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1 Introduction

The Unified Modelling Language (UML) [1] is a language for modelling object
systems based on a unification of Booch, Runbaugh and Jacobson’s popular
object-oriented modelling methods. It is rapidly emerging as a de facto stan-
dard for the modelling of such systems. The UML provides many standard
diagrammatic modelling techniques representing static and dynamic system in-
formation.

Currently, UML version 1.3 is defined a collection of UML meta-models
(a definition of UML in a subset of itself). Each meta-model describes the
structure of part of the language and provides a collection of well-formedness
constraints. The semantics of the language are given in informal text. The
definition is unsatisfactory because it is partial, unstructured and introduces
questions relating to the soundness of such a meta-circular language definition.

Under the auspices of the precise UML (pUML) group we have proposed a
restructuring and semantic definition of the current version of UML (1.3) [5].
This work aims to provide a modular definition of the semantics that can support,
a wide variety of profiles. There are number of components to this definition:
a kernel library, which provides a collection of modelling concepts essential to
the building of UML profiles, an extension mechanism for constructing profiles
as extensions of the kernel library or other profiles, and a constraint language
for expressing invariant properties of UML models. It is intended that once
completed, the kernel and associated domain specific profiles will provide a
standard reference library for the UML.

In this paper, we consider the problem of building a reference implementation
(RI) to support the proposed semantics structure. The purpose of the RI is to
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enable the automated exploration of the semantics and to permit tool vendors
to verify tool compliance. Using the RI, a vendor should be able to show that
the abstract syntax of UML models processed by their tool and the semantics
of those models comply with a ratified profile. The tool vendor may also show
that the concrete syntax of the tool complies with a standard profile or use the
features of the reference library to define a new concrete syntax and establish
its semantic credentials.

As a pre-requisite to constructing the reference implementation (RI), we
identify a number of key features that it must support. These include:

e A common model format: a meta-modelling sub-language which enables
instances of profiles to be specified and dynamically created within the
tool. We show how this can be reduced to a simpler semantic model
called the meta-kernel which can be implemented more easily.

e An implementation of OCL: which encodes the semantic properties of
OCL within the tool.

e An architecture for structuring and modelling profile semantics, and rules
for translating meta-model descriptions of profiles into the common model
format.

We will show that these features can be used to construct standard profiles
in the form of packages. Thus, it will be possible to test whether a given model,
expressed in the common model format, is consistent with a particular profile.
Tool compliance can be established by translating snapshots of the tool states
(or sequences of snapshots) to the common model format and then showing that
the profile’s constraints (expressed as OCL expressions) are satisfied.

The aim of this paper is to specify the RI. The specification defines the
essential features of the RI and establish the criteria for satisfaction. The paper
is structured as follows: section 2 analyses the current state of the UML 1.3
definition and identifies a list of requirements for the RI; section 4 describes a
formal basis for the semantics to be supported by the RI; section 5 defines the
meta-modelling sub-language used to define UML profiles; section 6 defines an
example UML profile and shows how a tool might use the RI to check it; section
7 describes the RI in terms of how it will be used by the UML community;
finally, section 8 outlines our future plans for implementing the RI.

2 Requirements of the RI

The purpose of the RI is to enable the automated exploration of the semantics
of UML and to support automatic testing of conformance of CASE tools to the
language definition. Examples of semantics-oriented tasks are: model simulation
or (partial) execution; checking that different views on a model (class diagrams,
invariants, state diagrams, sequence diagrams, etc.) are consistent with one
another; checking that the behaviour of a superclass is preserved in a subclass;



and so on. In the following section we examine a number of features of UML
1.3. and argue that it is currently not suitable as a basis for constructing a
reference implementation for UML. We then propose how these limitations can
be addressed.

2.1 Limitations of UML 1.3

2.1.1 Semantic Foundation

To define a semantics requires (at least) an abstract syntax, a semantics domain
and a relationship between the two to be defined (see [2] for more details). In the
current, UML semantics document, the abstract syntax is defined using a meta-
model approach (class diagrams + OCL constraints), the semantics domain is
English, and the relationship between the two is also expressed in English. Thus
the semantics document is not a precise or formal description of the language.

Unfortunately, for a machine to process a language, that language must be
defined precisely. If it is to perform semantics-oriented tasks, then its semantics
must, be defined precisely. Therefore, a pre-requisite for developing an RI for
UML is the existence of a precise description of the UML semantics.

2.1.2 Multiple Modelling Languages

The current version of UML provides a large number of modelling facilities.
Because of this, there is a danger of becoming overloaded with too many con-
cepts, many of which are not widely used except in very specific circumstances.
For example, the definition of class diagrams (static model elements) supports
a wide variety of facilities for expressing constraints. In practice, these facilities
are rarely used, or may be used inappropriately.

There has already been some attempt to architect the meta-model into pack-
ages so that pieces are brought in stage by stage. The limited power of the cur-
rent UML package imports has meant that this is relatively coarse grained. It is
not possible to define pieces of a class or in one package, then add more pieces
in another package that imports it (and that adding might be by importing
another package that supplies other pieces of that class). Thus, when a concept
is introduced in a particular package (e.g. the concept of Operation in the core
package), one is forced to introduce all the different facets of that concept, even
if they are not relevant at that stage.

In practice, it is very important to be able to construct different semantic
definitions for specific modelling domains. Some examples that have already
been proposed for UML are: real-time, business and networking domains, among
others. This has led to the notion of a UML profile[3]: a semantics definition
which is specifically aimed at supporting a single modelling domain.

Ideally, an RI should be flexible enough to support profiles. Furthermore,
it needs to provide extension mechanisms for constructing profiles from pre-
existing ones, thus enabling profile reuse. For example, it should be possible
to have a core or kernel profile (introducing common UML semantic concepts:



classes, associations, operations, etc.), then for each profile to import from the
core, adding further concepts and placing restrictions on the use of imported
concepts. One way in which this can be achieved is by providing a

2.1.3 Constraint Language

In addition to its many diagrammatical notations, the UML semantics definition
currently provides a textual language, the Object Constraint Language (OCL),
which is used to describe constraint on UML models. These constraints include:
invariants, pre- and post-conditions and guards. An OCL constraint is applied
in the context of a specific class instance using basic predicate logic and set
theory operators (for a detailed description of the language see [4]).

Clearly, in order that the RI can be used to explore the effect of constraints
on the logical properties of a UML model, the RI needs to support a constraint
language. However, the current definition of OCL suffers from a number of
limitations which make it difficult to support at present:

e It does not have a precise semantics, i.e. there is no means of taking
an OCL expression and rigorously evaluating whether or not a particular
model instance satisfies the implied constraint.

e The language uses a rather non-intuitive syntax, which is still not entirely
resolved.

e The language supports a very rich set of expressions. This richness miti-
gates against providing OCL with a precise semantics.

Thus, some means must be found to provide a simpler, more precise defi-
nition of OCL, before it can be considered suitable for implementation in an
RI
2.2 Summary of Requirements
In order to support the development of an RI, the following are required:

e A precise semantics definition of UML.

e A modular architecture for the semantics, which can support the incre-
mental definition of profiles.

e A semantic definition of a simple (OCL) like constraint language

Finally, for a the RI to support the above semantics, a mechanical means
must be found for incorporating their definition in a tool, and for calculating
whether or not constraints are satisfied by instances of a particular UML model.



3 A Semantic Architecture for UML

This section briefly summarises recent work done to provide a semantics archi-
tecture for UML, which supports the precise definition of UML profiles. This
work was presented as a response to the OMG’s request for information (RFI)
regarding the next major release of UML (version 2.0) by the precise UML group
[5].

The semantics architecture presented in [5] is based upon the use of meta-
modelling to provide a precise denotational description of UML concepts. The
definition is structured into packages, based on a kernel library of language
definition tools and components. A profile is a definition of a language that
may specialise and/or extend other profiles, and incorporate components from
the kernel library. Figure 1, shows the general architecture.
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Figure 1: Profile architecture

The kernel library consists of a number of basic packages containing funda-
mental UML concepts. These include:

Static basics - generalised constructs for modelling the static properties of
systems.

Constraint basics - constructs relating to the expression of constraints.
Dynamic basics - constructs for modelling the behaviour of systems.
Model management basics - general mechanisms for extending and spe-

cialising the components of the language.

As shown, profiles are extensions of these basic packages. An extension
mechanism, similar to that proposed in the Catalysis method [6] is used to copy

elements from one package into another, whilst also permitting extension of
their features.



Each profile is organised into abstract syntax, semantics domain and a sat-
isfaction/denotation relationship between the two (see Figure 2). Both abstract
syntax and semantics domain may have many concrete representations.

Abstract Semantics
Syntax
\ s
\ 7/
ﬁ 7/
Denotational
Mapping

Figure 2: Profile semantics

3.1 Meta-modelling sub-language

An essential component of the proposed architecture is a meta-modelling sub-
language. This is used to characterise all aspects of a profile and the kernel
library. It provides all the facilities necessary to write profiles, including: simple
class diagrams, a simple constraint language, packages (to represent models),
an enhanced version of package imports, and a notion of package realisation.

Like any other profile, the meta-modelling sub-language imports a number

of concepts from the kernel library (see figure 3).
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Figure 3: The meta-modelling sub-language package

As an example, figure 4 shows some of the classes that might belong to



the abstract syntax of the sub-language. These deal with two fundamental
static modelling concepts: classifiers and attributes. Note that there will be
many other classes defined in the sub-language, including packages, associations,
generalization and constraints. However, these are omitted for brevity.

Attribute

multiplicity : Multiplicity

* *

+attribute

+type +owner
1

Classifier

Figure 4: Abstract syntax fragment of meta-modelling sub-language

A number of OCL constraints are required in order to ensure that the con-
cepts in the abstract syntax are well-formed. In this example it is required that
attributes belonging to a classifier have unique names:

¢ : Classifier
c.attributes -> forall(al, a2 | al.name = a2.name implies al = a2)

The semantics domain of the meta-modelling sub-language is described by
the class diagram shown in figure 5. This represents the values that denote
the meaning of the constructs in the abstract syntax package. For example,
a classifier is denoted by a collection of objects, each of which conform to the
various features of the classifier (e.g. attributes). There are no well-formedness
constraints required in this package.

Finally, both the abstract syntax and semantic packages will be imported
by the mapping package, as shown in figure 6.

Associations between the classifiers in the abstract syntax package and those
in the semantics domain describe the denotational relationship between the var-
ious language constructs. A number of additional OCL constraints are required.
The first constraint requires that values of an attribute are objects of the type
of the attribute:

a : Attribute
a.instances -> forall(al | al.value.classifier = a.type)

Secondly, it is required that each object has attribute slots corresponding to the
attributes of its classifier:



AttributeLink

+slot | * %
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Instance

Figure 5: Semantic domain of meta-modelling sub-language

Attribute AttributeLink
multiplicity : Multiplicity
* * | +attribute +slot | * *
+type 1 , | rowner 1 1| +value
Classifier Instance

Figure 6: Mapping between abstract syntax and semantic domain

o : Object
o.slots.attribute -> includesAll(o.classifier.attributes)

This example, though short, illustrates the general approach used to con-
struct a precise description of the meta-modelling sub-language. It is important
to note that if a precise description of the meta-modelling sub-language can be
given, then any profiles built using the language will be reducible to well-defined
expressions in this language.

As an example, consider the object diagram (snapshot) shown in figure 7,
which describes a fragment of a profile, written using the meta-modelling sub-
language. This profile contains two classifiers, Operation and Parameter. Op-
eration has an attribute, parameter, whose type is the class Parameter. Their
instances are represented by instances of Instance and AttributeLink classifiers.

As we will discuss in the next section, the meta-modelling sub-language is of
central importance to the implementation of the RI for this ability to represent
the elements of any profile using a common set of concepts.



: Classifier owner : Attribute type : Classifier

name = Operdtion name = parameter name = Paramgter
Object slot - Attribute value [ opiect
Link

Figure 7: Example of profile snapshot

4 The Meta-Kernel Calculus

As discussed in section 2, the purpose of the RI is to enable the implementation
and manipulation of different UML profiles. This goal can be elegantly achieved
if the RI implements the meta-modelling sub-language. If the semantics of the
meta-modelling profile are built into the RI, the RI can assist with exploring
the properties of the profile being defined by looking at particular examples of
expressions of that profile, their mappings into the semantics domain, and so
on.

Whilst it would be possible to directly implement the meta-modelling sub-
language described above, there are a number of disadvantages to this approach.
Firstly, the full meta-modelling sub-language will be quite large (although not as
large as the current UML semantics). Significant work will therefore be required
to implement the language. Secondly, the implementation will be inflexible: if
the meta-modelling sub-language is changed, modifications would be required
of the RI. For example, if one wanted to change the mechanism for dealing with
profile extension, a major rewrite would be necessary. Finally, any attempt at
giving an external definition to the language (for example using set theory and
predicate logic) would also be lengthy. Each concept in the sub-language defini-
tion would have to be mapped to an expression in an appropriate mathematical
language.

One approach which overcomes all these problems is to provide a semantic
definition for a meta-modelling sub-language that supports a reduced set of
language concepts. This idea is similar to a reduced instruction set, where
large instructions are broken down into a number of very small, general purpose
instructions built from a restricted operation set. In the case of the UML
semantics, the aim is to define rules for translating each concept or expression
in the meta-modelling sub-language into a restricted set of concepts in a simpler
semantic model. The advantage of this approach is its great flexibility, simpler
semantic definition, and generality. In particular, the approach makes the task of
grounding the semantics and its implementation much easier due to the reduced
number of language constructs.



e = expressions

a constants
| v variables
| A{e,...,e} sets
| [v; = e;i€1n) objects
| ew field reference
| e operation invocation
| v method
| e — iterate(v v =ele) iteration
| if e then e else e conditionals
| e — including(e) set extension

Figure 8: Meta-Kernel Calculus Syntax

The simple semantic language adopted here is based on a very small set
of concepts: objects and slots (relations between objects). This is because any
concept can be viewed as a collection of related objects. For example, classifiers,
attributes, packages, instances and even profiles themselves can all be thought
of as objects. So, an object representing a classifier would be related to other
objects representing its attributes, and so on. Because this language is suitable
for describing concepts at all levels of abstraction, we have called it the meta-
kernel language.

In the following section a definition of the semantics of the meta-kernel is
given. This is given using set theory and predicate logic (as opposed to a meta-
model). A meta-model definition would eventually reach a point where features
of the language were defined in terms of circular definitions, thus leading to
infinite regress.

4.1 Meta-Kernel Calculus Syntax

The Meta-Kernel Calculus syntax is defined in figure 8. FExpressions in the
calculus denote values from the following categories: atomic constants; objects;
sets of values.

Atomic constants include integers, booleans and strings. Objects are simple
record structures consisting of field names and field values. All the field names
in an object must be distinct. Sets are builtin to the calculus, but bags and
sequences are not. We claim that sets are the underlying representation for
UML collections and that all other types of collection can be expressed in terms
of objects and sets.

A core OCL expression syntax is builtin to the calculus. The core abstracts
the details of OCL operations such as conjunction and disjunction. All opera-
tions are represented uniformly as operators that are applied to operands. All
operators are defined to take a single operand. Multiple arguments are simply
packaged up into a single object. OCL operators such as and are defined as

10



ad =a
v6 = 6(v) '
{el.E],...7n}6 _ {ellE],...,n(S}

[o1 = '8 = [v; = (ei(8\{v; "))
(e.v)d = (ed).v

61625 = (615)(625)

(Mv.e)d = dv.(e(0\{v}))

(e; — iterate(v; vy = esles))d = (e10) — iterate(vy va = (e2d)]e(d\{v1,v2}))
(if e1 then ey else e3)d = if e, then ey else e3d

(e1 — including(es))d = (e10) — including(ead)

i€l,...,n

]

Figure 9: Substitution into Meta-Kernel Expressions

builtin operators (see below).

The core constructs of OCL are therefore: constants, variables, field refer-
ence, operation invocation, iteration, conditionals and set extension. We claim
that all other OCL constructs can be defined as either builtin operators of the
calculus or syntactic sugar (see below). OCL expressions denote objects of an
appropriate OCL expression type and therefore do not require a new value do-
main. The class of OCL expressions are those calculus expressions that denote
boolean constants.

Figure 9 defines the substitution of values for variables in Meta-Kernel Cal-
culus expressions. A substitution ¢ is a sequence of variables and expressions
[e1/v1, ..., en/un]. A substitution is applied to an expression ed; all free occur-
rences of each variable in § are simultaneously replaced with the corresponding
expression. Variables in a set V' are removed from a substitution by §\V.

4.2 Meta-Kernel Calculus Semantics

The semantics of the Meta-Kernel Calculus is defined by a congruence rela-
tion (reflexive, transitive, associative and equality of all sub-expressions implies
equality of composite expressions) on expressions in figure 10. If e; = e2 then
the two expressions denote the same value. The rest of this section describes
key features of the semantics.

An object is a collection of definitions. The definitions are mutually recursive
and shadow any definitions for variables in scope with the same name. The
variable ‘self’ may be used in each of the slot value expressions to refer to the
object. The semantics of field selection (axiom REF) shows that the fields and
‘self” are substituted into the field value when it is extracted from an object.

Method invocation is defined by the axiom APP. A method occurring in
an object must be referenced before it can be invoked. When a method is
extracted from an object using REF, the values of the fields and the value of
‘self” will be subtituted into the method body. In this way methods can access

11



[v; = ;i1 = (ej[Self.v,;/v,;i@"”’n])[[1),; =e; €] /self] € 1,...,n REF
(Av.ey)es = er]ea/v] APP

e'lei/vi,ej/va] =€j i €1,....n

ITER

{el€1 ™) = iterate(vy vs = €} le’) = €l

(if true then e; else es) = e; IFTRUE
(if false then e; else ey) = ex IFFALSE

{e!€" "} - including(e) = {e,e! """} SETINC
Figure 10: Meta-Kernel Expression Equivalence

all components of the object.

Execution of an iterate expression is defined by rule ITER. The result of
iterate is the value accumulated in vo. This value will be atomic, an object or a
collection of values. We claim that all other OCL values can be modelled using
these basic value types.

Using iteration expressions and a notion of set extension (axiom SETINC)
defined in figure 10 we claim that all OCL set operations can be defined as
sugar. Set extension simply adds a value to an existing set.

4.3 Calculus Extensions

The Meta-Kernel Calculus provides a sub-set of OCL and support for very
simple objects. The calculus must be extended with extra features in order to
support the whole of OCL. We will extend the calculus in the following ways:

e Syntactic sugaring does not change the underlying semantics of a language;
new types of expression are defined by giving a translation to the basic
calculus.

e Builtin methods extend the syntax of the calculus with new operators that
can be applied to operands. Each builtin method must have an associated
rule like APP that defines what happens when it is applied.

4.3.1 Iteration Expressions

The ‘iterate’ expression is builtin to the Meta-Kernel Calculus. All other types
of iteration expression are sugar and can be expressed using basic ‘iterate’.
Figure 11 gives a suitable translation.

12



[ex = forAll(vy | e2)]] =

[e1]] — iterate(vive = true | if [es]] then vy else false)
[er — exists(vy | e2)] =

[e1] — iterate(vive = false | if [ea] then true else vs)
[er — select(vy | e2)] =

[e1] — iterate(vive = [e1]] | if [e2]] then vy else vy.excluding(vy))
[ex = reject(vy | e2)] =

[e1] — iterate(vive = [e1]] | if [e2] then vy.excluding(vy) else vs)
[ex — collect(vy | €2)] =

[e1] — iterate(vive = {} | va.including([e2]]))

Figure 11: Translation of Iteration Expressions

[S — size]] = [S] — iterate(xz i =0 | i+ 1)
[S — includes(o)] = [S] — exists(z | 2 = [o])
%Sl — union(Ss)] = [S2] — iterate(z s = [[5|’1]] | s = including(z))

Sy — intersection(Ss)]] = [S2]] — collect(z | [Sa]] — includes(z))

Figure 12: Translation of Set Operations

4.3.2 Set Expressions

The Meta-Kernel Calculus provides a builtin operator ‘including’ that is used
to construct new sets from existing ones. All other set operations are sugar and
can be constructed using ‘including’ and ‘iterate’. Figure 12 defines some of the
translations to show how this is achieved. Note that bags and sequences are
viewed as being higher-level structures constructed using basic sets and objects.

A useful set operation is transitive closure. If the value of a field v in an
object is a set S then it is useful to be able to transitively follow the field v from
the elements of S. This is defined as syntactic sugar as follows:

[e.v*] = [e]].v — union([[e]].v — iterate(o v = {} | v = union(o.v™)))

4.3.3 Builtin Methods

Builtin methods are used to extend the calculus with useful operations. The
extensions take the form of new cases for the definition of the equivalence rela-
tionship on calculus expressions given in figure 10.

The calculus is extended with boolean operators and, or and not. Operator
has a collection of equivalence rules that define what it means to apply the
operator to boolean operands, for example:

true and true = true

13



A useful builtin method permits OCL expressions to be viewed as objects. The
rule is as follows:

ey satisfiedBy ([v; = ;'€" ")) = (e1[self.v; /vi' S ") [[v; = '€ "] /self]

An OCL expression is satisfied by an object when the result of substituting the
object into the expression is equal to ‘true’.

4.3.4 Recursive Local Definitions

It is useful to be able to define local method definitions. This is achieved using
the following syntactic sugar:

let v=-—¢ in ey = [v =ey,v" = ey]0'

where v’ is a fresh variable.

5 The Meta-Modelling Sub-Language

The Meta-Modelling Sub Language (MMSL) is a meta-circular representation of
the essential features necessary to define UML profiles. The language is written
in the Meta-Kernel Calculus and consists of a collection of classifiers.

A Classifier in the MMSL is an object that has instances and an OCL in-
variant that is true for each of the instances. Classification is the process by
which the RI determines whether the OCL invariant of a given classifier holds
for a given object.

The RI must be able to accept new profiles that define extensions to core
UML concepts at the meta-level. Each new profile must be checked against some
unform definition of profile. This is classification at the meta-level. Although
many users of the RI will not require such meta-linguistic machinery, we believe
that there are advantages in conceptual parsimony and that everything in the
RI must be an object classified by something.

Figure 13 shows the main MMSL classifiers and some important relationships
between them. All objects in the RI are classified by a most specific classifier.
An unbroken arrow from classifier C; to classifier Cy defines that Cy is the most
specific classifier for Cy viewed as an object. A broken line shows inheritance
relationships between classifiers viewed as classes.

The essential features of the MMSL is given in figure 14. The MMSL includes
syntactic sugar for class definitions, package definitions and associations. The
translations for these sugared constructs simply produces the appropriate object
definitions by adding the appropriate slot information.

Each classifier has slot named ‘invariant’ that contains the OCL expression
that must be satisfied by each of its instances. The invariants are very important,
because they provide the semantics of the RI. The rest of this section gives an
overview of the MMSL invariants.

‘Kernel.Classifier’ is the basic definition of a classifier. All other classifiers
in the RI are specializations. Every classifier has at least an invariant and a set

14
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Figure 13: Meta-Modelling Sub-Language Classifiers

of instances. The invariant of ‘Kernel.Classifier’ requires that the invariant is
satisfied by each instance:

instances — forall(i | invariant.satisfiedBy (7))

‘Kernel.Class’ extends ‘Kernel.Classifier’ with features normally associated with
inheritance. Every class defines a collection of associations (that turn into in-
stance slots). Every class has a collection of generalizations. A class inherits all
associations from its generalizations and all the generalization invariants must
be true for the classes instances. The following shows part of the invariant for

‘Kernel.Class’:
self .specializations™ — forall(s |

s.instances — forall(i |
invariant — satisfiedBy(7)))

‘Kernel.Object’ defines the essential features of an object. Everything in the RI
is an object and therefore will have a classifier, an identity label and a collection
of slots.

‘Kernel.Package’ defines the basic package structure that is used to build the
RI. Each package is a collection of definitions (expressed as slots). All definitions
in the MMSL involve a name and a value. A definition cannot occur outside the
context of an object or a package. A package may import the definitions from
another package: imports — forall(i | definitions — includesAll(i.definitions))

6 Profiles

A profile is a packaged language definition. The package includes a description
of the syntax and semantics of the language defined using the MMSL. A profile
is a classifier and therefore, given an instance of the profile expressed as a RI

15



Kernel.Object =
class Object
associations = {
classifier : Kernel.Classifier,
identity : {Integer},
slots : {Slot}

Kernel.Classifier =
class Classifier extends Kernel.Class
associations = {
invariant : OCL,
instances : Value
4 }
end end

Kernel.Class =
class Class extends Kernel.Classifier
associations = {
generalizations : {Kernel.Classifier },
specializations : {Kernel.Classifier },
name : String,

Kernel. Association =
class Association extends Kernel.Object
associations = {
name : String,
type : Kernel.Classifier

package : Kernel. Package, }
associations : {Kernel.Association}
end
}
end

Kernel.Package =
class Package extends Kernel.Object
associations = {
name : String,
imports : {Kernel.Package},
definitions : {Kernel.Slot}

Kernel.Slot =
class Slot extends Kernel.Object
associations = {
name : String,
value : Value
}
}
end end

Figure 14: The Meta-Modelling Sub-Language

object, we can determine whether or not the object is a correct phrase of the
language using RI classification.

6.1 Profile Classifier

Figure 15 defines a profile classifier contained in the MMSL. A profile contains
packages defining the syntax and semantics of the language. ‘Profile’ is a meta-
class since it specializes ‘Kernel.Class’. The instances of ‘Profile’ are therefore
classifiers called profiles. Since it is a classifier, a profile has an invariant that
is used to define conditions that must hold between the syntactic and semantic
components of instances of the profile.

16



Kernel.Profile =
class Profile extends Kernel.Class
associations = {
syntax : Kernel.Package,
semantics : Kernel.Package

end
Figure 15: MMSL Profile

6.2 An Example Profile

Figure 16 defines a simple profile for UML class diagrams as defined by the
meta-model in figure 6. The profile, has four main components: the syntax
package; the semantics package; the associations; and, the invariant.

The package ‘syntax’ conforms to the meta-model in figure 4. A tool using
the ‘ClassDiagram’ package to check its syntactic representation of class dia-
grams would translate its internal representation of classes and associations to
instances of ‘ClassDiagram.syntax.Classifier’ and ‘ClassDiagram.syntax.Attribute’
respectively.

The package ‘semantics’ conforms to the meta-model in figure 5. The seman-
tics is used in two ways: a tool can check its own semantic model against that
provided by a profile; and, the semantics can be used to prove properties about
a UML model fragment. In the case of class diagrams, a tool may represent in-
stances of classes in which case the objects are translated to instances of ‘Class-
Diagram.semantics.Instance’ and ‘ClagsDiagram.semantics.AttributeLink’.

The class diagram profile defines two associations ‘classes’ and ‘instances’.
A tool will check its internal representation against a profile by supplying an
instance of the profile. Instances of ‘ClassDiagram’ consist of a collection of
classes (the syntactic part) and a collection of instances (the semantic part).

6.3 Using Profiles

Consider a UML CASE tool that supports drawing class diagrams and object
diagrams. The tool vendors wish to determine whether or not their represen-
tation of classes and instances is correct with respect to the UML standard.
Suppose also that the standard for UML class diagrams is defined by the RI
profile ‘ClassDiagram’ defined in figure 16.

The RI will accept as input tool model components translated to instances
of known classifiers. The tool can then be used to check whether the instances
are classified by standard profiles. The RI makes no distinction between meta-
classes, classes or objects and therefore the RI can be used to check meta-models
as easily as models or snapshots of models.

Suppose the tool wishes to check a particular class diagram containing two
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class ClassDiagram extends Kernel.Object
classifier = Kernel.Profile,
package syntax =
class Classifier extends Kernel.Object
associations = {name : String, attributes : {Attribute}},
end,
class Attribute extends Kernel.Object
associations = {name : String, type : Classifier}
end
end,
package semantics
class Instance extends Kernel.Object
associations = {slots : {attributeLink}},
end,
class AttributeLink extends kernel.Object
associations = {value : Instance, name : String}
end
end,
associations = {classes : {syntax.Classifier}, instances : {semantics.Instance}},
invariant =
let classifies(c, 0) =
o.slots — forall(s |
c.attributes — exists(a |
s.name = ag.name and
classifies(a.type, s.value)))
in
instances — forall(i |
classes — exists(c |
classifies(c, 1)))
end

Figure 16: A Simple Profile for Class Diagrams

classes ‘Operation’ and ‘Parameter’ (see example in section 3.1). There is a
single association from ‘Operation’ to ‘Parameter’ named ‘param’. In addition
the tool has a representation of a Operation ‘0’ and its parameter ‘p’. This is
translated to the package shown in figure 17.

7 The Reference Implementation

The RI is an implementation of the MKC, the MMSL and a collection of profiles
defined using the MMSL. It is intended that the RI serve as a shared resource for
the UML community and that it be used to collectively define and experiment
with the semantics for UML.

In addition, the RI provides an API that allows users to connect and use the
tool to build profiles and check candidate models against profiles. The API is
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package Example import ClassDiagram.syntax, ClassDiagram.semantics

end

Operation = [classifier = Classifier, name = ”Operation”, attributes = {param}],
paramAtt = [classifier = Attribute, name = ”"param”, type = Parameter],
Parameter = [classifier = Classifier, name = ”Parameter”, attributes = {}],

o = [classifier = Instance, slots = {paramLink}]
p = [classifier = Instance, slots = {}],
paramLink = [classifier = AttributeLink, name = ”param”, value = p],
profileInstance = [classes = {Operation, Parameter}, instances = {o, p}]

3

Figure 17: Example Class Diagram

planned to include an XML interface, a textual language interface (the language
used in this paper) and a programming interface in Java.

The RI will be implemented in Java and will support distributed use via the
Internet. Users will be able to connect to the RI and use the facilities as part of
an applet. The RI will act as a server and maintain the profiles in a database.

The scope of the RI does not extend beyond checking the conformance of

UML

models in a standard format. However, it does provide the basis for a

standard representation for a suite of tools that extend the capabilities of the
RI. Tools that are able to interface with the RI will be able to make use of the
semantic definitions encoded in profiles to perform sophisticated manipulation
of UML models. We would expect the RI to be the basis for tools for: editing;
model checking; proof; code generation; reverse engineering.

8

This

Conclusion

paper has investigated the requirements of a reference implementation

(RI) for UML. It has concluded that the current status of the UML definition is
presently unsuitable as a foundation for an RI due to its large size, lack of precise
semantics and inflexibility. A meta-modelling sub-language was then proposed
which overcomes all these limitations. This language can be used to describe
the semantics of any UML profile using a relatively small number of concepts.
A further reduction in the size of the language was achieved by showing how
this language can be translated into a meta-kernel language consisting of slots
and links and a simple constraint language.

The meta-kernel language will form the basis for the reference implemen-
tation. We have shown that its simple object/links semantics model can be
readily implemented in the RI and that it can be used to check the validity of
snapshots against profiles. Work will now continue to further develop the tool.
This will include work to develop its user interface and its analysis capabilities.
For example, the ability to ‘model check’ profiles would be extremely useful.
In the medium to long term, we believe that the semantics approach taken in
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this paper, and the preliminary work done on its implementation, are a major
step towards our broader goals of developing the UML as a precise, adaptable,
and scalable modelling language. By providing developers with such tools and
techniques, it is hoped that the development of new profiles (i.e. new modelling
language) will increasingly become a precise and verifiable process.

8.1 Related work and issues

How does the proposed semantics compare with those of other modelling lan-
guages?. The denotational approach has been used in the definition of many
modelling languages and notations. For example, formal specification notations
such as Z [7] and CSP [8] use this approach. The novelty of our approach is
that we have concentrated on building a meta- semantics model that has the
flexibility to be applied in the definition of any UML-like language. Languages
such as those above do not have this flexibility, and therefore are not capable
of adapting to changes in language requirements. Many other have looked at
formalising OO methods and UML [9, 10]. However, we believe that ours is
the first comprehensive semantics that can deal with UML profiles and OCL.
Recently, Alloy [11] has been proposed by Daniel Jackson as a precise language
for object modelling. Alloy also has an associated tool, Alcoa, which permits
model checking of alloy expressions. However, the language does not conform to
the UML standard, and has a single, unchangeable semantics. Others have pro-
vided preliminary work on OCL meta-modelling semantics, including [12, 13].
However, these are not yet complete.

Isn’t the meta-modelling sub-language similar to the MOF? We have proposed a
precise definition of a sub-language of UML for meta-modelling. This is similar
to the MOF meta-meta model [14], but defined in a more declarative, logical
style. Tt is also, itself, more suited to a declarative style of meta-modelling as
required for UML. We have given clear guidelines for determining what should go
in this language, and have based the language on those guidelines. In particular,
the language is intended to be small (but not too small), must at least be
good enough to describe itself (completely and with semantics), and is targeted
at defining the language in a declarative fashion. It also has constructs to
support a fine-grained language architecture and development of profiles. In [5]
we have also described a richer, more precise and better delineated architecture
for language definition than the 4-level meta-model architecture (at least as it
is described in the semantics chapter of UML 1.3). We propose that this is used
as the reference architecture for defining UML.

Is the idea of a meta-modelling tool new?: No meta-case tools have been avail-
able for over a decade. Commercial meta-CASE tools such as Toolbuilder and
Meta-Edit provide meta-repositories. Such repositories could in theory be prop-
agated with UML profiles. However, they currently don’t provide facilities for
the semantic analysis, nor do they support OCL.
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