
The Speci�cation of a Reference Implementationfor the Uni�ed Modelling LanguageTony Clark�Andy EvansyStuart KentzMarch 3, 20001 IntroductionThe Uni�ed Modelling Language (UML) [1] is a language for modelling objectsystems based on a uni�cation of Booch, Runbaugh and Jacobson's popularobject-oriented modelling methods. It is rapidly emerging as a de facto stan-dard for the modelling of such systems. The UML provides many standarddiagrammatic modelling techniques representing static and dynamic system in-formation.Currently, UML version 1.3 is de�ned a collection of UML meta-models(a de�nition of UML in a subset of itself). Each meta-model describes thestructure of part of the language and provides a collection of well-formednessconstraints. The semantics of the language are given in informal text. Thede�nition is unsatisfactory because it is partial, unstructured and introducesquestions relating to the soundness of such a meta-circular language de�nition.Under the auspices of the precise UML (pUML) group we have proposed arestructuring and semantic de�nition of the current version of UML (1.3) [5].This work aims to provide a modular de�nition of the semantics that can supporta wide variety of pro�les. There are number of components to this de�nition:a kernel library, which provides a collection of modelling concepts essential tothe building of UML pro�les, an extension mechanism for constructing pro�lesas extensions of the kernel library or other pro�les, and a constraint languagefor expressing invariant properties of UML models. It is intended that oncecompleted, the kernel and associated domain speci�c pro�les will provide astandard reference library for the UML.In this paper, we consider the problem of building a reference implementation(RI) to support the proposed semantics structure. The purpose of the RI is to�Department of Computer Science, Kings College, LondonyDepartment of Computer Science, University of York, UKzDepartment of Computing, University of Kent, UK1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Aston Publications Explorer

https://core.ac.uk/display/323986153?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

enable the automated exploration of the semantics and to permit tool vendorsto verify tool compliance. Using the RI, a vendor should be able to show thatthe abstract syntax of UML models processed by their tool and the semanticsof those models comply with a rati�ed pro�le. The tool vendor may also showthat the concrete syntax of the tool complies with a standard pro�le or use thefeatures of the reference library to de�ne a new concrete syntax and establishits semantic credentials.As a pre-requisite to constructing the reference implementation (RI), weidentify a number of key features that it must support. These include:� A common model format: a meta-modelling sub-language which enablesinstances of pro�les to be speci�ed and dynamically created within thetool. We show how this can be reduced to a simpler semantic modelcalled the meta-kernel which can be implemented more easily.� An implementation of OCL: which encodes the semantic properties ofOCL within the tool.� An architecture for structuring and modelling pro�le semantics, and rulesfor translating meta-model descriptions of pro�les into the common modelformat.We will show that these features can be used to construct standard pro�lesin the form of packages. Thus, it will be possible to test whether a given model,expressed in the common model format, is consistent with a particular pro�le.Tool compliance can be established by translating snapshots of the tool states(or sequences of snapshots) to the common model format and then showing thatthe pro�le's constraints (expressed as OCL expressions) are satis�ed.The aim of this paper is to specify the RI. The speci�cation de�nes theessential features of the RI and establish the criteria for satisfaction. The paperis structured as follows: section 2 analyses the current state of the UML 1.3de�nition and identi�es a list of requirements for the RI; section 4 describes aformal basis for the semantics to be supported by the RI; section 5 de�nes themeta-modelling sub-language used to de�ne UML pro�les; section 6 de�nes anexample UML pro�le and shows how a tool might use the RI to check it; section7 describes the RI in terms of how it will be used by the UML community;�nally, section 8 outlines our future plans for implementing the RI.2 Requirements of the RIThe purpose of the RI is to enable the automated exploration of the semanticsof UML and to support automatic testing of conformance of CASE tools to thelanguage de�nition. Examples of semantics-oriented tasks are: model simulationor (partial) execution; checking that di�erent views on a model (class diagrams,invariants, state diagrams, sequence diagrams, etc.) are consistent with oneanother; checking that the behaviour of a superclass is preserved in a subclass;2

and so on. In the following section we examine a number of features of UML1.3. and argue that it is currently not suitable as a basis for constructing areference implementation for UML. We then propose how these limitations canbe addressed.2.1 Limitations of UML 1.32.1.1 Semantic FoundationTo de�ne a semantics requires (at least) an abstract syntax, a semantics domainand a relationship between the two to be de�ned (see [2] for more details). In thecurrent UML semantics document, the abstract syntax is de�ned using a meta-model approach (class diagrams + OCL constraints), the semantics domain isEnglish, and the relationship between the two is also expressed in English. Thusthe semantics document is not a precise or formal description of the language.Unfortunately, for a machine to process a language, that language must bede�ned precisely. If it is to perform semantics-oriented tasks, then its semanticsmust be de�ned precisely. Therefore, a pre-requisite for developing an RI forUML is the existence of a precise description of the UML semantics.2.1.2 Multiple Modelling LanguagesThe current version of UML provides a large number of modelling facilities.Because of this, there is a danger of becoming overloaded with too many con-cepts, many of which are not widely used except in very speci�c circumstances.For example, the de�nition of class diagrams (static model elements) supportsa wide variety of facilities for expressing constraints. In practice, these facilitiesare rarely used, or may be used inappropriately.There has already been some attempt to architect the meta-model into pack-ages so that pieces are brought in stage by stage. The limited power of the cur-rent UML package imports has meant that this is relatively coarse grained. It isnot possible to de�ne pieces of a class or in one package, then add more piecesin another package that imports it (and that adding might be by importinganother package that supplies other pieces of that class). Thus, when a conceptis introduced in a particular package (e.g. the concept of Operation in the corepackage), one is forced to introduce all the di�erent facets of that concept, evenif they are not relevant at that stage.In practice, it is very important to be able to construct di�erent semanticde�nitions for speci�c modelling domains. Some examples that have alreadybeen proposed for UML are: real-time, business and networking domains, amongothers. This has led to the notion of a UML pro�le[3]: a semantics de�nitionwhich is speci�cally aimed at supporting a single modelling domain.Ideally, an RI should be
exible enough to support pro�les. Furthermore,it needs to provide extension mechanisms for constructing pro�les from pre-existing ones, thus enabling pro�le reuse. For example, it should be possibleto have a core or kernel pro�le (introducing common UML semantic concepts:3

classes, associations, operations, etc.), then for each pro�le to import from thecore, adding further concepts and placing restrictions on the use of importedconcepts. One way in which this can be achieved is by providing a2.1.3 Constraint LanguageIn addition to its many diagrammatical notations, the UML semantics de�nitioncurrently provides a textual language, the Object Constraint Language (OCL),which is used to describe constraint on UML models. These constraints include:invariants, pre- and post-conditions and guards. An OCL constraint is appliedin the context of a speci�c class instance using basic predicate logic and settheory operators (for a detailed description of the language see [4]).Clearly, in order that the RI can be used to explore the e�ect of constraintson the logical properties of a UML model, the RI needs to support a constraintlanguage. However, the current de�nition of OCL su�ers from a number oflimitations which make it di�cult to support at present:� It does not have a precise semantics, i.e. there is no means of takingan OCL expression and rigorously evaluating whether or not a particularmodel instance satis�es the implied constraint.� The language uses a rather non-intuitive syntax, which is still not entirelyresolved.� The language supports a very rich set of expressions. This richness miti-gates against providing OCL with a precise semantics.Thus, some means must be found to provide a simpler, more precise de�-nition of OCL, before it can be considered suitable for implementation in anRI.2.2 Summary of RequirementsIn order to support the development of an RI, the following are required:� A precise semantics de�nition of UML.� A modular architecture for the semantics, which can support the incre-mental de�nition of pro�les.� A semantic de�nition of a simple (OCL) like constraint languageFinally, for a the RI to support the above semantics, a mechanical meansmust be found for incorporating their de�nition in a tool, and for calculatingwhether or not constraints are satis�ed by instances of a particular UML model.
4

3 A Semantic Architecture for UMLThis section brie
y summarises recent work done to provide a semantics archi-tecture for UML, which supports the precise de�nition of UML pro�les. Thiswork was presented as a response to the OMG's request for information (RFI)regarding the next major release of UML (version 2.0) by the precise UML group[5]. The semantics architecture presented in [5] is based upon the use of meta-modelling to provide a precise denotational description of UML concepts. Thede�nition is structured into packages, based on a kernel library of languagede�nition tools and components. A pro�le is a de�nition of a language thatmay specialise and/or extend other pro�les, and incorporate components fromthe kernel library. Figure 1, shows the general architecture.
Kernel Constraint

Basics

Kernel Static

Basics

Kernel Model

Management

Kernel Behavioural

Besics

Profile A
 Profile B

Figure 1: Pro�le architectureThe kernel library consists of a number of basic packages containing funda-mental UML concepts. These include:Static basics - generalised constructs for modelling the static properties ofsystems.Constraint basics - constructs relating to the expression of constraints.Dynamic basics - constructs for modelling the behaviour of systems.Model management basics - general mechanisms for extending and spe-cialising the components of the language.As shown, pro�les are extensions of these basic packages. An extensionmechanism, similar to that proposed in the Catalysis method [6] is used to copyelements from one package into another, whilst also permitting extension oftheir features. 5

Each pro�le is organised into abstract syntax, semantics domain and a sat-isfaction/denotation relationship between the two (see Figure 2). Both abstractsyntax and semantics domain may have many concrete representations.
Abstract

Syntax

Semantics

Denotational

Mapping

Figure 2: Pro�le semantics3.1 Meta-modelling sub-languageAn essential component of the proposed architecture is a meta-modelling sub-language. This is used to characterise all aspects of a pro�le and the kernellibrary. It provides all the facilities necessary to write pro�les, including: simpleclass diagrams, a simple constraint language, packages (to represent models),an enhanced version of package imports, and a notion of package realisation.Like any other pro�le, the meta-modelling sub-language imports a numberof concepts from the kernel library (see �gure 3).
StaticBasics

(from KernelLibrary)

Constraint

Basics

(from KernelLibrary)

Meta-Modelling

Sub-Language

ModelManagement

Basics

(from KernelLibrary)

Figure 3: The meta-modelling sub-language packageAs an example, �gure 4 shows some of the classes that might belong to6

the abstract syntax of the sub-language. These deal with two fundamentalstatic modelling concepts: classi�ers and attributes. Note that there will bemany other classes de�ned in the sub-language, including packages, associations,generalization and constraints. However, these are omitted for brevity.
Attribute

multiplicity : Multiplicity

Classifier

*

1

*

+type

1

*

1

+attribute

*

+owner

1

Figure 4: Abstract syntax fragment of meta-modelling sub-languageA number of OCL constraints are required in order to ensure that the con-cepts in the abstract syntax are well-formed. In this example it is required thatattributes belonging to a classi�er have unique names:c : Classifierc.attributes -> forall(a1, a2 | a1.name = a2.name implies a1 = a2)The semantics domain of the meta-modelling sub-language is described bythe class diagram shown in �gure 5. This represents the values that denotethe meaning of the constructs in the abstract syntax package. For example,a classi�er is denoted by a collection of objects, each of which conform to thevarious features of the classi�er (e.g. attributes). There are no well-formednessconstraints required in this package.Finally, both the abstract syntax and semantic packages will be importedby the mapping package, as shown in �gure 6.Associations between the classi�ers in the abstract syntax package and thosein the semantics domain describe the denotational relationship between the var-ious language constructs. A number of additional OCL constraints are required.The �rst constraint requires that values of an attribute are objects of the typeof the attribute:a : Attributea.instances -> forall(al | al.value.classifier = a.type)Secondly, it is required that each object has attribute slots corresponding to theattributes of its classi�er: 7

Instance

AttributeLink

1

*

1

*

1

*

+value
1

+slot
 *

Figure 5: Semantic domain of meta-modelling sub-language
Attribute

multiplicity : Multiplicity

AttributeLink

Classifier

*

1

*

+type

1

*

1

+attribute
*

+owner

1

Instance

1

*

1

*

1

*

+value
1

+slot
 *

Figure 6: Mapping between abstract syntax and semantic domaino : Objecto.slots.attribute -> includesAll(o.classifier.attributes)This example, though short, illustrates the general approach used to con-struct a precise description of the meta-modelling sub-language. It is importantto note that if a precise description of the meta-modelling sub-language can begiven, then any pro�les built using the language will be reducible to well-de�nedexpressions in this language.As an example, consider the object diagram (snapshot) shown in �gure 7,which describes a fragment of a pro�le, written using the meta-modelling sub-language. This pro�le contains two classi�ers, Operation and Parameter. Op-eration has an attribute, parameter, whose type is the class Parameter. Theirinstances are represented by instances of Instance and AttributeLink classi�ers.As we will discuss in the next section, the meta-modelling sub-language is ofcentral importance to the implementation of the RI for this ability to representthe elements of any pro�le using a common set of concepts.8

name = Parameter

 : Classifier
 : Classifier
 : Attribute

 : Attribute

Link

Object
 Object

name = Operation
 name = parameter

type

value
slot

owner

Figure 7: Example of pro�le snapshot4 The Meta-Kernel CalculusAs discussed in section 2, the purpose of the RI is to enable the implementationand manipulation of di�erent UML pro�les. This goal can be elegantly achievedif the RI implements the meta-modelling sub-language. If the semantics of themeta-modelling pro�le are built into the RI, the RI can assist with exploringthe properties of the pro�le being de�ned by looking at particular examples ofexpressions of that pro�le, their mappings into the semantics domain, and soon.Whilst it would be possible to directly implement the meta-modelling sub-language described above, there are a number of disadvantages to this approach.Firstly, the full meta-modelling sub-language will be quite large (although not aslarge as the current UML semantics). Signi�cant work will therefore be requiredto implement the language. Secondly, the implementation will be in
exible: ifthe meta-modelling sub-language is changed, modi�cations would be requiredof the RI. For example, if one wanted to change the mechanism for dealing withpro�le extension, a major rewrite would be necessary. Finally, any attempt atgiving an external de�nition to the language (for example using set theory andpredicate logic) would also be lengthy. Each concept in the sub-language de�ni-tion would have to be mapped to an expression in an appropriate mathematicallanguage.One approach which overcomes all these problems is to provide a semanticde�nition for a meta-modelling sub-language that supports a reduced set oflanguage concepts. This idea is similar to a reduced instruction set, wherelarge instructions are broken down into a number of very small, general purposeinstructions built from a restricted operation set. In the case of the UMLsemantics, the aim is to de�ne rules for translating each concept or expressionin the meta-modelling sub-language into a restricted set of concepts in a simplersemantic model. The advantage of this approach is its great
exibility, simplersemantic de�nition, and generality. In particular, the approach makes the task ofgrounding the semantics and its implementation much easier due to the reducednumber of language constructs. 9

e ::= expressionsa constantsj v variablesj fe; : : : ; eg setsj [vi = eii21;:::;n] objectsj e:v �eld referencej ee operation invocationj �v:e methodj e ! iterate(v v = eje) iterationj if e then e else e conditionalsj e ! including(e) set extensionFigure 8: Meta-Kernel Calculus SyntaxThe simple semantic language adopted here is based on a very small setof concepts: objects and slots (relations between objects). This is because anyconcept can be viewed as a collection of related objects. For example, classi�ers,attributes, packages, instances and even pro�les themselves can all be thoughtof as objects. So, an object representing a classi�er would be related to otherobjects representing its attributes, and so on. Because this language is suitablefor describing concepts at all levels of abstraction, we have called it the meta-kernel language.In the following section a de�nition of the semantics of the meta-kernel isgiven. This is given using set theory and predicate logic (as opposed to a meta-model). A meta-model de�nition would eventually reach a point where featuresof the language were de�ned in terms of circular de�nitions, thus leading toin�nite regress.4.1 Meta-Kernel Calculus SyntaxThe Meta-Kernel Calculus syntax is de�ned in �gure 8. Expressions in thecalculus denote values from the following categories: atomic constants; objects;sets of values.Atomic constants include integers, booleans and strings. Objects are simplerecord structures consisting of �eld names and �eld values. All the �eld namesin an object must be distinct. Sets are builtin to the calculus, but bags andsequences are not. We claim that sets are the underlying representation forUML collections and that all other types of collection can be expressed in termsof objects and sets.A core OCL expression syntax is builtin to the calculus. The core abstractsthe details of OCL operations such as conjunction and disjunction. All opera-tions are represented uniformly as operators that are applied to operands. Alloperators are de�ned to take a single operand. Multiple arguments are simplypackaged up into a single object. OCL operators such as and are de�ned as10

a� = av� = �(v)fei21;:::;ni g� = fei21;:::;ni �g[v1 = eii=1;:::;n]� = [vi = (ei(�nfvi21;:::;ni g))i21;:::;n](e:v)� = (e�):ve1e2� = (e1�)(e2�)(�v:e)� = �v:(e(�nfvg))(e1 ! iterate(v1 v2 = e2je3))� = (e1�) ! iterate(v1 v2 = (e2�)je(�nfv1; v2g))(if e1 then e2 else e3)� = if e1� then e2� else e3�(e1 ! including(e2))� = (e1�)! including(e2�)Figure 9: Substitution into Meta-Kernel Expressionsbuiltin operators (see below).The core constructs of OCL are therefore: constants, variables, �eld refer-ence, operation invocation, iteration, conditionals and set extension. We claimthat all other OCL constructs can be de�ned as either builtin operators of thecalculus or syntactic sugar (see below). OCL expressions denote objects of anappropriate OCL expression type and therefore do not require a new value do-main. The class of OCL expressions are those calculus expressions that denoteboolean constants.Figure 9 de�nes the substitution of values for variables in Meta-Kernel Cal-culus expressions. A substitution � is a sequence of variables and expressions[e1=v1; : : : ; en=vn]. A substitution is applied to an expression e�; all free occur-rences of each variable in � are simultaneously replaced with the correspondingexpression. Variables in a set V are removed from a substitution by �nV .4.2 Meta-Kernel Calculus SemanticsThe semantics of the Meta-Kernel Calculus is de�ned by a congruence rela-tion (re
exive, transitive, associative and equality of all sub-expressions impliesequality of composite expressions) on expressions in �gure 10. If e1 = e2 thenthe two expressions denote the same value. The rest of this section describeskey features of the semantics.An object is a collection of de�nitions. The de�nitions are mutually recursiveand shadow any de�nitions for variables in scope with the same name. Thevariable `self' may be used in each of the slot value expressions to refer to theobject. The semantics of �eld selection (axiom REF) shows that the �elds and`self' are substituted into the �eld value when it is extracted from an object.Method invocation is de�ned by the axiom APP. A method occurring inan object must be referenced before it can be invoked. When a method isextracted from an object using REF, the values of the �elds and the value of`self' will be subtituted into the method body. In this way methods can access11

[vi = eii21:::;n]:vj = (ej [self:vi=vii21;:::;n])[[vi = eii21;:::;n]=self] j 2 1; : : : ; n REF(�v:e1)e2 = e1[e2=v] APPe0[ei=v1; e0i=v2] = e0i+1 i 2 1; : : : ; nfei21;:::;ni g ! iterate(v1 v2 = e01je0) = e0n+1 ITER(if true then e1 else e2) = e1 IFTRUE(if false then e1 else e2) = e2 IFFALSEfei21;:::;ni g ! including(e) = fe; ei21;:::;ni g SETINCFigure 10: Meta-Kernel Expression Equivalenceall components of the object.Execution of an iterate expression is de�ned by rule ITER. The result ofiterate is the value accumulated in v2. This value will be atomic, an object or acollection of values. We claim that all other OCL values can be modelled usingthese basic value types.Using iteration expressions and a notion of set extension (axiom SETINC)de�ned in �gure 10 we claim that all OCL set operations can be de�ned assugar. Set extension simply adds a value to an existing set.4.3 Calculus ExtensionsThe Meta-Kernel Calculus provides a sub-set of OCL and support for verysimple objects. The calculus must be extended with extra features in order tosupport the whole of OCL. We will extend the calculus in the following ways:� Syntactic sugaring does not change the underlying semantics of a language;new types of expression are de�ned by giving a translation to the basiccalculus.� Builtin methods extend the syntax of the calculus with new operators thatcan be applied to operands. Each builtin method must have an associatedrule like APP that de�nes what happens when it is applied.4.3.1 Iteration ExpressionsThe `iterate' expression is builtin to the Meta-Kernel Calculus. All other typesof iteration expression are sugar and can be expressed using basic `iterate'.Figure 11 gives a suitable translation. 12

[[e1 ! forAll(v1 j e2)]] =[[e1]]! iterate(v1v2 = true j if [[e2]] then v2 else false)[[e1 ! exists(v1 j e2)]] =[[e1]]! iterate(v1v2 = false j if [[e2]] then true else v2)[[e1 ! select(v1 j e2)]] =[[e1]]! iterate(v1v2 = [[e1]] j if [[e2]] then v2 else v2:excluding(v1))[[e1 ! reject(v1 j e2)]] =[[e1]]! iterate(v1v2 = [[e1]] j if [[e2]] then v2:excluding(v1) else v2)[[e1 ! collect(v1 j e2)]] =[[e1]]! iterate(v1v2 = fg j v2:including([[e2]]))Figure 11: Translation of Iteration Expressions[[S ! size]] = [[S]]! iterate(x i = 0 j i+ 1)[[S ! includes(o)]] = [[S]]! exists(x j x = [[o]])[[S1 ! union(S2)]] = [[S2]]! iterate(x s = [[S1]] j s ! including(x))[[S1 ! intersection(S2)]] = [[S2]]! collect(x j [[S2]]! includes(x))Figure 12: Translation of Set Operations4.3.2 Set ExpressionsThe Meta-Kernel Calculus provides a builtin operator `including' that is usedto construct new sets from existing ones. All other set operations are sugar andcan be constructed using `including' and `iterate'. Figure 12 de�nes some of thetranslations to show how this is achieved. Note that bags and sequences areviewed as being higher-level structures constructed using basic sets and objects.A useful set operation is transitive closure. If the value of a �eld v in anobject is a set S then it is useful to be able to transitively follow the �eld v fromthe elements of S. This is de�ned as syntactic sugar as follows:[[e:v�]] = [[e]]:v ! union([[e]]:v ! iterate(o v = fg j v ! union(o:v�)))4.3.3 Builtin MethodsBuiltin methods are used to extend the calculus with useful operations. Theextensions take the form of new cases for the de�nition of the equivalence rela-tionship on calculus expressions given in �gure 10.The calculus is extended with boolean operators and, or and not. Operatorhas a collection of equivalence rules that de�ne what it means to apply theoperator to boolean operands, for example:true and true = true13

A useful builtin method permits OCL expressions to be viewed as objects. Therule is as follows:e1:satis�edBy([vi = eii21;:::;n]) = (e1[self :vi=vii21;:::;n])[[vi = eii21;:::;n]=self]An OCL expression is satis�ed by an object when the result of substituting theobject into the expression is equal to `true'.4.3.4 Recursive Local De�nitionsIt is useful to be able to de�ne local method de�nitions. This is achieved usingthe following syntactic sugar:let v = e1 in e2 = [v = e1; v0 = e2]:v0where v0 is a fresh variable.5 The Meta-Modelling Sub-LanguageThe Meta-Modelling Sub Language (MMSL) is a meta-circular representation ofthe essential features necessary to de�ne UML pro�les. The language is writtenin the Meta-Kernel Calculus and consists of a collection of classi�ers.A Classi�er in the MMSL is an object that has instances and an OCL in-variant that is true for each of the instances. Classi�cation is the process bywhich the RI determines whether the OCL invariant of a given classi�er holdsfor a given object.The RI must be able to accept new pro�les that de�ne extensions to coreUML concepts at the meta-level. Each new pro�le must be checked against someunform de�nition of pro�le. This is classi�cation at the meta-level. Althoughmany users of the RI will not require such meta-linguistic machinery, we believethat there are advantages in conceptual parsimony and that everything in theRI must be an object classi�ed by something.Figure 13 shows the main MMSL classi�ers and some important relationshipsbetween them. All objects in the RI are classi�ed by a most speci�c classi�er.An unbroken arrow from classi�er C1 to classi�er C2 de�nes that C2 is the mostspeci�c classi�er for C1 viewed as an object. A broken line shows inheritancerelationships between classi�ers viewed as classes.The essential features of the MMSL is given in �gure 14. The MMSL includessyntactic sugar for class de�nitions, package de�nitions and associations. Thetranslations for these sugared constructs simply produces the appropriate objectde�nitions by adding the appropriate slot information.Each classi�er has slot named `invariant' that contains the OCL expressionthat must be satis�ed by each of its instances. The invariants are very importantbecause they provide the semantics of the RI. The rest of this section gives anoverview of the MMSL invariants.`Kernel.Classi�er' is the basic de�nition of a classi�er. All other classi�ersin the RI are specializations. Every classi�er has at least an invariant and a set14

Classifier

Parameterised
Classifier

Class

Association

Slot

Package

Profile

Object

Figure 13: Meta-Modelling Sub-Language Classi�ersof instances. The invariant of `Kernel.Classi�er' requires that the invariant issatis�ed by each instance:instances! forall(i j invariant:satis�edBy(i))`Kernel.Class' extends `Kernel.Classi�er' with features normally associated withinheritance. Every class de�nes a collection of associations (that turn into in-stance slots). Every class has a collection of generalizations. A class inherits allassociations from its generalizations and all the generalization invariants mustbe true for the classes instances. The following shows part of the invariant for`Kernel.Class': self :specializations� ! forall(s js:instances! forall(i jinvariant! satis�edBy(i)))`Kernel.Object' de�nes the essential features of an object. Everything in the RIis an object and therefore will have a classi�er, an identity label and a collectionof slots.`Kernel.Package' de�nes the basic package structure that is used to build theRI. Each package is a collection of de�nitions (expressed as slots). All de�nitionsin the MMSL involve a name and a value. A de�nition cannot occur outside thecontext of an object or a package. A package may import the de�nitions fromanother package: imports! forall(i j de�nitions! includesAll(i:de�nitions))6 Pro�lesA pro�le is a packaged language de�nition. The package includes a descriptionof the syntax and semantics of the language de�ned using the MMSL. A pro�leis a classi�er and therefore, given an instance of the pro�le expressed as a RI15

Kernel:Classi�er =class Classi�er extends Kernel:Classassociations = finvariant : OCL;instances : Valuegend
Kernel:Object =class Objectassociations = fclassi�er : Kernel:Classi�er;identity : fIntegerg;slots : fSlotggendKernel:Class =class Class extends Kernel:Classi�erassociations = fgeneralizations : fKernel:Classi�erg;specializations : fKernel:Classi�erg;name : String;package : Kernel:Package;associations : fKernel:Associationggend
Kernel:Association =class Association extends Kernel:Objectassociations = fname : String;type : Kernel:Classi�ergendKernel:Slot =class Slot extends Kernel:Objectassociations = fname : String;value : Valuegend
Kernel:Package =class Package extends Kernel:Objectassociations = fname : String;imports : fKernel:Packageg;de�nitions : fKernel:SlotggendFigure 14: The Meta-Modelling Sub-Languageobject, we can determine whether or not the object is a correct phrase of thelanguage using RI classi�cation.6.1 Pro�le Classi�erFigure 15 de�nes a pro�le classi�er contained in the MMSL. A pro�le containspackages de�ning the syntax and semantics of the language. `Pro�le' is a meta-class since it specializes `Kernel.Class'. The instances of `Pro�le' are thereforeclassi�ers called pro�les. Since it is a classi�er, a pro�le has an invariant thatis used to de�ne conditions that must hold between the syntactic and semanticcomponents of instances of the pro�le.

16

Kernel:Pro�le =class Pro�le extends Kernel:Classassociations = fsyntax : Kernel:Package;semantics : Kernel:Packagegend Figure 15: MMSL Pro�le6.2 An Example Pro�leFigure 16 de�nes a simple pro�le for UML class diagrams as de�ned by themeta-model in �gure 6. The pro�le, has four main components: the syntaxpackage; the semantics package; the associations; and, the invariant.The package `syntax' conforms to the meta-model in �gure 4. A tool usingthe `ClassDiagram' package to check its syntactic representation of class dia-grams would translate its internal representation of classes and associations toinstances of `ClassDiagram.syntax.Classi�er' and `ClassDiagram.syntax.Attribute'respectively.The package `semantics' conforms to the meta-model in �gure 5. The seman-tics is used in two ways: a tool can check its own semantic model against thatprovided by a pro�le; and, the semantics can be used to prove properties abouta UML model fragment. In the case of class diagrams, a tool may represent in-stances of classes in which case the objects are translated to instances of `Class-Diagram.semantics.Instance' and `ClassDiagram.semantics.AttributeLink'.The class diagram pro�le de�nes two associations `classes' and `instances'.A tool will check its internal representation against a pro�le by supplying aninstance of the pro�le. Instances of `ClassDiagram' consist of a collection ofclasses (the syntactic part) and a collection of instances (the semantic part).6.3 Using Pro�lesConsider a UML CASE tool that supports drawing class diagrams and objectdiagrams. The tool vendors wish to determine whether or not their represen-tation of classes and instances is correct with respect to the UML standard.Suppose also that the standard for UML class diagrams is de�ned by the RIpro�le `ClassDiagram' de�ned in �gure 16.The RI will accept as input tool model components translated to instancesof known classi�ers. The tool can then be used to check whether the instancesare classi�ed by standard pro�les. The RI makes no distinction between meta-classes, classes or objects and therefore the RI can be used to check meta-modelsas easily as models or snapshots of models.Suppose the tool wishes to check a particular class diagram containing two17

class ClassDiagram extends Kernel:Objectclassi�er = Kernel:Pro�le;package syntax =class Classi�er extends Kernel:Objectassociations = fname : String; attributes : fAttributegg;end;class Attribute extends Kernel:Objectassociations = fname : String; type : Classi�ergendend;package semanticsclass Instance extends Kernel:Objectassociations = fslots : fattributeLinkgg;end;class AttributeLink extends kernel:Objectassociations = fvalue : Instance; name : Stringgendend;associations = fclasses : fsyntax:Classi�erg; instances : fsemantics:Instancegg;invariant =let classi�es(c; o) =o:slots ! forall(s jc:attributes ! exists(a js:name = a:name andclassi�es(a:type; s:value)))in instances ! forall(i jclasses ! exists(c jclassi�es(c; i)))end Figure 16: A Simple Pro�le for Class Diagramsclasses `Operation' and `Parameter' (see example in section 3.1). There is asingle association from `Operation' to `Parameter' named `param'. In additionthe tool has a representation of a Operation `o' and its parameter `p'. This istranslated to the package shown in �gure 17.7 The Reference ImplementationThe RI is an implementation of the MKC, the MMSL and a collection of pro�lesde�ned using the MMSL. It is intended that the RI serve as a shared resource forthe UML community and that it be used to collectively de�ne and experimentwith the semantics for UML.In addition, the RI provides an API that allows users to connect and use thetool to build pro�les and check candidate models against pro�les. The API is18

package Example import ClassDiagram:syntax;ClassDiagram:semanticsOperation = [classi�er = Classi�er; name = "Operation"; attributes = fparamg];paramAtt = [classi�er = Attribute; name = "param"; type = Parameter];Parameter = [classi�er = Classi�er; name = "Parameter"; attributes = fg];o = [classi�er = Instance; slots = fparamLinkg];p = [classi�er = Instance; slots = fg];paramLink = [classi�er = AttributeLink; name = "param"; value = p];pro�leInstance = [classes = fOperation;Parameterg; instances = fo; pg]end Figure 17: Example Class Diagramplanned to include an XML interface, a textual language interface (the languageused in this paper) and a programming interface in Java.The RI will be implemented in Java and will support distributed use via theInternet. Users will be able to connect to the RI and use the facilities as part ofan applet. The RI will act as a server and maintain the pro�les in a database.The scope of the RI does not extend beyond checking the conformance ofUML models in a standard format. However, it does provide the basis for astandard representation for a suite of tools that extend the capabilities of theRI. Tools that are able to interface with the RI will be able to make use of thesemantic de�nitions encoded in pro�les to perform sophisticated manipulationof UML models. We would expect the RI to be the basis for tools for: editing;model checking; proof; code generation; reverse engineering.8 ConclusionThis paper has investigated the requirements of a reference implementation(RI) for UML. It has concluded that the current status of the UML de�nition ispresently unsuitable as a foundation for an RI due to its large size, lack of precisesemantics and in
exibility. A meta-modelling sub-language was then proposedwhich overcomes all these limitations. This language can be used to describethe semantics of any UML pro�le using a relatively small number of concepts.A further reduction in the size of the language was achieved by showing howthis language can be translated into a meta-kernel language consisting of slotsand links and a simple constraint language.The meta-kernel language will form the basis for the reference implemen-tation. We have shown that its simple object/links semantics model can bereadily implemented in the RI and that it can be used to check the validity ofsnapshots against pro�les. Work will now continue to further develop the tool.This will include work to develop its user interface and its analysis capabilities.For example, the ability to `model check' pro�les would be extremely useful.In the medium to long term, we believe that the semantics approach taken in19

this paper, and the preliminary work done on its implementation, are a majorstep towards our broader goals of developing the UML as a precise, adaptable,and scalable modelling language. By providing developers with such tools andtechniques, it is hoped that the development of new pro�les (i.e. new modellinglanguage) will increasingly become a precise and veri�able process.8.1 Related work and issuesHow does the proposed semantics compare with those of other modelling lan-guages?: The denotational approach has been used in the de�nition of manymodelling languages and notations. For example, formal speci�cation notationssuch as Z [7] and CSP [8] use this approach. The novelty of our approach isthat we have concentrated on building a meta- semantics model that has the
exibility to be applied in the de�nition of any UML-like language. Languagessuch as those above do not have this
exibility, and therefore are not capableof adapting to changes in language requirements. Many other have looked atformalising OO methods and UML [9, 10]. However, we believe that ours isthe �rst comprehensive semantics that can deal with UML pro�les and OCL.Recently, Alloy [11] has been proposed by Daniel Jackson as a precise languagefor object modelling. Alloy also has an associated tool, Alcoa, which permitsmodel checking of alloy expressions. However, the language does not conform tothe UML standard, and has a single, unchangeable semantics. Others have pro-vided preliminary work on OCL meta-modelling semantics, including [12, 13].However, these are not yet complete.Isn't the meta-modelling sub-language similar to the MOF? We have proposed aprecise de�nition of a sub-language of UML for meta-modelling. This is similarto the MOF meta-meta model [14], but de�ned in a more declarative, logicalstyle. It is also, itself, more suited to a declarative style of meta-modelling asrequired for UML. We have given clear guidelines for determining what should goin this language, and have based the language on those guidelines. In particular,the language is intended to be small (but not too small), must at least begood enough to describe itself (completely and with semantics), and is targetedat de�ning the language in a declarative fashion. It also has constructs tosupport a �ne-grained language architecture and development of pro�les. In [5]we have also described a richer, more precise and better delineated architecturefor language de�nition than the 4-level meta-model architecture (at least as itis described in the semantics chapter of UML 1.3). We propose that this is usedas the reference architecture for de�ning UML.Is the idea of a meta-modelling tool new?: No meta-case tools have been avail-able for over a decade. Commercial meta-CASE tools such as Toolbuilder andMeta-Edit provide meta-repositories. Such repositories could in theory be prop-agated with UML pro�les. However, they currently don't provide facilities forthe semantic analysis, nor do they support OCL.20

References[1] OMG Uni�ed Modeling Language Speci�cation (1.3), Available fromhttp://www.omg.org, 1999.[2] A.S.Evans and S.Kent: Meta-modelling semantics of UML: the pUML ap-proach. 2nd International Conference on the Uni�ed Modeling Language.Editors: B.Rumpe and R.B.France, Colorado, LNCS 1723, 1999.[3] S. Cook, A. Kleppe, R. Mitchell, B. Rumpe, J. Warmer, A. Wills: De�ningUML Family Members Using Prefaces.In: Technology of Object-OrientedLanguages and Systems, TOOLS'99 Paci�c. Ch. Mingins, B. Meyer (eds.)IEEE Computer Society[4] Jos. Warmer, A. Kleppe: The Object Constraint Language: Precise Mod-eling with UML, Addison-Wesley, 1998.[5] A. Clark, A. Evans, R. France, S. Kent, B. Rumpe: Response to UML 2.0Request for Information, Available at: http://www.cs.york.ac.uk, 1999.[6] D.F.D'Souza and A.C.Wills: Objects, Components and Frameworks withUML, Addison-Wesley, 1999.[7] J.M. Spivey: The Z Notation, Prentice Hall, 1992.[8] C.A.R Hoare: Communicating Sequential Processes, Prentice Hall, 1985.[9] R. France, J-M. Bruel, M. Larrondo-Petrie and M. Shro�: Exploring theSemantics of UML Type Structures with Z, Proc. 2nd IFIP Conf. FormalMethods for Open Object-Based Distributed Systems (FMOODS'97), 1997.[10] A. Evans and T. Clark: Foundations of the Uni�ed Modeling Language,Proc. of the 2nd BCS-FACS Northern Formal Methods Workshop, Ilkley,UK, 23-24 September 1997, 1997.[11] D. Jackson: Alloy: A Lightweight Object Modelling Notation, Availableat: http://sdg.lcs.mit.edu/alcoa, 1999.[12] M.Richters and M. Gogolla, A Meta-model for OCL. 2nd InternationalConference on the Uni�ed Modeling Language. Editors: B.Rumpe andR.B.France, Colorado, LNCS 1723, 1999.[13] M. Richters and M. Gogolla: On Formalizing the UML Object ConstraintLanguage OCL, Proc. 17th Int. Conf. Conceptual Modeling ER'98, 1998[14] The Meta-Object Facility Speci�cation. Available at: http://www.omg.org,1999.
21

View publication statsView publication stats

https://www.researchgate.net/publication/220264246

