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The Middle-to-Upper Palaeolithic transition in Europe witnessed the replacement and 

partial absorption of local Neanderthal populations by Homo sapiens populations of 

African origin1. However, this process probably varied across regions and the details of the 

scenario remain unknown. In particular, the duration of chronological overlap between the 

two groups is much debated, as are the implications of this overlap for the nature of the 

biological and cultural interactions between Neanderthals and H. sapiens. Here we report 

the discovery and direct dating of human remains found in association with Initial Upper 

Palaeolithic artefacts2, from excavations at Bacho Kiro Cave (Bulgaria). Morphological 

analysis of a tooth and mitochondrial DNA from several hominin bone fragments, identified 

through proteomic screening, assign these finds to H. sapiens and link the expansion of 

Initial Upper Palaeolithic technologies with the spread of H. sapiens into the mid-latitudes 

of Eurasia before 45 thousand years ago3. The excavations yielded a wealth of bone 

artefacts, including pendants manufactured from cave bear teeth that are reminiscent of 

those later produced by the last Neanderthals of western Europe4–6. These finds are 

consistent with models based on the arrival of multiple waves of H. sapiens into Europe, 

coming into contact with declining Neanderthal populations7,8. 

Fragmentary specimens from the sites of Kent’s Cavern (United Kingdom)9 and Cavallo (Italy)10 

have been claimed to document the earliest presence of our species in western Europe, between 

44,200–41,500 calibrated years before present (cal. yr BP; taken as AD 1950) for the former and 

between 45,000–43,000 cal. yr BP for the latter. However, these dates are based on the 

archaeological contexts of the specimens rather than direct dating, and—in both cases—the exact 

stratigraphic origin of the fossils is debated11,12. In the absence of directly dated fossil remains, 

reconstructing the timing of the expansions of H. sapiens into Europe rests on hypotheses 

concerning the makers of various so-called ‘transitional’ artefact assemblages at the advent of the 

Upper Palaeolithic period. 

Bacho Kiro Cave is located 5 km west of Dryanovo (Bulgaria), on the northern slope of 

the Balkan mountain range (Stara Planina) and about 70 km south of the Danube River (Extended 

Data Fig. 1b). The site formed at the mouth of a large karstic system and its deposits encompass 

late Middle Palaeolithic and early Upper Palaeolithic occupations. Bacho Kiro Cave was 

excavated by D. Garrod in 1938, but is best known from more-extensive excavations (in 1971 to 

1975) by a team led by B. Ginter and J. Kozlowski13. The excavations in the 1970s yielded 

fragmentary human remains13 that were subsequently lost. In 2015, the National Archaeological 



 

Institute with Museum in Sofia and the Department of Human Evolution at the Max Planck 

Institute for Evolutionary Anthropology resumed work at Bacho Kiro Cave with the goals of 

clarifying the chronology (which had previously been based on a handful of inconsistent 

radiocarbon ages14) and the biological nature of the makers of the lithic assemblages. Two sectors 

with similar and well-preserved sequences were re-excavated: the ‘Main’ sector and the 

previously unexcavated ‘Niche 1’ sector, located on the south and east sides, respectively, of the 

excavation from the 1970s (Extended Data Fig. 1a). At the base of the sequence (Supplementary 

Information section 1) and overlying the bedrock, layer K has a relatively low density of Middle 

Palaeolithic artefacts. Sedimentologically, the contact of layer K with the overlying layer J is 

gradual and the artefact densities remain low; however, the upper part of layer J contains artefacts 

identical to those in layer I. On the basis of the radiocarbon dates3, layer J represents more than 

3,000 years of accumulation. Layer I represents an intensification of the trends toward increased 

amounts of organic material and increased artefact seen in layer J. Layer I is an easily recognized 

and archaeologically rich organic deposit that spans from 45,820 to 43,650 cal. yr BP
3 (95% 

modelled range) and yields an assemblage that was initially described as ‘Bachokirian’, but is 

now considered a variant of the Initial Upper Palaeolithic (IUP) industry 15 (Extended Data Figs. 

2–4, Supplementary Information section 2). Layer I is capped by water-laid deposits (layers H 

and G) that have little archaeological content. The overlying two metres of deposits in the Main 

sector contain low densities of Upper Palaeolithic artefacts. 

We found a hominin second lower molar (specimen code F6-620) (Extended Data Fig. 

5a) in the upper part of layer J. The crown dimensions of this tooth place it at the high end of 

both the Neanderthal and the Upper Palaeolithic H. sapiens range (Extended Data Table 1). With 

the exception of a moderately expressed—but divided—middle trigonid crest, all of the 

morphological trait expressions found in F6-620 align the tooth with H. sapiens (Supplementary 

Information section 3). The expression of a middle trigonid crest observed on the Bacho Kiro 

second lower molar is present in 10% of these teeth in some groups of humans 16 and in 8% of 

early H. sapiens17. The pulp chamber is hypotaurodont18, a condition that is common in some 

recent human groups19 and is unlike the hypertaurodont molars of Neanderthals20. The four-cusp 

configuration of the Bacho Kiro second lower molar is absent in Neanderthals. Our geometric 

morphometric analysis of the enamel–dentine junction also clearly assigns the specimen to 

H. sapiens (Extended Data Fig. 5b). 

We screened 1,271 non-identifiable bones and teeth using matrix-assisted laser 

desorption–ionization time-of-flight mass spectrometry (MALDI–TOF–MS) collagen-peptide 

mass fingerprinting (also known as ZooMS21) to identify hominin remains, with the aim of 



 

providing accurate molecular identifications for radiocarbon-dated specimens and of enlarging 

our understanding of the species composition of the fauna. ZooMS screening identified six 

hominin bone fragments (Extended Data Fig. 6, Supplementary Information section 4), of which 

four come from layer I in Niche 1, one from layer B in the Main sector (Extended Data Fig. 1) 

and one from the layer 6a/7 of the excavations in the 1970s13. Including the F6-620 tooth, we 

recovered five hominin specimens in total from the IUP layers. The calibrated radiocarbon dates 

of the 4 ZooMS-identified human fragments range from 46,790 to 42,810 cal. yr BP at 95.4% 

probability (Fig. 1). These ages are in full agreement with the modelled boundaries of layer I 

(45,820–43,650 cal. yr BP at 95.4%), which includes the 4 humans and 21 other dates on 

modified fauna3. Therefore, to our knowledge, these bones represent the oldest European Upper 

Palaeolithic hominins recovered to date. 

We extracted DNA22,23 from F6-620 and the six hominin bone fragments identified using 

ZooMS. We performed library preparation24, enrichment of human mitochondrial DNA 

(mtDNA)25 and sequencing, which enabled us to recover between 13,856 and 795,043 unique 

mtDNA fragments (Supplementary Information section 5). The frequencies of cytosine-to-

thymine substitutions, which are characteristic of ancient-DNA base damage, ranged from 13.5% 

to 54.9% at the 5′ ends and from 9.4% to 42.2% at the 3′ ends of these fragments (Extended Data 

Fig. 7), which suggests that at least some of the fragments are of ancient origin. After restricting 

analyses to putatively deaminated DNA fragments to remove contamination by recent human 

DNA, sequence coverage of the mitochondrial genome enabled us to reconstruct six full 

mitochondrial genomes out of seven. The mtDNA sequences of F6-620 and one of the ZooMS-

identified hominin bone fragments (AA7-738) are identical, which indicates that these specimens 

belonged either to the same individual or to two maternally related individuals. In a tree relating 

these mtDNA genomes to the known mtDNA sequences of 54 present-day humans, 12 ancient 

H. sapiens, 22 Neanderthals, 4 Denisovans and a hominin from Sima de los Huesos, all of the 

Bacho Kiro Cave mtDNA genomes fall within the variation of H. sapiens (Fig. 2, Extended Data 

Fig. 8). The specimens from layer I yielded mtDNA sequences that fall close to the base of each 

of the three major macro-haplogroups of present-day non-Africans (M, N and R). Although the 

mtDNA sequences belong to different macro-haplogroups, they differ (at most) at 15 positions 

from each other—which is lower than the differences observed among 97.5% of contemporary 

European individuals who are not closely related to one another 26. The older Bacho Kiro 

population contains early representatives of the macro-haplogroup M, which is not present in 

Europe today27. Furthermore, the mtDNA genomes of the Bacho Kiro Cave specimens 

accumulated fewer substitutions than those of present-day humans. Using 10 directly dated 



 

ancient H. sapiens as calibration points28,29 (Supplementary Information section 5), we obtained 

genetic dates that range from 44,830 to 42,616 yr BP for the layer-I hominins (Extended Data 

Table 2), in good agreement with the calibrated radiocarbon dates (Fig. 1). 

The fauna associated with these H. sapiens specimens (layers I and J, n = 11,259) 

includes 23 species, dominated by Bos or Bison, cervids and caprines, alongside equids 

(Supplementary Information section 6). The species composition comprises a mix of taxa adapted 

to cold or to warmer environments, characteristic of the faunal record in marine isotope stage 3 in 

the Balkans30,31. A variety of carnivores are also present, dominated by cave bear (Ursus 

spelaeus). Zooarchaeological analyses strongly indicate that the accumulation of the fauna is 

predominantly anthropogenic. One notable aspect of the faunal assemblage is the presence of 

numerous anthropogenically modified objects (Fig. 3, Supplementary Information section 6): 

worked pieces include awls, lissoirs (‘smoothers’) and incised pieces. Several of the artefacts 

have red staining that is consistent with the use of ochre. We identified 1 perforated ivory bead 

and 12 perforated or grooved pendants, 11 of which were made from cave bear teeth and 1 from 

an ungulate tooth (Fig. 3). 

The stone tools associated with H. sapiens in layer I were initially assigned to the 

Bachokirian industry because they did not fit comfortably with either the Middle Palaeolithic or 

Aurignacian-like Upper Palaeolithic techno-complexes: however, we now know that these stone 

tools fit within the IUP assemblages 15. IUP assemblages—similar to that of Bacho Kiro Cave 

(Supplementary Information section 2)—are characterized by blades and tool types typical of 

Upper Palaeolithic industries, but with some Levallois forms and faceted platforms that are 

reminiscent of lithics of the preceding Middle Palaeolithic and African Middle Stone Age2 

(Extended Data Figs. 3, 4). IUP assemblages, which span Eurasia from central Europe to 

Mongolia, occur before the appearance of Upper Palaeolithic assemblages characterized by 

bladelet production, and arguably have their origin in southwest Asia (Extended Data Fig. 2). The 

Bacho Kiro Cave IUP is similar to the IUP from layers I and F at Üçağızlı Cave (Turkey) in 

terms of lithic technology, typology, and the presence of shaped bone tools and pendants, as well 

as with respect to ages32,33. 

The Bacho Kiro Cave site clearly demonstrates that the IUP techno-complex  in this 

region was made by H. sapiens, and is consistent with models that attribute the spread of these 

technologies to the dispersal of our species throughout large parts of Eurasia at this time. The 

presence of IUP assemblages documents a wave of peopling that precedes the spread of the first 

Upper Palaeolithic bladelet techno-complexes—such as the Early Ahmarian industry in the 



 

Levant, the Early Kozarnikan industry in the eastern Balkans and the Protoaurignacian industry 

in western and central Europe—by several millennia1,34. At Bacho Kiro Cave, the IUP 

assemblagestarts before 45,000 cal. yr BP and, as the assemblage of the upper part of layer J is 

identical to that from layer I, it may begin as early as 47,000 cal. yr BP
3. We now have evidence 

for H. sapiens in Eurasia spanning from Ust'-Ishim28 in western Siberia to Bacho Kiro Cave in 

eastern Europe, directly dated to approximately 45,000 cal. yr BP. Together, the behavioural and 

biological evidence strongly suggest a relatively rapid dispersal of IUP assemblages from 

southwest Asia35 into mid-latitude Eurasia by groups that—contrary to Aurignacian 

populations—seem unrelated to present-day European populations28. Direct contact with 

Neanderthals must have occurred much earlier in eastern Europe than in western Europe, where 

the latest Neanderthals and their associated assemblages persisted until at least about 40,000 cal. 

yr BP
1,5,6. In Romania, the Peștera cu Oase H. sapiens individual had a Neanderthal ancestor as 

recently as four-to-six generations back in his family tree36. In light of the Bacho Kiro Cave 

results, the 42,000–37,000 cal. yr BP radiocarbon age of the Peștera cu Oase fossil implies an 

extended period of contact between Neanderthals and H. sapiens in eastern Europe. Alternatively, 

it may be that the direct date of Peștera cu Oase—which was obtained before recent 

improvements in pretreatment techniques—is an underestimate, and that local coexistence was 

more ancient and ephemeral. The IUP pendants of Bacho Kiro Cave (Fig. 3) are notably similar 

to artefacts produced by late Neanderthals of the Châtelperronian layers at Grotte du Renne 

(France)4. Whatever the cognitive complexity of the last Neanderthals might have been, the 

earlier age of the Bacho Kiro Cave material supports the notion that the specific behavioural 

novelties seen in these Neanderthal populations resulted from contacts with migrant H. sapiens7. 
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data, supplementary information, acknowledgements, peer review information; details of author contributions and 
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Fig. 1 | Direct dates for hominins of the Middle-to-Upper Palaeolithic transition in Europe. 

Directly dated Châtelperronian Neanderthals (blue) and H. sapiens (red or black) of the Middle-

to-Upper Palaeolithic transition in Eurasia. The dates from Bacho Kiro Cave (red) have 

previously been reported3, as part of an extensive site chronology. Asterisks mark the dates that 

were combined using the R_Combine function in OxCal v.4.3. Codes in parentheses refer to 

dating sample identifiers; all the dates shown here are in Supplementary Table 16, with sample 

information and references. 

 

Fig. 2 | Maximum parsimony tree. Maximum parsimony tree relating Bacho Kiro Cave 

mtDNAs to 54 present-day humans, 12 ancient H. sapiens, 22 Neanderthals, 4 Denisovans and 

1 individual from Sima de los Huesos. The insert shows the part of the tree closest to the 



 

mtDNAs of the specimens from Bacho Kiro Cave. Bacho Kiro Cave mtDNAs are red. Asterisks 

denote mtDNA from ancient H. sapiens (Supplementary Table 9) other than the Bacho Kiro Cave 

specimens. The number of inferred substitutions per sequence is given above each branch. A 

chimpanzee mtDNA sequence was used to root the tree (not shown). rCRS, revised Cambridge 

Reference Sequence. U, R, N, M and L3 refer to the mitochondrial haplogroups.  

 

Fig. 3 | Animal bone tools and personal ornaments from Bacho Kiro Cave layers I and J 

(Niche 1 and Main sectors). a–j, Pendants made from perforated and grooved teeth (a, ungulate; 

b–j, cave bear). k, l, o, Awls. m, Anthropogenically modified piece. n, p, Lissoirs. q, ivory bead. 

Further details are provided in Supplementary Table 15. Scale bars, 1 cm (a–o, q), 3 cm (p)  



 

METHODS 

No statistical methods were used to predetermine sample size. The experiments were not 

randomized and investigators were not blinded to allocation during experiments and outcome 

assessment.  

Excavation methods 

The site was excavated closely following existing protocols37–42. Layers were defined first on 

lithological criteria, and second on archaeological criteria. Our stratigraphy was determined and 

named independently of previous excavations13. Additionally, we excavated in two unconnected 

areas of the site, and thus separate naming conventions were used between these two areas. The 

excavations in the south area (Extended Data Fig. 1) are known as the Main sector, and the layers 

are named with letters for the large divisions and numbers for divisions within these (for 

example, layer I or layer A0). The other area excavated is a niche to the east of the previous 

excavations. We call this area Niche 1 (or N1), and all layer names from this area are prefixed 

with N1-. Where we hypothesize a link between the two sectors, we use the same layer name (for 

example, layers N1-I and I). Where we are unable to form a strong hypothesis about the link 

between the two sectors, we use different layer names (numbers in this case) in the Niche 1 sector 

to denote this (for example, N1-3), followed by letter for internal subdivisions (for example, N1-

3a). All finds were recorded by layer and 3D coordinates (using an arbitrary grid established for 

the excavation and aligned to the previous excavations) measured with Leica total stations (5′′ 

accuracy) using data collectors with self-authored software (EDM-Mobile). All lithics and fauna 

>20 mm in length and all specialists’ samples (for example, ancient DNA, micromorphology, 

phytoliths and so on) were provenienced and given unique identifiers (IDs). Complete bones, 

identifiable teeth and human remains <20 mm in length (but larger than microfauna) were also 

given coordinates and IDs. Natural stones >10 cm in length were recorded with a single 

coordinate, and stones >20 cm in length were measured with multiple coordinates to describe 

their volume and orientation. The sediment, excluding recorded stones and artefacts, was 

collected by 9-l buckets and wet-screened on-site through 6- and 1.2-mm meshes to form two 

fractions. Buckets have unique IDs. Their coordinates were measured first in the centre of the 

area to be excavated and then again at the centre of the area excavated at the completion of the 

bucket. Large (>20-mm-long) objects found in the sediment in the buckets during wet-screening 

were given IDs and assigned the coordinates of the bucket. All features were provenienced. 

Digital photographs documenting the excavation were recorded daily, and final sections were 

documented through a combination of digital photography, drawing, and total station measures. 



 

Additionally, structure-from-motion models were made of all final sections and excavation areas. 

These models were georeferenced to the excavation grid using total station coordinates. 

ZooMS  

We screened 1,271 fragmentary bone and tooth specimens from Bacho Kiro Cave using 

ZooMS21. Eleven bone specimens were derived from the previous excavations at the site13, 371 

from our excavations in the Main sector, and 889 bone specimens from the Niche 1 area. We 

particularly focused on IUP layers I and N1-I (n = 822). Extraction and analytical protocols 

followed previously published work5. In short, a small bone sample (<20 mg) was taken from 

each bone or dentine specimen. The sample was incubated at 65 °C for an hour in 50 mM 

ammonium-bicarbonate buffer, digested overnight using trypsin (Promega) at 37 °C, acidified 

using 0.2 20% TFA, and cleaned on C18 ZipTips (either from Sigma-Aldrich or Thermo 

Scientific). MALDI–TOF–MS analysis was conducted at the IZI Fraunhofer in Leipzig43. 

MALDI–TOF–MS spectra were analysed in comparison to a reference database containing 

collagen-peptide marker masses of all medium- to larger-sized genera in existence in western 

Eurasia during the Late Pleistocene epoch 5. In cases in which ammonium-bicarbonate extraction 

failed, an attempt was made to recover further informative collagen peptides through acid 

demineralization of the same bone sample, as previously explained5. Collagen deamidation in 

these spectra was assessed for two peptides (P1105 and P1706)44,45. 

Bone pretreatment and accelerated mass spectrometry dating 

Small aliquots (80–110 mg) of the six ZooMS-identified hominin bone fragments were sampled 

to preserve as much material as possible for further analyses. Collagen was extracted using a 

previously described technique46 for small bone sample sizes, based on a modified previously 

published collagen-extraction protocol47 followed by an ultrafiltration step48. In brief, the outer 

surfaces of the bone samples were removed with a sandblaster, and samples were removed using 

a rotary tool. The bones were demineralized in 0.5 M HCl at 4 °C until soft and CO2 

effervescence had stopped. Then, 0.1 M NaOH was added for 10 min at room temperature to 

remove humic acid contamination, and samples were re-acidified in 0.5M HCl. The collagen was 

gelatinized in acidic water (HCl pH 3) at 70 °C for several hours (4–6 h). The collagen samples 

were then passed through an Ezee Filter (Elkay Laboratories) to remove large particles (>80 μm) 

and separated by molecular weight with pre-cleaned Sartorius VivaSpin Turbo 15 ultrafilters (30-

kDa molecular weight cut-off (MWCO))49,50. The samples were freeze-dried and the large 

molecular fraction (>30 kDa) was graphitized using Automated Graphitisation Equipment III51 

and measured using the latest model of the MICADAS accelerated mass spectrometry (AMS) 52 

in the Laboratory of Ion Beam Physics at ETH-Zurich (laboratory code ETH). Small aliquots 



 

(66–89 mg) of a background cave bear bone (>50,000 yr BP) were extracted alongside the 

samples to monitor contamination introduced in the laboratory53. These were measured in the 

same magazine as the hominin samples and used in the age calculation. Oxalic acid II standards 

were also measured in the same magazine and used for normalization. Data reduction was 

performed using BATS software54. An additional 1‰ was added to the error calculation of the 

samples, as per standard practice. The dates were calibrated using the IntCal1355 dataset in OxCal 

v.4.356.  

Shape analysis of the molar enamel–dentine junction  

Enamel and dentine tissues (Extended Data Fig. 5) of lower second molars were segmented using 

the 3D voxel value histogram and its distribution of greyscale values50,51. After segmentation, the 

enamel–dentine junction was reconstructed as a triangle-based surface model using Avizo. Small 

enamel–dentine junction defects were corrected digitally using the ‘fill holes’ module of 

Geomagic Studio. We then used Avizo to digitize 3D landmarks and curve-semilandmarks on the 

enamel–dentine junction surface50,51. Anatomical landmarks were placed on the tip of the dentine 

horn of the protoconid, metaconid, entoconid and hypoconid. A sequence of landmarks was also 

placed along the marginal ridge connecting the dentine horns, beginning at the top of the 

protoconid and moving in lingual direction; the points along this ridge curve were then later 

resampled to the same point count on every specimen using Mathematica. Likewise, we digitized 

and resampled a curve along the cemento–enamel junction as a closed curve starting and ending 

below the protoconid horn and the mesiobuccal corner of the cervix. The resampled points along 

the two ridge curves were subsequently treated as sliding curve semilandmarks and analysed 

using geometric morphometrics together with the four anatomical landmarks. Landmarks not 

preserved on the Bacho Kiro Cave specimen were removed before principal component analysis. 

The specimens of Homo erectus sensu lato include KNM-ER 1802, KNM-ER 992 and Sangiran 

1b. Specimens of archaic Middle Pleistocene hominins include Balanica 1, Mauer, Xiahe and 

KNM-ER BK 67. The Neanderthal sample includes Abri Suard S36, Krapina 1, 6, 9, 53, 54, 55, 

57, 59, 80, 86, 105 and 107, La Quina H9, Le Moustier 1, Regourdou, Scladina 4A1, El Sidron 

540 and 755, and Vindija 11-39. The fossil H. sapiens sample includes Dar es Soltane II H4, El 

Harhoura, Jebel Irhoud 3 and 11, Qafzeh 9, 10, 11 and 15, and Temara. The recent H. sapiens 

sample includes clinical extractions from dentists based in Germany, Neolithic specimens from 

Belgium (Royal Belgian Institute of Natural Sciences) and specimens from the Francisc J. Rainer 

Collection (Institutul de Antropologie ‘Francisc J. Rainer’). 



 

DNA extraction and library preparation 

Samples of between 29.3 mg and 64.7 mg of tooth or bone powder were removed from 7 Bacho 

Kiro Cave specimens (F6-620, AA7-738, BB7-240, CC7-2289, CC7-335, F6-597 and BK-1653) 

using a sterile dentistry drill (Supplementary Table 4) after a thin layer of surface was removed 

from the sampling areas. DNA was extracted from the powder using a silica-based method22 as 

previously described23. Five single-stranded DNA libraries24 were made from 10 μl from each 

extract on an automated liquid handling platform (Bravo NGS workstation B, Agilent 

Technologies)59.A control oligonucleotide was spiked into each reaction to determine the 

efficiency of library preparation60, and quantitative PCR was used to determine the total number 

of unique library molecules as well as the number of oligonucleotides that were successfully 

converted24,60. The libraries were amplified into plateau with AccuPrime Pfx DNA polymerase 

(Life Technologies)61 and labelled with two unique indices23,62. Half of the volume of the 

amplified libraries (50 μl) was purified using SPRI beads on the automated liquid handling 

platform59. The concentrations of the purified DNA libraries were determined using a NanoDrop 

Spectrophotometer (NanoDrop Technologies). 

mtDNA capture and sequencing 

An aliquot of each amplified library was enriched for human mtDNA using a bead-based 

hybridization method29. Enriched libraries were sequenced on an Illumina MiSeq platform in a 

double index configuration (2 × 76 cycles)62 and base-calling was done using Bustard (Illumina). 

Overlapping paired-end reads were merged into single sequences and the adapters were trimmed 

using leeHom63. The Burrows–Wheeler Aligner (BWA, version: 0.5.10-evan.9-1-g44db244; 

https://github.com/mpieva/network-aware-bwa)64, with parameters adjusted for ancient DNA (‘-n 

0.01 –o 2 –l 16500’)65, was used to align the data to the revised Cambridge Reference Sequence 

(NC_01290). Only reads with perfect matches to the expected index combinations were retained 

for downstream analyses. PCR duplicates were removed using bam-rmdup (version 0.6.3; 

https://bitbucket.org/ustenzel/biohazard). SAMtools (version 1.3.1)66 was used to filter for 

fragments that were longer than 35 base pairs and that had a mapping quality of at least 25. We 

merged the libraries originating from the same extract (that is, the same specimen) using 

SAMtools merge to produce the final dataset. 

Phylogenetic inferences 

We reconstructed the mitochondrial genomes of the Bacho Kiro Cave specimens once by using 

all mapped fragments longer than 35 base pairs with a mapping quality of at least 25 and once 

using only fragments with a cytosine (C) to thymine (T) difference to the reference genome at the 

first three and/or last three terminal positions36 (that is, putatively deaminated fragments). We 

https://github.com/mpieva/network-aware-bwa
https://bitbucket.org/ustenzel/biohazard


 

called a consensus base at each position along the mtDNA that was covered by at least 3 DNA 

fragments and at which at least 2/3 of fragments carried an identical base and the base quality 

was 20 or higher67. To prevent deamination-induced substitutions affecting the calling of a 

consensus base, we converted A on the reverse strands and T on the forward strands in the first 

three and the last three positions of a fragment into N. 

The libraries prepared from the F6-597 specimen yielded too few informative mtDNA 

fragments to reconstruct a complete mtDNA using putatively deaminated fragments. We 

investigated the state of F6-597 DNA fragments that overlapped positions ‘diagnostic’ for each 

branch in a mtDNA tree relating present-day humans, Neanderthals, Denisovans and the hominin 

from Sima de los Huesos68 (Supplementary Table 6). To diminish the influence of substitutions 

derived from deamination, all forward strands were ignored if one of the possible states at an 

informative state was a C and all reverse strands were ignored if one of the possible states was G. 

We aligned the reconstructed mitochondrial genomes of the Bacho Kiro Cave individuals 

to the mtDNA genomes of 54 present-day humans from a wide geographical distribution69, 12 

ancient H. sapiens25,28,41,70–73 (Supplementary Table 9), 22 Neanderthals69,74–78, 4 Denisovans79–82, 

a Sima de los Huesos individual67 and a chimpanzee83 using MAFFT v.7.27184. The number of 

pairwise differences among the genomes was calculated using MEGA785 and a maximum 

parsimony tree was reconstructed using Parsimony ratchet as implemented in the R package 

phangorn86. We identified the haplogroup of each of the reconstructed mitochondrial genomes 

with HaploGrep87 based on the PhyloTree database (PhyloTree.org, build 17). 

Contamination estimates 

We used two complementary approaches to estimate levels of present-day human mtDNA 

contamination in the libraries. We identified positions at which each of the reconstructed Bacho 

Kiro Cave mtDNAs differ from at least 99% of a world-wide panel of 311 present-day human 

mtDNAs36,69 (Supplementary Tables 7, 8). We then counted DNA fragments that overlap these 

positions and did not match the consensus base of the respective specimen, again taking into 

account the strand orientation in cases in which one of the possible states at an informative site 

was C or G. In the second approach, we used an iterative probabilistic method, schmutzi88, which 

uses a nonredundant database of human mitochondrial genomes to estimate levels of present-day 

human DNA contamination (Supplementary Information section 5) (parameters: ‘—notusepredC 

—uselength’). 



 

Molecular DNA dating 

We estimated the tip dates of the reconstructed Bacho Kiro Cave mtDNAs using the Bayesian 

phylogenetic method as implemented in BEAST2 (version 2.4.8)89 by aligning the reconstructed 

mitochondrial genomes to 54 present-day humans and 10 directly radiocarbon-dated ancient 

H. sapiens28,29,72,73,80, which were used for tip calibration. The Neanderthal mtDNA genome of 

Vindija 33.1669 was used as an outgroup. The best-fitting substitution model was determined 

using jModelTest290. We investigated a strict clock and an uncorrelated log-normal relaxed clock 

as two models of rate variation and a constant population size and a Bayesian skyline as tree 

priors28. For each model, we carried out Markov chain Monte Carlo runs with 30,000,000 

iterations and sampling every 1,000 steps. After discarding 10% of the iterations as burn-in, the 

output was analysed with Tracer v.1.5.0 (http://tree.bio.ed.ac.uk/software/tracer/). A marginal 

likelihood estimation91 analysis was used for model comparison and best support assessment. 

Both the maximum parsimony and the BEAST2 tree were visualized with FigTree (version 

v.1.4.2) (http://tree.bio.ed.ac.uk/software/figtree/). 

Micromorphology 

Field observations of the sediments were complemented by archaeological micromorphology 

analyses. Micromorphological samples were collected as undisturbed blocks by carefully carving 

and wrapping them with either pre-plastered bandages or soft paper and tape. Thin sections were 

manufactured by Spectrum Petrographics through a standard procedure of drying the blocks in an 

oven for several days at about 60 °C. The blocks were then impregnated with a mixture of 

polyester resin and styrene, to which a catalyst was added. Thin sections were ground to a 

thickness of 30 μm and observed under a petrographic microscope in plane- and cross-polarized 

light at magnifications ranging from 20× to 400×. Micromorphological nomenclature follows 

previously published work92,93. 

Reporting summary 

Further information on research design is available in the Nature Research Reporting Summary 

linked to this paper. 

Data availability 

The data that support the findings of this study are available from the corresponding authors upon 

reasonable request. Genetic sequence reads from all libraries and corresponding negative controls 

are deposited at European Nucleotide Archive under the study accession number PRJEB35466. 

The FASTA files of the mitochondrial genomes are deposited in GenBank with the accession 

numbers MN706602–MN706607. Details are as follows: Bacho Kiro AA7-738, MN706602; 

http://tree.bio.ed.ac.uk/software/tracer/
http://tree.bio.ed.ac.uk/software/figtree/
http://www.ebi.ac.uk/ena/data/search?query=PRJEB35466
http://www.ncbi.nlm.nih.gov/nuccore/?term=MN706602


 

Bacho Kiro BB7-240, MN706603; Bacho Kiro BK-1653, MN706604; Bacho Kiro CC7-335, 

MN706605; Bacho Kiro CC7-2289, MN706606; and Bacho Kiro molar F6-620, MN706607.  
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Extended Data Fig. 1 | Excavations at Bacho Kiro Cave, 2015–2018. a, Plan view of the 

entrance and the excavated areas of the cave, with the grid system of our recent excavations 

(letters in the left column) and those of the 1971–1975 excavations (letters in the right column). 

b, Site location in southeastern Europe. c, Photograph of the entrance of the cave. The floor is 

artificially raised; the original entrance was several metres lower than shown in this photograph. 

d, Initial stratigraphic section drawing of the exposed profile from the Main sector in 2015 (codes 



 

for the archaeological layers are on the left, with the corresponding layers from the 1971–1975 

excavations in parentheses). e, Frontal view of the Niche 1 sector and its stratigraphic 

subdivisions. f, Lower part of the stratigraphic section drawing of the Niche 1 sector, in 2018. 

Note the thickness and preservation of the lower deposits here in comparison with the Main 

sector profile. g, Photograph of the Main sector transversal section on the line F5–F6 and G5–G6 

before excavation in 2015. CF, combustion feature. h–n, Hominin remains identified by ZooMS 

with their IDs: BK-1653 (h) and F6-597 (j) from layer B, with h coming from the 1971–1975 

excavations (dashed line); BB7-240 (k), CC7-2289 (l), CC7-335 (m) and AA7-738 (n) from 

layer N1-I. Continuous lines connect the fossils with their find locations. i), Second lower molar 

(F6-620) from layer J in the Main sector. 

 



 

Extended Data Fig. 2 | Geographical distributions. Geographical distribution of the main IUP 

sites of western and central Eurasia (black dots), directly dated early H. sapiens predating 

37,000 cal. yr BP (empty black dots) and directly dated late Neanderthals associated with 

Châtelperronian assemblages (orange squares). Bacho Kiro Cave is represented by a red star. 

 

Extended Data Fig. 3 | Photographs of lithic artefacts from layer I of Bacho Kiro Cave. 

Pointed retouched blades and fragments (1–4, 6, 7) and piece with bifacial retouch (5). 



 

Photographs by V.S.-M. and T. Tsanova. 

 

Extended Data Fig. 4 | Drawings of lithic artefacts from layer I of Bacho Kiro Cave. Pointed 

retouched blade with slightly oblique truncation and base modified by inverse retouch (1), 

pointed blade fragments (2 and 5, which is has an oblique truncation and slight notch on the left 

edge, and was perhaps intentionally fragmented), pointed, small blades fragments (3, 7, 8), 

pointed blade fragment with opposing pseudo-burin blows on the apex and on the distal fracture 



 

edge (perhaps indicating use as a projectile) (4) and Levallois flake (6). Drawings by I.K. and T. 

Tsanova).  

Extended Data Fig. 5 | Human lower second molar (F6-620). a, Mesial, buccal and distal 

views of the crown, root and pulp chamber (left) and occlusal views of the enamel and dentine 

crown (right). b, A principal component analysis of the shape of the enamel–dentine junction 

ridge and cervix places the Bacho Kiro Cave second lower molar (F6-620) within the samples of 

recent (n = 8) and Pleistocene (n = 9) H. sapiens, and outside the distribution of Neanderthals 



 

(n = 20) and H. erectus (n = 3). 

 

Extended Data Fig. 6 | MALDI–TOF–MS spectra for the six bone specimens identified as 

hominins through ZooMS analysis. a, B4-1653 (layer 6a/7). b, AA7-738 (layer N1-I). c, BB7-



 

240 (layer N1-I). d, CC7-2289 (layer N1-I). e, CC7-335 (layer N1-I). f, F6-597 (layer B). 

 

Extended Data Fig. 7 | Frequency of nucleotide substitutions at the beginning and the ends 

of mtDNA alignments for the Bacho Kiro Cave specimens. Only fragments of at least 35 base 

pairs in length that mapped to the revised Cambridge Reference Sequence with a mapping quality 

of at least 25 were used for this analysis. Solid lines in red depict all fragments and dashed lines 

depict the fragments that have a C-to-T substitution at the opposing end (‘conditional’ C-to-T 

substitutions). All other types of substitution are marked in grey. 

 



 

Extended Data Fig. 8 | Bayesian phylogenetic tree relating Bacho Kiro Cave mtDNA to 

54 present-day humans, 10 directly radiocarbon dated ancient H. sapiens and the Vindija 

33.16 Neanderthal. The Bacho Kiro Cave specimens are in red. Other ancient H. sapiens used as 

calibration points to estimate the tip dates of Bacho Kiro Cave specimens are italicized. The 

posterior probabilities are denoted above the branches. The mtDNA of Vindija 33.16 was used to 

root the tree (not shown). 

 

Extended Data Table 1 | Comparative dental metrics: 
BL, bucco-lingual width; MD, mesiodistal length; CI, crown index (BL/MD); CCA, calculated crown area 
(BL × MD).Values are in mm. x̅ is the mean; minimum and maximum values are between the brackets; σ 
is the standard deviation; n indicates sample size. The Upper Palaeolithic H. sapiens sample includes 
individuals from the sites of: Les Abeilles, Bacho Kiro Cave, Brno, Bruniquel, Castenet, La Chaud, Dolní 
Vĕstonice, Farincourt, La Ferrassie, La Grèze, Les Rois, Isturitz, Kostenki, Kumchon, Laugerie-Basse, 
Lespugue, La Linde, Abri de la Madeleine, Nazlet Khater, Peștera cu Oase, Peche de la Boissiere, San 
Teodoro, St Germaine-la-Rivière, Sunghir, Les Vachons and Vindija. The early H. sapiens sample 
includes individuals from the sites of Border Cave, El Harhoura, Cave of Hearths, Dar es Soltane, Die 
Kelders, Haua Fteah, Jebel Irhoud, Klaises River Mouth, Mumba, Qafzeh, Skhul, Témara and Zhiren. The 
Neanderthal sample includes individuals from the sites of: Arcy-sur-Cure, Krapina, La Fate, Grotta 



 

Guattari, Hortus, Monte Fernera, Montmaurin, Ochoz, Petit-Puymoyen, La Quina, Le Regourdou, Spy, St 
Césaire, Subalyuk and Tabun. The recent human sample includes archaeological specimens representing 
western Europe, eastern Europe, southern Europe, Japan, China, the Near East, India, the Andaman 
Islands, Australia, New Guinea, northern Africa, southern Africa, eastern Africa and western Africa. 

Extended Data Table 2 | mtDNA branch-shortening estimates 
Estimates for Bacho Kiro Cave specimens as determined in a Bayesian framework implemented in 
BEAST2, and by using 10 radiocarbon-dated ancient H. sapiens as calibration points (Supplementary 
Table 9). 


