthesis. The central role of light in photosynthesis implies that any suc-40

cessful marine or terrestrial ecosystem model must be reasonably skilled in representing41

the basic properties of the incoming light field. Representation of light is of special im-42

portance to marine ecosystem models, since the ocean has a large impact on light prop-43

erties, pathways, and extinction, mostly through backscattering and absorption by water,44

phytoplankton, sediment, detritus and particulate organic matter (e.g Gregg and Casey45

[2009]; Gregg and Rousseaux [2016, 2017]). What exactly happens with light as it pen-46

etrates through the ocean and how much of it is used to drive photosynthesis, depends47

largely on its spectral and directional properties at the time when light enters the water48

column. These spectral and directional properties in turn depend on the atmospheric con-49

ditions, in particular on the scattering and absorption by clouds, aerosols, ozone, water50

vapour and other atmospheric constituents (Gregg and Casey [2009]; Gregg and Rousseaux51

[2016]).52

Although biological processes depend on the light spectral decomposition (Dickey53

et al. [2011]), most ecosystem models represent the underwater irradiance either by a total54

short-wave radiation, or Photosynthetically Active Radiation (PAR) (Palmer and Totterdell55

[2001]; Zielinski et al. [2002]; Maier-Reimer et al. [2005]; Doney et al. [2006]; Henson56

et al. [2010]; Marinov et al. [2010]; Laufkötter et al. [2013]; Butenschön et al. [2016], see57

also Gregg and Rousseaux [2016] for an overview). Furthermore, the direction of the light58

beam remains often unresolved, which typically equals to the assumption that the incom-59

ing radiation is 100% diffuse (e.g Butenschön et al. [2016]). The underwater light field60

is in those ecosystem models reduced through a broadband attenuation term (e.g Zhao61

et al. [2013]; Butenschön et al. [2016]), which sometimes distinguishes between the roles62

of water and phytoplankton in light attenuation (Jiang et al. [2003]; Manizza et al. [2005];63

Xiu and Chai [2014]). However, in the last two decades there have appeared a number64

of one-dimensional (1D, Bissett et al. [1999, 2005]) and three-dimensional (3D, Gregg65

[2002]; Gregg et al. [2003]; Gregg and Casey [2007]; Mobley et al. [2009]; Dutkiewicz66

et al. [2015]; Baird et al. [2016]; Gregg and Rousseaux [2016, 2017]) modelling stud-67
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ies where light has been spectrally resolved. For example, a recent study by Gregg and68

Rousseaux [2016] highlighted the importance of spectrally and directionally resolved light69

to simulate the global phytoplankton community structure, as well as the global chloro-70

phyll and nutrient abundances. Gregg and Rousseaux [2016] have also shown that global71

primary productivity can be highly sensitive (on the levels of an order of magnitude) to72

the wavelength chosen to represent the broadband radiation in a non-spectra resolving73

light model.74

The seas covering continental shelf have often nutrient-rich, biologically productive75

waters (de Haas et al. [2002]), due to high levels of mixing in their shallow bathymetry76

and river input. North-West European (NWE) Shelf is a region of natural interest to Eu-77

ropean fisheries and economy (Pauly et al. [2002]), and it is also a region of major im-78

portance for the carbon cycle and climate (e.g Borges et al. [2006]; Jahnke [2010]). The79

operational model run on the NWE Shelf consists of physical model Nucleus for European80

Modelling of Ocean (NEMO) coupled through the Framework for Aquatic Biogeochemi-81

cal Model (FABM, Bruggeman and Bolding [2014]) to the biogeochemical model the Eu-82

ropean Regional Seas Ecosystem Model (ERSEM). ERSEM is a popular lower trophic83

level model to represent Shelf Sea biogeochemistry (Baretta et al. [1995]; Blackford and84

Gilbert [2007]; Holt et al. [2012]; Wakelin et al. [2012]; Polimene et al. [2012]; Artioli85

et al. [2012]; Butenschön et al. [2016]), which is the biogeochemical component of the86

operational model for the NWE Shelf used by the European Copernicus Marine Ecosys-87

tem Monitoring Service (CMEMS). ERSEM skill has been repeatedly validated against88

different types of data (Allen and Somerfield [2009]; Edwards et al. [2012]; De Mora et al.89

[2013, 2016]). However, ERSEM suffers from the same limitations as most marine ecosys-90

tem models: in the established ERSEM configuration (Butenschön et al. [2016]) the light91

is taken as purely diffuse radiation (approximation for the higher latitudes) and is spec-92

trally unresolved. The ERSEM model is typically forced by an external atmospheric prod-93

uct for net downwelling short-wave radiation, whilst underwater light extinction is calcu-94

lated from light attenuation by clear sea water, 4 different Phytoplankton Functional Types95

(PFTs) and from aggregate absorption by Particulate Organic Matter (POM), Colored Dis-96

solved Organic Matter (CDOM) and sediment forced by an external product (Butenschön97

et al. [2016]). The oversimplified ERSEM light scheme poses limitation on how model98

represents primary productivity (e.g concentrations of phytoplankton biomass, magnitude99

and timing of phytoplankton bloom). Furthermore, the ERSEM light scheme is not reli-100

able enough to be used in how we calculate the heating of the water column and a sepa-101

rate scheme from the physical model needs to be used instead. These drawbacks in how102

ERSEM treats underwater light are particularly concerning on the NWE Shelf, given that103

the Shelf seems to be one of the global regions with higher sensitivity to the representa-104

tion of in-water optics (Gregg and Rousseaux [2016]).105

In this work we aim to improve the ERSEM representation of underwater light by106

implementing a spectrally resolved stand-alone bio-optical module (developed in the con-107

text of FABM) into an established NEMO - FABM - ERSEM configuration on the NWE108

Shelf. In the context of ERSEM, similar efforts have been made in Ciavatta et al. [2014],109

but this study goes far beyond of what has been done in the early paper of Ciavatta et al.110

[2014]. Unlike Ciavatta et al. [2014]: a) we distinguish between direct and diffuse down-111

welling streams; b) we comprehensively resolve light in a broad range of wavelengths112

including ultraviolet and infrared, while Ciavatta et al. [2014] resolved only 3 bands, all113

in a visible range; c) our model has broad application on the NWE Shelf and beyond,114

whereas the applicability of the model by Ciavatta et al. [2014] was constrained to the115

Western English Channel. The bio-optical module implemented in this study is based on116

OceanâĂŞAtmosphere Spectral Irradiance Model (OASIM) (e.g Gregg and Casey [2009])117

and forced by atmospheric fields, such as ozone, cloud cover and water vapour. It provides118

ERSEM with spectrally resolved radiation at the water surface and also with improved di-119

rectional representation of light by decomposing the downwelling radiation into diffuse120

and direct streams. As outlined before, the most obvious purpose of this development is121
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to improve model skill to represent ecosystem dynamics on the NWE Shelf. This is not,122

however, the only purpose of introducing the bio-optical module into ERSEM, as the spec-123

trally resolved products for underwater light have their own importance, such as for recre-124

ational and commercial diving activities and naval operations (Woodham [2011]). Further-125

more, another crucial aspect of this work is data assimilation, which has been increasingly126

applied in ecosystem modelling (Gehlen et al. [2015]).127

Data assimilation is a set of tools and methods that enable us to systematically merge128

the model forecast with the observational data in order to optimally represent the state129

of a complex dynamical system. It has been developed mostly in the field of numerical130

weather forecasting (e.g. Kalnay [2003]), but data assimilation has found application in131

a range of other fields, such as operational oceanography (e.g. Cummings et al. [2009];132

Edwards et al. [2015]). The most typically assimilated data in biogeochemistry are ocean133

color-derived (satellite) products for surface concentrations of total chlorophyll (Ishizaka134

[1990]; Carmillet et al. [2001]; Natvik and Evensen [2003]; Hoteit et al. [2005]; Torres135

et al. [2006]; Nerger and Gregg [2007, 2008]; Gregg [2008]; Fontana et al. [2010]; Cia-136

vatta et al. [2011]; Ford et al. [2012]; Ciavatta et al. [2016]; Kalaroni et al. [2016]; Ford137

and Barciela [2017]; Pradhan et al. [2019]), and this has been recently extended to Phyto-138

plankton Functional Type (PFT) chlorophyll (Ciavatta et al. [2018]; Skákala et al. [2018];139

Ciavatta et al. [2019]). There is however only a handful of studies that assimilate direct140

optical radiances, among the few cases there is assimilation of phytoplankton light absorp-141

tion (Shulman et al. [2013]), diffuse light attenuation coefficient (Ciavatta et al. [2014]),142

reflectance data (Jones et al. [2016]) and absorption by Coloured Dissolved Organic Car-143

bon (CDOC) (Gregg and Rousseaux [2017]). The advantage of using radiances is that they144

are often directly measured by the satellite and their products have consequently lower er-145

rors (e.g Groom et al. [2019]). However, whether such products can be assimilated into146

the model depends on how directly we can relate those radiances to the model state vari-147

ables. One of the important roles played by the bio-optical module introduced in this work148

is that it provides the necessary link between spectral radiances and biogeochemistry from149

the NEMO-FABM-ERSEM model, and therefore increases the capacity of our assimilative150

systems.151

In this study we a) assessed the impact of the new bio-optical module on ERSEM152

skill in the “free run” (without assimilation) , and b) assimilated satellite PFT chloro-153

phyll (Brewin et al. [2017]) and PFT optical absorption (Brewin et al. [2019]) products into154

ERSEM using bio-optical module. The runs assimilating satellite products into ERSEM155

coupled to the bio-optical module will be compared with two ERSEM free runs (with and156

without the bio-optical module) and with the currently established assimilation of PFT157

chlorophyll using the pre-existing ERSEM light scheme (Ciavatta et al. [2018]; Skákala158

et al. [2018]). The ERSEM skill in the different simulations will be assessed by looking159

at how the model represents: a) phytoplankton concentrations, community structure and160

phytoplankton seasonal cycle (e.g timing and magnitude of the Spring bloom), b) the un-161

derwater light field and c) the nutrient cycle. We expect both the bio-optical module and162

the assimilation to have large impacts on a) and b), with lesser, but still important impacts163

on c). We also anticipate important changes in the model carbon cycle, but due to lack164

of data, these can only be evaluated indirectly. In analysing the differences between as-165

similating PFT chlorophyll and PFT absorption, it is important to note that the products166

are not independent: PFT absorption is derived from PFT chlorophyll using the model of167

Brewin et al. [2019]. However, the absorption model used in ERSEM (based on Gregg and168

Casey [2009]; Gregg and Rousseaux [2016]) is independent from the satellite model of169

Brewin et al. [2019] and so the two may not be entirely consistent. The key role played by170

data assimilation is that it merges information from multiple sources, and by assimilating171

PFT absorption into the model we aim to move closer towards the optimal representation172

of underwater light. However, if there are differences between the ERSEM and satellite173

absorption models, PFT absorption assimilation might not provide statistically optimal rep-174

resentation of PFT chlorophyll, which in turn should be provided by PFT chlorophyll as-175
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similation. So even though the PFT absorption data used in this study were derived from176

PFT chlorophyll, assimilating PFT absorption might have some advantages over assimilat-177

ing PFT chlorophyll, and vice versa.178

2 Model, Data and Methodology179

2.1 NEMO-FABM-ERSEM model180

2.1.1 The physical component: NEMO181

The NEMO ocean physics component is a finite difference, hydrostatic, primitive182

equation ocean general circulation model (Madec et al. [2015]). The NEMO configuration183

used in this study is to large degree similar to the one used in Ford et al. [2017]; King184

et al. [2018]; Skákala et al. [2018]: we use the CO6 NEMO version, based on NEMOv3.6,185

a development of the CO5 configuration explained in detail by O’Dea et al. [2017]. The186

model has 7 km spatial resolution on the Atlantic Meridional Margin (AMM7) domain us-187

ing a terrain-following z∗ − σ coordinate system with 51 vertical levels. The lateral bound-188

ary conditions for physical variables at the Atlantic boundary were taken from a reanalysis189

of the GloSea5 Seasonal Forecasting System (MacLachlan et al. [2015]); the Baltic bound-190

ary values were derived from a reanalysis produced by the Danish Meteorological Institute191

for the Copernicus Marine Environment Monitoring Service (CMEMS). The model (in-192

cluding biogeochemistry) was initialized from the CMEMS re-analysis produced at the193

Met Office (product CMEMS-NWS-QUID-004-011, http://marine.copernicus.eu/services-194

portfolio/access-to-products/ ). The free simulations were performed for a 3 year period195

(2016-2018) and the more computationally costly assimilative runs for a single year (2016).196

The river discharge dataset used by Ford et al. [2017]; Skákala et al. [2018] has been197

updated to cover more recent years using data from Lenhart et al. [2010]. Unlike Ford198

et al. [2017]; Skákala et al. [2018], here the model was forced at the surface by atmo-199

spheric fields provided by the high (hourly) temporal and (31 km) spatial resolution re-200

alisation (HRES) of Copernicus Climate Change Service (C3S, 2017) ERA-5 reanalysis201

(https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5).202

2.1.2 The ecosystem component: ERSEM203

ERSEM (Baretta et al. [1995]; Butenschön et al. [2016]) is a lower trophic level204

model for marine biogeochemistry, pelagic plankton, and benthic fauna (Blackford [1997]).205

It distinguishes between five chemical components: carbon, chlorophyll, nitrogen, phos-206

phorus and silicon, using variable stoichiometry for the simulated plankton groups (Gei-207

der et al. [1997]; Baretta-Bekker et al. [1997]). The model splits phytoplankton into four208

functional types largely based on their size (Baretta et al. [1995]): picophytoplankton,209

nanophytoplankton, diatoms and dinoflagellates. Each PFT biomass is represented in terms210

of chlorophyll, carbon, nitrogen and phosphorus, with diatoms also represented by silicon.211

ERSEM predators are composed of three zooplankton types (mesozooplankton, microzoo-212

plankton and heterotrophic nanoflagellates), with organic material being decomposed by213

one functional type of heterotrophic bacteria (Butenschön et al. [2016]). The ERSEM inor-214

ganic component consists of nutrients (nitrate, phosphate, silicate, ammonium and carbon)215

and dissolved oxygen. The carbonate system is also included in the model (Artioli et al.216

[2012]). We used in this study a well established ERSEM parametrization described in217

Butenschön et al. [2016]. At the Atlantic boundary values for nitrate, phosphate and sil-218

icate were taken from World Ocean Atlas (Garcia et al. [2013]) and dissolved inorganic219

carbon from the GLODAP gridded dataset (Key et al. [2015]; Lauvset et al. [2016]), while220

plankton and detritus variables were set to constant values.221

The pre-existing light scheme in ERSEM is described in Butenschön et al. [2016]:222

the light is taken as diffuse only, and it is forced by the hourly net downwelling short-223
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wave radiation from the ERA-5 product used to force NEMO as224

EPAR = qPAR · Isur f · exp
(∫

Kd(z)dz
)
, (1)

where Isur f is the surface downwelling SWR, qPAR is the fraction of PAR and the expo-225

nential term describes the broadband light attenuation by the different components in the226

water. The light attenuation distinguished absorption and backscattering by pure water and227

the 4 PFTs (based on the model of Lee et al. [2005]) as:228

Kd = (1 + 0.005θzen) · a + 4.18 · (1 − 0.52 exp[−10.8 · a]) · b (2)

where θzen is zenith angle and absorption (a) and backscattering (b) terms are defined as229

(Butenschön et al. [2016]):230

a =
4∑
i=1

a∗i · Ci + ady + asea (3)

and231

b =
4∑
i=1

b∗i · Ci + bsea. (4)

The a∗, b∗ in Eq.3-4 are specific absorption and backscattering coefficients, i index runs232

through the 4 PFTs, C is the chlorophyll concentration and asea, bsea are the terms that233

describe absorption and backscattering by sea water. The ady term captures the absorption234

by POM, CDOM and sediment which is forced by an external product based on (443 nm235

wavelength) SeaWIFS data (Wakelin et al. [2012]) and derived from the bio-optical model236

of Smyth et al. [2006]. However, the pre-existing ERSEM light scheme does not attempt to237

provide any genuine representation of underwater light, it merely focuses on estimating the238

photosynthetic energy flux through the surface of phytoplankton cells.239

2.2 Spectrally resolved bio-optical module240

The bio-optical module implemented into NEMO-FABM-ERSEM covers both atmo-241

sphere and ocean and is externally forced by bulk meteorological properties. The function-242

ality of the atmospheric module matches that of the widely used Ocean-Atmosphere Spec-243

tral Irradiance Model (OASIM, Gregg and Casey [2009]), but additionally allows for arbi-244

trary spectral resolution and, through FABM, for integration in a large number of oceano-245

graphic models. At the ocean surface, the module distinguishes two downwelling radiation246

streams, diffuse and direct, which are both fully spectrally resolved. These streams are247

then tracked downwards through the water column as they are being absorbed and scat-248

tered by water and ecosystem constituents.249

The atmospheric fields driving the module were obtained from the Copernicus Cli-250

mate Change Service (C3S, 2017) ERA-5 reanalysis ((https://www.ecmwf.int/ )). The ERA-251

5 data came with 3-hourly temporal and 1/4° spatial resolution and covered the follow-252

ing atmospheric constituents (total aggregates per vertical column): ozone, water vapour,253

cloud liquid water, cloud cover and the mean sea-level air pressure. These fields were254

supplemented with data for surface wind speed, air humidity and air temperature, all pro-255

vided by the NEMO atmospheric (ERA-5) forcing. In addition to these fields we provided256

the module with aerosol optical thickness at 550 nm from MODerate resolution Imaging257

Spectroradiometer (MODIS) satellite product with monthly resolution (https://modis.gsfc.-258

nasa.gov/data/dataprod).259

The underwater irradiance spectra were resolved with 33 wavelengths (between 250265

nm and 3700 nm), with each spectral band reduced in the water column through backscat-266

tering and absorption by water and PFTs, based on the model of Gregg and Rousseaux267

[2016]:268

dEd(λ)

dz
= −Cd(λ)Ed(λ) (5)

–6–



Confidential manuscript submitted to JGR-Oceans

Table 1. The Table shows the inherent optical components distinguished by the model, the data used to
calculate light attenuation by those components (e.g. ERSEM output for the PFT chlorophyll-a), together with
absorption and scattering spectra and the backscattered fraction used. All spectra are taken from Gregg and
Rousseaux [2016] (abbreviated as G&R), Fig 3, and the data files accompanying the source code are available
at https://gmao.gsfc.nasa.gov/reanalysis/MERRA-NOBM/software/.

260

261

262

263

264

optical component source spectral absorption spectral scattering backscattered
fraction

water set as constant G&R G&R 0.5

diatoms (chl-a) ERSEM G&R diatoms G&R diatoms 0.002

nanophytoplankton (chl-a) ERSEM G&R chlorophytes G&R chlorophytes 0.0071

picophytoplankton (chl-a) ERSEM G&R cyanobacteria G&R cyanobacteria 0.0032

dinoflaggelates (chl-a) ERSEM G&R dinoflaggelates G&R dinoflaggelates 0.0029

non-living matter MODIS at 443 nm G&R CDOC 0 0

and269
dEs(λ)

dz
= −Cs(λ)Es(λ) + Fd(λ)Ed(λ), (6)

where Ed is the direct downwelling stream, Es is the diffuse downwelling stream, the270

Cd,Cs are light attenuation coefficients and Fd describes forward scattering. In Eq.5-6 we271

neglected all the upwelling terms from Gregg and Rousseaux [2016]. Although backscat-272

tering is included in light attenuation, the upwelling stream will be only included in the273

future version of the spectral module. However, backscattering to total scattering ratio was274

≤ 0.007 for all the ERSEM variables (see Tab.1), so the upwelling stream could be rea-275

sonably neglected.276

The module calculated light attenuation by the water components largely following277

the model of (Gregg and Rousseaux [2016]). The used scheme is summarized in Tab.1.278

Similarly to the pre-existing ERSEM light scheme the absorption by POM, CDOM and279

sediment (non-living matter, anl(λ)) was forced by an external product extrapolated from280

wavelength specific (443 nm) data of Smyth and Artioli [2010], as:281

anl(λ) ' exp{−S(λ − 443)}, (7)

with S = 0.014 nm−1, as for Chromophoric Dissolved Organic Carbon (CDOC) in Gregg282

and Rousseaux [2016].283

2.3 Data and validation284

2.3.1 Assimilated data285

We assimilated in this study two satellite products: a PFT chlorophyll (Brewin et al.286

[2017]) and a PFT absorption product (Brewin et al. [2019]). Based on a simple, con-287

ceptual model (Brewin et al. [2010, 2015]), Brewin et al. [2017] used the Ocean Colour288

- Climate Change Initiative (OC-CCI, project of the European Space Agency, Version289

3.0, Sathyendranath et al. [2016, 2019]) data for total chlorophyll-a to estimate chloro-290

phyll in the 4 ERSEM PFTs (diatoms, dinoflaggelates, nano- and pico-phytoplankton).291

The model of Brewin et al. [2017] splits phytoplankton into a subgroup of smaller species292

(<20µm, picophytoplankton and nanophytoplankton) and microphytoplankton (diatoms and293
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dinoflaggelates) as294

C1,2 = Cm
1,2 ·

(
1 − exp

{
−

D1,2

Cm
1,2
· C

})
, C3,4 = C − C1,2, (8)

where C is the total chlorophyll concentration, C1,2 is the aggregate concentration of pico295

and nanophytoplankton, C3,4 is microphytoplankon, Cm
1,2 is the maximum value of C1,2 ap-296

proached in the asymptotic limit C → ∞, while the D1,2 is the fraction C1,2/C in the limit297

of C → 0. The Cm
1,2 and D1,2 parameters are dependent on the Sea Surface Temperature298

(SST, see Brewin et al. [2017]), which was obtained from the satellite data (OISST version299

from Reynolds et al. [2007]). Using analogous model to Eq.8 one can split C1,2 further300

into nanophytoplankton and picophytoplankton concentrations. Furthermore the microphy-301

toplankton concentration can be split into diatoms (C3) and dinoflaggelates (C4) using302

C3 =
C3,4

1 − exp(−α(SST − β))
, C4 = C3,4 − C3 (9)

where α, β are two suitably tuned parameters (Brewin et al. [2017]).303

The PFT chlorophyll product was already assimilated in Ciavatta et al. [2018]; Skákala304

et al. [2018]. It has a daily temporal and 4 km spatial resolution, and comes with bias and305

uncertainty estimates (in log-space). Both biases and uncertainties were estimated using306

in situ and satellite data match-ups following the approach from Jackson et al. [2017] and307

fuzzy logic statistics (Moore et al. [2009]). It has been demonstrated that the PFT chloro-308

phyll biases and uncertainties depend mostly on the Optical Water Type (OWT, Brewin309

et al. [2017]) with higher OWTs describing the optically complex waters typically found310

in the coastal and Shelf regions, and in the most dynamical time of the year (i.e. during311

Spring). As expected, the model has larger uncertainties in the higher OWTs, furthermore312

the satellite model tends to underestimate chlorophyll concentrations in the lower OWTs313

and overestimate chlorophyll in the higher OWTs (see Brewin et al. [2017]). Similarly to314

Ciavatta et al. [2018]; Skákala et al. [2018], we unbiased the satellite data prior to assimi-315

lation and calculated the uncertainties of the unbiased data (following the method of Cia-316

vatta et al. [2016]).317

The PFT absorption product has been derived from the unbiased PFT chlorophyll318

data using the model of Brewin et al. [2019] for the North Atlantic. Based on specific ab-319

sorption coefficients a∗i (λ) fitted from in situ measurements, the model of Brewin et al.320

[2019] derives PFT absorption (ai(λ)) for 12 characteristic wavelengths (λ) as321

ai(λ) = a∗i (λ) · Ci (10)

where the i index labels the specific PFT. 6 out of these 12 wavelengths were selected for322

the satellite product: 412 nm, 443 nm, 490 nm, 510 nm, 555 nm and 665 nm. Since the323

PFT absorption is derived from PFT chlorophyll, it has the same spatial and temporal res-324

olution as PFT chlorophyll. Similarly to PFT chlorophyll, PFT absorption also contains325

information about uncertainties, which have two sources: the original uncertainty of the326

PFT chlorophyll and additional uncertainty associated with the specific absorption coef-327

ficients (Brewin et al. [2019]). PFT absorption therefore has larger uncertainty than PFT328

chlorophyll.329

2.3.2 Validation data for the oceanic variables330

We used both shelf-wide and location-specific in situ measured data to assess the331

model skill. For the shelf-wide data we used three data-sets: a) the Ecosystem Data On-332

line Warehouse of the International Council for the Exploration of the Sea (ICES, https:-333

//www.ices.dk/marine-data/ ) that contains measurements of three nutrients of specific in-334

terest: nitrate, phosphate, silicate, and also data for total chlorophyll. The ICES data-set335

for year 2016 contained a large number of measurements (for each variable around 5000)336
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at a range of depths (0 - 30m) at different locations on the NWE Shelf (southern North337

Sea, eastern UK coastline, Irish coastline). b) We also used the 1960-2014 monthly cli-338

matologies for total chlorophyll, nitrate, phosphate and silicate collected in the North Sea339

Biogeochemical Climatology (NSBC) project (Hinrichs et al. [2017]). The NSBC data-340

set is gridded with 1/4° horizontal resolution and 16 vertical layers, covering most of the341

North Sea domain. Although it is methodologically difficult to validate model skill with342

climatologies, the NSBC data-set is a valuable source of information due to its exten-343

sive spatial coverage. c) To validate surface light attenuation coefficient (Kd) at 490 nm344

wavelength we used the merged OC-CCI satellite data-set of the European Space Agency345

(ESA), product version 4.1 (http://www.esa-oceancolour-cci.org/ ).346

The location-specific data were obtained for the long-term monitoring station L4 in347

the English Channel (https://www.westernchannelobservatory.org.uk). To support some of348

the conclusions we looked at two types of data: weekly climatology derived from 1994-349

2015 time series for total phytoplankton carbon (Widdicombe et al. [2010]) and the un-350

derwater PAR for year 2016. The phytoplankton carbon time-series was obtained from a351

measurement location at 10m depth, while the PAR data were measured across the whole352

water column (0 - 50m). At each day, the PAR data were collected at a specific time in353

the morning. Since PAR is highly variable throughout the day (diurnal cycle, cloudiness),354

the observations cannot be directly compared to the model daily average outputs. How-355

ever, PAR attenuation in the water column is much more stable on the daily time scale,356

as it depends mainly on the biogeochemical state of the water, which typically evolves on357

supra-daily scales (with some notable exceptions, such as migration of dinoflaggelates).358

Therefore, we compared model and observations as ratios between the PAR values at a359

range of depths and the PAR value at 2.4 m. PAR data at depth shallower than 2.4 m360

were excluded due to insufficient number of observations.361

2.3.3 Skill metrics362

Validating a model with in situ data is rarely trivial due to spatio-temporal differ-363

ences in model and data resolution (e.g Schutgens et al. [2017]). In general it is expected364

that bias (difference in model and data mean values) is reasonably unaffected by the differ-365

ent resolutions, but Root Mean Square Difference366

RMSD =
√
(model − observations)2 (11)

can be substantially increased by the in situ small-scale variability. The impact of small367

scale variability can be reduced by suitably binning the observations. This paper focuses368

on two metrics: bias and Bias-Corrected RMSD (BC RMSD), which is the same as RMSD369

from Eq.11, but with bias subtracted from the model. To correct the RMSD for small370

scale in situ variability we decided to bin the in situ data along two dimensions with the371

largest data variability: the temporal and the vertical dimension. We calculated (bias cor-372

rected) RMSD along both temporal (with monthly bins) and vertical axes, and the total373

(bias corrected) RMSD presented in the paper is a simple average between those. How-374

ever, this approach was applied only to the ICES data-set, as the NSBC monthly climatol-375

ogy has larger spatio-temporal resolution than the model. Comparing the model with the376

gridded NSBC and satellite data is more straightforward, as all it needs is re-gridding the377

finer resolution data-set on the coarser resolution scale.378

2.3.4 Validation of the atmospheric part of the bio-optical module379

The bio-optical module was initially validated in the 1D 2013-2016 simulation by398

the atmospheric data provided by the Western Channel Observatory at the L4 station in399

the English Channel (some selected results for the atmospheric L4 fields are shown in400

Tab.2). For the whole NWE Shelf, the module is validated in Fig.1 and Fig.2. These two401

Figures compare the total downwelling Short-Wave Radiation (SWR) above the ocean402
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Figure 1. The upper panel shows 2016-2018 time series for the incoming total flux of Short Wave Radi-
ation (SWR) at the ocean surface (before albedo) averaged through the NWE Shelf. We compare the output
of the bio-optical module with the ERA-5 reanalysis, which is used to force the pre-existing ERSEM light
scheme. We also include the EUMETSAT Polar Orbiting Satellite (POS) SWR and for 2018 the Interim
Climate Data Recors (ICDR) SEVIRI data. The bottom panel shows the total surface SWR from the bio-
optical module split into direct and diffuse radiation. The direct radiation is for 2018 compared with the ICDR
SEVIRI direct downwelling radiation satellite data.

380

381

382

383

384

385

386

Table 2. The skill score (bias and Bias-Corrected RMSD, BC RMSD) for module and ERA-5 when com-
pared to multiple satellite products: EUMETSAT POS (SWR), ICDR SEVRI data (SWR), a MODIS-Aqua
data (PAR) and ICDR SEVRI data for direct downwelling SWR (DIR SWR). The bottom three rows compare
module within 1D 2013-2016 simulation with the L4 observations for SWR and diffuse SWR (DIFF SWR).
The relative (%) values in brackets are the skill score compared to the median observed value. The POS SWR
and MODIS PAR data are compared throughout the NWE Shelf for the full 2016-2018 period, whilst the
ICDR SEVRI data were available only for the year 2018.

391

392

393

394

395

396

397

data Module bias Module BC RMSD ERA-5 bias ERA-5 BC RMSD

POS SWR in W/m2 -0.9 (-0.7%) 22 (16.2%) 2.4 (1.8%) 16.8 (12.4%)

SEVIRI SWR in W/m2 12.7 (9.7%) 22.6 (17.3%) 15.8 (12.1%) 19.6 (14.9%)

MODIS PAR in bar/(m2day) -0.1 (-0.7%) 3.7 (20.8%) – –

SEVIRI DIR SWR in W/m2 12.1 (39%) 17 (54.8%) – –

L4 SWR in W/m2 -9.2 (-6%) 18.7 (12%) -1.3 (-1%) 15.7 (10%)

L4 DIFF SWR in W/m2 3.2 (5%) 13.2 (20%) – –
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Figure 2. The spatial distribution of 2018 median total downwelling Short Wave Radiation (SWR) flux (at
the ocean surface and before albedo, W/m2) compared between the bio-optical module (A), the ERA-5 re-
analysis (B) used to force the pre-existing ERSEM light scheme, and two satellite products, the EUMETSAT
POS (C) and ICDR SEVIRI data (D).
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surface between the module output, the ERA-5 product, which is used to force the pre-403

existing ERSEM light scheme, the Interim Climate Data Record (ICDR) SEVIRI sensor404

product v400/v410 (https://wui.cmsaf.eu/ ) and the EUropean organisation for the exploita-405

tion of MeTeorological SATellites (EUMETSAT) incoming daily SWR product from Po-406

lar Orbiting Satellites (POS, version 1.9.5, http://mpimet.mpg.de/cdi). It is shown (Fig.1407

and Fig.2) that the module is reasonably consistent in terms of temporal and spatial pat-408

terns with the ERA-5 data provided by the CMEMS reanalysis. The relative bias between409

the bio-optical module and the ERA-5 product (module minus ERA-5) is very small (-410

0.5 W/m2, < 1%), with Bias-Corrected Root Mean Square Difference (BC RMSD, Eq.11)411

around 10% from the median ERA-5 SWR value.412

The Tab.2 shows two skill metrics (bias and BC RMSD, Eq.11) evaluating perfor-413

mance of both module and ERA-5 SWR when compared to the ICDR SEVIRI and EU-414

METSAT POS satellite data. The two satellite SWR products are not entirely consistent:415

the EUMETSAT POS SWR matches nicely with both ERA-5 and the module, but all are416

on average about 10% larger than ICDR SEVIRI data. In both cases the module slightly417

outperforms ERA-5 in bias, but slightly underperforms in BC RMSD. The latter is proba-418

bly due to larger spatial variability in module SWR when compared to both the ERA5 and419

the two satellite products (Fig.2). Tab.2 further compares the module PAR with MODIS-420

Aqua Level 3 satellite PAR product (https://oceancolor.gsfc.nasa.gov/l3/ ) showing very421

similar skill score to the comparison with EUMETSAT POS in SWR (negligible bias of422

-0.7%). The last validation data-set shown in Tab.2 was ICDR SEVIRI product for direct423

downwelling SWR. Not surprisingly, module skill in representing direct downwelling SWR424

is consistent with module skill in representing SWR when validated with the same ICDR425

SEVIRI data. The module relative bias was larger for direct SWR than for total SWR,426

suggesting that the overestimated direct SWR is the main reason why module overesti-427

mated total SWR relative to ICDR SEVIRI data.428

2.4 The Data Assimilation (DA) system429

We used the data assimilation set-up already described in Skákala et al. [2018],430

which is based on NEMOVAR (Mogensen et al. [2009, 2012]; Waters et al. [2015]), a 3D-431

VAR variational DA system used for operational ocean DA at the UK Met Office. The432

3D-VAR version applied in this study uses the First Guess at Appropriate Time (FGAT)433

approach and minimizes the cost function using the conjugate gradient method (Mogensen434

et al. [2012]). DA of PFT chlorophyll into NEMO-FABM-ERSEM using NEMOVAR has435

been implemented at the Met Office for use in reanalysis and in the future it will be con-436

sidered for operational forecasting (see Skákala et al. [2018]). The scheme starts with uni-437

variate assimilation of four separate PFTs (diatoms, nanophytoplankton, picophytoplank-438

ton, dinoflagellates) surface chlorophyll concentrations. The analysis is performed in log-439

space, taking account of the typical log-normal distribution of chlorophyll concentrations440

in the ocean (Campbell [1995]). The surface PFT chlorophyll increments are propagated441

with constant values vertically within the mixed layer. After calculating the increments442

for PFT chlorophyll, one may use a balancing module to update some additional ERSEM443

state variables. In the case of PFT chlorophyll assimilation, it is essential to preserve the444

background stoichiometric ratios between the PFT components (chlorophyll, carbon, ni-445

trogen, phosphorus, silicon), as those ratios reflect on the physiological adaptation of the446

PFT cells to the environment. The balancing scheme therefore updates the PFT chemical447

components (other than chlorophyll) as448

∆Xi = (Xi/Ci) · ∆Ci, (12)

where i labels the 4 PFTs, Xi is a given chemical component of a PFT, Ci is the PFT449

chlorophyll, and ∆Ci,∆Xi are increments of Ci, Xi respectively.450

The PFT absorption satellite data (Brewin et al. [2019]) were available for 6 wave-451

lengths (412 nm, 443 nm, 490 nm, 510 nm, 555 nm, 665 nm) and those did not exactly452
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match with the 33 wavelengths used by the bio-optical module. In order to match the453

bio-optical module with the satellite product, the PFT absorption values corresponding454

to the 6 satellite wavelengths were linearly interpolated from the module outputs prior455

to assimilation. The univariate assimilation was applied to calculate increments for the456

24 (4 PFTs times 6 wavelengths) surface radiances. Since PFT absorption is only a di-457

agnostic variable, PFT absorption increments will have no impact on the model unless458

they are translated into increments of some model state variables. The model state vari-459

ables with straightforward relationship to PFT absorption are the PFT chemical compo-460

nents (chlorophyll, carbon, nitrogen, phosphorus and silicon). It is natural to first update461

the PFT chlorophyll by transforming PFT absorption increments into PFT chlorophyll in-462

crements through the PFT per wavelength specific absorption coefficients (see Eq.10). In463

principle different wavelengths could produce different PFT chlorophyll increments, so the464

unique PFT chlorophyll increment was obtained as an average through the PFT chlorophyll465

increments calculated from the 6 wavelengths. After the PFT chlorophyll increments were466

calculated from the absorption increments, the same balancing scheme as in PFT chloro-467

phyll assimilation provided the increments for the remaining phytoplankton components.468

For both PFT chlorophyll (Brewin et al. [2017]) and PFT absorption (Brewin et al.469

[2019]) the per-pixel observation errors were provided with the satellite products. The470

background errors were estimated by a) binning the data monthly and into four charac-471

teristic regions based on bathymetry: 1) region with < 20 m depth, 2) 20 − 50 m depth, 3)472

50 − 200 m depth, 4) > 200 m depth, and b) by assuming that background and observation473

errors can be treated inside each bin as independent. Using a) and b) we estimated the474

background errors by subtracting observation errors from the unbiased differences between475

model and observations within each bin. A similar scheme is used typically for model476

diagnostics (e.g Andersson [2003]; Desroziers et al. [2005]), however due to limited com-477

putational resources we had to estimate the background errors from the free run instead of478

reanalysis. Such simplified scheme has been found sufficient in this application. In fact,479

in a previous study (Skákala et al. [2018]) where PFT chlorophyll was assimilated into480

NEMO-FABM-ERSEM with NEMOVAR, we found that the precise formulation of error481

covariances had relatively small impact on the reanalysis, when compared to some other482

NEMOVAR system features, especially the formulation of the balancing scheme. Overall483

the background-to-observational error ratios varied between different months and the four484

bathymetric regions, but on average the background errors were 2 to 3 times larger than485

the observational errors. This is consistent with what has been found in previous studies486

(e.g Ford and Barciela [2017]).487

3 Results and Discussion488

3.1 Biogeochemistry: free runs489

Fig.3 shows the impact of the bio-optical module on the NWE Shelf phytoplank-515

ton and nutrient seasonal cycle. The PFT and total chlorophyll time series (Fig.3) follow516

the pattern already found in the literature (Skákala et al. [2018]): the model has much517

stronger seasonality than the satellite data and NSBC in situ climatology, with late Au-518

tumn - early Spring model chlorophyll concentrations far beneath the observed values.519

Both free model runs display late blooms (delayed by ∼ 1 month) compared to both satel-520

lite and in-situ NSBC climatology (Fig.3). The bio-optical module has only moderate im-521

pact on the chlorophyll time series, by further increasing both chlorophyll concentrations522

and model seasonality, while at the same time increasing surface nutrient concentrations523

(Fig.3). The impact of the bio-optical module on surface nutrient concentrations can be524

better understood through Fig.4, which shows the values of total phytoplankton chloro-525

phyll averaged in 3D space (i.e. across the NWE Shelf) and time (year 2016), as well as526

PFT chlorophyll, total phytoplankton and total zooplankton carbon, and nutrients (nitrate527

and phosphate). Fig.4 shows that even though the bio-optical module moderately increases528

chlorophyll, it results in lower concentrations of phytoplankton and zooplankton (carbon)529
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Figure 3. The 2016-2018 time-series for spatially averaged surface concentrations on the NWE Shelf for
phytoplankton chlorophyll and nutrients. The Figure compares a) the free run using the pre-existing light
scheme ("old scheme"), b) the free run using the new bio-optical module ("new scheme") with either Ocean
Color (OC) satellite data (PFT and total chlorophyll), or NSBC climatological data-set (total chlorophyll and
nutrients). Since the satellite data between November-February are sparse and located entirely in the south of
the domain, the corresponding satellite chlorophyll time-series have been removed.
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Figure 4. The ecosystem indicators averaged through the year 2016 and the whole Shelf domain (including
vertical dimension). The chart compares the values for the different simulations: a) the free run using the pre-
existing light scheme ("Old"), b) the free run using the bio-optical module ("New"), c) the run assimilating
PFT absorption and using the new bio-optical module ("Abs"), d) the run assimilating PFT chlorophyll-a and
using the new bio-optical module ("Chl"). The panels show total phytoplankton and total zooplankton carbon
biomass, nutrients (nitrate and phosphate), total chlorophyll-to-carbon ratio and the PFT community structure
(PFT-to-total chlorophyll ratio). The PFT abbreviations are: "Diat": Diatoms, "Nano": Nanophytoplankton,
"Pico": Picophytoplankton and "Dino": Dinoflagellates.
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Figure 5. The left hand panel shows visibility (in meters, defined as 1/Kd) for 490 nm wavelength at the
ocean surface. As previously, the panel shows 2016 time series of the spatially averaged value across the
NWE Shelf. The panel compares a) free run using pre-existing light scheme ("old scheme"), b) free run using
bio-optical module ("new scheme"), c) the run assimilating PFT satellite absorption and using bio-optical
module ("sat abs assim"), d) the run assimilating PFT chlorophyll and using bio-optical module ("sat chl
assim") and e) the run assimilating PFT chlorophyll and using pre-existing light scheme ("sat chl assim old
scheme"). The runs are compared with the OC satellite data (as previously the November-February satellite
time-series were removed due to data sparsity). The right hand panel shows 2016 Shelf median ocean surface
visibility for 6 outputted wavelengths. Since the visibility of the pre-existing light scheme is taken as broad-
band, the most consistent way of comparing it to the spectrally resolved visibility of the bio-optical module is
to represent it across the spectral band with a constant value.
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biomass, leading to an overall increase in nutrients. This is most likely due to lower pri-530

mary productivity caused by reduced photosynthetic radiation in the water column, which531

was found to be 10-20% lower (depending on the season) in the bio-optical module than532

in the pre-existing ERSEM light scheme. Since there is negligible bias in the incoming533

solar irradiance (Fig.1), we expect that the bio-optical module reduces underwater PAR534

due to increased light extinction inside the watercolumn. Fig.5 suggests that the module535

reduces underwater PAR dominantly in two wavebands: the ∼ 400 - 470 nm waveband,536

which is mostly absorbed by detritus and particulate matter, and the 570 - 700 nm wave-537

band, which is mostly absorbed by the sea water (e.g Gregg and Casey [2009]; Gregg and538

Rousseaux [2016]).539

The PFT chlorophyll-to-carbon ratio is a good indicator of the environmental (nutri-540

ents, irradiance, temperature) impact on PFT cell physiology (e.g De Mora et al. [2013]),541

with darker environments producing larger chlorophyll values relative to carbon (Finenko542

et al. [2003]). We indeed observed (not shown here) that the reduced PAR in the bio-543

optical module lead to an overall increase of the PFT chlorophyll-to-carbon ratios. Since544

the module did not substantially change the PFT community structure (Fig.4), the larger545

PFT chlorophyll-to-carbon ratios explain the increase in the total phytoplankton chlorophyll-546

to-carbon ratio from the Fig.4.547

3.2 Biogeochemistry: assimilative runs548

Fig.6 shows that the assimilation of satellite PFT chlorophyll and satellite PFT ab-565

sorption into the bio-optical module has large impact on PFT community structure and566

substantially improves the seasonal patterns of the phytoplankton growth. In particular:567

a) assimilation moderates the extremity of the model Spring bloom and b) it moves the568

Spring bloom by around ∼ 1 month towards the start of the year. This is consistent not569

only with the assimilated satellite data, but also with the NSBC climatology, as well as570

with the seasonality observed in the ICES data (not shown here, but for overall skill score571

see Fig.7). However, the light module has only little impact on this improvement in model572

skill. For example assimilating PFT chlorophyll using the pre-existing light scheme (Skákala573

et al. [2018]) carries similar skill (Fig.7) than the two assimilative runs shown in Fig.6.574

The changed phytoplankton dynamics in the assimilative runs produces similar annual575

mean chlorophyll than the free runs (Fig.4). The difference in total chlorophyll-a is largest576

between the two assimilative runs (Fig.4), which is due to differences in the specific ab-577

sorption coefficients used in the satellite algorithm and in the bio-optical module (Fig.8).578

As shown in Fig.8, the largest differences in the specific absorption coefficients are for579

diatoms and picophytoplankton. These differences are responsible for the distinct PFT580

community structure between the two assimilative runs (Fig.4 and Fig.6). In particular581

the relatively lower absorption of picophytoplankton implied by the bio-optical module582

(Fig.8) produces for PFT absorption assimilation higher picophytoplankton concentrations583

than the one produced in the PFT chlorophyll assimilative run (Fig.6). And vice versa, the584

relatively higher absorption by diatoms (Fig.8) in the bio-optical module increases diatoms585

concentrations in the PFT absorption assimilative run (Fig.6), when compared to the PFT586

chlorophyll assimilation. Since diatoms are silicate users, the changed diatom concentra-587

tions between the two assimilative runs have substantial impact on silicate concentrations588

(Fig.6). Overall, nutrients have the largest concentrations in the assimilative runs, which is589

explained by the lower plankton biomass in the assimilative runs relative to the free runs590

(Fig.4).591

There are only few observation data for phytoplankton other than chlorophyll, so603

it is hard to determine whether the changed plankton biomass improves, or degrades the604

model skill. Some indication can be obtained from the data at the specific L4 location in605

the English Channel, where longer time series exist for total phytoplankton carbon. The606

L4 phytoplankton carbon time series were available for the period 1992-2015, just short607

of the simulation year of 2016, but it is still possible to compare (Fig.9) the L4 phyto-608
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Figure 6. The 2016 time-series for spatially averaged surface concentrations on the NWE Shelf for phyto-
plankton chlorophyll and nutrients. The Figure compares a) the free run using the bio-optical module ("new
scheme"), b) the run assimilating PFT absorption and using the new bio-optical module ("sat abs assim"), c)
the run assimilating PFT chlorophyll and using the new bio-optical module ("sat chl assim"), with either OC
satellite data (PFT and total chlorophyll), or NSBC climatological data-set (total chlorophyll and nutrients).
The satellite time series for November-February have been removed due to data sparsity.
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Figure 7. The skill score (bias vs BC RMSD) in representing total chlorophyll and nutrients (nitrate, phos-
phate, silicate) for the different simulations: a) free run using pre-existing light scheme (red), b) free run using
bio-optical module (blue), c) the run assimilating PFT satellite absorption and using bio-optical module (pur-
ple), d) the run assimilating PFT chlorophyll and using bio-optical module (green) and e) the run assimilating
PFT chlorophyll and using pre-existing light scheme (yellow). The different markers represent comparison
with different data: ICES data-set (star), OC satellite product (circle) and NSBC climatology (diamond).
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Figure 8. Comparison of PFT specific absorption coefficients a∗i from the satellite model of Brewin et al.
[2019] with the PFT specific absorption coefficients used in the bio-optical module (i.e Gregg and Rousseaux
[2017]). The black markers show a) the selected six wavelengths used in the satellite product and b) the
corresponding six interpolated specific absorption coefficients from the module.
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Figure 9. The Figure compares total phytoplankton carbon at the L4 location at 10 m depth. Since the L4
observations were available only for 1992-2015 period, the Figure shows 1992-2015 L4 weekly climatology
("obs clim"). The dashed lines show the interval corresponding to the inter-annual variability of the L4 data
(for each week the dashed lines represent ± standard deviation around the mean). The L4 phytoplankton
carbon data showed no trend, so the observational climatology can be reasonably compared to the model 2016
time-series. To avoid the Figure being too crowded we split the time-series into two panels, with the upper
panel comparing the two free runs: the run using pre-existing light module ("old scheme") and the run using
bio-optical module ("new scheme"), with the L4 data. The bottom panel compares the assimilative runs: PFT
absorption assimilation using the bio-optical module ("sat abs assim"), the PFT chlorophyll assimilation using
the bio-optical module ("sat chl assim") and the PFT chlorophyll assimilation using the pre-existing light
scheme ("sat chl assim old scheme"), with the L4 data.
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Figure 10. Comparison of PAR (400 - 700 nm) in the water column. The panels show 2016 time series
(x-axis) of median values for the NWE Shelf at each depth (y-axis, 0-100 m range). The upper panel shows
PAR for the free run using the bio-optical module, the middle panel shows the difference between the run
assimilating PFT absorption into bio-optical module and the free run using the bio-optical module, and the
bottom panel shows the same as the middle panel, but for PFT chlorophyll assimilation. Although the daily
differences are large due to changed phytoplankton seasonal cycle, the year-averaged differences are smaller
and are shown (in %) within the yellow boxes that appear on the panels.
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623

624

625

626

plankton carbon climatology derived from 1992-2015 data to the (year 2016) L4 values609

extracted for each model run. Fig.9 suggests that the model that uses the pre-existing light610

scheme overestimates primary productivity, with some indications of a small improvement611

in model skill carried by the bio-optical module (Fig.9). A much more substantial im-612

provement in model skill is then carried by the assimilation of PFT absorption, or PFT613

chlorophyll using the bio-optical module (Fig.9), which both also outperform PFT chloro-614

phyll assimilation using the pre-existing light scheme (Fig.9). Although the results pre-615

sented in Fig.9 are location-specific, the trend in carbon concentrations between the dif-616

ferent simulations observed in Fig.9 copies the trend from Fig.4. Fig.9 might therefore617

indicate that the bio-optical module has a positive impact on how the model represents the618

carbon cycle.619

3.3 The underwater light627

Fig.10 compares the underwater PAR between the free run using the bio-optical634

module and the two corresponding assimilative runs. It is shown (Fig.10) that the PAR635

in the watercolumn has been to some degree increased by PFT absorption assimilation (∼636
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Figure 11. The Figure shows for the L4 location how PAR reduces in the water column relative to its value
at the 2.4 m depth (observation data above 2.4 m were too sparse to be used). The Figure compares observed
data with four model runs: free run using pre-existing light scheme ("old scheme"), free run using bio-optical
module ("new scheme"), PFT absorption assimilative run using bio-optical module ("sat abs assim") and PFT
chlorophyll assimilative run using bio-optical module ("sat chl assim"). Each panel shows an average for a
different season. The x-axis is on a log-scale, which means the slope of the curve is related to Kd.

628

629

630

631

632

633

–23–



Confidential manuscript submitted to JGR-Oceans

10%) and to a slightly lesser degree by PFT chlorophyll assimilation (∼ 6%). The differ-637

ence in the light field between the two (PFT absorption vs PFT chlorophyll) assimilative638

runs is caused by: a) the difference in PFT community structure with highly absorbing pi-639

cophytoplankton being more abundant in PFT absorption assimilation, and low absorbing640

diatoms being more abundant in PFT chlorophyll assimilation (see Fig.4, Fig.6 and Fig.8);641

and b) the larger total chlorophyll concentrations in the PFT chlorophyll assimilative run,642

when compared to the PFT absorption assimilation (Fig.4 and Fig.6). The change in com-643

munity structure also explains why there is more underwater light in the PFT chlorophyll644

assimilative run than in the free run (Fig.10), since the smaller phytoplankton size-classes645

(picophytoplankton and nanophytoplankton) that absorb more photosynthetic energy are646

more prevalent in the PFT chlorophyll assimilative run than in the free run using the bio-647

optical module (Fig.4).648

It is essential to validate the changes to the underwater light field due to the bio-649

optical module and assimilation. Since it is hard to get shelf-wide data for PAR, we val-650

idated the module skill with the available data for the specific L4 location. Fig.11 com-651

pares the PAR attenuation in the water column between the two free runs (pre-existing652

light scheme vs bio-optical module), the two assimilative runs using the bio-optical mod-653

ule and the L4 observations. For the L4 location we learned (Fig.11) that: 1. as suggested654

by shelf-wide results the bio-optical module leads to substantially larger light attenuation655

than the pre-existing light scheme, 2. larger differences in underwater PAR result from the656

bio-optical module than from the assimilation, 3. the bio-optical module is more skilled to657

represent the L4 data than the pre-existing light scheme, 4. the module skill in represent-658

ing PAR attenuation depends largely on the season, with the module doing a much bet-659

ter job in the Spring-Summer period than in Autumn-Winter, 5. overall the light module660

seems to slightly overestimate PAR attenuation when compared to the observations (espe-661

cially in the upper 0-30 m), 6. module Kd varies more with depth than the observed Kd.662

While the results presented in Fig.11 are encouraging and consistent with shelf-wide anal-663

ysis, it is important to keep in mind the limits of extrapolating general considerations from664

a location-specific analysis. Furthermore, there were no available L4 data for 2016 phyto-665

plankton, CDOM, POM or sediment, so it is difficult to explain the difference between the666

PAR field in the module and the observations.667

For the shelf-wide model skill we can compare the model and the OC satellite sur-680

face visibility (defined as 1/Kd) for the 490 nm wavelength (the left hand panel of Fig.5).681

The pre-existing light scheme does not spectrally resolve the underwater light (the vis-682

ibility in the pre-existing scheme is represented as broadband) and it cannot be directly683

compared with the 490 nm visibility of the bio-optical module, or the satellite data. How-684

ever, since broadband light attenuation assumes that the broadband value is sufficiently685

representative of all the wavelengths from the spectral band, we included the pre-existing686

scheme into Fig.5 by representing its broadband visibility with a spectrally constant value.687

It is then shown that for the 490 nm wavelength: a) all simulations tend to underestimate688

surface visibility and therefore underwater light near the ocean surface, b) the bio-optical689

module substantially improved the match-ups between free run and satellite visibility at690

490 nm, by increasing visibility, c) PFT chlorophyll assimilation using the pre-existing691

light scheme has little overall capability to improve the near-surface light field, d) both692

PFT chlorophyll and PFT absorption assimilative runs using the bio-optical module out-693

perform all the other runs in their match-ups with the satellite data. The improved sea-694

sonal time series of surface visibility in the two assimilative runs (Fig.5) is related to the695

improved phytoplankton seasonal dynamics from Fig.6. However the relationship between696

surface visibility and phytoplankton concentration is not straightforward, as light attenua-697

tion includes impact of multiple other constituents (POM, CDOM, sediment).698

Additional insight into the model and the satellite surface visibility at 490 nm is699

provided by two spatial Figures, Fig.12 and Fig.13. Similarly to Fig.5, Fig.12 shows that700

the pre-existing light module underestimates satellite surface visibility on the NWE Shelf,701

–24–



Confidential manuscript submitted to JGR-Oceans

Figure 12. Annual 2016 median distributions of surface visibility (m) for the 490 nm wavelength, de-
fined as the inverse of Kd at the satellite data locations. The different panels compare a) free run using the
pre-existing light scheme ("old scheme"), b) the free run using the bio-optical module ("new scheme"), c)
the run assimilating PFT absorption ("sat abs asim") and d) the OC satellite data. The run assimilating the
PFT chlorophyll-a into the bio-optical module is not shown, as the distributions are virtually identical to the
absorption assimilation (bottom left panel). The full black line marks the boundary of the continental shelf (<
200 m bathymtetry).
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Figure 13. Annual 2016 median distributions of surface total chlorophyll-a (mg/m3) at the satellite data
locations. The different panels compare a) free run using the pre-existing light scheme ("old scheme"), b) the
free run using the bio-optical module ("new scheme"), c) the run assimilating PFT absorption ("sat abs asim")
and d) the OC satellite data. The run assimilating the PFT chlorophyll-a into the bio-optical module is not
shown, as the distributions are virtually identical to the absorption assimilation (bottom left panel).
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with substantial improvement carried by the bio-optical module and the two assimilative702

runs using the bio-optical module. In Fig.13 we show the corresponding total chlorophyll-703

a surface concentrations, which are (on the NWE Shelf) clearly anti-correlated (Pearson704

correlation, R=-0.71) with the surface visibility. The relationship between phytoplank-705

ton and surface visibility is more visible in the runs using bio-optical module (Fig.12,706

Fig.13:b-c) as the 490 nm visibility resolved by the bio-optical module is more sensitive707

to phytoplankton than the broadband visibility of the pre-existing light scheme (Fig.12,708

Fig.13:a). The spatial analysis from Fig.13 also supports the conclusions derived from the709

time series presented in Fig.6 and Fig.7: on the NWE Shelf the total chlorophyll-a surface710

distributions of the assimilative runs match closely with the satellite data.711

3.4 General discussion and the future directions712

While observations suggest that by introducing the spectrally resolved bio-optical713

module into ERSEM we improved representation of underwater light field (Fig.5, Fig.11714

and Fig.12), it is unclear whether the improved light also improved ERSEM ecosystem dy-715

namics. There is some indication of improvement in model primary productivity (Fig.9),716

however the overall model skill assessment from Fig.7 shows no significant difference be-717

tween the performance of the pre-existing light scheme and the bio-optical module. It is718

particularly disappointing that the spectrally resolved module failed to correct the model719

phytoplankton seasonal cycle, in particular the rapid and late model Spring bloom (as con-720

sistently indicated by both satellite and in situ data, e.g Fig.3). The phytoplankton sea-721

sonality is of major importance for ecosystem dynamics as it provides grounds for any722

higher trophic level processes. Phytoplankon bloom timing and magnitude depend on three723

key drivers: a) nutrient availability, b) vertical mixing and the c) light availability. More724

specifically, the onset of Spring bloom is thought to be primarily dependent on the rela-725

tionship between the depth penetrated by the solar radiation and some effective depth of726

phytoplankton mixing, which could be the mixed layer depth (as assumed by the critical727

depth hypothesis of Sverdrup [1953]), or some effective depth of turbulent mixing (see the728

critical turbulence hypothesis, Huisman et al. [1999]; Waniek [2003]).729

Clearly, a model late Spring bloom can be indicative of incorrect model vertical730

mixing. The sensitivity of primary productivity to the upper ocean mixing scheme is well731

known (Oschlies and Garçon [1999]; Doney et al. [2004]) and is often responsible for the732

deterioration in ecosystem model skill when physical data are assimilated into models733

(Berline et al. [2007]; Samuelsen et al. [2009]; Raghukumar et al. [2015]). Errors in ver-734

tical mixing could potentially delay model Spring blooms, typically when too much mix-735

ing reduces phytoplankton concentrations by transporting its biomass to deeper and darker736

parts in the watercolumn (Huisman et al. [1999]; Taylor and Ferrari [2011]; Smyth et al.737

[2014]). A promising route to address inconsistencies between the underlying physics (e.g.738

vertical transport) and biogeochemistry is to use the underwater light field calculated from739

the bio-optical module to drive temperature in the water column and provide very impor-740

tant feedback from biogeochemistry to physics (Simonot et al. [1988]; Sathyendranath et al.741

[1991]; Edwards et al. [2004]; Lengaigne et al. [2007]; Zhai et al. [2011]). Such feedback742

provides us with a two-way coupled physics-biogeochemical model, which we will intro-743

duce in the future within the NEMO-FABM-ERSEM context.744

Another possibility for the late model bloom is that ERSEM underestimates the un-745

derwater PAR and the environment is too dark for an earlier bloom to kick-in. The Fig.5746

indeed suggest that despite of the vanishing module bias in PAR when compared to EU-747

METSAT POS data, the module overestimates the light attenuation near the water sur-748

face. It seems (Fig.12) that the module substantially overestimates light attenuation by749

some of the represented substances, and this overestimate is large enough to compensate750

for the POM and sediment backscattering, which was not included into light attenuation751

within this study. Some further model development might be therefore required in order752

to include the impact of sediment backscattering, while simultaneously increasing the un-753
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derwater light field. One important clue might be the mismatch in diatoms and picophy-754

toplankton specific absorption coefficients between the module and the satellite (Fig.8),755

which points to the large uncertainty in phytoplankton absorption that will need to be ad-756

dressed in the future. A separate question is the ERSEM PFT community structure that757

substantially impacts the absorption of light by phytoplankton. The ERSEM PFT com-758

munity structure is also sensitive to the model parametrization, in particular to the rela-759

tively poorly constrained maximum chlorophyll-to-carbon ratio parameters (Ciavatta et al.760

[2014]). However, after all increasing underwater PAR might not have substantial impact761

on the late phytoplankton bloom, as the pre-existing ERSEM light scheme had 10-20%762

higher underwater PAR than the module and the phytoplankton seasonal cycle remained763

broadly unchanged.764

The model phytoplankton bloom has also much larger magnitude than what has been765

observed both in the satellite and in situ data (e.g. Fig.3). This may be explained by the766

fact that ERSEM substantially overestimates the nitrate concentrations on the NWE Shelf767

(e.g Ciavatta et al. [2018]; Skákala et al. [2018], see also Fig.7), providing too much nu-768

trients for the phytoplankton growth. The issue of ERSEM nitrate is unrelated to how769

the model represents chlorophyll, and improving the ERSEM chlorophyll by assimilation770

is known to further degrade the nitrate model bias (Ciavatta et al. [2018]; Skákala et al.771

[2018]). We anticipate that to improve the ERSEM nitrate concentrations one needs to ei-772

ther focus on the model forcing (river discharge, nitrogen atmospheric deposition), or on773

some relevant model parameters, such as nitrification rate.774

There is also a more general possibility that the current ERSEM version neglects775

important processes with substantial impact on phytoplankton seasonality. One such pro-776

cess could be dinoflaggelate motility, another process that has been already shown to have777

positive impact on the simulation of phytoplankton succession is the explicit representation778

of different xanthophyll photoprotective activities in phytoplankton groups (Polimene et al.779

[2014]). Finally, it is quite possible that to improve ecosystem dynamics under the new780

module one needs a more complex ERSEM reparametrization. This would not be entirely781

surprising as the current set of ERSEM parameter values has been chosen to optimize782

the skill of the model using the pre-existing light scheme and such parametrization might783

easily become sub-optimal once one introduces large changes to the model. Since model784

development and parametrization is an arduous task, it is encouraging that it can be partly785

bypassed by data assimilation, with assimilative runs substantially outperforming free runs786

in chlorophyll (Fig.6, Fig.7 and Fig.13), underwater light field (Fig.5) and possibly also787

primary productivity (Fig.9). In fact improvement in our understanding of ecosystem dy-788

namics (e.g carbon cycle, nutrient cycle, trophic export) should be ideally understood as789

a hand-in-hand effort between the model development and the new types of observational790

products advancing our assimilation capability. Here the bio-optical module plays an im-791

portant role in multiple aspects of this process: it improves the model, provides us with a792

better capacity to assimilate new data into the model and potentially, in the future, it could793

help to develop, or validate, observational algorithms used to derive biogeochemical fields794

of interest.795

4 Summary796

In this work we introduced a novel bio-optical module into an ecosystem model that797

is used for operational reanalysis and forecasts on the NWE Shelf. The two main advan-798

tages of the bio-optical module are that it: a) spectrally resolves the light in the water-799

column, and b) better accounts for the direction of the light beam. The new module im-800

proves the simulation of the underwater light field by providing its spectral decomposition801

and improving the light attenuation in the water column. The improved representation of802

the underwater light changes the simulated primary productivity and there is some ev-803

idence that the changed primary productivity improves phytoplankton carbon biomass.804

Much greater improvement in model skill is achieved through assimilating either satel-805
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lite PFT chlorophyll, or PFT absorption, with both assimilative runs having major posi-806

tive impact on the model skill to represent chlorophyll seasonal cycle (i.e. the timing and807

magnitude of Spring bloom), underwater light attenuation and possibly also phytoplank-808

ton carbon biomass. The model skill to represent biogeochemical variables is improved809

dominantly by assimilation, while the model skill to represent underwater light field is im-810

proved primarily by the bio-optical module. The importance of the bio-optical module is811

particularly evident with respect to the currently established assimilation of PFT chloro-812

phyll using the pre-existing ERSEM light scheme, as we have shown that this fails to cor-813

rect the underwater light field of the free run. We suggest that model simulation of phy-814

toplankton seasonal cycle could be further improved by re-tuning ERSEM parametrization815

(e.g, addressing the values of phytoplankton specific absorption coefficients), improving816

nutrient forcing (e.g. river discharge) and improving the underlying physics (e.g vertical817

mixing). The latter could be potentially addressed by using the bio-optical module to cor-818

rect temperature profiles in a fully two-way coupled physical-biogeochemical model.819
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