
0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.2995125, IEEE Software

A Hitchhiker’s Guide to Model-Driven Engineering
for Data-Centric Systems

Benoit Combemale∗, Jörg Kienzle†, Gunter Mussbacher†, Hyacinth Ali†, Daniel Amyot‡

Mojtaba Bagherzadeh§, Edouard Batot¶, Nelly Bencomo‖, Benjamin Benni∗∗, Jean-Michel Bruel††

Jordi Cabot‡‡, Betty H.C. Cheng
x
, Philippe Collet∗∗, Gregor Engels

xi
, Robert Heinrich

xii

Jean-Marc Jézéquel
xiii

, Anne Koziolek
xii

, Sébastien Mosser
xiv

, Ralf Reussner
xii

, Houari Sahraoui¶

Rijul Saini†, June Sallou
xv

, Serge Stinckwich
xvi

, Eugene Syriani¶, Manuel Wimmer
xvii

∗ Univ. Toulouse & Inria, France, benoit.combemale@inria.fr
† McGill University, Canada, joerg.kienzle,gunter.mussbacher@mcgill.ca, hyacinth.ali,rijul.saini@mail.mcgill.ca

‡University of Ottawa, Canada, damyot@uottawa.ca
§Queens University, Canada, mojtaba@cs.queensu.ca

¶ Université de Montréal, Canada, batotedo,sahraouh,syriani@iro.umontreal.ca
‖ Aston University, United Kingdom, nelly@acm.org

∗∗ Université de la Côte d’Azur, I3S CNRS, France, benni,collet@i3s.unice.fr
†† Université de Toulouse & IRIT, France, bruel@irit.fr
‡‡ ICREA & UOC, Spain, jordi.cabot@icrea.cat

x
Michigan State University, USA, chengb@msu.edu
xi

Paderborn University, Germany, engels@upb.de
xii

Karlsruhe Institute of Technology, Germany, heinrich,koziolek,reussner@kit.edu
xiii

Université de Rennes, Inria, CNRS, IRISA, France, jezequel@irisa.fr
xiv

Université du Québec à Montréal, Canada, mosser.sebastien@uqam.ca
xv

Université de Rennes, Inria, CNRS, IRISA & Géosciences Rennes, OSUR, France, june.benvegnu-sallou@univ-rennes1.fr
xvi

United Nations University Institute in Macau, Macau SAR, China, stinckwich@unu.edu
xvii

Johannes Kepler University Linz, Austria, manuel.wimmer@jku.at

I. INTRODUCTION

A broad spectrum of application domains are increasingly
making use of heterogeneous and large volumes of data
with varying degrees of humans in the loop. The recent
success of Artificial Intelligence (AI) and, in particular, Ma-
chine Learning (ML) further amplifies the relevance of data
in the development, maintenance, evolution, and execution
management of systems built with model-driven engineering
techniques. Applications include critical infrastructure areas
such as intelligent transportation, smart energy management,
public healthcare, and emergency and disaster management;
many of these systems are considered socio-technical systems
given the human, social, and organizational factors that must
be considered during the system life-cycle [1]. This article
introduces a conceptual reference framework – the Models
and Data (MODA) framework – to support a data-centric and
model-driven approach for the integration of heterogeneous
models and their respective data for the entire life-cycle of
socio-technical systems.

While system development within these diverse application
domains makes use of both models and data, it differs in
the types and uses of models and data, and the degree and
role of humans in the loop. E.g., ML models are applied

to independently-collected large (training) datasets to produce
decision models (e.g., image classification for automotive ob-
stacle avoidance). In contrast, software engineers use extensive
data (e.g., domain knowledge) to develop engineering models
(e.g., domain and design models), and then evolve them in-
crementally. Furthermore, scientific modelling typically starts
with a mathematical model of a given physical phenomenon
(e.g., Navier-Stokes equations to describe fluid motions) and
use application-specific data to calibrate this general model
for a particular application (e.g., a flood management system).
While the combination of data and models originated from
diverse application domains, we are starting to see attempts to
integrate them into large socio-technical systems that involve
these types of models and data coming from different com-
munities [2], [3]. Such an integration requires the individual
strengths of models and data as well as their complementing
natures to be harnessed.

MODA supports the system life-cycle of socio-technical
systems, and is intended to handle a broad range of stake-
holders and community groups. The framework provides a
vision for how to explicitly integrate the three roles played by
models – prescriptive, predictive, and descriptive [4] – as well
as their respective data sources and highlights related actions
to integrate them.

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on June 10,2020 at 11:16:09 UTC from IEEE Xplore. Restrictions apply.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Aston Publications Explorer

https://core.ac.uk/display/323986154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.2995125, IEEE Software

An overarching objective of this article is to emphasize
and illustrate the complementarity and duality of models and
data in socio-technical, likely software-intensive, systems. In
addition to reviewing the types of models used in the scientific,
engineering, and artificial intelligence communities, highlight-
ing their common roles and complementarities, we demystify
the ways such models and data can be synergistically used
in the system life-cycle of socio-technical systems with the
MODA framework. While MODA was developed to capture
emerging socio-technical systems with different model types,
it is sufficiently expressive to characterize and generalize
existing complex engineering practices and technologies in
the system life-cycle, which we demonstrate with thirteen
well-known processes, technologies, and systems. We also
identify several key research challenges with proposed follow-
on studies for realizing MODA.

We expect the MODA framework to be used (i) as a
guide for educational purposes to clarify roles of models, data
sources, and related actions during a wide variety of system
life-cycles; (ii) to organize and compare complex engineering
processes and technologies to support critical engineering
choices involving large landscapes (e.g., smart grid systems);
and (iii) to situate existing research approaches or initiate new
research agendas to improve the integration of different types
of models and data sources (e.g., air quality management,
climate change).

II. ON MODELS AND DATA

The word model is used in many communities, for a good
reason: they share a common definition. A model is an
abstraction of an aspect of reality for a given purpose. Models
can be used to answer questions with responses that are
sufficiently close to reality. Beyond this common definition,
different types of models have commonalities, but also notable
differences, which are not yet fully understood. Existing work
has discussed various types of models [5] and the roles they
can play [4]. Here we study these notions of model types and
roles with respect to their interplay with the available data. As
a result, we provide a conceptual framework that demonstrates
the relevant combinations of the different roles of models in
engineering and scientific processes.

In this article, we concentrate on three main types of mod-
els: Engineering, Scientific, and Machine Learning models.

A. Types of Models

1) Engineering Model: Models in engineering disciplines
are devoted to support the definition and representation of a
targeted system [5]. Engineering models represent concerns
ranging from onboard control in autonomous vehicles for
braking and obstacle avoidance, to traffic management models,
information systems, business rules, etc. They are meant to
drive, possibly with some degree of automation, the develop-
ment of the system-to-be.

Engineering disciplines often use systematic processes and
methods in addition to well-defined notations for their models.
Those formalisms can be domain-specific (e.g., BPMN or

BPEL) or more generic (e.g., UML or SysML). With these
formal processes and languages, validation of the models
includes the use of formal techniques, simulations, and tests.

Engineering models can represent a means to develop a
physical system for a specific purpose that obeys physical
laws, or a software-based system (including behavior, struc-
ture, intentions, and/or configuration), or both (e.g., cyber-
physical systems). As such, we also consider engineering
models to be those that use decision logic to manage a system
based on inputs from environment sensors to determine an
appropriate response. In many cases, a feedback loop is used
to govern how to adjust the response to account for different
types of uncertainty (e.g., errors, changing operational condi-
tions).

During the design of a feedback loop, engineering models
must keep track of key elements of the system (e.g., phys-
ical and logical elements), which requires processing large
volumes of data. E.g., when engineering models are used
to control their environment, they have to be able to handle
continuous data as opposed to discrete data.

2) Scientific Model: A scientific model is a representation
of some aspects of a phenomenon of the world [6]. It is
used to explain and analyze the phenomenon (e.g., define,
quantify, visualize, or simulate), based on established scientific
knowledge defining a theory. A theory provides a framework
with which models of specific phenomena and systems can
be constructed. Models are validated or rejected by exper-
iments or known theories. Upon validation, these models
are typically used to predict future behavior of the system
through simulation or mathematical calculus. Different types
of models are used for different aims: conceptual models to
improve shared understanding, operational models to refine
measurement, mathematical models to quantify a subject, or
graphical models to visualize the subject. A holistic view of
a phenomenon or a system is assumed and different models
can be used at different time- or space-scales.

Scientific models encompass a wide range of representa-
tions, such as climate change models, electromagnetic mod-
els, protein synthesis models, or metabolic network models.
Scientific models typically involve equation-based continuous
formalisms such as differential equations, as well as discrete
models (e.g., state-based, event-driven, or agent-based mod-
els).

Data can be numerical or symbolic (e.g., DNA nucleotides).
Data is collected, produced, manipulated, and exploited in
several ways at different points of the scientific method life-
cycle. E.g., observation data can be curated and then used in
a calibration phase to set the parameters of a model; data can
be directly processed by a model; or data can be produced as
a result of model simulations.

3) Machine Learning Model: ML models are produced by
automated learning algorithms out of sample data, known
as training data, in order to make predictions or decisions
without being explicitly programmed to perform the task.
They can be seen as an approximation of the conceptual

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on June 10,2020 at 11:16:09 UTC from IEEE Xplore. Restrictions apply.

0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.2995125, IEEE Software

relationship between a particular input and the expected or
a priori unknown target output.

ML models are used for a wide range of applications,
such as image classification, feature extraction, defect density
prediction, language translation, or motion planning of robots.
Common formalisms include neural networks, Bayesian clas-
sifiers, statistical models (e.g., linear regression), and many
others.

ML models are obtained according to the inductive rea-
soning principle, i.e., generalization from specific cases. This
approach implies a certain degree of uncertainty as to whether
the specific cases sufficiently represent the rules and principles
an ML model is intended to capture. The kind of data used
in ML is mostly numeric for regression problems, but also
symbolic for classification problems.

B. Complementarities and Synergies

By definition, a model has a purpose, and thus plays one or
more roles with respect to that purpose. A model plays:

• a descriptive role if it documents some current or past as-
pect of the system under study (which can be a software-
intensive system or a natural system), facilitating under-
standing, and enabling analysis.

• a prescriptive role if it is a description of the system
to be built, driving the constructive process, including
runtime evolution in the case of self-adaptive systems
(aka models@runtime).

• a predictive role if it is used to predict information that
one cannot or does not want to measure (which creates
new knowledge and allows decision-making and trade-off
analyses to be performed).

Each model type can play more than one role. A scientific
model is first descriptive, but its main objective is to become
predictive supporting what-if scenarios [7]. Embedded into a
socio-technical system, it becomes prescriptive. E.g., consider
a prescriptive model of a decision-making tool for climate
change using a predictive simulator based on a descriptive
scientific model of the earth’s water cycle. An engineering
model typically starts by being descriptive (e.g., a domain
model describing key concepts and relationships), and then at
design time is refined/transformed into a prescriptive model.
But once the system is built as prescribed, the model becomes
descriptive again as a form of documentation [8]. An engi-
neering model can also be used as a predictive model: e.g., an
architecture model could be used to predict the performance
of a specific configuration. An ML model is mostly used in a
predictive role with the objective to infer new knowledge given
some hypothetical input data. It might also be descriptive of
a current or past relationship, or prescriptive if the results are
used to make decisions. E.g., consider a prescriptive model of
a smart farm where a predictive ML model is used to decide
on irrigation plans based on descriptive historical data.

To create a model of any of the above types, knowledge
and data are needed as input. The proportion of required
knowledge or the importance of the availability of the required
data to build the models are highly specific to each model type.

E.g., in ML models, we need problem-specific knowledge
to choose the adequate ML technique(s), choose the ML
meta-parameters (e.g., different kinds of layers and how they
connect in a neural network), choose the input variables and
the output variables, and then derive a specialized model
from the data. In scientific models, knowledge formulates a
hypothesis while data parameterizes the model. In engineering
models, we mainly use knowledge about the domain and
possibly improve or tune the models with data.

Along with the respective importance of knowledge and data
in the process of building the models, the order in which
models and data are considered is specific to the type of
models. Descriptive engineering models primarily start with
data, including external data (e.g., expert/domain knowledge
expressed in requirements or constraints) or measured data
(e.g., exploitation data from previous systems). Engineering
models are then used to prescribe the way the future system
will be built. With knowledge about which algorithms are best
suited for a problem, ML typically starts with input/output
system data or measured data for training, and iteratively (e.g.,
with feedback loops) revises the model to address the problem
at hand, where the resulting models are the main output of the
process. In scientific models, the external data (e.g., real-world
observations) plays important roles while off-the-shelf models
aim to describe existing phenomena and hence are regularly
updated and improved.

III. THE MODA FRAMEWORK

Life-cycle support for current and future complex socio-
technical, likely software-intensive, systems requires us to
synergistically combine this range of models through well-
founded techniques that leverage their overall benefits to
satisfy many different purposes. In order to support this
integration through engineering processes, we describe a con-
ceptual Models and Data (MODA) framework that explicitly
relates the different roles of the model types according to
three kinds of data: input/output data, measured data, and
external data. The MODA framework provides insight into the
integration of the different roles that various model types play,
including their data sources and related actions, resulting in a
generalized view of common software development processes,
technologies, and systems.

The systems we consider range from software-intensive
systems (where software is the predominant component, e.g.,
e-commerce applications) and cyber-physical systems (where
software controls physical components, e.g., smart grids) to
more general socio-technical systems (where humans are in
the loop with software-based systems, e.g., crisis management
systems). These systems are data-centric. Data is not only
provided to and produced by the running system, but data
about the software itself and its surrounding environment is
collected (e.g., performance data). All this data is processed
by descriptive, predictive, and prescriptive models in order to
adapt the system to handle the evolving data.

Figure 1 presents the MODA framework. The running
software is depicted in red, different kinds of data are shown

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on June 10,2020 at 11:16:09 UTC from IEEE Xplore. Restrictions apply.

0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.2995125, IEEE Software

Scope

Socio-Technical System

Data

External
Data

Predictive
Model

Descriptive
Model

Running
Software

Input /
Sensor Data

Output /
Actuator Data

Measured
Data

State

Prescriptive
Model

A

B

C

Generalization,

E

Analysis,
decision,
and change

G

Enactment

J

Software
(Code, Config., …)

Deployment

F

H

I
D

Generation

Input
processing

Preparation for

Other interplay

prediction

Models

calibration

Output
processing

Figure 1. The MODA Framework (dotted boxes are optional)

in yellow, different model roles are represented in white, and
the arrows represent actions related to the models and data.
Consider, e.g., a Crisis Management System (CMS) intended
to provide a responsive means to systematically detect crises
and deploy resources to mitigate them (e.g., traffic accidents).
In this case, the running software typically comprises a dis-
tributed system with one or multiple backends and databases,
sensors, and applications running on the smart devices of the
different CMS participants (first responders, drivers, etc.), and
vehicles.

The running software processes input data and generates
output, depicted by the arrows A and B labelled Input pro-
cessing and Output processing, respectively. For CMS, input
data includes information gathered from phone calls (e.g.,
number of vehicles involved, affected area, fire), and infor-
mation gathered from sensors (e.g., GPS data gathered from
workers, vehicles, cameras, weather information). Output data
includes resource assignments and mission-related information
communicated to activate emergency personnel, as well as
information and requested actions sent to other systems (e.g.,
the police).

The C arrow labelled Measurement represents the gathering
of metadata or metrics about the running software. Gathering
such data requires additional effort, ranging from code in-
strumentation and logging to human auditing. The gathered
data might be filtered or aggregated in real-time, as well
as stored for offline use. For CMS, possible metadata could

include performance measurements, resource usage (e.g., used
network bandwidth), reliability data (e.g., time-to-failure, noise
in communication), and detected intrusions.

The last kind of data we distinguish, external data, is any
kind of information that is not explicitly within the scope of
the software in the current version of the system. For CMS,
e.g., historical data about past emergencies or social media
data could be considered to improve crisis management (J
arrow).

The D arrow labelled Generalization, calibration represents
techniques that generalize from the different kinds of data to
yield a descriptive model. These techniques include conceptual
generalization approaches such as abstraction, synthesis, and
type induction, but also statistical approaches, regression,
differential equation inference, complex event processing (e.g.,
aggregating many small events into semantically meaningful
ones), mining, as well as natural language processing and
advanced machine learning techniques. The generalization can
happen in real-time (e.g., for adaptive systems), or offline.

Building a CMS descriptive model includes matching the
received data about an event with generic crisis templates to
classify the unfolding crisis according to well-known crisis
types. Subsequently, the templates are parameterized with
specific event information, e.g., the number of victims and
vehicles on fire. Models of historical information about crises
could be generated by mining historical data. Scientific mod-
els, e.g., fire propagation modelling, modelling of physical

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on June 10,2020 at 11:16:09 UTC from IEEE Xplore. Restrictions apply.

0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.2995125, IEEE Software

roadway condition in response to different weather conditions,
can be built to help assess the situation. ML techniques can
be applied to analyze traffic patterns.

The E arrow (Preparation for prediction) refers to prepro-
cessing techniques that combine data and descriptive models to
build models that can be used to make predictions. Sometimes
descriptive models can be used directly to make predictions
(e.g., fault tree analysis). More often, additional processing
is required, e.g., applying techniques for inter- and intra-
polation, using statistical techniques (regression), preparing for
simulation and training of ML models, e.g., neural networks.
For CMS, one might prepare a queuing network and then
choose and parameterize a simulator to make traffic predic-
tions. Neural networks could be trained to discover hidden
behavioral patterns that can be used to prevent potential future
accidents or shorten the emergency response time.

The F arrow (Analysis, decision, and change) represents
decision support activities (e.g., what-if analysis) and the ap-
plication of consequent changes to the prescriptive model. For
CMS, prescriptive models would include mission workflows,
safety regulations that should be enforced, UML descriptions
of the software solution, algorithms supporting communi-
cation, etc. What-if scenarios can be run manually or in
an automated fashion (e.g., using hill-climbing / optimizing
searches, genetic algorithms). Different approaches can be
used for enacting a decision. E.g., in self-adaptive systems, a
decision might require a reconfiguration that can be achieved
by making changes to the prescriptive architecture model
(e.g., by means of model transformations), or by updating
configuration files. In a software product line setting, fore-
seen adaptations can be achieved by selecting features that
describe previously-designed alternatives, and then adapting
the prescriptive model, e.g., by model weaving or merging. For
CMS, one could predict that the network noise will become
significant in the near future and then trigger the decision to
switch to a more robust communication protocol at runtime.
Offline extrapolation of current crises data predicting future
needs of the CMS might lead to the decision to develop new
features for the next version of the CMS software.

The G arrow labelled Generation represents the typical
software development activities that use high-level prescriptive
models (e.g., requirements models) to produce lower-level pre-
scriptive models (e.g., design models or executable code). The
techniques used here include model transformations, model
instantiation, and compilers. Recently, AI techniques have also
been used in this step to optimize the generation process.

The H arrow (Deployment) involves deploying and exe-
cuting or interpreting the low-level, executable models (e.g.,
code). Here as well, AI techniques are beginning to emerge,
e.g., to optimize node configurations in cloud deployments.
For CMS, a new architecture model could be distributed to all
system nodes to switch to a new communication protocol.

Finally, the I arrow (Enactment) represents actions ac-
complished or enforced in a socio-technical system based
on prescriptive models involving human/social dimensions
(e.g., policies, laws, standards). For CMS, new driving reg-

ulations could be devised that force truck drivers to adhere to
stronger safety requirements. Such regulations would have to
be enforced by legal means. Similarly, transparent information
dissemination policies could be put in place to strengthen the
population’s feeling of security.

Besides socio-technical systems like CMS, MODA gen-
eralizes state-of-practice processes, technologies, and other
systems. Figure 2 highlights MODA’s broad applicability with
representative instantiations of MODA. We show three differ-
ent software development processes (waterfall, iterative/agile,
and test-driven development; Fig. 2a-c), as well as business
process modelling and mining approaches (Fig. 2d). The
generic nature of MODA even enables its use as an under-
lying structure for explaining business modelling approaches
(Fig. 2e). In Fig. 2f-h, we consider workflows in scientific
computing [9], commonly-used machine learning pipelines in
software development, and the autonomic computing MAPE-
K loop [10]. Note that recommender systems are similar
to machine learning pipelines in that a predictive model is
included in a prescriptive model to provide recommenda-
tions automatically. Finally, we consider the development of
four systems (Fig. 2i-l), differing in terms of complexity,
availability of data, and requirements volatility: (i) a simple
mobile app, (ii) a control and command system in an airplane,
(iii) a digital twin application, and (iv) a smart power grid
application. Exemplified by the above processes, technologies,
and systems, we have illustrated how the MODA framework is
a common reference to guide the use of models, data sources,
and their implied actions to improve the integration of different
model roles and data sources.

IV. CONCLUSION AND PERSPECTIVES

A key objective of software engineering (SE) research in
the near future is to enable an engineering-based approach to
support rigorous processes and techniques for model and data
integration for the increasingly complex and dynamic socio-
technical systems of tomorrow. To date, SE researchers have
used AI as a tool to support SE tasks (e.g., to improve testing
techniques) or applied SE to AI (e.g., to test AI software).
Beyond this bidirectional use, this article focuses on relating
the fundamental role of models obtained through AI to the
fundamental roles of both scientific and engineering models.

We introduce the MODA framework in this article as a
conceptual reference framework that provides the foundations
for identifying the various models and their respective roles
within any model-based system development life-cycle. It is
intended to be a guide to organize the various models in data-
centric socio-technical systems.

Such a framework also facilitates the identification of open
challenges that need to be addressed in the near future.
We mention some of these challenges in the following and
organize them according to the framework’s arrows C to F in
Fig. 1. This list is not an exhaustive treatment of all challenges
(e.g., quality attributes in general, and ethical considerations
of ML in particular, are not discussed). In general, to make

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on June 10,2020 at 11:16:09 UTC from IEEE Xplore. Restrictions apply.

0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.2995125, IEEE Software

Socio-Technical System

Data

Descriptive Model:
process model

Business
Activities

Prescriptive Model:
describe and constrain allowed business

processes by sequences of business
activities in an enterprise (e.g., BPMN)

Process
mining:
synthesize

Controlled by
deployed
process engines

H
D

d) Business Process Modelling and Mining

A

B C
Process logs

Enactment
I

Improve business process models for an
enterprise, hence enabling feedback loop Predictive Model

Process
mining:
analyze

E

F

External Data:
expert/domain knowledge

Descriptive Model:
requirements, use-cases,

and/or other software
models

Final
System

Prescriptive Model:
requirements, design,

implementation

Strong focus on formal
elicitation of requirements,
usually involving a huge effort

As runtime data
(Measured Data) is
not immediately
available, it is not
included here

Deployment

H

D

Design activities by software engineers (no
explicit predictive model nor E & F arrows)

j) Development of Airplane Command & Control System

External Data:
expert/domain knowledge

Descriptive Model:
requirements, use-cases,

and/or other software
models

from Prototype or
Minimum Viable Product

to Complete System

Prescriptive Model:
requirements, design,

implementation

Manually
derived

Requirements models are
initially descriptive
(facilitate understanding
the problem) and become
prescriptive when they are
handed over to the next
phase to drive the design
process

Deployment

H

D

Usually no explicit predictive model nor E & F arrows,
as they are played/performed by software engineers
by inferring a design from the analysis

b) Iterative/Agile Methods for Software Development

A

B C
Starts feedback loop

Predictive Model:
model validation phase

Descriptive Model:
data cleaning phase

Data:
data collection phase

Prescriptive Model:
embedded into

socio-technical system
E

F

D

g) Commonly-used Machine Learning Pipelines

Data cleaning phase and
feature extraction phase

visualization

Data cleaning
phase

A predictive model is included in
a prescriptive model, so that a
system can provide some predic-
tions automatically (e.g., for self-
adaptive systems)

Predictive Model:
execution phase that processes

input and produces output
during the simulation

Descriptive Model:
composition phase to create
abstract scientific workflows

Data:
composition phase

Prescriptive Model:
if embedded into

socio-technical system

E

F

D

f) Workflow Life-Cycle for Scientific Computing

Deployment phase to construct a
concrete scientific workflow (i.e.,
the deployment of the simulation)

Analysis phase
to apply the

output to
scientific

experiments

Composition
phase

A descriptive model is included in
a predictive model to enable what-
if scenario analysis and informed
decision making

Data:
idea, domain knowledge,
eventually user feedback

from Minimum
Viable Product to

Complete App

Prescriptive Model:
implementation

Deals effectively with
requirements volatility
and makes use of easy
data collection, enabling
data-based elicitation,
DevOps-based continuous
improvement, & feedback-
driven development

Deployment

H

Usually does not start with formal elicitation of
user requirements, but rather with an idea that is

developed and deployed as quickly as possible
(skipping D, E, and F); over time a

descriptive model is possibly
built from the data

i) Development of Simple Mobile App

A

B C
User feedback

Socio-Technical System

Data

Descriptive Model:
usage & supply

model

Smart Grid
System

Prescriptive Model:
models for smart
grid management

Calibrate

Deploy
improved
version

H
D

l) Development of Smart Power Grid Application

A

B C
Monitor usage &
power availability

Encourage people or
companies to reduce
consumption through
advertising campaigns

I

Improve smart grid, hence
enabling feedback loop

Predictive Model:
dynamic load

balancing model

Construct
over timeE

F

J Consider extreme prolonged weather
condition (e.g., a polar vortex or a heatwave)
by integrating external data about weather

External Data:
expert/domain knowledge

Initially external data but
with feedback loop in place

also A, B, or C:
input data for tests plus

expected outputs (oracles)

from Prototype or
Minimum Viable Product

to Complete System

Prescriptive Model:
implementation

Deployment

H

Implementation based on these tests moves
directly to a prescriptive model without

necessarily a predictive model
and, frequently, not

even an explicit
descriptive model

c) Test-Driven Development

A

B C
Starts feedback loop

External Data:
expert/domain knowledge

Descriptive Model:
requirements, use-cases,

and/or other software
models

Final
System

Prescriptive Model:
requirements, design,

implementation

Manually
derived

Requirements models are
initially descriptive
(facilitate understanding
the problem) and become
prescriptive when they are
handed over to the next
phase to drive the design
process

Deployment

H

D

Usually no explicit predictive model nor E & F arrows,
as they are played/performed by software engineers
by inferring a design from the analysis

a) Waterfall Process Model for Software Development

Socio-Technical System

External and Output Data:
Knowledge about ongoing

business behavior

Descriptive Model:
business model canvas

Prescriptive Model:
business model canvas

Observation
(currently manual)D

e) Business Modelling

Improvement
(currently manually)

Predictive Model

Creation
(currently manual)E

F

Business
Activities

Enactment according to the
agreed business model canvas

I

Business model canvas is
possibly fed as input to

business process modelling

A

B C

Predictive Model:
results from Analyze

function; Plan function

Descriptive Model:
results from Monitor

function; Analyze function

Self-adaptive
system

Measured Data:
Monitor function

Data: Knowledge

Prescriptive Model:
results from

Execute function

C

E

Deployment

F

H D

Monitor
function

h) MAPE-K Loop for Self-Adaptive Systems

Analyze
function

Plan and Execute
functions

Analysis in MAPE-K context refers to analysis of data,
while in MODA it refers to analysis of predictions (F)

While MAPE-K focuses on a
control flow for specific

activities, MODA focuses on
the resulting models and their

roles (as reflected here
because the outputs of MAPE-K

functions are MODA models) Monitor
function

A

B

Monitored Data

Descriptive Model:
digital twin

Adaptive assistance
system

Prescriptive Model:
updated digital twin

Synthesize

Deploy updated
behaviorH

D

k) Development of Digital Twin Application

C
Identity and

state of worker

Improve digital twin based on, e.g.,
anticipated failure of the worker Predictive Model

AnalyzeE
F

A

B

Figure 2. Instantiations of the MODA Framework

MODA effective, efforts are required in foundational support
for data and model interplay (e.g., protocols and interfaces).

One challenge deals with questions on guidelines regarding
when, what, and how (i) to observe (e.g., systematic methods
to derive (arrow D) descriptive models out of observed data)
or (ii) to measure running software (e.g., need metrics that
take into account the measured data (arrow C) such as data
related to performance, load, and execution time). These
issues are similar to the monitoring issues faced by the self-
adaptive systems community [11] and the models@runtime
approach [12]. However, MODA provides a more accurate
explanation of the different types of models, and thus of
the questions to be answered: what are the methods needed
to systematically design the data processing pipeline from

observations to decisions? How can we control data quality
through the entire processing pipeline? How can established
ML techniques be used to support design decisions? What
are the optimal uses and constraints related to online-training
and offline-training? How can ML techniques be used in data
processing that purely runs online (e.g., observation process),
as measurement overhead needs to be kept low?

It is also important to help determine when the different
types of models must be made explicit within the process
(e.g., when is it beneficial to have an explicit scientific model
– in addition to an engineering model – as a descriptive
model?), and elaborate semi-automated model transformations
that assist the developers in accomplishing arrows D, E, and
F . This need requires a deep understanding of what kinds

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on June 10,2020 at 11:16:09 UTC from IEEE Xplore. Restrictions apply.

0740-7459 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/MS.2020.2995125, IEEE Software

of factors affect the interplay between a descriptive model
and a predictive model (i.e., certain descriptive models make
the prediction easier, but their creation requires considerable
effort), and how to learn complex models with ML techniques
(i.e., models that process complex inputs and/or produce
complex outputs). In this context, it is crucial to identify the
limitations of the different types of models used in a system.
Techniques need to be defined to mitigate these limitations
and still be able to provide high-level guarantees. A plethora
of model integration work exists mainly for engineering mod-
els [13]. Recent work has attempted to integrate ML and SE
in Differentiable Programming [14], and ML and scientific
models to define a Theory-Guided Data Science [15]. MODA
goes further, though, as integration of the three different kinds
of models requires a common understanding, and we envision
that new kinds of model interfaces will need to be developed
to address this heterogeneity challenge.

Finally, systematic methods are needed for the operational-
ization of decision making that apply predictive models to
improve prescriptive models of the system (arrow F), while
ensuring important prescribed properties (e.g., safety, secu-
rity). MODA can again be used to pose relevant research
questions. How can we combine useful knowledge extracted
from observations of varying nature (traceability information,
quality measures, structural/environment constraints) with pre-
vious/external knowledge in order to refine the predictive
model and enhance or adapt the prescriptive model? How can
we systematically deal with data uncertainty (either coming
from uncertain data in the descriptive model or from the
predictive model)?

We envision the MODA framework to be used as a hitch-
hiker’s guide to explain, organize, and compare complex
engineering processes, software development life-cycles, sys-
tem life-cycles, and technologies, while creating a research
momentum to address the open challenges. Finally, to all those
who wonder whether the MODA framework is a descriptive,
predictive, or prescriptive model, the answer is... 42!

REFERENCES

[1] G. Baxter and I. Sommerville, “Socio-technical systems: From design
methods to systems engineering,” Interacting with computers, vol. 23,
no. 1, pp. 4–17, 2011.

[2] R. Ashri, “Building AI software: Data-driven vs model-driven AI and
why we need an AI-specific software development paradigm,” https:
//bit.ly/2X6vu9H, 2018, hacker Noon. Last access: 2019-02-06.

[3] R. Yang and G. Rizzoni, “Comparison of model-based vs. data-driven
methods for fault detection and isolation in engine idle speed control
system,” in PMH. Prognostics and Health Management Society, 2016.

[4] T. Kühne, “Unifying explanatory and constructive modeling: towards
removing the gulf between ontologies and conceptual models,” in
MODELS 2016. ACM, 2016, pp. 95–102.

[5] E. A. Lee, “Modeling in engineering and science,” Commun. ACM,
vol. 62, no. 1, pp. 35–36, Dec. 2018.

[6] P. Gerlee and T. Lundh, Scientific Models. Springer, 2016.
[7] J.-M. Bruel, B. Combemale, I. Ober, and H. Raynal, “MDE in Practice

for Computational Science,” in ICCS 2015, Jun. 2015.
[8] R. Heinrich, R. Jung, C. Zirkelbach, W. Hasselbring, and R. Reussner,

Software Architecture for Big Data and the Cloud. Morgan Kaufmann,
2017, ch. An Architectural Model-Based Approach to Quality-aware
DevOps in Cloud Applications, pp. 69–89.

[9] J. Liu, E. Pacitti, P. Valduriez, and M. Mattosa, “A survey of data-
intensive scientific workflow management,” Grid Computing, vol. 13,
pp. 457–493, 2015.

[10] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,”
Computer, vol. 36, no. 1, pp. 41–50, Jan 2003.

[11] R. De Lemos, H. Giese, H. A. Müller et al., “Software engineering
for self-adaptive systems: A second research roadmap,” in Software
Engineering for Self-Adaptive Systems II. Springer, 2013, pp. 1–32.

[12] N. Bencomo, R. B. France, B. H. C. Cheng, and U. Aßmann, Mod-
els@run.time: foundations, applications, and roadmaps. Springer,
2014.

[13] J. Kienzle, G. Mussbacher, B. Combemale, and J. DeAntoni, “A
unifying framework for homogeneous model composition,” Software
and Systems Modeling, vol. 18, no. 5, pp. 3005–3023, 2019. [Online].
Available: https://doi.org/10.1007/s10270-018-00707-8

[14] G. Baudart, M. Hirzel, and L. Mandel, “Deep probabilistic programming
languages: A qualitative study,” CoRR, vol. abs/1804.06458, 2018.

[15] A. Karpatne, G. Atluri, J. H. Faghmous et al., “Theory-guided data
science: A new paradigm for scientific discovery from data,” IEEE Trans
Knowl Data Eng, vol. 29, no. 10, pp. 2318–2331, Oct 2017.

Authorized licensed use limited to: ASTON UNIVERSITY. Downloaded on June 10,2020 at 11:16:09 UTC from IEEE Xplore. Restrictions apply.

